Causes of the Vietnam War: An Academic Look at Wilsoniasm and Cold War Effects
1999-04-01
International Politics Makes Strange Bedfellows: Theories of the Radical Right and Radical Left,” American Political Science Review 68, no.1 (March 1874...Holsi, “The Study of International Politics Makes Strange Bedfellows: Theories of the Radical Right and Radical Left,” American Political Science
Von Glaserfeld`s Radical Constructivism: A Critical Review
NASA Astrophysics Data System (ADS)
Hardy, Michael D.
We explore Ernst von Glaserfelds radical constructivism, its criticisms, and our own thoughts on what it promises for the reform of science and mathematics teaching. Our investigation reveals that many criticisms of radical constructivism are unwarranted; nevertheless, in its current cognitivist form radical constructivism may be insufficient to empower teachers to overcome objectivist cultural traditions. Teachers need to be empowered with rich understandings of philosophies of science and mathematics that endorse relativist epistemologies; for without such they are unlikely to be prepared to reconstruct their pedagogical practices. More importantly, however, is a need for a powerful social epistemology to serve as a referent for regenerating the culture of science education. We recommend blending radical constructivism with Habermas theory of communicative action to provide science teachers with a moral imperative for adopting a constructivist epistemology.
ERIC Educational Resources Information Center
Russell, Jae-eun; Van Horne, Sam; Ward, Adam S.; Bettis, Arthur, III.; Sipola, Maija; Colombo, Mariana; Rocheford, Mary K.
2016-01-01
This study investigated students' attitudes, engagement, satisfaction, and performance in Introduction to Environmental Science after it was transformed from a typical large lecture to a student-centered learning environment. The instructors of the course collaborated with the Office of Teaching, Learning & Technology and radically redesigned…
Promoting the behaviorological analysis of verbal behavior
Eshleman, John W.; Vargas, Ernest A.
1988-01-01
An important contribution of radical behavioral science is its analysis of verbal behavior. Slowly but surely an increasing number of efforts verify the propositions explicit or inherent in Skinner's theory of verbal behavior, or apply his analysis to clinical or educational practice. But both the theory and the effort to apply it are met with silence. Such silent neglect simply varies the calumnious attention usually given to behavioristic science. In recent years several papers have called attention to how non-behaviorists have habitually misrepresented the science of behavior and its underlying philosophy of radical behaviorism (Cooke, 1984; DellaLana, 1982; Morris, 1985; Todd, 1987a; Todd & Morris, 1981; Todd & Morris, 1983). These authors offer various solutions. Their preferred strategy stresses an increased effort to disseminate accurate information about behavioristic science to the press and to the world at large. They generally address, however, errors of commission, not omission. Further, their solutions tend to dwell on “processes” instead of “products.” This paper first reviews the problem of misrepresentation of the science. It then addresses the principal error of omission in the psychological literature, and offers a solution based on achieving new products resulting from new verbal behavior technology. PMID:22477561
ERIC Educational Resources Information Center
Allen, Vikki Renee
2012-01-01
Critical issues are confronting educators regarding increasing student achievement levels in reading, math and science in United States' public schools. Educators and legislators are attempting to make radical changes in instructional methodology and to find viable and sustainable solutions to problems associated with poor student achievement.…
On the Radicalization Process.
Leistedt, Samuel J
2016-11-01
This study aimed to provide an in-depth description of the radicalization process, which is a very important step in terrorist activities. The author proposes a translational analysis that is first based on the author's experience in the psychological evaluation of terrorist behavior and second on an exhaustive review of the current literature. The search terms "terrorism," "radicalization," "social psychology," and "psychopathology" were used to identify relevant studies in the following databases: Scopus, Medline, PubCentral, and Science Direct. Because of its importance, understanding radicalization process should be one of the priorities of behavioral scientists. International studies should be performed with a focus on several aspects, such as radicalization risk factors, brainwashing, the role of the media, and finally, in de-radicalization programs. © 2016 American Academy of Forensic Sciences.
Autonomous operations through onboard artificial intelligence
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Education Research Will Not Profit from Radical Constructionism.
ERIC Educational Resources Information Center
Cobern, William W.
This paper examines the historical roots of critical realism in western thought, highlights the dramatic nature of the shift in thought that the radical constructivists are seeking, and critically considers the relevance of radical constructivism in science teacher education. Radical constructivism is an epistemological philosophy that divorces…
The autonomous sciencecraft constellations
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2003-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Fostering radical conceptual change through dual-situated learning model
NASA Astrophysics Data System (ADS)
She, Hsiao-Ching
2004-02-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.
On radicalizing behaviorism: A call for cultural analysis
Malagodi, E. F.
1986-01-01
Our culture at large continues many practices that work against the well-being of its members and its chances for survival. Our discipline has failed to realize its potential for contributing to the understanding of these practices and to the generation of solutions. This failure of realization is in part a consequence of the general failure of behavior analysts to view social and cultural analysis as a fundamental component of radical behaviorism. This omission is related to three prevailing practices of our discipline. First, radical behaviorism is characteristically defined as a “philosophy of science,” and its concerns are ordinarily restricted to certain epistemological issues. Second, theoretical extensions to social and cultural phenomena too often depend solely upon principles derived from the analysis of behavior. Third, little attention has been directed at examining the relationships that do, or that should, exist between our discipline and related sciences. These practices themselves are attributed to certain features of the history of our field. Two general remedies for this situation are suggested: first, that radical behaviorism be treated as a comprehensive world view in which epistemological, psychological, and cultural analyses constitute interdependent components; second, that principles derived from compatible social-science disciplines be incorporated into radical behaviorism. PMID:22478643
Radical versus Social Constructivism: Dilemma, Dialogue, and Defense
ERIC Educational Resources Information Center
Belbase, Shashidhar
2011-01-01
This paper aims to discuss epistemological and philosophical foundation of meaningful learning and teaching mathematics and science from the perspective of radical and social constructivism. I have reflected on my experiences of radical and social constructivism through dilemma, dialogue, and defense of my personal epistemology of learning. I went…
Radical Behaviorism and Buddhism: Complementarities and Conflicts
ERIC Educational Resources Information Center
Diller, James W.; Lattal, Kennon A.
2008-01-01
Comparisons have been made between Buddhism and the philosophy of science in general, but there have been only a few attempts to draw comparisons directly with the philosophy of radical behaviorism. The present review therefore considers heretofore unconsidered points of comparison between Buddhism and radical behaviorism in terms of their…
Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode
NASA Astrophysics Data System (ADS)
Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki
We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).
Science fiction and human enhancement: radical life-extension in the movie 'In Time' (2011).
Roduit, Johann A R; Eichinger, Tobias; Glannon, Walter
2018-03-20
The ethics of human enhancement has been a hotly debated topic in the last 15 years. In this debate, some advocate examining science fiction stories to elucidate the ethical issues regarding the current phenomenon of human enhancement. Stories from science fiction seem well suited to analyze biomedical advances, providing some possible case studies. Of particular interest is the work of screenwriter Andrew Niccol (Gattaca, S1m0ne, In Time, and Good Kill), which often focuses on ethical questions raised by the use of new technologies. Examining the movie In Time (2011), the aim of this paper is to show how science fiction can contribute to the ethical debate of human enhancement. In Time provides an interesting case study to explore what could be some of the consequences of radical life-extension technologies. In this paper, we will show how arguments regarding radical life-extension portrayed in this particular movie differ from what is found in the scientific literature. We will see how In Time gives flesh to arguments defending or rejecting radical life-extension. It articulates feelings of unease, alienation and boredom associated with this possibility. Finally, this article will conclude that science fiction movies in general, and In Time in particular, are a valuable resource for a broad and comprehensive debate about our coming future.
Nelson, Patricia P.
2003-01-01
Planning a new health sciences library at the beginning of the twenty-first century is a tremendous challenge. Technology has radically changed the way libraries function in an academic environment and the services they provide. Some individuals question whether the library as place will continue to exist as information becomes increasingly available electronically. To understand how libraries resolve programming and building design issues, visits were made to three academic health sciences libraries that have had significant renovation or completed new construction. The information gathered will be valuable for planning a new library for the University of Colorado Health Sciences Center and may assist other health sciences librarians as they plan future library buildings. PMID:12883559
Functions of Research in Radical Behaviorism for the Further Development of Behavior Analysis
ERIC Educational Resources Information Center
Leigland, Sam
2010-01-01
The experimental analysis of behavior began as an inductively oriented, empirically based scientific field. As the field grew, its distinctive system of science--radical behaviorism--grew with it. The continuing growth of the empirical base of the field has been accompanied by the growth of the literature on radical behaviorism and its…
The effects of hyaluronan and its fragments on lipid models exposed to UV irradiation.
Trommer, Hagen; Wartewig, Siegfried; Böttcher, Rolf; Pöppl, Andreas; Hoentsch, Joachim; Ozegowski, Jörg H; Neubert, Reinhard H H
2003-03-26
The effects of hyaluronan and its degradation products on irradiation-induced lipid peroxidation were investigated. Liposomal skin lipid models with increasing complexity were used. Hyaluronan and its fragments were able to reduce the amount of lipid peroxidation secondary products quantified by the thiobarbituric acid (TBA) assay. The qualitative changes were studied by mass spectrometry. To elucidate the nature of free radical involvement electron paramagnetic resonance (EPR) studies were carried out. The influence of hyaluronan and its fragments on the concentration of hydroxyl radicals generated by the Fenton system was examined using the spin trapping technique. Moreover, the mucopolysaccharide's ability to react with stable radicals was checked. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) showed no concentration changes of the stable radical caused by hyaluronan. Hyaluronan was found to exhibit prooxidative effects in the Fenton assay in a concentration dependent manner. A transition metal chelation was proposed as a mechanism of this behavior. Considering human skin and its constant exposure to UV light and oxygen and an increased pool of iron in irradiated skin the administration of hyaluronan or its fragments in cosmetic formulations or sunscreens could be helpful for the protection of the human skin. Copyright 2003 Elsevier Science B.V.
The future of scientific communication in the earth sciences: The impact of the internet
Carr, T.R.; Buchanan, R.C.; Adkins-Heljeson, D.; Mettille, T.D.; Sorensen, J.
1997-01-01
Publication on paper of research results following peer-review and editing has been the accepted means of scientific communication for several centuries. Today, the continued growth in the volume of scientific literature, the increased unit costs of archiving paper publications, and the rapidly increasing power and availability of electronic technology are creating tremendous pressures on traditional scientific communication. The earth sciences are not immune from these pressures, and the role of the traditional publication as the primary means of communication is rapidly changing. Electronic publications and network technology are radically altering the relationship between interpretative result and the underlying data. Earth science research institutions, including the Kansas Geological Survey, are experimenting with new forms of on-line publication that assure broad access to research and data and improve application of research results to societal problems. ?? 1997 Elsevier Science Ltd.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Autonomous planning and scheduling on the TechSat 21 mission
NASA Technical Reports Server (NTRS)
Sherwood, R.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting.
Scaling up Three-Dimensional Science Learning through Teacher-Led Study Groups across a State
ERIC Educational Resources Information Center
Reiser, Brian J.; Michaels, Sarah; Moon, Jean; Bell, Tara; Dyer, Elizabeth; Edwards, Kelsey D.; McGill, Tara A. W.; Novak, Michael; Park, Aimee
2017-01-01
The vision for science teaching in the Framework for K-12 Science Education and the Next Generation Science Standards requires a radical departure from traditional science teaching. Science literacy is defined as three-dimensional (3D), in which students engage in science and engineering practices to develop and apply science disciplinary ideas…
The Nature of Science and the Role of Knowledge and Belief
NASA Astrophysics Data System (ADS)
Cobern, William W.
In everyday language we tend to think of knowledge as reasoned belief that a proposition is true and the natural sciences provide the archetypal example of what it means to know. Religious and ideological propositions are the typical examples of believed propositions. Moreover, the radical empiricist worldview so often associated with modern science has eroded society's meaningful sense of life. Western history, however, shows that knowledge and belief have not always been constructed separately. In addition, modern developments in the philosophy and history of science have seriously undermined the radical empiricist's excessive confidence in scientific methods. Acknowledging in the science classroom the parallel structure of knowledge and belief, and recognizing that science requires a presuppositional foundation that is itself not empirically verifiable would re introduce a valuable discussion on the meaning of science and its impact on life. Science would less likely be taught as a `rhetoric of conclusions'. The discussion would also help students to gain a firmer integration of science with other important knowledge and beliefs that they hold.
Mars Oxidant and Radical Detector
NASA Technical Reports Server (NTRS)
Yen, A. S.; Kim, S. S.
2003-01-01
The Mars Oxidant and Radical Detector is an instrument designed to characterize the reactive nature of the martian surface environment. Using Electron Paramagnetic Resonance (EPR) techniques, this instrument can detect, identify, and quantify radical species in soil samples, including those inferred to be present by the Viking experiments. This instrument is currently funded by the Mars Instrument Development Program and is compatible with the Mars Science Laboratory mission.
Free Radicals in Chemical Biology: from Chemical Behavior to Biomarker Development
Chatgilialoglu, Chryssostomos; Ferreri, Carla; Masi, Annalisa; Melchiorre, Michele; Sansone, Anna; Terzidis, Michael A.; Torreggiani, Armida
2013-01-01
The involvement of free radicals in life sciences has constantly increased with time and has been connected to several physiological and pathological processes. This subject embraces diverse scientific areas, spanning from physical, biological and bioorganic chemistry to biology and medicine, with applications to the amelioration of quality of life, health and aging. Multidisciplinary skills are required for the full investigation of the many facets of radical processes in the biological environment and chemical knowledge plays a crucial role in unveiling basic processes and mechanisms. We developed a chemical biology approach able to connect free radical chemical reactivity with biological processes, providing information on the mechanistic pathways and products. The core of this approach is the design of biomimetic models to study biomolecule behavior (lipids, nucleic acids and proteins) in aqueous systems, obtaining insights of the reaction pathways as well as building up molecular libraries of the free radical reaction products. This context can be successfully used for biomarker discovery and examples are provided with two classes of compounds: mono-trans isomers of cholesteryl esters, which are synthesized and used as references for detection in human plasma, and purine 5',8-cyclo-2'-deoxyribonucleosides, prepared and used as reference in the protocol for detection of such lesions in DNA samples, after ionizing radiations or obtained from different health conditions. PMID:23629513
ERIC Educational Resources Information Center
Hestenes, David
2013-01-01
Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…
NASA Astrophysics Data System (ADS)
Potter, Wendell H.; Lynch, Robert B.
2013-01-01
The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.
The future of scientific communication in the earth sciences: The impact of the internet
NASA Astrophysics Data System (ADS)
Carr, Timothy R.; Buchanan, Rex C.; Adkins-Heljeson, Dana; Mettille, Thomas D.; Sorensen, Janice
1997-06-01
Publication on paper of research results following peer-review and editing has been the accepted means of scientific communication for several centuries. Today, the continued growth in the volume of scientific literature, the increased unit costs of archiving paper publications, and the rapidly increasing power and availability of electronic technology are creating tremendous pressures on traditional scientific communication. The earth sciences are not immune from these pressures, and the role of the traditional publication as the primary means of communication is rapidly changing. Electronic publications and network technology are radically altering the relationship between interpretative result and the underlying data. Earth science research institutions, including the Kansas Geological Survey, are experimenting with new forms of on-line publication that assure broad access to research and data and improve application of research results to societal problems.
Polyamines and abiotic stress in plants: a complex relationship Frontiers in Plant Science
Rakesh Minocha; Rajtilak Majumdar; Subhash C. Minocha
2014-01-01
The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism...
Wang, Huai-Song; Song, Min; Hang, Tai-Jun
2016-02-10
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.
2014-12-01
Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.
Choi, Sungkyu; Kim, Ye Ji; Kim, Sun Min; Yang, Jung Woon; Kim, Sung Wng; Cho, Eun Jin
2014-09-12
The trifluoromethyl (CF3) group is a staple synthon that can alter the physical and chemical properties of organic molecules. Despite recent advances in trifluoromethylation methods, the development of a general synthetic methodology for efficient and selective trifluoromethylation remains an ongoing challenge motivated by a steadily increasing demand from the pharmaceutical, agrochemical and materials science industries. In this article, we describe a simple, efficient and environmentally benign strategy for the hydrotrifluoromethylation of unactivated alkenes and alkynes through a radical-mediated reaction using an inorganic electride, [Ca2N](+) · e(-), as the electron source. In the transformation, anionic electrons are transferred from [Ca2N](+) · e(-) electrides to the trifluoromethylating reagent CF3I to initiate radical-mediated trifluoromethylation. The role of ethanol is pivotal in the transformation, acting as the solvent, an electron-releasing promoter and a hydrogen atom source. In addition, iodotrifluoromethylation of alkynes proceeds selectively upon the control of electride amount.
NASA Astrophysics Data System (ADS)
Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng
2016-04-01
The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.
Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.
Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B
2016-05-13
Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes. Copyright © 2016, American Association for the Advancement of Science.
Radicals: Reactive Intermediates with Translational Potential.
Yan, Ming; Lo, Julian C; Edwards, Jacob T; Baran, Phil S
2016-10-05
This Perspective illustrates the defining characteristics of free radical chemistry, beginning with its rich and storied history. Studies from our laboratory are discussed along with recent developments emanating from others in this burgeoning area. The practicality and chemoselectivity of radical reactions enable rapid access to molecules of relevance to drug discovery, agrochemistry, material science, and other disciplines. Thus, these reactive intermediates possess inherent translational potential, as they can be widely used to expedite scientific endeavors for the betterment of humankind.
Ernst von Glasersfeld's Radical Constructivism and Truth as Disclosure
ERIC Educational Resources Information Center
Joldersma, Clarence W.
2011-01-01
In this essay Clarence Joldersma explores radical constructivism through the work of its most well-known advocate, Ernst von Glasersfeld, who combines a sophisticated philosophical discussion of knowledge and truth with educational practices. Joldersma uses Joseph Rouse's work in philosophy of science to criticize the antirealism inherent in…
Radical Behaviorism and Buddhism: Complementarities and Conflicts
Diller, James W; Lattal, Kennon A
2008-01-01
Comparisons have been made between Buddhism and the philosophy of science in general, but there have been only a few attempts to draw comparisons directly with the philosophy of radical behaviorism. The present review therefore considers heretofore unconsidered points of comparison between Buddhism and radical behaviorism in terms of their respective goals, conceptualization of human beings, and the outcomes of following either philosophy. From these comparisons it is concluded that the commonalities discerned between these two philosophies may enhance both philosophical systems. PMID:22478509
Radical behaviorism and buddhism: complementarities and conflicts.
Diller, James W; Lattal, Kennon A
2008-01-01
Comparisons have been made between Buddhism and the philosophy of science in general, but there have been only a few attempts to draw comparisons directly with the philosophy of radical behaviorism. The present review therefore considers heretofore unconsidered points of comparison between Buddhism and radical behaviorism in terms of their respective goals, conceptualization of human beings, and the outcomes of following either philosophy. From these comparisons it is concluded that the commonalities discerned between these two philosophies may enhance both philosophical systems.
Fostering Radical Conceptual Change through Dual-Situated Learning Model
ERIC Educational Resources Information Center
She, Hsiao-Ching
2004-01-01
This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it…
Learning at the "Boundaries": Radical Listening, Creationism, and Learning from the "Other"
ERIC Educational Resources Information Center
Alexakos, Konstantinos; Pierwola, Agnieszka
2013-01-01
In our forum contribution to Federica Raia's manuscript (2012) on learning at the boundaries, we propose that using radical listening in the science education classroom, especially when contentious issues such as evolution are discussed, helps stakeholders learn from each other's values and viewpoints and contributes to bridging divides.
Miyake, Yasufumi
2011-04-01
New guidelines on cardiopulmonary resuscitation(CPR) and emergency cardiovascular care (ECC) were published in October 2010 from International Liaison Committee on Resuscitation (ILCOR). Changes of these guidelines will have dramatic effects on Japan. Starting with chest compressions first will increase by-stander CPR. Cases of recovery of spontaneous heartbeat could increase as a result. Intensive care and radical treatments for cardiovascular emergency and brain damage after cardiopulmonary arrest would be essential. Education, implementation and teams (EIT) will be the third subject.
Science, Education, and the Ideology of "How"
ERIC Educational Resources Information Center
Lang, Charles
2010-01-01
The aim of this work is to relate discussions of ideology and science within the Radical Science movement of the 1960s-1980s with present conversations on the integration of biology, psychology, and education. The argument is that an ideological analysis yields useful direction with respect to how a learning science might develop and how we might…
Neighborhood Science Stories: Bridging Science Standards and Urban Students' Lives
ERIC Educational Resources Information Center
Burke, Christopher
2007-01-01
Shelter, distribution of resources, adaptation and food sources are all key topics in teaching fifth grade students ecosystems. These terms and ideas are often presented in value neutral terms in the standard science curriculum. These terms have radically different connotations in different communities. In this paper students' fictional narrative…
Teaching the "Nature of Science": Modest Adaptations or Radical Reconceptions?
ERIC Educational Resources Information Center
Hipkins, Rosemary; Barker, Miles; Bolstad, Rachel
2005-01-01
This article explores the nature of a continuing mismatch between curriculum reform rhetoric in science education and actual classroom practice. Lack of philosophical consensus about the nature of science (NOS); lack of appropriate curriculum guidance, classroom materials and pedagogical content knowledge for NOS teaching; teachers' personal…
Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests
Petersen, Richard C.
2014-01-01
Aims To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Study Design Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Place and Duration of Study Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Methodology Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0–7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Results Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. Conclusion Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E. PMID:25909053
Toward the sociopolitical in science education
NASA Astrophysics Data System (ADS)
Tolbert, Sara; Bazzul, Jesse
2017-06-01
In this paper, we explore how Jacques Rancière's (The ignorant schoolmaster: five lessons in intellectual emancipation. Stanford University Press, Stanford, 1991) notions of radical equality and dissensus reveal horizons for activism and sociopolitical engagement in science education theory, research, and practice. Drawing on Rochelle Gutiérrez' (J Res Math Educ 44(1):37-68, 2013a. doi: 10.5951/jresematheduc.44.1.0037; J Urban Math Educ 6(2):7-19, b) "sociopolitical turn" for mathematics education, we identify how the field of science education can/is turning from more traditional notions of equity, achievement and access toward issues of systemic oppression, identity and power. Building on the conversation initiated by Lorraine Otoide who draws from French philosopher Jacques Rancière to experiment with a pedagogy of radical equality, we posit that a sociopolitical turn in science education is not only imminent, but necessary to meet twenty-first century crises.
Tang, Jin-Qiu; Zhao, Zhihong; Liang, Yiwen; Liao, Guixiang
2018-02-01
Robot-assisted radical cystectomy (RARC) is increasing annually for treatment of bladder cancer. The objective of this meta-analysis was to compare the safety and efficacy of RARC and open radical cystectomy (ORC) for bladder cancer. Our meta-analysis searches were conducted using PubMed, Web of Science, and Cochrane Library databases to identify randomized controlled trials (RCT) assessing the two techniques. Four RCT studies were identified, including 239 cases. Our studies indicated that RARC was associated with longer operative time (WMD: 69.69, 95% CI:17.25 to122.12; P= 0.009), lower estimated blood loss (WMD: -299.83, 95% CI:-414.66to -184.99; P<0.00001). The two groups had no significant difference in overall perioperative complications, length of hospital stay, lymph node yield and positive surgical margins. RARC is mini-invasive alternative to ORC for bladder cancer. The advantage of RARC was reduced estimated blood loss. More studies are needed to compare the two techniques. Copyright © 2017 John Wiley & Sons, Ltd.
Building a Future-Oriented Science Education System in New Zealand: How Are We Doing?
ERIC Educational Resources Information Center
Gilbert, Jane; Bull, Ally
2013-01-01
This paper makes the case for deep and radical change to New Zealand's approach to science education. It discusses the implications of recent science education research and policy work, and argues New Zealand still has a long way to go to developing a future-oriented science education system. It explores what needs to change and contains…
ERIC Educational Resources Information Center
Orthia, Lindy A.
2016-01-01
Since the mid-twentieth century, the 'Scientific Revolution' has arguably occupied centre stage in most Westerners', and many non-Westerners', conceptions of science history. Yet among history of science specialists that position has been profoundly contested. Most radically, historians Andrew Cunningham and Perry Williams in 1993 proposed to…
Historical antecedents to the philosophy of Paul Feyerabend.
Munévar, Gonzalo
2016-06-01
Paul Feyerabend has been considered a very radical philosopher of science for proposing that we may advance hypotheses contrary to well-confirmed experimental results, that observations make theoretical assumptions, that all methodological rules have exceptions, that ordinary citizens may challenge the judgment of experts, and that human happiness should be a key value for science. As radical as these theses may sound, they all have historical antecedents. In defending the Copernican view, Galileo exemplified the first two; Mill, Aristotle and Machiavelli all argued for pluralism; Aristotle gave commonsense reasons for why ordinary citizens may be able to judge the work of experts; and a combination of Plato's and Aristotle's views can offer strong support for the connection between science and happiness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Prompted Praxis to Improve Teacher Professional Development in Culturally Diverse Schools
ERIC Educational Resources Information Center
Rodriguez, Alberto J.; Zozakiewicz, Cathy; Yerrick, Randy
2005-01-01
Recent science and teacher education reports continue to stress the need for radical changes in the way teachers are prepared to teach science to diverse learners. In response, a three-year intervention project was developed to help teachers in culturally diverse schools transform their science teaching practices using learning technologies. Many…
Research on Rapid Initial Adaption to the Environment of a Plateau.
Wang, Bin Hua; Cao, Zheng Tao; Wu, Feng; Yang, Jun; Liu, Yuan Yuan; Yu, Meng Sun
2016-09-01
We designed two types of pre-adaption plans for this study. One was a pre-adaption training with progressive intermittent hypoxia, with a constant lower pressure oxygen tank used in the plain before arriving at the plateau (PG). The other was by progressively increasing the time of exposure to hypoxia with oxygen supplied in stages after radical plateau (RG). By testing the blood oxygen saturation (SpO2), heart rate (HR), and quality of sleep after arriving at the 3800 m high plateau, results showed that the pre-acclimatization and radical groups performed better than the control group (CG). Both strategies were equivalent in terms of effects and principles in providing more flexible choices for acclimatization. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Krylov, Igor B; Kompanets, Mykhailo O; Novikova, Katerina V; Opeida, Iosip O; Kushch, Olga V; Shelimov, Boris N; Nikishin, Gennady I; Levitsky, Dmitri O; Terent'ev, Alexander O
2016-01-14
Nitroxyl radicals are widely used in chemistry, materials sciences, and biology. Imide-N-oxyl radicals are subclass of unique nitroxyl radicals that proved to be useful catalysts and mediators of selective oxidation and CH-functionalization. An efficient metal-free method was developed for the generation of imide-N-oxyl radicals from N-hydroxyimides at room temperature by the reaction with (diacetoxyiodo)benzene. The method allows for the production of high concentrations of free radicals and provides high resolution of their EPR spectra exhibiting the superhyperfine structure from benzene ring protons distant from the radical center. An analysis of the spectra shows that, regardless of the electronic effects of the substituents in the benzene ring, the superhyperfine coupling constant of an unpaired electron with the distant protons at positions 4 and 5 of the aromatic system is substantially greater than that with the protons at positions 3 and 6 that are closer to the N-oxyl radical center. This is indicative of an unusual character of the spin density distribution of the unpaired electron in substituted phthalimide-N-oxyl radicals. Understanding of the nature of the electron density distribution in imide-N-oxyl radicals may be useful for the development of commercial mediators of oxidation based on N-hydroxyimides.
NASA Technical Reports Server (NTRS)
Osborn, D. E.; Lynch, D. C.; Fazzolari, R.
1990-01-01
The Department of Materials Science and Engineering (MSE) is investigating the use of monatomic chlorine produced in a cold plasma to recover oxygen and metallurgically significant metals from lunar materials. Development of techniques for the production of the chlorine radical (and other energetic radicals for these processes) using local planetary resources is a key step for a successful approach. It was demonstrated terrestrially that the use of UV light to energize the photogeneration of OH radicals from ozone or hydrogen peroxide in aqueous solutions can lead to rapid reaction rates for the breakdown of toxic organic compounds in water. A key question is how to use the expanded solar resource at the lunar surface to generate process-useful radicals. This project is aimed at investigating that question.
Twenty Years of Symbiosis Between Art and Science
ERIC Educational Resources Information Center
Reichardt, Jasia
1974-01-01
During the past two decades advances in biology, nuclear physics, computer and material sciences, and audiovisual engineering have brought a radically new dimension to most art forms and have stimulated the artist and his innovations to breath-taking levels of achievement. (Editor/JR)
Modeling and measurement of hydrogen radical densities of in situ plasma-based Sn cleaning source
NASA Astrophysics Data System (ADS)
Elg, Daniel T.; Panici, Gianluca A.; Peck, Jason A.; Srivastava, Shailendra N.; Ruzic, David N.
2017-04-01
Extreme ultraviolet (EUV) lithography sources expel Sn debris. This debris deposits on the collector optic used to focus the EUV light, lowering its reflectivity and EUV throughput to the wafer. Consequently, the collector must be cleaned, causing source downtime. To solve this, a hydrogen plasma source was developed to clean the collector in situ by using the collector as an antenna to create a hydrogen plasma and create H radicals, which etch Sn as SnH4. This technique has been shown to remove Sn from a 300-mm-diameter stainless steel dummy collector. The H radical density is of key importance in Sn etching. The effects of power, pressure, and flow on radical density are explored. A catalytic probe has been used to measure radical density, and a zero-dimensional model is used to provide the fundamental science behind radical creation and predict radical densities. Model predictions and experimental measurements are in good agreement. The trends observed in radical density, contrasted with measured Sn removal rates, show that radical density is not the limiting factor in this etching system; other factors, such as SnH4 redeposition and energetic ion bombardment, must be more fully understood in order to predict removal rates.
Coherent triplet excitation suppresses the heading error of the avian compass
NASA Astrophysics Data System (ADS)
Katsoprinakis, G. E.; Dellis, A. T.; Kominis, I. K.
2010-08-01
Radical-ion pair reactions are currently understood to underlie the biochemical magnetic compass of migratory birds. It was recently shown that radical-ion pair reactions form a rich playground for the application of quantum-information-science concepts and effects. We will show here that the intricate interplay between the quantum Zeno effect and the coherent excitation of radical-ion pairs leads to an exquisite angular sensitivity of the reaction yields. This results in a significant and previously unanticipated suppression of the avian compass heading error, opening the way to quantum engineering precision biological sensors.
Peer review versus editorial review and their role in innovative science.
Steinhauser, Georg; Adlassnig, Wolfram; Risch, Jesaka Ahau; Anderlini, Serena; Arguriou, Petros; Armendariz, Aaron Zolen; Bains, William; Baker, Clark; Barnes, Martin; Barnett, Jonathan; Baumgartner, Michael; Baumgartner, Thomas; Bendall, Charles A; Bender, Yvonne S; Bichler, Max; Biermann, Teresa; Bini, Ronaldo; Blanco, Eduardo; Bleau, John; Brink, Anthony; Brown, Darin; Burghuber, Christopher; Calne, Roy; Carter, Brian; Castaño, Cesar; Celec, Peter; Celis, Maria Eugenia; Clarke, Nicky; Cockrell, David; Collins, David; Coogan, Brian; Craig, Jennifer; Crilly, Cal; Crowe, David; Csoka, Antonei B; Darwich, Chaza; Del Kebos, Topiciprin; Derinaldi, Michele; Dlamini, Bongani; Drewa, Tomasz; Dwyer, Michael; Eder, Fabienne; de Palma, Raúl Ehrichs; Esmay, Dean; Rött, Catherine Evans; Exley, Christopher; Falkov, Robin; Farber, Celia Ingrid; Fearn, William; Felsmann, Sophie; Flensmark, Jarl; Fletcher, Andrew K; Foster, Michaela; Fountoulakis, Kostas N; Fouratt, Jim; Blanca, Jesus Garcia; Sotelo, Manuel Garrido; Gittler, Florian; Gittler, Georg; Gomez, Juan; Gomez, Juan F; Polar, Maria Grazia Gonzales; Gonzalez, Jossina; Gösselsberger, Christoph; Habermacher, Lynn; Hajek, Michael; Hakala, Faith; Haliburton, Mary-Sue; Hankins, John Robert; Hart, Jason; Hasslberger, Sepp; Hennessey, Donalyn; Herrmann, Andrea; Hersee, Mike; Howard, Connie; Humphries, Suzanne; Isharc, Laeeth; Ivanovski, Petar; Jenuth, Stephen; Jerndal, Jens; Johnson, Christine; Keleta, Yonas; Kenny, Anna; Kidd, Billie; Kohle, Fritz; Kolahi, Jafar; Koller-Peroutka, Marianne; Kostova, Lyubov; Kumar, Arunachalam; Kurosawa, Alejandro; Lance, Tony; Lechermann, Michael; Lendl, Bernhard; Leuchters, Michael; Lewis, Evan; Lieb, Edward; Lloyd, Gloria; Losek, Angelika; Lu, Yao; Maestracci, Saadia; Mangan, Dennis; Mares, Alberto W; Barnett, Juan Mazar; McClain, Valerie; McNair, John Sydney; Michael, Terry; Miller, Lloyd; Monzani, Partizia; Moran, Belen; Morris, Mike; Mößmer, Georg; Mountain, Johny; Phuthe, Onnie Mary Moyo; Muñoz, Marcos; Nakken, Sheri; Wambui, Anne Nduta; Neunteufl, Bettina; Nikolić, Dimitrije; Oberoi, Devesh V; Obmode, Gregory; Ogar, Laura; Ohara, Jo; Rybine, Naion Olej; Owen, Bryan; Owen, Kim Wilson; Parikh, Rakesh; Pearce, Nicholas J G; Pemmer, Bernhard; Piper, Chris; Prince, Ian; Reid, Terence; Rindermann, Heiner; Risch, Stefan; Robbins, Josh; Roberts, Seth; Romero, Ajeandro; Rothe, Michael Thaddäus; Ruiz, Sergio; Sacher, Juliane; Sackl, Wolfgang; Salletmaier, Markus; Sanand, Jairaj; Sauerzopf, Clemens; Schwarzgruber, Thomas; Scott, David; Seegers, Laura; Seppi, David; Shields, Kyle; Siller-Matula, Jolanta; Singh, Beldeu; Sithole, Sibusio; Six, Florian; Skoyles, John R; Slofstra, Jildou; Sole, Daphne Anne; Sommer, Werner F; Sonko, Mels; Starr-Casanova, Chrislie J; Steakley, Marjorie Elizabeth; Steinhauser, Wolfgang; Steinhoff, Konstantin; Sterba, Johannes H; Steppan, Martin; Stindl, Reinhard; Stokely, Joe; Stokely, Karri; St-Pierre, Gilles; Stratford, James; Streli, Christina; Stryg, Carl; Sullivan, Mike; Summhammer, Johann; Tadesse, Amhayes; Tavares, David; Thompson, Laura; Tomlinson, Alison; Tozer, Jack; Trevisanato, Siro I; Trimmel, Michaela; Turner, Nicole; Vahur, Paul; van der Byl, Jennie; van der Maas, Tine; Varela, Leo; Vega, Carlos A; Vermaak, Shiloh; Villasenor, Alex; Vogel, Matt; von Wintzigerode, Georg; Wagner, Christoph; Weinberger, Manuel; Weinberger, Peter; Wilson, Nick; Wolfe, Jennifer Finocchio; Woodley, Michael A; Young, Ian; Zuraw, Glenn; Zwiren, Nicole
2012-10-01
Peer review is a widely accepted instrument for raising the quality of science. Peer review limits the enormous unstructured influx of information and the sheer amount of dubious data, which in its absence would plunge science into chaos. In particular, peer review offers the benefit of eliminating papers that suffer from poor craftsmanship or methodological shortcomings, especially in the experimental sciences. However, we believe that peer review is not always appropriate for the evaluation of controversial hypothetical science. We argue that the process of peer review can be prone to bias towards ideas that affirm the prior convictions of reviewers and against innovation and radical new ideas. Innovative hypotheses are thus highly vulnerable to being "filtered out" or made to accord with conventional wisdom by the peer review process. Consequently, having introduced peer review, the Elsevier journal Medical Hypotheses may be unable to continue its tradition as a radical journal allowing discussion of improbable or unconventional ideas. Hence we conclude by asking the publisher to consider re-introducing the system of editorial review to Medical Hypotheses.
Competency Based Modular Experiments in Polymer Science and Technology.
ERIC Educational Resources Information Center
Pearce, Eli M; And Others
1980-01-01
Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)
Toward the Sociopolitical in Science Education
ERIC Educational Resources Information Center
Tolbert, Sara; Bazzul, Jesse
2017-01-01
In this paper, we explore how Jacques Rancière's ("The ignorant schoolmaster: five lessons in intellectual emancipation". Stanford University Press, Stanford, 1991) notions of radical equality and dissensus reveal horizons for activism and sociopolitical engagement in science education theory, research, and practice. Drawing on Rochelle…
Is This the End of the English Tradition of Practical A-Level Science?
ERIC Educational Resources Information Center
Carter, Ian
2014-01-01
From September 2015, schools in England will be teaching new A-level science specifications that have been developed by examination boards to encompass new higher levels of demand developed by the Department for Education. Integral to these new specifications is a radical change to the contribution of practical science to the A-level grade of the…
ERIC Educational Resources Information Center
Zohar, Danah
This book relates the radically new sciences of the 20th century--quantum mechanics, chaos theory, and complexity theory--to organizational problems and challenges facing corporate leaders. The book draws on the science of the human brain, with its three different kinds of neural structures--mental, emotional, and spiritual--to illustrate how to…
Sociology of the growth/no-growth debate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, C.R.; Buttel, F.H.
The properties of conservative, liberal, and radical patterns in social science are analyzed and applied to the growth/no-growth debate in environmental policy literature. The fact that conservatives work with an evolutionary model of society suggests that environmental problems are imperfections to be remedied by science, technology, and the free market. Liberals recognize the benefits and costs of growth, and they articulate ways to minimize the costs through state regulation and planning. Radicals argue for state ownership of the means of production and new cultural values about growth as the only effective environmental policies. This analysis closes with a discussion ofmore » the future of the growth debate in terms of these paradigms. 40 references.« less
Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun
2014-03-01
Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.
Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.
Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P
2018-01-16
The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be designed to minimize exposure to these potentially harmful products.
Values, trust and science - building trust in today's food system in an era of radical transparency.
Arnot, Charlie; Vizzier-Thaxton, Yvonne; Scanes, Colin G
2016-07-21
Public concern exists globally about the food system and both the practices and the intensification of animal agriculture. Examples are presented of public opinion in North America, the European Union, and the People's Republic of China. Negative perceptions increase with distance from production agriculture. Even animal science faculty members do not uniformly support present production practices. Public trust in the food system is based on consumers' or public confidence (shared values based on corporate and institutional social responsibility or their fiduciary responsibility), competence of the people or groups providing the information and the influence of others (e.g., friends and family). Producer or company discussion of issues has focused on competency and "the science" when confidence is markedly more important to consumers and more effective. It is argued that the food system largely escapes regulation by federal and state governments by a social license based on public confidence. However, a tipping point(s) exists such that a crisis could greatly diminish public confidence and end the social license and bring with it increases in regulation. Advocacy for production agriculture (poultry and livestock) needs to incorporate recognition of the need to reaffirm the public's trust, assuring shared values together with an emphasis on good science. © 2016 Poultry Science Association Inc.
Effect of Heating on DPPH Radical Scavenging Activity of Meat Substitute
Song, Hyeun Sung; Bae, Jun Kyu; Park, Inshik
2013-01-01
This study was conducted to evaluate the increase of DPPH radical scavenging activity of meat substitute by heating. The meat substitute showed higher DPPH radical scavenging activity than those of other foods rich in protein such as beef, pork, chicken, and soybean curd. The DPPH radical scavenging activity of meat substitute was dependent upon concentration, heating temperature and heating time of meat substitute. The DPPH radical scavenging activity of meat substitute was enhanced with increasing heating temperature and time. The increase of DPPH radical scavenging activity was only applied to meat substitute without showing any activation in other foods rich in protein such as beef, pork, chicken, and soybean curd. PMID:24471114
Effect of Heating on DPPH Radical Scavenging Activity of Meat Substitute.
Song, Hyeun Sung; Bae, Jun Kyu; Park, Inshik
2013-03-01
This study was conducted to evaluate the increase of DPPH radical scavenging activity of meat substitute by heating. The meat substitute showed higher DPPH radical scavenging activity than those of other foods rich in protein such as beef, pork, chicken, and soybean curd. The DPPH radical scavenging activity of meat substitute was dependent upon concentration, heating temperature and heating time of meat substitute. The DPPH radical scavenging activity of meat substitute was enhanced with increasing heating temperature and time. The increase of DPPH radical scavenging activity was only applied to meat substitute without showing any activation in other foods rich in protein such as beef, pork, chicken, and soybean curd.
Polymerization Simulator for Introductory Polymer and Material Science Courses
ERIC Educational Resources Information Center
Chirdon, William M.
2010-01-01
This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…
Electronic laboratory notebooks progress and challenges in implementation.
Machina, Hari K; Wild, David J
2013-08-01
Electronic laboratory notebooks (ELNs) are increasingly replacing paper notebooks in life science laboratories, including those in industry, academic settings, and hospitals. ELNs offer significant advantages over paper notebooks, but adopting them in a predominantly paper-based environment is usually disruptive. The benefits of ELN increase when they are integrated with other laboratory informatics tools such as laboratory information management systems, chromatography data systems, analytical instrumentation, and scientific data management systems, but there is no well-established path for effective integration of these tools. In this article, we review and evaluate some of the approaches that have been taken thus far and also some radical new methods of integration that are emerging.
Regenerative Rehabilitation – a New Future?
Perez-Terzic, Carmen; Childers, Martin K.
2014-01-01
Modern rehabilitation medicine is propelled by newfound knowledge aimed at offering solutions for an increasingly aging population afflicted by chronic debilitating conditions. Considered a core component of future healthcare, the roll-out of regenerative medicine underscores a paradigm shift in patient management targeted at restoring physiologic function and restituting normative impact. Nascent regenerative technologies offer unprecedented prospects in achieving repair of degenerated, diseased or damaged tissues. In this context, principles of regenerative science are increasingly integrated in rehabilitation practices as illustrated in the present Supplement. Encompassing a growing multidisciplinary domain, the emergent era of “regenerative rehabilitation” brings radical innovations at the forefront of healthcare blueprints. PMID:25310603
IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES
Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.
2013-01-01
Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752
Making Cosmic Connections in the Nature of Science
NASA Astrophysics Data System (ADS)
Androes, D. L.
2011-09-01
Presenting the rich heritage of astronomy includes exposing the process of science, warts and all. In the quest to comprehensively cover science content, the nature of science is often neglected. A cursory inclusion of the nature of science generally showcases in the lives and times of the Copernican Revolution - and rightly so. Astronomy owes its mark of fame in all other disciplines to the radical shift in thinking about our place in the cosmos that occurred in the late 1500s and early 1600s. However, the nature of science offers a much broader range of connections between science objectives and course content.
Aluminum stress increases carbon-centered radicals in soybean roots.
Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro
2010-10-15
The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
JPRS Report, Science & Technology, USSR: Chemistry.
1988-12-23
Escape Accidents at Nuclear Power Plant With Water Moderated Reactors [S. A. Kabakehi, M. A. Budayev, et al.; KHIMIYA VYSOKIKH ENERGIY, Vol 22 No 4...water on the reactor surface also lowered loss of radicals. In general, the extent and temperature function Study of Radicals Desorbing From Surface... reactor sur- Alcohols With Oxygen face, by adsorption of the reagents and reaction products 184100 13f Moscow KHIMICHESKA YA FIZIKA on this surface and the
ERIC Educational Resources Information Center
Coben, Diana
This book examines the ideas of two radical heroes of adult education: Antonio Gramsci (1891-1937) and Paulo Freire (1921-1997). The book is organized into six chapters. Chapter 1 introduces both men and their influences on adult education. Chapter 2 examines Gramsci's educative concept of politics, focusing on his concepts of hegemony and the…
Ethno-nationalist populism and the mobilization of collective resentment.
Bonikowski, Bart
2017-11-01
Scholarly and journalistic accounts of the recent successes of radical-right politics in Europe and the United States, including the Brexit referendum and the Trump campaign, tend to conflate three phenomena: populism, ethno-nationalism and authoritarianism. While all three are important elements of the radical right, they are neither coterminous nor limited to the right. The resulting lack of analytical clarity has hindered accounts of the causes and consequences of ethno-nationalist populism. To address this problem, I bring together existing research on nationalism, populism and authoritarianism in contemporary democracies to precisely define these concepts and examine temporal patterns in their supply and demand, that is, politicians' discursive strategies and the corresponding public attitudes. Based on the available evidence, I conclude that both the supply and demand sides of radical politics have been relatively stable over time, which suggests that in order to understand public support for radical politics, scholars should instead focus on the increased resonance between pre-existing attitudes and discursive frames. Drawing on recent research in cultural sociology, I argue that resonance is not only a function of the congruence between a frame and the beliefs of its audience, but also of shifting context. In the case of radical-right politics, a variety of social changes have engendered a sense of collective status threat among national ethnocultural majorities. Political and media discourse has channelled such threats into resentments toward elites, immigrants, and ethnic, racial and religious minorities, thereby activating previously latent attitudes and lending legitimacy to radical political campaigns that promise to return power and status to their aggrieved supporters. Not only does this form of politics threaten democratic institutions and inter-group relations, but it also has the potential to alter the contours of mainstream public discourse, thereby creating the conditions of possibility for future successes of populist, nationalist, and authoritarian politics. © London School of Economics and Political Science 2017.
Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
NASA Astrophysics Data System (ADS)
Tan, Rongri; Liu, Huixuan; Xun, Damao; Zong, Wenjun
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11564015 and 61404062), the Research Fund for the Doctoral Program of China (Grant No. 3000990110), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant Nos. 2015QNBJRC002 and 2016QNBJRC006).
The Fateful Rift: The San Andreas Fault in the Modern Mind.
ERIC Educational Resources Information Center
Percy, Walker
1990-01-01
Claims that modern science is radically incoherent and that this incoherence lies within the practice of science. Details the work of the scientist and philosopher Charles Sanders Pierce, expounding on the difference between Rene Descartes' dualistic philosophy and Pierce's triadic view. Concludes with a brief description of the human existence.…
The Academic Degree as a Distorting Mirror of Russian Science
ERIC Educational Resources Information Center
Porus, V. N.
2014-01-01
The process of obtaining academic degrees in Russia has gone through serious distortions, and this has damaged Russian science. Existing administrative measures taken to correct the situation have been ineffective, and a radical transformation of the entire system of the training of scientific and scientific pedagogical cadres is required. [This…
A Study of Physics First Curricula in Pennsylvania
ERIC Educational Resources Information Center
Dreon, Oliver, Jr.
2005-01-01
Physics First has gained momentum across the country. Providing a radically different paradigm to teaching science at the high school level, the Physics First movement inverts the traditional science sequence by teaching physics to ninth grade students. One of the benefits of this change, supporters claim, is that it provides a foundation to teach…
NASA Astrophysics Data System (ADS)
Levinson, Ralph
2017-12-01
In responding to Jesse Bazzul's and Annette Gough's articles I maintain that contemporary positivist science curricula cannot address the urgent issues of sustainability and biopower that confront us. Drawing on the writings and interpretations of Emmanuel Levinas I argue that contemplating the meaning of responsibility to the Other is a radically subversive activity and a means of moving from the neoliberal dominance of science education towards a science one steeped in social justice.
NASA Astrophysics Data System (ADS)
Teraji, T.; Arakaki, T.
2011-12-01
Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.
The future of 'pure' medical science: the need for a new specialist professional research system.
Charlton, Bruce G; Andras, Peter
2005-01-01
Over recent decades, medical research has become mostly an 'applied' science which implicitly aims at steady progress by an accumulation of small improvements, each increment having a high probability of validity. Applied medical science is, therefore, a social system of communications for generating pre-publication peer-reviewed knowledge that is ready for implementation. However, the need for predictability makes modern medical science risk-averse and this is leading to a decline in major therapeutic breakthroughs where new treatments for new diseases are required. There is need for the evolution of a specialized professional research system of pure medial science, whose role would be to generate and critically evaluate radically novel and potentially important theories, techniques, therapies and technologies. Pure science ideas typically have a lower probability of being valid, but the possibility of much greater benefit if they turn out to be true. The domination of medical research by applied criteria means that even good ideas from pure medical science are typically ignored or summarily rejected as being too speculative. Of course, radical and potentially important ideas may currently be published, but at present there is no formal mechanism by which pure science publications may be received, critiqued, evaluated and extended to become suitable for 'application'. Pure medical science needs to evolve to constitute a typical specialized scientific system of formal communications among a professional community. The members of this putative profession would interact via close research groupings, journals, meetings, electronic and web communications--like any other science. Pure medical science units might arise as elite grouping linked to existing world-class applied medical research institutions. However, the pure medical science system would have its own separate aims, procedures for scientific evaluation, institutional organization, funding and support arrangements; and a separate higher-professional career path with distinctive selection criteria. For instance, future leaders of pure medical science institutions would need to be selected on the basis of their specialized cognitive aptitudes and their record of having generated science-transforming ideas, as well as their research management skills. Pure medical science would work most effectively and efficiently if practiced in many independent and competing institutions in several different countries. The main 'market' for pure medical science would be the applied medical scientists, who need radical strategies to solve problems which are not yielding to established methods. The stimulus to create such elite pure medical science institutions might come from the leadership of academic 'entrepreneurs' (for instance, imaginative patrons in the major funding foundations), or be triggered by a widespread public recognition of the probable exhaustion of existing applied medical science approaches to solving major therapeutic challenges.
NASA Astrophysics Data System (ADS)
Tan, Z.; Lu, K.; Ma, X.; Bohn, B.; Hofzumahaus, A.; Broch, S.; Fuchs, H.; Holland, F.; Liu, Y.; Li, X.; Novelli, A.; Rohrer, F.; Wang, H.; Wu, Y.; Shao, M.; Zeng, L.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
A comprehensive field campaign was carried out in winter 2016 in the campus of UCAS (University of Chinese Academy of Science), located in a small town 60 km northeast of urban Beijing. Concentrations of OH, HO2 and RO2 radicals as well as the total OH reactivity were measured by a laser induced fluorescence instrument. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. These radical concentrations were smaller than those observed during summer because of the reduced solar radiation. A chemical modulation device to separate atmospheric OH radicals from any interfering species was applied for few days showing negligible interference for both clean and polluted air masses.HONO and HCHO photolysis were found to be the most important primary sources of ROx radicals. CO and NOx were the important OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary air products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations for moderate NOx conditions but larger discrepancies are observed for both low and high NOx regimes for the peroxy radical concentrations. The underestimation of RO2 radical concentrations for high NOx conditions is discussed in the context of recent campaigns.
NASA Astrophysics Data System (ADS)
Sumitro, Sutiman B.; Alit, Sukmaningsih
2018-03-01
Developing Complexity Science and Nano Biological perspective giving the ideas of interfacing between modern physical and biological sciences for more comprehensive understanding of life. The study of bioinorganic is a trans-disciplinary, and will initiate the way to more comprehensive and better understanding life. We can talk about energy generation, motive forces and energy transfer at the level of macromolecules. We can then develop understanding biological behavior on nano size biological materials and its higher order using modern physics as well as thermodynamic law. This is a necessity to ovoid partial understanding of life that are not match with holism. In animal tissues, the accumulation or overwhelmed production of free radicals can damage cells and are believed to accelerate the progression of cancer, cardiovascular disease, and age-related diseases. Thus a guarded balance of radical species is imperative. Edward Kosower [1] proposed an idea of biradical in an aromatic organic compounds. Each of which having unpaired electrons. The magnetic force of this compound used for making agregation based on their magnetic characters. Bioinorganic low molecular weight complex compounds composing herbal medicine can bind toxic metals. This low molecular weight complex molecules then easily excerted the metals from the body, removing them from their either intracellular or extracellular existences. This bioinorganic chelation potential is now inspiring a new therapeutic strategies.
Behaviorism, Private Events, and the Molar View of Behavior
Baum, William M
2011-01-01
Viewing the science of behavior (behavior analysis) to be a natural science, radical behaviorism rejects any form of dualism, including subjective–objective or inner–outer dualism. Yet radical behaviorists often claim that treating private events as covert behavior and internal stimuli is necessary and important to behavior analysis. To the contrary, this paper argues that, compared with the rejection of dualism, private events constitute a trivial idea and are irrelevant to accounts of behavior. Viewed in the framework of evolutionary theory or for any practical purpose, behavior is commerce with the environment. By its very nature, behavior is extended in time. The temptation to posit private events arises when an activity is viewed in too small a time frame, obscuring what the activity does. When activities are viewed in an appropriately extended time frame, private events become irrelevant to the account. This insight provides the answer to many philosophical questions about thinking, sensing, and feeling. Confusion about private events arises in large part from failure to appreciate fully the radical implications of replacing mentalistic ideas about language with the concept of verbal behavior. Like other operant behavior, verbal behavior involves no agent and no hidden causes; like all natural events, it is caused by other natural events. In a science of behavior grounded in evolutionary theory, the same set of principles applies to verbal and nonverbal behavior and to human and nonhuman organisms. PMID:22532740
Convergent evolution as natural experiment: the tape of life reconsidered
Powell, Russell; Mariscal, Carlos
2015-01-01
Stephen Jay Gould argued that replaying the ‘tape of life’ would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution—the independent origination of similar biological forms and functions—which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the ‘critique from convergent evolution’ fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life. PMID:26640647
Convergent evolution as natural experiment: the tape of life reconsidered.
Powell, Russell; Mariscal, Carlos
2015-12-06
Stephen Jay Gould argued that replaying the 'tape of life' would result in radically different evolutionary outcomes. Recently, biologists and philosophers of science have paid increasing attention to the theoretical importance of convergent evolution-the independent origination of similar biological forms and functions-which many interpret as evidence against Gould's thesis. In this paper, we examine the evidentiary relevance of convergent evolution for the radical contingency debate. We show that under the right conditions, episodes of convergent evolution can constitute valid natural experiments that support inferences regarding the deep counterfactual stability of macroevolutionary outcomes. However, we argue that proponents of convergence have problematically lumped causally heterogeneous phenomena into a single evidentiary basket, in effect treating all convergent events as if they are of equivalent theoretical import. As a result, the 'critique from convergent evolution' fails to engage with key claims of the radical contingency thesis. To remedy this, we develop ways to break down the heterogeneous set of convergent events based on the nature of the generalizations they support. Adopting this more nuanced approach to convergent evolution allows us to differentiate iterated evolutionary outcomes that are probably common among alternative evolutionary histories and subject to law-like generalizations, from those that do little to undermine and may even support, the Gouldian view of life.
On pigs and packers: Radically contextualizing a practice of science with Mexican immigrant students
NASA Astrophysics Data System (ADS)
Richardson Bruna, Katherine; Vann, Roberta
2007-01-01
This paper reports on instructional practices observed in a high school English Learner (EL) Science course serving newcomer Mexican immigrant youth. The school is located in a rural Midwestern meatpacking community in which labor at the hog plant is economically- and racially-segmented; it is the town's Mexican residents, many of them undocumented, who comprise most of the unskilled labor force. The general purpose of the paper is to document how the economic and racial context of this community influences science instruction in the EL Science course and to describe how this presents particular challenges in achieving equitable science instruction for Mexican immigrant youth in these rural, globalizing places. Entering the data via critical discourse analysis (Fairclough, 1995) and then utilizing Barton's (2003) "practice of science" perspective, with an eye toward achieving "radical contextuality" (Grossberg, 1997), we describe the science events, identities, and structures of the pig dissection lesson and detail how what these students could do with science, as rendered by that lesson, was limited by the roles the teacher attributed to the students, her inability to draw on their funds of knowledge as resources for learning, and the voice and position she allowed them to take up. The data reinforce conventional understandings of schools as sites of cultural reproduction (Bowels & Gintis, 1976), as well as of resistance (Giroux, 1983), but afford us a glimpse of the particularity of those mechanisms within the demographically-transitioning American Heartland, iconic of the era of global capitalism.
ERIC Educational Resources Information Center
Heywood, Leslie L.; Garcia, Justin R.; Wilson, David Sloan
2010-01-01
Although Darwinism has gained a foothold in the social sciences, in the humanities, with a few exceptions, it is still largely rejected--not, as some would claim, because humanists are all radical poststructuralists who deny that material reality exists, but rather because, with notable exceptions, Darwinists who work within the humanities have…
JILA Science | Exploring the frontiers of physics
group are lighting up dark excitons. Specifically, the Raschke group developed a method to observe dark into a highly reactive hydroxyl radical (OH). And when CO and OH meet, one byproduct is carbon dioxide one of the nation's leading research institutes in the physical sciences. Learn more about JILA -->
Future Training for Service; A Report to the Library and Information Science Profession.
ERIC Educational Resources Information Center
Ely, Donald P.
Present thought on professional library and information science education for the future is largely focused on improvements and modifications of present programs. However, more radical changes must be made to prepare professionals to cope with future information needs. Course content, structure, and methods should be altered to deal with new and…
Scientific Literacy: A Freirean Perspective as a Radical View of Humanistic Science Education
ERIC Educational Resources Information Center
Dos Santos, Wildson L. P.
2009-01-01
In this article, a rationale for advancing a new idea in humanistic science education is developed from a Paulo Freire perspective. Paulo Freire developed a well-known approach to adult literacy based on his humanistic ideas through the dialogical process. From Freirean educational principles, the idea unfolds that a Freirean humanistic science…
Thriving in-between the Cracks: Deleuze and Guerilla Science Teaching in Singapore
ERIC Educational Resources Information Center
Lee, Yew-Jin
2008-01-01
The radical philosophies of difference articulated by Deleuze and Guattari are just beginning to impinge the field of education although less so within science education. One common thread among the numerous concepts and neologisms (especially the rhizome) that have been coined is the necessity for thinking and acting in what they call…
Jiang, Jian-ping; Luo, Zhong-yang; Xuan, Jian-yong; Zhao, Lei; Fang, Meng-xiang; Gao, Xiang
2015-10-01
Pulsed corona discharge in atmosphere has been widely regarded as an efficient flue gas treatment technology for the generation of active radical species, such as the OH radicals. The spatial distribution of OH radicals generated by pulsed corona discharge plays an important role in decomposing pollutants. The two-dimensional (2-D) distribution of OH radicals of positive wire--plate pulsed corona discharge was detected using laser-induced fluorescence (LIF). The influence of relative humidity (RH) and oxygen concentration on the 2-D distribution of OH radicals were investigated. The results indicated that the 2-D distribution of OH radicals was characterized by a fan-shaped distribution from the wire electrode to plate electrode, and both the maximum values of vertical length and horizontal width of the fan area was less than 1 cm. The 2-D distribution area of OH radicals increased significantly with increasing the RH and the optimum condition was 65% RH. The optimal level of the oxygen concentration for the 2-D distribution area of OH radicals was 2%. The process of OH radical generation and 2-D distribution area of OH radicals were significantly interfered when the oxygen concentration was larger than 15%. The total quenching rate coefficients for different RH values and oxygen concentration in this study were used to calculate the fluorescence yield of OH radical. The fluorescence yield, which is the ratio between the emission rate (Einstein coefficient) and the sum of the emission rate and quenching rate, was used to normalize the 2-D distribution area of OH radicals. The fluorescence yield of OH radical decreased with increasing the RH and oxygen concentration linearly and rapidly. It was also found that compared with the RH, the influence of the oxygen concentration had more notable effect on the fluorescence yield of OH radical and 2-D distribution area of OH radicals.
Pilot study of radical hysterectomy versus radical trachelectomy on sexual distress.
Brotto, Lori A; Smith, Kelly B; Breckon, Erin; Plante, Marie
2013-01-01
Radical trachelectomy, which leaves the uterus intact, has emerged as a desirable surgical option for eligible women with early-stage cervical cancer who wish to preserve fertility. The available data suggest excellent obstetrical outcomes with radical trachelectomy, and no differences in sexual responding between radical trachelectomy and radical hysterectomy. There is a need to examine the effect of radical hysterectomy on sexual distress given that it is distinct from sexual function. Participants were 34 women diagnosed with early-stage cervical cancer. The authors report 1-month postsurgery data for 29 women (radical hysterectomy group: n = 17, M age = 41.8 years; radical trachelectomy group: n = 12, M age = 31.8 years), and 6-month follow-up data on 26 women. Whereas both groups experienced an increase in sex-related distress immediately after surgery, distress continued to increase 6 months after surgery for the radical hysterectomy group but decreased in the radical trachelectomy group. There were no between-group differences in mood, anxiety, or general measures of health. The decrease in sex-related distress in the radical trachelectomy but not in the radical hysterectomy group suggests that the preservation of fertility may have attenuated sex-related distress. Care providers should counsel women exploring surgical options for cervical cancer about potential sex distress-related sequelae.
Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi
2016-09-01
Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Schafer, A
2004-02-01
No discussion of academic freedom, research integrity, and patient safety could begin with a more disquieting pair of case studies than those of Nancy Olivieri and David Healy. The cumulative impact of the Olivieri and Healy affairs has caused serious self examination within the biomedical research community. The first part of the essay analyses these recent academic scandals. The two case studies are then placed in their historical context-that context being the transformation of the norms of science through increasingly close ties between research universities and the corporate world. After a literature survey of the ways in which corporate sponsorship has biased the results of clinical drug trials, two different strategies to mitigate this problem are identified and assessed: a regulatory approach, which focuses on managing risks associated with industry funding of university research, and a more radical approach, the sequestration thesis, which counsels the outright elimination of corporate sponsorship. The reformist approach is criticised and the radical approach defended.
Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways.
Corrochano, Alberto R; Buckin, Vitaly; Kelly, Phil M; Giblin, Linda
2018-06-01
Oxidative stress contributes to cell injury and aggravates several chronic diseases. Dietary antioxidants help the body to fight against free radicals and, therefore, avoid or reduce oxidative stress. Recently, proteins from milk whey liquid have been described as antioxidants. This review summarizes the evidence that whey products exhibit radical scavenging activity and reducing power. It examines the processing and treatment attempts to increase the antioxidant bioactivity and identifies 1 enzyme, subtilisin, which consistently produces the most potent whey fractions. The review compares whey from different milk sources and puts whey proteins in the context of other known food antioxidants. However, for efficacy, the antioxidant activity of whey proteins must not only survive processing, but also upper gut transit and arrival in the bloodstream, if whey products are to promote antioxidant levels in target organs. Studies reveal that direct cell exposure to whey samples increases intracellular antioxidants such as glutathione. However, the physiological relevance of these in vitro assays is questionable, and evidence is conflicting from dietary intervention trials, with both rats and humans, that whey products can boost cellular antioxidant biomarkers. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Emancipating subjects in science education: taking a lesson from Patti Lather and Jacques Rancière
NASA Astrophysics Data System (ADS)
Bazzul, Jesse
2013-03-01
This paper extends the conversation started by Patti Lather in her forum response to "Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity", in terms of engaging the thought of Jacques Rancière. Rancière can offer (science) educators a more definitive example of (possible) emancipatory political subjectivities. His notion of radical equality can also aid in developing new pedagogical spaces in science education. This latter point is taken up in the concluding sections of this short essay.
A Revision of Learning and Teaching = Revision del aprender y del ensenar.
ERIC Educational Resources Information Center
Reggini, Horace C.
1983-01-01
This review of the findings of recent cognitive science research pertaining to learning and teaching focuses on how science and mathematics are being taught, analyzes how the presence of the computer demonstrates a need for radical rethinking of both the theory and the practice of learning, and points out that if educators fail to consider the…
Sharma, Vidit; Meeks, Joshua J
2014-12-01
Despite the increased use of minimally invasive radical prostatectomy, open conversion may occur due to surgical complications, surgeon inexperience or failure to progress. We used nationally representative data to quantify the impact of open conversion compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy, and identify predictors of open conversion. Years 2004 to 2010 of the Nationwide Inpatient Sample were queried for patients who underwent radical prostatectomy to analyze the association of open conversion during minimally invasive radical prostatectomy with Clavien complications. Multivariate regression models yielded significant predictors of open conversion. From 2004 to 2010, 134,398 (95% CI 111,509-157,287) minimally invasive radical prostatectomies were performed with a 1.8% (95% CI 1.4-2.1) open conversion rate, translating to 2,360 (95% CI 2,001-2,720) conversions. Open conversion cases had a longer length of stay (4.17 vs 1.71 days, p <0.001) and higher hospital charges ($51,049 vs $37,418, p <0.001) than nonconverted cases. Of open conversion cases 45.2% experienced a complication vs 7.2% and 12.9% of minimally invasive radical prostatectomy and open radical prostatectomy cases, respectively (p <0.001). After adjusting for age and comorbidities, open conversion was associated with significantly increased odds of a Clavien grade 1, 2, 3 and 4 complication compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy (OR range 2.913 to 15.670, p <0.001). Significant multivariate predictors of open conversion were obesity (OR 1.916), adhesions (OR 3.060), anemia (OR 5.692) and surgeon volume for minimally invasive radical prostatectomy less than 25 cases per year (OR 7.376) (all p <0.01). Open conversion during minimally invasive radical prostatectomy is associated with a higher than expected increase in complications compared to open radical prostatectomy and minimally invasive radical prostatectomy after adjusting for age and comorbidities. External validation of predictors of open conversion may prove useful in minimizing open conversion during minimally invasive radical prostatectomy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Quantification of hydroxyl radical produced during phacoemulsification.
Gardner, Jonathan M; Aust, Steven D
2009-12-01
To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.
The role of hydrogels in the radical production of the Fricke-gel-dosimeter
NASA Astrophysics Data System (ADS)
Lazzaroni, S.; Liosi, G. M.; D'Agostino, G.; Marconi, R. P.; Mariani, M.; Buttafava, A.; Dondi, D.
2018-01-01
The radiolysis mechanism of the Fricke-gel-dosimeters has been investigated in order to evaluate the role of hydrogels in the radical production. For this purpose, electron paramagnetic resonance (EPR) spectra were acquired for samples frozen and irradiated at 77 K. The analysis was performed by increasing stepwise the temperature and acquiring the EPR spectra at 120 K in order to follow the radical reaction mechanism. The comparison between aqueous- and gel- dosimeters were performed. Both gelatin from porcine skin and PVA (polyvinyl alcohol) were investigated as gel matrix. Different radical species were identified and qualitatively compared. For gel matrix, peroxyl radicals, stemming from the hydrogel, play an important role in the survival of radicals at higher temperature. Moreover, the Fe3+ EPR signal has been studied and compared with the radicals concentration. From this comparison, it is evident the increase of Fe3+ concentration is shifted toward higher temperatures with respect to the radical decay. To explain this phenomenon, the intervention of EPR silent species like peroxides is supposed.
Effects of the components in rice flour on thermal radical generation under microwave irradiation.
Lin, Lufen; Huang, Luelue; Fan, Daming; Hu, Bo; Gao, Yishu; Lian, Huizhang; Zhao, Jianxin; Zhang, Hao; Chen, Wei
2016-12-01
The relationships between radical generation under microwave irradiation and the components of various types of rice flour were investigated. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize the radicals found in rice flour samples. The EPR spectra revealed that several types of radical (carbon-centered, tyrosyl and semiquinone) were localized in the starch and protein fractions of the rice flour. The signal intensity of the free radicals was observed to increase exponentially with increasing microwave power and residence time. The rice bran samples exhibited the greatest free radical signal intensity, followed by the brown rice samples and the white rice samples. This finding was consistent for both the native and the microwaved samples. The ratio of rice starch to rice protein also played an important role in the generation of radicals. Copyright © 2016 Elsevier B.V. All rights reserved.
Transient alkylaminium radicals in n-hexane. Condensed-phase ion-molecule reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werst, D.W.; Trifunac, A.D.
Time-resolved fluorescence detected magnetic resonance (FDMR) is used to observe alkylaminium radicals formed in n-hexane solutions by electron pulse radiolysis. The ease of observation of aminium radical FDMR signals increases with increasing alkyl substitution of the amine solutes. The results are discussed in terms of the ion-molecule reactions, such as proton transfer, which compete with the electron-transfer processes, i.e, the electron transfer from solute molecules to n-hexane radical cations and geminate recombination.
Matsuo, Y; Kihara, T; Ikeda, M; Ninomiya, M; Onodera, H; Kogure, K
1995-11-01
A growing body of experimental data indicate that oxygen radicals may mediate the brain injury during ischemia-reperfusion. One potential source of oxygen radicals is activated neutrophils. To study the role of neutrophils in radical production during cerebral ischemia-reperfusion, we evaluated the effects of depletion of circulating neutrophils by administration of an anti-neutrophil monoclonal antibody (RP3) on radical formation in rats with 1-h middle cerebral artery (MCA) occlusion. In the present study, we employed a new electron spin resonance method coupled with brain microdialysis. The method uses the endogenous ascorbyl radical (AR) concentration as a marker of oxygen radicals and requires no spin-trapping agents. In the vehicle controls, extracellular AR decreased during MCA occlusion. After reperfusion, AR significantly increased at 30 min and 1 h, returned to near basal level until 2 h, and increased again at 24 h after reperfusion. In the rats treated with RP3, AR decreased during MCA occlusion to the same extent as in the vehicle control. However, RP3 treatment completely inhibited the increase in extracellular AR after reperfusion. RP3 treatment exerted no effect on the changes in extracellular ascorbate or tissue PO2 throughout the experimental period. In conclusion, neutrophils are a major source of oxygen radicals during reperfusion after focal cerebral ischemia.
Ramos, Paweł; Pilawa, Barbara
2016-06-24
Free radicals formed during thermal sterilization of the Ungentum ophthalmicum were examined by an X-band EPR spectroscopy. The influence of storage time (15 min; 1, 2 and 3 days after heating) on free radical properties and concentrations in this sample was determined. Thermal sterilization was done according to the pharmaceutical norms. The first-derivative EPR spectra with g-values about 2 were measured with magnetic modulation of 100 kHz in the range of microwave power 2.2-70 mW. The changes of amplitudes (A) and linewidths (ΔB pp ) with microwave powers were evaluated. Free radicals in concentration ∼10 17 spin/g were formed during heating of the tested Ungentum. Free radical concentration decreased with increase in storage time, and reached values ∼10 17 spin/g after 3 days from sterilization. The tested U. ophthalmicum should not be sterilized at a temperature of 160 °C because of the free radicals formation, or it should be used 3 days after heating, when free radicals were considerably quenched. Free radical properties remain unchanged during storage of the Ungentum. The EPR lines of the U. ophthalmicum were homogeneously broadened and their linewidths (ΔB pp ) increased with increase in microwave power. EPR spectroscopy is useful to examine free radicals to optimize sterilization process and storage conditions of ophthalmologic samples.
Liao, Shaohua; Pan, Bo; Li, Hao; Zhang, Di; Xing, Baoshan
2014-01-01
Biochar can benefit human society as a carbon-negative material and soil amendment. However, negative biochar impacts on plant germination and growth have been observed, and they have not been fully explained. Therefore, protocols to avoid these risks cannot be proposed. We hypothesized that the free radicals generated during charring may inhibit plant germination and growth. Significant electron paramagnetic resonance (EPR) signals were observed in the biochars derived from several types of common biomass (corn stalk, rice, and wheat straws) and the major biopolymer components of biomass (cellulose and lignin), but not in the original materials, suggesting the ubiquitous presence of free radicals in biochars. EPR signal intensity increased with increasing pyrolysis temperature, and it was dominantly contributed by oxygen centered in the mixture of oxygen- and carbon-centered free radicals as the temperature increased. The free radicals in biochars induced strong ·OH radicals in the aqueous phase. Significant germination inhibition, root and shoot growth retardation and plasma membrane damage were observed for biochars with abundant free radicals. Germination inhibition and plasma membrane damage were not obvious for biochars containing low free radicals, but they were apparent at comparable concentrations of conventional contaminants, such as heavy metals and polyaromatic hydrocarbons. The potential risk and harm of relatively persistent free radicals in biochars must be addressed to apply them safely.
NASA Astrophysics Data System (ADS)
Zhang, Huangwei; Chen, Zheng
2018-05-01
Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.
1997-01-01
cycles such as Stirling vs. Brayton vs. Rankine etc., rather than ’merely’ considering alternative ’gases’. Focusing on the process is a radically...Measurments John R. Taylor , University Science Books, Mil Valley CA (1982) 12.) Terry M. Tritt, Science, 272, 1276 (1996) 13.) All the "Q-terms
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
Twenty-five years of Social Science in Law.
Monahan, John; Walker, Laurens
2011-02-01
In this essay, we take the publication of the seventh edition of the casebook Social Science in Law (2010) as an opportunity to reflect on continuities and changes that have occurred in the application of social science research to American law over the past quarter-century. We structure these reflections by comparing and contrasting the original edition of the book with the current one. When the first edition appeared, courts' reliance on social science was often confused and always contested. Now, courts' reliance on social science is so common as to be unremarkable. What has changed--sometimes radically--are the substantive legal questions on which social science has been brought to bear.
Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W
1997-07-08
Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.
NASA Astrophysics Data System (ADS)
Staver, John R.
The author's purpose in this article was to respond to two questions raised by Roth and Lawson in the September, 1993, issue of the Journal of Research in Science Teaching. Question 1: Would a radical constructivist step out of the path of an approaching vehicle? Question 2: In the conduct of inquiry, would a radical constructivist employ a controlled experiment, test a hypothesis, and quantitatively analyze the data? The author answers each question affirmatively, using selected work of Heinz von Foerster, Ernst von Glasersfeld, and others in developing the answers. Issues central to the development include the nature of truth and knowledge, the concept of fit versus match, and the notion that inquiry is driven by questions, with methods as subordinate to questions.
Cultural crossings of care: An appeal to the medical humanities.
Kristeva, Julia; Moro, Marie Rose; Ødemark, John; Engebretsen, Eivind
2018-03-01
Modern medicine is confronted with cultural crossings in various forms. In facing these challenges, it is not enough to simply increase our insight into the cultural dimensions of health and well-being. We must, more radically, question the conventional distinction between the 'objectivity of science' and the 'subjectivity of culture'. This obligation creates an urgent call for the medical humanities but also for a fundamental rethinking of their grounding assumptions.Julia Kristeva (JK) has problematised the biomedical concept of health through her reading of the anthropogony of Cura (Care), who according to the Roman myth created man out of a piece of clay. JK uses this fable as an allegory for the cultural distinction between health construed as a 'definitive state', which belongs to biological life ( bios ), and healing as a durative 'process with twists and turns in time' that characterises human living ( zoe ). A consequence of this demarcation is that biomedicine is in constant need of 'repairing' and bridging the gap between bios and zoe, nature and culture. Even in radical versions, the medical humanities are mostly reduced to such an instrument of repairment, seeing them as what we refer to as a soft, 'subjective' and cultural supplement to a stable body of 'objective', biomedical and scientific knowledge. In this article, we present a prolegomenon to a more radical programme for the medical humanities, which calls the conventional distinctions between the humanities and the natural sciences into question, acknowledges the pathological and healing powers of culture, and sees the body as a complex biocultural fact. A key element in such a project is the rethinking of the concept of 'evidence' in healthcare. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Ji, Xiu-ling; Cheng, Jin-ping; Wang, Wen-hua; Qu, Li-ya; Zhao, Xiao-xiang; Zhuang, Hui-sheng
2006-10-01
Sprague-Dawley rats were reared by environmental mercury contaminated rice to survey the potential health risk of Wanshan mercury mining area. Electron spin resonance (ESR) was introduced to detect the species and the intensities of free radicals, using spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results showed that the mercury-contaminated rice significantly increased the levels of free radicals and MDA in rat brain at 7 days (p < 0.05). ESR spectrums showed that the principal spin adducts resulted from the trapping of alkyl free radical (alphaH = 22.7 x 10(-4)T +/- 1.6 x 10(-4)T, alphaN = 15.5 x 10(-4)T +/- 0.5 x 10(-4)T), and hydroxyl radical. Levels of free radicals and MDA increased slowly until after 90-day exposure period (83%, 100%). Element correlation analysis showed high correlations of mercury and selenium in the brain of rat fed with Wanshan rice, suggesting that the coexisting selenium in rice exhibited antagonistic effects on both mercury accumulation and toxicity. The slight increases of free radicals in rat brain at 7, 20 and 30-day exposure periods should be related with the scavenger effect of Se.
Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde
NASA Astrophysics Data System (ADS)
Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry
2016-09-01
Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.
The need to respect nature and its limits challenges society and conservation science.
Martin, Jean-Louis; Maris, Virginie; Simberloff, Daniel S
2016-05-31
Increasing human population interacts with local and global environments to deplete biodiversity and resources humans depend on, thus challenging societal values centered on growth and relying on technology to mitigate environmental stress. Although the need to address the environmental crisis, central to conservation science, generated greener versions of the growth paradigm, we need fundamental shifts in values that ensure transition from a growth-centered society to one acknowledging biophysical limits and centered on human well-being and biodiversity conservation. We discuss the role conservation science can play in this transformation, which poses ethical challenges and obstacles. We analyze how conservation and economics can achieve better consonance, the extent to which technology should be part of the solution, and difficulties the "new conservation science" has generated. An expanded ambition for conservation science should reconcile day-to-day action within the current context with uncompromising, explicit advocacy for radical transitions in core attitudes and processes that govern our interactions with the biosphere. A widening of its focus to understand better the interconnectedness between human well-being and acknowledgment of the limits of an ecologically functional and diverse planet will need to integrate ecological and social sciences better. Although ecology can highlight limits to growth and consequences of ignoring them, social sciences are necessary to diagnose societal mechanisms at work, how to correct them, and potential drivers of social change.
Aliaga, Carolina; Rezende, Marcos Caroli; Mena, Geraldine
2016-11-01
A series of 4-alkanoyloxy-2,2,6,6-tetramethylpiperidinoxyl radicals was prepared, and their reactivity in water vis-à-vis antioxidant Trolox was compared. Spectral (electron paramagnetic resonance) and dynamic-light-scattering measurements suggested the formation of micelles for the more hydrophobic members of the series. The observed increase in reactivity for the micelle-forming radicals reflected the increased local concentration of the radical fragment on the micellar interface. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Viral loads of cerebrospinal fluid in infants with enterovirus meningitis.
Kawashima, Hisashi; Ioi, Hiroaki; Ishii, Chiako; Hasegawa, Yuka; Amaha, Masahiro; Kashiwagi, Yasuyo; Takekuma, Kouji; Hoshika, Akinori; Watanabe, Yasuo
2008-01-01
For a better understanding of the role of the viral load, free radicals, and cytokines in viral meningitis, we surveyed cerebrospinal fluid (CSF) obtained from patients below 1 year of age who showed positive for enterovirus. In their first examinations interleukin (IL)-6 and free radicals increased whereas pleocytosis was rarely observed. IL-6 decreased within the short period. Viral loads and free radicals increased simultaneously. IL-6 and free radicals of CSF are helpful for diagnosis and treatment of viral meningitis at an early stage. (c) 2008 Wiley-Liss, Inc.
Distribution of stable free radicals among amino acids of isolated soy proteins.
Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M
2010-09-01
Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.
[From free radicals to science of nutrition].
Blázovics, Anna
2009-01-11
During the decades of free radical research, we came ever closer to the knowledge that the free radical-antioxidant balance of the organs is modified fundamentally by the genetic background and surroundings. Janus-face oxygen free radicals are the secondary messengers of signal transduction routes and simultaneously they are cytotoxic agents of cells. The activation of signal transduction proteins by moderate oxidation effects and metal ions is not fairly known yet. The molecular mechanism between activators and inhibitors of signal transduction is controlled in a fine way. The balance of antioxidant-prooxidant levels of the cells can go back to the concentration relation of sulfhydril groups and disulfid bridges. Essential and toxic metal ions and selenium can play an important role in the redox homeostasis. Healthy tissues have many antioxidants, hereby they ensure the protection of the organs against free radicals. Alimentary antioxidants such as vitamin A, C and E, polyphenols, anthocyanins, flavonoids, isothiocyanates and other bioactive molecules in their natural molecular structure and derivates are able to influence the redox reactions. In our days more and more molecules from foods, or their metabolites are verified to act on genes based on the results of molecular biological research.
3 CFR 8437 - Proclamation 8437 of October 9, 2009. Columbus Day, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... to expand human understanding of the known world. His voyage radically altered the course of history... Americans to pursue brave new frontiers in business, science, and technology. Today, we reflect on the...
Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan
2013-12-01
The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Inversion in the magnetic field effect of benzilketyl:SDS radical pair at high fields
NASA Astrophysics Data System (ADS)
Misra, Ajay; Haldar, Mintu; Chowdhury, Mihir
1999-05-01
The effect of a high magnetic field (up to 13.3 T) on radical pairs generated by the hydrogen abstraction of the photoexcited benzil triplet from sodium dodecyl sulphate has been studied. It was found that both the radical pair lifetime and the free radical yield increase with an increase of field from 0 to 4 T. A further increase of field causes a decrease in both. This reversal of the magnetic field effect (MFE) above 4 T has been explained in terms of relaxation mechanism and competition between a number of rate processes. The effect of reducing the micelle size on the MFE inversion has been discussed.
Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R; Varner, Kurt; Carlin, Danielle J; Dellinger, Barry; Cormier, Stephania A
2014-01-01
The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15 to 18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists, and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control, and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants, and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented.
Lomnicki, Slawo; Gullett, Brian; Stöger, Tobias; Kennedy, Ian; Diaz, Jim; Dugas, Tammy R.; Varner, Kurt; Carlin, Danielle; Dellinger, Barry; Cormier, Stephania A.
2014-01-01
The 13th International Congress on Combustion By-Products and their Health Effects was held in New Orleans, Louisiana from May 15–18, 2013. The congress, sponsored by the Superfund Research Program, National Institute of Environmental Health Sciences, and National Science Foundation, brought together international academic and government researchers, engineers, scientists and policymakers. With industrial growth, increased power needs and generation and coal consumption and their concomitant emissions, pernicious health effects associated with exposures to these emissions are on the rise. This congress provides a unique platform for interdisciplinary exchange and discussion of these topics. The formation, conversion, control and health effects of combustion by-products, including particulate matter and associated heavy metals, persistent organic pollutants and environmentally persistent free radicals, were discussed during the congress. This review will summarize and discuss the implications of the data presented. PMID:24434722
2012-04-01
Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic...building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic surfaces • Via...non-wetting polymeric surfaces 5 mm Methanol Octane Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2013-01-01
In much of science education research, the content of talk tends to be attributed to the persons who produce the sound-words in a speech situation. A radically different, sociological perspective on language-in-use grounded in Marxism derives from the work of L. S. Vygotsky and the members of the circle around M. M. Bakhtin. Accordingly, each word…
JPRS Report, Science & Technology, USSR: Science & Technology Policy
1989-03-22
Y. N. Yarmashev; STANDARTY I KACHESTVO, No 11, Nov 88] 60 Typization of Thermal Effect Assembly Processes on the Basis of Production -Wise...STANDARTY I KACHESTVO, No 11, Nov 88] 60 What Prevents Gospriomka From Assuring a Radical Improvement of Product Performance and Quality? [G. N...Noreyka, L. V. Tsoy, et al; STANDARTY I KACHESTVO, No 11, Nov 88] . 60 State Testing of Products : Lessons, Problems, Prospects [STANDARTY I KACHESTVO
NASA Astrophysics Data System (ADS)
Medhe, Sharad; Bansal, Prachi; Srivastava, Man Mohan
2014-02-01
The antioxidative effect of selected dietary compounds (3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine) was determined in single and combination using DPPH (2,2-diphenyl-l-picrylhydrazyl), OH (hydroxyl), H2O2 (hydrogen peroxide) and NO (nitric oxide) radical scavenging assays. Radical scavenging effect of the dietary phytochemicals individually are found to be in the order: ascorbic acid (standard) > lutein > 3,6-dihydroxyflavone > selenium methyl selenocysteine, at concentration 100 μg/ml, confirmed by all the four bioassays (p < 0.05). Among the various combinations studied, the triplet combination of 3,6-dihydroxyflavone, lutein and selenium methyl selenocysteine (1:1:1), exhibited enhancement in the target activity at same concentration level. Synthesized gold nanoparticle embedded 3,6-dihydroxyflavone further enhanced the target antioxidant activity. The combinational study including gold nanoparticle embedded 3,6-dihydroxyflavone with other native dietary nutrients showed remarkable increase in antioxidant activity at the same concentration level. The present in vitro study on combinational and nanotech enforcement of dietary phytochemicals shows the utility in the architecture of nanoparticle embedded phytoproducts having a wide range of applications in medical science.
Sgherri, C; Scattino, C; Pinzino, C; Tonutti, P; Ranieri, A M
2015-11-01
In peaches, phenolic compounds are the major sources of antioxidants, and cyanidin-3-O-glucoside is the main anthocyanin present, above all in the skin. Anthocyanin content has been shown to increase after UV-B irradiation, which may be very harmful for all biological organisms due to the induction of the generation of reactive oxygen species (ROS). Peach fruits (cv. 'Suncrest') were exposed during post-harvest to supplemental ultraviolet-B radiation. A spin-trapping technique was used to monitor the generation of free radicals under UV-B, and 5-(diethoxy-phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) was used as the spin trap. The flesh of peaches was essentially unaffected by the treatment, whereas the skin was responsive at the end of the treatment, accumulating ascorbate, flavonoids, cyanidin-3-O-glucoside, and showing a higher antioxidant activity. The levels of stable free radicals were also lower at the end of treatment. Carbon-centred radicals contributed the most to the total amounts of free radicals, whereas hydroxyl radicals and oxygen-centred free radicals contributed minimally. The carbon-centred free radical identified was the same as the one obtained after irradiation of authentic cyanidin-3-O-glucoside. During UV-B treatment cyanidin-3-O-glucoside increased and was capable of radicalization protecting the other organic molecules of the cell from oxidation. ROS, among which hydroxyl radicals, were thus maintained to minimal levels. This ability of cyanidin-3-O-glucoside displayed the mechanism underlined the tolerance to UV-B irradiation indicating that shelf life can be prolonged by the presence of anthocyanins. Thus, UV-B technique results a good approach to induce antioxidant production in peach fruits increasing their nutraceutical properties. Copyright © 2015. Published by Elsevier Masson SAS.
Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard
2009-01-01
The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
ERIC Educational Resources Information Center
William-White, Lisa
2011-01-01
Spoken Word, presented here, is an embodiment of critical theory, where discourse centered on the intersections of race, class, identity, lived experiences, and critical consciousness are named, analyzed, and interpreted in critical performance narratives. Merging the social sciences and the humanities--blending narrative, radical performance…
Lebensunwertes Leben: the devolution of personhood in the Weimar and pre-Weimar era.
Charles, J Daryl
2005-01-01
Radical social change in most societies does not typically occur "overnight." It requires preparation--preparation in the way people think. The rise of euthanasia in western culture is a case in point. In order for assisted death to be increasingly accepted, the social-moral consensus must be altered. Typically, that consensus will be influenced by trends in biology, the behavioral sciences, ethics, law, even economics. Examining the manner in which assisted death was "prepared" in the decades before the ascendency of National Socialism is highly instructive as we witness the rise of euthanatic thinking in our own day several generations removed.
Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T
1993-01-01
Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815
NASA Astrophysics Data System (ADS)
Witwicki, Maciej; Jezierska, Julia
2012-06-01
Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.
The need to respect nature and its limits challenges society and conservation science
Martin, Jean-Louis; Maris, Virginie; Simberloff, Daniel S.
2016-01-01
Increasing human population interacts with local and global environments to deplete biodiversity and resources humans depend on, thus challenging societal values centered on growth and relying on technology to mitigate environmental stress. Although the need to address the environmental crisis, central to conservation science, generated greener versions of the growth paradigm, we need fundamental shifts in values that ensure transition from a growth-centered society to one acknowledging biophysical limits and centered on human well-being and biodiversity conservation. We discuss the role conservation science can play in this transformation, which poses ethical challenges and obstacles. We analyze how conservation and economics can achieve better consonance, the extent to which technology should be part of the solution, and difficulties the “new conservation science” has generated. An expanded ambition for conservation science should reconcile day-to-day action within the current context with uncompromising, explicit advocacy for radical transitions in core attitudes and processes that govern our interactions with the biosphere. A widening of its focus to understand better the interconnectedness between human well-being and acknowledgment of the limits of an ecologically functional and diverse planet will need to integrate ecological and social sciences better. Although ecology can highlight limits to growth and consequences of ignoring them, social sciences are necessary to diagnose societal mechanisms at work, how to correct them, and potential drivers of social change. PMID:27185943
Giovanni Battista Morgagni (1682-1771), the First Pediatric Pathologist.
Abramowsky, Carlos R; Berkowitz, Frank E
2015-01-01
During the age of enlightenment in the 18th century, radical changes were occurring in the Western world in science, medicine, philosophy, religion, and socio-economic concepts. In medicine, major advances had already been underway since the days of Vesalius.
REVOLUTION IN MILITARY SCIENCE, ITS IMPORTANCE AND CONSEQUENCES, MILITARY ART ON A NEW STAGE,
The central problem of modern military art is defined as the development of new methods of conducting armed conflict. The changes involving the radical military technical re-equipping of Soviet Armed Forces, are described.
Silverman, D J; Santucci, L A
1988-01-01
Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280
[The significance of free radicals and antioxidants due to the load induced by sport activity].
Holecek, V; Liska, J; Racek, J; Rokyta, R
2004-01-01
Sport performance is followed by a high production of free radicals. The main reasons are reperfusion after the previous imbalance between the increased need of the organism and the ability of blood supply by oxygen, increased production of ATP, decomposition of the cells particularly white blood cells, oxidation of the purin basis from DNA, stress, output of epinephrine release of free iron, increased temperature in the muscle and its inflammation, and the reception of free radicals from external environment. Peroxidation of lipids, proteins, DNA and other compounds follows the previous biochemical steps. Antioxidants are consumed by free radicals, antioxidative enzymes are released into blood plasma, intracellular calcium is increased, the production of nitric oxide rises, the levels of hydrogen peroxide and hypochlorous acid increase. These penetrate through the membranes and oxidatively damage the tissues. Training improves the ability of the organism to balance the increased load of free radicals. The damage can be lowered by the application of a mixture of antioxidants, the most important are vitamin C, A, E, glutathione, selenium, carnosine, eventually bioflavonoids and ginkgo biloba. The lack of antioxidants can significantly diminish the sport performance and therefore the supplementation with antioxidants is for top sportsmen but also for aged people advisable.
Pulse radiolysis in model studies toward radiation processing
NASA Astrophysics Data System (ADS)
Von Sonntag, C.; Bothe, E.; Ulanski, P.; Deeble, D. J.
1995-02-01
Using the pulse radiolysis technique, the OH-radical-induced reactions of poly(vinyl alcohol) PVAL, poly(acrylic acid) PAA, poly(methacrylic acid) PMA, and hyaluronic acid have been investigated in dilute aqueous solution. The reactions of the free-radical intermediates were followed by UV-spectroscopy and low-angle laser light-scattering; the scission of the charged polymers was also monitored by conductometry. For more detailed product studies, model systems such as 2,4-dihydroxypentane (for PVAL) and 2,4-dimethyl glutaric acid (for PAA) was also investigated. With PVA, OH-radicals react predominantly by abstraction of an H-atom in α-position to the hydroxyl group (70%). The observed bimolecular decay rate constant of the PVAL-radicals decreases with time. This has been interpreted as being due to an initially fast decay of proximate radicals and a decrease of the probability of such encounters with time. Intramolecular crosslinking (loop formation) predominates at high doses per pulse. In the presence of O 2, peroxyl radicals are formed which in the case of the α-hydroxyperoxyl radicals can eliminate HO 2-radicals in competition with bimolecular decay processes which lead to a fragmentation of the polymer. In PAA, radicals both in α-position (characterized by an absorption near 300 nm) and in β-position to the carboxylate groups are formed in an approximately 1:2 ratio. The lifetime of the radicals increases with increasing electrolytic dissociation of the polymer. The β-radicals undergo a slow (intra- as well as intermolecular) H-abstraction yielding α-radicals, in competition to crosslinking and scission reactions. In PMA only β-radicals are formed. Their fragmentation has been followed by conductometry. In hyaluronic acid, considerable fragmeentation is observed even in the absence of oxygen which, in fact, has some protective effect against this process. Thus free-radical attack on this important biopolymer makes it especially vulnerable with respect to a reduction of its viscosity, and in rheumatic diseases this effect may be the reason for their painfulnes.
Methodological Behaviorism from the Standpoint of a Radical Behaviorist.
Moore, J
2013-01-01
Methodological behaviorism is the name for a prescriptive orientation to psychological science. Its first and original feature is that the terms and concepts deployed in psychological theories and explanations should be based on observable stimuli and behavior. I argue that the interpretation of the phrase "based on" has changed over the years because of the influence of operationism. Its second feature, which developed after the first and is prominent in contemporary psychology, is that research should emphasize formal testing of a theory that involves mediating theoretical entities from an nonbehavioral dimension according to the hypothetico-deductive method. I argue that for contemporary methodological behaviorism, explanations of the behavior of both participants and scientists appeal to the mediating entities as mental causes, if only indirectly. In contrast to methodological behaviorism is the radical behaviorism of B. F. Skinner. Unlike methodological behaviorism, radical behaviorism conceives of verbal behavior in terms of an operant process that involves antecedent circumstances and reinforcing consequences, rather than in terms of a nonbehavioral process that involves reference and symbolism. In addition, radical behaviorism recognizes private behavioral events and subscribes to research and explanatory practices that do not include testing hypotheses about supposed mediating entities from another dimension. I conclude that methodological behaviorism is actually closer to mentalism than to Skinner's radical behaviorism.
Methodological Behaviorism from the Standpoint of a Radical Behaviorist
2013-01-01
Methodological behaviorism is the name for a prescriptive orientation to psychological science. Its first and original feature is that the terms and concepts deployed in psychological theories and explanations should be based on observable stimuli and behavior. I argue that the interpretation of the phrase “based on” has changed over the years because of the influence of operationism. Its second feature, which developed after the first and is prominent in contemporary psychology, is that research should emphasize formal testing of a theory that involves mediating theoretical entities from an nonbehavioral dimension according to the hypothetico-deductive method. I argue that for contemporary methodological behaviorism, explanations of the behavior of both participants and scientists appeal to the mediating entities as mental causes, if only indirectly. In contrast to methodological behaviorism is the radical behaviorism of B. F. Skinner. Unlike methodological behaviorism, radical behaviorism conceives of verbal behavior in terms of an operant process that involves antecedent circumstances and reinforcing consequences, rather than in terms of a nonbehavioral process that involves reference and symbolism. In addition, radical behaviorism recognizes private behavioral events and subscribes to research and explanatory practices that do not include testing hypotheses about supposed mediating entities from another dimension. I conclude that methodological behaviorism is actually closer to mentalism than to Skinner's radical behaviorism. PMID:28018031
NASA Astrophysics Data System (ADS)
Sato, Shingo; Tsunoda, Minoru; Suzuki, Minoru; Kutsuna, Masahiro; Takido-uchi, Kiyomi; Shindo, Mitsuru; Mizuguchi, Hitoshi; Obara, Heitaro; Ohya, Hiroaki
2009-01-01
Various hybrid compounds comprised of two types of nitroxide radicals and either a pentamethine (Cy5) or trimethine cyanine (Cy3) were synthesized. The nitroxide radicals were linked either via an ester-bond to one or two N-alkyl carboxyl-terminated groups of Cy5, or via two amido-bonds (aminocarbonyl or carbonylamino group) to the 5-position of the indolenine moieties of Cy5 and Cy3. Changes in fluorescence and ESR intensities of the hybrid compounds were measured before and after addition of Na ascorbate in PBS (pH 7.0) to reduce the radicals. Among the hybrid compounds synthesized, those that linked the nitroxide radicals via an aminocarbonyl residue at the 5-position of the indolenine moieties on Cy5 and Cy3 exhibited a 1.8- and 5.1-fold increase in fluorescence intensity with the reduction of the nitroxide segment by the addition of Na ascorbate, respectively. In contrast, fluorescence intensity was not enhanced in the other hybrid compounds. Thus, the hybrid compounds which exhibited an increase in fluorescent intensity with radical reduction can be used in the quantitative measurement of reducing species such as Fe 2+ and ascorbic acid, and hydroxyl radicals. Because these hybrid compounds have the advantage of fluorescing at longer wavelengths—661 (Cy5) or 568 (Cy3) nm, respectively, they can be used to measure radical-reducing species or radicals either in solution or in vivo.
Barbehenn, Raymond V; Jaros, Adam; Lee, Grace; Mozola, Cara; Weir, Quentin; Salminen, Juha-Pekka
2009-04-01
The high levels of tannins in many tree leaves are believed to cause decreased insect performance, but few controlled studies have been done. This study tested the hypothesis that higher foliar tannin levels produce higher concentrations of semiquinone radicals (from tannin oxidation) in caterpillar midguts, and that elevated levels of radicals are associated with increased oxidative stress in midgut tissues and decreased larval performance. The tannin-free leaves of hybrid poplar (Populus tremulaxP. alba) were treated with hydrolyzable tannins, producing concentrations of 0%, 7.5% or 15% dry weight, and fed to Lymantria dispar caterpillars. As expected, larvae that ingested control leaves contained no measurable semiquinone radicals in the midgut, those that ingested 7.5% hydrolyzable tannin contained low levels of semiquinone radicals, and those that ingested 15% tannin contained greatly increased levels of semiquinone radicals. Ingested hydrolyzable tannins were also partially hydrolyzed in the midgut. However, increased levels of semiquinone radicals in the midgut were not associated with oxidative stress in midgut tissues. Instead, it appears that tannin consumption was associated with increased metabolic costs, as measured by the decreased efficiency of conversion of digested matter to body mass (ECD). Decreased ECD, in turn, decreased the overall efficiency of conversion of ingested matter to body mass (ECI). Contrary to our hypothesis, L. dispar larvae were able to maintain similar growth rates across all tannin treatment levels, in part, because of compensatory feeding. We conclude that hydrolyzable tannins act as "quantitative defenses" in the sense that high levels appear to be necessary to increase levels of semiquinone radicals in the midguts of caterpillars. However, these putative resistance factors are not sufficient to decrease the performance of tannin-tolerant caterpillars such as L. dispar.
Science, Medicine, and Education.
ERIC Educational Resources Information Center
Tosteson, Daniel C.
1981-01-01
The impact of the new biology on what, how, and why persons learn in medicine is discussed. The transformation of medical education is reflected in the radical changes in views of man as organism that are arising from new discoveries in molecular and cellular biology. (MLW)
Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C
2014-02-01
Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.
Akera, Atsushi
2017-09-01
This article traces the shifting epistemic commitments of Fred S. Keller and his behaviorist colleagues during their application of Skinnerian radical behaviorism to higher education pedagogy. Building on prior work by Alexandra Rutherford and her focus on the successive adaptation of Skinnerian behaviorism during its successive applications, this study utilizes sociologist of science Karin Knorr Cetina's concept of epistemic cultures to more precisely trace the changes in the epistemic commitments of a group of radical behaviorists as they shifted their focus to applied behavioral analysis. The story revolves around a self-paced system of instruction known as the Personalized System of Instruction, or PSI, which utilized behaviorist principles to accelerate learning within the classroom. Unlike Skinner's entry into education, and his focus on educational technologies, Keller developed a mastery-based approach to instruction that utilized generalized reinforcers to cultivate higher-order learning behaviors. As it happens, the story also unfolds across a rather fantastic political terrain: PSI originated in the context of Brazilian revolutionary history, but circulated widely in the U.S. amidst Cold War concerns about an engineering manpower(sic) crisis. This study also presents us with an opportunity to test Knorr Cetina's conjecture about the possible use of a focus on epistemic cultures in addressing a classic problem in the sociology of science, namely unpacking the relationship between knowledge and its social context. Ultimately, however, this study complements another historical case study in applied behavioral analysis, where a difference in outcome helps to lay out the range of possible shifts in the epistemic commitments of radical behaviorists who entered different domains of application. The case study also has some practical implications for those creating distance learning environments today, which are briefly explored in the conclusion. © 2017 Wiley Periodicals, Inc.
Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying
2017-11-01
Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C
2015-03-01
We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20) spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coming to Grips with Radical Social Constructivisms
NASA Astrophysics Data System (ADS)
Phillips, D. C.
This essay distinguishes two broad groups - psychological constructivists and social constructivists - but focusses upon the second of these, although it is stressed that there is great within group variation. More than half of the paper is devoted to general clearing of the ground, during which the reasons for the growing acrimony in the debates between social constructivists and their opponents are assessed, an important consequence of these debates for education is discussed, and an examination is carried out of the radical social constructivist tendency to make strong and exciting but untenable claims which are then backed away from (a tendency which is documented by a close reading of the early pages in Bloors classic book). The last portion of the essay focuses upon social constructivist accounts of the causes of belief in science - the more radical of which denegrate the role of warranting reasons, and which give an exalted place to quasi-anthropological or sociological studies of scientific communities.
NASA Astrophysics Data System (ADS)
Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor
2017-06-01
We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
Kanaya, Yugo; Akimoto, Hajime
2002-01-01
OH and HO(2) radicals, atmospheric detergents, and the reservoir thereof, play central roles in tropospheric chemistry. In spite of their importance, we had no choice but to trust their concentrations predicted by modeling studies based on known chemical processes. However, recent direct measurements of these radicals have enabled us to test and revise our knowledge of the processes by comparing the predicted and observed values of the radical concentrations. We developed a laser-induced fluorescence (LIF) instrument and successfully observed OH and HO(2) at three remote islands of Japan (Oki Island, Okinawa Island, and Rishiri Island). At Okinawa Island, the observed daytime level of HO(2) agreed closely with the model estimates, suggesting that the photochemistry at Okinawa is well described by the current chemistry mechanism. At Rishiri Island, in contrast, the observed daytime level of HO(2) was consistently much lower than the calculated values. We proposed that iodine chemistry, usually not incorporated into the mechanism, is at least partly responsible for the discrepancy in the results. At night, HO(2) was detected at levels greater than 1 pptv at all three islands, suggesting the presence of processes in the dark that produce radicals. We showed that ozone reactions with unsaturated hydrocarbons, including monoterpenes, could significantly contribute to radical production. Copyright 2002 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 2: 199-211, 2002: Published online in Wiley InterScience (www.interscience.wiley.com) DOI 10.1002/tcr.10019
NASA Astrophysics Data System (ADS)
Adhikari, S.; Joshi, R.; Gopinathan, C.
1997-01-01
The pulse radiolytic and spectrophotometric study of uric acid in presence of bovine serum albumin (BSA) has been carried out. In the spectrophotometric study there is no evidence for ground state interaction between BSA and uric acid. The oxidation reactions of uric acid in presence and absence of BSA employing CCl 3OO and Br radicals have been carried out. In a composition of equal concentration of uric acid and BSA, the CCl 3OO and Br radicals produce a transient absorption spectrum which show two peaks at 330 and 360 nm. The peak at 360 nm is ascribed due to weak complex formation between semioxidised BSA and uric acid radicals. The rate constant of CCl 3OO . radical with uric acid increases with the increase in BSA concentration which is explained as protection of BSA by uric acid from radical attack. The Br radical attacks uric acid and BSA in a manner similar to CCl 3OO radical. The bimolecular rate constants for the reaction of Br radical with BSA and uric acid have been found as 2.9 × 10 10 dm 3 mol -1 s -1 and 6.33 × 10 9 dm 3 mol -1 s -, respectively.
Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia
2012-01-01
Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.
Gülçin, Ilhami; Büyükokuroglu, M Emin; Oktay, Münir; Küfrevioglu, O Irfan
2003-05-01
The aim of this study is to examine possible antioxidant and analgesic activities of turpentine exudes from Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe (TPN). Total antioxidant activity, reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities were studied. The total antioxidant activity increased with the increasing amount of extracts (100, 300, and 500 microg) added to linoleic acid emulsion. All of the doses of TPN showed higher antioxidant activity than alpha-tocopherol. The samples showed 49, 70, and 91% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, the 300 microg of alpha-tocopherol showed 40% inhibition on peroxidation of linoleic acid emulsion. There is correlation between antioxidant activity and the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities. Like antioxidant activity, the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities of TPN depending on concentration and increasing with increased concentration of TPN. These properties may be the major reasons for the inhibition of lipid peroxidation. The results obtained in the present study indicate that the TPN has a potential source of natural antioxidant. In addition, analgesic effect of TPN was investigated in present study and TPN had strong analgesic effect. The analgesic effect of TPN compared with metamizol as a standard analgesic compound.
NASA Astrophysics Data System (ADS)
Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang
2016-06-01
The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).
A new paradigm for nursing: the potential of realism.
Wainwright, S P
1997-12-01
Realism has been the dominant approach in the philosophy of science for the last 20 years. Realist philosophy has also been widely employed across a range of social sciences. Unfortunately, these powerful intellectual currents have not reached the shores of nursing which appears trapped in a time-warped debate about 'qualitative' (constructivist) and 'quantitative' (positivist) approaches. This paper argues that both positivism and constructionism are seriously flawed as philosophies of social and natural science. This is in marked contrast with realism which is a philosophy of both the natural and social sciences. I therefore propose that realism should be adopted as a radically different new paradigm for a unified biopsychosocial nursing.
Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M
2015-12-01
We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi
2012-08-02
The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) < LiClO(4) < Mg(ClO(4))(2), being independent of the kinds of Toc(•) radicals. Furthermore, the K values increased in the order of δ- < γ- < β- < α-Toc(•) radicals for each metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) < Li(+) < Mg(2+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.
Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability
NASA Astrophysics Data System (ADS)
Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.
2014-12-01
Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.
[Free radical oxidation in workers engaged into petrochemistry].
Iapparov, R N; Kamilov, R F; Shakirov, D F; Sidorcheva, O V
2007-01-01
The article deals with results of studies covering free radical oxidation and peroxidation in RBC, serum, saliva and urine of petrochemistry workers. Individuals exposed to chemical pollutants in production of rubber, tyre and mechanical rubber goods appeared to have considerably increased free radical oxidation parameters in RBC, serum, saliva and urine.
Combinatorial and high-throughput approaches in polymer science
NASA Astrophysics Data System (ADS)
Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.
2005-01-01
Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.
Organocatalyzed atom transfer radical polymerization driven by visible light.
Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M
2016-05-27
Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. Copyright © 2016, American Association for the Advancement of Science.
Quantitative Detection of Combustion Species using Ultra-Violet Diode Lasers
NASA Technical Reports Server (NTRS)
Pilgrim, J. S.; Peterson, K. A.
2001-01-01
Southwest Sciences is developing a new microgravity combustion diagnostic based on UV diode lasers. The instrument will allow absolute concentration measurements of combustion species on a variety of microgravity combustion platforms including the Space Station. Our approach uses newly available room temperature UV diode lasers, thereby keeping the instrument compact, rugged and energy efficient. The feasibility of the technique was demonstrated by measurement of CH radicals in laboratory flames. Further progress in fabrication technology of UV diode lasers at shorter wavelengths and higher power will result in detection of transient species in the deeper UV. High sensitivity detection of combustion radicals is provided with wavelength modulation absorption spectroscopy.
Some more similarities between Peirce and Skinner
Moxley, Roy A.
2002-01-01
C. S. Peirce is noted for pioneering a variety of views, and the case is made here for the similarities and parallels between his views and B. F. Skinner's radical behaviorism. In addition to parallels previously noted, these similarities include an advancement of experimental science, a behavioral psychology, a shift from nominalism to realism, an opposition to positivism, a selectionist account for strengthening behavior, the importance of a community of selves, a recursive approach to method, and the probabilistic nature of truth. Questions are raised as to the extent to which Skinner's radical behaviorism, as distinguished from his S-R positivism, may be seen as an extension of Peirce's pragmatism. PMID:22478387
[Effects of vitamin E and selenium on the metabolism of free radicals in broilers].
Xu, Jian-Xiong; Wang, Jing; Wang, Tian
2007-08-01
Taking 200 healthy broilers at 14 d of age as test materials, the free radicals in their blood and tissues were detected by electron spin resonance (ESR) and biochemical methods, aimed to investigate the effects of vitamin E (V(E)) and selenium (Se) on the metabolism of different free radicals and their dynamic changes in the broilers. The results showed that the content of NO free radicals in broilers tissues decreased with increasing supplementing level of V(E), while high supplementation of Se tended to induce the production of NO free radicals. High supplementation of V(E) and Se in feeds improved the GSH-Px and SOD activities in broilers serum and liver significantly. With the extension of experimental period, the SOD activity in tissues decreased, while GSH-PX activity increased gradually, implying that the deficiency of V(E) and/or Se might induce the overproduction of O2*- and H2O2 free radicals. H2O2 free radicals might be produced largely at early stage of V(E) and Se deficiency and declined then, while the over-production of O2*- free radicals could maintain for a long time. The deficiency of V(E) and/or Se could improve the MDA content significantly, and Se deficiency had higher effects than V(E) deficiency. There were synergic effects in the metabolism of NO, O2 and H2O2 free radicals.
Measurement of myocardial free radical production during exercise using EPR spectroscopy.
Traverse, Jay H; Nesmelov, Yuri E; Crampton, Melanie; Lindstrom, Paul; Thomas, David D; Bache, Robert J
2006-06-01
Exercise is associated with an increase in oxygen flux through the mitochondrial electron transport chain that has recently been demonstrated to increase the production of reactive oxygen species (ROS) in skeletal muscle. This study examined whether exercise also causes free radical production in the heart. We measured ROS production in seven chronically instrumented dogs during rest and treadmill exercise (6.4 km/h at 10 degrees grade; and heart rate, 204 +/- 3 beats/min) using electron paramagnetic resonance spectroscopy in conjunction with the spin trap alpha-phenyl-tert-butylnitrone (PBN) (0.14 mol/l) in blood collected from the aorta and coronary sinus (CS). To improve signal detection, the free radical adducts were deoxygenated over a nitrogen stream for 15 min and extracted with toluene. The hyperfine splitting constants of the radicals were alpha(N) = 13.7 G and alpha(H) = 1.0 G, consistent with an alkoxyl or carbon-centered radical. Resting aortic and CS PBN adduct concentrations were 6.7 and 6.3 x 10(8) arbitrary units (P = not significant). Both aortic and CS adduct concentrations increased during exercise, but there was no significant difference between the aortic and CS concentrations. Thus, in contrast to skeletal muscle, submaximal treadmill exercise did not result in detectable free radical production by the heart.
Alabugin, Igor V; Timokhin, Vitaliy I; Abrams, Jason N; Manoharan, Mariappan; Abrams, Rachel; Ghiviriga, Ion
2008-08-20
Despite being predicted to be stereoelectronically favorable by the Baldwin rules, efficient formation of a C-C bond through a 5-endo-dig radical cyclization remained unknown for more than 40 years. This work reports a remarkable increase in the efficiency of this process upon beta-Ts substitution, which led to the development of an expedient approach to densely functionalized cyclic 1,3-dienes. Good qualitative agreement between the increased efficiency and stereoselectivity for the 5-endo-dig cyclization of Ts-substituted vinyl radicals and the results of density functional theory analysis further confirms the utility of computational methods in the design of new radical processes. Although reactions of Br atoms generated through photochemical Ts-Br bond homolysis lead to the formation of cyclic dibromide side products, the yields of target bromosulfones in the photochemically induced reactions can be increased by recycling the dibromide byproduct into the target bromosulfones through a sequence of addition/elimination reactions at the exocyclic double bond. Discovery of a relatively efficient radical 5-endo-dig closure, accompanied by a C-C bond formation, provides further support to stereoelectronic considerations at the heart of the Baldwin rules and fills one of the last remaining gaps in the arsenal of radical cyclizations.
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
Ogusucu, Renata; Rettori, Daniel; Netto, Luis E S; Augusto, Ohara
2009-02-27
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1Deltatsa2Delta) are more resistant to hydrogen peroxide than wild-type (WT) cells and consume it faster under fermentative conditions. Also, tsa1Deltatsa2Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1Deltatsa2Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu,Zn-superoxide dismutase (Sod1), whose expression and activity increased approximately 5- and 2-fold, respectively, in tsa1Deltatsa2Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1Deltatsa2Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1Deltatsa2Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Biochemistry of free radicals: from electrons to tissues.
Boveris, A
1998-01-01
Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.
Strengthening Multidisciplinary Research on Climate and Environmental Change
NASA Astrophysics Data System (ADS)
Beer, Tom; Li, Jianping; Alverson, Keith
2014-08-01
The difficulty with multidisciplinary research is finding common ground for scientists, whose approach to a particular scientific problem can differ radically. For example, there is agreement between the geophysical community and the food science and technology community that food security is an important issue. However, the climate change community sees possible solutions coming from more detailed studies on the links between climate change and agriculture, whereas the food science community sees possible solutions emerging from studies of food logistics and supply chains.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
Hu, Yufei; Zhang, Zhujun; Yang, Chunyan
2008-07-01
Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.
Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud
2018-01-01
Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415
Fullerenols as a new therapeutic approach in nanomedicine.
Grebowski, Jacek; Kazmierska, Paulina; Krokosz, Anita
2013-01-01
Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives: fullerenols, with emphasis on their pro- and antioxidative properties. Due to their hydrophilic properties and the ability to scavenge free radicals, fullerenols may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Fullerenols may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy. Additionally, due to the hollow spherical shape, fullerenols may be used as drug carriers. Moreover, because of the existence of the currently ineffective ways for neurodegenerative diseases treatment, alternative compounds, which could prevent the negative effects of oxidative stress in the brain, are still sought. In the search of alternative methods of treatment and diagnosis, today's science is increasingly reaching for tools in the field of nanomedicine, for example, fullerenes and their water-soluble derivatives, which is addressed in the present paper.
Fullerenols as a New Therapeutic Approach in Nanomedicine
2013-01-01
Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives: fullerenols, with emphasis on their pro- and antioxidative properties. Due to their hydrophilic properties and the ability to scavenge free radicals, fullerenols may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Fullerenols may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy. Additionally, due to the hollow spherical shape, fullerenols may be used as drug carriers. Moreover, because of the existence of the currently ineffective ways for neurodegenerative diseases treatment, alternative compounds, which could prevent the negative effects of oxidative stress in the brain, are still sought. In the search of alternative methods of treatment and diagnosis, today's science is increasingly reaching for tools in the field of nanomedicine, for example, fullerenes and their water-soluble derivatives, which is addressed in the present paper. PMID:24222914
NASA Astrophysics Data System (ADS)
Hart, Paul
2002-11-01
This paper draws on the experience of the Pan-Canadian science curriculum development process as an instance of the more general problem of integrating science and environmental education. It problematizes the issue of incorporation of social and environmental dimensions within the science curriculum in terms of both policy and practice. The agenda of environmental education, as eco-philosophical and eco-political, provides a radically different base from which to explore the impact of change on science teachers and schools. Thus, the very idea of environmental education as an educational policy goal must be examined in light of conflicting agendas of science and environmental education. This paper argues that transforming structures and processes of school science to enable different teacher and student roles involves closing the gap between curriculum (policy) development and professional development as well as reconceptualizing science education, but from more overtly open moral value and political perspectives than have been considered in the literature of science education.
Excavating silences and tensions of agency|passivity in science education reform
NASA Astrophysics Data System (ADS)
Rivera Maulucci, Maria S.
2010-12-01
I reflect on studies by Rodriguez and Carlone, Haun-Frank, and Kimmel to emphasize the ways in which they excavate silences in the science education literature related to linguistic and cultural diversity and situating the problem of reform in teachers rather than contextual factors, such as traditional schooling discourses and forces that serve to marginalize science. I propose that the current push for top-down reform and accountability diminishes opportunities for receptivity, learning with and from students in order to transform teachers' practices and promote equity in science education. I discuss tensions of agency and passivity in science education reform and argue that attention to authentic caring constitutes another silence in the science education literature. I conclude that the current policy context positions teachers and science education researchers as tempered radicals struggling against opp(reg)ressive reforms and that there is a need for more studies to excavate these and other silences.
Fluorophore-based sensor for oxygen radicals in processing plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Faraz A.; Shohet, J. Leon, E-mail: shohet@engr.wisc.edu; Sabat, Grzegorz
2015-11-15
A high concentration of radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Determining the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups, and often, modifications to the plasma reactor. This work presents a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye thatmore » is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and nonimmobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. The reaction mechanism is very similar to that of the liquid dye.« less
NASA Astrophysics Data System (ADS)
MacAleese, Luke; Girod, Marion; Nahon, Laurent; Giuliani, Alexandre; Antoine, Rodolphe; Dugourd, Philippe
2018-06-01
The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations. [Figure not available: see fulltext.
Bouwstra, R J; Nielen, M; Newbold, J R; Jansen, E H J M; Jelinek, H F; van Werven, T
2010-12-01
The aim of this study was to evaluate, retrospectively, which physiological states influenced the effect of vitamin E supplements during the dry period on the level of oxidative stress at 2 wk antepartum. Furthermore the effect of oxidative stress at 2 wk antepartum on the risk of clinical mastitis in early lactation was investigated. Cows experience oxidative stress around calving. Vitamin E is able to decrease oxidative stress by scavenging free radicals. Normally, vitamin E radicals formed when vitamin E reacts with free radicals are regenerated by a network of other antioxidants, termed the "vitamin E regeneration system" (VERS). In case of vitamin E supplementation, VERS should be sufficient to regenerate formed vitamin E radicals; if not, oxidative stress might increase instead of decrease. Additionally, the level of oxidative stress and vitamin E might be important physiological states to evaluate before supplementation. In a clinical trial, 296 cows on 5 farms were randomly divided into 2 groups, supplemented with a mineral mix between dry off and calving that supplied 3,000 or 135 IU/d, respectively. Blood samples collected at dry off and 2 wk antepartum were analyzed for vitamin E, reactive oxygen metabolites, ferric-reducing ability of plasma, glutathione peroxidase, and malondialdehyde. Cows were allocated retrospectively into 8 subgroups based on the level of oxidative stress, vitamin E, and VERS status at dry off. To evaluate whether differences in physiological states at dry off influenced the effect of vitamin E supplementation on the level of oxidative stress, group effects (supplemented vs. control) were studied with Student's t-test for all 8 subgroup at 2 wk antepartum. Differences in physiological states at dry off influenced the effect of vitamin E supplements. In 2 insufficient VERS subgroups, the supplemented group had higher levels of free radicals at 2 wk antepartum compared with the control group. Relative risk calculation was used to study the effect of oxidative stress at 2 wk antepartum on the incidence of mastitis in the first 100 d of lactation. Higher levels of oxidative stress at 2 wk antepartum were related to higher risk of clinical mastitis. In conclusion, not every dry cow responded well to high vitamin E supplementation. This subgroup analysis provides a possible explanation for the unexpected adverse effects observed in the clinical trial. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Antioxidant effects of water- and lipid-soluble nitroxide radicals in liposomes.
Cimato, Alejandra N; Piehl, Lidia L; Facorro, Graciela B; Torti, Horacio B; Hager, Alfredo A
2004-12-15
Liposomes are today useful tools in different fields of science and technology. A lack of stability due to lipid peroxidation is the main problem in the extension of the use of these formulations. Recent investigative works have reported the protective effects of stable nitroxide radicals against oxidative processes in different media and under different stress conditions. Our group has focused its attention on the natural aging of liposomes and the protection provided by the water- and lipid-soluble nitroxide radicals 2,2,6,6-tetramethylpiperdine-1-oxyl (TEMPO) and doxylstearic acids (5-DSA, 12-DSA, and 16-DSA), respectively. Unilamellar liposomes were incubated under air atmosphere at 37 degrees C, both in the absence and in the presence of these radicals. Conjugated dienes, lipid hydroperoxides, TBARS, membrane fluidity, and nitroxide ESR signal intensity were followed as a function of time. Our results demonstrated that doxylstearic acids were more efficient than TEMPO in retarding lipid peroxidation at all the concentrations tested. The inhibition percentages, depending on the total nitroxide concentration, were not proportional to the lipid-water partition coefficient. Furthermore, time-course ESR signals showed a slower decrease for doxylstearic acids than for TEMPO. No significant differences were found among 5-DSA, 12-DSA, and 16-DSA. We concluded that the nitroxide radical efficiency as antioxidant directly depends on both nitroxide concentration and lipophilicity.
Proximity Link Design and Performance Options for a Mars Areostationary Relay Satellite
NASA Technical Reports Server (NTRS)
Edwards, Charles D.; Bell, David J.; Biswas, Abhijit; Cheung, Kar-Ming; Lock, Robert E.
2016-01-01
Current and near-term Mars relay telecommunications services are provided by a set of NASA and ESA Mars science orbiters equipped with UHF relay communication payloads employing operationally simple low-gain antennas. These have been extremely successful in supporting a series of landed Mars mission, greatly increasing data return relative to direct-to-Earth lander links. Yet their relay services are fundamentally constrained by the short contact times available from the selected science orbits. Future Mars areostationary orbiters, flying in circular, equatorial, 1- sol orbits, offer the potential for continuous coverage of Mars landers and rovers, radically changing the relay support paradigm. Achieving high rates on the longer slant ranges to areostationary altitude will require steered, high-gain links. Both RF and optical options exist for achieving data rates in excess of 100 Mb/s. Several point designs offer a measure of potential user burden, in terms of mass, volume, power, and pointing requirements for user relay payloads, as a function of desired proximity link performance.
Oxidative Risk for Atherothrombotic Cardiovascular Disease
Leopold, Jane A.; Loscalzo, Joseph
2009-01-01
In the vasculature, reactive oxidant species including reactive oxygen, nitrogen, or halogenating species, and thiyl, tyrosyl, or protein radicals, may oxidatively modify lipids and proteins with deleterious consequences for vascular function. These biologically active free radical and non-radical species may be produced by increased activation of oxidant-generating sources and/or decreased cellular antioxidant capacity. Once formed, these species may engage in reactions to yield more potent oxidants that promote transition of the homeostatic vascular phenotype to a pathobiological state that is permissive for atherothrombogenesis. This dysfunctional vasculature is characterized by lipid peroxidation and aberrant lipid deposition, inflammation, immune cell activation, platelet activation, thrombus formation, and disturbed hemodynamic flow. Each of these pathobiological states is associated with an increase in the vascular burden of free radical species-derived oxidation products and, thereby, implicates increased oxidant stress in the pathogenesis of atherothrombotic vascular disease. PMID:19751821
NASA Astrophysics Data System (ADS)
Whalley, Lisa; Stone, Daniel; Sharp, Thomas; Garraway, Shani; Bannan, Thomas; Percival, Carl; Hopkins, James; Holmes, Rachel; Hamilton, Jacqui; Lee, James; Laufs, Sebastian; Kleffmann, Jörg; Heard, Dwayne
2014-05-01
With greater than 50 % of the global population residing in urban conurbations, poor urban air quality has a demonstrable effect on human health. OH and HO2 radicals, (collectively termed HOx) together with RO2 radicals, mediate virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and particulates. Here we present measurements of OH, HO2, partially speciated RO2 (distinguishing smaller alkane related RO2 from larger alkane/alkene/aromatic related RO2), ClNO2 and OH reactivity measurements taken during the ClearfLo campaign in central London in the summer of 2012. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2 tested our ability to reproduce radical levels, and enabled detailed radical budgets to be determined, highlighting for example the important role of the photolysis of nitrous acid (HONO) and carbonyl species as radical sources. Speciation of RO2 enabled the break-down of ozone production from different classes of VOCs to be calculated directly and compared with model calculations. Summertime observations of radicals have helped to identify that increases in photolytic sources of radicals on warm, sunny days can significantly increase local ozone concentrations leading to exceedances of EU air quality recommendations of 60 ppbV. The photolytic breakdown of ClNO2 to Cl atoms can more than double radical concentrations in the early morning; although the integrated increase in radical concentrations over a 24 hr period in model runs when ClNO2 photolysis is included is more modest. On average we calculate just under a 1 ppb increase in ozone due to the presence of ClNO2 in London air. OH reactivity was found to be greatest during morning and evening rush hours. Good agreement between the modelled OH reactivity and observations could be achieved when reactivity associated with model generated photo-oxidation products was considered in addition to the measured primary OH reactants. Carbonyl species such as formaldehyde, acetaldehyde and acetone have been identified as the VOC class dominating organic OH reactivity. As such, together with the direct radical source contribution by photolysis, these species dominate local ozone production in London. Modelling studies comparing the observed carbonyl concentrations with model predictions suggest that over 50% of the total concentration may be directly emitted and, hence, London's in-situ chemistry may be considered to contribute significantly to the ozone levels observed.
Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Vidya, Balasubramaniam; Uma, Chandrasekar
2015-06-01
To identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides. The free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard. The extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner. Evolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.
EFFECT OF CADMIUM(II) ON FREE RADICALS IN DOPA-MELANIN TESTED BY EPR SPECTROSCOPY.
Zdybel, Magdalena; Pilawa, Barbara; Chodurek, Ewa
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy may be applied to examine interactions of melanin with metal ions and drugs. In this work EPR method was used to examination of changes in free radical system of DOPA-melanin--the model eumelanin after complexing with diamagnetic cadmium(II) ions. Cadmium(II) may affect free radicals in melanin and drugs binding by this polymer, so the knowledge of modification of properties and free radical concentration in melanin is important to pharmacy. The effect of cadmium(II) in different concentrations on free radicals in DOPA-melanin was determined. EPR spectra of DOPA-melanin, and DOPA-melanin complexes with cadmium(II) were measured by an X-band (9.3 GHz) EPR spectrometer produced by Radiopan (Poznań, Poland) and the Rapid Scan Unit from Jagmar (Krak6w, Poland). The DOPA (3,4-dihydroxyphenylalanine) to metal ions molar ratios in the reaction mixtures were 2:1, 1:1, and 1: 2. High concentrations of o-semiquinone (g ~2.0040) free radicals (~10(21)-10(22) spin/g) characterize DOPA-melanin and its complexes with cadmium(II). Formation of melanin complexes with cadmium(II) increase free radical concentration in DOPA-melanin. The highest free radical concentration was obtained for DOPA-melanin-cadmium(II) (1:1) complexes. Broad EPR lines with linewidths: 0.37-0.73 mT, were measured. Linewidths increase after binding of cadmium(II) to melanin. Changes of integral intensities and linewidths with increasing microwave power indicate the homogeneous broadening of EPR lines, independently on the metal ion concentration. Slow spin-lattice relaxation processes existed in all the tested samples, their EPR lines saturated at low microwave powers. Cadmium(II) causes fastening of spin-lattice relaxation processes in DOPA-melanin. The EPR results bring to light the effect of cadmium(II) on free radicals in melanin, and probably as the consequence on drug binding to eumelanin.
Effect of storage conditions on carbon-centered radicals in soy protein products.
Boatright, William L; Lei, Qingxin; Shah Jahan, M
2009-09-09
Using electron paramagnetic resonance (EPR) spectroscopy, the levels of carbon-centered radicals in retail samples of isolated soy protein (ISP), soy protein concentrate (SPC), and powdered soy milk were estimated to contain from 6.12 x 10(14) to 1.98 x 10(15) spins/g of soy product. Roasted soy nuts contained about 5.70 x 10(15) spins/g. The peak to peak line width of the carbon-centered radicals from soy nuts was about 10 gauss, whereas ISP samples with a similar peak height had a peak to peak line width of about 8 gauss. Retail snack bars containing ISP, SPC, and/or roasted soy nuts with a total protein content of either 13, 21, or 29% contained 5.32 x 10(14), 6.67 x 10(14), and 5.74 x 10(14) spins/g of snack bar, respectively. Levels of carbon-centered radicals in newly prepared samples of ISP were much lower than levels in the retail soy protein products and levels previously reported for commercial ISP and laboratory ISP samples. The levels of radicals in ISP samples increased over a 12-25 week period of storage in the dark at 22 degrees C and exposed to air from about 8.00 x 10(13) spins/g immediately after preparation to 9.95 x 10(14) spins/g of ISP. Storing the ISP samples under nitrogen at 22 degrees C greatly reduced the increase in radical content, whereas storing the ISP in 99.9% oxygen at 40 degrees C accelerated the formation of stable carbon-centered radicals. ISP samples hydrated at either 22 or 92 degrees C, rapidly frozen, and dried lost about 92% of the trapped radicals. The level of carbon-centered radicals in these same ISP samples immediately began to increase during subsequent storage exposed to the air and gradually returned to similar levels obtained before they were hydrated.
Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.
2015-01-01
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471
Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L
2015-09-01
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
New Approaches to Research on Leadership and Governance. Occasional Paper.
ERIC Educational Resources Information Center
Kolodny, Annette
2000-01-01
This paper discusses how to design useful research and scholarship on higher education governance, trusteeship, and the academic presidency, proposing radically altered decision making mechanisms and several research approaches derived from the humanities and social sciences. The paper describes the world into which today's graduates are moving,…
2012-10-01
Methylene Iodide Water Superhydrophobic /oleophilic dip-coated fabric Tuteja et al, Science, 2007, 318, 1618 Superamphiphobic electrospun surfaces...door for use a building block material for low surface energy materials • Applications – Mechanical robust superhydrophobic /oleophobic/omniphobic
Constructivism in the Classroom: Epistemology, History, and Empirical Evidence
ERIC Educational Resources Information Center
Matthews, William J.
2003-01-01
Over the previous two decades the emergence of post-modernist thought (i.e., radical constructivism, social constructivism, deconstructivism, post-structuralism, and the like) on the American intellectual landscape has presented a number of challenges to various fields of intellectual endeavor (i.e., literature, natural science, and social…
Towards Hybrid Therapeutic Strategies in Intellectual Disabilities
ERIC Educational Resources Information Center
Rondal, Jean-A.; Lang, Sc.
2009-01-01
I present and discuss what I see as a decisive convergence between future (no longer science fiction) genetic therapies in human beings with intellectual disabilities and standard (so to speak) neurobehavioral interventions. This crossing will lead to a radical modification in the life prospect of people with intellectual disability from genetic…
Tempered Radicals: Faculty Leadership in Interdisciplinary Curricular Change Authors
ERIC Educational Resources Information Center
Goldfien, Andrea C.; Badway, Norena Norton
2015-01-01
Scientists, researchers, and educators have promoted the improvement of science, technology, engineering and mathematics (STEM) education by incorporating an interdisciplinary approach to the study of STEM; but current research offers little guidance about how this change can occur. This study expands on a new body of research examining faculty…
Cente, Martin; Filipcik, Peter; Mandakova, Stanislava; Zilka, Norbert; Krajciova, Gabriela; Novak, Michal
2009-01-01
Oxidative stress has been implicated in the pathogenesis of many neurodegenerative diseases including Alzheimer's disease (AD). We investigated the effect of a truncated form of the human tau protein in the neurons of transgenic rats. Using electron paramagnetic resonance we observed significantly increased accumulation of ascorbyl free radicals in brains of transgenic animals (up to 1.5-fold increase; P < 0.01). Examination of an in vitro model of cultured rat corticohippocampal neurons revealed that even relatively low level expression of human truncated tau protein (equal to 50% of endogenous tau) induced oxidative stress that resulted in increased depolarization of mitochondria (approximately 1.2-fold above control, P < 0.01) and increases in reactive oxygen species (approximately 1.3-fold above control, P < 0.001). We show that mitochondrial damage-associated oxidative stress is an early event in neurodegeneration. Furthermore, using two common antioxidants (vitamin C and E), we were able significantly eliminate tau-induced elevation of reactive oxygen species. Interestingly, vitamin C was found to be selective in the scavenging activity, suggesting that expression of truncated tau protein preferentially leads to increases in aqueous phase oxidants and free radicals such as hydrogen peroxide and hydroxyl and superoxide radicals. Our results suggest that antioxidant strategies designed to treat AD should focus on elimination of aqueous phase oxidants and free radicals.
McGilloway, Angela; Ghosh, Priyo; Bhui, Kamaldeep
2015-02-01
Following the terrorist attacks of 9/11 in the USA and 7/7 in the UK, academic interest in factors involved in radicalization and terrorism has increased dramatically. Many related social and psychological theories have been put forward, however terrorism literature still lacks empirical research. In particular, little is known about the early processes and pathways to radicalization. Our aim is to investigate original research on pathways and processes associated with radicalization and extremism amongst people of Muslim heritage living in Western societies, that is, the group prioritized by counter-terrorism policy. Studies included in the review were original qualitative or quantitative primary research published in peer-reviewed journals, identified by searching research databases. All disciplines of journals were included. No single cause or pathway was implicated in radicalization and violent extremism. Individuals may demonstrate vulnerabilities that increase exposure to radicalization; however, the only common characteristic determined that terrorists are generally well-integrated, 'normal' individuals. Engagement in such activity is dependent on a wide range of interacting variables influenced by personal, localized and externalized factors. Further research should examine broader determinants of radicalization in susceptible populations. Future policy should follow this public health approach rather than constructing from perpetrators already committed to engaging in terrorism.
Du, Yuefeng; Long, Qingzhi; Guan, Bin; Mu, Lijun; Tian, Juanhua; Jiang, Yumei; Bai, Xiaojing; Wu, Dapeng
2018-01-01
Background Robot-assisted radical prostatectomy (RARP) is increasingly used worldwide, but comparisons of perioperative, functional, and oncologic outcomes among RARP, laparoscopic radical prostatectomy (LRP), and open radical prostatectomy (ORP) remain inconsistent. Material/Methods Systematic literature searches were conducted using EMBASE, PubMed, the Cochrane Library, CNKI, and Science Direct/Elsevier up to April 2017. A meta-analysis was conducted using Review Manager and Stata software. Results We included 33 studies. Meta-analysis revealed that blood loss, transfusion rate, and positive surgical margin (PSM) rate were significantly lower following RARP compared with LRP (SMD (95% confidence interval [CI]) 0.31 [0.01, 0.61]; combined ORs (95% CI) 5.32 [1.29, 21.98]; 1.27 [1.10, 1.46]) and ORP (SMD (95% CI) 0.75 [0.30, 1.21]; and combined ORs (95% CI) 3.44 [1.21, 9.79]); positive surgical margin (PSM) rates were significantly lower following RARP compared with LRP (combined ORs (95% CI) 1.27 [1.10, 1.46]), but not ORP. Operation time was also shorter for RARP than for LRP. The rates of nerve-sparing, recovery of complete urinary continence, and recovery of erectile function were significantly higher following RARP compared with LRP (combined ORs (95% CI) 0.55 [0.31, 0.95]; 0.66 [0.55, 0.78]; 0.46 [0.30, 0.71]) and ORP (combined ORs (95% CI) 0.36 [0.21, 0.63]; 0.33 [0.15, 0.74]; 0.65 [0.37, 1.14]). Conclusions This meta-analysis demonstrates that RARP results in better overall outcomes than LRP and ORP in terms of blood loss, transfusion rate, nerve sparing, urinary continence and erectile dysfunction recovery, and suggests that RARP offers better results than LRP and ORP in treatment of prostate cancer. However, studies with larger sample sizes and long-term results are needed. PMID:29332100
Wiltshire, Travis J; Lobato, Emilio J C; McConnell, Daniel S; Fiore, Stephen M
2014-01-01
In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others' mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.
Risk of Small Bowel Obstruction After Robot-Assisted vs Open Radical Prostatectomy.
Loeb, Stacy; Meyer, Christian P; Krasnova, Anna; Curnyn, Caitlin; Reznor, Gally; Kibel, Adam S; Lepor, Herbert; Trinh, Quoc-Dien
2016-12-01
Whereas open radical prostatectomy is performed extraperitoneally, minimally invasive radical prostatectomy is typically performed within the peritoneal cavity. Our objective was to determine whether minimally invasive radical prostatectomy is associated with an increased risk of small bowel obstruction compared with open radical prostatectomy. In the U.S. Surveillance, Epidemiology and End Results (SEER)-Medicare database, we identified 14,147 men found to have prostate cancer from 2000 to 2008 treated by open (n = 10,954) or minimally invasive (n = 3193) radical prostatectomy. Multivariable Cox proportional hazard models were used to examine the impact of surgical approach on the diagnosis of small bowel obstruction, as well as the need for lysis of adhesions and exploratory laparotomy. During a median follow-up of 45 and 76 months, respectively, the cumulative incidence of small bowel obstruction was 3.7% for minimally invasive and 5.3% for open radical prostatectomy (p = 0.0005). Lysis of adhesions occurred in 1.1% of minimally invasive and 2.0% of open prostatectomy patients (p = 0.0003). On multivariable analysis, there was no significant difference between minimally invasive and open prostatectomy with respect to small bowel obstruction (HR 1.17, 95% CI 0.90, 1.52, p = 0.25) or lysis of adhesions (HR 0.87, 95% CI 0.50, 1.40, p = 0.57). Limitations of the study include the retrospective design and use of administrative claims data. Relative to open radical prostatectomy, minimally invasive radical prostatectomy is not associated with an increased risk of postoperative small bowel obstruction and lysis of adhesions.
Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori
2017-01-02
The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.
Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers.
Barik, Atanu; Singh, Beena G; Sharma, Asmita; Jain, Vimal K; Priyadarsini, K Indira
2014-11-06
One electron redox reaction of two asymmetric 3,5-dimethyl pyrazole derivatives of selenoethers attached to ethanoic acid (DPSeEA) and propionic acid (DPSePA) were studied by pulse radiolysis technique using transient absorption detection. The reaction of the hydroxyl ((•)OH) radical with DPSeEA or DPSePA at pH 7 produced transients absorbing at 500 nm and at 300 nm, respectively. The absorbance at 500 nm increased with increasing parent concentration indicating formation of dimer radical cations. From the absorbance changes, the equilibrium constants for the formation of dimer radical cation of DPSeEA and DPSePA were estimated as 2020 and 1608 M(-1), respectively. The rate constants at pH 7 for the reaction of the (•)OH radical with DPSeEA and DPSePA were determined to be 9.6 × 10(9) and 1.4 × 10(10) M(-1) s(-1), respectively. The dimer radical cation of DPSeEA and DPSePA decayed by first order kinetics with a rate constant of 2.8 × 10(4) and 5.5 × 10(3) s(-1), respectively. The yield of radical cations of DPSeEA and DPSePA were estimated from the secondary electron transfer reaction, which corresponds to 38% and 48% of (•)OH radical yield, respectively. Some fraction of monomer radical cation undergoes decarboxylation reaction, and the yield of decarboxylation was 25% and 20% for DPSeEA and DPSePA, respectively. These results have implication in understanding their antioxidant activity. The reaction of trichloromethyl peroxyl radical, glutathione, and ascorbic acid further support their antioxidant behavior.
NASA Astrophysics Data System (ADS)
Patchen, Terri; Smithenry, Dennis W.
2015-02-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.
"Vague and artificial": the historically elusive distinction between pure and applied science.
Gooday, Graeme
2012-09-01
This essay argues for the historicity of applied science as a contested category within laissez-faire Victorian British science. This distinctively pre-twentieth-century notion of applied science as a self-sustaining, autonomous enterprise was thrown into relief from the 1880s by a campaign on the part of T. H. Huxley and his followers to promote instead the primacy of "pure" science. Their attempt to relegate applied science to secondary status involved radically reconfiguring it as the mere application of pre-existing pure science. This new notion of extrinsically funded pure science that would produce only contingently future social benefits as a mere by-product came under pressure during World War I, when military priorities focused attention once again on science for immediate utility. This threatened the Cambridge-based promoters of self-referential pure science who collectively published Science and the Nation in 1917. Yet most contributors to this work discussed forms of "applied" science that had no prior "pure" form. Even the U.K.'s leading government scientist, Lord Moulton, dismissed the book's provocative distinction between pure and applied science as unhelpfully "vague and artificial."
Souza, Iara Maria de Almeida; Caitité, Amanda Muniz Logeto
2010-06-01
Based on news reports from Brazilian papers, the article examines the case of scientific fraud involving cloned embryos, committed by South Korean scientist Hwang. The media generally focus on the intellectual process of science, its discoveries, and the new possibilities it promises. In this case, however, science is shown the other way around, revealing a web that interweaves elements of a radically disparate nature, like the Korean government, researchers, tools, research funds, human eggs and funguses, scientific journals, among others. These ties are what make up science in practice, yet they only become visible in the media when there is tension between them and, in this case, when something illicit happens.
Female Leaders in a Radical Right Movement: The Latvian National Front
ERIC Educational Resources Information Center
Stasulane, Anita
2017-01-01
Gender is the central axis around which the transformation of radical right forces is taking place: a new type of movement is emerging which is not excessively masculine. Latvia is experiencing an increase in women's participation in the radical right, the Latvian National Front (LNF) being a vivid example. The development of the LNF was…
The free radical theory of aging revisited: the cell signaling disruption theory of aging.
Viña, Jose; Borras, Consuelo; Abdelaziz, Kheira M; Garcia-Valles, Rebeca; Gomez-Cabrera, Mari Carmen
2013-09-10
The free radical theory of aging has provided a theoretical framework for an enormous amount of work leading to significant advances in our understanding of aging. Up to the turn of the century, the theory received abundant support from observations coming from fields as far apart as comparative physiology or molecular biology. Work from many laboratories supports the theory, for instance showing that overexpression of antioxidant enzymes results in increases in life-span. But other labs have shown that in some cases, there is an increased oxidative stress and increased longevity. The discovery that free radicals can not only cause molecular damage to cells, but also serve as signals; led to the proposal that they act as modulators of physiological processes. For instance, reactive oxygen species (ROS) stimulate physiological adaptations to physical exercise. A critical blow to the free radical theory of aging came from epidemiological studies showing that antioxidant supplementation did not lower the incidence of many age-associated diseases but, in some cases, increased the risk of death. Moreover, recent molecular evidence has shown that increasing generation of ROS, in some cases, increases longevity. Gerontologists interested in free radical biology are at a crossroads and clearly new insights are required to clarify the role of ROS in the process of aging. The hurdles are, no doubt, very high, but the intellectual and practical promise of these studies is of such magnitude that we feel that all efforts will be generously rewarding.
Changes in free-radical scavenging ability of kombucha tea during fermentation.
Jayabalan, R; Subathradevi, P; Marimuthu, S; Sathishkumar, M; Swaminathan, K
2008-07-01
Kombucha tea is a fermented tea beverage produced by fermenting sugared black tea with tea fungus (kombucha). Free-radical scavenging abilities of kombucha tea prepared from green tea (GTK), black tea (BTK) and tea waste material (TWK) along with pH, phenolic compounds and reducing power were investigated during fermentation period. Phenolic compounds, scavenging activity on DPPH radical, superoxide radical (xanthine-xanthine oxidase system) and inhibitory activity against hydroxyl radical mediated linoleic acid oxidation (ammonium thiocyanate assay) were increased during fermentation period, whereas pH, reducing power, hydroxyl radical scavenging ability (ascorbic acid-iron EDTA) and anti-lipid peroxidation ability (thiobarbituric assay) were decreased. From the present study, it is obvious that there might be some chances of structural modification of components in tea due to enzymes liberated by bacteria and yeast during kombucha fermentation which results in better scavenging performance on nitrogen and superoxide radicals, and poor scavenging performance on hydroxyl radicals. Copyright © 2007 Elsevier Ltd. All rights reserved.
Levinas's ethics as a basis of healthcare - challenges and dilemmas.
Nordtug, Birgit
2015-01-01
Levinas's ethics has in the last decades exerted a significant influence on Nursing and Caring Science. The core of Levinas's ethics - his analyses of how our subjectivity is established in the ethical encounter with our neighbour or the Other - is applied both to healthcare practice and in the project of building an identity of Nursing and Caring Science. Levinas's analyses are highly abstract and metaphysical, and also non-normative. Thus, his analyses cannot be applied directly to practical problems and questions. Theorists in Nursing and Caring Science are generally aware of this. Nevertheless, many of them use Levinas's analyses to explore and solve questions of practical and normative character. This article focuses on the challenges and dilemmas of using Levinas in this manner. The article is divided into two parts. The first part presents some central ideas of Levinas's ethics based on the latter part of his authorship. The main focus is on the radicalism of Levinas's critique of the symbolic order (which includes concepts, categories, knowledge, etc.) - or as he puts it 'the said' - as a basis for subjectivity and responsibility. Levinas's notions of saying, anarchy, and singularity accentuate this point of view. These notions refer to conditions in the language, which counteract the symbolic order in the ethical encounter to such an extent that it becomes an incomprehensible. Levinas gives the argumentation a metaphysical frame: The encounter with the incomprehensible is an encounter with the Holy, which is not the ontological God, but a metaphysical desire. It is a mystery as to what this means, and herein lies possibly the main challenge when using Levinas's ethics in science and research: How to maintain the radicalism of his critique of the symbolic order when this is to be communicated in a scientific context that expects clarification of statements and ideas? The second part of the article explores this question by examining how some theorists use Levinas's ethics on questions and problems in the area of healthcare and Nursing and Caring Science. The focus is especially on the theorists' reception and use of the just mentioned notions. The study reveals that these theorists to a large extent transform Levinas's ethics according to their own approaches, with the result that his ethics loses its critical radicalism. Thus, I question the reason why they use Levinas. © 2014 John Wiley & Sons Ltd.
Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface.
Ajo, Petri; Kornev, Iakov; Preis, Sergei
2017-11-23
The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.
Polis, B. David; Wyeth, John; Goldstein, Leonide; Graedon, Joe
1969-01-01
Stable free radicals have been prepared from purified plasma proteins, pituitary peptides, and simpler related structures like 5-OH tryptophan and melatonin by oxidation with the free-radical nitrosyl disulfonate in alkaline solution under controlled conditions. The presence of tyrosine or trytophan amino acid residues in the protein was found essential for free-radical formation. These red-colored, stable free radicals showed electron spin resonance spectra in aqueous solutions at room temperature and maintained this characteristic for weeks when stored at 5°C. Illumination, by visible light, of the free-radical proteins and peptides separated from excess nitrosyl disulfonate by salt fractionation or chromatography enhanced the free-radical concentration in the light. The increased signal decayed in the dark. Intravenous administration of the free-radical proteins or peptides into rabbits equipped with chronic cranial electrodes and sedated with a small dose of pentobarbital caused a sudden EEG arousal accompanied by behavioral changes indicative of brain excitation. Illumination of the free-radical compounds prior to administration enhanced the effects. Untreated control proteins or peptides had no effects. The observations are interpreted to suggest the involvement of free-radical structures in the transfer of energy in nervous tissue. PMID:4311379
NASA Astrophysics Data System (ADS)
Xu, Xuan; Sun, Yaofang; Fan, Zihong; Zhao, Deqiang; Xiong, Shimin; Zhang, Bingyao; Zhou, Shiyu; Liu, Guotao
2018-03-01
Many studies have focused on the use of BiVO4 as a photocatalyst, but few have investigated the production of free radicals during the photocatalytic process. Following synthesis of flowerlike BiVO4 and characterization by X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) Scanning electron microscopy (EDX), UV-Vis and XPS, we successfully prepared BiVO4. Then we used electron spin resonance (ESR) to determine the production and degradation of individual active free radicals, including the superoxide radical (•O2‑) and the hydroxyl radical (•OH). In the first experiment, we used ESR to detect the signals of free radicals (•O2‑ and •OH) under varying oxygen conditions. The results shown that in addition to production by •O2‑, •OH could also be produced by oxidation of h+ to OH‑. In the next experiment, we detected •OH under varying pH to identify the result of the first experiment, and found that signal intensities increased with increasing pH, indicating the mechanism for •OH production. Finally, we conducted a trapping experiment to examine free radical degradation mechanisms. We identified •OH and h+ as the main active free radicals and showed the complete production about •OH. These results improve current knowledge of free radical production mechanisms, which can be used to enhance the photocatalytic performance of BiVO4.
Zhong, Z; Arteel, G E; Connor, H D; Schemmer, P; Chou, S C; Raleigh, J A; Mason, R P; Lemasters, J J; Thurman, R G
1999-08-01
Disturbances in hepatic microcirculation increase graft injury and failure; therefore, this study evaluates the effects of ethanol on microcirculation after liver transplantation. Donor rats were given one dose of ethanol (5 g/kg) by gavage 20 h before explantation, and grafts were stored in University of Wisconsin solution for 24 h before implantation. Acute ethanol treatment decreased 7-day survival of grafts from about 90 to 30%, increased transaminase release nearly 4-fold, and decreased bile production by 60%. Moreover, portal pressure increased significantly and liver surface oxygen tension decreased about 50%, indicating that ethanol disturbs hepatic microcirculation. Pimonidazole, a 2-nitroimidazole hypoxia marker, was given i.v. to recipients 30 min after implantation, and grafts were harvested 1 h later. Ethanol increased hepatic pimonidazole binding about 3-fold, indicating that ethanol led to hypoxia in fatty grafts. Ethanol also significantly increased free radicals in bile. Catechin (30 mg/kg i.v. upon reperfusion), a free radical scavenger, and Carolina Rinse solution, which contains several agents that inhibit free radical formation, minimized disturbances in microcirculation and prevented pimonidazole adduct formation significantly. These treatments also blunted increases in transaminase release and improved survival of fatty grafts. Destruction of Kupffer cells with GdCl(3) (20 mg/kg i.v. 24 h before explantation) or inhibition of formation of leukotrienes with MK-886 (50 microM in University of Wisconsin or rinse solution) also minimized hypoxia and improved survival after transplantation. Taken together, these results demonstrate that ethanol disturbs hepatic microcirculation, leading to graft hypoxia after transplantation, most likely by activating Kupffer cells and increasing free radical production.
Space opportunities for tropospheric chemistry research
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Hoell, James M.; Mcneal, Robert J.
1986-01-01
The use of the Space Shuttle to measure tropospheric trace species is examined. Factors which affect the measurement of tropospheric trace species are discussed. The Academy of Sciences 1985 report categorized the trace species into levels: first-level gases include water vapor, O3, CO, and CH4, and the second-level gases are N2O, NO2, NH3, SO2, chlorofluoromethanes, and HCl. The effects of first-level gases on the earth's climate, the photochemistry/chemistry of the troposphere, and the photochemical/chemical production and destruction of the hydroxyl radical are studied; the distribution and magnitude of the hydroxyl radical in the troposphere are analyzed in terms of water vapor, O3, CO, and CH4.
Photo-catalytic oxidation of acetone on a TiO2 powder: An in situ FTIR investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szanyi, János; Kwak, Ja Hun
2015-09-01
In situ transmission infrared spectroscopy was used to investigate the photo-oxidation of acetone on a commercial, oxidized TiO2 (P25) powder catalyst under UV irradiation at ambient temperature, in the absence and presence of gas phase O2. The photochemistry of a number of organic molecules (1-butanone, methanol and acetic acid,) under the same conditions was also studied in order to identify reaction intermediates and products formed in the photo-oxidation of acetone. Under anaerobic conditions (in the absence of gas phase oxygen) limited extent of photo-oxidation of acetone took place on the oxidized TiO2 sample. In the presence of O2 in themore » gas phase, however, acetone was completely converted to acetates and formates, and ultimately CO2. The initial step in the sequence of photo-induced reactions is the ejection of a methyl radical, resulting in the formation of surface acetates (from the acetyl group) and formates (from the methyl radicals). Acetate ions are also converted to formates, that, in turn, photo-oxidized to CO2. Under the experimental conditions applied the accumulation of carbonates and bicarbonates were observed on the TiO2 surface as the photo-oxidation of acetone proceeded (this was also observed during the course of photo-oxidation of all the other organics studied here). When the initial radical ejection step produced hydrocarbons containing more than one C atoms (as in the case in 2-butanone and mesytil oxide), the formation of aldehydes on the catalyst surface was also observed as a result of secondary reactions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. JHK also acknowledges the support of this work by the 2014 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). The authors thank M.A. Henderson for the fruitful discussions on the photo-oxidation of organic molecules on TiO2.« less
Liu, Bochuan; Qiao, Meng; Wang, Yanbin; Wang, Lijuan; Gong, Yan; Guo, Tao; Zhao, Xu
2017-12-01
The enhancement of g-C 3 N 4 photocatalytic degradation of bisphenol A (BPA) via persulfate (PS) addition was investigated under visible light irradiation. The effects of various parameters on the BPA degradation were investigated, such as catalysts dosage, PS concentrations, initial pH value and BPA concentration. The results showed that g-C 3 N 4 nanosheets exhibited superior photocatalytic activity toward BPA degradation as compared with bulk g-C 3 N 4 . The addition of PS can further improve the g-C 3 N 4 photocatalytic performance for BPA degradation. With 5 mM PS, the degradation rate of BPA was increased from 72.5% to 100% at 90 min, and the corresponding first-order kinetic constants were increased from 0.0028 to 0.0140 min -1 . The removal efficiency of BPA increased with the decrease of solution pH value. The active radicals in the reaction system were tested by electron spin resonance (ESR) and radicals quenching experiments. Instead of persulfate radicals' oxidation, it was proposed that the main active radicals for BPA degradation were superoxide radicals and the photogenerated holes. Copyright © 2017. Published by Elsevier Ltd.
Free radical production by high energy shock waves--comparison with ionizing irradiation.
Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R
1988-01-01
Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.
NASA Astrophysics Data System (ADS)
Colucci-Gray, L.
2014-09-01
Tom G. K. Bryce and Stephen P. Day's (2013) original article on scepticism and doubt in science education explores the context of citizens' attitudes towards the complexities and uncertainties of global issues, namely global warming. This response aims to stimulate reflection on some of the implicit assumptions underpinning the relationships between science, technology and the public. I argue that an underestimation of the political and ethical dimensions of science and technology limits the possibilities for education to set the agenda for citizens' participation in science and technological matters. Drawing on Sheila Jasanoff's model of co-production, this paper proposes a radical re-affirmation of the aims and purposes of science education to embrace a multiplicity of disciplines, narratives and ways of knowing in science, technology and society issues.
Electron spin resonance. Part two: a diagnostic method in the environmental sciences.
Rhodes, Christopher J
2011-01-01
A review is presented of some of the ways in which electron spin resonance (ESR) spectroscopy may be useful to investigate systems of relevance to the environmental sciences. Specifically considered are: quantititave ESR, photocatalysis for pollution control; sorption and mobility of molecules in zeolites; free radicals produced by mechanical action and by shock waves from explosives; measurement of peroxyl radicals and nitrate radicals in air; determination of particulate matter polyaromatic hydrocarbons (PAH), soot and black carbon in air; estimation of nitrate and nitrite in vegetables and fruit; lipid-peroxidation by solid particles (silica, asbestos, coal dust); ESR of soils and other biogenic substances: formation of soil organic matter carbon capture and sequestration (CCS) and no-till farming; detection of reactive oxygen species in the photosynthetic apparatus of higher plants under light stress; molecular mobility and intracellular glasses in seeds and pollen; molecular mobility in dry cotton; characterisation of the surface of carbon black used for chromatography; ESR dating for archaeology and determining seawater levels; measurement of the quality of tea-leaves by ESR; green-catalysts and catalytic media; studies of petroleum (crude oil); fuels; methane hydrate; fuel cells; photovoltaics; source rocks; kerogen; carbonaceous chondrites to find an ESR-based marker for extraterrestrial origin; samples from the Moon taken on the Apollo 11 and Apollo 12 missions to understand space-weathering; ESR studies of organic matter in regard to oil and gas formation in the North Sea; solvation by ionic liquids as green solvents, ESR in food and nutraceutical research.
Electron Attachment to Radicals and Highly-Excited States in Laser-Irradiated CCl_2F_2*
NASA Astrophysics Data System (ADS)
Pinnaduwage, Lal; Datskos, Panos
1997-10-01
We have measured electron attachment rate constants for two species produced via ArF-excimer- laser irradiated CF_2Cl_2, i.e., the CF_2Cl radical and the highly-excited electronically-excited states of CF_2Cl_2. These measurements show that while electron attachment to the fragment radical has a rate constants about an order of magnitude higher compared to the ground states of CF_2Cl_2, electron attachment to the highly- excited states have many orders of magnitude larger rate constants. To our knowledge, only one other electron attachment measurement has been conducted on molecular fragments up to now. Implications of these measurements for plasma processing discharges will be discussed. Research supported by the National Science Foundation under contract No. ECS-9626217 with the University of Tennessee, Knoxville. The Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp. for the U. S. DOE under contract No. DE-AC05- 96OR22464.
Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.
1987-01-01
The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.
Catania, A. Charles
1991-01-01
In what seems to be a response to a paper by Skinner (1987), Mahoney (1989) provides evidence of unfamiliarity with and intellectual intolerance toward radical behaviorism by presenting a critique of it that includes a variety of improper and counterfactual attributions. For example, he argues that radical behaviorism is Cartesian rather than Baconian when the historical record shows the opposite, that it is fundamentally associationist when in fact it is selectionist, and that its philosophy of science is essentially that of operationalism and logical positivism when instead it moved on to other criteria decades ago. The details of Mahoney's history are sometimes flawed and sometimes unsubstantiated, as when he provides a distorted account of the origins of the Association for Behavior Analysis or when he makes undocumented claims about the banning of books. On examination, many of his arguments are couched in stylistic terms that share their rhetorical features with racial, ethnic, and religious stereotyping. PMID:22478082
Hsiao, Janet H; Cheung, Kit
2016-03-01
In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.
Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M
2011-12-20
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.
NASA Astrophysics Data System (ADS)
Choudhury, Faraz Anwar
A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR and FTIR measurements both reveal that the oxygen plasma exposure leads to surface oxidation of the silicon dioxide film and the formation of a denser surface layer which restricts the transmission of the radicals through the film. It was found that the extent of modification of the film partially depends on the radical dose. The calculated enthalpies of the reactions show that they are all exothermic reactions, however, the radicals need enough energy to overcome the activation energy for the reaction to take place.
Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J
2018-06-04
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions
NASA Astrophysics Data System (ADS)
Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.
2018-06-01
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.
Assessing the cost effectiveness of robotics in urological surgery - a systematic review.
Ahmed, Kamran; Ibrahim, Amel; Wang, Tim T; Khan, Nuzhath; Challacombe, Ben; Khan, Muhammed Shamim; Dasgupta, Prokar
2012-11-01
Although robotic technology is becoming increasingly popular for urological procedures, barriers to its widespread dissemination include cost and the lack of long term outcomes. This systematic review analyzed studies comparing the use of robotic with laparoscopic and open urological surgery. These three procedures were assessed for cost efficiency in the form of direct as well as indirect costs that could arise from length of surgery, hospital stay, complications, learning curve and postoperative outcomes. A systematic review was performed searching Medline, Embase and Web of Science databases. Two reviewers identified abstracts using online databases and independently reviewed full length papers suitable for inclusion in the study. Laparoscopic and robot assisted radical prostatectomy are superior with respect to reduced hospital stay (range 1-1.76 days and 1-5.5 days, respectively) and blood loss (range 482-780 mL and 227-234 mL, respectively) when compared with the open approach (range 2-8 days and 1015 mL). Robot assisted radical prostatectomy remains more expensive (total cost ranging from US $2000-$39,215) than both laparoscopic (range US $740-$29,771) and open radical prostatectomy (range US $1870-$31,518). This difference is due to the cost of robot purchase, maintenance and instruments. The reduced length of stay in hospital (range 1-1.5 days) and length of surgery (range 102-360 min) are unable to compensate for the excess costs. Robotic surgery may require a smaller learning curve (20-40 cases) although the evidence is inconclusive. Robotic surgery provides similar postoperative outcomes to laparoscopic surgery but a reduced learning curve. Although costs are currently high, increased competition from manufacturers and wider dissemination of the technology could drive down costs. Further trials are needed to evaluate long term outcomes in order to evaluate fully the value of all three procedures in urological surgery. © 2012 BJU INTERNATIONAL.
Moore, Jeffrey; Luther, Marla; Cheng, Zhihong; Yu, Liangli Lucy
2009-02-11
This study investigated the effects of processing conditions including bran particle size, dough fermentation time, and baking time and temperature on the extractable antioxidant properties of whole-wheat pizza crust. Experiments were carried out using two different varieties of hard white winter wheat, Trego and Lakin. Antioxidant properties examined included oxygen radical absorbing capacity (ORAC), hydroxyl radical scavenging capacity (HOSC), relative 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity (RDSC), cation 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging capacity, total phenolic contents (TPC), and ferulic acid contents. Results indicated that bran particle size had no effect on the antioxidant properties evaluated. Increasing dough fermentation time from 0 to 48 h had no significant influence on antioxidant properties except HOSC, which increased as much as 28%, possibly as a result of increase in soluble free ferulic acid, which increased as much as 130%. Increasing baking temperature from 204 to 288 degrees C with a 7 min bake time increased all evaluated antioxidant properties by as much as 82%. Increasing baking time from 7 to 14 min with 204 degrees C baking temperature might increase some antioxidant properties as much as 60%. The results from this study suggest that longer dough fermentation times and increased baking time or temperature may be potential approaches to increase the antioxidant availability in whole-wheat pizza crust.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hendry, Robin Findlay
2016-02-01
In this paper I examine the relationship between historians, philosophers and sociologists of science, and indeed scientists themselves. I argue that (i) they co-habit a shared intellectual territory (science and its past); and (ii) they should be able to do so peacefully, and with mutual respect, even if they disagree radically about how to describe the methods and results of science. I then go on to explore some of the challenges to mutually respectful cohabitation between history, philosophy and sociology of science. I conclude by identifying a familiar kind of project in the philosophy of science which seeks to explore the worldview of a particular scientific discipline, and argue that it too has a right to explore the shared territory even though some historians and sociologists may find it methodologically suspect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hot Band Analysis and Kinetics Measurements for Ethynyl Radical, C_2H, in the 1.49 μm Region
NASA Astrophysics Data System (ADS)
Le, Anh T.; Hall, Gregory; Sears, Trevor
2017-06-01
Ethynyl, C_2H, is an important intermediate in combustion processes and has been widely observed in interstellar space. Spectroscopically, it is of particular interest because it possesses three low-lying electronic surfaces: a ground ^2Σ^+state, and a low-lying ^2Π excited electronic state, which splits due to the Renner-Teller effect. Vibronic coupling among these states leads to a complicated, mixed-character, energy level structure. We have previously reported work on three bands originating from the ˜{X}(0,0,0) ^2Σ ground state to excited vibronic states: two ^2Σ - ^2 Σ transitions at 6696 and 7088 \\wn and a ^2Π - ^2Σ transition at 7108 \\wn. In this work, the radicals were formed in a hot, non-thermal, population distribution by u.v. pulsed laser photolysis of a precursor. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss were also made, using some of the stronger rotational lines observed. Time-dependent signals in mixtures containing a variable concentration of precursor in argon suggested that vibronically hot C_2H radicals were less reactive than the relaxed, thermalized, radical. Two additional hot bands originating in states ˜{X}(0,1^1,0) ^2Π and ˜{X}(0,2^0,0) ^2Σ, have now been identified in the same spectral region. In a new series of experiments, we have measured the kinetics of formation and decay of representative levels involving all the assigned transitions, i.e. originating in ˜{X}(0,v_2,0), with v_2 =0 ,1, and 2, in various concentrations of mixtures of precursor, inert gas and hydrogen. The new spectra also show greatly improved signal-to-noise ratio in comparison to our previous work, due to the use of a transient FM detection scheme, and additional spectral assignments seem likely. Both kinetics and spectroscopic results will be described in the talk. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. A. T. Le, G. E. Hall, T. J. Sears, J. Chem. Phys. 145 074306, 2016
Active Learning and Cooperative Learning in the Organic Chemistry Lecture Class
NASA Astrophysics Data System (ADS)
Paulson, Donald R.
1999-08-01
Faculty in the physical sciences are one of the academic groups least receptive to the use of active learning strategies and cooperative learning in their classrooms. This is particularly so in traditional lecture classes. It is the objective of this paper to show how effective these techniques can be in improving student performance in classes. The use of active learning strategies and cooperative learning groups in my organic chemistry lecture classes has increased the overall pass rate in my classes by an astounding 20-30% over the traditional lecture mode. This has been accomplished without any reduction in "standards". The actual methods employed are presented as well as a discussion of how I came to radically change the way I teach my classes.
Li, Jie; Li, Guo-feng; Wu, Yan; Wang, Ning-hui; Huang, Qiu-nan
2004-01-01
Positive DC corona discharge is formed with needle-plate electrode configuration, in which the water vapor is ejected though the needle points. The purpose is to increase the numbers of the water-based radicals, ionize the water molecule and improve the desulfuration efficiency of pulsed corona reactor. The water ions were determined by four stages molecular beam mass spectrometer and diagnose the water-based radicals by emission spectrograph. A conclusion on formation of ions and radicals with DC corona discharges can be drawn.
Robotic radical hysterectomy in the management of gynecologic malignancies.
Pareja, Rene; Ramirez, Pedro T
2008-01-01
Robotic surgery is being used with increasing frequency in gynecologic oncology. To date, 44 cases were reported in the literature of radical hysterectomy performed with robotic surgery. When comparing robotic surgery with laparoscopy or laparotomy in performing a radical hysterectomy, the literature shows that robotic surgery offers an advantage over the other 2 surgical approaches with regard to operative time, blood loss, and length of hospitalization. Future studies are needed to further elucidate the equivalence or superiority of robotic surgery to laparoscopy or laparotomy in performing a radical hysterectomy.
Grills, David Charles; Lymar, Sergei
2018-03-29
In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grills, David Charles; Lymar, Sergei
In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less
CYCLOOXYGENASE COMPETITIVE INHIBITORS ALTER TYROSYL RADICAL DYNAMICS IN PROSTAGLANDIN H SYNTHASE-2†
Wu, Gang; Tsai, Ah-Lim; Kulmacz, Richard J.
2009-01-01
Reaction of prostaglandin H synthase (PGHS) isoforms 1 or 2 with peroxide forms a radical at Tyr385 that is required for cyclooxygenase catalysis, and another radical at Tyr504, whose function is unknown. Both tyrosyl radicals are transient and rapidly dissipated by reductants, suggesting that cyclooxygenase catalysis might be vulnerable to suppression by intracellular antioxidants. Our initial hypothesis was that the two radicals are in equilibrium and that their proportions and stability are altered upon binding of fatty acid substrate. As a test, we examined the effects of three competitive inhibitors (nimesulide, flurbiprofen and diclofenac) on the proportions and stability of the two radicals in PGHS-2 pretreated with peroxide. Adding nimesulide after ethyl peroxide led to some narrowing of the tyrosyl radical signal detected by EPR spectroscopy, consistent with a small increase in the proportion of the Tyr504 radical. Neither flurbiprofen nor diclofenac changed the EPR linewidth when added after peroxide. In contrast, the effects of cyclooxygenase inhibitors on the stability of the preformed tyrosyl radicals were dramatic. The half-life of total tyrosyl radical was 4.1 min in the control, >10 hr with added nimesulide, 48 min with flurbiprofen, and 0.8 min with diclofenac. Stabilization of the tyrosyl radicals was evident even at substoichiometric levels of nimesulide. Thus, the inhibitors had potent, structure-dependent, effects on the stability of both tyrosyl radicals. This dramatic modulation of tyrosyl radical stability by cyclooxygenase site ligands suggests a mechanism for regulating the reactivity of PGHS tyrosyl radicals with cellular antioxidants. PMID:19894761
Highly reactive free radicals in electronic cigarette aerosols.
Goel, Reema; Durand, Erwann; Trushin, Neil; Prokopczyk, Bogdan; Foulds, Jonathan; Elias, Ryan J; Richie, John P
2015-09-21
Electronic cigarette (EC) usage has increased exponentially, but limited data are available on its potential harmful effects. We tested for the presence of reactive, short-lived free radicals in EC aerosols by electron paramagnetic resonance spectroscopy (EPR) using the spin-trap phenyl-N-tert-butylnitrone (PBN). Radicals were detected in aerosols from all ECs and eliquids tested (2.5 × 10(13) to 10.3 × 10(13) radicals per puff at 3.3 V) and from eliquid solvents propylene glycol and glycerol and from "dry puffing". These results demonstrate, for the first time, the production of highly oxidizing free radicals from ECs which may present a potential toxicological risk to EC users.
New Ways of Knowledge: The Sciences, Society, and Reconstructive Knowledge.
ERIC Educational Resources Information Center
Raskin, Marcus G.; And Others
In this volume, physicists and social scientists challenge the bedrock of scientific thinking whose applications can prove destructive to existing social systems, and shift the debate to the need for a radical change of direction that would replace traditional "value-free" inquiry and research with a knowledge model that incorporates…
Restructuring the University of Alaska Statewide System of Higher Education.
ERIC Educational Resources Information Center
Gaylord, Thomas A.; Rogers, Brian
The radical restructuring of Alaska's public higher education system brought on by the state's 1986 economic collapse is discussed. The plan called for a merger of 11 community colleges with three universities into three multi-campus institutions. It realigned statewide programs in vocational technical education, fisheries and ocean sciences,…
ERIC Educational Resources Information Center
Nguyen, T. L. U.; Bennet, Francesca; Stenzel, Martina H.; Barner-Kowollik, Christopher
2008-01-01
This 8-hour experiment (spread over two 4-hour sessions) is designed to equip students with essential skills in polymer synthesis, particularly in synthesizing polymers of well-defined molecular weight. The experiment involves the synthesis and characterization of poly(vinyl neodecanoate) via living free radical polymerization, specifically the…
Transferring Chemical Research to a Spin-Off Initiative in Health Care: The Lipidomic Approach
ERIC Educational Resources Information Center
Ferreri, Carla; Chatgilialoglu, Chryssostomos; Ferreri, Rosaria
2008-01-01
Lipidomics is an emerging discipline in life sciences related to the lipid metabolism of living organisms. In the last decade chemical and biological research has attributed very important roles to membrane phospholipids in relationship to free radical stress and metabolic situations. An entrepreneurial initiative for diagnostic tools and health…
Goethe's Phenomenological Optics: The Point Where Language Ends and Experience Begins in Science.
ERIC Educational Resources Information Center
Junker, Kirk
This paper explores whether phenomenology, in general, and the case of Johann Wolfgang von Goethe's phenomenological optics in particular, provides a case and a location for "minimal realism," located between the extreme positions of absolute scientific realists and "radical rhetoricians." The paper begins with a description of…
Elements of Teacher Communication Competence: An Examination of Skills and Knowledge to Communicate
ERIC Educational Resources Information Center
Bakic-Tomic, Ljubica; Dvorski, Jasmina; Kirinic, Anamarija
2015-01-01
In Croatia, a radical change appeared in education in 1995. The Ministry of Education and Science of Croatia approved and funded the research project entitled "Information and communication competences of educators" that consisted of two parts: theoretical, study of the available literature on the communication competence of teachers in…
ERIC Educational Resources Information Center
Lincoln, Don
2015-01-01
When the sun rose over America on July 4, 2012, the world of science had radically changed. The Higgs boson had been discovered. Mind you, the press releases were more cautious than that, with "a new particle consistent with being the Higgs boson" being the carefully constructed phrase of the day. But, make no mistake, champagne corks…
Foucault as Complexity Theorist: Overcoming the Problems of Classical Philosophical Analysis
ERIC Educational Resources Information Center
Olssen, Mark
2008-01-01
This article explores the affinities and parallels between Foucault's Nietzschean view of history and models of complexity developed in the physical sciences in the twentieth century. It claims that Foucault's rejection of structuralism and Marxism can be explained as a consequence of his own approach which posits a radical ontology whereby the…
Lowrance, William T.; Eastham, James A.; Savage, Caroline; Maschino, A. C.; Laudone, Vincent P.; Dechet, Christopher B.; Stephenson, Robert A.; Scardino, Peter T.; Sandhu, Jaspreet S.
2012-01-01
Purpose We describe current trends in robotic and open radical prostatectomy in the United States after examining case logs for American Board of Urology certification. Materials and Methods American urologists submit case logs for initial board certification and recertification. We analyzed logs from 2004 to 2010 for trends and used logistic regression to assess the impact of urologist age on robotic radical prostatectomy use. Results A total of 4,709 urologists submitted case logs for certification between 2004 and 2010. Of these logs 3,374 included 1 or more radical prostatectomy cases. Of the urologists 2,413 (72%) reported performing open radical prostatectomy only while 961 (28%) reported 1 or more robotic radical prostatectomies and 308 (9%) reported robotic radical prostatectomy only. During this 7-year period we observed a large increase in the number of urologists who performed robotic radical prostatectomy and a smaller corresponding decrease in those who performed open radical prostatectomy. Only 8% of patients were treated with robotic radical prostatectomy by urologists who were certified in 2004 while 67% underwent that procedure in 2010. Median age of urologists who exclusively performed open radical prostatectomy was 43 years (IQR 38–51) vs 41 (IQR 35–46) for those who performed only robotic radical prostatectomy. Conclusions While the rate was not as high as the greater than 85% industry estimate, 67% of radical prostatectomies were done robotically among urologists who underwent board certification or recertification in 2010. Total radical prostatectomy volume almost doubled during the study period. These data provide nonindustry based estimates of current radical prostatectomy practice patterns and further our understanding of the evolving surgical treatment of prostate cancer. PMID:22498227
Lowrance, William T; Eastham, James A; Savage, Caroline; Maschino, A C; Laudone, Vincent P; Dechet, Christopher B; Stephenson, Robert A; Scardino, Peter T; Sandhu, Jaspreet S
2012-06-01
We describe current trends in robotic and open radical prostatectomy in the United States after examining case logs for American Board of Urology certification. American urologists submit case logs for initial board certification and recertification. We analyzed logs from 2004 to 2010 for trends and used logistic regression to assess the impact of urologist age on robotic radical prostatectomy use. A total of 4,709 urologists submitted case logs for certification between 2004 and 2010. Of these logs 3,374 included 1 or more radical prostatectomy cases. Of the urologists 2,413 (72%) reported performing open radical prostatectomy only while 961 (28%) reported 1 or more robotic radical prostatectomies and 308 (9%) reported robotic radical prostatectomy only. During this 7-year period we observed a large increase in the number of urologists who performed robotic radical prostatectomy and a smaller corresponding decrease in those who performed open radical prostatectomy. Only 8% of patients were treated with robotic radical prostatectomy by urologists who were certified in 2004 while 67% underwent that procedure in 2010. Median age of urologists who exclusively performed open radical prostatectomy was 43 years (IQR 38-51) vs 41 (IQR 35-46) for those who performed only robotic radical prostatectomy. While the rate was not as high as the greater than 85% industry estimate, 67% of radical prostatectomies were done robotically among urologists who underwent board certification or recertification in 2010. Total radical prostatectomy volume almost doubled during the study period. These data provide nonindustry based estimates of current radical prostatectomy practice patterns and further our understanding of the evolving surgical treatment of prostate cancer. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Hirschhorn, Andrew D; Kolt, Gregory S; Brooks, Andrew J
2014-03-01
To assess the effect of a multicomponent theory-based intervention, incorporating patient information guides, an evidence summary, audit and feedback processes and a provider directory, in the provision/receipt of preoperative pelvic floor muscle training (PFMT) among patients undergoing radical prostatectomy. Over an 18-month period (9 months before and 9 months after the intervention), we measured the provision/receipt of preoperative PFMT using surveys of patients undergoing radical prostatectomy at one public hospital (n = 32) and two private hospitals (n = 107) in Western Sydney, Australia, as well as practice audits of associated public sector (n = 4) and private sector (n = 2) providers of PFMT. Self-report urinary incontinence was assessed 3 months after radical prostatectomy using the International Consultation on Incontinence Questionnaire - Urinary Incontinence Form (ICIQ-UI Short Form). There was a significant increase in the proportion of survey respondents receiving preoperative PFMT post-intervention (post-intervention: 42/58 respondents, 72% vs pre-intervention: 37/81 respondents, 46%, P = 0.002). There was a corresponding significant increase in provision of preoperative PFMT by private sector providers (mean [sd] post-intervention: 16.7 [3.7] patients/month vs pre-intervention: 12.1 [3.6] patients/month, P = 0.018). Respondents receiving preoperative PFMT had significantly better self-report urinary incontinence at 3 months after radical prostatectomy than those who did not receive preoperative PFMT (mean [sd] ICIQ-UI Short Form sum-scores: 6.2 [5.0] vs 9.2 [5.8], P = 0.002). The intervention increased the provision/receipt of preoperative PFMT among patients undergoing radical prostatectomy. Additional component strategies aimed at increasing the use of public sector providers may be necessary to further improve PFMT receipt among patients undergoing radical prostatectomy in the public hospital system. © 2013 The Authors. BJU International published by John Wiley & Sons Ltd on behalf of BJU International.
The Free Radical Theory of Aging Revisited: The Cell Signaling Disruption Theory of Aging
Borras, Consuelo; Abdelaziz, Kheira M.; Garcia-Valles, Rebeca; Gomez-Cabrera, Mari Carmen
2013-01-01
Abstract Significance: The free radical theory of aging has provided a theoretical framework for an enormous amount of work leading to significant advances in our understanding of aging. Up to the turn of the century, the theory received abundant support from observations coming from fields as far apart as comparative physiology or molecular biology. Recent Advances: Work from many laboratories supports the theory, for instance showing that overexpression of antioxidant enzymes results in increases in life-span. But other labs have shown that in some cases, there is an increased oxidative stress and increased longevity. The discovery that free radicals can not only cause molecular damage to cells, but also serve as signals; led to the proposal that they act as modulators of physiological processes. For instance, reactive oxygen species (ROS) stimulate physiological adaptations to physical exercise. Critical Issues: A critical blow to the free radical theory of aging came from epidemiological studies showing that antioxidant supplementation did not lower the incidence of many age-associated diseases but, in some cases, increased the risk of death. Moreover, recent molecular evidence has shown that increasing generation of ROS, in some cases, increases longevity. Future Directions: Gerontologists interested in free radical biology are at a crossroads and clearly new insights are required to clarify the role of ROS in the process of aging. The hurdles are, no doubt, very high, but the intellectual and practical promise of these studies is of such magnitude that we feel that all efforts will be generously rewarding. Antioxid. Redox Signal. 19, 779–787. PMID:23841595
Does robotic assistance confer an economic benefit during laparoscopic radical nephrectomy?
Yang, David Y; Monn, M Francesca; Bahler, Clinton D; Sundaram, Chandru P
2014-09-01
While robotic assisted radical nephrectomy is safe with outcomes and complication rates comparable to those of the pure laparoscopic approach, there is little evidence of an economic or clinical benefit. From the 2009 to 2011 Nationwide Inpatient Sample database we identified patients 18 years old or older who underwent radical nephrectomy for primary renal malignancy. Robotic assisted and laparoscopic techniques were noted. Patients treated with the open technique and those with evidence of metastatic disease were excluded from analysis. Descriptive statistics were performed using the chi-square and Mann-Whitney tests, and the Student t-test. Multiple linear regression was done to examine factors associated with increased hospital costs and charges. We identified 24,312 radical nephrectomy cases for study inclusion, of which 7,787 (32%) were performed robotically. There was no demographic difference between robotic assisted and pure laparoscopic radical nephrectomy cases. Median total charges were $47,036 vs $38,068 for robotic assisted vs laparoscopic surgery (p <0.001). Median total hospital costs for robotic assisted surgery were $15,149 compared to $11,735 for laparoscopic surgery (p <0.001). There was no difference in perioperative complications or the incidence of death. Compared to the laparoscopic approach robotic assistance conferred an estimated $4,565 and $11,267 increase in hospital costs and charges, respectively, when adjusted for adapted Charlson comorbidity index score, perioperative complications and length of stay (p <0.001). Robotic assisted radical nephrectomy results in increased medical expense without improving patient morbidity. Assuming surgeon proficiency with pure laparoscopy, robotic technology should be reserved primarily for complex surgeries requiring reconstruction. Traditional laparoscopic techniques should continue to be used for routine radical nephrectomy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo
2014-02-18
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively.
Nguyen, Thi Phuong; Zhang, Jie; Li, Hong; Wu, Xinchun; Cheng, Yahua
2017-01-01
This study investigates the effects of teaching semantic radicals in inferring the meanings of unfamiliar characters among nonnative Chinese speakers. A total of 54 undergraduates majoring in Chinese Language from a university in Hanoi, Vietnam, who had 1 year of learning experience in Chinese were assigned to two experimental groups that received instructional intervention, called “old-for-new” semantic radical teaching, through two counterbalanced sets of semantic radicals, with one control group. All of the students completed pre- and post-tests of a sentence cloze task where they were required to choose an appropriate character that fit the sentence context among four options. The four options shared the same phonetic radicals but had different semantic radicals. The results showed that the pre-test and post-test score increases were significant for the experimental groups, but not for the control group. Most importantly, the experimental groups successfully transferred the semantic radical strategy to figure out the meanings of unfamiliar characters containing semantic radicals that had not been taught. The results demonstrate the effectiveness of teaching semantic radicals for lexical inference in sentence reading for nonnative speakers, and highlight the ability of transfer learning to acquire semantic categories of sub-lexical units (semantic radicals) in Chinese characters among foreign language learners. PMID:29109694
A Model of Rapid Radicalization Behavior Using Agent-Based Modeling and Quorum Sensing
NASA Technical Reports Server (NTRS)
Schwartz, Noah; Drucker, Nick; Campbell, Kenyth
2012-01-01
Understanding the dynamics of radicalization, especially rapid radicalization, has become increasingly important to US policy in the past several years. Traditionally, radicalization is considered a slow process, but recent social and political events demonstrate that the process can occur quickly. Examining this rapid process, in real time, is impossible. However, recreating an event using modeling and simulation (M&S) allows researchers to study some of the complex dynamics associated with rapid radicalization. We propose to adapt the biological mechanism of quorum sensing as a tool to explore, or possibly explain, rapid radicalization. Due to the complex nature of quorum sensing, M&S allows us to examine events that we could not otherwise examine in real time. For this study, we employ Agent Based Modeling (ABM), an M&S paradigm suited to modeling group behavior. The result of this study was the successful creation of rapid radicalization using quorum sensing. The Battle of Mogadishu was the inspiration for this model and provided the testing conditions used to explore quorum sensing and the ideas behind rapid radicalization. The final product has wider applicability however, using quorum sensing as a possible tool for examining other catalytic rapid radicalization events.
Electrochemical properties of new organic radical materials for lithium secondary batteries
NASA Astrophysics Data System (ADS)
Lee, Seo Hwan; Kim, Jae-Kwang; Cheruvally, Gouri; Choi, Jae-Won; Ahn, Jou-Hyeon; Chauhan, Ghanshyam S.; Song, Choong Eui
The use of ionic liquid (IL)-supported organic radicals as cathode-active materials in lithium secondary batteries is reported in this article. Two different types of IL-supported organic radicals based on the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical and imidazolium hexafluorophosphate IL were synthesized. The first type is a mono-radical with one unit of TEMPO and the second is a symmetrical di-radical with 2 U of TEMPO; both are viscous liquids at 25 °C. The radicals exhibit electrochemical activity at ∼3.5 V versus Li/Li + as revealed in the cyclic voltammetry tests. The organic radical batteries (ORBs) with these materials as the cathode, a lithium metal anode and 1 M LiPF 6 in EC/DMC electrolyte exhibited good performance at room temperature during the charge-discharge and cycling tests. The batteries exhibited specific capacities of 59 and 80 mAh g -1 at 1 C-rate with the mono- and di-radicals as the cathodes, respectively, resulting in 100% utilization of the materials. The performance degradation with increasing C-rate is very minimal for the ORBs, thus demonstrating good rate capability.
High-field/ high-frequency EPR study on stable free radicals formed in sucrose by gamma-irradiation.
Georgieva, Elka R; Pardi, Luca; Jeschke, Gunnar; Gatteschi, Dante; Sorace, Lorenzo; Yordanov, Nicola D
2006-06-01
The EPR spectrum of sucrose irradiated by high-energy radiation is complex due to the presence of more than one radical species. In order to decompose the spectrum and elucidate the radical magnetic parameters a high-field (HF(-)EPR) study on stable free radicals in gamma-irradiated polycrystalline sucrose (table sugar) was performed at three different high frequencies--94, 190 and 285 GHz as well as at the conventional X-band. We suggest a presence of three stable radicals R1, R2 and R3 as the main radical species. Due to the increase of g-factor resolution at high fields the g-tensors of these radicals could be extracted by accurate simulations. The moderate g-anisotropy suggests that all three radicals are carbon-centred. Results from an earlier ENDOR study on X-irradiated sucrose single crystals (Vanhaelewyn et al., Appl Radiat Isot, 52, 1221 (2000)) were used for analyzing of the spectra in more details. It was confirmed that the strongest hyperfine interaction has a relatively small anisotropy, which indicates either the absence of alpha-protons or a strongly distorted geometry of the radicals.
Analysis of Potential Radical Chemistry on Kuiper Belt Objects
NASA Astrophysics Data System (ADS)
Yanez, Maya Danielle; Hodyss, Robert; Cable, Morgan; Johnson, Paul
2017-10-01
Kuiper Belt Objects (KBOs) are of high interest following the New Horizons encounter with the Pluto system and the extended mission to 2014MU69. We aimed to clarify questions raised concerning the possible presence of organic radicals formed from photolysis on the surface of KBOs and other Trans-Neptunian Objects, and obtain laboratory spectra of these radicals for comparison to remote sensing data. We explored the photochemical generation of methyl radical from matrix-isolated CH3I in an attempt to create sufficient amounts of the methyl radical to obtain spectra in the near infrared. Both Ar and N2 matrices were studied, as well as varying guest:matrix ratios. Hydrogen lamp irradiation was found to be more effective than mercury lamp irradiation. The irradiation time was a significant factor when we switched matrices: methyl radical depleted rapidly in the N2 matrix with prolonged irradiation (~10 hours) whereas it survived for over 48 hours in some experiments with the Ar matrix. Reaction of the methyl radical with the N2 matrix to form HCN was observed. Future experiments will focus on alternate methods of radical generation in order to increase the yield of trapped radical.
NASA Technical Reports Server (NTRS)
Dubinskiy, Mark A.; Kamal, Mohammed M.; Misra, Prabhaker
1995-01-01
The availability of manned laboratory facilities in space offers wonderful opportunities and challenges in microgravity combustion science and technology. In turn, the fundamentals of microgravity combustion science can be studied via spectroscopic characterization of free radicals generated in flames. The laser-induced fluorescence (LIF) technique is a noninvasive method of considerable utility in combustion physics and chemistry suitable for monitoring not only specific species and their kinetics, but it is also important for imaging of flames. This makes LIF one of the most important tools for microgravity combustion science. Flame characterization under microgravity conditions using LIF is expected to be more informative than other methods aimed at searching for effects like pumping phenomenon that can be modeled via ground level experiments. A primary goal of our work consisted in working out an innovative approach to devising an LIF-based analytical unit suitable for in-space flame characterization. It was decided to follow two approaches in tandem: (1) use the existing laboratory (non-portable) equipment and determine the optimal set of parameters for flames that can be used as analytical criteria for flame characterization under microgravity conditions; and (2) use state-of-the-art developments in laser technology and concentrate some effort in devising a layout for the portable analytical equipment. This paper presents an up-to-date summary of the results of our experiments aimed at the creation of the portable device for combustion studies in a microgravity environment, which is based on a portable UV tunable solid-state laser for excitation of free radicals normally present in flames in detectable amounts. A systematic approach has allowed us to make a convenient choice of species under investigation, as well as the proper tunable laser system, and also enabled us to carry out LIF experiments on free radicals using a solid-state laser tunable in the UV.
Jing, Linhong; Nash, John J.
2009-01-01
The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320
Baghaiee, Behrouz; Aliparasti, Mohammad Reza; Almasi, Shohreh; Siahkuhian, Marefat; Baradaran, Behzad
2016-06-01
Energy production is a necessary process to continue physical activities, and exercise is associated with more oxygen consumption and increase of oxidative stress. what seems important is the numerical relationship between antioxidant and free radicals. Although the activity of some enzymes increases with physical activities, but it is possible that gene expression of this enzyme is not changed during exercise. The aim of the present study is to investigate the antioxidant enzymes gene expression and changes in malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in men and women affected by a session of incremental exercise and to carefully and numerically assess the relationship between MDA changes and gene expression and activity of antioxidant enzymes. 12 active men and 12 active women (21 - 24 years old) participated voluntarily in this study. Peripheral blood samples were taken from the subjects in three phases, before and after graduated exercise test (GXT) and 3 hours later (recovery). The gene expression of manganese superoxide dismutase (MnSOD) enzyme increased significantly in women in the recovery phase (P < 0.05). Catalase gene expression significantly increased in men in both phases (immediately & recovery) (P < 0.05). But the changes in active women were only significant immediately after the exercise. TAC levels increased significantly in men in the recovery phase and in active women immediately after the exercise (P < 0.05). MDA activity also increased significantly in men in both phases (P < 0.05). However, in women the increase was significant only in the recovery phase (P < 0.05). There was a reverse relationship between changes in MnSOD and copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) levels and MDA in men (P < 0.05). In active women there was also a significant relationship between changes in MDA and gene expression of Cu/ZnSOD and TAC (P < 0.05). The increase in free radicals during incremental exercises challenges gene expression and activity of antioxidant enzymes. However, despite the negative effects of free radicals, in women, activity and gene expression of antioxidant enzymes respond appropriately to free radicals.
Some Basic Determinants of Medical Care and Health Policy
Somers, Anne R.
1966-01-01
Long-term trends in our economy and social structure are radically affecting the supply and demand for health services. Population increases, both generally and in the over-65-years-of-age bracket, growing ratio of nonwhites to whites, increasing proportion of women, increasing urbanization, industrialization, educational levels and per capita income are only some of the major factors affecting the demand for health services. Major developments in the science, technology and organization of medical care are and will continue breaking traditional patterns in rendering such care, and definitely point in the direction of multidisciplinary and institutional makeup in the delivery of health services. Changes in the financing of medical care are bringing in a foray of public programs sponsored by all levels of the government, contributing to the unique American pluralistic health care economy with its “mix” of public and private activities. Questions, intended to point up some of the more far-reaching issues, are appended to each section of the paper. PMID:5971547
Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths
NASA Astrophysics Data System (ADS)
Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.
2015-06-01
Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.
Studying mechanism of radical reactions: From radiation to nitroxides as research tools
NASA Astrophysics Data System (ADS)
Maimon, Eric; Samuni, Uri; Goldstein, Sara
2018-02-01
Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.
Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.
He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin
2014-03-01
Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume
2017-03-29
In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.
YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen
2009-12-01
In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.
Wiltshire, Travis J.; Lobato, Emilio J. C.; McConnell, Daniel S.; Fiore, Stephen M.
2015-01-01
In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience. PMID:25709572
Star-shaped Polymers through Simple Wavelength-Selective Free-Radical Photopolymerization.
Eibel, Anna; Fast, David E; Sattelkow, Jürgen; Zalibera, Michal; Wang, Jieping; Huber, Alex; Müller, Georgina; Neshchadin, Dmytro; Dietliker, Kurt; Plank, Harald; Grützmacher, Hansjörg; Gescheidt, Georg
2017-11-06
Star-shaped polymers represent highly desired materials in nanotechnology and life sciences, including biomedical applications (e.g., diagnostic imaging, tissue engineering, and targeted drug delivery). Herein, we report a straightforward synthesis of wavelength-selective multifunctional photoinitiators (PIs) that contain a bisacylphosphane oxide (BAPO) group and an α-hydroxy ketone moiety within one molecule. By using three different wavelengths, these photoactive groups can be selectively addressed and activated, thereby allowing the synthesis of ABC-type miktoarm star polymers through a simple, highly selective, and robust free-radical polymerization method. The photochemistry of these new initiators and the feasibility of this concept were investigated in unprecedented detail by using various spectroscopic techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G
2005-04-28
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.
Identification of irradiated cashew nut by electron paramagnetic resonance spectroscopy.
Sanyal, Bhaskar; Sajilata, M G; Chatterjee, Suchandra; Singhal, Rekha S; Variyar, Prasad S; Kamat, M Y; Sharma, Arun
2008-10-08
Cashew nut samples were irradiated at gamma-radiation doses of 0.25, 0.5, 0.75, and 1 kGy, the permissible dose range for insect disinfestation of food commodities. A weak and short-lived triplet (g = 2.004 and hfcc = 30 G) along with an anisotropic signal (g perpendicular = 2.0069 and g parallel = 2.000) were produced immediately after irradiation. These signals were assigned to that of cellulose and CO 2 (-) radicals. However, the irradiated samples showed a dose-dependent increase of the central line (g = 2.0045 +/- 0.0002). The nature of the free radicals formed during conventional processing such as thermal treatment was investigated and showed an increase in intensity of the central line (g = 2.0045) similar to that of irradiation. Characteristics of the free radicals were studied by their relaxation and thermal behaviors. The present work explores the possibility to identify irradiated cashew nuts from nonirradiated ones by the thermal behaviors of the radicals beyond the period, when the characteristic electron paramagnetic resonance spectral lines of the cellulose free radicals have essentially disappeared. In addition, this study for the first time reports that relaxation behavior of the radicals could be a useful tool to distinguish between roasted and irradiated cashew nuts.
Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.
Stolze, K; Nohl, H
1991-01-01
The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.
Sullivan, Gregory
2011-01-01
In his anthology of socio-political essays, Evolution and Human Life, Oka Asajirō (1868-1944), early twentieth century Japan's foremost advocate of evolutionism, developed a biological vision of the nation-state as super-organism that reflected the concerns and aims of German-inspired Meiji statism and anticipated aspects of radical ultra-nationalism. Drawing on non-Darwinian doctrines, Oka attempted to realize such a fused or organic state by enhancing social instincts that would bind the minzoku (ethnic nation) and state into a single living entity. Though mobilization during the Russo-Japanese War seemed to evince this super-organism, the increasingly contentious and complex society that emerged in the war's aftermath caused Oka to turn first to Lamarckism and eventually to orthogenesis in the hopes of preserving the instincts needed for a viable nation-state. It is especially in the state interventionist measures that Oka finally came to endorse in order to forestall orthogenetically-driven degeneration that the technocratic proclivities of his statist orientation become most apparent. The article concludes by suggesting that Oka's emphasis on degeneration, autarkic expansion, and, most especially, totalitarian submersion of individuals into the statist collectivity indicates a complex relationship between his evolutionism and fascist ideology, what recent scholarship has dubbed radical Shinto ultra-nationalism.
Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH
Velayutham, Murugesan; Hemann, Craig; Zweier, Jay L.
2011-01-01
In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe3+cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H2O2) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe3+cyt c in the presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe3+cyt c, and H2O2 in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe3+cyt c increased with NADH and H2O2 concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe3+cyt c oxidizes NADH to NAD•, which in turn donates an electron to O2 resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe3+cyt c is reduced in the presence of both NADH and H2O2. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe3+cyt c may play a key role in the mitochondrial “ROS-induced ROS-release (RIRR)” signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage. PMID:21545835
ERIC Educational Resources Information Center
Çil, Emine; Çepni, Salih
2014-01-01
International examination results have already influenced many countries to make radical reforms in education system. According to these results countries have been categorized as high, middle and low achievement in education. Turkey has also taken these results into consideration quite seriously and started to investigate to what extent there are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.
Writing in a Foreign Language as a Science of Writing or "Grammatology"
ERIC Educational Resources Information Center
Escandón, Arturo
2014-01-01
The present paper explores the issue of writing in a foreign language as a pedagogic process that may produce a radical subjective transformation. Drawing on Bernstein's notions of the "pedagogic device" and "discursive gap," the paper explores the epistemic make-up of language and the way it has been normalised by academic and…
ERIC Educational Resources Information Center
Watras, Joseph
2004-01-01
In January 1929, the American Historical Association (AHA) nominated a group of eminent scholars and famous educators to form a Commission on the Social Studies. This article shows that instead of proposing radical or misconceived ideas about the social sciences and the role of schooling in facilitating social change, the commission members…
ERIC Educational Resources Information Center
Lyon, Liz
2016-01-01
This article presents a case study where students aspiring to professional library roles who need to understand diverse disciplinary research data practices are placed in a laboratory with domain researchers during an immersive module within graduate MLIS programs at the School of Information Sciences (iSchool), University of Pittsburgh. A…
ERIC Educational Resources Information Center
Otoide, Lorraine
2017-01-01
This article outlines a study of praxis. Inspired by my reading of Jacques Rancière's ("The ignorant schoolmaster: Five lessons in intellectual emancipation", trans. K. Ross, Stanford University Press, Stanford, 1991) influential text, "The Ignorant School Master", I explore the practical applications of his work for teaching…
Engineering 'Posthumans': To Be or Not to Be?
Karamanou, Marianna; Papaioannou, Theodore G; Soulis, Dimitrios; Tousoulis, Dimitrios
2017-08-01
Emerging technological innovations have transformed some science fiction ideas into reality, promising radical changes in human nature. New philosophical and intellectual movements such as 'transhumanism' and 'posthumanism' try to foretell and even direct the future of our existence while dealing with new and complex ethical, social, political issues and dilemmas. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ivancheva, Mariya
2013-01-01
This article discusses paradoxes in the emergent global field of higher education as reflected in an alternative model of the university--the Bolivarian University of Venezuela (UBV) and the related higher education policy, Mision Sucre. With its credo in the applied social sciences, its commitment to popular pedagogy and its dependence on…
Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation
NASA Astrophysics Data System (ADS)
Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela
2015-12-01
Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.
Cultural crossings of care: An appeal to the medical humanities
Kristeva, Julia; Moro, Marie Rose; Ødemark, John; Engebretsen, Eivind
2018-01-01
Modern medicine is confronted with cultural crossings in various forms. In facing these challenges, it is not enough to simply increase our insight into the cultural dimensions of health and well-being. We must, more radically, question the conventional distinction between the ‘objectivity of science’ and the ‘subjectivity of culture’. This obligation creates an urgent call for the medical humanities but also for a fundamental rethinking of their grounding assumptions. Julia Kristeva (JK) has problematised the biomedical concept of health through her reading of the anthropogony of Cura (Care), who according to the Roman myth created man out of a piece of clay. JK uses this fable as an allegory for the cultural distinction between health construed as a ‘definitive state’, which belongs to biological life (bios), and healing as a durative ‘process with twists and turns in time’ that characterises human living (zoe). A consequence of this demarcation is that biomedicine is in constant need of ‘repairing’ and bridging the gap between bios and zoe, nature and culture. Even in radical versions, the medical humanities are mostly reduced to such an instrument of repairment, seeing them as what we refer to as a soft, ‘subjective’ and cultural supplement to a stable body of ‘objective’, biomedical and scientific knowledge. In this article, we present a prolegomenon to a more radical programme for the medical humanities, which calls the conventional distinctions between the humanities and the natural sciences into question, acknowledges the pathological and healing powers of culture, and sees the body as a complex biocultural fact. A key element in such a project is the rethinking of the concept of ‘evidence’ in healthcare. PMID:28935631
Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia.
Hasegawa, K; Yoshioka, H; Sawada, T; Nishikawa, H
1991-01-01
To elucidate the role of free radicals in the pathogenesis of neonatal hypoxic encephalopathy, we determined the content of thiobarbituric acid reactants (TBARs), as an index of lipid peroxidation related with a free radical reaction, in the brains of newborn mice during hypoxia and recovery from hypoxia. Hypoxic stress was induced by 100% nitrogen gas breathing (N2 group) or 100% carbon dioxide gas breathing (CO2 group). TBARs increased with 20 minutes of hypoxia and returned to the control level during the recovery period in both groups. The increase in TBARs in the CO2 group was greater than that in the N2 group. These results may suggest that free radical reaction occurs during the hypoxic period and that CO2 hypoxia is more effective on free radical production in the newborn brain than N2 hypoxia.
Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa
2011-11-01
Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode.
Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu
2011-01-14
Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.
Stanjek-Cichoracka, A; Żegleń, S; Ramos, P; Pilawa, B; Wojarski, J
2018-06-01
The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition. © 2018 John Wiley & Sons Ltd.
2015-01-01
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381
Products of BVOC oxidation: ozone and organic aerosols
NASA Astrophysics Data System (ADS)
Wildt, Jürgen; Andres, Stefanie; Carriero, Giulia; Ehn, Mikael; Fares, Silvano; Hoffmann, Thorsten; Hacker, Lina; Kiendler-Scharr, Astrid; Kleist, Einhard; Paoletti, Elena; Pullinen, Iida; Rohrer, Franz; Rudich, Yinon; Springer, Monika; Tillmann, Ralf; Wahner, Andreas; Wu, Cheng; Mentel, Thomas
2015-04-01
Biogenic Volatile Organic Compounds (BVOC) are important precursors in photochemical O3 and secondary organic aerosol (SOA) formation. We conducted a series of laboratory experiments with OH-induced oxidation of monoterpenes to elucidate pathways and efficiencies of O3 and SOA formation. At high NOx conditions ([BVOC] / [NOx] < 7 ppbC / ppb) photochemical ozone formation was observed. For -pinene as individual BVOC as well as for the monoterpene mixes emitted from different plant species we observed increasing ozone formation with increasing [NOX]. Between 2 and 3 O3-molecules were formed from 1 monoterpene when ozone formation was BVOC limited. Under such high NOX conditions, new particle formation was suppressed. Increasing [BVOC] / [NOX] ratios caused increasing efficiency of new particle formation indicating that peroxy radicals are the key intermediates in both, photochemical ozone- and new particle formation. The classical chemistry of peroxy radicals is well established (e.g. Master Chemical Mechanism). Peroxy radicals are produced by addition of molecular oxygen to the alkyl radical formed after OH attack at the BVOC. They either react with NO which leads to ozone formation or they react with other peroxy radicals and form chemically stable products (hydroperoxides, alkoholes and ketones). Much less knowledge exists on such reactions for Highly Oxidized Peroxy Radicals, (HOPR). Such HOPR were observed during ozonolysis of several volatiles and, in case of monoterpenes as precursors, they can contain more than 12 Oxygen atoms (Mentel et al., 2015). Although the OH-initiated formation of HOPR is yet not fully understood, their basic gas phase reactions seem to follow classical photochemical rules. In reactions with NO they can act as precursor for O3 and in reactions with other HOPR or with classical less oxidized peroxy radicals they can form highly oxidized stable products and alkoxy radicals. In addition, HOPR-HOPR reactions lead to the formation of dimers that, in case of monoterpenes as reactants, consist of a skeleton with 20 carbon atoms. These dimers seem to play a major role in new particle formation and their existence may explain the observations of Wildt et al. (2014) who found power law dependence with an exponent approaching -2 between new particle formation and ozone formation. The monomer products of HOPR-HOPR reactions play a dominant role in SOA mass formation because their vapour pressures are low enough to allow condensation on pre-existing particulate matter (Ehn et al., 2014). Furthermore, the minor impacts of NOX on particle mass formation (Wildt et al., 2014) are explainable by similar yields of alkoxy radicals in HOPR-HOPR and HOPR-NO reactions, respectively.
Slezák, J; Kura, B; Frimmel, K; Zálešák, M; Ravingerová, T; Viczenczová, C; Okruhlicová, Ľ; Tribulová, N
2016-09-19
Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H(2)) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H(2) rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H(2) reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H(2) may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention.
[Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].
Wang, Tian-jiao; Chen, Tong; Zhan, Ming-xiu; Guo, Ying; Li, Xiao-dong
2016-03-15
Environmentally persistent free radicals (EPFRs) are relatively highly stable and found in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Recent studies have concentrated on model dioxin formation reactions and there are few studies on actual waste incineration fly ash. In order to study EPFRs and the correlation with dioxins and heavy metals in waste incineration fly ash, the spins of EPFRs, concentration of PCDD/Fs and metals in samples from 6 different waste incinerators were detected. The medical waste incineration fly ash from Tianjin, municipal solid waste incineration fly ash from Jiangxi Province, black carbon and slag from municipal solid waste incinerator in Lanxi, Zhejiang Province, all contained EPFRs. Above all the signal in Tianjin sample was the strongest. Hydroxyl radicals, carbon-center radicals and semiquinone radicals were detected. Compared with other samples, Jiangxi fly ash had the highest toxic equivalent quantity (TEQ) of dioxins, up to 7.229 4 ng · g⁻¹. However, the dioxin concentration in the Tianjin sample containing the strongest EPFR signals was only 0.092 8 ng · g⁻¹. There was perhaps little direct numeric link between EPFRs and PCDD/Fs. But the spins of EPFRs in samples presented an increasing trend as the metal contents increased, especially with Al, Fe, Zn. The signal strength of radicals was purposed to be related to the metal contents. The concentration of Zn (0.813 7% ) in the Tianjin sample was the highest and this sample contained much more spins of oxygen-center radicals. We could presume the metal Zn had a greater effect on the formation of EPFRs, and was easier to induce the formation of radicals with a longer half-life period.
Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.
Halgamuge, Malka N
2013-08-01
Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.
OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet
NASA Astrophysics Data System (ADS)
N, C. ROY; M, R. TALUKDER; A, N. CHOWDHURY
2017-12-01
Atmospheric pressure air/Ar/H2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic (OES) diagnostic technique is used for the characterization of plasmas and for identifications of {{OH}} and {{O}} radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation T x ≈ 5550-9000 K, rotational T r ≈ 1350-2700 K and gas T g ≈ 850-1600 K temperatures, and electron density {n}{{e}}≈ ({1.1-1.9})× {10}14 {{{cm}}}-3 under different experimental conditions. The production and destruction of {{OH}} and {{O}} radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of {{OH}} and {{O}} radicals indicate that their production rates are increased with increasing {{Ar}} content in the gas mixture and applied voltage. {n}{{e}} reveals that the higher densities of {{OH}} and {{O}} radicals are produced in the discharge due to more effective electron impact dissociation of {{{H}}}2{{O}} and {{{O}}}2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced {n}{{e}}. The productions of {{OH}} and {{O}} are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, {T}{{g}} significantly reduces with the enhanced air flow rate. This investigation reveals that {{Ar}} plays a significant role in the production of {{OH}} and {{O}} radicals.
Northern Command: A Relevant and Necessary Partner to Increase Security in Mexico
2010-10-27
month.19 Drug cartels leverage low pay and offer “ plato o plomo” or “silver or lead” which forces policemen to choose between taking a bribe or a...Scott Stewart, Hezbollah, Radical but Rational , Stratfor Security Weekly, (12 August 2010), http://www.stratfor.com/weekly...34Hezbollah, Radical but Rational ." Stratfor.com. August 12, 2010. http://www.stratfor.com/weekly/20100811_hezbollah_radical_rational (accessed 28
van Est, Rinie; Stemerding, Dirk
2013-01-01
The life sciences present a politically and ethically sensitive area of technology development. NBIC convergence-the convergence of nanotechnology, biotechnology, and information and cognitive technology-presents an increased interaction between the biological and physical sciences. As a result the bio-debate is no longer dominated by biotechnology, but driven by NBIC convergence. NBIC convergence enables two bioengineering megatrends: "biology becoming technology" and "technology becoming biology." The notion of living technologies captures the latter megatrend. Accordingly, living technology presents a politically and ethically sensitive area. This implies that governments sooner or later are faced with the challenge of both promoting and regulating the development of living technology. This article describes four current political models to deal with innovation promotion and risk regulation. Based on two specific developments in the field of living technologies-(psycho)physiological computing and synthetic biology-we reflect on appropriate governance strategies for living technologies. We conclude that recent pleas for anticipatory and deliberative governance tend to neglect the need for anticipatory regulation as a key factor in guiding the development of the life sciences from a societal perspective. In particular, when it is expected that a certain living technology will radically challenge current regulatory systems, one should opt for just such a more active biopolitical approach.
Involvement of free radicals in breast cancer.
Ríos-Arrabal, Sandra; Artacho-Cordón, Francisco; León, Josefa; Román-Marinetto, Elisa; Del Mar Salinas-Asensio, María; Calvente, Irene; Núñez, Maria Isabel
2013-08-27
Researchers have recently shown an increased interest in free radicals and their role in the tumor microenvironment. Free radicals are molecules with high instability and reactivity due to the presence of an odd number of electrons in the outermost orbit of their atoms. Free radicals include reactive oxygen and nitrogen species, which are key players in the initiation and progression of tumor cells and enhance their metastatic potential. In fact, they are now considered a hallmark of cancer. However, both reactive species may contribute to improve the outcomes of radiotherapy in cancer patients. Besides, high levels of reactive oxygen species may be indicators of genotoxic damage in non-irradiated normal tissues. The purpose of this article is to review recent research on free radicals and carcinogenesis in order to understand the pathways that contribute to tumor malignancy. This review outlines the involvement of free radicals in relevant cellular events, including their effects on genetic instability through (growth factors and tumor suppressor genes, their enhancement of mitogenic signals, and their participation in cell remodeling, proliferation, senescence, apoptosis, and autophagy processes; the possible relationship between free radicals and inflammation is also explored. This knowledge is crucial for evaluating the relevance of free radicals as therapeutic targets in cancer.
Free Radical Scavenging Activity of Drops and Spray Containing Propolis-An EPR Examination.
Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Ramos, Pawel; Mencner, Lukasz; Olczyk, Krystyna; Pilawa, Barbara
2017-01-13
The influence of heating at a temperature of 50 °C and UV-irradiation of propolis drops and spray on their free radical scavenging activity was determined. The kinetics of interactions of the propolis samples with DPPH free radicals was analyzed. Interactions of propolis drops and propolis spray with free radicals were examined by electron paramagnetic resonance spectroscopy. A spectrometer generating microwaves of 9.3 GHz frequency was used. The EPR spectra of the model DPPH free radicals were compared with the EPR spectra of DPPH in contact with the tested propolis samples. The antioxidative activity of propolis drops and propolis spray decreased after heating at the temperature of 50 °C. A UV-irradiated sample of propolis drops more weakly scavenged free radicals than an untreated sample. The antioxidative activity of propolis spray increased after UV-irradiation. The sample of propolis drops heated at the temperature of 50 °C quenched free radicals faster than the unheated sample. UV-irradiation weakly changed the kinetics of propolis drops or spray interactions with free radicals. EPR analysis indicated that propolis drops and spray should not be stored at a temperature of 50 °C. Propolis drops should not be exposed to UV-irradiation.
Behavioural strategies to reduce HIV transmission: how to make them work better
Coates, Thomas J; Richter, Linda; Caceres, Carlos
2009-01-01
This paper makes five key points. First is that the aggregate effect of radical and sustained behavioural changes in a sufficient number of individuals potentially at risk is needed for successful reductions in HIV transmission. Second, combination prevention is essential since HIV prevention is neither simple nor simplistic. Reductions in HIV transmission need widespread and sustained efforts, and a mix of communication channels to disseminate messages to motivate people to engage in a range of options to reduce risk. Third, prevention programmes can do better. The effect of behavioural strategies could be increased by aiming for many goals (eg, delay in onset of first intercourse, reduction in number of sexual partners, increases in condom use, etc) that are achieved by use of multilevel approaches (eg, couples, families, social and sexual networks, institutions, and entire communities) with populations both uninfected and infected with HIV. Fourth, prevention science can do better. Interventions derived from behavioural science have a role in overall HIV-prevention efforts, but they are insufficient when used by themselves to produce substantial and lasting reductions in HIV transmission between individuals or in entire communities. Fifth, we need to get the simple things right. The fundamentals of HIV prevention need to be agreed upon, funded, implemented, measured, and achieved. That, presently, is not the case. PMID:18687459
The Infrared Spectrograph on the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Roellig, Thomas L.
2017-01-01
The Infrared Spectrograph (IRS) instrument on the Spitzer Space Telescope covered the 5 to 38 micron wavelength range at low and medium spectral resolutions. The instrument was very popular during Spitzers 5.7 year-long cold mission. Every year it attracted the most proposals, and garnered more observing hours, of any of the science instruments. This success was the culmination of a very long development period, where the instrument design changed radically. When the instrument was first selected by NASA in 1984 it was very complicated. As part of the overall reduction of the size of the SIRTF Observatory following its recovery from the missions cancellation in 1991 the IRS became smaller and much, much simpler. The only aspect of the instrument that increased from the original design was the pixel count of the detectors.
NASA Astrophysics Data System (ADS)
Ptak, Krzysztof; Farrell, Dorothy; Hinkal, George; Panaro, Nicholas J.; Hook, Sara; Grodzinski, Piotr
2011-06-01
Nanotechnology - the science and engineering of manipulating matter at the molecular scale to create devices with novel chemical, physical and biological properties - has the potential to radically change oncology. Research sponsored by the NCI Alliance for Nanotechnology in Cancer has led to the development of nanomaterials as platforms of increasing complexity and devices of superior sensitivity, speed and multiplexing capability. Input from clinicians has guided researchers in the design of technologies to address specific needs in the areas of cancer therapy and therapeutic monitoring, in vivo imaging, and in vitro diagnostics. The promising output from the Alliance has led to many new companies being founded to commercialize their nanomedical product line. Furthermore, several of these technologies, which are discussed in this paper, have advanced to clinically testing.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2013-06-01
In much of science education research, the content of talk tends to be attributed to the persons who produce the sound-words in a speech situation. A radically different, sociological perspective on language-in-use grounded in Marxism derives from the work of L. S. Vygotsky and the members of the circle around M. M. Bakhtin. Accordingly, each word belongs to speaker and recipient simultaneously. It represents collective consciousness and, therefore, shared ideology, which can no longer be attributed to the individual. The purpose of this study is to develop a sociological perspective on language in science education, a perspective in which language continuously changes. I articulate this position in the context of classroom and interview talk with 14-year-old Swiss non-academically streamed lower secondary students about technology and science. In this context, science classrooms and interviews are shown to be microcosms of Swiss (German) culture and society reproduced in and through the situated talk about science and technology.
Yuh, Bertram; Wilson, Timothy; Bochner, Bernie; Chan, Kevin; Palou, Joan; Stenzl, Arnulf; Montorsi, Francesco; Thalmann, George; Guru, Khurshid; Catto, James W F; Wiklund, Peter N; Novara, Giacomo
2015-03-01
Although open radical cystectomy (ORC) is still the standard approach, laparoscopic radical cystectomy (LRC) and robot-assisted radical cystectomy (RARC) are increasingly performed. To report on a systematic literature review and cumulative analysis of pathologic, oncologic, and functional outcomes of RARC in comparison with ORC and LRC. Medline, Scopus, and Web of Science databases were searched using a free-text protocol including the terms robot-assisted radical cystectomy or da Vinci radical cystectomy or robot* radical cystectomy. RARC case series and studies comparing RARC with either ORC or LRC were collected. A cumulative analysis was conducted. The searches retrieved 105 papers, 87 of which reported on pathologic, oncologic, or functional outcomes. Most series were retrospective and had small case numbers, short follow-up, and potential patient selection bias. The lymph node yield during lymph node dissection was 19 (range: 3-55), with half of the series following an extended template (yield range: 11-55). The lymph node-positive rate was 22%. The performance of lymphadenectomy was correlated with surgeon and institutional volume. Cumulative analyses showed no significant difference in lymph node yield between RARC and ORC. Positive surgical margin (PSM) rates were 5.6% (1-1.5% in pT2 disease and 0-25% in pT3 and higher disease). PSM rates did not appear to decrease with sequential case numbers. Cumulative analyses showed no significant difference in rates of surgical margins between RARC and ORC or RARC and LRC. Neoadjuvant chemotherapy use ranged from 0% to 31%, with adjuvant chemotherapy used in 4-29% of patients. Only six series reported a mean follow-up of >36 mo. Three-year disease-free survival (DFS), cancer-specific survival (CSS), and overall survival (OS) rates were 67-76%, 68-83%, and 61-80%, respectively. The 5-yr DFS, CSS, and OS rates were 53-74%, 66-80%, and 39-66%, respectively. Similar to ORC, disease of higher pathologic stage or evidence of lymph node involvement was associated with worse survival. Very limited data were available with respect to functional outcomes. The 12-mo continence rates with continent diversion were 83-100% in men for daytime continence and 66-76% for nighttime continence. In one series, potency was recovered in 63% of patients who were evaluable at 12 mo. Oncologic and functional data from RARC remain immature, and longer-term prospective studies are needed. Cumulative analyses demonstrated that lymph node yields and PSM rates were similar between RARC and ORC. Conclusive long-term survival outcomes for RARC were limited, although oncologic outcomes up to 5 yr were similar to those reported for ORC. Although open radical cystectomy (RC) is still regarded as the standard treatment for muscle-invasive bladder cancer, laparoscopic and robot-assisted RCs are becoming more popular. Templates of lymph node dissection, lymph node yields, and positive surgical margin rates are acceptable with robot-assisted RC. Although definitive comparisons with open RC with respect to oncologic or functional outcomes are lacking, early results appear comparable. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Shvydka, D; Karpov, V
Purpose: Hyperthermia, an established method of cancer treatment used in adjuvant to radiation and chemotherapy, can utilize metallic nanoparticles (NPs) for tumor heating with a microwave electromagnetic field. The high surface-area-to-volume ratio of nanoparticles makes them effective catalysts for free radical generation, thus amplifying the cell-killing effect of hyperthermia. We explore the effect of gold and platinum NPs in generating free radicals in aqueous media under a microwave field. Methods: Spin trap 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was mixed separately with 3.2 nm Mesogold and Mesoplatinum colloidal nanoparticle suspensions in deionized water to trap radicals. The mixtures were injected into a number ofmore » glass capillaries and exposed to the 9.68GHz microwave field of an electron paramagnetic resonance (EPR) spectrometer. The microwave radiation from the spectrometer served to both generate and detect the trapped radicals. Each sample was scanned at 12mW microwave power to obtain the initial signal of hydroxyl radicals (OH.), then at 39.8mW followed by 79.8 or 125mW, and finally re-scanned at 12mW. Radical signal intensities obtained by double integration of EPR spectra from the initial and the final scans were then compared. Results: Nanoparticle samples had no intentionally-added free radicals before the initial measurement. While samples with DMPO-water solution showed no OH. signal, all those with AuNPs or PtNPs developed an OH. signal during their first exposure to the microwave field. Depending upon the applied microwave power and time interval between the initial and the final EPR scans, an OH. intensity increase of ∼10-60% was found. This contradicts the typical trend of exponential decay of the OH. signal with time. Conclusion: The consistent increase in OH. intensity establishes that gold and platinum nanoparticles facilitate free radical generation under microwave irradiation. Our results suggest that NP-aided hyperthermia is accompanied by the generation of free radicals, which enhance the cell-killing effects of hyperthermia.« less
NASA Astrophysics Data System (ADS)
Leung, Kevin; Sai, Na; Zador, Judit; Henkelman, Graeme
2014-03-01
Photo-oxidation is one of the leading chemical degradation mechanisms in polymer solar cells. In this work, using hybrid density functional theory and periodic boundary condition, we investigate reaction pathways that may lead to the sulfur oxidation in poly(3-hexylthiophene)(P3HT) as a step toward breaking the macromolecule backbone. We calculate energy barriers for reactions of P3HT backbone with oxidizing radicals suggested by infrared spectroscopy (IR) and XPS studies. Our results strongly suggest that an attack of hydroxyl radical on sulfur as proposed in the literature is unlikely to be thermodynamically favored. On the other hand, a reaction between the alkylperoxyl radical and the polymer backbone may provide low barrier reaction pathways to photo-oxidation of conjugated polymers with side chains. Our work paves way for future studies using ab-initio calculations in a condensed phase setting to model complex chemical reactions relevant to photochemical stability of novel polymers. Supported by the Energy Frontier Research Center funded by the U.S. DOE Office of Basic Energy Sciences under Award #DE-SC0001091.
Walters, Lisa
2010-01-01
This article explores Margaret Cavendish's depictions of alchemy, witchcraft and fairy lore in her scientific treatise Philosophical Letters and in fictional texts from Natures Pictures and Poems and Fancies. Though Cavendish was a dedicated materialist, she appropriates theories of magic from early modern science and folklore into her materialist epistemology. As Cavendish draws upon a fusion of early modern conceptions of magic, she creates a radical theory of matter which not only challenges patriarchy and binary oppositions, but also explores the plurality and mystery that can exist within an infinitely complex material world.
The EXODUS of public health. What history can tell us about the future.
Fairchild, Amy L; Rosner, David; Colgrove, James; Bayer, Ronald; Fried, Linda P
2010-01-01
We trace the shifting definitions of the American public health profession's mission as a social reform and science-based endeavor. Its authority coalesced in the late nineteenth and early twentieth centuries as public health identified itself with housing, sanitation, and labor reform efforts. The field ceded that authority to medicine and other professions as it jettisoned its social mission in favor of a science-based identity. Understanding the potential for achieving progressive social change as it moves forward will require careful consideration of the industrial, structural, and intellectual forces that oppose radical reform and the identification of constituencies with which professionals can align to bring science to bear on the most pressing challenges of the day.
The EXODUS of Public Health What History Can Tell Us About the Future
Rosner, David; Colgrove, James; Bayer, Ronald; Fried, Linda P.
2010-01-01
We trace the shifting definitions of the American public health profession's mission as a social reform and science-based endeavor. Its authority coalesced in the late nineteenth and early twentieth centuries as public health identified itself with housing, sanitation, and labor reform efforts. The field ceded that authority to medicine and other professions as it jettisoned its social mission in favor of a science-based identity. Understanding the potential for achieving progressive social change as it moves forward will require careful consideration of the industrial, structural, and intellectual forces that oppose radical reform and the identification of constituencies with which professionals can align to bring science to bear on the most pressing challenges of the day. PMID:19965565
Abd-Elmaksoud, Sohair Abd-El Mawgood; El-Bassyouni, Hala; Afifi, Hanan; Thomas, Manal Micheal; Ibrahim, Alshaymaa Ahmed; Shalaby, Aliaa; Hamid, Tamer Ahmed Abdel; Hamid, Nehal Abdel; El-Ghobary, Hany
2015-11-01
Free radicals have been thought to participate in pathogenesis of peroxisomal disorders. The aim of the work is to detect free oxide radicals in blood of patients with peroxisomal disorders and to study their relation with various oxidative stress parameters. Twenty patients with peroxisomal disorders and 14 age and sex matched healthy subjects were included in the study. Patients with peroxisomal disorders were subdivided according to diagnosis into peroxisomal biogenesis disorders and single enzyme deficiency. Oxidative stress was evaluated in both patients and control subjects by assessment of free radicals, malondialdehyde, nitric oxide metabolites and superoxide dismutase. There was increase in free radicals, malondialdehyde, nitric oxide metabolites in patients compared with control subjects. However, there was decrease in superoxide dismutase levels in patients compared with control subjects. We concluded that there is excess free radicals production accompanied with decrease in antioxidant defenses in patients with peroxisomal disorders. These results strongly support a role of free radicals in the pathophysiology of peroxisomal disorders and strengthen the importance of oxidative stress phenomenon in peroxisomal disorders pathogenesis.
Radiolysis of lignin: Prospective mechanism of high-temperature decomposition
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.
2017-12-01
The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.
Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine.
Kopec, W; Wiliczkiewicz, A; Jamroz, D; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M
2016-01-01
The objective of this study was to investigate the effects of 1) spray dried blood cells rich in histidine and 2) pure histidine added to feed on the antioxidant status and concentration of carnosine related components in the blood and breast meat of female turkeys. The experiment was performed on 168 Big7 turkey females randomly assigned to 3 dietary treatments: control; control with the addition of 0.18% L-histidine (His); and control with the addition of spray dried blood cells (SDBC). Birds were raised for 103 d on a floor with sawdust litter, with drinking water and feed ad libitum. The antioxidant status of blood plasma and breast muscle was analyzed by ferric reducing ability (FRAP) and by 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging ability. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was analyzed in the blood and breast meat, with the content of carnosine and anserine quantified by HPLC. Proximate analysis as well as amino acid profiling were carried out for the feed and breast muscles. Growth performance parameters also were calculated. Histidine supplementation of the turkey diet resulted in increased DPPH radical scavenging capacity in the breast muscles and blood, but did not result in higher histidine dipeptide concentrations. The enzymatic antioxidant system of turkey blood was affected by the diet with SDBC. In the plasma, the SDBC addition increased both SOD and GPx activity, and decreased GPx activity in the erythrocytes. Feeding turkeys with an SDBC containing diet increased BW and the content of isoleucine and valine in breast muscles. © 2015 Poultry Science Association Inc.
Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H
2013-08-01
The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gołembiowska, Krystyna; Dziubina, Anna
2012-08-01
It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage mechanism in early PD.
The mechanism of tissue welding using a green laser: revisited
NASA Astrophysics Data System (ADS)
Richter, C.-P.; Bellam, R.; Hezarkhani, E.; Fiebig, T.
2017-02-01
A "green" laser (e.g. Nd:YAG, λ = 532 nm) together with the red dye Rose Bengal (RB) have been used for photochemical tissue bonding (PTB). It has been reported that irradiation of RB with light at 532 nm produces free radicals. For tissue bonding with a Nd:YAG laser it has been proposed that the free radicals than crosslink the tissue collagen and lead to the closing of the surgical incisions. RB is also a red solution and it is possible that RB absorbs the photons delivered from the laser and converts them into heat with a measurable local temperature increase. It is possible that the mechanism for PTB is not only caused by free radical formation but also by a temperature increase in the tissue. In the present study we measured the local tissue temperature with a micro thermometer during irradiation with a Nd:YAG laser before and after RB was applied. For the present laser settings "tissue painting" with RB lead to a temperature increase resulting in tissue coagulation and charring. PTB was also studied for RB with a free radical scavenger, vitamin C. No significant difference in bonding strength was found for RB alone and for RB together with a free radical scavenger. In case no RB was applied no tissue bonding occurred. Bonding strength was quantified using the leakage seal test
Jeynes, J C G; Merchant, M J; Spindler, A; Wera, A-C; Kirkby, K J
2014-11-07
Gold nanoparticles (GNPs) have been shown to sensitize cancer cells to x-ray radiation, particularly at kV energies where photoelectric interactions dominate and the high atomic number of gold makes a large difference to x-ray absorption. Protons have a high cross-section for gold at a large range of relevant clinical energies, and so potentially could be used with GNPs for increased therapeutic effect.Here, we investigate the contribution of secondary electron emission to cancer cell radiosensitization and investigate how this parameter is affected by proton energy and a free radical scavenger. We simulate the emission from a realistic cell phantom containing GNPs after traversal by protons and x-rays with different energies. We find that with a range of proton energies (1-250 MeV) there is a small increase in secondaries compared to a much larger increase with x-rays. Secondary electrons are known to produce toxic free radicals. Using a cancer cell line in vitro we find that a free radical scavenger has no protective effect on cells containing GNPs irradiated with 3 MeV protons, while it does protect against cells irradiated with x-rays. We conclude that GNP generated free radicals are a major cause of radiosensitization and that there is likely to be much less dose enhancement effect with clinical proton beams compared to x-rays.
Rahimi, Sajad; Ayati, Bita; Rezaee, Abbas
2016-06-01
Experimental findings of sonophotocatalytic process were used in degradation of hydroquinone to assess kinetic modeling and determine the effect of various active radical species. First, the effects of three photocatalytic, sonocatalytic, and sonophotocatalytic processes were studied for hydroquinone removal to determine kinetic constants and calculate the activation energy of reactions, and then the selected process was evaluated to determine active radical species. The reactor was composed of two parts, one included ultrasonic probe (sonocatalytic part) with powers 22, 80, and 176 W and the second part was the location of UV lamp (photocatalytic part) with tubular flow and power 15 W. After three systems were examined and the efficient system was selected, the role of different active species such as hydroxyl radical (OH(·)), superoxide radical (O2 (·-)), hole (h(+)), electrons (e (-)), and single oxygen molecule ((1)O2) and contribution of each of them were determined in hydroquinone degradation. According to tests, the results of this study showed that sonophotocatalytic integrated method as selected system among three systems studied followed the first-order equation for hydroquinone degradation and active hydroxyl species with 45 % and electron and hole with 15 and 10 %, respectively, had the highest and lowest contributions to conversion of hydroquinone. The findings showed that dissolved oxygen increases the capability of active radical formation so that 28.2 % of hydroquinone removal was increased under aeration compared to without aeration. Also, removal efficiency decreased 62 % with N2 injection due to the withdrawal of oxygen from the sample. By adding 25 Mm of sodium azide (NaN3) to stock solution, 46.5 % reduction was developed because single oxygen ((1)O2) played the role of an active species. The advantages of integrated sonocatalytic and photocatalytic method are the generation of active radical species with more variety and ultimately the formation of higher amounts of powerful hydroxyl radical that increases degradation rates of refractory compounds and low-risk internal and final products. It has an appropriate performance in the degradation of refractory compounds by optimizing effective operational factors.
p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations
Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning
2013-01-01
Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918
Ogata, Fumihiko; Tanaka, Yuko; Kawasaki, Naohito
2014-01-01
In this study, waste edible oil was prepared by both heat and aeration treatment, and the increasing inhibitive effect of tocopherol treatment on the acid value (AV) and carbonyl value (CV) of the oil was investigated. The AV and CV of waste edible oil treated with tocopherol were 0.1-1.0% lower than those of the nontreated oil, indicating that tocopherol exerted a radical-scavenging activity. The concentration of tocopherol decreased with time, while that of the remaining 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals increased. These results suggest that the addition of tocopherol proved to be useful for preventing the deterioration of waste edible oil.
Dikalova, Anna E.; Kadiiska, Maria B.; Mason, Ronald P.
2001-01-01
Electron spin resonance spectroscopy has been used to study free radical generation in rats with acute sodium formate poisoning. The in vivo spin-trapping technique was used with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN), which reacts with free radical metabolites to form radical adducts, which were detected in the bile and urine samples from Fischer rats. The use of [13C]-sodium formate and computer simulations of the spectra identified the 12-line spectrum as arising from the POBN/carbon dioxide anion radical adduct. The identification of POBN/⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radical adduct provides direct electron spin resonance spectroscopy evidence for the formation of ⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radicals during acute intoxication by sodium formate, suggesting a free radical metabolic pathway. To study the mechanism of free radical generation by formate, we tested several known inhibitors. Both allopurinol, an inhibitor of xanthine oxidase, and aminobenzotriazole, a cytochrome P450 inhibitor, decreased free radical formation from formate, which may imply a dependence on hydrogen peroxide. In accord with this hypothesis, the catalase inhibitor 3-aminotriazole caused a significant increase in free radical formation. The iron chelator Desferal decreased the formation of free radicals up to 2-fold. Presumably, iron plays a role in the mechanism of free radical generation by formate via the Fenton reaction. The detection of formate free radical metabolites generated in vivo and the key role of the Fenton reaction in this process may be important for understanding the pathogenesis of both formate and methanol intoxication. PMID:11717423
The study of gamma irradiation effects on poly (glycolic acid)
NASA Astrophysics Data System (ADS)
Rao Nakka, Rajeswara; Rao Thumu, Venkatappa; Reddy SVS, Ramana; Rao Buddhiraju, Sanjeeva
2015-05-01
We have investigated the effects of gamma irradiation on chemical structure, thermal and morphological properties of biodegradable semi-crystalline poly (glycolic acid) (PGA). PGA samples were subjected to irradiation treatment using a 60Co gamma source with a delivered dose of 30, 60 and 90 kGy, respectively. Gamma irradiation induces cleavage of PGA main chains forming ∼OĊH2 and ĊH2COO∼ radicals in both amorphous and crystalline regions. The free radicals formed in the amorphous region abstract atmospheric oxygen and convert them to peroxy radicals. The peroxy radical causes chain scission at the crystal interface through hydrogen abstraction from methylene groups forming the ∼ĊHCOO∼ (I) radical. Consequently, the observed electron spin resonance (ESR) doublet of irradiated PGA is assigned to (I). The disappearance of the ESR signal above 190°C indicates that free radicals are formed in the amorphous region and decay below the melting temperature of PGA. Fourier transform infrared and optical absorption studies confirm that the ? groups are not influenced by gamma irradiation. Differential scanning calorimetry (DSC) studies showed that the melting temperature of PGA decreased from 212°C to 202°C upon irradiation. Degree of crystallinity increased initially and then decreased with an increase in radiation as per DSC and X-ray diffraction studies. Irradiation produced changes in the physical properties of PGA as well as affecting the morphology of the material.
Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan
2016-04-15
Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035-2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals.
Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan
2016-01-01
Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263
Effect of radiation, heat, and aging on in vitro wear resistance of polyethylene.
Muratoglu, Orhun K; Merrill, Edward W; Bragdon, Charles R; O'Connor, Daniel; Hoeffel, Daniel; Burroughs, Brian; Jasty, Murali; Harris, William H
2003-12-01
Radiation cross-linking increases the wear resistance of polyethylene used in total hip replacement. Radiation also generates residual free radicals, which are detrimental to long-term properties of polyethylene. Two approaches are used to stabilize the residual free radicals and terminally sterilize the components. One is postirradiation annealing with gas sterilization and the other is postirradiation melting with gamma sterilization in nitrogen. The hypothesis of the current study is that postirradiation annealing followed by gamma sterilization in nitrogen will result in more free radicals in polyethylene than gamma sterilization either in air or in nitrogen alone. To test this hypothesis, concentration of residual free radicals was quantified in polyethylene that was annealed and gamma sterilized in nitrogen and control polyethylenes gamma sterilized in air versus in nitrogen. Three crosslinked polyethylenes that were melted and gas sterilized also were included in the study. The effects of residual free radicals were studied by accelerated aging. Oxidation levels and weight loss in bidirectional pin-on-disk tests were determined before and after aging. Polyethylene that was subjected to postirradiation annealing and gamma sterilization resulted in 58% more residual free radicals than control polyethylenes. Weight loss of the annealed polyethylene increased by 16-fold on accelerated aging and had three times higher oxidation levels than that measured in control polyethylenes after aging. In contrast, polyethylenes that were stabilized with postirradiation melting and terminally gas sterilized showed no detectable residual free radicals. Accelerated aging did not affect the weight loss and oxidation levels of melted polyethylenes.
NASA Astrophysics Data System (ADS)
Whitburn, Kevin D.; Hoffman, Morton Z.
The interaction of radiation-generated 2-methyl-2-hydroxypropyl radicals (derived from t-butyl alcohol) with oxymyoglobin has been examined at pH 7.3. In N 2O-saturated solutions, oxymyoglobin is converted to the ferri and ferryl derivatives of myoglobin; the production of ferrylmyoglobin is essentially eliminated when catalase is present in solution during irradiation. In deaerated solutions containing catalase, oxymyoglobin is converted to both ferro- and ferrimyoglobin during irradiation. When added O 2 is initially present, all compositional changes occur after irradiation; the presence of catalase diminishes, but does not eliminate, the extent of these postirradiation conversions of oxymyoglobin to the ferri and ferryl derivatives. These observations are interpreted in terms of the scavenging of the 2-methyl-2-hydroxypropyl radicals by O 2 to generate their peroxy analogs, which causes a displacement of the equilibrium between oxy- and ferromyoglobin. The peroxy radicals decay to produce H 2O 2, an organic peroxide, and other products. These peroxides subsequently react with ferromyoglobin to produce the ferryl form; the rate of the reaction increases with decreasing [O 2] as [ferromyoglobin] increases. This reaction is sufficiently fast in deaerated solution that substantial conversion of ferromyoglobin to ferrylmyoglobin occurs during the time of irradiation. The formation of the ferryl derivative in the presence of unconverted ferromyoglobin drives a concurrent synproportion reaction which produces ferrimyoglobin. Overall, no direct interaction of 2-methyl-2-hydroxypropyl radicals, nor their peroxy analogs, with myoglobin is indicated; all reactivity is accountable by the peroxide products of these radicals.
Pérez, Yohani; Oyárzabal, Ambar; Mas, Rosa; Molina, Vivian; Jiménez, Sonia
2013-01-01
D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.
An analysis of gender mainstreaming and education in atmospheric sciences in Ukraine
NASA Astrophysics Data System (ADS)
Godunova, V.
2009-04-01
As a participant in the international science community, Ukraine is constantly updating its understanding of worldwide trends in science and education. There is a growing demand to establish new starting points for young generations in order that they could better understand and improve our changing world. This means a renovation of school curricula. School disciplines must provide people with much more in depth information on global climate changes, their causes and effects. Scientists' involvement in the educational process could become an important factor in enhancement of educational attainments in environmental sciences. A professional scientist who is able to bring difficult research topics to the middle school students' level can be a valuable source of information. A radical political and economic transformation in the early 1990s created in Ukraine new opportunities for women and increased their interest in graduate and post-graduate studies in the sciences. The stable growth of female students has been observed. For instance, girls make up more than 70 % of university meteorology students, a percentage that is held for the last decade. In high schools and universities women make up 50 % of teachers and lectors in meteorology. Moreover, the number of female PhD scientists has been rising rather than that of male scientists. Nevertheless, the fraction of women in leading posts is considerable lower than it should be. This phenomenon is the outcome of a process that is influenced by many forces. In this paper a few suggestions and some findings from a statistics review will be presented.
The Opportunities of Contemporary Society in the Organization and Use of Childrens' Leisure Time
ERIC Educational Resources Information Center
Bajrami, Teuta Jusufi; Kadriu, Lulzime Lutfiu; Ceka, Ardita
2016-01-01
The rapid development undertaken in science, technique and technology, has strongly influenced the radical change of the pace of human existence, and therefore as a very important part in the everyday life of society along with mandatory time is regarded leisure time, also. Given the fact that free time as a pedagogical and sociological issue is…
ERIC Educational Resources Information Center
Anchorage School District, AK.
This document introduces fifth-grade children to the microscopic world, to the instruments needed to make it accessible, and to the appearance and structure of cells in nonliving as well as living things. Aims of the unit include providing children with an instrument which extends their senses in a radical manner, and leading them in using this…
The wings of Daedalus: The convergence of myth and technology in 20th century culture
NASA Technical Reports Server (NTRS)
Kowitt, Mark E.; Kaplan, Michael S.
1993-01-01
In the second half of the 20th century, age-old human fantasies of leaving the Earth and touching the stars have been fulfilled by advances in space science and technology, whose roots are threaded through our history. Current advances are so explosive that the fundamental orientation of Western culture is being radically altered.
ERIC Educational Resources Information Center
Roth, Wolff-Michael
2014-01-01
In this study, I provide a microgenetic-historical account of learning in an informal setting: the conceptual change that occurred while a university-based scientific research laboratory investigated the absorption of light in rod-based photoreceptors of coho salmon, which the "dogma" had suggested to be related to the migration between…
Behavior analysts and cultural analysis: Troubles and issues
Malagodi, E. F.; Jackson, Kevin
1989-01-01
Three strategic suggestions are offered to behavior analysts who are concerned with extending the interests of our discipline into domains traditionally assigned to the social sciences: (1) to expand our world-view perspectives beyond the boundaries commonly accepted by psychologists in general; (2) to build a cultural analytic framework upon the foundations we have developed for the study of individuals; and (3) to study the works of those social scientists whose views are generally compatible with, and complementary to, our own. Sociologist C. Wright Mills' distinction between troubles and issues and anthropologist Marvin Harris's principles of cultural materialism are related to topics raised by these three strategies. The pervasiveness of the “psychocentric” world view within psychology and the social sciences, and throughout our culture at large, is discussed from the points of view of Skinner, Mills, and Harris. It is suggested that a thorough commitment to radical behaviorism, and continuation of interaction between radical behaviorism and cultural materialism, are necessary for maintaining and extending an issues orientation within the discipline of behavior analysis and for guarding against dilutions and subversions of that orientation by “deviation-dampening” contingencies that exist in our profession and in our culture at large. PMID:22478014
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone
NASA Astrophysics Data System (ADS)
Krzyminiewski, R.; Pietrzak, J.; Konopka, R.
1990-11-01
Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.
Yokoyama, Kenichi; Lilla, Edward A
2018-04-10
Covering: up to the end of 2017C-C bond formations are frequently the key steps in cofactor and natural product biosynthesis. Historically, C-C bond formations were thought to proceed by two electron mechanisms, represented by Claisen condensation in fatty acids and polyketide biosynthesis. These types of mechanisms require activated substrates to create a nucleophile and an electrophile. More recently, increasing number of C-C bond formations catalyzed by radical SAM enzymes are being identified. These free radical mediated reactions can proceed between almost any sp3 and sp2 carbon centers, allowing introduction of C-C bonds at unconventional positions in metabolites. Therefore, free radical mediated C-C bond formations are frequently found in the construction of structurally unique and complex metabolites. This review discusses our current understanding of the functions and mechanisms of C-C bond forming radical SAM enzymes and highlights their important roles in the biosynthesis of structurally complex, naturally occurring organic molecules. Mechanistic consideration of C-C bond formation by radical SAM enzymes identifies the significance of three key mechanistic factors: radical initiation, acceptor substrate activation and radical quenching. Understanding the functions and mechanisms of these characteristic enzymes will be important not only in promoting our understanding of radical SAM enzymes, but also for understanding natural product and cofactor biosynthesis.
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Mori, Tomohisa; Sawaguchi, Toshiko
2018-01-01
Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.
Moreno, S N; Mason, R P; Docampo, R
1984-12-10
At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.
Ehieli, Eric I; Howard, Lauren E; Monk, Terri G; Ferrandino, Michael N; Polascik, Thomas J; Walther, Philip J; Freedland, Stephen J
2016-08-01
To study the effect of end-expiratory pressure used during anesthesia on blood loss during radical prostatectomy. We evaluated 247 patients who underwent either radical retropubic prostatectomy or robot-assisted laparoscopic prostatectomy at a single institution from 2008 to 2013 by one of four surgeons. Patient characteristics were compared using t-tests, rank sum or χ(2) -tests as appropriate. The association between positive end-expiratory pressure and estimated blood loss was tested using linear regression. Patients were classified into high (≥4 cmH2 O) and low (≤1 cmH2 O) positive-end expiratory pressure groups. Estimated blood loss in radical retropubic prostatectomy was higher in the high positive end-expiratory pressure group (1000 mL vs 800 mL, P = 0.042). Estimated blood loss in robot-assisted laparoscopic prostatectomy was lower in the high positive end-expiratory pressure group (150 mL vs 250 mL, P = 0.015). After adjusting for other factors known to influence blood loss, a 5-cmH2 O increase in positive end-expiratory pressure was associated with a 34.9% increase in estimated blood loss (P = 0.030) for radical retropubic prostatectomy, and a 33.0% decrease for robot-assisted laparoscopic prostatectomy (P = 0.038). In radical retropubic prostatectomy, high positive end-expiratory pressure was associated with higher estimated blood loss, and the benefits of positive end-expiratory pressure should be weighed against the risk of increased estimated blood loss. In robot-assisted laparoscopic prostatectomy, high positive end-expiratory pressure was associated with lower estimated blood loss, and might have more than just pulmonary benefits. © 2016 The Japanese Urological Association.
Internet Links for Science Education: Student-Scientist Partnerships (edited by Karen Cohen)
NASA Astrophysics Data System (ADS)
Barden, Linda M.
1998-10-01
Plenum: New York, 1997. xx + 260 pp. Figs., tables, photos. 15 x 22.8 cm. ISBN 0-306-45558-7. $27.50. Science education is undergoing an upheaval more fundamental than the one that occurred in the aftermath of Sputnik. Research during the past 40 years has led to a radical change in the way we view children's learning of science. The National Science Education Standards (NSES) suggest a new model for teaching science based upon these research findings. Societal changes, particularly changes in business, have put pressure on schools to alter the emphasis of curricula from rote memory and individual competition to problem solving using a variety of technological skills and teamwork/team competition. This timely book addresses all these issues by describing projects that K-12 teachers can use to achieve the goals set forth by both NSES and business. It also provides scientists with examples of how they and their coworkers might better interact with K-12 science education to encourage a more scientifically literate society. Finally, it includes suggestions for future research in science education.
NASA Astrophysics Data System (ADS)
Karamah, E. F.; Leonita, S.; Bismo, S.
2018-01-01
Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC
Voisine, Richard; Vézina, Louis-P.; Willemot, Claude
1991-01-01
Membrane deterioration differs in aging and senescent tissues. Involvement of free radicals in the process is generally recognized. Little is known about the physiological effects of gamma irradiation on plant tissues. Degradation of microsomal membranes by the action of free radicals, generated in vivo by gamma rays, was investigated. Cauliflower florets (Brassica oleracea L., Botrytis group) were exposed to 2 or 4 kiloGray of gamma radiation. Membrane deterioration was assessed during 8-day storage at 13°C. Some senescence was indicated in nonirradiated controls by a parallel depletion of lipid phosphate and protein. Irradiation caused an immediate increase in tissue electrolyte leakage and a small increase in the free fatty acid content of membranes. In irradiated samples, leakage of electrolytes and the ratios of sterol to phospholipid and of free fatty acid to phospholipid increased with storage. During this period, membrane protein was progressively lost and the lipid phosphate-to-protein ratio increased markedly. Polyunsaturated fatty acids were selectively depleted from the free fatty acid fraction for all treatments, suggesting lipoxygenase activity. No change in lipid saturation was observed in the polar lipid fraction. The results suggest an enzyme-catalyzed senescence-like membrane deterioration, probably induced by chemical deesterification of phospholipids by free radicals generated during irradiation. PMID:16668433
Iodine(III) Reagents in Radical Chemistry
2017-01-01
Conspectus The chemistry of hypervalent iodine(III) compounds has gained great interest over the past 30 years. Hypervalent iodine(III) compounds show valuable ionic reactivity due to their high electrophilicity but also express radical reactivity as single electron oxidants for carbon and heteroatom radical generation. Looking at ionic chemistry, these iodine(III) reagents can act as electrophiles to efficiently construct C–CF3, X–CF3 (X = heteroatom), C–Rf (Rf = perfluoroalkyl), X–Rf, C–N3, C–CN, S–CN, and C–X bonds. In some cases, a Lewis or a Bronsted acid is necessary to increase their electrophilicity. In these transformations, the iodine(III) compounds react as formal “CF3+”, “Rf+”, “N3+”, “Ar+”, “CN+”, and “X+” equivalents. On the other hand, one electron reduction of the I(III) reagents opens the door to the radical world, which is the topic of this Account that focuses on radical reactivity of hypervalent iodine(III) compounds such as the Togni reagent, Zhdankin reagent, diaryliodonium salts, aryliodonium ylides, aryl(cyano)iodonium triflates, and aryl(perfluoroalkyl)iodonium triflates. Radical generation starting with I(III) reagents can also occur via thermal or light mediated homolysis of the weak hypervalent bond in such reagents. This reactivity can be used for alkane C–H functionalization. We will address important pioneering work in the area but will mainly focus on studies that have been conducted by our group over the last 5 years. We entered the field by investigating transition metal free single electron reduction of Togni type reagents using the readily available sodium 2,2,6,6-tetramethylpiperidine-1-oxyl salt (TEMPONa) as an organic one electron reductant for clean generation of the trifluoromethyl radical and perfluoroalkyl radicals. That valuable approach was later successfully also applied to the generation of azidyl and aryl radicals starting with the corresponding benziodoxole (Zhdankin reagent) and iodonium salts. In the presence of alkenes as radical acceptors, vicinal trifluoromethyl-, azido-, and arylaminoxylation products result via a sequence comprising radical addition to the alkene and subsequent TEMPO trapping. Electron-rich arenes also react with I(III) reagents via single electron transfer (SET) to give arene radical cations, which can then engage in arylation reactions. We also recognized that the isonitrile functionality in aryl isonitriles is a highly efficient perfluoroalkyl radical acceptor, and reaction of Rf-benziodoxoles (Togni type reagents) in the presence of a radical initiator provides various perfluoroalkylated N-heterocycles (indoles, phenanthridines, quinolines, etc.). We further found that aryliodonium ylides, previously used as carbene precursors in metal-mediated cyclopropanation reactions, react via SET reduction with TEMPONa to the corresponding aryl radicals. As a drawback of all these transformations, we realized that only one ligand of the iodine(III) reagent gets transferred to the substrate. To further increase atom-economy of such conversions, we identified cyano or perfluoroalkyl iodonium triflate salts as valuable reagents for stereoselective vicinal alkyne difunctionalization, where two ligands from the I(III) reagent are sequentially transferred to an alkyne acceptor. Finally, we will discuss alkynyl-benziodoxoles as radical acceptors for alkynylation reactions. Similar reactivity was found for the Zhdankin reagent that has been successfully applied to azidation of C-radicals, and also cyanation is possible with a cyano I(III) reagent. To summarize, this Account focuses on the design, development, mechanistic understanding, and synthetic application of hypervalent iodine(III) reagents in radical chemistry. PMID:28636313
Hawkins, C L; Davies, M J
1998-01-01
Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being the radical source. Incubation of HOCl-treated proteins, after removal of excess oxidant, gives rise to both nitrogen-centred radicals, over a period of hours, and time-dependent fragmentation of the protein. Treatment with excess methionine or antioxidants (Trolox, ascorbate, glutathione) protects against fragmentation; urate and bilirubin do not. Chloramine formation and nitrogen-centred radicals are therefore key species in HOCl-induced protein fragmentation. PMID:9620862
[Free radicals in the origin and clinical manifestation of Down's syndrome].
Arbuzova, S B
1996-01-01
The high level of free radicals and antioxidant protection disbalancing cause the chromosome nondisjunction in meiosis, appearance of trisomy 21 and fetuses with Down's syndrome, age-dependent pathology, of parent's mosaic clone, clinical manifestations of the syndrome, diseases in relatives, recurrent cases of trisomy 21. The comparative analysis of clinical traits of Down's syndrome and pathological changes in families with after-effects of radiation exposure was carried out. The factors causing an increase in the level of free radicals were considered.
Free-radical concentrations and other properties of pile-irradiated coals
Friedel, R.A.; Breger, I.A.
1959-01-01
Five coals reacted quite differently when they were exposed to pile-irradiation. Little or no change was found in free-radical content for the three coals of lowest carbon content, whereas the two coals of highest carbon content were found to have a considerable increase in free-radical content. The infrared spectra and the apparent hardness of the irradiated coals of higher carbon content indicate that polymerization occurred. Radiation of these coals in chemical reagents may promote reactivity.
Mourad, Moustafa; Saman, Masoud; Ducic, Yadranko
2015-11-01
The goal of the study was to determine the role of internal jugular vein (IJV) to external jugular vein (EJV) bypass grafting in the setting of bilateral radical neck dissection with IJV sacrifice. The study group consisted of eight patients who underwent bilateral radical neck dissection with IJV sacrifice. Demographic and oncologic parameters were defined for each patient, including age, gender, and pathology. Patients were monitored and evaluated for potential effects of increased intracranial pressure (ICP). Doppler ultrasonic evaluation was performed to assess patency of the site of anastamoses. In all, six patients underwent unilateral bypass grafting, whereas two patients underwent bilateral bypass grafts. Average age at time of surgery was 68.2 (range 56-71). Postoperatively, no sequelae of increased ICP were noted. Follow-up ultrasonic evaluation revealed patent vessels in all patients. We presently report on the use of EJV-to-IJV bypass grafting for all patients undergoing bilateral radical neck dissection for extensive neck disease. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Yang, Fan; Luan, Bo; Sun, Zhen; Yang, Chao; Yu, Zhimin; Li, Xianzhen
2017-02-01
To improve beer flavour stability by adding chitooligosaccharides that prevent formation of staling compounds and also scavenge radicals in stale beer. Chitooligosaccharides, at 0.001-0.01%, inhibited the formation of staling compounds in forced aged beer. The formation of 5-hydroxymethylfurfural, trans-2-nonenal and phenylacetaldehyde were decreased by 105, 360 and 27%, respectively, when compared with those in stale beer without chitooligosaccharide addition. The capability of chitooligosaccharides to prevent staling compound formation depended on their molecular size (2 or 3 kDa). The DPPH/hydroxyl radical scavenging activity in fresh beer significantly lower than that in forced aged beer in the presence of chitooligosaccharides. When compared with stale beer without added chitooligosaccharides, the radical scavenging activity could be increased by adding chitooligosaccharides to forced aged beer. Chitooligosaccharides play an active part in the prevention of beer flavour deterioration by inhibiting the formation of staling compounds and increasing radical scavenging activity.
Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.
Pinna, Alessandra; Malfatti, Luca; Piccinini, Massimo; Falcaro, Paolo; Innocenzi, Plinio
2012-07-01
The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.
NASA Astrophysics Data System (ADS)
Matasović, Brunislav; Bonifačić, Marija
2011-06-01
Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.
Functional relations and cognitive psychology: Lessons from human performance and animal research.
Proctor, Robert W; Urcuioli, Peter J
2016-02-01
We consider requirements for effective interdisciplinary communication and explore alternative interpretations of "building bridges between functional and cognitive psychology." If the bridges are intended to connect radical behaviourism and cognitive psychology, or functional contextualism and cognitive psychology, the efforts are unlikely to be successful. But if the bridges are intended to connect functional relationships and cognitive theory, no construction is needed because the bridges already exist within cognitive psychology. We use human performance and animal research to illustrate the latter point and to counter the claim that the functional approach is unique in offering a close relationship between science and practice. Effective communication will be enhanced and, indeed, may only occur if the goal of functional contextualism extends beyond just "the advancement of functional contextual cognitive and behavioral science and practice" to "the advancement of cognitive and behavioral science and practice" without restriction. © 2015 International Union of Psychological Science.
de Almeida, Maria Eneida
2015-07-01
Throughout the twentieth century, the biological advance had a closer and closer relation with the strategies of power in search of high technology. From 1970, the manipulation of genetically recombined pathogenic agents was a high technological breakthrough that radically over passed traditional biology and reinforced the war relations of science. The biotechnological revolution started along with new perspectives for the political and military field of science. From this point of the biotechnological development a new paradigm for war, as well as for the sciences of life, was then created and new challenges for International Health in the twenty first century came into scene. Through a historical account related to power, this paper is meant to present the mechanism of articulation existent between science and power and to contribute for understanding how the military field is naturally inserted in the biotechnological development which, in its essence, produces biotechnologies for civil and military uses.
'Nature and the Greeks' and 'Science and Humanism'
NASA Astrophysics Data System (ADS)
Schrödinger, Erwin
2014-11-01
Foreword; Part I. Nature and the Greeks: 1. The motives for returning to ancient thought; 2. The competition, reason v. senses; 3. The Pythagoreans; 4. The Ionian enlightenment; 5. The religion of Xenophanes, Heraclitus of Ephesus; 6. The atomists; 7. What are the special features?; Part II. Science and Humanism: 1. The spiritual bearing of science on life; 2. The practical achievements of science tending to obliterate its true import; 3. A radical change in our ideas of matter; 4. Form, not substance, the fundamental concept; 5. The nature of our 'models'; 6. Continuous descriptions and causality; 7. The intricacy of the continuum; 8. The makeshift of wave mechanics; 9. The alleged breakdown of the barrier between subject and object; 10. Atoms or quanta - the counter-spell of old standing, to escape the intricacy of the continuum; 11. Would physical indeterminacy give free will a chance?; 12. The bar to prediction, according to Niels Bohr; Literature.
The place of life in our theories.
Hiett, P J
1998-08-01
This paper looks at the difficulty of finding a place for life in our theories of the world. Commonly in science one makes a distinction between appearance and reality, and science aims to find the reality underneath the appearances. However, as science currently understands reality, life is not a property of reality. Thus, either we have misunderstood reality, for living things appear to exist, or 'life' is not real, but simply a prejudice of unscientific common-sense. Neither option is easy to accept. The idea of emergence is investigated to see whether it can get us off the horns of this dilemma, but it is seen that it cannot, both theoretically, and practically, in the case of ecology. Finally it is noted that abandoning the appearance-reality distinction is a radical option which would mean a new conceptualization of science. The reasons for this are briefly indicated.
Uncommon Sense - The Heretical Nature of Science
NASA Astrophysics Data System (ADS)
Cromer, Alan
1995-08-01
Most people believe that science arose as a natural end-product of our innate intelligence and curiosity, as an inevitable stage in human intellectual development. But physicist and educator Alan Cromer disputes this belief. Cromer argues that science is not the natural unfolding of human potential, but the invention of a particular culture, Greece, in a particular historical period. Indeed, far from being natural, scientific thinking goes so far against the grain of conventional human thought that if it hadn't been discovered in Greece, it might not have been discovered at all.In Uncommon Sense , Alan Cromer develops the argument that science represents a radically new and different way of thinking. Using Piaget's stages of intellectual development, he shows that conventional thinking remains mired in subjective, "egocentric" ways of looking at the world--most people even today still believe in astrology, ESP, UFOs, ghosts and other paranormal phenomena--a mode of thought that science has outgrown. He provides a fascinating explanation of why science began in Greece, contrasting the Greek practice of debate to the Judaic reliance on prophets for acquiring knowledge. Other factors, such as a maritime economy and wandering scholars (both of which prevented parochialism) and an essentially literary religion not dominated by priests, also promoted in Greece an objective, analytical way of thinking not found elsewhere in the ancient world. He examines India and China and explains why science could not develop in either country. In China, for instance, astronomy served only the state, and the private study of astronomy was forbidden. Cromer also provides a perceptive account of science in Renaissance Europe and of figures such as Copernicus, Galileo, and Newton. Along the way, Cromer touches on many intriguing topics, arguing, for instance, that much of science is essential complete; there are no new elements yet to be discovered. He debunks the vaunted SETI (Search for Extraterrestrial Intelligence) project, which costs taxpayers millions each year, showing that physical limits--such as the melting point of metal--put an absolute limit on the speed of space travel, making trips to even the nearest star all but impossible. Finally, Cromer discusses the deplorable state of science education in America and suggests several provocative innovations to improve high school education, including a radical proposal to give all students an intensive eighth and ninth year program, eliminating the last two years of high school.Uncommon Sense is an illuminating look at science, filled with provocative observations. Whether challenging Thomas Kuhn's theory of scientific revolutions, or extolling the virtues of Euclid's Elements , Alan Cromer is always insightful, outspoken, and refreshingly original.
Rammant, Elke; Decaestecker, Karel; Bultijnck, Renée; Sundahl, Nora; Ost, Piet; Pauwels, Nele S; Deforche, Benedicte; Pieters, Ronny; Fonteyne, Valérie
2018-05-01
Summarizing the evidence on the effects of pre- and postoperative exercise and psychosocial rehabilitation interventions on patient-reported outcomes (PROs) and physical fitness in bladder cancer patients undergoing radical cystectomy. The Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Web of Science and the Physiotherapy Evidence Database were searched independently by two authors from inception until 10 November 2017. Cited references of the studies and citing references retrieved via Web of Science were also checked. Randomized controlled trials (RCTs) and non-randomized studies assessing effects of exercise and psychosocial interventions in bladder cancer patients undergoing radical cystectomy were eligible. Primary outcome measures were PROs and physical fitness. Risk of bias was assessed using the Cochrane Collaboration tool and the Newcastle-Ottawa Scale. Five RCTs (three exercise and two psychosocial studies) and one non-randomized psychosocial study comprising 317 bladder cancer patients were included. Timing of the intervention was preoperative ( n = 2), postoperative ( n = 2) or both pre- and postoperative ( n = 2). Positive effects of exercise were found for physical fitness ( n = 3), some health-related quality-of-life (HRQoL) domains ( n = 2), personal activities in daily living ( n = 1) and muscle strength ( n = 1). Psychosocial interventions showed positive effects on anxiety ( n = 1), fatigue ( n = 1), depression ( n = 1), HRQoL ( n = 1) and posttraumatic growth ( n = 1). Quality assessment showed most shortcomings with sample sizes and strong heterogeneity was observed between studies. The evidence relating to the effects of exercise in bladder cancer is very limited and is even less for psychosocial interventions.
Eberhardt, M K; Santos, C; Soto, M A
1993-05-07
Co2+ ions (Co(NO3)2.6H2O) react with H2O2 only in presence of EDTA to yield OH radicals and Co3+. This reaction was carried out in unbuffered aqueous solutions (pH = 2.6). The formation of Co3+ was confirmed by spectroscopy. The Co(3+)-EDTA complex shows two typical absorptions at 382 nm and 532 nm. The Co(3+)-EDTA complex can be prepared by a number of oxidizing agents, like Fe3+, Fe(3+)-EDTA, Ag+, Ag2+, Ce4+, and hydroxyl radicals. Since Fe3+ oxidizes Co(2+)-EDTA to Co(3+)-EDTA and Fe2+ we initiate a chain reaction for .OH formation. Our results show that there are two modes for H2O2 decomposition: (1) One electron transfer to give OH radicals and (2) Decomposition of H2O2 to H2O and O2 without intermediate .OH formation. This reaction depends strongly on the pH of the buffer. The H2O2 decomposition increases with increasing pH and increasing Co2+ concentration.
Zubenko, Dmitry; Tsentalovich, Yuri; Lebedeva, Nataly; Kirilyuk, Igor; Roshchupkina, Galina; Zhurko, Irina; Reznikov, Vladimir; Marque, Sylvain R A; Bagryanskaya, Elena
2006-08-04
Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) and laser flash photolysis (LFP) techniques have been used to measure rate constants for coupling between acrylate-type radicals and a series of newly synthesized stable imidazolidine N-oxyl radicals. The carbon-centered radicals under investigation were generated by photolysis of their corresponding ketone precursors RC(O)R (R = C(CH3)2-C(O)OCH3 and CH(CH3)-C(O)-OtBu) in the presence of stable nitroxides. The coupling rate constants kc for modeling studies of nitroxide-mediated polymerization (NMP) experiments were determined, and the influence of steric and electronic factors on kc values was addressed by using a Hammett linear free energy relationship. The systematic changes in kc due to the varied steric (Es,n) and electronic (sigmaL,n) characters of the substituents are well-described by the biparameter equation log(kc/M- 1s(-1)) = 3.52sigmaL,n + 0.47Es,n + 10.62. Hence, kc decreases with the increasing steric demand and increases with the increasing electron-withdrawing character of the substituents on the nitroxide.
Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.
Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi
2011-04-14
The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.
Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.
2016-01-01
The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944
Free radical interactions between raw materials in dry soup powder.
Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H
2011-12-01
Interactions at the free radical level were observed between dry ingredients in cauliflower soup powder, prepared by dry mixing of ingredients and rapeseed oil, which may be of importance for quality deterioration of such dry food products. The free radical concentrations of cauliflower soup powder, obtained by electron spin resonance (ESR) spectroscopy, rapidly become smaller during storage (40°C and relative humidity of 75%) than the calculated concentrations of free radicals based on the free radical concentrations of the powder ingredients used to make the soup powder and stored separately under similar conditions. Similarly, free radical concentrations decreased faster when any combination of two powder ingredients (of the three major ingredients of the soup powder) were mixed together and stored at 50°C for 1week than when each powder component was stored separately. Furthermore, yeast extract powder was found to play a key role when free radical interactions between powder ingredients occurred. The incubation of rapeseed oil with powder ingredients at 45°C for 24h, indicated the ability of cauliflower powder to increase the concentration of hydroperoxides in rapeseed oil, while yeast extract powder was found to prevent this hydroperoxide formation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay.
Bisby, Roger H; Brooke, Rachel; Navaratnam, Suppiah
2008-06-01
The "oxygen radical absorption capacity" (ORAC) assay (Ou, B., Hampsch-Woodill, M., Prior, R.L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry 49, 4619-4626) is widely employed to determine antioxidant content of foods and uses fluorescein as a probe for oxidation by peroxyl radicals. Kinetic modeling of the ORAC assay suggests that the lag phase for loss of fluorescence results from equilibrium between antioxidant and fluorescein radicals and the value of the equilibrium constant determines the shape of the lag phase. For an efficient antioxidant this constitutes a "repair" reaction for fluoresceinyl radicals and produces a well defined lag phase. The lag phase becomes less marked with increasing oxidation potential of the antioxidant. Pulse radiolysis confirms that fluoresceinyl radicals are rapidly (k∼10(9)dm(3)mol(-1)s(-1)) reduced by Trolox C, a water soluble vitamin E analogue. ORAC assays of phenols with varying oxidation potentials suggest that it might be employed to obtain an estimate of the redox potential of antioxidants within food materials. Copyright © 2007 Elsevier Ltd. All rights reserved.
Why medical research needs a new specialty of 'pure medical science'.
Charlton, Bruce G
2006-01-01
Sciences tend to go through boom and bust phases. Following decades of rapid expansion, medical science is now due for a collapse in overall funding. Furthermore, there has been a decline in the rate of therapeutic innovation, with fewer significant breakthroughs and little progress in several major areas of medicine such as oncology, psychiatry and autoimmune disorders. Mainstream medical research has gradually evolved into a form similar to industrial research and development (R&D), aiming at steady, reliable, predictable progress by ringing minor variations on existing approaches. Where this risk-averse approach is failing, a more speculative strategy is indicated. A new research specialty of 'pure medical science' would aim to seek radical new theories, technologies and therapies, and subject these to professional evaluation to the point where they can be applied in practice by more mainstream 'applied' medical scientists. A specialty of 'pure medical science' might be launched by financial support from patrons who wish to be associated with an elite new medical research discipline.
Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-10-01
Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.
Gender equality and women's absolute status: a test of the feminist models of rape.
Martin, Kimberly; Vieraitis, Lynne M; Britto, Sarah
2006-04-01
Feminist theory predicts both a positive and negative relationship between gender equality and rape rates. Although liberal and radical feminist theory predicts that gender equality should ameliorate rape victimization, radical feminist theorists have argued that gender equality may increase rape in the form of male backlash. Alternatively, Marxist criminologists focus on women's absolute socioeconomic status rather than gender equality as a predictor of rape rates, whereas socialist feminists combine both radical and Marxist perspectives. This study uses factor analysis to overcome multicollinearity limitations of past studies while exploring the relationship between women's absolute and relative socioeconomic status on rape rates in major U.S. cities using 2000 census data. The findings indicate support for both the Marxist and radical feminist explanations of rape but no support for the ameliorative hypothesis. These findings support a more inclusive socialist feminist theory that takes both Marxist and radical feminist hypotheses into account.
Engineering radical polymer electrodes for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.
2017-06-01
In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.
Antioxidant activity from encapsulated Cinnamaldehyde-Chitosan
NASA Astrophysics Data System (ADS)
Ariestiani, Bonita; Purbowatingrum; Ngadiwiyana; Ismiyarto; Fachriyah, Enny; Nurani, Khikmah
2018-05-01
Cinnamaldehyde compound is a powerful antioxidant agent that can effectively combat the free radicals referred to superoxide anions and hydroxy radicals, as well as other free radicals in in vitro testing. An antioxidant is an electron donor or reductant. antioxidants are also compounds that can inhibit oxidation reactions by binding to free radicals and highly reactive molecules. As a result, cell damage will be inhibited. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74,389% also antioxidant activity test showed that cinnamaldehyde encapsulated by nanochitosan could inhibit free radicals of 223.44 in IC50.
A study of increasing radical density and etch rate using remote plasma generator system
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook
2013-09-01
To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.
When dual identity becomes a liability: identity and political radicalism among migrants.
Simon, Bernd; Reichert, Frank; Grabow, Olga
2013-03-01
This article examines the role of dual identity in political radicalism among migrants. Dual identity is defined as identification with both one's ethnocultural minority in-group and one's society of residence. We employed a longitudinal research design using members of the two largest migrant groups in Germany (Turkish migrants and Russian migrants) as participants. We reasoned that when dual identity is burdened with incompatibility between component identifications, it may foster controversial or even destructive forms of political mobilization, such as radicalism. Multiple regression analysis controlling for other influences confirmed the hypothesized moderated relationship between dual identification and sympathy for radical action. When accompanied by high, as opposed to low, perceived identity incompatibility, dual identification predicted increases in sympathy for radical action among both Turkish migrants and Russian migrants. The implications for public life in ethnically and culturally heterogeneous societies are discussed.
Weeks, Benjamin S; Perez, Pedro P
2007-10-01
In this study we investigated the cellular absorption rates, antioxidant and free radical scavenging activity of vitamin C-lipid metabolites. The absorption was measured in a human lymphoblastic cell line using a spectrophotometric technique. Cellular vitamin C levels in the human lymphoblastic H9 cell line were measured using the 2,4-dinitrophenylhydrazine spectrophotometric technique. Free radical scavenging activity of vitamin C-lipid metabolites was measured by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH) to 1,1-diphenyl-2-picryl hydrazine. Vitamin C-lipid metabolite scavenging of peroxyl radical oxygen reactive species (ORAC) was determined by fluorescence spectrophotometry. Compared to ascorbic acid (AA), calcium ascorbate (CaA), and calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C), vitamin C-lipid metabolites (PureWay-C) were more rapidly absorbed by the H9 human T-lymphocytes. The vitamin C-lipid metabolites (PureWay-C) also reduced pesticide-induced T-lymphocyte aggregation by 84%, while calcium ascorbate-calcium threonate-dehydroascorbate (Ester-C) reduced aggregation by only 34%. The vitamin C-lipid metabolites (PureWay-C) demonstrated free radical scavenging activity of nearly 100% reduction of DPPH at 20 microg/ml and oxygen radical scavenging of over 1200 micro Trolox equivalents per gram. These data demonstrate that the vitamin C-lipid metabolites (PureWay-C) are more rapidly taken-up and absorbed by cells than other forms of vitamin C, including Ester-C. This increased rate of absorption correlates with an increased protection of the T-lymphocytes from pesticide toxicities. Further, vitamin C-lipid metabolites (PureWay-C) are a potent antioxidant and have significant free radical scavenging capabilities.
Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study.
Lohan, Silke B; Müller, Robert; Albrecht, Stephanie; Mink, Kathrin; Tscherch, Kathrin; Ismaeel, Fakher; Lademann, Jürgen; Rohn, Sascha; Meinke, Martina C
2016-05-01
Sunlight represents an exogenous factor stimulating formation of free radicals which can induce cell damage. To assess the effect of the different spectral solar regions on the development of free radicals in skin, in vivo electron paramagnetic resonance (EPR) investigations with human volunteers and ex vivo studies on excised human and porcine skin were carried out. For all skin probes, the ultraviolet (UV) spectral region stimulates the most intensive radical formation, followed by the visible (VIS) and the near infrared (NIR) regions. A comparison between the different skin models shows that for UV light, the fastest and highest production of free radicals could be detected in vivo, followed by excised porcine and human skin. The same distribution pattern was found for the VIS/NIR spectral regions, whereby the differences in radical formation between in vivo and ex vivo were less pronounced. An analysis of lipid composition in vivo before and after exposure to UV light clearly showed modifications in several skin lipid components; a decrease of ceramide subclass [AP2] and an increase of ceramide subclass [NP2], sodium cholesterol sulphate and squalene (SQ) were detectable. In contrast, VIS/NIR irradiation led to an increase of ceramides [AP2] and SCS, and a decrease of SQ. These results, which are largely comparable for the different skin models investigated in vivo and ex vivo, indicate that radiation exposure in different spectral regions strongly influences radical production in skin and also results in changes in skin lipid composition, which is essential for barrier function. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mori, H-M; Iwahashi, H
2013-08-01
Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO₄(NH₄)₂SO₄ irradiated with 436 nm visible light (7.8 J/cm²). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (¹O₂) is involved in the radical formation or not, ESR measurement was performed for the standard D₂O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO₄ in D₂O. The ESR peak height of the standard D₂O reaction increased to 169 ± 24% of the control. Thus, ¹O₂ seems to be involved in the formation of the radicals because D₂O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with ¹O₂. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.
Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.
Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R
2017-07-01
The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitochondrial Dysfunctions in Bipolar Disorder: Effect of the Disease and Pharmacotherapy.
Cikankova, Tereza; Sigitova, Ekaterina; Zverova, Martina; Fisar, Zdenek; Raboch, Jiri; Hroudova, Jana
2017-01-01
Exact pathophysiological mechanisms of bipolar disorder have not been sufficiently clarified. We review the evidence of mitochondrial dysfunctions on the relation between both disease and pharmacotherapy. Mitochondria produce the most of energy-rich molecules of adenosine triphosphate (ATP), apart from energy production they are involved in other functions: regulation of free radicals, antioxidant defenses, lipid peroxidation, calcium metabolism and participate in the intrinsic pathway of apoptosis. According to increasing evidence dysfunctions of mitochondria are associated with affective disorders, a hypothesis of impaired mitochondrial functions has been proposed in bipolar disorder pathogenesis. Mitochondrial DNA mutations and/or polymorphisms, impaired phospholipid metabolism and glycolytic shift, decrease in ATP production, increased oxidative stress and changes of intracellular calcium are concerned in mood disorders and effects of mood stabilizers. Recent studies have also provided data about the positive effects of chronic treatment by mood stabilizers on mitochondrial functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
V'iushina, A V; Pritvorova, A V; Flerov, M A
2012-08-01
We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus. Simultaneously minor changes of protein modification were observed in cortex and striatum. It was shown that prenatal stress changed both correlation of proteins free radical oxidation in studied structures and values of these data regarding to control. In test of "open field" motor activity in rats after prenatal stress decreased and time of freezing and grooming increased; opposite, in T-labyrinth motor activity and time of grooming in rats after prenatal stress increased, but time of freezing decreased.
Antioxidant activity of different fractions of Spirulina platensis protean extract.
Piñero Estrada, J E; Bermejo Bescós, P; Villar del Fresno, A M
2001-01-01
Spirulina platensis, planktonic blue-green algae, is gaining increasing attention because of its nutritional and medicinal properties. This microalgae contains phycobiliproteins (phycocyanin and allophycocyanin). Previous reports from our laboratory have shown that a protean extract of S. platensis is a potent free-radical scavenger (hydroxyl and peroxyl radicals) and inhibits microsomal lipid peroxidation. The aim of this study was to purify and characterize phycocyanin of S. platensis. Besides, we tried to demonstrate that one of the main components responsible for this antioxidant activity is a biliprotein phycocyanin. For this purpose, we studied the antioxidant activity of different fractions obtained during the phycocyanin purification process, through the scavenger activity of hydroxyl radical. We also observed that an increase in phycocyanin content was related to an increase in the antioxidant activity in different fractions, and therefore phycobiliprotein phycocyanin is the component mainly responsible for the antioxidant activity.
Bellangino, Mariangela; Verrill, Clare; Leslie, Tom; Bell, Richard W; Hamdy, Freddie C; Lamb, Alastair D
2017-11-07
Bladder neck preservation (BNP) during radical prostatectomy (RP) has been proposed as a method to improve early recovery of urinary continence after radical prostatectomy. However, there is concern over a possible increase in the risk of positive surgical margins and prostate cancer recurrence rate. A recent systematic review and meta-analysis reported improved early recovery and overall long-term urinary continence without compromising oncologic control. The aim of our study was to perform a critical review of the literature to assess the impact on bladder neck and base margins after bladder neck sparing radical prostatectomy. We carried out a systematic review of the literature using Pubmed, Scopus and Cochrane library databases in May 2017 using medical subject headings and free-text protocol according to PRISMA guidelines. We used the following search terms: bladder neck preservation, prostate cancer, radical prostatectomy and surgical margins. Studies focusing on positive surgical margins (PSM) in bladder neck sparing RP pertinent to the objective of this review were included. Overall, we found 15 relevant studies reporting overall and site-specific positive surgical margins rate after bladder neck sparing radical prostatectomy. This included two RCTs, seven prospective comparative studies, two retrospective comparative studies and four case series. All studies were published between 1993 and 2015 with sample sizes ranging between 50 and 1067. Surgical approaches included open, laparoscopic and robot-assisted radical prostatectomy. The overall and base-specific PSM rates ranged between 7-36% and 0-16.3%, respectively. Mean base PSM was 4.9% in those patients where bladder neck sparing was performed, but only 1.85% in those without sparing. Bladder neck preservation during radical prostatectomy may increase base-positive margins. Further studies are needed to better investigate the impact of this technique on oncological outcomes. A future paradigm could include modification of intended approach to bladder neck dissection when anterior base lesions are identified on pre-operative MRI.
Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity
Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2012-01-01
Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617
Exercise-induced brachial artery vasodilation: role of free radicals.
Richardson, Russell S; Donato, Anthony J; Uberoi, Abhimanyu; Wray, D Walter; Lawrenson, Lesley; Nishiyama, Steven; Bailey, Damian M
2007-03-01
Originally thought of as simply damaging or toxic "accidents" of in vivo chemistry, free radicals are becoming increasingly recognized as redox signaling molecules implicit in cellular homeostasis. Indeed, at the vascular level, it is plausible that oxidative stress plays a regulatory role in normal vascular function. Using electron paramagnetic resonance (EPR) spectroscopy, we sought to document the ability of an oral antioxidant cocktail (vitamins C, E, and alpha-lipoic acid) to reduce circulating free radicals, and we employed Doppler ultrasound to examine the consequence of an antioxidant-mediated reduction in oxidative stress on exercise-induced vasodilation. A total of 25 young (18-31 yr) healthy male subjects partook in these studies. EPR spectroscopy revealed a reduction in circulating free radicals following antioxidant administration at rest ( approximately 98%) and as a consequence of exercise ( approximately 85%). Plasma total antioxidant capacity and vitamin C both increased following the ingestion of the antioxidant cocktail, whereas vitamin E levels were not influenced by the ingestion of the antioxidants. Brachial artery vasodilation during submaximal forearm handgrip exercise was greater with the placebo (7.4 +/- 1.8%) than with the antioxidant cocktail (2.3 +/- 0.7%). These data document the efficacy of an oral antioxidant cocktail in reducing free radicals and suggest that, in a healthy state, the aggressive disruption of the delicate balance between pro- and antioxidant forces can negatively impact vascular function. These findings implicate an exercise-induced reliance upon pro-oxidant-stimulated vasodilation, thereby revealing an important and positive vascular role for free radicals.
ERIC Educational Resources Information Center
English, Andrea
2011-01-01
In his central educational work, "The Science of Education" (1806), J. F. Herbart did not explicitly develop a theory of listening, yet his concept of the teacher as a guide in the moral development of the learner gives valuable insight into the moral dimension of listening within teacher-student interaction. Herbart's theory radically calls into…
ERIC Educational Resources Information Center
Bynum, Gregory Lewis
2011-01-01
Two humanist, critical approaches--those of Dorothy Dinnerstein and Immanuel Kant--are summarized, compared, and employed to critique gender bias in science education. The value of Dinnerstein's approach lies in her way of seeing conventional "masculinity" and conventional "femininity" as developing in relation to each other from early childhood.…
Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria.
Kumar, Satyendra; Habib, Khalid; Fatma, Tasneem
2008-09-15
Pesticide contamination in aquatic ecosystem including paddy fields is a serious global environmental concern. Cyanobacteria are also affected by pesticides as non- target organism. For better exploitation of cyanobacteria as biofertiliser, it is indispensable to select tolerant strains along with understanding of their tolerance. Three cyanobacterial strains viz. Aulosira fertilissima, Anabaena variabilis and Nostoc muscorum were studied for their stress responses to an organochlorine pesticide 'endosulfan' with special reference to oxidative stress, role of proline and antioxidant enzymes in endosulfan induced free radical detoxification. Reduction in growth, photosynthetic pigments and carbohydrate of the test microorganisms were accompanied with increase in their total protein, proline, malondialdehye (MDA), superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) in higher endosulfan doses. Increased amount of MDA is indicative of formation of free radicals, while increased level of CAT, APX, SOD and proline indicated their involvement in free radical scavenging mechanism. In lower concentrations, test pesticide showed increase in photosynthetic pigments. Order of tolerance was Nostoc muscorum>Anabaena variabilis>Aulosira fertilissima.
Choo, Wee-Sim; Birch, Edward John
2009-02-01
Lipase-catalyzed transesterification of triolein with cinnamic and ferulic acids using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate the antioxidant activity of the lipophilized products as model systems for enhanced protection of unsaturated oil. The lipophilized products were identified using ESI-MS. Free radical scavenging activity was determined using the DPPH radical method. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Ferulic acid showed much higher radical scavenging activity than cinnamic acid, which has limited activity. The esterification of cinnamic acid and ferulic acid with triolein resulted in significant increase and decrease in the radical scavenging activity, respectively. These opposite effects were due to the effect of addition of electron-donating alkyl groups on the predominant mechanism of reaction (hydrogen atom transfer or electron transfer) of a species with DPPH. The effect of esterification of cinnamic acid was confirmed using ethyl cinnamate which greatly enhances the radical scavenging activity. Although, compared to the lipophilized cinnamic acid product, the activity was lower. The radical scavenging activity of the main component isolated from lipophilized cinnamic acid product using solid phase extraction, monocinnamoyl dioleoyl glycerol, was as good as the unseparated mixture of lipophilized product. Based on the ratio of a substrate to DPPH concentration, lipophilized ferulic acid was a much more efficient radical scavenger than lipophilized cinnamic acid.
The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.
Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D
2004-05-01
In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.
NASA Astrophysics Data System (ADS)
Whalley, Lisa K.; Stone, Daniel; Dunmore, Rachel; Hamilton, Jacqueline; Hopkins, James R.; Lee, James D.; Lewis, Alastair C.; Williams, Paul; Kleffmann, Jörg; Laufs, Sebastian; Woodward-Massey, Robert; Heard, Dwayne E.
2018-02-01
Measurements of OH, HO2, RO2i (alkene and aromatic-related RO2) and total RO2 radicals taken during the ClearfLo campaign in central London in the summer of 2012 are presented. A photostationary steady-state calculation of OH which considered measured OH reactivity as the OH sink term and the measured OH sources (of which HO2+ NO reaction and HONO photolysis dominated) compared well with the observed levels of OH. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2, however, highlighted a substantial discrepancy between radical observations under lower NOx conditions ([NO] < 1 ppbv), typically experienced during the afternoon hours, and indicated that the model was missing a significant peroxy radical sink; the model overpredicted HO2 by up to a factor of 10 at these times. Known radical termination steps, such as HO2 uptake on aerosols, were not sufficient to reconcile the model-measurement discrepancies alone, suggesting other missing termination processes. This missing sink was most evident when the air reaching the site had previously passed over central London to the east and when elevated temperatures were experienced and, hence, contained higher concentrations of VOCs. Uncertainties in the degradation mechanism at low NOx of complex biogenic and diesel related VOC species, which were particularly elevated and dominated OH reactivity under these easterly flows, may account for some of the model-measurement disagreement. Under higher [NO] (> 3 ppbv) the box model increasingly underpredicted total [RO2]. The modelled and observed HO2 were in agreement, however, under elevated NO concentrations ranging from 7 to 15 ppbv. The model uncertainty under low NO conditions leads to more ozone production predicted using modelled peroxy radical concentrations ( ˜ 3 ppbv h-1) versus ozone production from peroxy radicals measured ( ˜ 1 ppbv h-1). Conversely, ozone production derived from the predicted peroxy radicals is up to an order of magnitude lower than from the observed peroxy radicals as [NO] increases beyond 7 ppbv due to the model underprediction of RO2 under these conditions.
Polluting Canada's Public Square: The Harper Government's War on Science and the Environment?
NASA Astrophysics Data System (ADS)
Linnitt, C.; Hoggan, J. C.
2013-12-01
Conversations about key environmental issues like climate change are increasingly viewed as matters of politics rather than matters of science. As a result, competing -and often polarized - interests have made public debate on these issues vulnerable to aggressive politicization. This politicization, particularly when it comes to important policy decisions regarding industrial (and especially fossil fuel) development, obscures the facts on these issues, leaving democratic public debate prey to aggressive public relations tactics, misinformation campaigns, pseudo-science, modern-day propaganda and/or the deliberate ';pollution' of the public square. In Canada a coordinated effort is underway to mischaracterize environmental groups as radical ideologues, associating environmental views and pursuits with extremism. A Tea Party-style echo chamber has also emerged in Canada, coordinating anti-science messaging in an attempt to bolster industrial development while misaligning environmental non-profits with domestic terror threats. This attempt to undermine ecological agendas and to push environmental concerns to the margins is paired with government-sponsored censorship of federally-funded scientists and the elimination of vital public science programs in Canada. The result is a dearth of scientific information surrounding significant environmental concerns - such as the Alberta oil sands and industry contamination of waterways - and a dangerous and false association of these issues with an extremist agenda. Ultimately scientists and science communicators face a unique set of challenges in Canada when it comes to addressing environmental issues. Although the 'science' of science communication has evolved to address relevant cultural and socio-political barriers associated with change resistance (for example, adapting one's behavior to minimize greenhouse gas emissions), much work remains in both acknowledging and ameliorating the politicization of science and the intentional pollution of public conversations. Democracy depends on the public's access to information; however, in a climate in which that access is under threat, scientists and science communicators may need to address those fundamental concerns deliberately in order to participate effectively in the public policy and decision-making process. This paper provides a brief overview of environmental communications theory and practice, current misinformation techniques, and key instances in which either government policy and/or media and industry behavior have actively sought to contaminate or impede more constructive discourse on issues of science and environmental regulation. We conclude by offering a set of recommendations for improving the ability of scientists and experts to communicate effectively in an increasingly complex political and media environment, and for safeguarding the quality of democratic discourse on these and other issues.
Horton, Jureta W
2003-07-15
Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-kappaB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy (ascorbic acid, glutathione, N-acetyl-L-cysteine, or vitamins A, E, and C alone or in combination) have been shown to reduce burn and burn/sepsis mediated mortality, to attenuate changes in cellular energetics, to protect microvascular circulation, reduce tissue lipid peroxidation, improve cardiac output, and to reduce the volume of required fluid resuscitation. Antioxidant vitamin therapy with fluid resuscitation has also been shown to prevent burn related cardiac NF-kappaB nuclear migration, to inhibit cardiomyocyte secretion of TNF-alpha, IL-1beta, and IL-6, and to improve cardiac contractile function. These data collectively support the hypothesis that cellular oxidative stress is a critical step in burn-mediated injury, and suggest that antioxidant strategies designed to either inhibit free radical formation or to scavage free radicals may provide organ protection in patients with burn injury.
Kaiser, E W; Wallington, T J
2017-11-16
The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl 2 ) with n-butane generated the 2-butyl radicals in mixtures of n-C 4 H 10 , O 2 , and Cl 2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition channels of the 2-butylperoxy radical, which are in competition with the bimolecular channels that form butanone, acetaldehyde, and 2-butanol. Such unimolecular decomposition channels would be unlikely to proceed through conventional transition states because those states would be very constrained. Therefore, the possibility that these decomposition channels proceed via roaming should be considered. In addition, we investigated and were unable to fit our data trends by a simplified ketohydroperoxide mechanism.
Monodehydroascorbate reductase mediates TNT toxicity in plants.
Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C
2015-09-04
The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.
A review of plant-based compounds and medicinal plants effective on atherosclerosis
Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud
2017-01-01
Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications. PMID:28461816
A review of plant-based compounds and medicinal plants effective on atherosclerosis.
Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud
2017-01-01
Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.
INCREASED 8-HYDROXY GUANINE CONTENT OF CHLOROPLAST DNA FROM OZONE TREATED PLANTS
The mechanism of ozone-mediated plant injury is not know but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with elect...
Molecularization in nutritional science: a view from philosophy of science.
Ströhle, Alexander; Döring, Frank
2010-10-01
Over the past decade, a trend toward molecularization, which could be observed in almost all bioscientific disciplines, now appears to have also developed in nutritional science. However, molecular nutrition research gives birth to a series of questions. Therefore, we take a look at the epistemological foundation of (molecular) nutritional science. We (i) analyze the scientific status of (molecular) nutritional science and its position in the canon of other scientific disciplines, (ii) focus on the cognitive aims of nutritional science in general and (iii) on the chances and limits of molecular nutrition research in particular. By taking up the thoughts of an earlier work, we are analyzing (molecular) nutritional science from a strictly realist and emergentist-naturalist perspective. Methodologically, molecular nutrition research is bound to a microreductive research approach. We emphasize, however, that it need not be a radical microreductionism whose scientific reputation is not the best. Instead we favor moderate microreductionism, which combines reduction with integration. As mechanismic explanations are one of the primary aims of factual sciences, we consider it as the task of molecular nutrition research to find profound, i.e. molecular-mechanismic, explanations for the conditions, characteristics and changes of organisms related to the organism-nutrition environment interaction.
NASA Astrophysics Data System (ADS)
Rodrigues, André; Camillo, Juliano; Mattos, Cristiano
2014-09-01
In this review essay we examine five categories of dialectical materialism proposed by Paulo Lima Junior, Fernanda Ostermann, and Flavia Rezende in their study of the extent to which the articles published in Cultural Studies of Science Education, that use a Vygotskian approach, are committed to Marxism/dialectical materialism. By closely examining these categories ("thesis, antithesis and synthesis," "unity of analysis," "History," "revolution," "materialism") we expect to enrich the general discussion about the possible contributions of Marxism to science education. We perceive part of science education practice as orientating toward positivism, which reduces human beings—teachers, learners and researchers—to isolated individuals who construct knowledge by themselves. The very same approach aggravates the inner contradiction of the capitalist society demanding commitments from researchers to continually build innovative science education from human praxis. Nevertheless, it is necessary to situate ourselves beyond a formal commitment with dialectical materialism and hence reach the heart of this method. Besides understanding the researchers' commitments, we question the extent to which the respective research helps to radically refresh the current view on science, science education practice, and research in science education.
Wang, Ziying; Shao, Yisheng; Gao, Naiyun; Lu, Xian; An, Na
2018-02-01
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×10 7 M -1 s -1 and (3.7±0.1)×10 9 M -1 s -1 , respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (k o ) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The k o of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The k o values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl - ) promoted the degradation of DEP at low Cl - concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru
2016-08-07
An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn
An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less
New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria.
Selmer, Thorsten; Pierik, Antonio J; Heider, Johann
2005-10-01
During the last decade, an increasing number of new enzymes containing glycyl radicals in their active sites have been identified and biochemically characterised. These include benzylsuccinate synthase (Bss), 4-hydroxyphenylacetate decarboxylase (Hpd) and the coenzyme B12-independent glycerol dehydratase (Gdh). These are involved in metabolic pathways as different as anaerobic toluene metabolism, fermentative production of p-cresol and glycerol fermentation. Some features of these newly discovered enzymes are described and compared with those of the previously known glycyl radical enzymes pyruvate formate-lyase (Pfl) and anaerobic ribonucleotide reductase (Nrd). Among the new enzymes, Bss and Hpd share the presence of small subunits, the function of which in the catalytic mechanisms is still enigmatic, and both enzymes contain metal centres in addition to the glycyl radical prosthetic group. The activating enzymes of the novel systems also deviate from the standard type, containing at least one additional Fe-S cluster. Finally, the available whole-genome sequences of an increasing number of strictly or facultative anaerobic bacteria revealed the presence of many more hitherto unknown glycyl radical enzyme (GRE) systems. Recent studies suggest that the particular types of these enzymes represent the ends of different evolutionary lines, which emerged early in evolution and diversified to yield remarkably versatile biocatalysts for chemical reactions that are otherwise difficult to perform in anoxic environments.
Studies on free radicals, antioxidants, and co-factors
Rahman, Khalid
2007-01-01
The interplay between free radicals, antioxidants, and co-factors is important in maintaining health, aging and age-related diseases. Free radicals induce oxidative stress, which is balanced by the body’s endogenous antioxidant systems with an input from co-factors, and by the ingestion of exogenous antioxidants. If the generation of free radicals exceeds the protective effects of antioxidants, and some co-factors, this can cause oxidative damage which accumulates during the life cycle, and has been implicated in aging, and age dependent diseases such as cardiovascular disease, cancer, neurodegenerative disorders, and other chronic conditions. The life expectancy of the world population is increasing, and it is estimated that by 2025, 29% of the world population will be aged ≥60 years, and this will lead to an increase in the number of older people acquiring age-related chronic diseases. This will place greater financial burden on health services and high social cost for individuals and society. In order to acheive healthy aging the older people should be encouraged to acquire healthy life styles which should include diets rich in antioxidants. The aim of this review is to highlight the main themes from studies on free radicals, antioxidants and co-factors, and to propose an evidence-based strategy for healthy aging. PMID:18044138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.
Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less
Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.
2017-09-22
Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne
2017-07-01
This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.
Using an integral-field unit spectrograph to study radical species in cometary coma
NASA Astrophysics Data System (ADS)
Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita
2015-01-01
We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.
Using an integral-field unit spectrograph to study radical species in cometary coma
NASA Astrophysics Data System (ADS)
Lewis, Benjamin; Pierce, Donna; Cochran, Anita; Vaughan, Charles
2014-11-01
We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA’s Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.
NASA Astrophysics Data System (ADS)
Mouloudakis, K.; Kominis, I. K.
2017-02-01
Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.
Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide
2017-03-01
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Han, Y H; Ichikawa, K; Utsumi, H
2004-01-01
Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.
Li, Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki
2007-09-19
Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH* signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH* signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]* radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions.
NASA Astrophysics Data System (ADS)
Alam, M. S.; Kelm, M.; Rao, B. S. M.; Janata, E.
2004-12-01
Two new procedures were employed for studying the reaction of hydrogen atoms with hydrogen peroxide. The absorption in the UV-range was observed either for an acidic aqueous solution containing only hydrogen peroxide or for a similar solution but also containing an aliphatic alcohol. From the increase in absorption of various alcohol radicals, a rate constant of 3.5×10 7 dm 3 mol -1 s -1 was determined. In addition, the rate constant for the reaction of hydroxyl radicals with hydrogen peroxide was determined to be 3.0×10 7 dm 3 mol -1 s -1.
The impact factor and journals in laboratory medicine.
Lippi, Giuseppe; Favaloro, Emmanuel J; Guidi, Gian Cesare
2009-01-01
The impact factor, originally devised by Eugene Garfield, offsets the advantages of journal size and age, and is a tool often used for the evaluation of journals and scientists, and is considered to provide a reliable trend of basic and clinical research worldwide. Overall, the median impact factor of all medical laboratory journals increased by 23% from 2001 to 2007, but it was slightly decreased from that of the previous year (-4.1%). Moreover, the aggregate impact factor of all these journals, which takes into account the number of citations for all journals in this category and the number of articles from all journals in the same category, increased from 2.042 in 2003 to 2.153 in 2004, but decreased to 2.060 in 2005 and has remained fairly stable in subsequent years (2.054 in 2006 and 2.080 in 2007), reflecting remarkable increases and substantial reductions observed for individual journals. This trend mirrored that of biochemistry and molecular biology journals, whereas journals listed under the subject categories "pathology", "surgery" and "Medicine, general and internal" substantially increased their aggregate impact factor from 2003 to 2007. According to the impact factor trend of laboratory medicine journals, it appears that medical laboratory science has reached a steady state. This might be partially due to the radical changes that have occurred within medical laboratory science since the beginning of the last millennium and raises the question of whether laboratory professionals should consider embracing new areas of research, such as the role of laboratory diagnostics in surgery and internal medicine.
Canda, Abdullah Erdem; Asil, Erem; Balbay, Mevlana Derya
2011-02-01
A case of moving ileal Taenia saginata parasites is presented with demonstrative images. We came across the parasites surprisingly while performing robot-assisted laparoscopic radical cystoprostatectomy with intracorporeal Studer pouch urinary diversion. We recommend stool sample evaluation in the preoperative period for possible presence of intestinal parasitic diseases, particularly in patients with bladder cancer who are admitted from areas with an increased incidence of intestinal parasitic diseases, before opening the bowel segments during surgery to perform radical cystectomy and urinary diversion.
Effects of B group vitamins on reactions of various alpha-hydroxyl-containing organic radicals.
Lagutin, P Yu; Shadyro, O I
2005-08-15
Effects of vitamins B1, B2, B6, and pyridoxal phosphate (PPh) on final product formation in radiolysis of aqueous solutions of ethanol, ethylene glycol, alpha-methylglycoside, and maltose were studied. It has been found that vitamin B2 and PPh effectively oxidize R*CHOH species, while suppressing their recombination and fragmentation reactions, thereby increasing the yields of the respective oxidation products. Vitamins B1 and B2 are capable of reducing alcohol radicals to the respective initial molecules, decreasing the yields of the radical transformation products.
Jensen, Bente Thoft; Dalbagni, Guido; Borre, Michael; Love-Retinger, Nora
2016-01-01
In radical cystectomy, under-nutrition is common and has detrimental physiological and clinical effects, which can lead to increased complications and prolonged recovery. This article compares measurements and outcomes across continents in this patient population with advanced bladder cancer. The association of preoperative nutritional risk, nutritional status, and length of stay is equal across continents, and the results promote increased clinical awareness that women at severe risk should be identified preoperatively.
Petersen, Richard C
2017-01-01
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.
Petersen, Richard C
2017-01-01
A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy. PMID:29202036
Pham, Le Thanh Mai; Kim, Su Jin; Kim, Yong Hwan
2016-01-01
Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be recovered after the reaction with degradation product (guaiacol) of lignin phenolic dimer. In the study of lignin peroxidase isozyme H8 from white-rot fungi Phanerochaete chrysosporium (LiPH8), W251 site was revealed to make the covalent coupling with one moiety of monolignolic radical (guaiacol radical) by LC-MS/MS analysis. Hypothetical electron-relay containing W251 residue was newly suggested based on the observation of repressed radical coupling and remarkably lower electron transfer rate for W215A mutant. Furthermore, the retardation of the suicidal radical coupling between the W251 residue and the monolignolic radical was attempted by supplementing the acidic microenvironment around the W251 residue to engineer radical-robust LiPH8. Among many mutants, mutant A242D showed exceptional catalytic performances by yielding 21.1- and 4.9-fold higher increases of k cat and k cat /K M values, respectively, in the oxidation of non-phenolic model lignin dimer. A mechanism-based suicide inhibition of LiPH8 by phenolic compounds was firstly revealed and investigated in this work. Radical-robust LiPH8 was also successfully engineered by manipulating the transient radical state of radical-susceptible electron-relay. Radical-robust LiPH8 will play an essential role in degradation of lignin, which will be consequently linked with improved production of sugars from lignocellulose biomass.
Avoiding and managing vascular injury during robotic-assisted radical prostatectomy
Nunez Bragayrac, Luciano A.; Machuca, Victor; Garza Cortes, Roberto; Azhar, Raed A.
2015-01-01
There has been an increase in the number of urologic procedures performed robotically assisted; this is the case for radical prostatectomy. Currently, in the USA, 67% of prostatectomies are performed robotically assisted. With this increase in robotic urologic surgery it is clear that there are more surgeons in their learning curve, where most of the complications occur. Among the complications that can occur are vascular injuries. These can occur in the initial stages of surgery, such as in accessing the abdominal cavity, as well as in the intraoperative or postoperative setting. We present the most common vascular injuries in robot-assisted radical prostatectomy, as well as their management and prevention. We believe that it is of vital importance to be able to recognize these injuries so that they can be prevented. PMID:25642293
Causes and consequences of limitations in visual working memory.
Fallon, Sean James; Zokaei, Nahid; Husain, Masud
2016-04-01
Recent methodological and conceptual advances have led to a fundamental reappraisal of the nature of visual working memory (WM). A large corpus of evidence now suggests that there might not be a hard limit on the number of items that can be stored. Instead, WM may be better captured by a highly limited--but flexible--resource model. More resource can be allocated to prioritized items but, crucially, at a cost of reduced recall precision for other stored items. Expectations may modulate resource distribution, for example, through neural oscillations in the alpha band increasing inhibition of irrelevant cortical regions. Our understanding of the neural architecture of WM is also undergoing radical revision. Whereas the prefrontal cortex has previously dominated research endeavors, other cortical regions, such as early visual areas, are now considered to make an essential contribution, for example holding one or more items in a privileged state or "focus of attention" within WM. By contrast, the striatum is increasingly viewed as crucial in determining why and how items are gated into memory, while the hippocampus, it has controversially been argued, might be critical in the formation of temporally resilient conjunctions across features of stored items in WM. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Maddox, W A; Carpenter, J T; Laws, H L; Soong, S J; Cloud, G; Urist, M M; Balch, C M
1983-01-01
This study reports the results of a prospectively randomized trial for treatment of carcinoma of the breast comparing standard (Halsted) radical mastectomy to a modified radical mastectomy. Three hundred eleven patients with primary operable carcinoma of the breast were entered in a surgical and adjunctive chemotherapy trial in Alabama between 1975 and 1978. A total of 91 surgeons participated (all Diplomats of the American Board of Surgery and Members of the American College of Surgeons). All operative reports, pathology and therapy were reviewed by referees. Histologically node positive patients were randomized after operation to receive melphalan or C.M.F.(cytoxan, methotrexate, and 5-FU) for 1 year. After a median follow-up of 5.5 years, there was no significant difference in disease-free survival or in overall survival between the two groups. There was a trend toward improved 5-year survival rates in the radical mastectomy group compared to the modified radical mastectomy group (84% vs. 76%, p = 0.14). There was also an increased incidence of local wound recurrence in those patients receiving modified radical mastectomy, but the differences were not statistically significant (p = 0.09). Longer follow-up will be necessary to evaluate these results more fully. PMID:6870379
Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.
Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong
2017-12-14
Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abstract: With increasing worldwide incidence of toxic cyanobacterial blooms in bodies of water, cylindrospermopsin (CYN) has become a significant concern to public health and water management officials. In this study, the removal of CYN by UV-254 nm-mediated advanced oxidation ...
Conflict and Co-Operation between "Popular" and "State" Education in Latin America
ERIC Educational Resources Information Center
Kane, Liam
2007-01-01
During the Latin American oppression of the 1970s, as the rapidly increasing number of grassroots "popular" social movements sought to profit from and expand the ideas of the radical Brazilian educationist Paulo Freire, there developed, in its own right, a "popular education" movement which engaged in radical education for…
Radical Surgery Improves Survival in Patients with Stage 4 Neuroblastoma.
Vollmer, Katherin; Gfroerer, Stefan; Theilen, Till-Martin; Bochennek, Konrad; Klingebiel, Thomas; Rolle, Udo; Fiegel, Henning
2018-06-01
Neuroblastoma (NBL) is the most common extracranial solid tumor in children. Despite a good overall prognosis in NBL patients, the outcome of children with stage 4 disease, even with multimodal intensive therapy, remains poor. The role of extended surgical resection of the primary tumor is in numerous studies controversial. The aim of this study was to retrospectively analyze the impact of radical surgical resection on the overall- and event-free survival of stage 4 NBL patients. We retrospectively analyzed patient charts of 40 patients with stage 4 NBL treated in our institution between January 1990 and May 2012. All clinical and pathological findings of stage 4 NBL patients were included. Extent of surgery was assessed from the operation records and was classified as non-radical (tumor biopsy, partial 50-90% resection) or radical (near-complete >90% resection, complete resection). Overall- (OS) and event-free (EFS) survival was assessed using the Kaplan-Meier analysis and log-rank test. A multivariate Cox regression analysis was used to demonstrate independency. In total, 29/40 patients were operated radically (>90% resection), whereas 11 patients received subtotal resection or biopsy only. OS and EFS were significantly increased in patients with radical operation compared with non-radical resection (p = 0.0003 for OS, p = 0.004 for EFS; log-rank test). A multivariate Cox regression analysis revealed radical operation as a significant and independent parameter for OS and EFS. Our data indicate that radical (over 90% resection) surgery improves OS and EFS in stage 4 NBL patients.
Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin
2017-02-01
The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydroxyl radicals from secondary organic aerosol decomposition in water
NASA Astrophysics Data System (ADS)
Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu
2016-02-01
We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.
[Effect of ascorbic acid (vitamin C) on the EPR spectra from the black and red hair].
Chikvaidze, E; Miminoshvili, A; Gogoladze, T; Kiparoidze, S
2012-02-01
The EPR spectra of melanin's free radicals in natural black and red hair have been investigated. It is show that the EPR spectrum of black hair is slightly asymmetric singlet with g=2,0035 and ΔH=0,5 mTl. The EPR spectrum of red hair with g=2,0053 differs from the spectrum of black hair. Under the influence of visible (blue with λ(max)=450 nm) in both types of hair (black and red), the protoinduced free radicals appear, which indicates an increase in the intensity of already existing EPR spectrum of hair. It should be noted that the EPR spectra of red hair from various donors are different. The antioxidant ascorbic acid has the different effect on the photoinduced free radicals. In particular, in the case of black hair, the concentration of photoinduced free radicals is slightly reduced, whereas in red hair, the disappearance of the triplet in the spectrum is observed, and at the same time, the spectrum becomes a singlet, the intensity of which increases sharply.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu
Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less
Introduction to Energy - 2nd Edition
NASA Astrophysics Data System (ADS)
Cassedy, Edward S.; Grossman, Peter Z.
1998-12-01
Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems that demand timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to de-regulation. Assuming no prior technical expertise and avoiding complex mathematical formulation, it is directed at a broad readership. The second edition will follow the first in proving especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses which touch upon energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics. Fully updated second edition of successful first edition that was adopted on Science, Technology and Society courses Provides a critical examination of all aspects of modern energy production for non-technical readers For a broad readership from a variety of backgrounds
1987-09-08
under the leadership of the RCP , the vital center of the nation« Thanks to a broad and radically innovative theoretical and practical-political...revolutionary process, namely the RCP . In referring to the 49 critical importance of organizational and managerial problems to the success of the aims and...base of society, science and technology in general. His speech at the Plenum of the RCP Central Committee of 2^-25 March 1987, particularly- rich in
Coupling free radical catalysis, climate change, and human health.
Anderson, J G; Clapp, C E
2018-04-25
We present the chain of mechanisms linking free radical catalytic loss of stratospheric ozone, specifically over the central United States in summer, to increased climate forcing by CO2 and CH4 from fossil fuel use. This case directly engages detailed knowledge, emerging from in situ aircraft observations over the polar regions in winter, defining the temperature and water vapor dependence of the kinetics of heterogeneous catalytic conversion of inorganic chlorine (HCl and ClONO2) to free radical form (ClO). Analysis is placed in the context of irreversible changes to specific subsystems of the climate, most notably coupled feedbacks that link rapid changes in the Arctic with the discovery that convective storms over the central US in summer both suppress temperatures and inject water vapor deep into the stratosphere. This places the lower stratosphere over the US in summer within the same photochemical catalytic domain as the lower stratosphere of the Arctic in winter engaging the risk of amplifying the rate limiting step in the ClO dimer catalytic mechanism by some six orders of magnitude. This transitions the catalytic loss rate of ozone in lower stratosphere over the United States in summer from HOx radical control to ClOx radical control, increasing the overall ozone loss rate by some two orders of magnitude over that of the unperturbed state. Thus we address, through a combination of observations and modeling, the mechanistic foundation defining why stratospheric ozone, vulnerable to increased climate forcing, is one of the most delicate aspects of habitability on the planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Sayan; Celestre, Rich; Feng, Jun
2016-01-02
The method of synchrotron X-ray protein footprinting (XF-MS) is used to determine protein conformational changes, folding, protein-protein and protein-ligand interactions, providing information which is often difficult to obtain using X-ray crystallography and other common structural biology methods [1 G. Xu and M.R. Chance, Chemical Reviews 107, 3514–3543 (2007). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] –3 V.N. Bavro, Biochem Soc Trans 43, 983–994 (2015). [CrossRef], [PubMed], [Web of Science ®], [Google Scholar] ]. The technique uses comparative in situ labeling of solvent-accessible side chains by highly reactive hydroxyl radicals (•OH) in buffered aqueous solution under different assay conditions. Inmore » regions where a protein is folded or binds a partner, these •OH susceptible sites are inaccessible to solvent, and therefore protected from labeling. The •OH are generated by the ionization of water using high-flux-density X-rays. High-flux density is a key factor for XF-MS labeling because obtaining an adequate steady-state concentration of hydroxyl radical within a short irradiation time is necessary to minimize radiation-induced secondary damage and also to overcome various scavenging reactions that reduce the yield of labeled side chains.« less
How to Cool the Planet by Jeff Goodell
NASA Astrophysics Data System (ADS)
Goodell, J.
2010-12-01
How to Cool the Planet is a narrative about the radical and controversial world of geoengineering - the deliberate, large-scale manipulation of the earth’s climate to reduce the risk of global warming. Unlike other books on this subject, it is not a polemic or historical review. It is the story of the author, a best-selling author and journalist for the New York Times Magazine, Rolling Stone, and other publications, to answer a not-so-simple question: is geoengineering a crazy idea or not? To answer this question, the author sets out on a quest to talk with - and test the sanity of - the leading scientists in this field, from David Keith, a physicist at the University of Calgary, to James Lovelock, independent scientist best known for his Gaia theory. Along the way, Goodell explores the science behind ideas like cloud brightening and the injection of sulfur particles into the stratosphere to deflect sunlight. But he is equally interested in the moral and ethical issues behind these ideas, as well the hopes and fears of the scientists who are exploring them. In the end, the book is a kind of radical experiment itself, exploring the not just the complexities of an emerging field of science, but the complexities of communicating such audacious thinking to non-scientific readers.
Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo
2012-05-21
Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.
Tyrosyl Radicals in Dehaloperoxidase
Dumarieh, Rania; D'Antonio, Jennifer; Deliz-Liang, Alexandria; Smirnova, Tatyana; Svistunenko, Dimitri A.; Ghiladi, Reza A.
2013-01-01
Dehaloperoxidase (DHP) from Amphitrite ornata, having been shown to catalyze the hydrogen peroxide-dependent oxidation of trihalophenols to dihaloquinones, is the first oxygen binding globin that possesses a biologically relevant peroxidase activity. The catalytically competent species in DHP appears to be Compound ES, a reactive intermediate that contains both a ferryl heme and a tyrosyl radical. By simulating the EPR spectra of DHP activated by H2O2, Thompson et al. (Thompson, M. K., Franzen, S., Ghiladi, R. A., Reeder, B. J., and Svistunenko, D. A. (2010) J. Am. Chem. Soc. 132, 17501–17510) proposed that two different radicals, depending on the pH, are formed, one located on either Tyr-34 or Tyr-28 and the other on Tyr-38. To provide additional support for these simulation-based assignments and to deduce the role(s) that tyrosyl radicals play in DHP, stopped-flow UV-visible and rapid-freeze-quench EPR spectroscopic methods were employed to study radical formation in DHP when three tyrosine residues, Tyr-28, Tyr-34, and Tyr-38, were replaced either individually or in combination with phenylalanines. The results indicate that radicals form on all three tyrosines in DHP. Evidence for the formation of DHP Compound I in several tyrosine mutants was obtained. Variants that formed Compound I showed an increase in the catalytic rate for substrate oxidation but also an increase in heme bleaching, suggesting that the tyrosines are necessary for protecting the enzyme from oxidizing itself. This protective role of tyrosines is likely an evolutionary adaptation allowing DHP to avoid self-inflicted damage in the oxidative environment. PMID:24100039
Yang, Limei; Sostaric, Joe Z; Rathman, James F; Kuppusamy, Periannan; Weavers, Linda K
2007-02-15
Sonolysis of argon-saturated aqueous solutions of the nonvolatile surfactants sodium dodecyl sulfate (SDS) and sodium 1-pentanesulfonate (SPSo) was investigated at three ultrasonic frequencies under both continuous wave (CW) and pulsed ultrasound. Secondary carbon-centered radicals were detected by spin trapping using 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS) and electron paramagnetic resonance (EPR) spectroscopy. Following sonolysis, -*CH- radicals were observed for both surfactants under both sonication modes. Under CW at 354 kHz, the maximum plateau -*CH- radical yield was higher for SPSo than for SDS, indicating that SDS, which is more surface active under equilibrium conditions, accumulates at the gas/solution interface of cavitation bubbles to a lesser degree, compared with the less surface active surfactant, SPSo. However, after sonolysis (354 kHz) under pulsed ultrasound with a pulse length of 100 ms and an interval of 500 ms, the -*CH- radical yield at the plateau concentrations was higher for SDS than for SPSo due to increased amounts of SDS accumulation on the bubble surfaces. In contrast to the findings following sonolysis at 354 kHz, sonolysis of aqueous surfactant solutions at 620 kHz and 803 kHz showed a higher -*CH- radical yield for SDS compared with SPSo under CW but lower -*CH- radical yield with increasing pulsing interval, indicating a frequency dependence on accumulation. Results indicate that pulsing the ultrasonic wave has a significant effect on the relative adsorption ability of n-alkyl surfactants at the gas/solution surface of cavitation bubbles.
Salamone, Michela; Mangiacapra, Livia; DiLabio, Gino A; Bietti, Massimo
2013-01-09
A time-resolved kinetic study on the effect of metal ions (M(n+)) on hydrogen abstraction reactions from C-H donor substrates by the cumyloxyl radical (CumO(•)) was carried out in acetonitrile. Metal salt addition was observed to increase the CumO(•) β-scission rate constant in the order Li(+) > Mg(2+) > Na(+). These effects were explained in terms of the stabilization of the β-scission transition state determined by Lewis acid-base interactions between M(n+) and the radical. When hydrogen abstraction from 1,4-cyclohexadiene was studied in the presence of LiClO(4) and Mg(ClO(4))(2), a slight increase in rate constant (k(H)) was observed indicating that interaction between M(n+) and CumO(•) can also influence, although to a limited extent, the hydrogen abstraction reactivity of alkoxyl radicals. With Lewis basic C-H donors such as THF and tertiary amines, a decrease in k(H) with increasing Lewis acidity of M(n+) was observed (k(H)(MeCN) > k(H)(Li(+)) > k(H)(Mg(2+))). This behavior was explained in terms of the stronger Lewis acid-base interaction of M(n+) with the substrate as compared to the radical. This interaction reduces the degree of overlap between the α-C-H σ* orbital and a heteroatom lone-pair, increasing the C-H BDE and destabilizing the carbon centered radical formed after abstraction. With tertiary amines, a >2-order of magnitude decrease in k(H) was measured after Mg(ClO(4))(2) addition up to a 1.5:1 amine/Mg(ClO(4))(2) ratio. At higher amine concentrations, very similar k(H) values were measured with and without Mg(ClO(4))(2). These results clearly show that with strong Lewis basic substrates variations in the nature and concentration of M(n+) can dramatically influence k(H), allowing for a fine control of the substrate hydrogen atom donor ability, thus providing a convenient method for C-H deactivation. The implications and generality of these findings are discussed.
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
Kierkegaard and psychology as the science of the "multifarious life".
Klempe, Sven Hroar
2013-09-01
The aim of this paper is to demonstrate the actuality of some considerations around psychology made by the Danish philosopher Søren Kierkegaard (1813-1855). According to him psychology is about the "multifarious" life, which is a term that pinpoints the challenges psychology still have when it comes to including changes and genetic perspectives on its understanding of actual living. Yet Kierkegaard discusses psychology in relationship to metaphysics, which is an almost forgotten perspective. His understanding opens up for narrowing the definition of psychology down to the science of subjectivity, which at the same time elevates psychology to being the only science that focuses on the actual human life. Yet Kierkegaard's most important contribution to psychology is to maintain a radical distinction between subjectivity and objectivity, and in this respect the psychology of today is challenged.
Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009.
Harman, Denham
2009-12-01
Aging is the progressive accumulation in an organism of diverse, deleterious changes with time that increase the chance of disease and death. The basic chemical process underlying aging was first advanced by the free radical theory of aging (FRTA) in 1954: the reaction of active free radicals, normally produced in the organisms, with cellular constituents initiates the changes associated with aging. The involvement of free radicals in aging is related to their key role in the origin and evolution of life. The initial low acceptance of the FRTA by the scientific community, its slow growth, manifested by meetings and occasional papers based on the theory, prompted this account of the intermittent growth of acceptance of the theory over the past nearly 55 years.
Manometric characterization of rectal dysfunction following radical hysterectomy.
Barnes, W; Waggoner, S; Delgado, G; Maher, K; Potkul, R; Barter, J; Benjamin, S
1991-08-01
Bladder dysfunction thought to be due to partial denervation has been described following radical hysterectomy. Some patients experience acute and chronic rectal dysfunction characterized by difficulty with defecation and loss of defecatory urge. To define this abnormality, anorectal pressure profiles were examined in 15 patients with Stage I carcinoma of the cervix before and after radical hysterectomy. Profiles were done using standard anorectal manometry with a water-infused system. In all patients preoperative manometric profiles were normal; postoperative studies were abnormal in all patients. Features seen include altered relaxation of the internal sphincter, increased distension needed to trigger relaxation, and decreased rectal sensation; external sphincters and resting internal sphincters were unchanged. Postoperatively, 12 patients reported problems with rectal function. A physiologic defect is definable in patients undergoing radical hysterectomy; this suggests disruption of the spinal reflex arcs controlling rectal emptying. These physiologic abnormalities correlate with the clinical symptomatology experienced by some patients. Continuing definition and evaluation of management options in this situation should be useful in developing effective therapy for rectal dysfunction following radical hysterectomy.
Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals
Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-01-01
Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334
Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon
2005-02-09
Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.
Some aspects of radical cascade and relay reactions
Quiclet-Sire, Béatrice; Zard, Samir Z.
2017-01-01
The ability to create carbon–carbon bonds is at the heart of organic synthesis. Radical processes are particularly apt at creating such bonds, especially in cascade or relay sequences where more than one bond is formed, allowing for a rapid assembly of complex structures. In the present brief overview, examples taken from the authors' laboratory will serve to illustrate the strategic impact of radical-based approaches on synthetic planning. Transformations involving nitrogen-centred radicals, electron transfer from metallic nickel and the reversible degenerative exchange of xanthates will be presented and discussed. The last method has proved to be a particularly powerful tool for the intermolecular creation of carbon–carbon bonds by radical additions even to unactivated alkenes. Various functional groups can be brought into the same molecule in a convergent manner and made to react together in order to further increase the structural complexity. One important benefit of this chemistry is the so-called RAFT/MADIX technology for the manufacture of block copolymers of almost any desired architecture. PMID:28484329
Becker, Julia C; Tausch, Nicole; Spears, Russell; Christ, Oliver
2011-08-01
The present research examined the hypothesis that participation in radical, but not moderate, action results in disidentification from the broader in-group. Study 1 (N = 98) was a longitudinal study conducted in the context of student protests against tuition fees in Germany and confirmed that participation in radical collective action results in disidentification with the broader in-group (students) whereas participation in moderate collective action does not. Both types of action increased politicized identification. Study 2 (N = 175) manipulated the normativeness of different types of imagined collective actions in the same context and replicated this disidentification effect for radical actions, but only when this action mismatched the broader in-group's norms. This study also indicated that these effects were partially mediated by perceived lack of solidarity and perceived lack of commitment to the cause among the broader in-group. The implications of these findings for understanding radicalization within social movements are discussed.
Picosecond Control of Photogenerated Radical Pair Lifetimes Using a Stable Third Radical.
Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Krzyaniak, Matthew D; Wasielewski, Michael R
2016-05-12
Photoinduced electron transfer reactions in organic donor-acceptor systems leading to long-lived radical ion pairs (RPs) have attracted broad interest for their potential applications in fields as diverse as solar energy conversion and spintronics. We present the photophysics and spin dynamics of an electron donor - electron acceptor - stable radical system consisting of a meta-phenylenediamine (mPD) donor covalently linked to a 4-aminonaphthalene-1,8-dicarboximide (ANI) electron-accepting chromophore as well as an α,γ-bisdiphenylene-β-phenylallyl (BDPA) stable radical. Selective photoexcitation of ANI produces the BDPA-mPD(+•)-ANI(-•) triradical in which the mPD(+•)-ANI(-•) RP spins are strongly exchange coupled. The presence of BDPA is found to greatly increase the RP intersystem crossing rate from the initially photogenerated BDPA-(1)(mPD(+•)-ANI(-•)) to BDPA-(3)(mPD(+•)-ANI(-•)), resulting in accelerated RP recombination via the triplet channel to produce BDPA-mPD-(3*)ANI as compared to a reference molecule lacking the BDPA radical. The RP recombination rates observed are much faster than those previously reported for weakly coupled triradical systems. Time-resolved EPR spectroscopy shows that this process is also associated with strong spin polarization of the stable radical. Overall, these results show that RP intersystem crossing rates can be strongly influenced by stable radicals nearby strongly coupled RP systems, making it possible to use a third spin to control RP lifetimes down to a picosecond time scale.
Fan, Jiang Ping; Fan, Chong; Dong, Wen Min; Gao, Bin; Yuan, Wei; Gong, Jia Shun
2013-09-01
An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Electrochemical models for the radical annihilation reactions in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Armstrong, Neal R.; Anderson, Jeffrey D.; Lee, Paul A.; McDonald, Erin; Wightman, R. M.; Hall, Hank K.; Hopkins, Tracy; Padias, Anne; Thayumanavan, Sankaran; Barlow, Stephen; Marder, Seth R.
1998-12-01
Bilayer organic light emitting diodes (OLEDs), based upon vacuum deposited molecules, or single layer OLEDs, based upon spin-cast polymeric materials, doped with these same molecules, produce light from emissive states of the lumophores which are created through annihilation reactions of radical species, which can be modeled through solution electrochemistry. Difference seen in solution reduction and oxidation potentials of molecular components of OLEDs are a lower limit estimate to the differences in energy of these same radical species in the condensed phase environmental. The light emitted from an aluminum quinolate (Alq3)/triarylamine (TPD)-based OLED, or an Alq3/PVK single layers OLED, can be reproduce from solution cross reactions of Alq3/TPD+. The efficiency of this process increases as the oxidation potential of the TPD increases, due to added substituents. Radical cations and anions of solubilized version of quinacridone dopants (DIQA) which have been used to enhance efficiencies in these OLEDs, are shown to be electrochemically more stable than Alq3 and Alq3, and DIQA radical annihilation reactions produce the same emissive state as in the quinacridone-doped OLEDs. Electrochemical studies demonstrate the ways in which other dopants might enhance the efficiency and shift the color output of OLEDs, across the entire visible and near-IR spectrum. Chemical degradation pathways of these same molecular components, which they may undergo during OLED operation, are also revealed by these electrochemical studies.
HUANG, Run-ting; HUANG, Qing; WU, Gen-liang; CHEN, Chun-guang; LI, Zong-jun
2017-01-01
Xiangxi flavor vinegar (XV) is one of Hunan Province’s traditional fermented vinegars. It is produced from herb, rice, and spring water with spontaneous liquid-state fermentation techniques. In this study, we investigated the antioxidant property of XV by analyzing its antioxidant compounds, its free radical scavenging property in vitro and in vivo, and its effects on antioxidant enzyme activity and apoptosis in Caenorhabditis elegans. The results showed that XV is rich in antioxidants. In particular, ligustrazine reached 6.431 μg/ml. The in vitro 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH•), hydroxyl radical (•OH), and superoxide anion radical (O2 •−) scavenging rates of XV were 95.85%, 97.22%, and 63.33%, respectively. The reactive oxygen species (ROS) content in XV-treated C. elegans decreased significantly (P<0.01) compared to the control group. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities were remarkably increased (P<0.01) in C. elegans after XV treatment. In addition, XV could upregulate CED-9 protein expression and downregulate CED-3 protein expression in C. elegans. These results prove that XV is rich in antioxidants and scavenges radicals in vitro efficiently. XV inhibits apoptosis in C. elegans probably by scavenging ROS and increasing the activities of its antioxidant enzymes. PMID:28378570
Van den Hende, Ellis A.
2016-01-01
This article investigates the role of transportation in concept tests (i.e., a vivid mental image of a new product concept and the way of using it) for radically new products. Based on transportation literature, the article proposes that concept descriptions in a story format can stimulate transportation. Further, the article builds on the literature on domain‐specific skills to propose that technological reflectiveness (i.e., the ability to think about the impact of a technological product on its users and society in general) and product expertise increase transportation. The article explores the effect that transportation has on the ability of consumers to enumerate the advantages and disadvantages of a radically new product and on their ability to provide valuable concept improvement ideas (i.e., ideas that are highly novel, feasible, and beneficial for consumers). A quasi‐experiment with 253 participants demonstrates that a story format, product experience with related product categories, and technological reflectiveness increased transportation with regard to radically new products. The empirical research also showed that transportation facilitates the enumeration of the advantages and the disadvantages of a concept, resulting in more valuable concept improvement ideas. These findings suggest that innovation managers should strive to evoke transportation in concept tests for radically new products, as transportation allows consumers to provide more valuable input.
Balabanlı, Barbaros; Balaban, Tuba
2015-10-01
Endotoxin has been known to cause the formation and damage of free radical. The importance of boron for human life is increasing each passing day, and its consuming fields are continuing to expand due to the advances in science and technology. Therefore, in our study, we intended to investigate into the effects of boron on liver tissue oxidative events. Eighteen male Wistar albino rats were randomly separated into three equal groups in the experiments; control group, boron + endotoxin group, and endotoxin group. Dissolved in distilled water, boric acid (100 mg/kg) was administered to boron + endotoxin group via gavage procedure for 28 days. Only distilled water was administered to control and endotoxin groups via gavage procedure for 28 days. Then 4 mg/kg endotoxin (LPS; Escherichia coli 0111:B4) was intraperitoneally (ip) administered to boron + endotoxin and endotoxin groups on the 28th day. Sterile saline was injected into control group on the 28th day (ip). Malondialdehyde (MDA), which is the end product of lipid peroxidation in liver tissues, protein carbonyl compounds (PC), which are protein oxidization markers, and glutathione (GSH) levels were measured spectrophotometrically. The results were compared with Mann-Whitney U test. When boron + endotoxin group is compared with endotoxin group, PC levels of endotoxin group showed a significant increase. When GSH levels are compared, GSH level in boron + endotoxin group decreased according to endotoxin group. Variations among all groups in MDA levels were found to be statistically insignificant. We are of the opinion that endotoxin affects the proteins by forming free radicals, and boron may also cause the structural and/or functional changes in proteins in order to protect proteins from oxidization.
Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.
Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P
2017-08-01
Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.
Bailey, Damian M; Taudorf, Sarah; Berg, Ronan M G; Lundby, Carsten; Pedersen, Bente K; Rasmussen, Peter; Møller, Kirsten
2011-04-01
Cellular hypoxia triggers a homeostatic increase in mitochondrial free radical signaling. In this study, blood was obtained from the radial artery and jugular venous bulb in 10 men during normoxia and 9 hours hypoxia (12.9% O(2)). Mitochondrial oxygen tension (p(O(2))(mit)) was derived from cerebral blood flow and blood gases. The ascorbate radical (A(•-)) was detected by electron paramagnetic resonance spectroscopy and neuron-specific enolase (NSE), a biomarker of neuronal injury, by enzyme-linked immunosorbent assay. Hypoxia increased the cerebral output of A(•-) in proportion to the reduction in p(O(2))(mit), but did not affect NSE exchange. These findings suggest that neuro-oxidative stress may constitute an adaptive response.
Turning pedagogy into a science: teachers and psychologists in late imperial Russia (1897-1917).
Byford, Andy
2008-01-01
The article explores the Russian teachers' tortuous campaign at the beginning of the twentieth century to rise above the status of "semiprofessionals" by rooting the legitimacy of their professional expertise, training institutions, and working practices in the authority of "science." This involved a radical reshaping of traditional pedagogy and its fusion with new, controversial approaches to child psychology. It also led to a proliferation of teacher-training courses and conferences devoted to "pedagogical psychology," "experimental pedagogy," and "pedology." The article analyzes how the teachers' professional aspirations interacted with the conflicting agendas of rival groups of psychologists, who were themselves engaged in bitter squabbles over the legitimate identity of psychology as a scientific discipline.
The Future of Hearing Aid Technology
Edwards, Brent
2007-01-01
Hearing aids have advanced significantly over the past decade, primarily due to the maturing of digital technology. The next decade should see an even greater number of innovations to hearing aid technology, and this article attempts to predict in which areas the new developments will occur. Both incremental and radical innovations in digital hearing aids will be driven by research advances in the following fields: (1) wireless technology, (2) digital chip technology, (3) hearing science, and (4) cognitive science. The opportunities and limitations for each of these areas will be discussed. Additionally, emerging trends such as connectivity and individualization will also drive new technology, and these are discussed within the context of the areas given here. PMID:17301336
Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P
2015-01-01
Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.
Free radicals: properties, sources, targets, and their implication in various diseases.
Phaniendra, Alugoju; Jestadi, Dinesh Babu; Periyasamy, Latha
2015-01-01
Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, certain drugs like halothane, paracetamol, and radiation). Free radicals can adversely affect various important classes of biological molecules such as nucleic acids, lipids, and proteins, thereby altering the normal redox status leading to increased oxidative stress. The free radicals induced oxidative stress has been reported to be involved in several diseased conditions such as diabetes mellitus, neurodegenerative disorders (Parkinson's disease-PD, Alzheimer's disease-AD and Multiple sclerosis-MS), cardiovascular diseases (atherosclerosis and hypertension), respiratory diseases (asthma), cataract development, rheumatoid arthritis and in various cancers (colorectal, prostate, breast, lung, bladder cancers). This review deals with chemistry, formation and sources, and molecular targets of free radicals and it provides a brief overview on the pathogenesis of various diseased conditions caused by ROS/RNS.
Antioxidant activity and oxidative stress protection of duck proteins hydrolysates in SK-N-SH cells.
Guo, Yuxing; Pan, Daodong; Wu, Zhen; Zhao, Chuanchuan; Cao, Jinxuan
2013-02-26
Studies have found that natural antioxidants, which are free-radical scavengers, can reduce the risk of diseases caused by free radicals. This work investigated the antioxidant properties of duck proteins hydrolysates. The free-radical scavenging function of CP-1 (M(r) > 10 kDa), CP-2 (5 kDa < M(r) < 10 kDa) and CP-3 (M(r) < 5 kDa), obtained through ultrafiltration and gel filtration were evaluated. The results showed that the lower molecular weight fraction exhibited a stronger free-radical scavenging ability. The highest free-radical scavenging activity was detected in the fraction of p4 purified from CP-3 using Sephadex G-15 column chromatography. The 50% inhibitory value (IC(50)) of p4 for scavenging radicals of superoxide, hydroxyl and 1,1-diphenyl-2-pycrylhydrazyl (DPPH) were, respectively, 0.97 mg mL(-1), 0.84 mg mL(-1) and 1.84 mg mL(-1). Furthermore, the p4 fraction at a concentration of 10 μg mL(-1) increased cell viability from 84.8% to 94% under antioxidative stress in neuroblastoma SK-N-SH cells.
Time-course diffusion of hydrogen peroxide using modern technologies
NASA Astrophysics Data System (ADS)
Florez, F. L. E.; Vollet-Filho, J. D.; Oliveira-Junior, O. B.; Bagnato, V. S.
2009-02-01
The concern with the hydrogen penetration towards the pulp can be observed on the literature by the great number of papers published on this topic; Those measurements often uses chemical agents to quantify the concentration of the bleaching agent that cross the enamel and dentin. The objective of this work was the quantification of oxygen free radicals by fluorescence that are located in the interface between enamel and dentin. It was used to accomplish our objectives a Ruthenium probe (FOXY R - Ocean Optics) a 405nm LED, a bovine tooth and a portable diagnostic system (Science and support LAB - LAT - IFSC/USP). The fluorescence of the probe is suppressed in presence of oxygen free radicals in function of time. The obtained results clearly shows that the hydrogen peroxide when not catalyzed should be kept in contact with the tooth for longer periods of time.
Interpersonal psychoanalysis' radical façade.
Hirsch, Irwin
2002-01-01
The participant-observation model initiated the relational turn, as well as the shift from modernism to postmodernism in psychoanalysis. This two-person, coparticipant conceptualization of the psychoanalytic situation moved psychoanalysis from the realm of alleged objective science toward intersubjectivity and hermeneutics. From this perspective, the analyst as subjective other is constantly engaged affectively with the patient in ways that are very often out of awareness. Analyst and patient both, for better or for worse, are believed to unwittingly influence one another. This description of the analytic dyad has led many to mistakingly conclude that interpersonal psychoanalysts advocate wittinly affective expressiveness, often in the form of deliberate self-disclosure of feelings, as part of a standard analytic stance. Upon closer examination, radical interventions are no more emblematic of interpersonal analysts than they are of analysts from most other traditions, though the interpersonalists have indeed expanded what had theretofore been a rather narrow repertoire of interventions.
Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...
ERIC Educational Resources Information Center
Muller, Uta
Librarianship has undergone a radical change in recent years, which will be continued in the future. Whereas previously the administration of media was most important, nowadays an ever increasing willingness to provide a service is required. In addition to the essential restructuring of libraries, a generational change is taking place within the…
ERIC Educational Resources Information Center
Chen, Hsueh-Chih; Hsu, Chih-Chun; Chang, Li-Yun; Lin, Yu-Chi; Chang, Kuo-En; Sung, Yao-Ting
2013-01-01
The present study is aimed at investigating the effect of a radical-derived Chinese character teaching strategy on enhancing Chinese as a Foreign Language (CFL) learners' Chinese orthographic awareness. An e-learning teaching platform, based on statistical data from the Chinese Orthography Database Explorer (Chen, Chang, Chou, Sung, & Chang,…
Sammon, Jesse D; Karakiewicz, Pierre I; Sun, Maxine; Sukumar, Shyam; Ravi, Praful; Ghani, Khurshid R; Bianchi, Marco; Peabody, James O; Shariat, Shahrokh F; Perrotte, Paul; Hu, Jim C; Menon, Mani; Trinh, Quoc-Dien
2013-04-01
The use of robot-assisted radical prostatectomy has increased rapidly despite the absence of randomized, controlled trials showing the superiority of this approach. While recent studies suggest an advantage for perioperative complication rates, they fail to account for the volume-outcome relationship. We compared perioperative outcomes after robot-assisted and open radical prostatectomy, while considering the impact of this established relationship. Using the NIS (Nationwide Inpatient Sample), we abstracted data on patients treated with radical prostatectomy in 2009. Univariable and multivariable logistic regression analyses were done to compare the rates of blood transfusion, intraoperative and postoperative complications, prolonged length of stay, increased hospital charges and mortality between robot-assisted and open radical prostatectomy overall and across volume quartiles. An estimated 77,616 men underwent radical prostatectomy, including a robot-assisted and an open procedure in 63.9% and 36.1%, respectively. Low volume centers averaged 26.2 robot-assisted and 5.2 open cases, while very high volume centers averaged 578.8 robot-assisted and 150.2 open cases. Overall, patients treated with the robot-assisted procedure experienced a lower rate of adverse outcomes than those treated with the open procedure for all measured categories. Across equivalent volume quartiles robot-assisted radical prostatectomy outcomes were generally favorable. However, the open procedure at high volume centers resulted in a lower postoperative complication rate (OR 0.59, 95% CI 0.46-0.75), elevated hospital charges (OR 0.75, 95% CI 0.64-0.87) and a comparable blood transfusion rate (OR 1.38, 95% CI 0.93-2.02) relative to the robot-assisted procedure at low volume centers. Regionalization has occurred to a greater extent for robot-assisted than for open radical prostatectomy with an associated benefit in overall outcomes. Nonetheless, low volume institutions experienced inferior outcomes relative to the highest volume centers irrespective of approach. These findings demonstrate the importance of accounting for hospital volume when examining the benefit of a surgical technique. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nicolaisen, Marianne; Müller, Stig; Patel, Hitendra R H; Hanssen, Tove Aminda
2014-12-01
To assess patients' symptoms, quality of life and satisfaction with information three to four years after radical prostatectomy, radical external beam radiotherapy and postoperative radiotherapy and to analyse differences between treatment groups and the relationship between disease-specific, health-related and overall quality of life and satisfaction with information. Radical prostate cancer treatments are associated with changes in quality of life. Differences between patients undergoing different treatments in symptoms and quality of life have been reported, but there are limited long-term data comparing radical prostatectomy with radical external beam radiotherapy and postoperative radiotherapy. A cross-sectional survey design was used. The study sample included 143 men treated with radical prostatectomy and/or radical external beam radiotherapy. Quality of life was measured using the 12-item Short Form Health Survey and the 50-item Expanded Prostate Cancer Index Composite Instrument. Questions assessing overall Quality of life and satisfaction with information were included. Descriptive statistics and interference statistical methods were applied to analyse the data. Radical external beam radiotherapy was associated with less urinary incontinence and better urinary function. There were no differences between the groups for disease-specific quality of life sum scores. Sexual quality of life was reported very low in all groups. Disease-specific quality of life and health-related quality of life were associated with overall quality of life. Patients having undergone surgery were more satisfied with information, and there was a positive correlation between quality of life and patient satisfaction. Pretreatment information and patient education lead to better quality of life and satisfaction. This study indicates a need for structured, pretreatment information and follow-up for all men going through radical prostate cancer treatment. Long-term quality of life effects should be considered when planning follow-up and information for men after radical prostate cancer treatment. Structured and organised information/education may increase preparedness for symptoms and bother after the treatment, improve symptom management strategies and result in improved quality of life. © 2014 John Wiley & Sons Ltd.
Klaassen, Zachary; Arora, Karan; Goldberg, Hanan; Chandrasekar, Thenappan; Wallis, Christopher J D; Sayyid, Rashid K; Fleshner, Neil E; Finelli, Antonio; Kutikov, Alexander; Violette, Philippe D; Kulkarni, Girish S
2018-04-01
Radical cystectomy is inherently associated with morbidity. We assess the timing and incidence of venous thromboembolism, review current guideline recommendations and provide evidence for considering extended venous thromboembolism prophylaxis in all patients undergoing radical cystectomy. We searched PubMed® for available literature on radical cystectomy and venous thromboembolism, focusing on incidence and timing, evidence supporting extended venous thromboembolism prophylaxis in patients undergoing radical cystectomy or abdominal oncologic surgery, current guideline recommendations, safety considerations and direct oral anticoagulants. Search terms included "radical cystectomy," "venous thromboembolism," "prophylaxis," and "extended oral anticoagulants" and "direct oral anticoagulants" alone and in combination. Relevant articles were reviewed, including original research, reviews and clinical guidelines. References from review articles and guidelines were also assessed to develop a narrative review. The incidence of symptomatic venous thromboembolism in short-term followup after radical cystectomy is 3% to 11.6%, of which more than 50% of cases will occur after hospital discharge. Meta-analyses of clinical trials in patients undergoing major abdominal oncologic operations suggest a decreased risk of venous thromboembolisms for patients receiving extended (4 weeks) venous thromboembolism prophylaxis. Extended prophylaxis should be considered in all radical cystectomy cases. Although the relative risk of bleeding also increases, the overall net benefit of extended prophylaxis clearly favors use for at least 28 days postoperatively. Extrarenal eliminated prophylaxis agents are preferred given the risk of renal insufficiency in radical cystectomy cases, with newer oral anticoagulants providing an alternative route of administration. Patients undergoing radical cystectomy are at high risk for venous thromboembolism after hospital discharge. There is strong evidence that extended prophylaxis significantly decreases the risk of venous thromboembolism in oncologic surgery cases. Use of extended prophylaxis after radical cystectomy has been poorly adopted, emphasizing the need for better adherence to current urology procedure specific guidelines as extended prophylaxis for radical cystectomy is the standard of care. Specific and rare circumstances may require case by case assessment. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Toxic effects of nano-TiO2 on Gymnodinium breve].
Li, Feng-Min; Zhao, Wei; Li, Yuan-Yuan; Tian, Zhi-Jia; Wang, Zhen-Yu
2012-01-01
In order to reveal the toxicity and mechanism of nano-TiO2 on algae, the inhibition effect, enzyme activity, oxygen free radicals of nano-TiO2 on the growth of G. breve were investigated. The results showed that G. breve was inhibited by nano-TiO2, and the 72 h-EC50 was 9.7 mg x L(-1). With the increasing concentration of nano-titanium dioxide, the activities of SOD decrease significantly (P < 0.05). The content of hydrogen peroxide radicals and the activities of CAT increase significantly (P < 0.05), and the content of superoxide anion shows the increasing trend. The content of hydrogen peroxide radicals was 0.083 U x mL(-1) in 0 mg x L(-1) nano-TiO2 suspension while that was 1.1 U x mL(-1) in control after 48 h. Through the study of 20 mg x L(-1) nano-titanium dioxide on G. breve at different times, the activities of SOD and CAT, the content of MDA are consistent, which the highest values is achieved at the exposure time of 12 hours and the lowest value is found at the exposure time of 48 hours. The content of hydroxyl radical increased significantly at the exposure time of 48 hours. The activity of SOD was 0.14 U x (10(7) cell x min)(-1) in G. breve at 12 h which was ten times higher than that at 48 h.
Increase in the free radical scavenging capability of bitter gourd by a heat-drying process.
Wei, Lu; Shaoyun, Wang; Shutao, Liu; Jianwu, Zhou; Lijing, Ke; Pingfan, Rao
2013-12-01
Bitter gourd (Momordica charantia Linn.) is widely regarded as one of the best remedy foods for diabetes. The positive effect of bitter gourd on diabetes has been attributed in part to the remarkable free radical scavenging activity of its boiled water extract from sun-dried fruits. It is well known that a heat process significantly influences the antioxidant activity of fresh fruits. However, the heat drying processes of bitter gourd have not been studied so far. Here, we show that the free radical scavenging capability of bitter gourd extract significantly increases after the heat drying process, while the content of flavonoids and phenols, which are generally regarded as the main antioxidant components in bitter gourd, remain unaffected. Furthermore, the content of free amino acids and the total reducing sugar were found to decrease with increasing browning index, indicating the progression of the Maillard reaction, products of which are known to possess significant antioxidant activity. Therefore, it suggests that Maillard reaction products may be the main contributors to the increase in antioxidant capability. Finally, the bitter gourd extract with the higher antioxidant activity, was shown to manifest a corresponding higher proliferation activity on NIT-1 beta-cells. These results suggest that controllable conditions in the heat-drying processing of fresh bitter gourd fruit is of significance for enhancing the total free radical scavenging capacity, beta-cell proliferation activity and possibly the anti-diabetic activity of this fruit.
NASA Astrophysics Data System (ADS)
He, Yuchen; Satoshi, Uehara; Hidemasa, Takana; Hideya, Nishiyama
2016-09-01
A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H2O and O2 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption. supported partially by Japan Society for the Promotion of Science (JSPS) KAKENHI (No. 26249015)
Koch, Karoline; Havermann, Susannah; Büchter, Christian
2014-01-01
Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research. PMID:24895670
Building resilience to weather-related hazards through better preparedness
NASA Astrophysics Data System (ADS)
Keller, Julia; Golding, Brian; Johnston, David; Ruti, Paolo
2017-04-01
Recent developments in weather forecasting have transformed our ability to predict weather-related hazards, while mobile communication is radically changing the way that people receive information. At the same time, vulnerability to weather-related hazards is growing through urban expansion, population growth and climate change. This talk will address issues facing the science community in responding to the Sendai Framework objective to "substantially increase the availability of and access to multi-hazard early warning systems" in the context of weather-related hazards. It will also provide an overview of activities and approaches developed in the World Meteorological Organisation's High Impact Weather (HIWeather) project. HIWeather has identified and is promoting research in key multi-disciplinary gaps in our knowledge, including in basic meteorology, risk prediction, communication and decision making, that affect our ability to provide effective warnings. The results will be pulled together in demonstration projects that will both showcase leading edge capability and build developing country capacity.
NASA Astrophysics Data System (ADS)
Cassedy, Edward S.; Grossman, Peter Z.
1999-01-01
Energy issues such as pollution, resource depletion, global warming, nuclear power and waste are problems demanding timely solutions. This book provides a critical examination of the resources, market forces, and social impacts of modern energy production. The book addresses the dilemmas that have arisen due to society's crucial dependence on energy, particularly fossil fuels, and explores the available alternative energy producing technologies. The second edition has increased emphasis on those issues at the forefront of the current energy debate: energy sustainability, climate change, and the radical restructuring of the power industry due to deregulation. Assuming no prior technical expertise and avoiding complex mathematical formulation. The second edition, like the first, will be especially useful as a textbook for undergraduate programs in Science, Technology and Society (STS), and as a supplementary text in a variety of courses that touch on energy studies, including environmental and technology policy, environmental, mineral and business law, energy and resource economics.
In vitro antioxidant activity of pet ether extract of black pepper
Singh, Ramnik; Singh, Narinder; Saini, B.S.; Rao, Harwinder Singh
2008-01-01
Objective: To investigate the in vitro antioxidant activity of different fractions (R1, R2 and R3) obtained from pet ether extract of black pepper fruits (Piper nigrum Linn.) Materials and Methods: The fractions R1, R2 and R3 were eluted from pet ether and ethyl acetate in the ratio of 6:4, 5:5 and 4:6, respectively. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Results: The free radical scavenging activity of the different fractions of pet ether extract of P. nigrum (PEPN) increased in a concentration dependent manner. The R3 and R2 fraction of PEPN in 500 µg/ml inhibited the peroxidation of a linoleic acid emulsion by 60.48±3.33% and 58.89±2.51%, respectively. In DPPH free radical scavenging assay, the activity of R3 and R2 were found to be almost similar. The R3 (100µg/ml) fraction of PEPN inhibited 55.68±4.48% nitric oxide radicals generated from sodium nitroprusside, whereas curcumin in the same concentration inhibited 84.27±4.12%. Moreover, PEPN scavenged the superoxide radical generated by the Xanthine/Xanthine oxidase system. The fraction R2 and R3 in the doses of 1000µg/ml inhibited 61.04±5.11% and 63.56±4.17%, respectively. The hydroxyl radical was generated by Fenton's reaction. The amounts of total phenolic compounds were determined and 56.98 µg pyrocatechol phenol equivalents were detected in one mg of R3. Conclusions: P. nigrum could be considered as a potential source of natural antioxidant. PMID:20040947
The place of human values in the language of science: Kuhn, Saussure, and structuralism.
Psaty, B M; Inui, T S
1991-12-01
The current paradigm in medicine generally distinguishes between genetic and environmental causes of disease. Although the word "paradigm" has become a commonplace, the theories of Thomas Kuhn have not received much attention in the journals of medicine. Kuhn's structuralist method differs radically from the daily activities of the scientific method itself. Using linguistic theory, this essay offers a structuralist reading of Thomas Kuhn's The Structure of Scientific Revolutions. Our purpose is to highlight the similarities between these structuralist models of science and language. In part, we focus on the logic that enables Kuhn to assert the priority of perception over interpretation in the history of science. To illustrate some of these issues, we refer to the distinction between environmental and genetic causes of disease. While the activity of scientific research results in the revision of concepts in science, the production of significant differences that shape our knowledge is in part a social and linguistic process.
Nanobiotechnology: synthetic biology meets materials science.
Jewett, Michael C; Patolsky, Fernando
2013-08-01
Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song
2014-09-01
There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.
Chikvaidze, Eduard; Topeshashvili, Maia
2015-12-01
Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology. Copyright © 2015 John Wiley & Sons, Ltd.
Influence of Temperature on Free Radical Generation in Propolis-Containing Ointments
Ramos, Pawel; Pilawa, Barbara
2016-01-01
Free radicals thermally generated in the ointments containing propolis were studied by electron paramagnetic resonance (EPR) spectroscopy. The influence of temperature on the free radical concentration in the propolis ointments was examined. Two ointment samples with different contents of propolis (5 and 7%, resp.) heated at temperatures of 30°C, 40°C, 50°C, and 60°C, for 30 min., were tested. Homogeneously broadened EPR lines and fast spin-lattice interactions characterized all the tested samples. Free radicals concentrations in the propolis samples ranged from 1018 to 1020 spin/g and were found to grow in both propolis-containing ointments along with the increasing heating temperature. Free radical concentrations in the ointments containing 5% and 7% of propolis, respectively, heated at temperatures of 30°C, 40°C, and 50°C were only slightly different. Thermal treatment at the temperature of 60°C resulted in a considerably higher free radical formation in the sample containing 7% of propolis when related to the sample with 5% of that compound. The EPR examination indicated that the propolis ointments should not be stored at temperatures of 40°C, 50°C, and 60°C. Low free radical formation at the lowest tested temperatures pointed out that both examined propolis ointments may be safely stored up to the temperature of 30°C. PMID:27563336
ERIC Educational Resources Information Center
Reid, Norman
2008-01-01
Around 1960, there were quite radical changes in emphasis in many countries in school chemistry education, with subsequent changes in many university courses. Considerable research was undertaken to explore the learning problems students were reporting and the common thread underlying became apparent: it related to the way humans process new…
Computing Science and Statistics. Volume 24. Graphics and Visualization
1993-03-01
the dough , turbulent fluid flow, the time between drips of behavior changes radically when the population growth water from a faucet, Brownian motion... cookie which clearly is the discrete parameter analogue of continuous param- appropriate as after dinner fun. eter time series analysis". I strongly...methods. Your fortune cookie of the night reads: One problem that statisticians traditionally seem to "uYou have good friends who will come to your aid in
JPRS Report, Science & Technology, Japan
1988-03-03
formation of deoxi- dized products in composite-deoxidized steel ingots M-6 Production of particle-dispersed alloy M-7 Structure and...densities of the OH radicals and C03 2" in the glass as low as possible, while prevent- ing bubble formation . 3. Sound-Wave Floating Furnace The...001 3 March 1988 21 ADVANCED MATERIALS 50. 60 80 ~CaO (mol%) 90 100 unit : ppm nnount oF plitinud dissolved i 2g Dissolution
NASA Astrophysics Data System (ADS)
Lloyd, Ellen M.
Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?
Radiolysis of paracetamol in dilute aqueous solution
NASA Astrophysics Data System (ADS)
Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László
2012-09-01
Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.
Radical-Mediated Enzymatic Polymerizations
Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.
2016-01-01
Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652
Bailey, Damian M; Dehnert, Christoph; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Gutowski, Mariusz; Evans, Kevin A; Taudorf, Sarah; James, Philip E; McEneny, J; Young, Ian S; Swenson, Erik R; Mairbäurl, Heimo; Bärtsch, Peter; Berger, Marc M
2010-01-01
High altitude (HA)-induced pulmonary hypertension may be due to a free radical-mediated reduction in pulmonary nitric oxide (NO) bioavailability. We hypothesised that the increase in pulmonary artery systolic pressure (PASP) at HA would be associated with a net transpulmonary output of free radicals and corresponding loss of bioactive NO metabolites. Twenty-six mountaineers provided central venous and radial arterial samples at low altitude (LA) and following active ascent to 4559 m (HA). PASP was determined by Doppler echocardiography, pulmonary blood flow by inert gas re-breathing, and vasoactive exchange via the Fick principle. Acute mountain sickness (AMS) and high-altitude pulmonary oedema (HAPE) were diagnosed using clinical questionnaires and chest radiography. Electron paramagnetic resonance spectroscopy, ozone-based chemiluminescence and ELISA were employed for plasma detection of the ascorbate free radical (A·−), NO metabolites and 3-nitrotyrosine (3-NT). Fourteen subjects were diagnosed with AMS and three of four HAPE-susceptible subjects developed HAPE. Ascent decreased the arterio-central venous concentration difference (a-cvD) resulting in a net transpulmonary loss of ascorbate, α-tocopherol and bioactive NO metabolites (P < 0.05 vs. LA). This was accompanied by an increased a-cvD and net output of A·− and lipid hydroperoxides (P < 0.05 vs. sea level, SL) that correlated against the rise in PASP (r= 0.56–0.62, P < 0.05) and arterial 3-NT (r= 0.48–0.63, P < 0.05) that was more pronounced in HAPE. These findings suggest that increased PASP and vascular resistance observed at HA are associated with a free radical-mediated reduction in pulmonary NO bioavailability. PMID:20876202
Liao, Lin Yu; Chung, Wei Sheng; Chen, Kuei Min
2017-01-01
The aim of this study was to pilot test the effects of regular senior elastic band exercises on the generation of free radicals and antioxidant enzyme activities in older adults. Long-term regular exercises have positive health promotion outcomes. On the contrary, high-intensity, high-speed and short-term exercises in older adults may increase free radicals and cause chronic disease and ageing effect. A prospective randomized controlled pilot study. Data were collected during 2012. Twenty-five older adults were recruited from a community care centre, southern Taiwan and were randomly assigned to either an experimental or control group. Twenty-two participants completed the study: experimental group (n = 10) and control group (n = 12). The experimental group performed 6-month senior elastic band exercises while the control group kept regular daily routines. Both groups received blood tests (thiobarbituric acid-reacting substances and glutathione peroxidase) 30 minutes before the study began and 1 hour after the final intervention treatment. At the end of the 6-month senior elastic band exercises, no statistically significant differences in thiobarbituric acid-reacting substances and glutathione peroxidase values between the experimental and control groups. No significant differences existed in both thiobarbituric acid-reacting substances and glutathione peroxidase values before and after the 6-month senior elastic band exercises either. Regular senior elastic band exercises did not increase the generation of free radicals and antioxidant enzyme activities. Senior elastic band exercises have the potential to be promoted among older adults in the community as an exercise option without adverse effects on free radicals and have potential for mitigating ageing and increasing disease control. © 2016 John Wiley & Sons Ltd.
Sugihara, Toru; Yasunaga, Hideo; Horiguchi, Hiromasa; Matsui, Hiroki; Fujimura, Tetsuya; Nishimatsu, Hiroaki; Fukuhara, Hiroshi; Kume, Haruki; Changhong, Yu; Kattan, Michael W; Fushimi, Kiyohide; Homma, Yukio
2014-01-01
In 2012, Japanese national insurance started covering robot-assisted surgery. We carried out a population-based comparison between robot-assisted and three other types of radical prostatectomy to evaluate the safety of robot-assisted prostatectomy during its initial year. We abstracted data for 7202 open, 2483 laparoscopic, 1181 minimal incision endoscopic, and 2126 robot-assisted radical prostatectomies for oncological stage T3 or less from the Diagnosis Procedure Combination database (April 2012–March 2013). Complication rate, transfusion rate, anesthesia time, postoperative length of stay, and cost were evaluated by pairwise one-to-one propensity-score matching and multivariable analyses with covariants of age, comorbidity, oncological stage, hospital volume, and hospital academic status. The proportion of robot-assisted radical prostatectomies dramatically increased from 8.6% to 24.1% during the first year. Compared with open, laparoscopic, and minimal incision endoscopic surgery, robot-assisted surgery was generally associated with a significantly lower complication rate (odds ratios, 0.25, 0.20, 0.33, respectively), autologous transfusion rate (0.04, 0.31, 0.10), homologous transfusion rate (0.16, 0.48, 0.14), lower cost excluding operation (differences, −5.1%, −1.8% [not significant], −10.8%) and shorter postoperative length of stay (–9.1%, +0.9% [not significant], –18.5%, respectively). However, robot-assisted surgery also resulted in a + 42.6% increase in anesthesia time and +52.4% increase in total cost compared with open surgery (all P < 0.05). Introduction of robotic surgery led to a dynamic change in prostate cancer surgery. Even in its initial year, robot-assisted radical prostatectomy was carried out with several favorable safety aspects compared to the conventional surgeries despite its having the longest anesthesia time and the highest cost. PMID:25183452
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
Ruggeri, Pierdomenico; Farina, Antonietta R; Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R
2014-01-01
The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.
Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R.
2014-01-01
The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB. PMID:24736663
Deloncle, Roger; Fauconneau, Bernard; Guillard, Olivier; Delaval, José; Lesage, Gérard; Pineau, Alain
2017-01-01
In Creutzfeldt Jakob, Alzheimer and Parkinson diseases, copper metalloproteins such as prion, amyloid protein precursor and α-synuclein are able to protect against free radicals by reduction from cupric Cu +2 to cupreous Cu + . In these pathologies, a regional copper (Cu) brain decrease correlated with an iron, zinc or manganese (Mn) increase has previously been observed, leading to local neuronal death and abnormal deposition of these metalloproteins in β-sheet structures. In this study we demonstrate the protective effect of Cu metalloproteins against deleterious free-radical effects. With neuroblastoma SH-SY5Y cell cultures, we show that bovine brain prion protein in Cu but not Mn form prevents free radical-induced neuronal death. The survival ratio of SH-SY5Y cells has been measured after UV irradiation (free radical production), when the incubating medium is supplemented with bovine brain homogenate in native, Cu or Mn forms. This ratio, about 28% without any addition or with bovine brain protein added in Mn form, increases by as much as 54.73% with addition to the culture medium of native bovine brain protein and by as much as 95.95% if the addition is carried out in cupric form. This protective effect of brain copper protein against free radical-induced neuronal death has been confirmed with Inductively Coupled Plasma Mass Spectrometry Mn and Cu measurement in bovine brain homogenates: respectively lower than detection limit and 9.01μg/g dry weight for native form; lower than detection limit and 825.85μg/g dry weight for Cu-supplemented form and 1.75 and 68.1μg/g dry weight in Mn-supplemented brain homogenate. Copyright © 2016 Elsevier GmbH. All rights reserved.