Quantification of hydroxyl radical produced during phacoemulsification.
Gardner, Jonathan M; Aust, Steven D
2009-12-01
To quantitate hydroxyl radicals produced during phacoemulsification with various irrigating solutions and conditions used in cataract surgery. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. All experiments were performed using an Infiniti Vision System phacoemulsifier with irrigation and aspiration. Hydroxyl radicals were quantitated using electron spin resonance spectroscopy and a spectrophotometric assay for malondialdehyde, which is formed by the oxidation of deoxyribose by the hydroxyl radical. Hydroxyl radical production increased during longitudinal-stroking phacoemulsification as power levels were increased in a nonlinear, nonexponential fashion. The detection of hydroxyl radical was reduced in irrigating solutions containing organic molecules (eg, citrate, acetate, glutathione, dextrose) and further reduced in Navstel, an irrigating solution containing a viscosity-modifying agent, hydroxypropyl methylcellulose. Hydroxyl radicals produced in settings representative of those used in phacoemulsification cataract surgery were quantitated using the deoxyribose method. Hydroxyl radical production was dependent on the level of ultrasound power applied and the irrigating solution used. Oxidative stress on the eye during phacoemulsification may be minimized by using irrigating solutions that contain organic molecules, including the viscosity-modifying agent hydroxypropyl methylcellulose, that can compete for reaction with hydroxyl radicals.
NASA Astrophysics Data System (ADS)
Watts, Richard J.; Yu, Miao; Teel, Amy L.
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical + sulfate radical probe, and hexachloroethane as a reductant + nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole > > TCE > PCE > > nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion.
Watts, Richard J; Yu, Miao; Teel, Amy L
2017-10-01
The activation of peroxymonosulfate by iron (II), iron (III), and iron (III)-EDTA for in situ chemical oxidation (ISCO) was compared using nitrobenzene as a hydroxyl radical probe, anisole as a hydroxyl radical+sulfate radical probe, and hexachloroethane as a reductant+nucleophile probe. In addition, activated peroxymonosulfate was investigated for the treatment of the model groundwater contaminants perchloroethylene (PCE) and trichloroethylene (TCE). The relative activities of hydroxyl radical and sulfate radical in the degradation of the probe compounds and PCE and TCE were isolated using the radical scavengers tert-butanol and isopropanol. Iron (II), iron (III), and iron (III)-EDTA effectively activated peroxymonosulfate to generate hydroxyl radical and sulfate radical, but only a minimal flux of reductants or nucleophiles. Iron (III)-EDTA was a more effective activator than iron (II) and iron (III), and also provided a non-hydroxyl radical, non-sulfate radical degradation pathway. The contribution of sulfate radical relative to hydroxyl radical followed the order of anisole>TCE>PCE >nitrobenzene; i.e., sulfate radical was less dominant in the oxidation of more oxidized target compounds. Sulfate radical is often assumed to be the primary oxidant in activated peroxymonosulfate and persulfate systems, but the results of this research demonstrate that the reactivity of sulfate radical with the target compound must be considered before drawing such a conclusion. Published by Elsevier B.V.
Fisher, G R; Patterson, L H; Gutierrez, P L
1993-09-01
Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Schoonen, Martin A.
2017-06-01
The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.
Ab initio molecular dynamics of the reactivity of vitamin C toward hydroxyl and HO₂/O⁻₂ radicals.
Lespade, Laure
2017-11-21
Vitamin C is one of the most abundant exogenous antioxidants in the cell, and it is of the utmost importance to elucidate its mechanism of action against radicals. In this study, the reactivity of vitamin C toward OH and [Formula: see text] radicals in aqueous medium was analyzed by ab initio molecular dynamics using CPMD code. The simulations led to results similar to those of static studies or experiments for the pair of [Formula: see text] radicals but bring new insights for the reactivity with hydroxyl radical: the reaction takes place before the formation of an adduct and consists of two steps: first an electron is transferred to hydroxyl radical and then the ascorbyl radical loses a proton. Graphical Abstract Reactivity of vitamin C toward hydroxyl and [Formula: see text] radicals.
Hu, Yufei; Zhang, Zhujun; Yang, Chunyan
2008-07-01
Measurement methods for ultrasonic fields are important for reasons of safety. The investigation of an ultrasonic field can be performed by detecting the yield of hydroxyl radicals resulting from ultrasonic cavitations. In this paper, a novel method is introduced for detecting hydroxyl radicals by a chemiluminescence (CL) reaction of luminol-hydrogen peroxide (H2O2)-K5[Cu(HIO6)2](DPC). The yield of hydroxyl radicals is calculated directly by the relative CL intensity according to the corresponding concentration of H2O2. This proposed CL method makes it possible to perform an in-line and real-time assay of hydroxyl radicals in an ultrasonic aqueous solution. With flow injection (FI) technology, this novel CL reaction is sensitive enough to detect ultra trace amounts of H2O2 with a limit of detection (3sigma) of 4.1 x 10(-11) mol L(-1). The influences of ultrasonic output power and ultrasonic treatment time on the yield of hydroxyl radicals by an ultrasound generator were also studied. The results indicate that the amount of hydroxyl radicals increases with the increase of ultrasonic output power (< or = 15 W mL(-1)). There is a linear relationship between the time of ultrasonic treatment and the yield of H2O2. The ultrasonic field of an ultrasonic cleaning baths has been measured by calculating the yield of hydroxyl radicals.
Fricova, Jitka; Stopka, Pavel; Krizova, Jana; Yamamotova, Anna; Rokyta, Richard
2009-01-01
The aim of the study was to demonstrate that direct measurement of hydroxyl radicals and singlet oxygen in the tail of living rats is possible. The basic level of hydroxyl radicals and singlet oxygen were measured and the effects of antioxidants on their levels were studied in the tail of living anaesthetized rats after acute postoperative pain. Laparotomy was performed as the source of acute abdominal pain. After closure of the abdominal cavity, the animals began to awaken within 30-60 minutes. They were left to recover for 2-3 hours; then they were reanesthetized and the effect of antioxidants was measured on the numbers of hydroxyl radicals and singlet oxygen via blood in the tail. The laparotomy was preformed under general anesthesia (Xylazin and Ketamin) using Wistar rats. After recovery and several hours of consciousness they were reanaesthetized and free radicals and singlet oxygen were measured. An antioxidant mixture (vitamins A, C, D and Selenium) was administered intramuscularly prior to the laparotomy. All measurements were done on the tail of anaesthetized animals. In this particular article, the effect of antioxidants is only reported for hydroxyl radicals. After laparotomy, which represented both somatic and visceral pain, hydroxyl radicals and singlet oxygen were increased. Antioxidant application prior to laparotomy decreased the numbers of hydroxyl radicals. Results are in agreement with our previous finding regarding the increase in hydroxyl free radicals and singlet oxygen following nociceptive stimulation, in this case a combination of both somatic and visceral pain. The administered antioxidants mitigated the increase. This is further confirmation that direct measurement of free radicals and singlet oxygen represents a very useful method for the biochemical evaluation of pain and nociception.
Moorhouse, C P; Halliwell, B; Grootveld, M; Gutteridge, J M
1985-12-13
Co(II) ions react with hydrogen peroxide under physiological conditions to form a 'reactive species' that can hydroxylate aromatic compounds (phenol and salicylate) and degrade deoxyribose to thiobarbituric-acid-reactive material. Catalase decreases the formation of this species but superoxide dismutase or low concentrations of ascorbic acid have little effect. EDTA, present in excess over the Co(II), can accelerate deoxyribose degradation and aromatic hydroxylation. In the presence of EDTA, deoxyribose degradation by the reactive species is inhibited competitively by scavengers of the hydroxyl radical (.OH), their effectiveness being related to their second-order rate constants for reaction with .OH. In the absence of EDTA the scavengers inhibit only at much higher concentrations and their order of effectiveness is changed. It is suggested that, in the presence of EDTA, hydroxyl radical is formed 'in free solution' and attacks deoxyribose or an aromatic molecule. In the absence of EDTA, .OH radical is formed in a 'site-specific' manner and is difficult to intercept by .OH scavengers. The relationship of these results to the proposed 'crypto .OH' radical is discussed.
Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed
2017-08-01
The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Jing; Zheng, Meizhu; Chen, Lina; Liu, Zhiqiang; Zhang, Yuchi; Liu, Chun-Ming; Liu, Shu
2016-11-01
Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high-performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin-7-O-Glu-4'-O-Rha, were isolated successfully from total flavonoids by high-performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96-well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.
Hao, Yumeng; Bohon, Jen; Hulscher, Ryan; Rappé, Mollie C; Gupta, Sayan; Adilakshmi, Tadepalli; Woodson, Sarah A
2018-06-01
RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.
Passananti, Monica; Temussi, Fabio; Iesce, Maria Rosaria; Mailhot, Gilles; Brigante, Marcello
2013-09-15
In this paper we investigated the degradation of the rivastigmine drug induced by hydroxyl radical in synthetic and natural waters focusing on both reactivity and photoproducts identification. The hydroxyl radical formation rate was quantified by using terephthalic acid as trapping molecule and it was related with the rivastigmine degradation rate. The second order rate constant between hydroxyl radical and rivastigmine was estimated to be ≈ 5.8 × 10(9) M(-1) s(-1). Irradiation of rivastigmine in three natural waters (rain, lake and river) and comparison with degradation rates observed in synthetic solutions using nitrite, nitrate and hydrogen peroxide suggest that, in addition to hydroxyl radical, also nitroderived radicals (NO/NO2) are responsible for the pollutant degradation in natural media. In fact, the evaluated degradation rates in three natural waters are greatly higher than those estimated considering only the reactivity with photogenerated hydroxyl radical. Using nitrites and nitrates as photochemical OH source, the rivastigmine degradation cannot be described considering only the hydroxyl radical reactivity suggesting that NO and NO2 radicals could play a key role during indirect degradation. Moreover main degradation products have been identified by means of HPLC-MS. Hydroxylation of the aromatic ring as well as carbamate and amino chain oxidation were suggested as main reaction mechanisms, but also nitroderived compounds were characterized. Finally polychromatic irradiations of three rivastigmine doped natural waters (rain, river and lake) underlined the role of the indirect degradation that needs to be considered when direct degradation of selected pollutants is negligible under environmental-like conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khachatryan, Lavrent; Dellinger, Barry
2011-11-01
A chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy was employed to measure the production of hydroxyl radical (·OH) in aqueous suspensions of 5% Cu(II)O/silica (3.9% Cu) particles containing environmentally persistent free radicals (EPFRs) of 2-monochlorophenol (2-MCP). The results indicate: (1) a significant differences in accumulated DMPO-OH adducts between EPFR containing particles and non-EPFR control samples, (2) a strong correlation between the concentration of DMPO-OH adducts and EPFRs per gram of particles, and (3) a slow, constant growth of DMPO-OH concentration over a period of days in solution containing 50 μg/mL EPFRs particles + DMPO (150 mM) + reagent balanced by 200 μL phosphate buffered (pH = 7.4) saline. However, failure to form secondary radicals using standard scavengers, such as ethanol, dimethylsulfoxide, sodium formate, and sodium azide, suggests free hydroxyl radicals may not have been generated in solution. This suggests surface-bound, rather than free, hydroxyl radicals were generated by a surface catalyzed-redox cycle involving both the EPFRs and Cu(II)O. Toxicological studies clearly indicate these bound free radicals promote various types of cardiovascular and pulmonary disease normally attributed to unbound free radicals; however, the exact chemical mechanism deserves further study in light of the implication of formation of bound, rather than free, hydroxyl radicals.
Harada, Kazuki; Makino, Yoshio; Yamauchi, Tomio; Fukuda, Nami; Tamaru, Miki; Okubo, Yasue; Maeda, Toshimichi; Fukuda, Yutaka; Shiba, Tsuneo
2007-09-01
Apurinic/apyrimidinic (AP) sites are frequently observed DNA lesions when cells are exposed to hydroxyl radicals. We developed a new method for measurement of the antioxidative activity of foods using the occurrence frequency of AP sites on DNA. Combined with the electron spin resonance (ESR) method as a standard method, we examined whether fish and soy sauces including puffer fish [Takifugu rubripes (Temminck et Schlegel)] sauce could protect DNA from damage caused by hydroxyl radicals. The results showed that the ratios of DNA protection by puffer fish sauce, salmon fish sauce, sandfish fish sauce (Shottsuru), colorless soy sauce, squid fish sauce (Ishiru), dark color soy sauce and light color soy sauce were 68.9, 67.0, 60.1, 49.7, 34.1, 28.2 and -4.4%, respectively. Puffer, salmon, and sandfish fish sauces showed high ratios of DNA protection against hydroxyl radicals. On the other hand, IC(50) values of hydroxyl radical scavenging of the puffer, salmon, sandfish, squid fish sauces and colorless, dark and light color soy sauces were 0.20, 0.09, 4.16, 0.26% and 0.28, 0.14 and 0.18%, respectively. Though the puffer fish sauce exhibited the highest level of DNA protection among the examined samples and a high hydroxyl radical scavenging capability, a correlation between the radical scavenging capability and DNA protection against hydroxyl radicals among the examined fish and soy sauces was not found.
Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide
2017-03-01
The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.
Carnivorous pitcher plant uses free radicals in the digestion of prey.
Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai
2004-01-01
A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.
Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun
2015-11-01
Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wink, David A.; Desrosiers, Marc F.
The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.
Evidence of high *OH radical quenching efficiency by vitamin B6.
Matxain, Jon M; Padro, Daniel; Ristilä, Mikael; Strid, Ake; Eriksson, Leif A
2009-07-23
Molecules acting as antioxidants capable of scavenging reactive oxygen species (ROS) are of the utmost importance in the living cell. The antioxidative properties of pyridoxine (vitamin B6) have recently been discovered. Previous theoretical calculations have shown a high reactivity of pyridoxine toward hydroxyl radicals, where the latter preferably abstract H from either carbon of the two methanol substituents (C8 or C9). In this study, we have explored the reactivity of pyridoxine toward further hydroxyl radicals, considering as the first step the H abstraction from either C8 or C9, also including addition reactions and cyclization. Many of the reactions display similar DeltaG, and hence, the quenching of hydroxyl radicals by pyridoxine may undergo different pathways leading to a mix of products. In addition, we observe that pyridoxine, under high hydroxyl radical concentrations, may scavenge up to eight radicals, supporting its observed high antioxidant activity.
Effect of curcumin against oxidation of biomolecules by hydroxyl radicals.
Borra, Sai Krishna; Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-10-01
Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals.
Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa
2015-12-29
Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical currentmore » throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.« less
NASA Astrophysics Data System (ADS)
Thangamani, D.; Shankar, R.; Vijayakumar, S.; Kolandaivel, P.
2016-10-01
In the present investigation, the reaction mechanism and kinetics of 2-formylcinnamaldehyde (2-FC) with O3 and hydroxyl OH radicals were studied. The reaction of 2-FC with O3 radical are initiated by the formation of primary ozonide, whereas the reaction of 2-FC with the hydroxyl OH radical are initiated by two different ways: (1). H-atom abstraction by hydroxyl OH radical from the -CHO and -CH = CHCHO group of 2-FC (2). Hydroxyl OH addition to the -CH = CHCHO group to the ring-opened 2-FC. These reactions lead to the formation of an alkyl radical. The reaction pathways corresponding to the reactions between 2-FC with O3 and hydroxyl OH radicals have been analysed using density functionals of B3LYP and M06-2X level of methods with the 6-31+G(d,p) basis set. Single-point energy calculations for the most favourable reactive species are determined by B3LYP/6-311++G(d,p) and CCSD(T)/6-31+G(d,p) levels of theory. From the obtained results, the hydroxyl OH addition at C8 position of 2-FC are most favourable than the C9 position of 2-FC. The subsequent reactions of the alkyl radicals, formed from the hydroxyl OH addition at C8 position, are analysed in detail. The individual and overall rate constant for the most favourable reactions are calculated by canonical variational transition theory with small-curvature tunnelling corrections over the temperature range of 278-350 K. The calculated theoretical rate constants are in good agreement with the available experimental data. The Arrhenius plot of the rate constants with the temperature are fitted and the atmospheric lifetimes of the 2-FC with hydroxyl OH radical reaction in the troposphere calculate for the first time, which can be applied to the study on the atmospheric implications. The condensed Fukui function has been verified for the most favourable reaction sites. This study can be regarded as an attempt to investigate the O3-initiated and hydroxyl OH-initiated reaction mechanisms of 2-FC in the atmosphere.
[Study of scavenging activity of sorghum pigment to hydroxyl free radicals by fluorimetry].
Zhang, Hai-rong; Wang, Wen-yan
2007-03-01
A natural product, sorghum pigment, consists of a number of important flavonoid derivatives, occurrs on the seed capsules or in the stems of many sorghums, and is widely applied in different fields of food, cosmetic and dyeing industries, It is important for scavenging hydroxyl free radicals and protection of human healthiness. Scavenging capacities of hydroxyl free radicals with sodium nitrite, quercetin and sorghum pigment were comparatively researched by fluorimetry, and the model of hydroxyl free radicals produced is based on the reaction of Cu2+ -catalyzed oxidation of ascorbic acid in the presence of hydrogen peroxide. The hydroxyl radicals react with benzoic acid, forming a fluorescent product, and the fluorescence intensity was determined by the concentration of hydroxybenzoic acid. The experimental results show that the sodium nitrite, quercetin and sorghum pigment have a quantity-effect relationship for scavenging hydroxyl free radicals, and sodium nitrite and quercetin in comparison with sorghum pigment have high antioxidant capacity. Finally, the quenching mechanisms were explored with sodium nitrite, sorghum pigment, and quercetin respectively. The sorghum pigment and sodium nitrite feature a dynamic quenching processes, while quercetin shows a static quenching processes. A reference method was provided for reasonable exploitation and utilization of sorghum pigment.
Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868
Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja
2011-07-01
Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.
Li, Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki
2007-09-19
Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH* signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH* signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]* radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions.
Shadyro, Oleg I; Sosnovskaya, Anna A; Edimecheva, Irina P; Grintsevich, Ivan B; Lagutin, Petr Yu; Alekseev, Aleksei V; Kazem, Kamel
2005-07-01
Effects of vitamins B, C, E, K and P, as well as coenzymes Q, on formation of final products of radiation-induced free-radical transformations of ethanol, ethylene glycol, alpha-methylglycoside and glucose in aqueous solutions were studied. Based on the obtained results, it can be concluded that there are substances among vitamins and coenzymes that effectively interact with alpha-hydroxyl-containing radicals. In the presence of these substances, recombination reactions of alpha-hydroxyalkyl radicals and fragmentation of alpha-hydroxy-beta-substituted organic radicals are suppressed. It has been established that the observed effects are due to the ability of the vitamins and coenzymes under study to either oxidize alpha-hydroxyl-containing radicals yielding the respective carbonyl compounds or reduce them into the initial molecules.
Changes in free-radical scavenging ability of kombucha tea during fermentation.
Jayabalan, R; Subathradevi, P; Marimuthu, S; Sathishkumar, M; Swaminathan, K
2008-07-01
Kombucha tea is a fermented tea beverage produced by fermenting sugared black tea with tea fungus (kombucha). Free-radical scavenging abilities of kombucha tea prepared from green tea (GTK), black tea (BTK) and tea waste material (TWK) along with pH, phenolic compounds and reducing power were investigated during fermentation period. Phenolic compounds, scavenging activity on DPPH radical, superoxide radical (xanthine-xanthine oxidase system) and inhibitory activity against hydroxyl radical mediated linoleic acid oxidation (ammonium thiocyanate assay) were increased during fermentation period, whereas pH, reducing power, hydroxyl radical scavenging ability (ascorbic acid-iron EDTA) and anti-lipid peroxidation ability (thiobarbituric assay) were decreased. From the present study, it is obvious that there might be some chances of structural modification of components in tea due to enzymes liberated by bacteria and yeast during kombucha fermentation which results in better scavenging performance on nitrogen and superoxide radicals, and poor scavenging performance on hydroxyl radicals. Copyright © 2007 Elsevier Ltd. All rights reserved.
Generation of radicals and antimalarial activity of dispiro-1,2,4-trioxolanes
NASA Astrophysics Data System (ADS)
Denisov, E. T.; Denisova, T. G.
2013-01-01
The kinetic schemes of the intramolecular oxidation of radicals generated from substituted dispiro-1,2,4-trioxolanes (seven compounds) in the presence of Fe2+ and oxygen were built. Each radical reaction was defined in terms of enthalpy, activation energy, and rate constant. The kinetic characteristics were calculated by the intersecting parabolas method. The competition between the radical reactions was considered. The entry of radicals generated by each compound into the volume was calculated. High antimalarial activity was found for 1,2,4-trioxolanes, which generated hydroxyl radicals. The structural features of trioxolanes responsible for the generation of hydroxyl radicals were determined.
Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
Lindsey, M.E.; Tarr, M.A.
2000-01-01
Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compound molecules bound to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanism for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently firstorder in pyrene to one that was apparently secondorder in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.Reaction of aromatic compounds with hydroxyl radical is inhibited by dissolved natural organic matter (NOM). The degree of inhibition is significantly greater than that expected based on a simple model in which aromatic compounds molecules bounds to NOM are considered to be unreactive. In this study, hydroxyl radical was produced at steady-state concentrations using Fenton chemistry (H2O2 + Fe2+ ??? Fe3+ + HO- + HO??). Suwannee River fulvic acid and humic acid were used as NOM. The most likely mechanisms for the observed inhibition is that hydroxyl radical formation occurs in microenvironmental sites remote from the aromatic compounds. In addition to changes in kinetics, pyrene hydroxyl radical reaction also exhibited a mechanistic change in the presence of fulvic acid. The mechanism changed from a reaction that was apparently first-order in pyrene to one that was apparently second-order in pyrene, indicating that pyrene self-reaction may have become the dominant mechanism in the presence of fulvic acid. Dissolved NOM causes significant changes in the rate and mechanism of hydroxyl radical degradation of aromatic compounds. Consequently, literature rate constants measured in pure water will not be useful for predicting the degradation of pollutants in environmental systems. The kinetic and mechanistic information in this study will be useful for developing improved degradation methods involving Fenton chemistry.
Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.
2015-01-01
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471
Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L
2015-09-01
Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Effect of Curcumin Against Oxidation of Biomolecules by Hydroxyl Radicals
Mahendra, Jaideep; Gurumurthy, Prema; Jayamathi; Iqbal, Shabeer S; Mahendra, Little
2014-01-01
Background: Among various reactive oxygen species, hydroxyl radicals have the strongest chemical activity, which can damage a wide range of essential biomolecules such as lipids, proteins, and DNA. Objective: The objective of this study was to investigate the beneficial effects of curcumin on prevention of oxidative damage of biomolecules by hydroxyl radicals generated in in vitro by a Fenton like reaction. Materials and Methods: We have incubated the serum, plasma and whole blood with H2O2/Cu2+/ Ascorbic acid system for 4 hours at 37 0C and observed the oxidation of biomolecules like albumin, lipids, proteins and DNA. Results: Curcumin at the concentrations of 50,100 and 200 μmoles, prevented the formation of ischemia modified albumin, MDA, protein carbonyls, oxidized DNA and increased the total antioxidant levels and GSH significantly. Conclusion: These observations suggest the hydroxyl radical scavenging potentials of curcumin and protective actions to prevent the oxidation of biomolecules by hydroxyl radicals. PMID:25478334
Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.
Greenberg, Marc M
2016-11-01
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
Pyrimidine nucleobase radical reactivity in DNA and RNA
NASA Astrophysics Data System (ADS)
Greenberg, Marc M.
2016-11-01
Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.
RAPID MEASUREMENT OF AQUEOUS HYDROXYL RADICAL CONCENTRATIONS IN STEADY-STATE HO· FLUX SYSTEMS
The spin-trap compound a-(4-pyridyl-1-oxide)-N-tert-butyl-nitrone (4-POBN) is utilized for the detection and quantitation of the hydroxyl radical (HO·) in aqueous solution. Capillary electrophoresis enables rapid analysis of the probe compound. The thermally unstable HO· radical ...
Hydroxyl radical mediated DNA base modification by manmade mineral fibres.
Leanderson, P; Söderkvist, P; Tagesson, C
1989-01-01
Manmade mineral fibres (MMMFs) were examined for their ability to hydroxylate 2-deoxyguanosine (dG) to 8-hydroxydeoxyguanosine (8-OH-dG), a reaction that is mediated by hydroxyl radicals. It appeared that (1) catalase and the hydroxyl radical scavengers, dimethylsulphoxide and sodium benzoate, inhibited the hydroxylation, whereas Fe2+ and H2O2 potentiated it; (2) pretreatment of MMMFs with the iron chelator, deferoxamine, or with extensive heat (200-400 degrees C), attenuated the hydroxylation; (3) the hydroxylation obtained by various MMMFs varied considerably; (4) there was no apparent correlation between the hydroxylation and the surface area of different MMMFs, although increasing the surface area of a fibre by crushing it increased its hydroxylating capacity; and (5) there was good correlation between the hydroxylation of dG residues in DNA and the hydroxylation of pure dG in solution for the 16 different MMMFs investigated. These findings indicate that MMMFs cause a hydroxyl radical mediated DNA base modification in vitro and that there is considerable variation in the reactivity of different fibre species. The DNA modifying ability seems to depend on physical or chemical characteristics, or both, of the fibre. PMID:2765416
Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O
NASA Astrophysics Data System (ADS)
Li, Shuping; Matthews, Jamie; Sinha, Amitabha
2008-03-01
Hydroxyl radicals are often called the “detergent” of the atmosphere because they control the atmosphere’s capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.
Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.
Li, Shuping; Matthews, Jamie; Sinha, Amitabha
2008-03-21
Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.
Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source
Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige
2009-01-01
We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928
Matros, Andrea; Peshev, Darin; Peukert, Manuela; Mock, Hans-Peter; Van den Ende, Wim
2015-06-01
Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M
2011-12-20
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.
Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.
Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro
2016-06-01
The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.
Slezák, J; Kura, B; Frimmel, K; Zálešák, M; Ravingerová, T; Viczenczová, C; Okruhlicová, Ľ; Tribulová, N
2016-09-19
Excessive production of oxygen free radicals has been regarded as a causative common denominator of many pathological processes in the animal kingdom. Hydroxyl and nitrosyl radicals represent the major cause of the destruction of biomolecules either by a direct reaction or by triggering a chain reaction of free radicals. Scavenging of free radicals may act preventively or therapeutically. A number of substances that preferentially react with free radicals can serve as scavengers, thus increasing the internal capacity/activity of endogenous antioxidants and protecting cells and tissues against oxidative damage. Molecular hydrogen (H(2)) reacts with strong oxidants, such as hydroxyl and nitrosyl radicals, in the cells, that enables utilization of its potential for preventive and therapeutic applications. H(2) rapidly diffuses into tissues and cells without affecting metabolic redox reactions and signaling reactive species. H(2) reduces oxidative stress also by regulating gene expression, and functions as an anti-inflammatory and anti-apoptotic agent. There is a growing body of evidence based on the results of animal experiments and clinical observations that H(2) may represent an effective antioxidant for the prevention of oxidative stress-related diseases. Application of molecular hydrogen in situations with excessive production of free radicals, in particular, hydroxyl and nitrosyl radicals is relatively simple and effective, therefore, it deserves special attention.
Jiang, Hui; Ju, Huangxian
2007-09-01
This work elucidated the detailed electrochemiluminescence (ECL) process of the thioglycolic acid-capped CdSe quantum dots (QDs) film/peroxide aqueous system. The QDs were first electrochemically reduced to form electrons-injected QDs approximately -1.1 V, which then reduced hydrogen peroxide to produce OH* radical. The intermediate OH* radical was a key species for producing holes-injected QDs. The ECL emission with a peak at -1.114 V was demonstrated to come from the 1Se-1Sh transition emission. Using thiol compounds as the model molecules to annihilate the OH* radical, their quenching effects on ECL emission were studied. This effect led to a novel strategy for ECL sensing of the scavengers of hydroxyl radical. The detection results of thiol compounds showed high sensitivity, good precision, and acceptable accuracy, suggesting the promising application of the proposed method for quick detection of both scavengers and generators of hydroxyl radical in different fields.
Rui, Bruno R; Shibuya, Fábio Y; Kawaoku, Allison J T; Losano, João D A; Angrimani, Daniel S R; Dalmazzo, Andressa; Nichi, Marcilio; Pereira, Ricardo J G
2017-03-01
Over the past decades, scientists endeavored to comprehend oxidative stress in poultry spermatozoa and its relationship with fertilizing ability, lipid peroxidation (LPO), free-radical scavenging systems, and antioxidant therapy. Although considerable progress has been made, further improvement is needed in understanding how specific reactive oxygen species (ROS) and malondialdehyde (MDA, a toxic byproduct of LPO) disrupt organelles in avian spermatozoon. Hence, this study examined functional changes in chicken spermatozoa after incubation with different ROS, and their implications for the fertility. First, semen samples from 14 roosters were individually diluted and aliquoted into five equal parts: control, superoxide anion, hydrogen peroxide (H 2 O 2 ), hydroxyl radicals, and MDA. After incubation with these molecules, aliquots were analyzed for motility, plasma membrane and acrosome integrity, mitochondrial activity, and LPO and DNA damage. Hydrogen peroxide was more detrimental for sperm motility than hydroxyl radicals, whereas the superoxide anion and MDA exhibited no differences compared with controls. In turn, plasma membrane and acrosome integrity, mitochondrial activity, LPO and DNA integrity rates were only affected by hydroxyl radicals. Thereafter, semen aliquots were incubated under the same conditions and used for artificial insemination. In accordance to our in vitro observations, H 2 O 2 and hydroxyl radicals sharply reduced egg fertility, whereas superoxide anion and MDA only induced slight declines. Thus, chicken sperm function was severely impaired by H 2 O 2 and hydroxyl radicals, but their mechanisms of action seemingly comprise different pathways. Further analysis regarding susceptibility of spermatozoon organelles to specific radicals in other poultry will help us to understand the development of interspecific differences in scavenging systems and to outline more oriented antioxidant approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
QSPR prediction of the hydroxyl radical rate constant of water contaminants.
Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun
2016-07-01
In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protective effect of Pterostilbene against free radical mediated oxidative damage
2013-01-01
Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177
HETEROGENOUS PHOTOREACTION OF FORMALDEHYDE WITH HYDROXYL RADICALS
Atmospheric heterogeneous photoreactions occur between formaldehyde and hydroxyl radicals to produce formic acid. hese photoreactions not only occur in clouds, but also in other tropospheric hydrometeors such as precipitation and dew droplets. xperiments were performed by irradia...
Matsugo, S; Yan, L J; Han, D; Packer, L
1995-01-05
We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.
Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals.
Zhou, Juan; Li, Peng; Cheng, Ni; Gao, Hui; Wang, Bini; Wei, Yahui; Cao, Wei
2012-08-01
To understand the antioxidant properties of buckwheat honeys, we investigated their antioxidant effects on hydroxyl radical-induced DNA breaks in the non-site-specific and site-specific systems, the physicochemical properties, antioxidant activities (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical scavenging activity, chelating, and reducing power assays), total phenolic content and individual phenolic acids were also determined. Total phenolic content of buckwheat honeys ranged from 774 to 1694 mg PA/kg, and p-hydroxybenzoic and p-coumaric acids proved to be the main components in buckwheat honeys. All the buckwheat honey samples possess stronger capability to protect DNA in the non-site-specific systems than in the site-specific systems from being damaged by hydroxyl radicals. In the non-site-specific and site-specific system, buckwheat honeys samples prevented ()OH-induced DNA breaks by 21-78% and 5-31% over control value, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Karthikeyan, S; Sekaran, G
2014-03-07
The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).
Biochemistry of free radicals: from electrons to tissues.
Boveris, A
1998-01-01
Free radicals are chemical species with an unpaired electron in the outer valence orbitals. The unpaired electron makes them paramagnetic (physics) and relatively reactive (chemistry). The free radicals that are normal metabolites in aerobic biological systems have varied reactivities, ranging from the high reactivity of hydroxyl radical (t1/2 = 10(-9) s) to the low reactivity of melanins (t1/2 = days). The univalent reduction of oxygen that takes place in mammalian organs produces superoxide radicals at a rate of about 2% of the total oxygen uptake. The primary production of superoxide radicals sustains a free radical chain reaction involving a series of reactive oxygen species (hydrogen peroxide, hydroxyl and peroxyl radical and singlet oxygen). Nitric oxide is almost unreactive as free radical except for its termination reaction with superoxide radical to yield the strong oxidant peroxynitrite. Nitric oxide also reacts with ubiquinol in a redox reaction, with cytochrome oxidase competitively with oxygen, and oxymyoglobin and oxyhemoglobin displacing oxygen. Septic shock and endotoxemia produce muscle dysfunction and oxidative stress due to increased steady state concentrations of reactive oxygen and nitrogen species.
Photo-Fenton-assisted ozonation of p-Coumaric acid in aqueous solution.
Monteagudo, J M; Carmona, M; Durán, A
2005-08-01
The degradation of p-Coumaric acid present in olive oil mill wastewater was investigated as a pretreatment stage to obtain more easily biodegradable molecules, with lower toxicity that facilitates subsequent anaerobic digestion. Thus, photo-Fenton-assisted ozonation has been studied and compared with ozonation at alkaline pH and conventional single ultraviolet (UV) and acid ozonation treatments. In the combined process, the overall kinetic rate constant was split into various components: direct oxidation by UV light, direct oxidation by ozone and oxidation by hydroxyl radicals. Molecular and/or radical ozone reaction was studied by conducting the reaction in the presence and absence of tert-butylalcohol at pHs 2, 7 and 9. Ozone oxidation rate increases with pH or by the addition of Fenton reagent and/or UV radiation due to generation of hydroxyl radicals, *OH. Hydrogen peroxide and ferrous ion play a double role during oxidation since at low concentrations they act as initiators of hydroxyl radicals but at high concentrations they act as radical scavengers. Finally, the additional levels of degradation by formation of hydroxyl radicals have been quantified in comparison to the conventional single processes and an equation is proposed for the reaction rate as a function of studied operating variables.
Antioxidant activities of chick embryo egg hydrolysates
Sun, Hao; Ye, Ting; Wang, Yuntao; Wang, Ling; Chen, Yijie; Li, Bin
2014-01-01
Chick embryo egg hydrolysates (CEEH) were obtained by enzymatic hydrolysis of chick embryo egg in vitro-simulated gastrointestinal digestion. The antioxidant activities of CEEH were investigated by employing three in vitro assays, including the 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate)/1,1-diphenyl-2-picrylhydrazyl (ABTS/DPPH)/hydroxyl radical-scavenging assays. The radical-scavenging effect of CEEH (1.0 mg/mL) was in a dose-dependent manner, with the highest trolox equivalent antioxidant capacity for ABTS, DPPH, and that of hydroxyl radicals found to be 569, 2097, and 259.6 μmol/L, respectively; whereas the trolox equivalent antioxidant capacity of unhatched egg for ABTS, DPPH, and that of hydroxyl radicals were found to be 199, 993, and 226.5 μmol/L, respectively. CEEH showed stronger scavenging activity than the hydrolysates of unhatched egg against free radicals such as ABTS, DPPH, and hydroxyl radicals. The antioxidant amino acid analysis indicated that the 14-day CEEH possess more antioxidant amino acids than that of the unhatched egg. In addition, essential amino acids analysis showed that the 14-day CEEH have the highest nutritional value. Combined with the results of the amino acid profiles, CEEH were believed to have higher nutritive value in addition to antioxidant activities than the unhatched egg. PMID:24804065
Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface.
Ajo, Petri; Kornev, Iakov; Preis, Sergei
2017-11-23
The highly energetic electrons in non-thermal plasma generated by gas phase pulsed corona discharge (PCD) produce hydroxyl (OH) radicals via collision reactions with water molecules. Previous work has established that OH radicals are formed at the plasma-liquid interface, making it an important location for the oxidation of aqueous pollutants. Here, by contacting water as aerosol with PCD plasma, it is shown that OH radicals are produced on the gas side of the interface, and not in the liquid phase. It is also demonstrated that the gas-liquid interfacial boundary poses a barrier for the OH radicals, one they need to cross for reactive affinity with dissolved components, and that this process requires a gaseous atomic H scavenger. For gaseous oxidation, a scavenger, oxygen in common cases, is an advantage but not a requirement. OH radical efficiency in liquid phase reactions is strongly temperature dependent as radical termination reaction rates increase with temperature.
Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; van Velthoven, Peter; Oram, David E.; Zahn, Andreas; Brenninkmeijer, Carl A. M.; Williams, Jonathan
2016-01-01
The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry. PMID:27845366
Kamogawa, Erisa; Sueishi, Yoshimi
2014-03-01
Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos
2015-01-01
Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.
Radiocarbon tracer measurements of atmospheric hydroxyl radical concentrations
NASA Technical Reports Server (NTRS)
Campbell, M. J.; Farmer, J. C.; Fitzner, C. A.; Henry, M. N.; Sheppard, J. C.
1986-01-01
The usefulness of the C-14 tracer in measurements of atmospheric hydroxyl radical concentration is discussed. The apparatus and the experimental conditions of three variations of a radiochemical method of atmosphere analysis are described and analyzed: the Teflon bag static reactor, the flow reactor (used in the Wallops Island tests), and the aircraft OH titration reactor. The procedure for reduction of the aircraft reactor instrument data is outlined. The problems connected with the measurement of hydroxyl radicals are discussed. It is suggested that the gas-phase radioisotope methods have considerable potential in measuring tropospheric impurities present in very low concentrations.
1990-04-10
the hydroxyl groups. These are liquid oligobutadienes of brand R-15M and R-45M (firm "Sinclair Retgochemical Suc."/OSA) [5, 6, 10] and hydroxyl... ionic mechanism. Most promising, in view of simplicity and cheapness, is considered the I DOC - 90010000 PAGE - method of the radical polymerization of...Initiators of polimerization in this method are the hydroxyl radicals, which are generated during the homolytic decomposition of peroxide of hydrogen PDO
Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M
2015-12-01
We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Derwent, Richard G.; Volz-Thomas, Andreas
1990-01-01
Chemical reaction with hydroxyl radicals formed in the troposphere from ozone photolysis in the presence of methane, carbon monoxide and nitrogen oxides provides an important removal mechanism for halocarbons containing C-H and C = C double bonds. The isotropic distribution in atmospheric carbon monoxide was used to quantify the tropospheric hydroxyl radical distribution. Here, this methodology is reevaluated in the light of recent chemical kinetic data evaluations and new understandings gained in the life cycles of methane and carbon monoxide. None of these changes has forced a significant revision in the CO-14 approach. However, it is somewhat more clearly apparent how important basic chemical kinetic data are to the accurate establishment of the tropospheric hydroxyl radical distribution.
NASA Astrophysics Data System (ADS)
Samovich, S. N.; Brinkevich, S. D.; Shadyro, O. I.
2013-01-01
Benzaldehyde and its derivatives efficaciously oxidize in aqueous solutions α-hydroxyl-containing carbon-centered radicals (α-HCR) of various structures, suppressing thereby the radical recombination and fragmentation reactions. The compounds containing cinnamic moieties are capable of adding α-hydroxyethyl radicals (α-HER) to the carbon-carbon double bonds conjugated with the aromatic system to form molecular products identifiable by mass spectrometry. On radiolysis of aqueous ethanol solutions, reduction of α-HER by aromatic alcohols and acids has been shown to proceed via formation of their adducts with hydrated electron species.
The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.
Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa
2014-09-26
The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Atkinson, Roger
1990-01-01
In the present assessment, the hydrogen containing halocarbons being considered as alternatives to the the presently used chlorofluorocarbons are the hydrochlorofluorocarbons (HCFCs) 123 (CF3CHCl2), 141b (CFCl2CH3), 142b (CF2ClCH3), 22 (CHF2Cl) and 124 (CF3CHFCl) and the hydrofluorocarbons (HFCs) 134a (CF3CH2F), 152a (CHF2CH3) and 125 (CF3CHF2). All of these HCFCs and HFCs will react with the hydroxyl (OH) radical in the troposphere, giving rise to haloalkyl radicals which then undergo a complex series of reactions in the troposphere. These reactions of the haloalkyl radicals formed from the initial OH radical reactions with the HCFCs and HFCs under tropospheric conditions are the focus here.
Chandrasekara, Anoma; Shahidi, Fereidoon
2011-01-12
Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.
Luanpitpong, Sudjit; Nimmannit, Ubonthip; Chanvorachote, Pithi; Leonard, Stephen S; Pongrakhananon, Varisa; Wang, Liying; Rojanasakul, Yon
2011-08-01
Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.
Measurement of hydroxyl radical density generated from the atmospheric pressure bioplasma jet
NASA Astrophysics Data System (ADS)
Hong, Y. J.; Nam, C. J.; Song, K. B.; Cho, G. S.; Uhm, H. S.; Choi, D. I.; Choi, E. H.
2012-03-01
Atmospheric pressure bioplasmas are being used in a variety of bio-medical and material processing applications, surface modifications of polymers. This plasma can generate the various kinds of radicals when it contacs with the water. Especially, hydroxyl radical species have very important role in the biological and chemical decontamination of media in this situation. It is very important to investigate the hydroxyl radical density in needle-typed plasma jet since it plays a crucial role in interaction between the living body and plasma. We have generated the needle-typed plasma jet bombarding the water surface by using an Ar gas flow and investigated the emission lines by OES (optical emission spectroscopy). It is noted that the electron temperature and plasma density are measured to be about 1.7 eV and 3.4 × 1012 cm-3, respectively, under Ar gas flow ranged from 80 to 300 sccm (standard cubic centimeter per minute) in this experiment. The hydroxyl radical density has also been investigated and measured to be maximum value of 2.6 × 1015 cm-3 for the gas flow rate of 150 sccm in the needle-typed plasma jet by the ultraviolet optical absorption spectroscopy.
2011-01-01
Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526
Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies.
Bors, W; Michel, C
1999-12-01
Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.
Multiple free-radical scavenging capacity in serum
Oowada, Shigeru; Endo, Nobuyuki; Kameya, Hiromi; Shimmei, Masashi; Kotake, Yashige
2012-01-01
We have developed a method to determine serum scavenging-capacity profile against multiple free radical species, namely hydroxyl radical, superoxide radical, alkoxyl radical, alkylperoxyl radical, alkyl radical, and singlet oxygen. This method was applied to a cohort of chronic kidney disease patients. Each free radical species was produced with a common experimental procedure; i.e., uv/visible-light photolysis of free-radical precursor/sensitizer. The decrease in free-radical concentration by the presence of serum was quantified with electron spin resonance spin trapping method, from which the scavenging capacity was calculated. There was a significant capacity change in the disease group (n = 45) as compared with the healthy control group (n = 30). The percent values of disease’s scavenging capacity with respect to control group indicated statistically significant differences in all free-radical species except alkylperoxyl radical, i.e., hydroxyl radical, 73 ± 12% (p = 0.001); superoxide radical, 158 ± 50% (p = 0.001); alkoxyl radical, 121 ± 30% (p = 0.005); alkylperoxyl radical, 123 ± 32% (p>0.1); alkyl radical, 26 ± 14% (p = 0.001); and singlet oxygen, 57 ± 18% (p = 0.001). The scavenging capacity profile was illustrated using a radar chart, clearly demonstrating the characteristic change in the disease group. Although the cause of the scavenging capacity change by the disease state is not completely understood, the profile of multiple radical scavenging capacities may become a useful diagnostic tool. PMID:22962529
Akashi, Kinya; Nishimura, Noriyuki; Ishida, Yoshinori; Yokota, Akiho
2004-10-08
Wild watermelon (Citrullus lanatus sp.) has the ability to tolerate severe drought/high light stress conditions despite carrying out normal C3-type photosynthesis. Here, mRNA differential display was employed to isolate drought-responsive genes in the leaves of wild watermelon. One of the isolated genes, CLMT2, shared significant homology with type-2 metallothionein (MT) sequences from other plants. The second-order rate constant for the reaction between a recombinant CLMT2 protein and hydroxyl radicals was estimated to be 1.2 x 10(11) M(-1) s(-1), demonstrating that CLMT2 had an extraordinary high activity for detoxifying hydroxyl radicals. Moreover, hydroxyl radical-catalyzed degradation of watermelon genomic DNA was effectively suppressed by CLMT2 in vitro. This is the first demonstration of a plant MT with antioxidant properties. The results suggest that CLMT2 induction contributes to the survival of wild watermelon under severe drought/high light stress conditions. Copyright 2004 Elsevier Inc.
2014-01-01
Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374
Liu, Jia-Nan; Chen, Zhuo; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying; Yang, Cheng
2016-08-11
N, N-diethyl-m-toluamide (DEET) is one of the important emerging contaminants that are being increasingly detected in reclaimed water as well as in drinking water sources. However, DEET is refractory to conventional biological treatment and pure ozone which is absent of hydroxyl radical. Current researches on the efficient removal of DEET are still quite limited. This study utilizes a novel method, namely ozone/graphene oxide (O3/GO), to investigate the effects on DEET removal in aqueous systems, especially in reclaimed water. The results indicate that the DEET degradation rate was significantly accelerated through the combined effect of GO and ozonation which can yield abundant hydroxyl radical, compared to pure ozone condition. According to hydroxyl radical scavenging experiments, hydroxyl radical was found to play a dominant role in synergistic removal of DEET. These findings can offer sound suggestions for future research on the removal of emerging organic contaminants. The information could also be beneficial to reclaimed water safety and sustainable management.
Thiaflavan scavenges radicals and inhibits DNA oxidation: a story from the ferrocene modification.
Lai, Hai-Wang; Liu, Zai-Qun
2014-06-23
4-Thiaflavan is a sulfur-substituted flavonoid with a benzoxathiin scaffold. The aim of this work is to compare abilities of sulfur and oxygen atom, hydroxyl groups, and ferrocene moiety at different positions of 4-thiaflavan to trap radicals and to inhibit DNA oxidation. It is found that abilities of thiaflavans to trap radicals and to inhibit DNA oxidation are increased in the presence of ferrocene moiety and are further improved by the electron-donating group attaching to thiaflavan skeleton. It can be concluded that the ferrocene moiety plays the major role for thiaflavans to be antioxidants even in the absence of phenolic hydroxyl groups. On the other hand, the antioxidant effectiveness of phenolic hydroxyl groups in thiaflavans can be improved by the electron-donating group. The influences of sulfur and oxygen atoms in thiaflavans on the antioxidant property of para-hydroxyl group exhibit different manners when the thiaflavans are used to trap radicals and to inhibit DNA oxidation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Gołembiowska, Krystyna; Dziubina, Anna
2012-08-01
It has been shown that a decreased vesicular monoamine transporter (VMAT2) function and the disruption of dopamine (DA) storage is an early contributor to oxidative damage of dopamine neurons in Parkinson's disease (PD). In our previous study, we demonstrated that adenosine A(2A) receptor antagonists suppressed oxidative stress in 6-hydroxydopamine-treated rats suggesting that this effect may account for neuroprotective properties of drugs. In the present study, rats were injected with reserpine (10 mg/kg sc) and 18 h later the effect of the adenosine A(2A) receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on extracellular DA, glutamate and hydroxyl radical formation was studied in the rat striatum using in vivo microdialysis. By disrupting VMAT2 function, reserpine depleted DA stores, and increased glutamate and hydroxyl radical levels in the rat striatum. CSC (1 mg/kg) but not ZM 241385 (3 mg/kg) increased extracellular DA level and production of hydroxyl radical in reserpinised rats. Both antagonists decreased the reserpine-induced increase in extracellular glutamate. L-3,4-Dihydroxyphenylalanine (L-DOPA) (25 mg/kg) significantly enhanced extracellular DA, had no effect on reserpine-induced hydroxyl radical production and decreased extracellular glutamate concentration. CSC but not ZM 241385 given jointly with L-DOPA increased the effect of L-DOPA on extracellular DA and augmented the reserpine-induced hydroxyl radical production. CSC and ZM 241385 did not influence extracellular glutamate level, which was decreased by L-DOPA. It seems that by decreasing the MAO-dependent DA metabolism rate, CSC raised cytosolic DA and by DA autoxidation, it induced hydroxyl radical overproduction. Thus, the methylxanthine A(2A) receptor antagonists bearing properties of MAO-B inhibitor, like CSC, may cause a risk of oxidative stress resulting from dysfunctional DA storage mechanism in early PD.
Method and apparatus for the gas phase decontamination of chemical and biological agents
O'Neill, Hugh J.; Brubaker, Kenneth L.
2003-10-07
An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.
HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT
The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...
Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals
USDA-ARS?s Scientific Manuscript database
Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and tri...
Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers
Hofmann, Emily; Webster, Jonathan; Do, Thuy; Kline, Reid; Snider, Lindsey; Hauser, Quintin; Higginbottom, Grace; Campbell, Austin; Ma, Lili; Paula, Stefan
2016-01-01
In this study, we evaluated the abilities of a series of chalcones to inhibit the activity of the enzyme xanthine oxidase (XO) and to scavenge radicals. 20 mono- and polyhydroxylated chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and then tested for inhibitory potency against XO, a known generator of reactive oxygen species (ROS). In parallel, the ability of the synthesized chalcones to scavenge a stable radical was determined. Structure-activity relationship analysis in conjunction with molecular docking indicated that the most active XO inhibitors carried a minimum of three hydroxyl groups. Moreover, the most effective radical scavengers had two neighboring hydroxyl groups on at least one of the two phenyl rings. Since it has been proposed previously that XO inhibition and radical scavenging could be useful properties for reduction of ROS-levels in tissue, we determined the chalcones’ effects to rescue neurons subjected to ROS-induced stress created by the addition of β-amyloid peptide. Best protection was provided by chalcones that combined good inhibitory potency with high radical scavenging ability in a single molecule, an observation that points to a potential therapeutic value of this compound class. PMID:26762836
Comparison of scavenging capacities of vegetables by ORAC and EPR.
Kameya, Hiromi; Watanabe, Jun; Takano-Ishikawa, Yuko; Todoriki, Setsuko
2014-02-15
Reactive oxygen species (ROS) are considered to be causative agents of many health problems. In spite of this, the radical-specific scavenging capacities of food samples have not been well studied. In the present work, we have developed an electron paramagnetic resonance (EPR) spin trapping method for analysis of the scavenging capacities of food samples for multiple ROS, utilising the same photolysis procedure for generating each type of radical. The optimal conditions for effective evaluation of hydroxyl, superoxide, and alkoxyl radical scavenging capacity were determined. Quantification of radical adducts was found to be highly reproducible, with variations of less than 4%. The optimised EPR spin trapping method was used to analyse the scavenging capacities of 54 different vegetable extracts for multiple radicals, and the results were compared with oxygen radical absorption capacity values. Good correlations between the two methods were observed for superoxide and alkoxyl radicals, but not for hydroxyl. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wu, Songhai; Li, Feng; Jia, Shaoyi; Ren, Haitao; Gong, Guili; Wang, Yanyan; Lv, Zesheng; Liu, Yong
2014-03-15
Three polysaccharides (ABMP-F, ABMP-V, ABMP-A) were obtained from Agaricus blazei Murrill via methods such as freeze drying, vacuum drying and air drying, respectively. Their chemical compositions were examined, and antioxidant activities were investigated on the basis of assay for hydroxyl radical, DPPH radical, ABTS free radical scavenging ability and assay for Fe(2+)-chelating ability. Results showed that the three ABMPs have different physicochemical and antioxidant properties. Compared with air drying and vacuum drying methods, freeze drying method resulted to ABMP with higher neutral sugar, polysaccharide yield, uronic acid content, and stronger antioxidant abilities of hydroxyl radical, DPPH radical, ABTS radical scavenging and Fe(2+)-chelating. As a result, Agaricus blazei Murrill polysaccharides are natural antioxidant and freeze drying method serves as a good choice for the preparation of such polysaccharides and should be used to produce antioxidants for food industry. Copyright © 2014. Published by Elsevier Ltd.
Zhao, Xue; Yang, Bo; Li, Lingyun; Zhang, Fuming; Linhardt, Robert J.
2013-01-01
Hydroxyl radicals are widely implicated in the oxidation of carbohydrates in biological and industrial processes and are often responsible for their structural modification resulting in functional damage. In this study, the radical depolymerization of the polysaccharide hyaluronan was studied in a reaction with hydroxyl radicals generated by Fenton Chemistry. A simple method for isolation and identification of the resulting non-sulfated oligosaccharide products of oxidative depolymerization was established. Hyaluronan oligosaccharides were analyzed using ion-pairing reversed phase high performance liquid chromotography coupled with tandem electrospray mass spectrometry. The sequence of saturated hyaluronan oligosaccharides having even- and odd-numbers of saccharide units, afforded through oxidative depolymerization, were identified. This study represents a simple, effective ‘fingerprinting’ protocol for detecting the damage done to hyaluronan by oxidative radicals. This study should help reveal the potential biological outcome of reactive-oxygen radical-mediated depolymerization of hyaluronan. PMID:23768593
Free radical scavenging injectable hydrogels for regenerative therapy.
Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan
2017-02-01
Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS
The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...
Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...
Characterization and Neutralization of Arsenical-Based WWII Era Chemical Munition Fills
2006-08-01
Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen Peroxide 1.31 Perhydroxyl Radical 1.25 Permanganate 1.24 Hypobromous Acid 1.17 Chlorine...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permanganate ion is strongly attracted to the
Brown, Matthew A; Johánek, Viktor; Hemminger, John C
2008-02-01
A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254 nm radiation according to the reaction H2O2+hnu (254 nm)-->OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 10(10) molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.
Degradation of n-butylparaben and 4- tert-octylphenol in H 2O 2/UV system
NASA Astrophysics Data System (ADS)
BŁędzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gębicki, Jerzy L.; Miller, Jacek S.
2010-04-01
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4- tert-octylphenol (OP) in the H 2O 2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×10 9 and 4.2×10 9 M -1 s -1, respectively. For BP the rate constant equal to 2.0×10 10 M -1 s -1was also determined using water radiolysis as a source of hydroxyl radicals.
Generation of various radicals in nitrogen plasma and their behavior in media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S., E-mail: hsuhm@kw.ac.kr
2015-12-15
Research on the generation of radicals in nitrogen plasma shows that the most dominant radicals are excited nitrogen molecules in the metastable state of N{sub 2}(A{sub 3}∑{sub u}{sup +}). Hydroxyl molecules are generated from the dissociation of water molecules upon contact with excited nitrogen molecules. The estimated densities of various radicals in nitrogen plasma with an electron temperature of 1 eV are presented in this study. The behavior of these radicals in media is also investigated. Excited nitrogen molecules in the N{sub 2}(A{sub 3}∑{sub u}{sup +}) state from a plasma jet are injected into water, after which the molecules disappear instantaneouslymore » within a few tens of nm, producing hydroxyl molecules. Hydrogen peroxide, hydrogen dioxide, and nitrogen monoxide molecules can diffuse much deeper into water, implying the possibility that a chemical reaction between hydrogen dioxide and nitrogen monoxide molecules produces hydroxyl molecules in deep water, even though density in this case may not be very high.« less
Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.
Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J
2017-03-01
Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.
Bektaşoğlu, Burcu; Esin Celik, Saliha; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat
2006-07-07
Reactive oxygen species (ROS) such as superoxide anion, hydroxyl ((*)OH), peroxyl, and alkoxyl radicals may attack biological macromolecules giving rise to oxidative stress-originated diseases. Since (*)OH is very short-lived, secondary products resulting from (*)OH attack to various probes are measured. Although the measurement of aromatic hydroxylation with HPLC/electrochemical detection is more specific than the low-yield TBARS test, it requires sophisticated instrumentation. As a more convenient and less costly alternative, we used p-aminobenzoate, 2,4- and 3,5-dimethoxybenzoate probes for detecting hydroxyl radicals generated from an equivalent mixture of Fe(II)+EDTA with hydrogen peroxide. The produced hydroxyl radicals attacked both the probe and the water-soluble antioxidants in 37 degrees C-incubated solutions for 2h. The CUPRAC (i.e., our original method for total antioxidant capacity assay) absorbance of the ethylacetate extract due to the reduction of Cu(II)-neocuproine reagent by the hydroxylated probe decreased in the presence of (*)OH scavengers, the difference being proportional to the scavenging ability of the tested compound. A rate constant for the reaction of the scavenger with hydroxyl radical can be deduced from the inhibition of color formation. The second-order rate constants of the scavengers were determined with competition kinetics by means of a linear plot of A(0)/A as a function of C(scavenger)/C(probe), where A(0) and A are the CUPRAC absorbances of the system in the absence and presence of scavenger, respectively, and C is the molar concentration of relevant species. The 2,4- and 3,5-dimethoxybenzoates were the best probes in terms of linearity and sensitivity. Iodide, metabisulfite, hexacyanoferrate(II), thiourea, formate, and dimethyl sulfoxide were shown by the modified CUPRAC assay to be more effective scavengers than mannitol, glucose, lysine, and simple alcohols, as in the TBARS assay. The developed method is less lengthy, more specific, and of a higher yield than the classical TBARS assay. The hydroxyl radical scavenging rate constants of ascorbic acid, formate, and hexacyanoferrate(II) that caused interference in other assays could be easily found with the proposed procedure.
Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals
NASA Astrophysics Data System (ADS)
Pehrman, R.; Amme, M.; Cachoir, C.
2006-01-01
Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.
Ozyürek, Mustafa; Bektaşoğlu, Burcu; Güçlü, Kubilay; Apak, Reşat
2008-06-02
Hydroxyl radicals (OH) generated in the human body may play an important role in tissue injury at sites of inflammation in oxidative stress-originated diseases. As a more convenient, efficient, and less costly alternative to HPLC/electrochemical detection techniques and to the nonspecific, low-yield deoxyribose (TBARS) test, we used a salicylate probe for detecting OH generated by the reaction of iron(II)-EDTA complex with H(2)O(2). The produced hydroxyl radicals attack both the salicylate probe and the hydroxyl radical scavengers that are incubated in solution for 10 min. Added radical scavengers compete with salicylate for the OH produced, and diminish chromophore formation from Cu(II)-neocuproine. At the end of the incubation period, the reaction was stopped by adding catalase. With the aid of this reaction, a kinetic approach was adopted to assess the hydroxyl radical scavenging properties of polyphenolics, flavonoids and other compounds (e.g., ascorbic acid, glucose, mannitol). A second-order rate constant for the reaction of the scavenger with OH could be deduced from the inhibition of colour formation due to the salicylate probe. In addition to phenolics and flavonoids, five kinds of herbs were evaluated for their OH scavenging activity using the developed method. The modified CUPRAC (cupric ion reducing antioxidant capacity) assay proved to be efficient for ascorbic acid, gallic acid and chlorogenic acid, for which the deoxyribose assay test is basically nonresponsive. An important contribution of this developed assay is the inhibition of the Fenton reaction with catalase degradation of hydrogen peroxide so that the remaining H(2)O(2) would neither give a CUPRAC absorbance nor involve in redox cycling of phenolic antioxidants, enabling the rapid assay of polyphenolics.
Rovibrational intensities and electric dipole moment function of the X2 Pi hydroxyl radical
NASA Technical Reports Server (NTRS)
Chackerian, C., Jr.; Goorvitch, D.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Martin, P. M.; Abrams, M. C.; Davis, S. P.
1992-01-01
Recent work aimed at determining the absolute rovibrational transition intensities for the ground electronic state of the hydroxyl radical is reviewed. Two new sets of Fourier transform emission spectra of OH are described which were recorded at the University of Paris and at the Kitt Peak National Solar Observatory.
Infrared Emission Spectrum of the Hydroxyl Radical: A Novel Experiment in Molecular Spectroscopy.
ERIC Educational Resources Information Center
Henderson, Giles; And Others
1982-01-01
Describes an experiment in which parameters from an "ab-initio" potential are used to calculate vibrational-rotational energy levels and construct a "stick spectrum" for the overtone emission of the hydroxyl radical. Provides background information on ab-initio spectrum, experimental procedures, and analysis of data. (Author/JN)
Antioxidant Properties of Kynurenines: Density Functional Theory Calculations
2016-01-01
Kynurenines, the main products of tryptophan catabolism, possess both prooxidant and anioxidant effects. Having multiple neuroactive properties, kynurenines are implicated in the development of neurological and cognitive disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Autoxidation of 3-hydroxykynurenine (3HOK) and its derivatives, 3-hydroxyanthranilic acid (3HAA) and xanthommatin (XAN), leads to the hyperproduction of reactive oxygen species (ROS) which damage cell structures. At the same time, 3HOK and 3HAA have been shown to be powerful ROS scavengers. Their ability to quench free radicals is believed to result from the presence of the aromatic hydroxyl group which is able to easily abstract an electron and H-atom. In this study, the redox properties for kynurenines and several natural and synthetic antioxidants have been calculated at different levels of density functional theory in the gas phase and water solution. Hydroxyl bond dissociation enthalpy (BDE) and ionization potential (IP) for 3HOK and 3HAA appear to be lower than for xanthurenic acid (XAA), several phenolic antioxidants, and ascorbic acid. BDE and IP for the compounds with aromatic hydroxyl group are lower than for their precursors without hydroxyl group. The reaction rate for H donation to *O-atom of phenoxyl radical (Ph-O*) and methyl peroxy radical (Met-OO*) decreases in the following rankings: 3HOK ~ 3HAA > XAAOXO > XAAENOL. The enthalpy absolute value for Met-OO* addition to the aromatic ring of the antioxidant radical increases in the following rankings: 3HAA* < 3HOK* < XAAOXO* < XAAENOL*. Thus, the high free radical scavenging activity of 3HAA and 3HOK can be explained by the easiness of H-atom abstraction and transfer to O-atom of the free radical, rather than by Met-OO* addition to the kynurenine radical. PMID:27861556
Cloud condensation nuclei activity of aliphatic amine secondary aerosol
USDA-ARS?s Scientific Manuscript database
Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...
Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T
2015-05-20
Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.
Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei
2009-02-01
We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.
Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry.
McAvey, Kevin M; Guan, Bing; Fortier, Chanel A; Tarr, Matthew A; Cole, Richard B
2011-04-01
Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2,5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism. © American Society for Mass Spectrometry, 2011
The mechanism of the photochemical oxidation of water to oxygen with silver chloride colloids
NASA Astrophysics Data System (ADS)
Chandrasekaran, K.; Thomas, J. K.
1983-05-01
Photoexcitation of silver chloride colloids in the presence of excess silver ions, leads to the decomposition of water. Hydroxyl radicals were found to be intermediates in the decomposition process. Irradiation leads to hydroxyl radicals, which recombine to give hydrogen peroxide, on the colloidal particle surface. Subsequent decomposition of H 2O 2 to give O 2 is catalyzed by silver ions. Addition of alcohols such as methanol and isopropanol reduce the oxygen yield, as they react with OH radicals and reduce the H 2O 2 yield.
Silverman, D J; Santucci, L A
1988-01-01
Cells infected by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, display unusual intracellular morphological changes characterized by dilatation of the membranes of the endoplasmic reticulum and outer nuclear envelope. These changes are consistent with those that might be expected to occur following peroxidation of membrane lipids initiated by oxygen radical species, such as the hydroxyl radical or a variety of organic radicals. Using a fluorescent probe, we have found significantly increased levels of peroxides in human endothelial cells infected by R. rickettsii. Studies with desferrioxamine, an iron chelator effective in preventing formation of the hydroxyl radical from hydrogen peroxide and the superoxide free radical, reduced peroxide levels in infected cells to those found in uninfected cells. This observation suggests that the increased peroxides in infected cells may be lipid peroxides, degradation products of free radical attack on polyenoic fatty acids. The potential for lipid peroxidation as an important mechanism in endothelial cell injury caused by R. rickettsii is discussed. Images PMID:3141280
Free radical scavenging abilities of polypeptide from Chlamys farreri
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo
2006-09-01
We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.
Yu, Hyeon-Hee; Seo, Se-Jeong; Kim, Yeon-Hwa; Lee, Hae-Youn; Park, Rae-Kil; So, Hong-Seob; Jang, Seon Ll; You, Yong-Ouk
2006-10-11
The steamed root of Rehmannia glutinosa has been used in traditional Oriental Medicine for treatment of inner ear diseases, such as tinnitus and hearing loss. In the present study, we showed that the ethanol extract of steamed roots of Rehmannia glutinosa (SRG) protected HEI-OC1 auditory cells from cisplatin cytotoxicity in a dose-dependent fashion. In addition, to investigate the protection mechanism of SRG on cisplatin cytotoxicity towards HEI-OC1, we measured the effects of SRG on lipid peroxidation of cisplatin treated cells as well as scavenging activities against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. SRG (5-100 microg/ml) had protective effect against the cisplatin-induced HEI-OC1 cell damage and reduced lipid peroxidation in a dose-dependent manner. Furthermore, SRG showed strong scavenging activity against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. These results indicate that SRG protects cisplatin-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and scavenging activities of free radials.
Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira
2016-08-16
Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum.
Yu, Huahua; Liu, Xiguang; Xing, Ronge; Liu, Song; Li, Cuiping; Li, Pengcheng
2005-05-16
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (FF), second fraction (SF), and 30% (NH4)2 SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 microg/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 61, and 88 microg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 microg/mL, but values EC50 of Vc and mannitol were 1907 and 4536 microg/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food.
DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage.
Suji, G; Sivakami, S
2007-11-01
Amino acids react with methylglyoxal to form advanced glycation end products. This reaction is known to produce free radicals. In this study, cleavage to plasmid DNA was induced by the glycation of lysine with methylglyoxal in the presence of iron(III). This system was found to produce superoxide as well as hydroxyl radicals. The abilities of various vitamins to prevent damage to plasmid DNA were evaluated. Pyridoxal-5-phosphate showed maximum protection, while pyridoxamine showed no protection. The protective abilities could be directly correlated to inhibition of production of hydroxyl and superoxide radicals. Pyridoxal-5-phosphate exhibited low radical scavenging ability as evaluated by its TEAC, but showed maximum protection probably by interfering in free radical production. Pyridoxamine did not inhibit free radical production. Thiamine and thiamine pyrophosphate, both showed protective effects albeit to different extents. Tetrahydrofolic acid showed better antioxidant activity than folic acid but was found to damage DNA by itself probably by superoxide generation.
Gas-phase reactions with the hydroxyl radical (OH) are
expected to be an important removal pathway of polychlorinated dibenzo-p-dioxins and dibenzofurans
(PCDD/F)
in the atmosphere. Our laboratory recently developed
a system to measure the rate constants of ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... the use of special characters, any form of encryption, and be free of any defects or viruses. Docket... such as hydroxyl radicals (OH), ozone (O 3 ), carbon monoxide (CO), and water). (iii) The radiative... of hydroxyl radicals (OH) or by deriving the lifetime of the short-lived (i.e., not well mixed...
Novel denture-cleaning system based on hydroxyl radical disinfection.
Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi
2012-01-01
The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.
Hsu, Feng-Lin; Huang, Wei-Jan; Wu, Tzu-Hua; Lee, Mei-Hsien; Chen, Lih-Chi; Lu, Hsiao-Jen; Hou, Wen-Chi; Lin, Mei-Hsiang
2012-01-01
Thirteen polyphenolics were isolated from fresh pods of Caesalpinia pulcherrima using various methods of column chromatography. The structures of these polyphenolics were elucidated as gallic acid (1), methyl gallate (2), 6-O-galloyl-d-glucoside (3), methyl 6-O-galloyl-β-d-glucoside (4), methyl 3,6-di-O-galloyl-α-d-glucopyranoside (5), gentisic acid 5-O-α-d-(6′-O-galloyl)glucopyranoside (6), guaiacylglycerol 4-O-β-d-(6′-O-galloyl)glucopyranoside (7), 3-methoxy-4-hydroxyphenol 1-O-β-d-(6′-O-galloyl) glucopyranoside (8), (+)-gallocatechin (9), (+)-catechin (10), (+)-gallocatechin 3-O-gallate (11), myricetin 3-rhamnoside (12), and ampelopsin (13). All isolated compounds were tested for their antioxidant activities in the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and peroxynitrite radicals scavenging assays. Among those compounds, 11, 12, and 2 exhibited the best DPPH-, hydroxyl-, and peroxynitrite radical-scavenging activities, respectively. Compound 7 is a new compound, and possesses better scavenging activities towards DPPH but has equivalent hydroxyl radical scavenging activity when compared to BHT. The paper is the first report on free radical scavenging properties of components of the fresh pods of Caesalpinia pulcherrima. The results obtained from the current study indicate that the free radical scavenging property of fresh pods of Caesalpinia pulcherrima may be one of the mechanisms by which this herbal medicine is effective in several free radical mediated diseases. PMID:22754350
Toth, Janie E; Rickman, Kimberly A; Venter, Andre R; Kiddle, James J; Mezyk, Stephen P
2012-10-11
Over the past several decades, the increased use of artificial sweeteners as dietary supplements has resulted in rising concentrations of these contaminants being detected in influent waters entering treatment facilities. As conventional treatments may not quantitatively remove these sweeteners, radical-based advanced oxidation and reduction (AO/RP) treatments could be a viable alternative. In this study, we have established the reaction kinetics for both hydroxyl ((•)OH) and sulfate (SO(4)(•-)) radical reaction with five common artificial sweeteners, as well as their associated reaction efficiencies. Rate constants for acesulfame K, aspartame, rebaudioside A, saccharin, and sucralose were <2 × 10(7), (2.28 ± 0.02) × 10(9), (2.1 ± 0.1) × 10(8), <2 × 10(7), and (1.7 ± 0.1) × 10(8) M(-1) s(-1) for the sulfate radical, and (3.80 ± 0.27) × 10(9), (6.06 ± 0.05) × 10(9), (9.97 ± 0.12) × 10(9), (1.85 ± 0.01) × 10(9), and (1.50 ± 0.01) × 10(9) M(-1) s(-1) for the hydroxyl radical, respectively. These latter values have to be combined with their corresponding reaction efficiencies of 67.9 ± 0.9, 52.2 ± 0.7, 43.0 ± 2.5, 52.7 ± 2.9, and 98.3 ± 3.5% to give effective rate constants for the hydroxyl radical reaction that can be used in the modeling of the AOP based removal of these contaminants.
Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei
2015-09-15
The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Brown, Matthew A.; Johánek, Viktor; Hemminger, John C.
2008-02-01
A unique dosing system for the production of hydroxyl radicals under high vacuum for the study of environmental heterogeneous reactions is described. Hydroxyl radicals are produced by the photodissociation of a hydrogen peroxide aqueous gas mixture with 254nm radiation according to the reaction H2O2+hν (254nm)→OH+OH. Under the conditions of the current design, 0.6% conversion of hydrogen peroxide is expected yielding a hydroxyl number density on the order of 1010molecules/cm3. The flux distribution of the dosing system is calculated using a Monte Carlo simulation method and compared with the experimentally determined results. The performance of this unique hydroxyl dosing system is demonstrated for the heterogeneous reaction with a solid surface of potassium iodide. Coupling of the hydroxyl radical dosing system to a quantitative surface analysis system should help provide molecular level insight into detailed reaction mechanisms.
NASA Astrophysics Data System (ADS)
Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László
2014-09-01
The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.
Harada, Kazuki; Maeda, Toshimichi; Hasegawa, Yoshiro; Tokunaga, Takushi; Ogawa, Shinya; Fukuda, Kyoko; Nagatsuka, Norie; Nagao, Keiko; Ueno, Shunshiro
2011-01-01
The giant jellyfish Nemopilema nomurai (reaching sizes of up to 2 m diameter and 150 kg), which forms dense blooms, has caused extensive damage to fisheries by overloading trawl nets, while its toxic nematocysts cause dermatological symptoms. Giant jellyfish are currently discarded on the grounds of pest control. However, the giant jellyfish is considered to be edible and is part of Chinese cuisine. Therefore, we investigated whether any benefits for human health may be derived from consumption of the jellyfish in order to formulate medicated diets. Antioxidant activity of Nemopilema nomurai was measured using the oxygen radical absorbance capacity (ORAC) and hydroxyl radical averting capacity (HORAC) methods. Based on the results, the ORAC value of the giant jellyfish freeze-dried sample was 541 µmol trolox equivalent (TE)/100 g and the HORAC value was 3,687 µmol gallic acid equivalent (GAE)/100 g. On the other hand, the IC50 value of hydroxyl radical scavenging activity measured by using the electron spin resonance method was 3.3%. In conclusion, the results suggest that the freeze-dried powder of the giant jellyfish Nemopilema nomurai is a potentially beneficial food for humans.
The aqueous-phase photoformation of hydroxyl radical (
OH) and singlet molecular oxygen (O2(1Δg) or 1O*
Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting
Wang, Liwen; Chance, Mark R.
2011-01-01
Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described. PMID:21770468
The spin trap compound a-(4-pyridyl-1-oxide)N-tert-butylnitrone (4-POBN) served as a probe to estimate the activity of Fenton-derived hydroxyl radicals (.OH) in a batch suspension comprised of silica sand and crushes goethite ore. The rate of probe disappearance was used to anal...
Photochemical reactions involving colored dissolved organic matter (CDOM) in natural waters are important determinants of nutrient cycling, trace gas production and control of light penetration into the water column. In this study the role of the hydroxyl radical ((OH)-O-.) in CD...
Heilek, G M; Noller, H F
1996-01-01
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit. PMID:8718688
Reaction mechanisms of DNT with hydroxyl radicals for advanced oxidation processes-a DFT study.
Zhou, Yang; Yang, Zhilin; Yang, Hong; Zhang, Chaoyang; Liu, Xiaoqiang
2017-04-01
In advanced oxidation processes (AOPs), the detailed degradation mechanisms of a typical explosive of 2,4-dinitrotoluene (DNT) can be investigated by the density function theory (DFT) method at the SMD/M062X/6-311+G(d) level. Several possible degradation routes for DNT were explored in the current study. The results show that, for oxidation of the methyl group, the dominant degradation mechanism of DNT by hydroxyl radicals (•OH) is a series of sequential H-abstraction reactions, and the intermediates obtained are in good agreement with experimental findings. The highest activation energy barrier is less than 20 kcal mol -1 . Other routes are dominated by an addition-elimination mechanism, which is also found in 2,4,6-trinitrotoluene, although the experiment did not find the corresponding products. In addition, we also eliminate several impossible mechanisms, such as dehydration, HNO 3 elimination, the simultaneous addition of two •OH radials, and so on. The information gained about these degradation pathways is helpful in elucidating the detailed reaction mechanism between nitroaromatic explosives and hydroxyl radicals for AOPs. Graphical Abstract The degradation mechanism of an important explosive, 2,6-dinitrotoluene (DNT), by the hydroxyl radical for advanced oxidation progresses.
Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma. Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio
2018-01-01
Guava leaf (Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties. PMID:29495514
Camarena-Tello, Julio César; Martínez-Flores, Héctor Eduardo; Garnica-Romo, Ma Guadalupe; Padilla-Ramírez, José Saúl; Saavedra-Molina, Alfredo; Alvarez-Cortes, Osvaldo; Bartolomé-Camacho, María Carmen; Rodiles-López, José Octavio
2018-02-27
Guava leaf ( Psidium guajava L.) extracts are used in both traditional medicine and the pharmaceutical industry. The antioxidant compounds in P. guajava leaves can have positive effects including anti-inflammatory, anti-hyperglycemic, hepatoprotective, analgesic, anti-cancer effects, as well as protecting against cardiovascular diseases. In the present study, phenolic compounds and in vitro antioxidant capacity were measured in extracts obtained with polar and non-polar solvents from leaves of two varieties of guava, Calvillo Siglo XXI and Hidrozac. The quantity of total phenolics and total flavonoids were expressed as equivalents of gallic acid and quercetin, respectively. Hydroxyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and Oxygen Radical Absorbance Capacity using fluorescein (ORAC-FL) in vitro tests were used to assess the radical scavenging abilities of the extracts. The total phenolics were higher in the aqueous fraction of the variety Calvillo Siglo XXI, while in the Hidrozac variety total phenolics were higher in the acetone and chloroform fractions. Total flavonoids were higher in all fractions in the variety Calvillo Siglo XXI. Total phenolics showed a highly positive correlation for ORAC-FL, and a moderately positive correlation with hydroxyl radicals. Finally, total flavonoids showed a slightly positive correlation for ORAC-FL and hydroxyl radicals. Both varieties of guava leaf extract showed excellent antioxidant properties.
Zhang, Yufeng; Duan, Xiu; Zhuang, Yongliang
2012-11-01
To obtain hydrolysates with high degree of hydrolysis (DH) and scavenging radical activity, tilapia skin gelatin (TSG) was hydrolyzed by properase E and multifect neutral. The optimum hydrolysis condition of each enzyme was determined using the orthogonal experiment, and double-enzyme hydrolysis was further applied. The results showed the tilapia skin gelatin hydrolysate (TSGH) obtained by progressive hydrolysis using multifect neutral and properase E had the highest DH and hydroxyl radical scavenging activity. The IC(50) values of TSGH on scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion radical (·O(2)) and hydroxyl radical (·OH) activities were also determined. TSGH was further purified using gel filtration chromatography, ion exchange chromatography, and RP-HPLC. The peptides were identified using nano-LC-ESI mass spectrometry. Finally, two antioxidant peptides were identified and the amino acid sequences were Glu-Gly-Leu (317.33 Da) and Tyr-Gly-Asp-Glu-Tyr (645.21 Da), respectively. The IC(50) values of two peptides on hydroxyl radical scavenging activities were 4.61 μg mL(-1)and 6.45 μg mL(-1), respectively. Therefore, the results demonstrated that the hydrolysates of TSG prepared by multifect neutral and properase E could serve as a source of peptides with high antioxidant activity. It provided a scientific basis for the preparation of antioxidant peptides. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tseng, S.-S.; Chang, S.
1975-01-01
Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.
Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study
NASA Astrophysics Data System (ADS)
Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László
2017-03-01
Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.
Chemical determination of free radical-induced damage to DNA.
Dizdaroglu, M
1991-01-01
Free radical-induced damage to DNA in vivo can result in deleterious biological consequences such as the initiation and promotion of cancer. Chemical characterization and quantitation of such DNA damage is essential for an understanding of its biological consequences and cellular repair. Methodologies incorporating the technique of gas chromatography/mass spectrometry (GC/MS) have been developed in recent years for measurement of free radical-induced DNA damage. The use of GC/MS with selected-ion monitoring (SIM) facilitates unequivocal identification and quantitation of a large number of products of all four DNA bases produced in DNA by reactions with hydroxyl radical, hydrated electron, and H atom. Hydroxyl radical-induced DNA-protein cross-links in mammalian chromatin, and products of the sugar moiety in DNA are also unequivocally identified and quantitated. The sensitivity and selectivity of the GC/MS-SIM technique enables the measurement of DNA base products even in isolated mammalian chromatin without the necessity of first isolating DNA, and despite the presence of histones. Recent results reviewed in this article demonstrate the usefulness of the GC/MS technique for chemical determination of free radical-induced DNA damage in DNA as well as in mammalian chromatin under a vast variety of conditions of free radical production.
Yu, Hyeon-Hee; Jung, Su-Young; Shin, Mee-Kyung; Park, Raekil; So, Hong-Seob; You, Yong-Ouk
2010-06-01
The radix of Pueraria thunbergiana (P. thunbergiana) is traditionally prescribed to attenuate the clinical manifestation of inner ear dysfunction and various clinical situations including fevers, gastrointestinal disorders, skin problems, migraine headaches, lowering cholesterol, and treating chronic alcoholism in oriental medicine. In the present study, we examined the protective effect of ethanol extract of the radix of P. thunbergiana (RPT) on cisplatin-induced damage of HEI-OC1 auditory hair cells. When the cells were cultured in the medium containing 5-100 microg/mL of RPT, RPT showed protective effect against the cisplatin-induced HEI-OC1 cell damage. We also measured the effects of RPT on lipid peroxidation of cisplatin-treated cells as well as scavenging activities against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. RPT reduced cisplatin-induced lipid peroxidation in a dose-dependent manner. Furthermore, RPT showed strong scavenging activity against superoxide radical, hydroxyl radical, hydrogen peroxide, and DPPH radical. These results indicate that RPT protects cisplatin-induced HEI-OC1 cell damage through inhibition of lipid peroxidation and scavenging activities of free radials. (c) 2009 John Wiley & Sons, Ltd.
Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun
2015-11-01
To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.
Method of cross-linking polyvinyl alcohol and other water soluble resins
NASA Technical Reports Server (NTRS)
Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1980-01-01
A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Maanen, J.M.; Borm, P.J.; Knaapen, A
1999-12-15
The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less
NASA Technical Reports Server (NTRS)
Carson, G. T., Jr.
1974-01-01
Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.
Treesuwan, Witcha; Suramitr, Songwut; Hannongbua, Supa
2015-06-01
Radical scavenging potential is the key to anti-oxidation of hydroxyflavones which generally found in fruits and vegetables. The objective of this work was to investigate the influence of hydroxyl group on the O-H bond dissociation enthalpies (BDE) from a series of mono- and dihydroxyflavones. Calculation at the B3LYP/6-31G(d,p) level reveals the important roles of an additional one hydroxyl group to boost the BDE of hydroxyflavones that were a stabilization of the generated radicals through attractive H-bond interactions, an ortho- and para-dihydroxyl effect, and a presence of the 3-OH in dihydroxyflavones. On the other hand, the meta-dihydroxyl effect and range-hydroxyl effect especially associated with the either 5-OH or 8-OH promoted greater BDE. Results did not only confirm that dihydroxyflavones had lower BDE than monohydroxyflavones but also suggest the selective potent hydroxyflavone molecules that are the 6'-hydroxyflavone (for monohydroxyflavone) and the 5',6'-, 7,8- and 3',4'-dihydroxyflavone which the corresponding radical preferable generated at C6'-O•, C8-O• and C4'-O•, respectively. Electron distribution was limited only over the two connected rings of hydroxyflavones while the expansion distribution into C-ring could be enhanced if the radical was formed especially for the 2',3'- and 5',6'dihydroxyflavone radicals. The delocalized bonds were strengthened after radical was generated. However the 5-O• in 5,6-dihydroxyflavone and the 3-O• in 3,6'-dihydroxyflavone increased the bond order at C4-O11 which might interrupt the conjugated delocalized bonds at the keto group.
Gogniat, Gaëtan; Dukan, Sam
2007-12-01
Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery.
Rate coefficients are reported for the gas-phase reaction of the hydroxyl radical (OH) with C2HCl3 (k1) and C2Cl4 (k2) over an extended temperature range at 740±10 Torr in a He bath gas. These...
Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.
Lipinski, B; Pretorius, E
2012-07-01
Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.
Chatti, Ines Bouhlel; Boubaker, Jihed; Skandrani, Ines; Bhouri, Wissem; Ghedira, Kamel; Chekir Ghedira, Leila
2011-08-01
The antioxidant potency of Acacia salicina extracts was investigated. Total antioxidant capacity was determined using an ABTS(+) assay. Superoxide radical scavenging was measured using riboflavin-light-nitro blue tetrazolium (NBT) assay. In addition, the content of phenols, total flavonoids and sterols were measured in the tested extracts. The petroleum ether exhibited a potent scavenging activity toward ABTS radical cations. Whereas, chloroform extract showed the highest activity against superoxides radicals and was also able to protect pKS plasmid DNA against hydroxyl radicals induced DNA damages. The antimutagenicity of these extracts was assayed using the Ames assay against Salmonella typhimurium TA98 and S. typhimurium TA 1535 tester strains at different concentrations. These extracts decreased significantly the mutagenecity induced by sodium azide (SA) and 4-nitro-o-phenylenediamine (NOP). The antioxidant and antimutagenecity activities exhibited by A. salicina depended on the chemical composition of the tested extracts. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arakaki, T.; Kinjo, M.; Shiroma, K.; Shibata, M.; Miyake, T.; Hirakawa, T.; Sakugawa, H.
2003-12-01
Hydroxyl radical formation was studied by detecting concentration of formate in solutions of hydrated formaldehyde, HOOH, and Fe(III) or Cu(II). Oxidation of hydrated formaldehyde by OH radical is known to form formate. Formate formation increased by about 4 times when the solution underwent freezing and thawing. Although the reaction mechanisms are not clearly understood, we believe that the concentration effect of freezing enhanced the catalytic reactions between HOOH and Fe(III) or Cu(II) and the reduction of transition metals, i.e., Fe(III) to Fe(II) and Cu(II) to Cu(I). The concentration effect also enhanced reactions between Fe(II) and HOOH or Cu(I) and HOOH, which generated OH radical (freeze-Fenton reaction). Study of the effects of pH showed that formate formation was the highest at pH = 4.0, indicating that the speciation of Fe(III) affected the formation of formate. Concentration-dependent experiments demonstrated that Fe is probably the limiting agent under typical atmospheric conditions. Our results suggested that the freezing process could be an important source of hydroxyl radical in high cloud, winter fog, rime ice and freezing acidic rain, and more importantly, a potentially additional oxidation mechanism in the atmosphere.
Antioxidative Activity of Colostrum and Human Milk: Effects of Pasteurization and Storage.
Marinković, Vesna; Ranković-Janevski, Milica; Spasić, Snežana; Nikolić-Kokić, Aleksandra; Lugonja, Nikoleta; Djurović, Dijana; Miletić, Srdjan; Vrvić, Miroslav M; Spasojević, Ivan
2016-06-01
Milk banks collect, pasteurize, and freeze/store human milk. The processing may alter redox properties of milk, but the effects have not been fully examined. We collected 10 mature milk and 10 colostrum samples and applied a battery of biochemical assays and electron paramagnetic resonance spectroscopy to inspect changes that milk undergoes with pasteurization and 30 days storage at -20°C. Pasteurization and storage of raw milk did not affect total nonenzymatic antioxidative capacity, but specific components and features were altered. Urate radical and ascorbyl radical emerge as products of exposure of milk to hydroxyl radical-generating system. Processing shifted the load of antioxidative activity from ascorbate to urate and lowered the capacity of milk to diminish hydroxyl radical. Pasteurization caused a significant drop in the activity of 2 major antioxidative enzymes-superoxide dismutase and glutathione peroxidase, whereas freezing/storage of raw milk affected only superoxide dismutase. Colostrum showed drastically higher total nonenzymatic antioxidative capacity, hydroxyl radical scavenging ability, and glutathione reductase activity compared with mature milk. Pasteurization and storage affect nonenzymatic and enzymatic antioxidative agents in human milk. It appears that nonenzymatic antioxidative systems in colostrum and milk are different. The effects of processing may be partially compensated by fortification/spiking with ascorbate before use.
Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust
NASA Technical Reports Server (NTRS)
Wallace, William T.; Jeevarajan, Antony S.
2012-01-01
This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.
Formation of Hydroxylamine from Ammonia and Hydroxyl Radicals
NASA Astrophysics Data System (ADS)
Krim, Lahouari; Zins, Emilie-Laure
2014-06-01
In the interstellar medium, as well as in icy comets, ammonia may be a crucial species in the first step toward the formation of amino-acids and other prebiotic molecules such as hydroxylamine (NH2OH). It is worth to notice that the NH3/H2 ratio in the ISM is 3 10-5 compared the H2O/H2 one which is only 7 10-5. Using either electron-UV irradiations of water-ammonia ices or successive hydrogenation of solid nitric oxide, laboratory experiments have already shown the feasibility of reactions that may take place on the surface of ice grains in molecular clouds, and may lead to the formation of this precursor. Herein is proposed a new reaction pathway involving ammonia and hydroxyl radicals generated in a microwave discharge. Experimental studies, at 3 and 10 K, in solid phase as well as in neon matrix have shown that this reaction proceed via a hydrogen abstraction, leading to the formation of NH2 radical, that further recombine with hydroxyl radical to form hydroxylamine, under non-energetic conditions.
Radiolysis of paracetamol in dilute aqueous solution
NASA Astrophysics Data System (ADS)
Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László
2012-09-01
Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.
Hydroxyl Radical Modification of Collagen Type II Increases Its Arthritogenicity and Immunogenicity
Shahab, Uzma; Ahmad, Saheem; Moinuddin; Dixit, Kiran; Habib, Safia; Alam, Khursheed; Ali, Asif
2012-01-01
Background The oxidation of proteins by endogenously generated free radicals causes structural modifications in the molecules that lead to generation of neo-antigenic epitopes that have implications in various autoimmune disorders, including rheumatoid arthritis (RA). Collagen induced arthritis (CIA) in rodents (rats and mice) is an accepted experimental model for RA. Methodology/Principal Findings Hydroxyl radicals were generated by the Fenton reaction. Collagen type II (CII) was modified by •OH radical (CII-OH) and analysed by ultraviolet-visible (UV-VIS), fluorescence and circular dichroism (CD) spectroscopy. The immunogenicity of native and modified CII was checked in female Lewis rats and specificity of the induced antibodies was ascertained by enzyme linked immunosorbent assay (ELISA). The extent of CIA was evaluated by visual inspection. We also estimated the oxidative and inflammatory markers in the sera of immunized rats. A slight change in the triple helical structure of CII as well as fragmentation was observed after hydroxyl radical modification. The modified CII was found to be highly arthritogenic and immunogenic as compared to the native form. The CII-OH immunized rats exhibited increased oxidative stress and inflammation as compared to the CII immunized rats in the control group. Conclusions/Significance Neo-antigenic epitopes were generated on •OH modified CII which rendered it highly immunogenic and arthritogenic as compared to the unmodified form. Since the rodent CIA model shares many features with human RA, these results illuminate the role of free radicals in human RA. PMID:22319617
Liu, Jun; Pu, Huimin; Chen, Chong; Liu, Yunpeng; Bai, Ruyu; Kan, Juan; Jin, Changhai
2018-01-10
The ascorbic acid (AA) and hydroxyl peroxide (H 2 O 2 ) redox pair induced free radical grafting reaction is a promising approach to conjugate phenolic groups with chitosan (CS). In order to reveal the exact mechanisms of the AA/H 2 O 2 redox pair induced grafting reaction, free radicals generated in the AA/H 2 O 2 redox system were compared with hydroxyl radical ( • OH) produced in the Fe 2+ /H 2 O 2 redox system. Moreover, the structural and physicochemical properties of caffeic acid grafted CS (CA-g-CS) synthesized in these two redox systems were compared. Results showed that only ascorbate radical (Asc •- ) was produced in the AA/H 2 O 2 system. The reaction between Asc •- and CS produced novel carbon-centered radicals, whereas no new free radicals were detected when • OH reacted with CS. Thin layer chromatography, UV-vis, Fourier transform infrared, and nuclear magnetic resonance spectroscopic analyses all confirmed that CA was successfully grafted onto CS through Asc •- . However, CA could be hardly grafted onto CS via • OH. CA-g-CS synthesized through Asc •- exhibited lower thermal stability and crystallinity than the reaction product obtained through • OH. For the first time, our results demonstrated that the synthesis of CA-g-CS in the AA/H 2 O 2 redox system was mediated by Asc •- rather than • OH.
DNA Binding Hydroxyl Radical Probes.
Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R
2012-01-01
The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA.
Damage mechanism of hydroxyl radicals toward adenine—thymine base pair
NASA Astrophysics Data System (ADS)
Tan, Rong-Ri; Wang, Dong-Qi; Zhang, Feng-Shou
2014-02-01
The adenine—thymine base pair was studied in the presence of hydroxyl radicals in order to probe the hydrogen bond effect. The results show that the hydrogen bonds have little effect on the hydroxylation and dehydrogenation happened at the sites, which are not involved in a hydrogen bond, while at the sites involved in hydrogen bond formation in the base pair, the reaction becomes more difficult, both in view of the free energy barrier and the exothermicity. With a 6-311++G(d,p) level of description, both B3LYP and MP2 methods confirm that the C8 site of isolated adenine has the highest possibility to form covalent bond with the hydroxyl radicals, though with different energetics: B3LYP predicts a barrierless pathway, while MP2 finds a transition state with an energy of 106.1 kJ/mol. For the dehydrogenation reactions, B3LYP method predicts that the free energy barrier increases in the order of HN9 < HN61 < HN62 < H2 < H8.
Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng
2004-03-01
Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.
Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting
Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387
Curculigo orchioides protects cisplatin-induced cell damage.
Kang, Tong Ho; Hong, Bin Na; Jung, Su-Young; Lee, Jeong-Han; So, Hong-Seob; Park, Raekil; You, Yong-Ouk
2013-01-01
Cisplatin is commonly used as a chemotherapeutic agent against many human cancers. However, it generates reactive oxygen species (ROS) and has serious dose-limiting side effects, including ototoxicity. The roots of Curculigo orchioides (C. orchioides) have been used to treat auditory diseases such as tinnitus and hearing loss in Chinese traditional medicine. In the present study, we investigated the protective effects of an ethanol extract obtained from C. orchioides rhizome (COR) on cisplatin-induced cell damage in auditory cells (HEI-OC1). COR (2.5-25 μg/ml) inhibited cisplatin-induced HEI-OC1 cell damage in a dose-dependent manner. To investigate the protective mechanism of COR on cisplatin cytotoxicity in HEI-OC1 cells, we measured the effects of COR on ROS generation and lipid peroxidation in cisplatin-treated cells as well as its scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals. COR (1-25 μg/ml) had scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals, as well as reduced lipid peroxidation. In in vivo experiments, COR was shown to reduce cochlear and peripheral auditory function impairments through cisplatin-induced auditory damage in mice. These results indicate that COR protects from cisplatin-induced auditory damage by inhibiting lipid peroxidation and scavenging activities against free radicals.
OH radical induced depolymerization of poly(methacrylic acid)
NASA Astrophysics Data System (ADS)
Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens
1999-05-01
Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.
Bailey, S M; Fauconnet, A L; Reinke, L A
1997-02-01
Hydroxylation of salicylate and D-phenylalanine was measured to test the usefulness of these compounds for hydroxyl radical (HO(•)) detection in chemical and biological systems. When HO(•) were produced by the photolytic decomposition of hydrogen peroxide, nearly equal amounts of 2,5- and 2,3-dihydroxybenzoic acid (DHBA) were produced from salicylate, with catechol as a minor product. In the photolytic reaction, nearly equal concentrations of p-,m-, and o-tyrosine were formed from D-phenylalanine. When salicylate or D-phenylalanine was present with Fenton reagents or in iron(II) autoxidation systems, the relative proportions of hydroxylated products were similar to those observed after photolysis, although less total products were usually detected. In contrast, when similar experiments were conducted with isolated hepatic microsomes and perfused livers, 2,5-DHBA was the primary product from salicylate, and p-tyrosine was the major product from D-phenylalanine. Cytochrome P-450 enzymes can hydroxylate salicylate to produce 2,5-DHBA, and it is likely that phenylalanine hydroxylase produces most of the p-tyrosine detected in hepatic tissues. Thus, although both salicylate and D-phenylalanine are useful probes for hydroxyl radical formation in chemical systems, hydroxylated products formed from enzymatic reactions complicate interpretation of data from both compounds in vivo.
Hull, Jonathan F.; Balcells, David; Sauer, Effiette L. O.; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.; Eisenstein, Odile
2010-01-01
We describe competitive C–H activation chemistry of two types, desaturation and hydroxylation, using synthetic manganese catalysts with several substrates. 9,10-dihydrophenanthrene (DHP) gives the highest desaturation activity, the final products being phenanthrene (P1) and phenanthrene-9,10-oxide (P3), the latter being thought to arise from epoxidation of some of the phenanthrene. The hydroxylase pathway also occurs as suggested by the presence of the dione product, phenanthrene-9,10-dione (P2), thought to arise from further oxidation of hydroxylation intermediate 9-hydroxy-9,10-dihydrophenanthrene. The experimental work together with the DFT calculations shows that the postulated Mn oxo active species, [Mn(O)(tpp)(Cl)] (tpp = tetraphenyl porphyrin), can promote the oxidation of dihydrophenanthrene by either desaturation or hydroxylation pathways. The calculations show that these two competing reactions have a common initial step – radical H abstraction from one of the DHP sp3 C–H bonds. The resulting Mn hydroxo intermediate is capable of promoting not only OH rebound (hydroxylation) but also a second H abstraction adjacent to the first (desaturation). Like the active MnV=O species, this MnIV-OH species also has radical character on oxygen and can thus give H abstraction. Both steps have very low and therefore very similar energy barriers, leading to a product mixture. Since the radical character of the catalyst is located on the oxygen p orbital perpendicular to the MnIV-OH plane, the orientation of the organic radical with respect to this plane determines which reaction, desaturation or hydroxylation, will occur. Stereoelectronic factors such as the rotational orientation of the OH in the enzyme active site is thus likely to constitute the switch between hydroxylation and desaturation behavior. PMID:20481432
SU-F-T-676: Measurement of Hydroxyl Radicals in Radiolized Water Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
2016-06-15
Purpose: Hydroxyl radicals can be produced within tissue by radiation therapy, and they are largely responsible for DNA damage and cell killing. Coumarin-3-carboxylic acid (3-CCA) and crystal violet are reported to react with hydroxyl radicals and can be used for fluorescence and absorbance measurements, respectively. This study assesses the ability of hydroxyl measurement for both 3-CCA and crystal violet in radiolized water systems in order to provide dosimetric information in radiation chemistry and radiation biology experiments. Methods: 3-CCA and crystal violet were both dissolved in phosphate buffered saline (PBS, pH 7.4) with final concentrations 0.5 mg/mL and 0.05 mg/mL. 3-CCAmore » and control solutions (PBS only) were loaded in black bottom 96-well plates. Crystal violet and control solutions were loaded in clear bottom 96-well plates. The prepared solutions were irradiated at 2 Gy using a small animal radiation research platform. Fluorescence reading with 360 nm excitation wavelength and 485 nm emission wavelength was done for 3-CCA, and absorbance reading at wavelength 580 nm was done for crystal violet before and after radiation. Results: 3-CCA showed clear difference in fluorescence before and after radiation, which suggested hydroxyl production during radiation. However, crystal violet absorbance at 580 nm was not changed significantly by radiation. Conclusion: The overall conclusion is that 3-CCA can be used for hydroxyl measurement in radiolized water systems, while crystal violet cannot, although crystal violet is reported widely to react with hydroxyl radicals produced in Fenton reactions. Possible reasons could relate to reaction pH.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (1985). (13) Mill T., Hendry D.G., Richardson H. “Free radical oxidants in natural waters.” Science, 207...)(7) of this section); peroxy radicals (RO2−) (Mill et al. (1981) under paragraph (f)(9) of this section; Mill et al. (1983) under paragraph (f)(8) of this section); hydroxyl radicals (HO−) (Mill et al...
Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P
2015-01-01
Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.
Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai
2013-11-01
Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.
Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit
2015-12-01
High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders.
Effects of salicylate on 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity in rats.
Yeh, S Y
1997-11-01
The drug 3,4-methylenedioxymethamphetamine (MDMA) is a serotonergic neurotoxicant that causes hyperthermia and depletion of serotonin (5-HT) and 5-hydroxy-indole-3-acetic acid (5-HIAA) in the central nervous system. Formation of neurotoxic metabolites of MDMA, e.g., 2,4,5-trihydroxy-methamphetamine and 2,4,5-trihydroxyamphetamine, involves hydroxyl and/or superoxide free radicals. The present study was designed to determine whether the hydroxyl free-radical-trapping agent salicylate could provide protection against MDMA neurotoxicity in rats. In the acute studies, sodium salicylate (12.5-400 mg/kg, calculated as free acid) was injected interperitoneally (i.p.) 1 h before subcutaneous (s.c.) injections of MDMA (20 mg/kg as base). In the chronic studies, sodium salicylate (3.1-100 mg/kg) was injected i.p. 1 h before repeated s.c. injections of MDMA (10 mg/kg as base, twice daily, at 0830 and 1730 h for 4 consecutive days). Repeated MDMA administration depleted contents of 5-HT and 5-HIAA in the frontal cortex, hippocampus and striatum. Coadministration of salicylate plus MDMA did not significantly alter MDMA-induced depletion of 5-HT and 5-HIAA in these tissues. Thus, salicylate, a hydroxyl free-radical-trapping agent, does not protect against MDMA-induced hyperthermia and depletion of 5-HT and 5-HIAA. These observations suggest that MDMA-induced neurotoxicity may occur mainly through the production of superoxide or other radicals rather than hydroxyl free radicals. Salicylate actually potentiated MDMA-induced hyperthermia and lethality, findings that might be of clinical relevance.
Free radical-scavenging delta-lactones from Boletus calopus.
Kim, Jin-Woo; Yoo, Ick-Dong; Kim, Won-Gon
2006-12-01
The methanol extracts from the fruiting body of the mushroom Boletus calopus showed free radical-scavenging activity. Bioactivity-guided fractionation of the methanol extracts led to a new hydroxylated calopin named calopin B, along with the known delta-lactones calopin and cyclocalopin A. The structure of the new calopin analogue was elucidated by spectroscopic methods. All compounds showed potent free radical-scavenging activity against superoxide, DPPH, and ABTS radicals with IC (50) values of 1.2 - 5.4 microg/mL.
Vibrational Study of Melatonin and its Radioprotective Activity towards Hydroxyl Radical
NASA Astrophysics Data System (ADS)
Singh, Gurpreet; Kaur, Sarvpreet; Saini, G. S. S.
2011-12-01
Vibrational study of Melatonin (N-acetyl 5-methoxytrypatamin) was done using FTIR and Raman spectroscopy. DFT calculations were employed to the structural analysis of melatonin and to the end products. The theoretical calculations confirmed the different observed vibrational modes. The optimized structure energy calculations of the different end products confirmed the most probable site of the hydroxyl radical attack is the hydrogen attached to nitrogen present in the indole ring.
NASA Astrophysics Data System (ADS)
Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.
2018-05-01
In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.
Respiratory Health Effects of Volcanic Ash - a new Approach
NASA Astrophysics Data System (ADS)
Horwell, C. J.; Fenoglio, I.; Sparks, R. J.; Ragnarsdottir, K. V.; Fubini, B.
2003-12-01
Attempts to characterise the toxicity of volcanic ash have focused on the presence of the crystalline silica polymorph cristobalite, which is known to cause silicosis and lung cancer in industrial settings. Within the lung, it is the surface of the particles which will react with endogenous molecules. Free radicals, produced on particle surfaces, can react with DNA and other cellular components, instigating a chain of toxic events. For the first time, the ability of volcanic ash to form free radicals has been assessed using Electron Paramagnetic Resonance techniques specific to the hydroxyl radical. Respirable (< 4 microns) crystalline silica, separated from volcanic ash from the Soufriere Hills volcano, Montserrat, West Indies, did not produce hydroxyl free radicals or surface radicals. However, the ash, itself, generated up to 3 times more hydroxyl radicals than a quartz of known toxicity. The cause of the reactivity is reduced iron on the surface of iron-rich minerals such as amphiboles and pyroxenes. Fresh volcanic ash generates more free radicals than weathered volcanic ash which will have oxidised (and leached away) surface iron. These results have implications for volcanic health hazard research as it was previously assumed that volcanoes which did not produce respirable crystalline silica presented a lesser respiratory health hazard. The International Volcanic Health Hazard Network (IVHHN) promotes research into the health effects of volcanic emissions. Under the auspices of IVHHN, volcanic ash samples from volcanoes world-wide are being analysed for surface reactivity, grain-size distribution and composition to form a comprehensive database for use by volcano observatories, emergency managers, medical practitioners and researchers. The results will highlight volcanoes which have the potential to cause a respiratory health hazard through generation of iron-catalysed free radicals, as well as more conventional markers such as concentration of respirable particles. At the onset of new eruptions, the database will be used to aid the rapid assessment of health hazard from volcanic ash.
Sanna, Daniele; Ugone, Valeria; Fadda, Angela; Micera, Giovanni; Garribba, Eugenio
2016-08-01
The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vander Wood, T. B.; Thiemens, M. H.
1980-01-01
Behavior of the hydroxyl radical produced by the photolysis of water vapor in the earth's early atmosphere is examined. Because of the substantial OH radical reactivity with trace species (CO, HCl, SO2, H2S, NH3, and CH4) the formation of molecular oxygen may be prevented, even at a trace species mixing ratio. The photolysis rate of H2O, with corrections for hydrogen exospheric escape, is capable of describing the oxidation of the atmosphere and crust but may not be used to determine the rate of molecular oxygen generation without consideration of the various OH-trace species reactions.
Jan, Shumaila; Khan, Muhammad Rashid; Rashid, Umbreen; Bokhari, Jasia
2013-10-01
This study was conducted to investigate the antioxidant potential of methanol extract and its derived fractions (hexane, ethyl acetate, butanol, and aqueous) of fruits of Monotheca buxifolia (Falc.) Dc., a locally used fruit in Pakistan. Dried powder of the fruit of M. buxifolia was extracted with methanol and the resultant was fractionated with solvents having escalating polarity; n-hexane, chloroform, ethyl acetate, n-butanol and the residual soluble aqueous fraction. Total phenolic and total flavonoid contents were estimated for the methanol and various fractions. These fractions were also subjected to various in vitro assays to estimate the scavenging activity for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide, hydroxyl, hydrogen peroxide and reductive ability for ferric ions and phosphomolybdate assay. The n-butanol, aqueous and methanol fractions possessed high amount of phenolics and flavonoids compared with other fractions, and subsequently showed a pronounced scavenging activity on DPPH, ABTS, superoxide, hydroxyl and hydrogen peroxide radicals and had a potent reductive ability on ferric ion and phosphomolybdate assay. There was a found significant correlation between total phenolic and flavonoid contents and EC50 of DPPH, superoxide, hydrogen peroxide radical and phosphomolybdate assays, whereas a nonsignificant correlation was found with the hydroxyl radical and ABTS radical assay. M. buxifolia fruit can be used as natural antioxidant source to prevent damage associated with free radicals.
Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori
2017-01-02
The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.
Sgherri, C; Scattino, C; Pinzino, C; Tonutti, P; Ranieri, A M
2015-11-01
In peaches, phenolic compounds are the major sources of antioxidants, and cyanidin-3-O-glucoside is the main anthocyanin present, above all in the skin. Anthocyanin content has been shown to increase after UV-B irradiation, which may be very harmful for all biological organisms due to the induction of the generation of reactive oxygen species (ROS). Peach fruits (cv. 'Suncrest') were exposed during post-harvest to supplemental ultraviolet-B radiation. A spin-trapping technique was used to monitor the generation of free radicals under UV-B, and 5-(diethoxy-phosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) was used as the spin trap. The flesh of peaches was essentially unaffected by the treatment, whereas the skin was responsive at the end of the treatment, accumulating ascorbate, flavonoids, cyanidin-3-O-glucoside, and showing a higher antioxidant activity. The levels of stable free radicals were also lower at the end of treatment. Carbon-centred radicals contributed the most to the total amounts of free radicals, whereas hydroxyl radicals and oxygen-centred free radicals contributed minimally. The carbon-centred free radical identified was the same as the one obtained after irradiation of authentic cyanidin-3-O-glucoside. During UV-B treatment cyanidin-3-O-glucoside increased and was capable of radicalization protecting the other organic molecules of the cell from oxidation. ROS, among which hydroxyl radicals, were thus maintained to minimal levels. This ability of cyanidin-3-O-glucoside displayed the mechanism underlined the tolerance to UV-B irradiation indicating that shelf life can be prolonged by the presence of anthocyanins. Thus, UV-B technique results a good approach to induce antioxidant production in peach fruits increasing their nutraceutical properties. Copyright © 2015. Published by Elsevier Masson SAS.
2013-01-01
Background Phenolic compounds are widely distributed in plant kingdom and constitute one of the most important classes of natural and synthetic antioxidants. In the present study fifty one natural and synthetic structurally variant phenolic, enolic and anilinic compounds were examined as antioxidants and radical scavengers against DPPH, hydroxyl and peroxyl radicals. The structural diversity of the used phenolic compounds includes monophenols with substituents frequently present in natural phenols e.g. alkyl, alkoxy, ester and carboxyl groups, besides many other electron donating and withdrawing groups, in addition to polyphenols with 1–3 hydroxyl groups and aminophenols. Some common groups e.g. alkyl, carboxyl, amino and second OH groups were incorporated in ortho, meta and para positions. Results SAR study indicates that the most important structural feature of phenolic compounds required to possess good antiradical and antioxidant activities is the presence of a second hydroxyl or an amino group in o- or p-position because of their strong electron donating effect in these positions and the formation of a stable quinone-like products upon two hydrogen-atom transfer process; otherwise, the presence of a number of alkoxy (in o or p-position) and /or alkyl groups (in o, m or p-position) should be present to stabilize the resulted phenoxyl radical and reach good activity. Anilines showed also similar structural feature requirements as phenols to achieve good activities, except o-diamines which gave low activity because of the high energy of the resulted 1,2-dimine product upon the 2H-transfer process. Enols with ene-1,2-diol structure undergo the same process and give good activity. Good correlations were obtained between DPPH inhibition and inhibition of both OH and peroxyl radicals. In addition, good correlations were obtained between DPPH inhibition and antioxidant activities in sunflower oil and liver homogenate systems. Conclusions In conclusion, the structures of good anti radical and antioxidant phenols and anilines are defined. The obtained good correlations imply that measuring anti DPPH activity can be used as a simple predictive test for the anti hydroxyl and peroxyl radical, and antioxidant activities. Kinetic measurements showed that strong antioxidants with high activity have also high reaction rates indicating that factors stabilizing the phenoxyl radicals lower also the activation energy of the hydrogen transfer process. PMID:23497653
Importance of Extracellular Processes in the Oxygen Enhancement of Radiation Lethality.
1982-03-08
radical oxygen toxicity superoxide dismutases methyl viologen hydroxyl radical pyocyanine o. Lactobacillus plantarum manganese Streptococcus sanguis gene...Against Oxygen Toxicity in Lactobacillus plantarum . F. S. Archibald and I. Fridovich. Superoxide Dismutases: Detoxication of a Free Radical. H. M. Hassan...S. Archibald and I. Fridovich 7 Investigations of the State of the Manganese in Lactobacillus plantarum . F. S. Archibald and I. Fridovich Superoxide
Dynamics and density estimation of hydroxyl radicals in a pulsed corona discharge
NASA Astrophysics Data System (ADS)
Ono, Ryo; Oda, Tetsuji
2002-09-01
Hydroxyl radicals generated by a pulsed corona discharge are measured by laser-induced fluorescence (LIF) with a tunable KrF excimer laser. The discharge with 35 kV voltage and 100 ns pulse current occurs between needle and plate electrodes in H2O/O2/N2 mixture at atmospheric pressure. The density and decay profile of OH radicals are studied. OH radicals decay with time after the discharge with a time constant of about 30-60 µs. The OH density is estimated to be about 7×1014 cm-3 in H2O(2.4%)/N2 mixture 10 µs after the discharge. The OH density is approximately proportional to the energy dissipated in the discharge. The O2 content influences the OH production. When the O2 content is varied in H2O(2.4%)/O2/N2 mixture, the OH density is maximum at an O2 content of 2%. The spatial distribution of OH density shows that OH radicals are produced in the streamers under positive discharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, N.; Koffend, J.B.
1998-02-01
Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.
Measurement of Hydroxyl Radicals in Plasma Pencil by Laser Induced Fluorescence
2013-07-01
31st ICPIG, July 14-19, 2013, Granada , Spain Topic number 6 Measurement of hydroxyl radicals in plasma pencil by laser induced fluorescence J...International Conference on Phenomena in Ionized Gases (31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013, The original document contains color images. 14...Prescribed by ANSI Std Z39-18 31st ICPIG, July 14-19, 2013, Granada , Spain Topic number 6 camera. The fluorescence signal was significantly stronger
Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado
2017-07-26
Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor); Spaulding, Glenn F. (Inventor)
1994-01-01
A portion of an organic polymer article such as a membrane is made hydrophilic by exposing a hydrophobic surface of the article to a depth of about 50 to about 5000 angstroms to atomic oxygen or hydroxyl radicals at a temperature below 100C., preferably below 40 C, to form a hydrophilic uniform surface layer of hydrophilic hydroxyl groups. The atomic oxygen and hydroxyl radicals are generated by a flowing afterglow microwave discharge, and the surface is outside of a plasma produced by the discharge. A membrane having both hydrophilic and hydrophobic surfaces can be used in an immunoassay by adhering antibodies to the hydrophobic surface. In another embodiment, the membrane is used in cell culturing where cells adhere to the hydrophilic surface. Prior to adhering cells, the hydrophilic surface may be grafted with a compatibilizing compound. A plurality of hydrophilic regions bounded by adjacent hydrophobic regions can be produced such that a maximum of one cell per each hydrophilic region adheres.
RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION
Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contam...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, F; Ross, A B
1977-01-01
Rates of reactions of OH and HO/sub 2/ with organic and inorganic molecules, ions and transients in aqueous solution have been tabulated, as well as the rates for the corresponding radical ions in aqueous solution (O/sup -/ and O/sub 2//sup -/). Most of the rates have been obtained by radiation chemistry methods, both pulsed and steady-state; data from photochemistry and thermal methods are also included. Rates for over one thousand reactions are listed.
Han, J S
1992-04-01
In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.
Pérez, Yohani; Oyárzabal, Ambar; Mas, Rosa; Molina, Vivian; Jiménez, Sonia
2013-01-01
D-002, a mixture of higher aliphatic beeswax alcohols, produces gastroprotective and antioxidant effects. To investigate the gastroprotective effect of D-002 against indomethacin-induced ulcers, oxidative variables and myeloperoxidase (MPO) activity in the rat gastric mucosa were examined. Rats were randomized into six groups: a negative vehicle control and five indomethacin (50 mg/kg) treated groups, comprising a positive control, three groups treated orally with D-002 (5, 25 and 100 mg/kg) and one group with omeprazole 20 mg/kg intraperitoneally (ip). The contents of malondialdehyde (MDA), protein carbonyl groups (PCG), hydroxyl radical generation and catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and MPO enzyme activities in the rat gastric mucosa were assessed. Indomethacin increased the content of MDA and PCG, the generation of *OH radical and MPO enzyme activity, while it decreased the CAT, GSH-PX and SOD activities as compared to the negative controls. D-002 (5-100 mg/kg) significantly and dose-dependently reduced indomethacin-induced ulceration to 75 %. Also, D-002 decreased the content of MDA and PCG, the generation of hydroxyl radicals and MPO activity as compared to the positive controls. The highest dose of D-002 (100 mg/kg) increased significantly GSH-PX and SOD activities, while all doses used increased CAT activities. Omeprazole 20 mg/kg, the reference drug, reduced significantly the ulcers (93 %), MDA and PCG, the generation of hydroxyl radicals and MPO activity, and increased the CAT, GSH-PX and SOD activities. D-002 treatment produced gastroprotective effects against indomethacin-induced gastric ulceration, which can be related to the reduction of hydroxyl radical generation, lipid peroxidation, protein oxidation and MPO activity, and to the increase of the antioxidant enzymes activities in the rat gastric mucosa.
Aluminum stress increases carbon-centered radicals in soybean roots.
Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro
2010-10-15
The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W
1997-07-08
Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.
Rezaee, Mohammad; Sanche, Léon; Hunting, Darel J
2013-03-01
The synergistic interaction of cisplatin with ionizing radiation is the clinical rationale for the treatment of several cancers including head and neck, cervical and lung cancer. The underlying molecular mechanism of the synergy has not yet been identified, although both DNA damage and repair processes are likely involved. Here, we investigate the indirect effect of γ rays on strand break formation in a supercoiled plasmid DNA (pGEM-3Zf-) covalently modified by cisplatin. The yields of single- and double-strand breaks were determined by irradiation of DNA and cisplatin/DNA samples with (60)Co γ rays under four different scavenging conditions to examine the involvement of hydrated electrons and hydroxyl radicals in inducing the DNA damage. At 5 mM tris in an N2 atmosphere, the presence of an average of two cisplatins per plasmid increased the yields of single- and double-strand breaks by factors of 1.9 and 2.2, respectively, relative to the irradiated unmodified DNA samples. Given that each plasmid of 3,200 base pairs contained an average of two cisplatins, this represents an increase in radiosensitivity of 3,200-fold on a per base pair basis. When hydrated electrons were scavenged by saturating the samples with N2O, these enhancement factors decreased to 1.5 and 1.2, respectively, for single- and double-strand breaks. When hydroxyl radicals were scavenged using 200 mM tris, the respective enhancement factors were 1.2 and 1.6 for single- and double-strand breaks, respectively. Furthermore, no enhancement in DNA damage by cisplatin was observed after scavenging both hydroxyl radicals and hydrated electrons. These findings show that hydrated electrons can induce both single- and double-strand breaks in the platinated DNA, but not in unmodified DNA. In addition, cisplatin modification is clearly an extremely efficient means of increasing the formation of both single- and double-strand breaks by the hydrated electrons and hydroxyl radicals created by ionizing radiation.
Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi
2015-04-01
This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.
Biondi, R; Xia, Y; Rossi, R; Paolocci, N; Ambrosio, G; Zweier, J L
2001-03-01
Hydroxylation of l-phenylalanine (Phe) by hydroxyl radical (*OH) yields 4-, 3-, and 2-hydroxyl-Phe (para-, meta-, and ortho-tyrosine, respectively). Phe derivative measurements have been employed to detect *OH formation in cells and tissues, however, the specificity of this assay is limited since Phe derivatives also arise from intracellular Phe hydroxylase. d-Phe, the d-type enantiomer, is not hydroxylated by Phe hydroxylase. We evaluate whether d-Phe reacts with *OH as well as l-Phe, providing a more reliable probe for *OH generation in biological systems. With *OH generated by a Fenton reaction or xanthine oxidase, d- and l-Phe equally gave rise to p, m, o-tyr and this could be prevented by *OH scavengers. Resting human neutrophils (PMNs) markedly converted l-Phe to p-tyr, through non-oxidant-mediated reactions, whereas d-Phe was unaffected. In contrast, when PMNs were stimulated in the presence of redox cycling iron the *OH formed resulted in more significant rise of p-tyr from d-Phe (9.4-fold) than l-Phe (3.6-fold) due to the significant background formation of p-tyr from l-Phe. Together, these data indicated that d- and l-Phe were equally hydroxylated by *OH. Using d-Phe instead of l-Phe can eliminate the formation of Phe derivatives from Phe hydroxylase and achieve more specific, sensitive measurement of *OH in biological systems.
RELATIVE REACTIVITY OF CONTAMINANT CANDIDATE LIST PESTICIDES TO OH RADICAL OXIDATION ABSTRACT
Advanced oxidation processes (AOPs) represent those technologies that bring about enhanced oxidative degradation of pollutants in aqueous solution by the generation of hydroxyl radical (•OH). US Environmental Protection Agency (EPA) published, in February 2005, the second Contami...
Gomathi, Duraisamy; Ravikumar, Ganesan; Kalaiselvi, Manokaran; Vidya, Balasubramaniam; Uma, Chandrasekar
2015-06-01
To identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides. The free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard. The extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner. Evolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.
NASA Astrophysics Data System (ADS)
Zeng, Mingyong; Xiao, Feng; Zhao, Yuanhui; Liu, Zunying; Li, Bafang; Dong, Shiyuan
2007-07-01
Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.
In vitro antioxidant activity of pet ether extract of black pepper
Singh, Ramnik; Singh, Narinder; Saini, B.S.; Rao, Harwinder Singh
2008-01-01
Objective: To investigate the in vitro antioxidant activity of different fractions (R1, R2 and R3) obtained from pet ether extract of black pepper fruits (Piper nigrum Linn.) Materials and Methods: The fractions R1, R2 and R3 were eluted from pet ether and ethyl acetate in the ratio of 6:4, 5:5 and 4:6, respectively. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Results: The free radical scavenging activity of the different fractions of pet ether extract of P. nigrum (PEPN) increased in a concentration dependent manner. The R3 and R2 fraction of PEPN in 500 µg/ml inhibited the peroxidation of a linoleic acid emulsion by 60.48±3.33% and 58.89±2.51%, respectively. In DPPH free radical scavenging assay, the activity of R3 and R2 were found to be almost similar. The R3 (100µg/ml) fraction of PEPN inhibited 55.68±4.48% nitric oxide radicals generated from sodium nitroprusside, whereas curcumin in the same concentration inhibited 84.27±4.12%. Moreover, PEPN scavenged the superoxide radical generated by the Xanthine/Xanthine oxidase system. The fraction R2 and R3 in the doses of 1000µg/ml inhibited 61.04±5.11% and 63.56±4.17%, respectively. The hydroxyl radical was generated by Fenton's reaction. The amounts of total phenolic compounds were determined and 56.98 µg pyrocatechol phenol equivalents were detected in one mg of R3. Conclusions: P. nigrum could be considered as a potential source of natural antioxidant. PMID:20040947
Activation of Peroxymonosulfate by Subsurface Minerals.
Yu, Miao; Teel, Amy L; Watts, Richard J
2016-08-01
In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. Copyright © 2016. Published by Elsevier B.V.
Suseem, S R; Saral, Mary
2015-07-01
To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.
Evaluation of In Vitro Antioxidant Potential of Cordia retusa.
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant.
USDA-ARS?s Scientific Manuscript database
Fruit from forty-two blueberry cultivars, including thirty-six rabbiteye (Vaccinium ashei Reade), three V. ashei hybrid derivatives and three northern highbush (V. corymbosum L.) were evaluated for their antioxidant activities against peroxyl free radicals, hydroxyl radicals, hydrogen peroxide, supe...
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.
Gao, Hong-Wen; Chen, Fang-Fang; Chen, Ling; Zeng, Teng; Pan, Lu-Ting; Li, Jian-Hua; Luo, Hua-Fei
2007-03-21
A novel detection approach named chromophore-decolorizing with free radicals is developed for determination of trace heavy metal. The hydroxyl radicals (HO) generated from Fe(III) and hydrogen peroxide will oxidize the free chromophore into almost colorless products. The copper-acid chrome dark blue (ACDB) complexation was investigated at pH 5.07. In the presence of Fe(III) and hydrogen peroxide, the excess ACDB was decolorized in the Cu-ACDB reaction solution, and the final solution contained only one color compound, the Cu-ACDB complex. After oxidation of free hydroxyl radicals, the complexation becomes sensitive and selective and it has been used for the quantitation of trace amounts of Cu(II) dissolved in natural water. Beer's law is obeyed in the range from 0 to 0.500 microg mL(-1) Cu(II) and the limit of detection is only 6 microg L(-1) Cu(II). Besides, the Cu-ACDB complex formed was characterized.
Agrawal, Himani; Joshi, Robin; Gupta, Mahesh
2016-08-01
Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samskog, P.; Kispert, L.D.; Lund, A.
Three different radicals were identified by EPR in x-ray irradiated single crystals of trehalose at 3 K. The species are the trapped electron, a hydroxy alkyl radical, and an alkoxy radical. The electron is trapped in an intermolecular site formed by two hydroxyl groups, one on the carbohydrate and the other on a water molecule as evidenced by the anisotropic proton hyperfine couplings. A geometric model for the trapping site is presented. The trapped electron decays by cleavage of an OH bond and the liberated hydrogen atom abstracts another hydrogen atom from an adjacent carbon atom forming a hydroxy alkylmore » radical. The site of the alkoxy radical has been identified. The primary reaction mechanism is discussed.« less
OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives
NASA Astrophysics Data System (ADS)
Gümüş, Selçuk
2012-04-01
The reactions between hydroxyl radical and 5-nitro-1H-imidazole (A), 2-nitro-1H-imidazole (B), and 3-nitro-4H-1,2,4-triazole (C) were theoretically investigated using B3LYP/6-31G(d,p) level of theory. The OH radical additions to double bonds were explored in bulk solvent (water). The data presented show that the barriers to reaction were very low, 3-7 kcal/mol, indicating fast reactions. Thermodynamically, OH addition to position 2 of structure A leads to the most stable radical product. The main geometrical parameters are reported for reactants, transition states, and radical products together with some energetic data of the nitro-imidazolone-type final compounds.
Rahimi, Sajad; Ayati, Bita; Rezaee, Abbas
2016-06-01
Experimental findings of sonophotocatalytic process were used in degradation of hydroquinone to assess kinetic modeling and determine the effect of various active radical species. First, the effects of three photocatalytic, sonocatalytic, and sonophotocatalytic processes were studied for hydroquinone removal to determine kinetic constants and calculate the activation energy of reactions, and then the selected process was evaluated to determine active radical species. The reactor was composed of two parts, one included ultrasonic probe (sonocatalytic part) with powers 22, 80, and 176 W and the second part was the location of UV lamp (photocatalytic part) with tubular flow and power 15 W. After three systems were examined and the efficient system was selected, the role of different active species such as hydroxyl radical (OH(·)), superoxide radical (O2 (·-)), hole (h(+)), electrons (e (-)), and single oxygen molecule ((1)O2) and contribution of each of them were determined in hydroquinone degradation. According to tests, the results of this study showed that sonophotocatalytic integrated method as selected system among three systems studied followed the first-order equation for hydroquinone degradation and active hydroxyl species with 45 % and electron and hole with 15 and 10 %, respectively, had the highest and lowest contributions to conversion of hydroquinone. The findings showed that dissolved oxygen increases the capability of active radical formation so that 28.2 % of hydroquinone removal was increased under aeration compared to without aeration. Also, removal efficiency decreased 62 % with N2 injection due to the withdrawal of oxygen from the sample. By adding 25 Mm of sodium azide (NaN3) to stock solution, 46.5 % reduction was developed because single oxygen ((1)O2) played the role of an active species. The advantages of integrated sonocatalytic and photocatalytic method are the generation of active radical species with more variety and ultimately the formation of higher amounts of powerful hydroxyl radical that increases degradation rates of refractory compounds and low-risk internal and final products. It has an appropriate performance in the degradation of refractory compounds by optimizing effective operational factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Radha; Dipartimento di Chimica Analitica, Universita degli Studi di Torino, Via Pietro Giuria 5, Torino; Vione, Davide
2010-10-26
This paper reports a simple model to describe the formation and reactivity of hydroxyl radicals in the whole column of freshwater lakes. It is based on empirical irradiation data and is a function of the water chemical composition (the photochemically significant parameters NPOC, nitrate, nitrite, carbonate and bicarbonate), the lake conformation best expressed as the average depth, and the water absorption spectrum in a simplified Lambert-Beer approach. The purpose is to derive the lifetime of dissolved molecules, due to reaction with OH, on the basis of their second-order rate constants with the hydroxyl radical. The model was applied to twomore » compounds of pharmaceutical wastes ibuprofen and carbamazepine, for which the second-order rate constants for reaction with the hydroxyl radical were measured by means of the competition kinetics with 2-propanol. The measured values of the rate constants are 1.0x10{sup 10} and 1.6x10{sup 10} M{sup -1} s{sup -1} for ibuprofen and carbamazepine, respectively. The model suggests that the lifetime of a given compound can be very variable in different lakes, even more than the lifetime of different compounds in the same lake. It can be concluded that as far as the reaction with OH, is concerned the concepts of photolability and photostability, traditionally attached to definite compounds, are ecosystem-dependent at least as much as they depend on the molecule under consideration.« less
Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L
2001-07-01
In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).
Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Wang, Guozhi; Mao, Genxiang
2016-03-01
In this study, the optimization of the extraction conditions of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) (AP) was investigated by response surface methodology (RSM). Three main independent variables (extraction temperature, time, ratio of water to raw material) were taken into consideration. And then the free radical scavenging activities of the sample were investigated including scavenging effects of superoxide and hydroxyl radicals. The RSM analysis showed good correspondence between experimental and predicted values.. The optimal condition to obtain the highest yield of AP was determined as follows: temperature 76.79 °C, time 2.48 h, ratio of water to material 22.53 mL/g. For the free radical scavenging activity, the IC50 values of Vc and AP were 7.78 and 83.25 μg/mL. And for the scavenging effect on hydroxyl radical, that of AP and Vc were 1.80 and 1.69 mg/mL. AP showed excellent antioxidant activity. This exhibited AP had a good potential for antioxidant. The purification and structure needs to be study in further. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.
Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H
2002-07-01
The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.
Galey, J B; Millecamps, F; Nguyen, Q L
1991-04-01
Synopsis It has been proposed that oxygen free radicals are involved in skin aging. This paper describes a new method for the evaluation of oxygen free radical scavenging by cosmetic products. It is based on the measurement, by gas chromatography, of ethylene produced during the oxidation of methionine by the hydroxyl radical. OH. is produced by an iron catalyzed superoxide-driven Fenton reaction in which superoxide is obtained by photochemical oxygen reduction. The cosmetic is applied, together with methionine, riboflavine, NADH, FeCl(3) and EDTA, on a glass microfibre filter and submitted to UVA exposure through a quartz cell. Ethylene is then measured from aliquots of the atmosphere inside the cell. Catalase or Desferal completely inhibits ethylene production. SOD or high concentrations of hydroxyl radical scavengers (Mannitol, DMSO etc.) afford a partial protection. Thus the efficiency of O(2) (-)., H(2)O(2) and OH. scavengers and iron chelators can be measured. The main advantage of this test is that it is performed in conditions which simulate skin during UV exposure (e.g. air and UV exposed thin layer). Furthermore, as it is non-invasive, it can also be applied to human skin in vivo.
Mercado, D Fabio; Bracco, Larisa L B; Arques, Antonio; Gonzalez, Mónica C; Caregnato, Paula
2018-01-01
Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 10 9 s -1 M -1 for the reaction of the fungicide with HO and 4.6 × 10 8 s -1 M -1 for the same reaction with SO 4 - radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S 2 O 8 2- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Abdullah, N. H.; Selamat, M. K. A.; Nasuha, N.; Hassan, H.; Zubir, N. A.
2018-06-01
Iron–immobilized montmorillonite KSF (Fe-MKSF) has been recognized as promising catalyst in degrading persistence organic contaminants. However, detailed mechanistic insight during the catalysis which involving the formation and identification of radical species were remained indeterminate due to complex reaction. Inspiring by this gap, iron-immobilized clay (Fe-MKSF) was synthesized and used as heterogeneous catalyst in the oxidative degradation of methyl orange (MO) solution. Identification of radical species were determined through the inclusion of different types of radical scavenging agent during the Fenton-like reaction at optimum condition. Interestingly, dominant radical species were found to be hydroperoxyl radicals (•OOH) which subsequently followed by hydroxyl radicals (•OH) during the catalysis. Based on the percentage of MO removal, it was suggested that approximately 88% of the •OOH radicals existed at the interface of catalyst while 39% presence in bulk solution. Meanwhile, the interface •OH radicals promoted 38% of MO removal, whilst 4% by the bulk •OH radicals. Hence, these findings have conveyed novel insight on detailed radicals’ identification as well as its’ interaction during the catalysis.
Oxidation of As(III) to As(V) using ozone microbubbles.
Khuntia, Snigdha; Majumder, Subrata Kumar; Ghosh, Pallab
2014-02-01
The use of ozone in the treatment of water and wastewater is rapidly increasing due to its high oxidizing power. Arsenic is one the most toxic elements found in water. As(III) and As(V) are the major sources of arsenic poisoning. It is known that As(V) can be more easily removed from water by adsorptive methods than As(III). In this work, oxidation of more toxic As(III) to less toxic As(V) was studied in a pilot-plant by using ozone microbubbles. The microbubbles were effective in dissolving ozone in water. The oxidation was fast over a wide range of pH (e.g., 4-9). The role of hydroxyl radical in the oxidation of As(III) under acidic conditions was investigated by using 2-propanol as the hydroxyl radical scavenger. Under acidic conditions, the addition of 2-propanol slowed down the oxidation, which proves that hydroxyl radicals were involved in the oxidation process. The effect of carbonate ions on the rate of oxidation was investigated. It was found that the generation of carbonate ion radical from the carbonate ion accelerated the oxidation of As(III). The kinetics of oxidation of As(III) by ozone was studied. Copyright © 2013 Elsevier Ltd. All rights reserved.
Oxidation Inhibits Iron-Induced Blood Coagulation
Pretorius, Etheresia; Bester, Janette; Vermeulen, Natasha; Lipinski, Boguslaw
2013-01-01
Blood coagulation under physiological conditions is activated by thrombin, which converts soluble plasma fibrinogen (FBG) into an insoluble clot. The structure of the enzymatically-generated clot is very characteristic being composed of thick fibrin fibers susceptible to the fibrinolytic degradation. However, in chronic degenerative diseases, such as atherosclerosis, diabetes mellitus, cancer, and neurological disorders, fibrin clots are very different forming dense matted deposits (DMD) that are not effectively removed and thus create a condition known as thrombosis. We have recently shown that trivalent iron (ferric ions) generates hydroxyl radicals, which subsequently convert FBG into abnormal fibrin clots in the form of DMDs. A characteristic feature of DMDs is their remarkable and permanent resistance to the enzymatic degradation. Therefore, in order to prevent thrombotic incidences in the degenerative diseases it is essential to inhibit the iron-induced generation of hydroxyl radicals. This can be achieved by the pretreatment with a direct free radical scavenger (e.g. salicylate), and as shown in this paper by the treatment with oxidizing agents such as hydrogen peroxide, methylene blue, and sodium selenite. Although the actual mechanism of this phenomenon is not yet known, it is possible that hydroxyl radicals are neutralized by their conversion to the molecular oxygen and water, thus inhibiting the formation of dense matted fibrin deposits in human blood. PMID:23170793
The role of surface generated radicals in catalytic combustion
NASA Technical Reports Server (NTRS)
Santavicca, D. A.; Stein, Y.; Royce, B. S. H.
1985-01-01
Experiments were conducted to better understand the role of catalytic surface reactions in determining the ignition characteristics of practical catalytic combustors. Hydrocarbon concentrations, carbon monoxide and carbon dioxide concentrations, hydroxyl radical concentrations, and gas temperature were measured at the exit of a platinum coated, stacked plate, catalytic combustor during the ignition of lean propane-air mixtures. The substrate temperature profile was also measured during the ignition transient. Ignition was initiated by suddenly turning on the fuel and the time to reach steady state was of the order of 10 minutes. The gas phase reaction, showed no pronounced effect due to the catalytic surface reactions, except the absence of a hydroxyl radical overshoot. It is found that the transient ignition measurements are valuable in understanding the steady state performance characteristics.
Mucuna pruriens attenuates haloperidol-induced orofacial dyskinesia in rats.
Pathan, Amjadkhan A; Mohan, Mahalaxmi; Kasture, Ameya S; Kasture, Sanjay B
2011-04-01
Neuroleptic-induced tardive dyskinesia (TD) is a motor disorder of the orofacial region resulting from chronic neuroleptic treatment. The agents improving dopaminergic transmission improve TD. Mucuna pruriens seed contains levodopa and amino acids. The effect of methanolic extract of M. pruriens seeds (MEMP) was studied on haloperidol-induced TD, alongside the changes in lipid peroxidation, reduced glutathione, superoxide dismutase (SOD) and catalase levels. The effect of MEMP was also evaluated in terms of the generation of hydroxyl and 1,1-diphenyl,2-picrylhydrazyl (DPPH) radical. MEMP (100 and 200 mg kg⁻¹) inhibited haloperidol-induced vacuous chewing movements, orofacial bursts and biochemical changes. MEMP also inhibited hydroxyl radical generation and DPPH. The results of the present study suggest that MEMP by virtue of its free radical scavenging activity prevents neuroleptic-induced TD.
Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong
2011-12-01
Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.
Observations of the Hydroxyl Radical in C/2013 US10 (Catalina) at 18 cm Wavelength
NASA Astrophysics Data System (ADS)
Wang, Zhen; Chen, Xi; Gao, Feng; Zhang, Shaobo; Zheng, Xing-Wu; Ip, Wing-Huen; Wang, Na; Liu, Xiang; Zuo, Xiu-Ting; Gou, Wei; Chang, Sheng-Qi
2017-12-01
The hydroxyl (OH) radical produced by photodissociation of water molecule is one of the most important indicators for cometary outgassing activity. The absorption lines of the OH radical at 1665 and 1667 MHz in the coma of comet C/2013 US10 Catalina were detected between 2015 December 3 and 5 by the Tian Ma Radio Telescope of Shanghai Astronomical Observatory. The source flux intensity was derived to be about -209 mJy km s-1 and -86 mJy km s-1 at 1665 MHz and 1667 MHz, respectively. The corresponding gas production rate was estimated to be (8.78 ± 1.47) × 1028 H2O s-1 and (5.94 ± 1.27) × 1028 H2O s-1, accordingly.
YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen
2009-12-01
In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.
Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...
NASA Astrophysics Data System (ADS)
El-Zanan, Hazem S.
Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The results indicate that the concentrations observed here in this study are comparable with the HO concentrations measured and/or modeled from other studies. HO concentrations produced from ozone, formaldehyde and isoprene were by far the most important sources for HO production but the HO removal processes greatly differs between the urban and rural areas. Hydroxyl radical concentrations vary by location, time of the day, season and meteorological conditions. Comparing the HO concentrations from our study with other studies from different urban, rural and marine environments shows that hydroxyl radical concentrations in the urban areas can be lower than some pristine environments.
Lunar Dust and Lunar Simulant Activation and Monitoring
NASA Technical Reports Server (NTRS)
Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.
2008-01-01
Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev. Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.
Lecour, S; Baouali, A B; Maupoil, V; Chahine, R; Abadie, C; Javouhey-Donzel, A; Rochette, L; Nadeau, R
1998-03-01
The present study was designed to identify the free radicals generated during the electrolysis of the solution used to perfuse isolated rat heart Langendorff preparations. The high reactivity and very short half-life of oxygen free radicals make their detection and identification difficult. A diamagnetic organic molecule (spin trap) can be used to react with a specific radical to produce a more stable secondary radical or "spin adduct" detected by electron spin resonance (ESR). Isovolumic left ventricular systolic pressure (LVSP) and left ventricular end diastolic pressure (LVEDP) were measured by a fluid-filled latex balloon inserted into the left ventricle. The coronary flow was measured by effluent collection. Electrolysis was performed with constant currents of 0.5, 1, 1.5, 3, 5, 7.5, and 10 mA generated by a Grass stimulator and applied to the perfusion solution for 1 min. A group of experiments was done using a 1.5 mA current and a Krebs-Henseleit (K-H) solution containing free radical scavengers (superoxide dismutase (SOD): 100 IU/ml or mannitol: 50 mM). Heart function rapidly declined in hearts perfused with K-H buffer that had been electrolyzed for 1 min. The addition of mannitol (50 mM) to the perfusion solution had no effect on baseline cardiac function before electrolysis while SOD (100 IU/ml) increased the coronary flow. However, SOD was more effective than the mannitol in protecting the heart against decreased of cardiac function, 5 min after the end of electrolysis. Samples of the K-H medium subjected to electrolysis were collected in cuvettes containing a final concentration of 125 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and analyzed by spectroscopy. The ESR spectrum consisted of a quartet signal (hyperfine couplings aN = aH = 14.9 G) originating from the hydroxyl adduct signal, DMPO-OH. The intensity of the DMPO-OH signal remained stable during the 60 s of electrolysis and the quantity of free radicals induced by electrolysis was directly proportional to the intensity of the current. The addition of mannitol and SOD to the perfusate scavenged the hydroxyl radicals present in the solution, suggesting that both hydroxyl and superoxide radicals were formed during electrolysis.
Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.
Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N
2016-08-11
Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.
Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies.
Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun
2016-07-13
Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions.
INCREASED 8-HYDROXY GUANINE CONTENT OF CHLOROPLAST DNA FROM OZONE TREATED PLANTS
The mechanism of ozone-mediated plant injury is not know but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with elect...
NASA Technical Reports Server (NTRS)
DeMore, W.; Wilson, E., Jr.
1998-01-01
Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.
1982-01-01
The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.
Evaluation of In Vitro Antioxidant Potential of Cordia retusa
Amudha, Murugesan; Rani, Shanmugam
2016-01-01
The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant. PMID:27168685
Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.
Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena
2011-01-01
The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.
Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic
2009-02-01
The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions. However, the appearance of the DEPMPO/OOH adduct could also be observed, due to the production of O(2)(-). when endogenous SOD has been inactivated. Also, O(2)(-). was converted to .OH in an in vitro horseradish peroxidase (HRP)/H(2)O(2) system to which exogenous SOD has been added. Taken together with the discovery of the cell wall-bound Mn-SOD isoform, these results support the role of such a cell wall-bound SOD in the formation of .OH jointly with the cell wall-bound POD. According to the above findings, it seems that the hydroxycinnamic acids from the cell wall, acting as reductants, contribute to the formation of H(2)O(2) in the presence of O(2) in an autocatalytic manner, and that POD and Mn-SOD coupled together generate .OH from such H(2)O(2).
Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid
Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri
2013-01-01
The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188
NASA Astrophysics Data System (ADS)
Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Michoud, V.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; de Gouw, J. A.; Roberts, J.; Young, C.; Washenfelder, R.; Brown, S. S.; Thalman, R.; Waxman, E.; Volkamer, R.; Tsai, C.; Stutz, J.; Flynn, J. H.; Grossberg, N.; Lefer, B.; Alvarez, S. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.; Stevens, P. S.
2016-04-01
Measurements of hydroxyl (OH) and hydroperoxy (HO2*) radical concentrations were made at the Pasadena ground site during the CalNex-LA 2010 campaign using the laser-induced fluorescence-fluorescence assay by gas expansion technique. The measured concentrations of OH and HO2* exhibited a distinct weekend effect, with higher radical concentrations observed on the weekends corresponding to lower levels of nitrogen oxides (NOx). The radical measurements were compared to results from a zero-dimensional model using the Regional Atmospheric Chemical Mechanism-2 constrained by NOx and other measured trace gases. The chemical model overpredicted measured OH concentrations during the weekends by a factor of approximately 1.4 ± 0.3 (1σ), but the agreement was better during the weekdays (ratio of 1.0 ± 0.2). Model predicted HO2* concentrations underpredicted by a factor of 1.3 ± 0.2 on the weekends, while measured weekday concentrations were underpredicted by a factor of 3.0 ± 0.5. However, increasing the modeled OH reactivity to match the measured total OH reactivity improved the overall agreement for both OH and HO2* on all days. A radical budget analysis suggests that photolysis of carbonyls and formaldehyde together accounted for approximately 40% of radical initiation with photolysis of nitrous acid accounting for 30% at the measurement height and ozone photolysis contributing less than 20%. An analysis of the ozone production sensitivity reveals that during the week, ozone production was limited by volatile organic compounds throughout the day during the campaign but NOx limited during the afternoon on the weekends.
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2015-10-27
In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.
Feliks, Mikolaj; Ullmann, G Matthias
2012-06-21
A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.
In vitro antioxidant activity of polysaccharide from Gardenia jasminoides ellis
Fan, Y.; Ge, Z.; Luo, A.
2011-01-01
A water-soluble polysaccharide, GP, was isolated from Gardenia jasminoides Ellis through hot water extraction followed by ethanol precipitation. The in vitro free radicals scavenging tests exhibited that GP has significant scavenging abilities especially for ABTS, DPPH, and hydroxyl radicals, which suggests that the polysaccharide GP is a novel antioxidant. ?? 2011 Academic Journals.
Abstract: With increasing worldwide incidence of toxic cyanobacterial blooms in bodies of water, cylindrospermopsin (CYN) has become a significant concern to public health and water management officials. In this study, the removal of CYN by UV-254 nm-mediated advanced oxidation ...
Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin
2017-02-01
The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sudhakar, Sekar; Nazeer, Rasool Abdul
2017-07-01
Antioxidant peptides protect biological macromolecules against radical damages. The use of these peptides was evaluated using free radicals scavenging assays [2,2-diphenyl-1 picrylhydrazyl (DPPH) and hydroxyl] with the help of UV-visible and electron spin resonance (ESR) spectroscopy methods. The Octopus aegina mantle protein were tested upon hydrolysis using gastrointestinal enzymes up to 12 h, where pepsin hydrolysate exhibited superior properties (DPPH: 44.39±0.67% and hydroxyl: 38.84±1.07%) compared with trypsin and α-chymotrypsin. Consequently, the antioxidant activity of the purified hydrolysate increased on a successive purification, and the peptide sequence was determined to be 368.9 Da with Gly-Glu-Tyr amino acids. Tripeptide exerted free radical scavenging efficiency in DNA damage, lipid peroxidation and cellular destruction (MCF7 cells) under stress condition. The results obtained with octopus antioxidant peptide suggested its role as an adjunct in food and pharmaceutical industries. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
The effects of metal ions on the DNA damage induced by hydrogen peroxide.
Kobayashi, S; Ueda, K; Komano, T
1990-01-01
The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.
Tian, Suyang; Hao, Changchun; Xu, Guangkuan; Yang, Juanjuan; Sun, Runguang
2017-10-01
In this study, polysaccharides from Angelica sinensis were extracted using the ultrasound-assisted extraction method. Based on the results of single factor experiments and orthogonal tests, three independent variables-water/raw material ratio, ultrasound time, and ultrasound power-were selected for investigation. Then, we used response surface methodology to optimize the extraction conditions. The experimental data were fitted to a quadratic equation using multiple regression analysis, and the optimal conditions were as follows: water/raw material ratio, 43.31 mL/g; ultrasonic time, 28.06 minutes; power, 396.83 W. Under such conditions, the polysaccharide yield was 21.89±0.21%, which was well matched with the predicted yield. In vitro assays, scavenging activity of superoxide anion radicals, hydroxyl radicals, and 2,2-diphenyl-1-picry-hydrazyl radical showed that polysaccharides had certain antioxidant activities and that hydroxyl radicals have a remarkable scavenging capability. Therefore, these studies provide reference for further research and rational development of A. sinensis polysaccharide. Copyright © 2016. Published by Elsevier B.V.
Ab initio molecular dynamics of the reaction of quercetin with superoxide radical
NASA Astrophysics Data System (ADS)
Lespade, Laure
2016-08-01
Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car-Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.
Li, Hui
2017-01-01
Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092
Carreras, Anna; Mateos-Martín, María Luisa; Velázquez-Palenzuela, Amado; Brillas, Enric; Sánchez-Tena, Susana; Cascante, Marta; Juliá, Luis; Torres, Josep Lluís
2012-02-22
Plant polyphenols may be free radical scavengers or generators, depending on their nature and concentration. This dual effect, mediated by electron transfer reactions, may contribute to their influence on cell viability. This study used two stable radicals (tris(2,3,5,6-tetrachloro-4-nitrophenyl)methyl (TNPTM) and tris(2,4,6-trichloro-3,5-dinitrophenyl)methyl (HNTTM)) sensitive only to electron transfer reduction reactions to monitor the redox properties of polyphenols (punicalagin and catechins) that contain phenolic hydroxyls with different reducing capacities. The use of the two radicals reveals that punicalagin's substructures consisting of gallate esters linked together by carbon-carbon (C-C) bonds are more reactive than simple gallates and less reactive than the pyrogallol moiety of green tea catechins. The most reactive hydroxyls, detected by TNPTM, are present in the compounds that affect HT-29 cell viability the most. TNPTM reacts with C-C-linked gallates and pyrogallol and provides a convenient way to detect potentially beneficial polyphenols from natural sources.
Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts
Stanojević, Ljiljana; Stanković, Mihajlo; Nikolić, Vesna; Nikolić, Ljubiša; Ristić, Dušica; Čanadanovic-Brunet, Jasna; Tumbas, Vesna
2009-01-01
The antioxidant activity of water, ethanol and methanol Hieracium pilosella L. extracts is reported. The antioxidative activity was tested by spectrophotometrically measuring their ability to scavenge a stable DPPH• free radical and a reactive hydroxyl radical trapped by DMPO during the Fenton reaction, using the ESR spectroscopy. Total phenolic content and total flavonoid content were evaluated according to the Folin-Ciocalteu procedure, and a colorimetric method, respectively. A HPLC method was used for identification of some phenolic compounds (chlorogenic acid, apigenin-7-O-glucoside and umbelliferone). The antioxidant activity of the investigated extracts slightly differs depending on the solvent used. The concentration of 0.30 mg/mL of water, ethanol and methanol extract is less effective in scavenging hydroxyl radicals (56.35, 58.73 and 54.35%, respectively) in comparison with the DPPH• radical scavenging activity (around 95% for all extracts). The high contents of total phenolic compounds (239.59–244.16 mg GAE/g of dry extract) and total flavonoids (79.13–82.18 mg RE/g of dry extract) indicated that these compounds contribute to the antioxidative activity. PMID:22346723
Antioxidant activity of selected plant species; potential new sources of natural antioxidants.
Nićiforović, N; Mihailović, V; Masković, P; Solujić, S; Stojković, A; Pavlović Muratspahić, D
2010-11-01
The aim of this study was to examine six plants from Serbia for their potential antioxidant activity. Therefore, six antioxidant activity assays were carried out, including: total antioxidant capacity, DPPH free-radical scavenging, the inhibitory activity toward lipid peroxidation, Fe(3+)- reducing power, Fe(2+)- chelating ability and hydroxyl radical scavenging activity. Total phenolic and flavonoid contents were also determined for each alcoholic extract. Cotinus coggygria extract contained the highest amount of total phenols (413mg GAE /g dry extract), while the highest proportion of flavonoids was found in the Echium vulgare methanol extract (105 mg RU/g). Cotinus coggygria and Halacsya sendtneri alcoholic extracts showed the highest total antioxidant capacity (313 and 231 mg AA/g dry extract), as well as DPPH free-radical scavenging (IC(50)=9 and 99 μg/ml), inhibitory activity toward lipid peroxidation (IC(50)=3 and 17 μg/ml) and reducing power. Whereas, the greatest hydroxyl radical scavenging activity, as well as ferrous ion chelating ability showed Echium vulgare, Echium rubrum and Halacsya sendtneri. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sun, Y-E; Wang, W-D
2016-06-30
It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.
NASA Astrophysics Data System (ADS)
Liu, Xin; Shao, Changlun; Kong, Wenwen; Fang, Yuchun; Wang, Changyun
2013-09-01
Seaweed Complex Preparation (SCP) is a clinical traditional Chinese medicine preparation which is composed of seven traditional Chinese herbs, and it has been used for treatment of lung cancer, liver cancer and digestive cancer. However, little information is available about the pharmacodynamic basis. The antitumor, immunomodulatory and free radical scavenging effects of SCP were evaluated in this study. Transplanted tumor in vivo method was used to determine the antitumor effect. The effects on splenocyte proliferation and phagocytosis of macrophages in tumor-bearing mice were measured by the MTT method and the phagocytizing cock red blood cell (CRBC) method respectively. The scavenging activities of SCP on DPPH and hydroxyl radicals in vitro were investigated. It was found that the medium-dose and high-dose of SCP could significantly inhibit the growth of transplanted hepatic tumor of murine hepatocarcinoma cell line H22, and promote proliferation of splenocytes and phagocytosis of macrophages. SCP possessed noticeable scavenging activities on DPPH and hydroxyl radicals. The antitumor effects of SCP might be achieved by improving immune system and scavenging free radicals, which is in accordance with the viewpoint of traditional Chinese medicine in promoting the body resistance and eliminating pathogenic factors for cancer treatment.
Alvarez-Suarez, José M; Giampieri, Francesca; Damiani, Elisabetta; Astolfi, Paola; Fattorini, Daniele; Regoli, Francesco; Quiles, José L; Battino, Maurizio
2012-03-01
Several monofloral Cuban honeys were analyzed to determine their free radical-scavenging activity and from this the total antioxidant content was estimated. The protective effect against lipid peroxidation in an in vitro model of rat liver homogenates was evaluated and, lastly, the mineral content of the honeys, which can be related to the maintenance of intracellular oxidative balance, was determined. The scavenging capacities against hydroxyl and superoxide radicals were determined using the spin-trapping technique and the hypoxanthine/xanthine oxidase assay, respectively. Lipid peroxidation was evaluated through the production of TBARS and hydroperoxides. All honeys tested showed potential antioxidant activity with Linen vine displaying the highest scavenging capacity towards the DPPH, hydroxyl and superoxide radicals, while the least efficient was Christmas vine honey. Honeys also inhibited, in a concentration-dependent mode, lipid peroxidation in rat liver homogenates, with Linen vine resulting the best while the least effective was Christmas vine honey. The ability to scavenge free radicals and protect against lipid peroxidation may contribute to the ability of certain Cuban honeys to help in preventing/reducing some inflammatory diseases in which oxidative stress is involved. A total of eight minerals were identified and quantified as follows: cadmium, chromium, copper, nickel, iron, manganese, lead, and zinc. Minerals found in higher concentrations were iron, zinc and manganese.
Hydroxyl and Hydroperoxy Chemistry at the CalNex-LA 2010 Site: Measurements and Modeling
NASA Astrophysics Data System (ADS)
Griffith, S. M.; Hansen, R. F.; Dusanter, S.; Stevens, P. S.; Gilman, J. B.; Kuster, W. C.; Veres, P. R.; Graus, M.; Warneke, C.; De Gouw, J. A.; Young, C. J.; Washenfelder, R. A.; Brown, S. S.; Flynn, J. H.; Alvarez, S. L.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Mielke, L. H.; Osthoff, H. D.
2011-12-01
Hydroxyl (OH) and hydroperoxy (HO2) radicals are key species in the atmosphere driving the oxidation of organic trace gases leading to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in urban environments have shown similarities and differences across sites due to differing levels of nitrogen oxides (NOx) and volatile organic compounds (VOCs), and the control strategies for dealing with these chemical species. Understanding the free radical chemistry is essential for effectively regulating NOx and VOC emissions and controlling ozone and other secondary pollutants. Measurements of OH and HO2 radicals were made using a laser-induced fluorescence technique as part of the CalNex LA campaign during May-June, 2010. Median HOx (OH + HO2) concentrations, as well as HO2-to-OH ratios, were similar to previous measurements in other urban areas. An extensive suite of supporting measurements including photolysis rates, NOx, and other inorganic species, biogenic, aromatic, and other anthropogenic VOCs are used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism. Model comparisons provide details about the ability of commonly used chemical mechanisms to reproduce HOx production and loss rates, the radical cycling, and instantaneous O3 production rates in the Los Angeles area.
Serendipitous findings while researching oxygen free radicals.
Floyd, Robert A
2009-04-15
This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking that led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin trapping and HPLC-electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and also to first sensitively detect 8-hydroxyl-2-deoxyguanosine in oxidatively damaged DNA and help assess its role in cancer development. We demonstrated that methylene blue (MB) photoinduces formation of 8-hydroxyguanine in DNA and RNA and discovered that MB sensitively photoinactivates RNA viruses, including HIV and the West Nile virus. Studies in experimental stroke led us serendipitously to discover that alpha-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma.
Reaction CH3 + OH studied over the 294-714 K temperature and 1-100 bar pressure ranges.
Sangwan, Manuvesh; Chesnokov, Evgeni N; Krasnoperov, Lev N
2012-08-30
Reaction of methyl radicals with hydroxyl radicals, CH(3) + OH → products (1) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 294-714 K temperature and 1-100 bar pressure ranges (bath gas He). Methyl radicals were produced by photolysis of acetone at 193.3 nm. Hydroxyl radicals were generated in reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N(2)O at 193.3 nm, with H(2)O. Temporal profiles of CH(3) were recorded via absorption at 216.4 nm using xenon arc lamp and a spectrograph; OH radicals were monitored via transient absorption of light from a dc discharge H(2)O/Ar low pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light inside the reactor was determined by an accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The results of this study indicate that the rate constant of reaction 1 is pressure independent within the studied pressure and temperature ranges and has slight negative temperature dependence, k(1) = (1.20 ± 0.20) × 10(-10)(T/300)(-0.49) cm(3) molecule(-1) s(-1).
NASA Astrophysics Data System (ADS)
Anderson, Carly; Clark, Douglas; Graves, David
2014-10-01
We present evidence for the existence of two distinct processes that contribute to the generation of reactive oxygen and nitrogen species (RONS) in liquids exposed to cold atmospheric plasma (CAP) in air. At the plasma-liquid interface, there exists a fast surface reaction zone where RONS from the gas phase interact with species in the liquid. RONS can also be produced by ``slow'' chemical reactions in the bulk liquid, even long after plasma exposure. To separate the effects of these processes, we used indigo dye as an indicator of ROS production; specifically generation of hydroxyl radical. The rate of indigo decolorization while in direct contact with CAP is compared with the expected rate of hydroxyl radical generation at the liquid surface. When added to aqueous solutions after CAP exposure, indigo dye reacts on a time scale consistent with the production of peroxynitrous acid, ONOOH, which is known to decompose to hydroxyl radical below a pH of 6.8. In this study, the CAP used was a air corona discharge plasma run in a positive streamer mode.
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals.
Komaszylo Née Siedlecka, Joanna; Kania, Magdalena; Masnyk, Marek; Cmoch, Piotr; Lozinska, Iwona; Czarnocki, Zbigniew; Skorupinska-Tudek, Karolina; Danikiewicz, Witold; Swiezewska, Ewa
2016-02-01
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents--reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI-MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI-MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi
2010-07-02
Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.
Soares, Daniele G; Andreazza, Ana C; Salvador, Mirian
2003-02-12
The antioxidant capacity of butylated hydroxytoluene (BHT; 2,6-di-tert-butyl-p-cresol), propyl gallate (3,4,5-trihydroxybenzoic acid n-propyl ester), resveratrol (trans-3,4',5-trihydroxystilbene), and vitamins C (l-ascorbic acid) and E [(+)-alpha-tocopherol] was studied in chemical and biological systems. The chemical assays evaluated the capacity of these antioxidants to sequester 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.) and 1,1 diphenyl-2-picrylhydrazyl (DPPH.). A new colorimetric method to determine hydroxyl radical scavenging is also described. The biological tests use the eucaryotic cells of Saccharomyces cerevisiae treated with the antioxidants in the presence of the stressing agents apomorphine, hydrogen peroxide, and paraquat dichloride (methylviologen; 1,1'-dimethyl-4,4'-bipyridinium dichloride). The results in chemical systems showed that all of the antioxidants were able to significantly inhibit the oxidation of beta-carotene by hydroxyl free radicals. The assays in yeast showed that the antioxidant activity of the tested compounds depended on the stressing agent used and the mechanism of action of the antioxidant.
Anglada, Josep M; Gonzalez, Javier
2009-12-07
The effect of a single water molecule on the reaction mechanism of the gas-phase reaction between formic acid and the hydroxyl radical was investigated with high-level quantum mechanical calculations using DFT-B3LYP, MP2 and CCSD(T) theoretical approaches in concert with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction between HCOOH and HO has a very complex mechanism involving a proton-coupled electron transfer process (pcet), two hydrogen-atom transfer reactions (hat) and a double proton transfer process (dpt). The hydroxyl radical predominantly abstracts the acidic hydrogen of formic acid through a pcet mechanism. A single water molecule affects each one of these reaction mechanisms in different ways, depending on the way the water interacts. Very interesting is also the fact that our calculations predict that the participation of a single water molecule results in the abstraction of the formyl hydrogen of formic acid through a hydrogen atom transfer process (hat).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun
2010-07-02
Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less
Ma, Qingwei; Ren, Jing; Huang, Honghui; Wang, Shoubing; Wang, Xiangrong; Fan, Zhengqiu
2012-05-15
Degradation of microcystin-LR (MC-LR) in the presence of nitrous acid (HNO(2)) under irradiation of 365nm ultraviolet (UV) was studied for the first time. The influence of initial conditions including pH value, NaNO(2) concentration, MC-LR concentration and UV intensity were studied. MC-LR was degraded in the presence of HNO(2); enhanced degradation of MC-LR was observed with 365nm UV irradiation, caused by the generation of hydroxyl radicals through the photolysis of HNO(2). The degradation processes of MC-LR could well fit the pseudo-first-order kinetics. Mass spectrometry was applied for identification of the byproducts and the analysis of degradation mechanisms. Major degradation pathways were proposed according to the results of LC-MS analysis. The degradation of MC-LR was initiated via three major pathways: attack of hydroxyl radicals on the conjugated carbon double bonds of Adda, attack of hydroxyl radicals on the benzene ring of Adda, and attack of nitrosonium ion on the benzene ring of Adda. Copyright © 2012 Elsevier B.V. All rights reserved.
Gupta, Sayan; Feng, Jun; Chance, Mark; Ralston, Corie
2016-01-01
Synchrotron X-ray Footprinting is a powerful in situ hydroxyl radical labeling method for analysis of protein structure, interactions, folding and conformation change in solution. In this method, water is ionized by high flux density broad band synchrotron X-rays to produce a steady-state concentration of hydroxyl radicals, which then react with solvent accessible side-chains. The resulting stable modification products are analyzed by liquid chromatography coupled to mass spectrometry. A comparative reactivity rate between known and unknown states of a protein provides local as well as global information on structural changes, which is then used to develop structural models for protein function and dynamics. In this review we describe the XF-MS method, its unique capabilities and its recent technical advances at the Advanced Light Source. We provide a comparison of other hydroxyl radical and mass spectrometry based methods with XFMS. We also discuss some of the latest developments in its usage for studying bound water, transmembrane proteins and photosynthetic protein components, and the synergy of the method with other synchrotron based structural biology methods.
NASA Astrophysics Data System (ADS)
Yang, Miao; Soroka, Inna; Jonsson, Mats
2017-01-01
In the presence of Tris or methanol, hydroxyl radicals in systems of relevance for interfacial radiation chemistry can be quantified indirectly via the Hantzsch method by determining the amount of the scavenging product formaldehyde formed. In this work, the influence of the presence of H2O2 on the Hantzsch method using acetoacetanilide (AAA) as derivatization reagent is studied. The experiments show that the measured CH2O concentration deviates from the actual concentration in the presence of H2O2 and the deviation increases with increasing [H2O2]0/[CH2O]0. The deviation is negative, i.e., the measured formaldehyde concentration is lower than the actual concentration. This leads to an underestimation of the hydroxyl radical production in systems containing significant amount of H2O2. The main reason for the deviation is found to be three coupled equilibria involving H2O2, CH2O and the derivative produced in the Hantzsch method.
Balan, Ranjini; Suraishkumar, G K
2014-01-01
We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm. © 2014 American Institute of Chemical Engineers.
Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke
2015-01-01
Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 108 dm3 mol−1 s−1 and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10–1000 μmol dm−3) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. PMID:25212600
Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F
2018-01-15
Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms of free radical-induced damage to DNA.
Dizdaroglu, Miral; Jaruga, Pawel
2012-04-01
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.
Stolze, K; Nohl, H
1991-01-01
The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.
NASA Astrophysics Data System (ADS)
Zhuang, Yongliang; Li, Bafang; Zhao, Xue
2009-06-01
Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.
Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines.
Sersen, Frantisek; Gregan, Fridrich; Kotora, Peter; Kmetova, Jarmila; Filo, Juraj; Loos, Dusan; Gregan, Juraj
2017-05-29
Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N'-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical (GOR), and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect.
NASA Astrophysics Data System (ADS)
Vel Leitner, N. Karpel; Guilbault, I.; Legube, B.
2003-05-01
Electron beam irradiation of aqueous solutions of EDTA, EDDA NN‧, NTA, IDA and Cu-EDTA was performed in the presence of scavengers for the hydroxyl radicals (methanol) or for the solvated electrons (hydrogen peroxide). Experiments showed that for each molecule, the G-value decreases as the radiation dose increases from 1 to 25 kGy, and for EDTA, when the initial concentration decreases from 10 to 0.1 mmol l-1. At pH 8 and for 5 kGy, the G-values of NTA, IDA, EDTA and EDDA NN‧ removal ascribed to OHrad radicals are, respectively, 0.06, 0.06, 0.15 and 0.20 μmol J-1, whereas for the solvated electrons the G-values were, respectively, 0.01, 0.01, 0.06 and 0.04 μmol J-1. The rate constants of hydroxyl radicals and solvated electrons were determined by comparison with one competitor. For each active species (hydroxyl radical or solvated electron), the reactivity is connected to the number of nitrogen atoms and acetate groups. The rate constants of OHrad radicals are above 1010 and 8.6×109 l mol-1 s-1 for EDDA NN‧ and EDTA, respectively, 2.1×109 l mol-1 s-1 for IDA and 6.1×108 l mol-1 s-1 for NTA. The reactivity of solvated electrons is smaller and the rate constants are in the range 1.9×106-3.7×106 l mol-1 s-1 for NTA, IDA and EDDA NN‧ and equal 1.4×107 l mol-1 s-1 for EDTA. The reactivity of the complex Cu-EDTA towards OHrad does not differ to a large extent from EDTA whereas with e-aq the reactivity of Cu-EDTA is better than EDTA since ke-/Cu-EDTA reaches 2.2×109 l mol-1 s-1. It follows that when both active entities (OHrad and e-aq) are involved in the electron beam irradiation process, the removal of free aminopolycarboxylic acids is mainly due to OHrad radicals. However, the complex Cu-EDTA is concerned by both e-aq and OHrad radicals.
Radicalization and Radical Catalysis of Biomass Sugars: Insights from First-principles Studies
Yang, Gang; Zhu, Chang; Zou, Xianli; Zhou, Lijun
2016-01-01
Ab initio and density functional calculations are conducted to investigate the radicalization processes and radical catalysis of biomass sugars. Structural alterations due to radicalization generally focus on the radicalized sites, and radicalization affects H-bonds in D-fructofuranose more than in D-glucopyranose, potentially with outcome of new H-bonds. Performances of different functionals and basis sets are evaluated for all radicalization processes, and enthalpy changes and Gibbs free energies for these processes are presented with high accuracy, which can be referenced for subsequent experimental and theoretical studies. It shows that radicalization can be utilized for direct transformation of biomass sugars, and for each sugar, C rather than O sites are always preferred for radicalization, thus suggesting the possibility to activate C-H bonds of biomass sugars. Radical catalysis is further combined with Brønsted acids, and it clearly states that functionalization fundamentally regulates the catalytic effects of biomass sugars. In presence of explicit water molecules, functionalization significantly affects the activation barriers and reaction energies of protonation rather than dehydration steps. Tertiary butyl and phenyl groups with large steric hindrances or hydroxyl and amino groups resulting in high stabilities for protonation products drive the protonation steps to occur facilely at ambient conditions. PMID:27405843
Acetyl radical generation in cigarette smoke: Quantification and simulations
NASA Astrophysics Data System (ADS)
Hu, Na; Green, Sarah A.
2014-10-01
Free radicals are present in cigarette smoke and can have a negative effect on human health. However, little is known about their formation mechanisms. Acetyl radicals were quantified in tobacco smoke and mechanisms for their generation were investigated by computer simulations. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high-performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). Simulations were performed using the Master Chemical Mechanism (MCM). A range of 10-150 nmol/cigarette of acetyl radical was measured from gas phase tobacco smoke of both commercial and research cigarettes under several different smoking conditions. More radicals were detected from the puff smoking method compared to continuous flow sampling. Approximately twice as many acetyl radicals were trapped when a glass fiber particle filter (GF/F specifications) was placed before the trapping zone. Simulations showed that NO/NO2 reacts with isoprene, initiating chain reactions to produce hydroxyl radical, which abstracts hydrogen from acetaldehyde to generate acetyl radical. These mechanisms can account for the full amount of acetyl radical detected experimentally from cigarette smoke. Similar mechanisms may generate radicals in second hand smoke.
Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.
Hirose, Kensaku; Ohkubo, Kei; Fukuzumi, Shunichi
2016-08-26
Hydroxylation of benzene by molecular oxygen (O2 ) occurs efficiently with 10-methyl-9,10-dihydroacridine (AcrH2 ) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4 )3 or Fe(ClO4 )2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10-methylacridinium ion and hydrogen peroxide (H2 O2 ) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4 )3 is started by the formation of H2 O2 from AcrH2 , O2 , and H(+) . Hydroperoxyl radical (HO2 (.) ) is produced from H2 O2 with the redox pair of Fe(3+) /Fe(2+) by a Fenton type reaction. The rate-determining step in the initiation is the proton-coupled electron transfer from Fe(2+) to H2 O2 to produce HO(.) and H2 O. HO(.) abstracts hydrogen rapidly from H2 O2 to produce HO2 (.) and H2 O. The Fe(3+) produced was reduced back to Fe(2+) by H2 O2 . HO2 (.) reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH(.) ) to constitute the radical chain reaction. Hydroperoxyl radical (HO2 (.) ), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2 O2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Liang; Ji, Pengfei; Gong, Xingguo; Li, Weiqi; Cheng, Junwen; Qian, Hua; Song, Xianliang
2011-10-01
A novel water-soluble polysaccharide pMTPS-3, obtained from Melia toosendan Sieb. Et Zucc fruit by hot-water extraction and ethanol precipitation, was fractionated by DEAE-52 cellulose anion-exchange and Sephadex G-100 gel filtration chromatography. Its primary structural features and molecular weight were characterized by Fourier infrared spectrometry (FTIR), gel permeation chromatography (GPC) and gas chromatography (GC). And the antioxidant activities of pMTPS-3 in vitro were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, superoxide radical scavenging assay and hydroxyl radical scavenging assay. The results suggested that pMTPS-3 was a heteropolysaccharide, composed of arabinose, glucose, mannose, and galactose in the molar ratio of 17.3:28.3:41.6:12.6 with molecular weight 26100Da. The purified pMTPS-3 was revealed to have notable scavenging activity against DPPH radical in a concentration-dependent manner and present a moderate inhibition of superoxide radicals with an IC(50) (5.6mg/ml), and potent inhibiting power for hydroxyl radical compared with crude polysaccharide. Further, it exhibited strong inhibition effect in vitro on the growth of human gastric cancer BGC-823 cells. It is strongly evidenced that pMTPS-3 purified from the crude polysaccharides of Melia toosendan Sieb. Et Zucc could be explored as a potential antioxidant and therapeutics. Copyright © 2011 Elsevier B.V. All rights reserved.
Antioxidant Chemistry of Graphene-Based Materials and its Role in Oxidation Protection Technology
Qiu, Yang; Wang, Zhongying; Owens, Alisa C.E.; Kulaots, Indrek; Chen, Yantao; Kane, Agnes B.; Hurt, Robert H.
2015-01-01
Two-dimensional nanomaterials have potential as a new class of antioxidants that combine physical barrier function with ultrahigh surface area for free radical scavenging. This work presents the first measurements of the chemical reactivities of graphene-based materials toward a set of model free radicals and reactive oxygen species using electron paramagnetic resonance spectroscopy (EPR) and sacrificial dye protection assays. Graphene-based materials are shown to protect a variety of molecular targets from oxidation by these species, and to be highly effective as hydroxyl-radical scavengers. When hydroxyl radical is produced photolytically, the overall antioxidant effect is a combination of preventative antioxidant activity (UV absorption) and ·OH radical scavenging. Few-layer graphene is more active than monolayer graphene oxide, despite its lower surface area, which indicates that the primary scavenging sites are associated with the sp2-carbon network rather than oxygen-containing functional groups. To explain this trend, we propose that GO is a weak hydrogen donor, due to the non-phenolic nature of most OH groups on GO, which reside at basal sp3-carbon sites that do not allow for radical resonance stabilization following hydrogen donation. As an example application of graphene antioxidant behavior, we show that encapsulation of TiO2 nanoparticles in graphene nanosacks reduces undesired photo-oxidative damage to nearby organic target molecules, which suggests graphene encapsulation as a new approach to managing adverse environmental or health impacts of redox-active nanomaterials. PMID:25157875
Multiple free-radical scavenging (MULTIS) capacity in cattle serum.
Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru
2017-01-01
Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.
Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.
Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G
2018-05-10
A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lai, Ian-Lin; Su, Cheng-Chin; Ip, Wing-Huen; Wei, Chen-En; Wu, Jong-Shinn; Lo, Ming-Chung; Liao, Ying; Thomas, Nicolas
2016-03-01
With a combination of the Direct Simulation Monte Carlo (DSMC) calculation and test particle computation, the ballistic transport process of the hydroxyl radicals and oxygen atoms produced by photodissociation of water molecules in the coma of comet 67P/Churyumov-Gerasimenko is modelled. We discuss the key elements and essential features of such simulations which results can be compared with the remote-sensing and in situ measurements of cometary gas coma from the Rosetta mission at different orbital phases of this comet.
Paulova, Hana; Stracina, Tibor; Jarkovsky, Jiri; Novakova, Marie; Taborska, Eva
2013-06-01
Ischemic and reperfusion injury is a serious condition related to numerous biochemical and electrical abnormalities of the myocardium. It has been repeatedly studied in various animal models. In this study, the production of hydroxyl radicals and electrophysiological parameters were compared in three species. Rat, guinea pig and rabbit isolated hearts were perfused according to Langendorff under strictly identical conditions. The heart rate and arrhythmia were monitored during ischemia and reperfusion periods at defined time intervals; the production of hydroxyl radical was determined by HPLC as 2.5-dihydroxybenzoic acid (2.5-DHBA) formed by salicylic acid hydroxylation. Relationship between arrhythmias and production of 2.5-DHBA was studied. The inter-species differences were observed in timing of arrhythmias onset and their severity, and in the production of 2.5-DHBA in both ischemia and reperfusion. The most considerable changes were observed in rats, where arrhythmias appeared early and with highest severity during ischemia on one side and the regular rhythm was restored early and completely during reperfusion. The corresponding changes in the production of 2.5-DHBA were observed. It can be concluded that rat isolated heart is the most suitable model for evaluation of ischemia/reperfusion injury under given experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. J. Mincher; R. V. Fox; S. P. Mezyk
Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M-1 s-1), for eaq-/OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) × 1010/(1.94 ± 0.32) × 108; dichloronitromethane (3.21 ± 0.17) × 1010/(5.12 ± 0.77) ×more » 108; bromonitromethane (3.13 ± 0.06) × 1010/(8.36 ± 0.57) × 107; dibromonitromethane (3.07 ± 0.40) × 1010/(4.75 ± 0.98) × 108; tribromonitromethane (2.29 ± 0.39) × 1010/(3.25 ± 0.67) × 108; bromochloronitromethane (2.93 ± 0.47) × 1010/(4.2 ± 1.1) × 108; bromodichloronitromethane (2.68 ± 0.13) × 1010/(1.02 ± 0.15) × 108; and dibromochloronitromethane (2.95 ± 0.43) × 1010 / (1.80 ± 0.31) × 108 at room temperature and pH ~7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) × 108, bromodichloromethane (7.11 ± 0.26) × 107, and chlorodibromomethane (8.31 ± 0.25) × 107 M-1 s-1, respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds.« less
LABORATORY STUDIES ON THE FORMATION OF FORMIC ACID (HCOOH) IN INTERSTELLAR AND COMETARY ICES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Chris J.; Kim, Yong Seol; Kaiser, Ralf I.
2011-01-20
Mixtures of water (H{sub 2}O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm{sup -1} (5.92 and 8.17 {mu}m, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH{sup +}) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeledmore » water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.« less
Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.
Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin
2015-02-01
Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.
da Silva, Cleyton Martins; da Silva, Luane Lima; Corrêa, Sergio Machado; Arbilla, Graciela
2016-12-01
Volatile organic compounds (VOCs) play a central role in atmospheric chemistry. In this work, the kinetic and mechanistic reactivities of VOCs are analyzed, and the contribution of the organic compounds emitted by anthropogenic and natural sources is estimated. VOCs react with hydroxyl radicals and other photochemical oxidants, such as ozone and nitrate radicals, which cause the conversion of NO to NO 2 in various potential reaction paths, including photolysis, to form oxygen atoms, which generate ozone. The kinetic reactivity was evaluated based on the reaction coefficients for hydroxyl radicals with VOCs. The mechanistic reactivity was estimated using a detailed mechanism and the incremental reactivity scale that Carter proposed. Different scenarios were proposed and discussed, and a minimum set of compounds, which may describe the tropospheric reactivity in the studied area, was determined. The role of isoprene was analyzed in terms of its contribution to ozone formation.
Photooxidation of carbofuran by a polychromatic UV irradiation without and with hydrogen peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitez, F.J.; Beltran-Heredia, J.; Gonzalez, T.
The photodegradation of carbofuran aqueous solutions has been conducted with direct photolysis provided by a polychromatic UV radiation source and by the combination of this UV radiation with hydrogen peroxide. In both processes, the decomposition level obtained as a function of the operating variables is reported, and the presence of tert-butyl alcohol, a scavenger of free radicals, is discussed. While the contribution of hydroxyl radicals is negligible in the direct photolysis, its reactions in the UV/H{sub 2}O{sub 2} system clearly increase the carbofuran decomposition and therefore must be taken into account in the reaction rate equation for the total degradation.more » From the mechanisms proposed, the quantum yields for the direct photolysis and the kinetic constants for the reaction between carbofuran and the hydroxyl radicals generated in the H{sub 2}O{sub 2} photolysis in the combined process are respectively evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao
Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less
Antioxidant activity of different fractions of Spirulina platensis protean extract.
Piñero Estrada, J E; Bermejo Bescós, P; Villar del Fresno, A M
2001-01-01
Spirulina platensis, planktonic blue-green algae, is gaining increasing attention because of its nutritional and medicinal properties. This microalgae contains phycobiliproteins (phycocyanin and allophycocyanin). Previous reports from our laboratory have shown that a protean extract of S. platensis is a potent free-radical scavenger (hydroxyl and peroxyl radicals) and inhibits microsomal lipid peroxidation. The aim of this study was to purify and characterize phycocyanin of S. platensis. Besides, we tried to demonstrate that one of the main components responsible for this antioxidant activity is a biliprotein phycocyanin. For this purpose, we studied the antioxidant activity of different fractions obtained during the phycocyanin purification process, through the scavenger activity of hydroxyl radical. We also observed that an increase in phycocyanin content was related to an increase in the antioxidant activity in different fractions, and therefore phycobiliprotein phycocyanin is the component mainly responsible for the antioxidant activity.
In sunscreen lotion (SSL) formulations, titanium dioxide (nTiO2) nanoparticles are coated with an Al(OH)3 layer to shield against the harmful effects of hydroxyl radicals (•OH), superoxide anion radicals (O2-•), and other reactive oxyge...
Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak
2016-01-01
Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.
Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.
Pinna, Alessandra; Malfatti, Luca; Piccinini, Massimo; Falcaro, Paolo; Innocenzi, Plinio
2012-07-01
The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.
Glutathione Metabolism and Parkinson’s Disease
Smeyne, Michelle
2013-01-01
It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395
Effects of B group vitamins on reactions of various alpha-hydroxyl-containing organic radicals.
Lagutin, P Yu; Shadyro, O I
2005-08-15
Effects of vitamins B1, B2, B6, and pyridoxal phosphate (PPh) on final product formation in radiolysis of aqueous solutions of ethanol, ethylene glycol, alpha-methylglycoside, and maltose were studied. It has been found that vitamin B2 and PPh effectively oxidize R*CHOH species, while suppressing their recombination and fragmentation reactions, thereby increasing the yields of the respective oxidation products. Vitamins B1 and B2 are capable of reducing alcohol radicals to the respective initial molecules, decreasing the yields of the radical transformation products.
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.
Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V
2015-04-01
Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and <4% for 2 precursors. Bromide concentration was important for three compounds (1,1-dimethylhydrazine, acetone dimethylhydrazone and dimethylsulfamide), but did not enhance NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René
2014-01-30
To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel
2013-10-01
This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Keen, Olya S; Linden, Karl G
2013-07-02
Sucralose is an artificial sweetener persistently present in wastewater treatment plant effluents and aquatic environments impacted by human activity. It has a potential to accumulate in the water cycle due to its resistance to common water and wastewater treatment processes. This study examined UV/H2O2 advanced oxidation and found that hydroxyl substitution of the chlorine atoms on the sucralose molecule can form a carbohydrate consisting of fructose and sugar alcohol, very similar to environmentally benign sucrose. The second-order reaction rate constant for loss of parent molecule via reaction with hydroxyl radical was determined to be (1.56 ± 0.03)·10(9) M(-1)s(-1). The degradation pathway involves substitution of a single chlorine by a hydroxyl group, with cyclic moiety being a preferential site for initial dechlorination. Further reaction leads to full dechlorination of the molecule, presumably via hydroxyl group substitution as well. No direct photolysis by UV wavelengths above 200 nm was observed. Because of its photostability when exposed to UV wavelengths ≥200 nm, known stability with ozone, limits of quantification by mass spectrometry close to or below environmental concentrations (<5 μg/L) without preconcentration, and otherwise stable nature, sucralose can be used as an in situ hydroxyl radical probe for UV-based and ozone-based AOP processes. As a compound safe for human consumption, sucralose makes a suitable full scale hydroxyl radical probe fit even for drinking water treatment plant applications. Its main drawback as a probe is lack of UV detection and as a result a need for mass spectrometry analysis.
Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.
Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé
2003-03-20
4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.
Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.
D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J
2004-01-01
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.
Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles
NASA Astrophysics Data System (ADS)
Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui; Zhang, Lizhi
2017-01-01
In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.
Bajpai, Vivek K; Sharma, Ajay; Kang, Sun Chul; Baek, Kwang-Hyun
2014-01-01
To investigate the antioxidant efficacy of a biologically active diterpenoid compound sugiol isolated from Metasequoia glyptostroboides (M. glyptostroboides) in various antioxidant models. An abietane type diterpenoid sugiol, isolated from ethyl acetate extract of M. glyptostroboides cones, was analyzed for its antioxidant efficacy as reducing power ability and lipid peroxidation inhibition as well as its ability to scavenge free radicals such as 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl radicals. The sugiol showed significant and concentration-dependent antioxidant and free radical scavenging activities. Consequently, the sugiol exerted lipid peroxidation inhibitory effect by 76.5% as compared to α-tocopherol (80.13%) and butylated hydroxyanisole (76.59%). In addition, the sugiol had significant scavenging activities of 1,1-diphenyl-2-picryl hydrazyl, nitric oxide, superoxide and hydroxyl free radicals in a concentration-dependent manner by 78.83%, 72.42%, 72.99% and 85.04%, when compared to the standard compound ascorbic acid (81.69%, 74.62%, 73.00% and 73.79%) and α-tocopherol/butylated hydroxyanisole (84.09%, 78.61%, 74.45% and 70.02%), respectively. These findings justify the biological and traditional uses of M. glyptostroboides or its secondary metabolites as confirmed by its promising antioxidant efficacy. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Zimmerman, Matthew T; Bayse, Craig A; Ramoutar, Ria R; Brumaghim, Julia L
2015-04-01
Because sulfur and selenium antioxidants can prevent oxidative damage, numerous animal and clinical trials have investigated the ability of these compounds to prevent the oxidative stress that is an underlying cause of cardiovascular disease, Alzheimer's disease, and cancer, among others. One of the most common sources of oxidative damage is metal-generated hydroxyl radical; however, very little research has focused on determining the metal-binding abilities and structural attributes that affect oxidative damage prevention by sulfur and selenium compounds. In this review, we describe our ongoing investigations into sulfur and selenium antioxidant prevention of iron- and copper-mediated oxidative DNA damage. We determined that many sulfur and selenium compounds inhibit Cu(I)-mediated DNA damage and that DNA damage prevention varies dramatically when Fe(II) is used in place of Cu(I) to generate hydroxyl radical. Oxidation potentials of the sulfur or selenium compounds do not correlate with their ability to prevent DNA damage, highlighting the importance of metal coordination rather than reactive oxygen species scavenging as an antioxidant mechanism. Additional gel electrophoresis, mass spectrometry, and UV-visible studies confirmed sulfur and selenium antioxidant binding to Cu(I) and Fe(II). Ultimately, our studies established that both the hydroxyl-radical-generating metal ion and the chemical environment of the sulfur or selenium significantly affect DNA damage prevention and that metal coordination is an essential mechanism for these antioxidants. Copyright © 2015 Elsevier Inc. All rights reserved.
Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Lin, Mingzhang; Muroya, Yusa; Shikazono, Naoya; Yokoya, Akinari; Fu, Haiying; Katsumura, Yosuke
2015-01-01
Reactions of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) with deoxyguanosine monophosphate (dGMP) hydroxyl radical adducts were investigated by pulse radiolysis technique. Edaravone was found to reduce the dGMP hydroxyl radical adducts through electron transfer reactions. The rate constants of the reactions were greater than 4 × 10(8) dm(3) mol(-1) s(-1) and similar to those of the reactions of ascorbic acid, which is a representative antioxidant. Yields of single-strand breaks, base lesions, and abasic sites produced in pUC18 plasmid DNA by gamma ray irradiation in the presence of low concentrations (10-1000 μmol dm(-3)) of edaravone were also quantified, and the chemical repair activity of edaravone was estimated by a method recently developed by the authors. By comparing suppression efficiencies to the induction of each DNA lesion, it was found that base lesions and abasic sites were suppressed by the chemical repair activity of edaravone, although the suppression of single-strand breaks was not very effective. This phenomenon was attributed to the chemical repair activity of edaravone toward base lesions and abasic sites. However, the chemical repair activity of edaravone for base lesions was lower than that of ascorbic acid. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Xia, Guanghua; Zhang, Xueying; Dong, Zhenghua; Shen, Xuanri
2017-12-01
In this study, Pearl oyster mantle type V collagen (POMC) and tilapia scale type I collagen (TSC) were extracted and hydrolyzed by various proteases in order to obtain peptides. The antioxidant activity of the peptides was investigated by DPPH, hydroxyl radical scavenging experiments and a dynamic digestion model in vitro. The results show that there are significant differences in amino acid composition between POMC and TSC. The collagen peptides obtained from pearl oyster mantle (POMCP) by treating with alkaline protease exhibited higher antioxidant activity than that from tilapia scale (TSCP) treated with papaya protease, and both of them showed greater DPPH and hydroxyl radical scavenging activity than other peptides. After being separated via Sephadex G-25 chromatography, the M1 fraction isolated from POMCP, and the S1 fraction from TSCP with which both had higher molecular weights showed the strongest antioxidant activity than other fractions, and the M1 fraction exhibited stronger antioxidant activity than the S1 fraction in scavenging free-radicals and protecting cells from the oxidation damage. Furthermore, after treating the dynamic digestion system model in vitro, the DPPH and hydroxyl radical scavenging activity of the M1 fraction increased slightly. These results suggest that POMCP exhibits stronger antioxidant activity than TSCP, which means that PMOP may be a good candidate to be a potential natural antioxidant in the food-processing industry.
Chang, H C; Bumpus, J A
2001-04-01
Ethylenediaminetetraacetic acid (EDTA) is an inhibitor of iodide (I-) oxidation that is catalyzed by horseradish peroxidase (HRP). HRP-mediated iodine (I2) reduction and triiodide (I3+) disappearance occur in the presence of this inhibitor. It is interesting that in the presence of EDTA, HRP produces superoxide radical, a reactive oxygen species that is required for iodine reduction. Substitution of potassium superoxide (KO2) or a biochemical superoxide generating system (xanthine/xanthine oxidase) for HRP and H2O2 in the reaction mixture also can reduce iodine to iodide. Thus, iodine reduction mediated by HRP occurs because HRP is able to mediate the formation of superoxide in the presence of EDTA and H2O2. Although superoxide is able to mediate iodine reduction directly, other competing reactions appear to be more important. For example, high concentrations (mM range) of EDTA are required for efficient iodine reduction in this system. Under such conditions, the concentration (microM range) of contaminating EDTA-Fe(III) becomes catalytically important. In the presence of superoxide, EDTA-Fe(III) is reduced to EDTA-Fe(II), which is able to reduce iodine and form triiodide rapidly. Also of importance is the fact that EDTA-Fe(II) reacts with hydrogen peroxide to form hydroxyl radical. Hydroxyl radical involvement is supported by the fact that a wide variety of hydroxyl radical (OH) scavengers can inhibit HRP dependent iodine reduction in the presence of EDTA and hydrogen peroxide.
Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo
2009-01-01
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25 -2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 µM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25 - 2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin. PMID:19785994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035; Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1.more » Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.« less
Chen, Ruizhan; Liu, Zhiqiang; Zhao, Jimin; Chen, Ruiping; Meng, Fanlei; Zhang, Min; Ge, Wencheng
2011-07-15
A water-soluble polysaccharide obtained from Acanthopanax senticosus leaves (ASL), was fractionated by DEAE-Sepharose fast-flow column chromatography, and purified by Sephadex G-75 gel-permeation column chromatography. The characteristics of ASP-2-1 were determined by chemical analysis, high-performance capillary electrophoresis (HPCE), high-performance gel-permeation chromatography (HPGPC). The results show that ASP-2-1 contained 89.47% carbohydrate, 7.45% uronic acid, 2.16% protein and seven kinds of monosaccharides including rhamnose, xylose, glucose, mannose, arabinose, galactose and glucuronic acid in a molar ratio of 7.45:18.63:25.15:0.93:8.35:2.79:5.69, with an average molecular weight of about 14,573Da. Furthermore, the immunobiological and antioxidant activities, in vitro, of ASP-2-1 were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ferric-reducing antioxidant power assay (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH()), superoxide radical (()O(2)(-)) and hydroxyl radical (()OH) free radical-scavenging assay, respectively. The results showed that ASP-2-1 exhibited significantly higher immunomodulatory activities against the lymphocyte proliferation in vitro, pronounced reductive power (FRAP value: 785.1μM at 0.2mg/ml), strong hydroxyl radical (89.56% at 1mg/ml) scavenging activity, moderate superoxide radicals (65.32% at 1mg/ml) and DPPH radicals (68.9% at 1mg/ml) scavenging activities. ASP-2-1 should be explored as a novel and potential natural antioxidant and immunostimulating agent for use in functional foods or medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Luo, Shuang; Wei, Zongsu; Spinney, Richard; Villamena, Frederick A; Dionysiou, Dionysios D; Chen, Dong; Tang, Chong-Jian; Chai, Liyuan; Xiao, Ruiyang
2018-02-15
Sulfate radical anion (SO 4 •- ) and hydroxyl radical (OH) based advanced oxidation technologies has been extensively used for removal of aromatic contaminants (ACs) in waters. In this study, we investigated the Gibbs free energy (ΔG SET ∘ ) of the single electron transfer (SET) reactions for 76 ACs with SO 4 •- and OH, respectively. The result reveals that SO 4 •- possesses greater propensity to react with ACs through the SET channel than OH. We hypothesized that the electron distribution within the molecule plays an essential role in determining the ΔG SET ∘ and subsequent SET reactions. To test the hypothesis, a quantitative structure-activity relationship (QSAR) model was developed for predicting ΔG SET ∘ using the highest occupied molecular orbital energies (E HOMO ), a measure of electron distribution and donating ability. The standardized QSAR models are reported to be ΔG ° SET =-0.97×E HOMO - 181 and ΔG ° SET =-0.97×E HOMO - 164 for SO 4 •- and OH, respectively. The models were internally and externally validated to ensure robustness and predictability, and the application domain and limitations were discussed. The single-descriptor based models account for 95% of the variability for SO 4 •- and OH. These results provide the mechanistic insight into the SET reaction pathway of radical and non-radical bimolecular reactions, and have important applications for radical based oxidation technologies to remove target ACs in different waters. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Magne, L.; Pasquiers, S.; Blin-Simiand, N.; Postel, C.
2007-05-01
A photo-triggered discharge has been used to study the production kinetic mechanisms and the reactivity of the hydroxyl radical in a N2/O2 mixture (5% oxygen) containing ethane or ethene for hydrocarbon concentration values in the range 1000-5000 ppm, at 460 mbar total pressure. The discharge (current pulse duration of 60 ns) has allowed the generation of a transient homogeneous non-equilibrium plasma, and the time evolution of the OH density has been measured (relative value) in the afterglow (up to 200 µs) by laser induced fluorescence (LIF). Experimental results have been explained using predictions of a self-consistent 0D discharge and plasma reactivity modelling, and reduced kinetic schemes for OH have been validated. It has been shown that recombination of H- and O-atoms, as well as reaction of O with the hydroperoxy radical HO2, plays a very important role in the production of OH radicals in the mixture with ethane. H is a key species for production of OH and HO2 radicals. As for ethane, O, H and HO2 are key species for the production of OH in the case of ethene, but carbonated radicals, following the partial oxidation of the hydrocarbon molecule by O, also play a non-negligible role. The rate constant for O- and H-atom recombination has been estimated to be 3 × 10-30 cm6 s-1 at near ambient temperature, consistent with LIF measurements on OH for both mixtures with ethane and ethene.
Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.
Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong
2017-06-08
Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.
Free radical generation by ultrasound in aqueous and nonaqueous solutions.
Riesz, P; Berdahl, D; Christman, C L
1985-01-01
The physical principles underlying the oscillatory behavior of minute gas bubbles in liquids exposed to ultrasound are reviewed. Results from mathematical analyses suggest that these oscillations sometimes become unstable leading to transient cavitation in which a bubble violently collapses during a single acoustic half-cycle producing high temperatures and pressures. The role that micronuclei, resonant bubble size, and rectified diffusion play in the initiation of transient cavitation is explained. Evidence to support these theoretical predictions is presented with particular emphasis on sonoluminescence which provides some non-chemical evidence for the formation of free radicals. Acoustic methods for conducting sonochemical investigations are discussed. In aqueous solutions transient cavitation initially generates hydrogen atoms and hydroxyl radicals which may recombine to form hydrogen and hydrogen peroxide or may react with solutes in the gas phase, at the gas-liquid boundary or in the bulk of the solution. The analogies and differences between sonochemistry and ionizing radiation chemistry are explored. The use of spin trapping and electron spin resonance to identify hydrogen atoms and hydroxyl radicals conclusively and to detect transient cavitation produced by continuous wave and by pulsed ultrasound is described in detail. The study of the chemical effects of cavitation in organic liquids is a relatively unexplored area which has recently become the subject of renewed interest. Examples of the decomposition of solvent and solute, of ultrasonically initiated free-radical polymerization and polymer degradation are presented. Spin trapping has been used to identify radicals in organic liquids, in polymer degradation and in the decomposition of organometallic compounds. PMID:3007091
Free Radical Scavenging Activity of Scoparia dulcis Extract.
Babincová, M.; Sourivong, P.
2001-01-01
We studied the scavenging capabilities of an extract of Scoparia dulcis (a cosmopolitan weed widespread in Laos and Vietnam) for 1-diphenyl-2-picrylhydrazyl and measured hemoglobin-catalyzed linoleic acid peroxidation with an oxygen electrode. Our results demonstrated strong antioxidant activity corresponding to mitigation of the generation of hydroxyl radicals, a possible rationale for the observed therapeutic effects of this weed.
Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...
Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions
NASA Astrophysics Data System (ADS)
Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna
Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).
Zhong, Zhimei; Ji, Xia; Xing, Ronge; Liu, Song; Guo, Zhanyong; Chen, Xiaolin; Li, Pengcheng
2007-06-01
Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical ((*)OH) superoxide anion (O2(*-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously.
Kim, Gyo-Nam; Jang, Hae-Dong
2011-08-01
The biological activities of the mulberry (Morus alba L.) leaf have been attributed to its flavonoid content. The water extract of the mulberry leaf (WEML) was prepared by autoclaving at 121 °C for 15 min, and the flavonol content of the WEML was determined by HPLC The WEML contained 4 flavonols in the following order: quercetin-3-β-D-glucose (QT-G) > quercetin-3-O-glucose-6″-acetate (QT-GA) > rutin (RT) > quercetin (QT). In the oxygen radical absorbance capacity (ORAC) assay, QT had the highest peroxyl radical-scavenging capacity and a similar hydroxyl radical-scavenging capacity as its glycosides (QT-G, QT-GA, and RT). QT exhibited a stronger cellular antioxidant capacity (CAC) against 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH)- and Cu²⁺-induced oxidative stress in HepG2 cells compared to its glycosides, indicating that the intracellular antioxidant capacity of QT and its glycosides may depend upon both the permeability across the cell membrane and the peroxyl or hydroxyl radical-scavenging capacity. The information presented might be used for developing mulberry leaf-based functional foods. © 2011 Institute of Food Technologists®
Hippophae leaf extract concentration regulates antioxidant and prooxidant effects on DNA.
Saini, Manu; Tiwari, Sandhya; Prasad, Jagdish; Singh, Surender; Kumar, M S Yogendra; Bala, Madhu
2010-03-01
Extracts from Hippophae leaves constitute some commonly consumed beverages such as tea and wine. We had developed an extract of Hippophae leaves (SBL-1), which was rich in quercetin, had antimutagenic effects, radioprotective effects, and countered radiation-induced gene conversion in Saccharomyces cerevisiae. This study was designed to investigate the action of SBL-1 on guanine cytosine (GC)-rich nascent and mouse genomic DNA in vitro. The human and mouse liver DNA have about 43% GC content. Our results showed that at small concentration SBL-1 protected nascent as well as genomic DNA, while at large concentration SBL-1 damaged both types of DNA. The concentration of SBL-1 that protected DNA also demonstrated higher free radical scavenging activity. The reducing power of SBL-1 was greater than its free radical scavenging activity. The greater reducing power may have reduced the trace metals present in the SBL-1, leading to generation of hydroxyl radicals via Fenton reaction. The increased proportion of unscavenged hydroxyl radicals with increase in SBL-1 concentration may have been responsible for DNA damage or prooxidant effect of SBL-1 in vitro. This study suggests that the dietary supplements prepared from Hippophae should have low metal content.
UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu
2016-05-14
The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less
Radiation damage to DNA in DNA-protein complexes.
Spotheim-Maurizot, M; Davídková, M
2011-06-03
The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.
Protective effects of polysaccharides from Psidium guajava leaves against oxidative stresses.
Kim, Seo-Young; Kim, Eun-A; Kim, Young-Sun; Yu, Seok-Kyu; Choi, Changyong; Lee, Jung-Suk; Kim, Yong-Tae; Nah, Jae-Woon; Jeon, You-Jin
2016-10-01
The aim of this study was to analyze antioxidant properties of a polysaccharide isolated from Psidium guajava leaves (PS-PGL) in vitro including its radical scavenging activities and protective effects against damage to cells as well as in vivo in zebrafish. The water extract of P. guajava leaves (WE-PGL) and PS-PGL showed strong radical scavenging effects in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical. Compared to WE-PGL, PS-PGL enhanced all scavenging activities and in particular strongly scavenged the hydroxyl radical (50% inhibitory concentration [IC50], 0.02mg/mL). In addition, PS-PGL exerted a protective effect against hydrogen peroxide-induced oxidative stress and against toxicity to Vero cells. Furthermore, in vivo experiments using zebrafish embryos indicated that treatment with hydrogen peroxide decreased the survival rate and heart-beating rate of zebrafish embryos, whereas these problems were reduced by PS-PGL treatment. Moreover, PS-PGL inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production, lipid peroxidation, and cell death. Taken together, these results suggest that PS-PGL may be useful as a beneficial antioxidant material in the food and cosmetic industries. Copyright © 2016 Elsevier B.V. All rights reserved.
Eberhardt, M K; Santos, C; Soto, M A
1993-05-07
Co2+ ions (Co(NO3)2.6H2O) react with H2O2 only in presence of EDTA to yield OH radicals and Co3+. This reaction was carried out in unbuffered aqueous solutions (pH = 2.6). The formation of Co3+ was confirmed by spectroscopy. The Co(3+)-EDTA complex shows two typical absorptions at 382 nm and 532 nm. The Co(3+)-EDTA complex can be prepared by a number of oxidizing agents, like Fe3+, Fe(3+)-EDTA, Ag+, Ag2+, Ce4+, and hydroxyl radicals. Since Fe3+ oxidizes Co(2+)-EDTA to Co(3+)-EDTA and Fe2+ we initiate a chain reaction for .OH formation. Our results show that there are two modes for H2O2 decomposition: (1) One electron transfer to give OH radicals and (2) Decomposition of H2O2 to H2O and O2 without intermediate .OH formation. This reaction depends strongly on the pH of the buffer. The H2O2 decomposition increases with increasing pH and increasing Co2+ concentration.
One- or two-electron water oxidation, hydroxyl radical, or H 2O 2 evolution
Siahrostami, Samira; Li, Guo -Ling; Viswanathan, Venkatasubramanian; ...
2017-02-23
Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H 2O 2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O 2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H 2O 2, and O 2.
Time resolved study of hydroxyl radical oxidation of oleic acid at the air-water interface
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Barraza, Kevin M.; Upton, Kathleen T.; Beauchamp, J. L.
2017-09-01
The ubiquity of oleic acid (OA) renders it a poster child for laboratory investigations of environmental oxidation chemistry. In the current study, mechanistic details of the oxidation of OA by hydroxyl radicals at the air-water interface are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Products from OH oxidation of both unsaturated and saturated carbon atoms are identified, and mechanisms for both types of oxidation processes are proposed. Uptake of oxygen in the interfacial layer increases linearly with time, consistent with Langmuir-Hinshelwood reaction kinetics. These results provide fundamental knowledge relating to OH initiated degradation of fatty acids in atmospheric aerosols.
Aromatic hydroxylation by cytochrome P450: model calculations of mechanism and substituent effects.
Bathelt, Christine M; Ridder, Lars; Mulholland, Adrian J; Harvey, Jeremy N
2003-12-10
The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.
A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction
NASA Astrophysics Data System (ADS)
Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos
2015-11-01
Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.
Fadda, Angela; Barberis, Antonio; Sanna, Daniele
2018-02-01
The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse
2006-03-01
The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).
Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.
Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun
2015-09-01
The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.
Kang, H.; Koppula, S.
2014-01-01
Houttuynia cordata Thunb (Saururaceae) is a traditional medicinal herb used to treat several disease symptoms. The present study was focused on the hepatoprotective effects of H. cordata ethyl acetate extract in experimental mice. Further the antioxidant potential of the extract was also evaluated to substantiate its hepatoprotective properties. Carbon tetrachloride-induced hepatic damage in mice was used to measure the serum biochemical parameters. Morphological changes in hepatocyte architecture were studied by haematoxylin and eosin staining. In vitro alkyl and hydroxyl free radical scavenging assays were performed to evaluate the antioxidant effect. Administration of H. cordata extract significantly reduced the elevated serum levels and regulated the altered levels of serum cholesterol in carbon tetrachloride-treated mice (P<0.05). The morphological changes in hepatocyte architecture were also reversed by H. cordata treatment. Further, the extract showed significant antioxidant actions by scavenging the alkyl and hydroxyl free radicals. The concentration of the extract necessary for 50% scavenging of alkyl and hydroxyl radicals was 15.5 and 410 μg/ml, respectively. H. cordata extract exhibited significant hepatoprotective property in carbon tetrachloride-induced hepatotoxicity in mice. The strong antioxidant activities possessed by the extract might be responsible for such actions. PMID:25284923
Kang, H; Koppula, S
2014-07-01
Houttuynia cordata Thunb (Saururaceae) is a traditional medicinal herb used to treat several disease symptoms. The present study was focused on the hepatoprotective effects of H. cordata ethyl acetate extract in experimental mice. Further the antioxidant potential of the extract was also evaluated to substantiate its hepatoprotective properties. Carbon tetrachloride-induced hepatic damage in mice was used to measure the serum biochemical parameters. Morphological changes in hepatocyte architecture were studied by haematoxylin and eosin staining. In vitro alkyl and hydroxyl free radical scavenging assays were performed to evaluate the antioxidant effect. Administration of H. cordata extract significantly reduced the elevated serum levels and regulated the altered levels of serum cholesterol in carbon tetrachloride-treated mice (P<0.05). The morphological changes in hepatocyte architecture were also reversed by H. cordata treatment. Further, the extract showed significant antioxidant actions by scavenging the alkyl and hydroxyl free radicals. The concentration of the extract necessary for 50% scavenging of alkyl and hydroxyl radicals was 15.5 and 410 μg/ml, respectively. H. cordata extract exhibited significant hepatoprotective property in carbon tetrachloride-induced hepatotoxicity in mice. The strong antioxidant activities possessed by the extract might be responsible for such actions.
[Study on antioxidative activities of Psidium guajava Linn leaves extracts].
Wang, Bo; Jiao, Shirong; Liu, Hengchuan; Hong, Junrong
2007-05-01
To study the antioxidative activities of the extracts from Psidium guajava Linn leaves (PGL). The PGL was submersed with distilled water, 65% ethanol and 95% ethanol respectively. The 3 extracts were obtained after the solutions were filtered, concentrated and dried. The scavenging rate to hydroxyl radicals and inhibiting rate to lipid peroxidation were analyzed for the 3 extracts. Their contents of total flavonoids were determined by ultraviolet spectrophotometry, and the components of total flavonoids were primarily identified by high performance liquid chromatography (HPLC) and ultraviolet-visible absorption spectrometry (UV). The extracts from distilled water, 65% ethanol and 95% ethanol respectively showed effects on scavenging hydroxyl radicals and inhibiting lipid peroxidation in the dose-dependent manner, had 50% effective concentration (EC50) on scavenging hydroxyl radicals of 0.63, 0.47 and 0.58g/L, had EC50 on inhibiting lipid peroxidation of 0.20, 0.035, 0.18g/L and had total flavonoids contents of 3.28, 30.71 and 55.98g/kg respectively. The aquatic and the ethanol extracts from PGL possess the potential antioxidative activities in the study. The flavonoids may be one of their antioxidative components.
Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor.
Bian, Wenjuan; Ying, Xiangli; Shi, Junwen
2009-03-15
The yields of active specie such as ozone, hydrogen peroxide and hydroxyl radical were all enhanced in a novel discharge reactor. In the reactor, the original formation rate of hydroxyl radical was 2.27 x 10(-7) mol L(-1)s(-1), which was about three times than that in the contrast reactor. Ozone was formed in gas-phase and was transferred into the liquid. The characteristic of mass transfer was better in the novel reactor than that in the contrast reactor, which caused much higher ozone concentration in liquid. The dissociation of hydrogen peroxide was more evident in the former, which promoted the formations of hydroxyl radical. The p-chlorophenol (4-CP) degradation was also enhanced. Most of the ozone transferred into the liquid and hydrogen peroxide generated by discharge could be utilized by the degradation process of 4-CP. About 97% 4-CP was removed in 36 min discharge in the novel reactor. Organic acids such as formic, acetic, oxalic, propanoic and maleic acid were generated and free chloride ions were released in the degradation process. With the formation of organic acid, the pH was decreased and the conductivity was increased.
Modelling of The Atmospheric Chemistry of Organic Nitrates
NASA Astrophysics Data System (ADS)
Winsland, N.
Organic nitrates are linked to the formation of tropospheric ozone and the cycling and transport of nitrogen-containing species in the atmosphere. Few laboratory stud- ies have been carried out on the reactions of organic nitrates. Photolysis quantum yield studies and UV absorption spectra have been carried out for the simple alkyl nitrates and PAN. Studies of PAN and ethyl nitrate with other atmospheric components (the hydroxyl radical - OH - and the chlorine atom - Cl) have been carried out to mea- sure their rates of reaction. However, the products and mechanisms of these reactions are poorly understood. We present here the results of modelling the reactions of the C1-C8 alkyl nitrates and PAN with the hydroxyl radical. These models are based on information from current literature and from photochemical reactor studies carried out at the Environment Institute, EU Joint Research Centre, Ispra, Italy. These studies give us a more detailed understanding of the mechanisms and products of the atmospheric loss of organic nitrates due to reaction with the hydroxyl radical. Preliminary studies show that the major products are aldehydes, ketones, nitro-oxy aldehydes, nitro-oxy ketones, NOx and nitric acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. J. Mincher; S. K. Cole; W. J. Cooper
2007-02-01
Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reactions were (4.97 ± 0.28) × 107 M-1 s-1 and (2.13 ± 0.03) × 1010 M-1 s-1, respectively. It appears that the OH adds to the nitro-group, while the eaq- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance ofmore » the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.« less
The Expanding Role of Oxygen Free Radicals in Clinical Medicine
Katz, Murray A.
1986-01-01
In 1969 McCord and Fridovich discovered superoxide dismutase, which converts the oxygen free radical O2- to hydrogen peroxide H2O2. In the presence of excess O2-, H2O2 may then undergo further reduction to the highly toxic hydroxyl radical, OH•. Since the description of this enzymatic process, there has been explosive growth in related biochemical research, which has now percolated through to clinical investigation. The hypoxanthine-xanthine oxidase system originally used as a radical production model has a close counterpart in the ischemia-reperfusion phenomenon purported to cause diseases of heart, brain and gastrointestinal tract, and free radicals are now known to have a critical role in postphagocytic bacterial killing. Prototypic deficiency diseases such as chronic granulomatous disease are now recognized. Some evidence indicates that excess states such as perhaps Batten's disease also occur, and environmental influences such as selenium and vitamin E deficiency may augment free radical levels. Many disorders including microvasculopathies, noncardiogenic pulmonary edema, glomerulopathies and radiation damage may owe part of their proximate pathogenesis to free radicals. Control of tissue free radical levels is now pharmacologically feasible and perhaps justified for specific diseases. PMID:3521094
Development of a PERCA Instrument for Ambient Peroxy Radical Measurements
NASA Astrophysics Data System (ADS)
Dusanter, S.; Duncianu, M.; Lahib, A.; Tomas, A.; Stevens, P. S.
2017-12-01
Peroxy radicals (HO2 and RO2) are key species in atmospheric chemistry, which together with the hydroxyl radical (OH), lead to the oxidation of volatile organic compounds and the formation of secondary pollutants such as ozone and secondary organic aerosols. Monitoring these short-lived species during intensive field campaigns and comparing the measured concentrations to model outputs allows assessing the reliability of chemical mechanisms implemented in atmospheric models. However, ambient measurements of peroxy radicals are still considered challenging and only a few techniques have been used for field measurements. The PEroxy Radical Chemical Amplifier (PERCA) approach, whose principle is based on amplification and a conversion of ambient peroxy radicals into nitrogen dioxide (NO2), has recently seen renewed interests due to the availability of sensitive NO2 monitors. We will present (i) the construction of a PERCA instrument, (ii) experiments conducted to quantify the radical chain length for HO2 and several RO2 radicals, including those produced during the OH-oxidation of isoprene, and (iii) a comparison of the conventional CO/NO and recently proposed ethane/NO amplification chemistries. In this context, box modelling of the PERCA chemistry will be discussed.
NASA Astrophysics Data System (ADS)
Alam, M. S.; Kelm, M.; Rao, B. S. M.; Janata, E.
2004-12-01
Two new procedures were employed for studying the reaction of hydrogen atoms with hydrogen peroxide. The absorption in the UV-range was observed either for an acidic aqueous solution containing only hydrogen peroxide or for a similar solution but also containing an aliphatic alcohol. From the increase in absorption of various alcohol radicals, a rate constant of 3.5×10 7 dm 3 mol -1 s -1 was determined. In addition, the rate constant for the reaction of hydroxyl radicals with hydrogen peroxide was determined to be 3.0×10 7 dm 3 mol -1 s -1.
Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A
2016-01-01
This study pertains to the radical scavenging potential of and DNA protection by Helvella lacunosa, an edible mushroom from Kashmir Himalaya (India). Different solvents, on the basis of their polarities, were used to extract all solvent-soluble bioactive compounds. Seven different antioxidant methods were also used to determine extensive radical scavenging activity. The mushroom ethanol extract and butanol extract showed effective scavenging activity of radicals at 95% and 89%, respectively. At 800 µg/mg, the ethanol extract was potent enough to protect DNA from degradation by hydroxyl radicals. It is evident from these findings that the presence of antioxidant substances signifies the use of H. lacunosa as food in the mountainous valleys of the Himalayan region.
Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T
1993-01-01
Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guang, Lu, E-mail: lu_g@163.com; Hui, Wang; Xuejun, Zou
2016-07-15
A group of BiOCl photocatalysts with different drying temperatures were prepared by a soft chemical method. The effects of drying temperatures on the crystalline phase, morphology, surface area and optical property of as-prepared samples were investigated in detail by XRD, SEM, N{sub 2} absorption–desorption and DRS. Moreover, their photocatalytic activities on the degradation of rhodamine B were evaluated under visible light irradiation. It was found that the sample dried at 120 °C had the best photocatalytic activity, which was mainly attributed to the highest exposing proportion of {001} facets correspond to BiOCl, largest BET and minimum bandgap. The degradation mechanismmore » was explored that superoxide radicals were mainly contributed to the degradation of chromophore, however, holes and hydroxyl were mainly contributed to the photo degradation. Moreover, holes and hydroxyl dominated the degradation of RhB. - Graphical abstract: Holes, hydroxyl and superoxide radicals can attribute to the degradation process but take different degradation pathways. Superoxide radicals mainly contribute to the degradation of chromophore, however, holes and hydroxyl mainly contribute to the photo degradation. Display Omitted - Highlights: • BiOCl nanosheets were prepared by a soft chemical method. • Effect of drying temperatures on as-prepared BiOCl samples was studied. • The highest removal efficiency of RhB was obtained over the sample dried at 120 °C.« less
Observation of OH radicals produced by pulsed discharges on the surface of a liquid
NASA Astrophysics Data System (ADS)
Kanazawa, Seiji; Kawano, Hirokazu; Watanabe, Satoshi; Furuki, Takashi; Akamine, Shuichi; Ichiki, Ryuta; Ohkubo, Toshikazu; Kocik, Marek; Mizeraczyk, Jerzy
2011-06-01
The hydroxyl radical (OH) plays an important role in plasma chemistry at atmospheric pressure. OH radicals have a higher oxidation potential compared with other oxidative species such as free radical O, atomic oxygen, hydroperoxyl radical (HO2), hydrogen peroxide(H2O2) and ozone. In this study, surface discharges on liquids (water and its solutions) were investigated experimentally. A pulsed streamer discharge was generated on the liquid surface using a point-to-plane electrode geometry. The primary generation process of OH radicals is closely related to the streamer propagation, and the subsequent secondary process after the discharge has an influence on the chemical reaction. Taking into account the timescale of these processes, we investigated the behavior of OH radicals using two different diagnostic methods. Time evolution of the ground-state OH radicals above the liquid surface after the discharge was observed by a laser-induced fluorescence (LIF) technique. In order to observe the ground-state OH, an OH [A 2∑+(v' = 1) <-- X 2Π(v'' = 0)] system at 282 nm was used. As the secondary process, a portion of OH radicals diffused from gas phase to the liquid surface and dissolved in the liquid. These dissolved OH radicals were measured by a chemical probe method. Terephthalic acid was used as an OH radical trap and fluorescence of the resulting 2-hydroxyterephthalic acid was measured. This paper directly presents visualization of OH radicals over the liquid surface by means of LIF, and indirectly describes OH radicals dissolved in water by means of a chemical method.
Sharma, Himanshu; Sharma, Divya S
Children/adolescent's orodental structures are different in anatomy and physiology from that of adults, therefore require special attention for bleaching with oxidative materials. Hydroxyl radical (OH . ) generation from bleaching agents has been considered directly related to both its clinical efficacy and hazardous effect on orodental structures. Nonetheless bleaching agents, indirectly releasing hydrogen peroxide (H 2 O 2 ), are considered safer yet clinically efficient. Apart from OH . , perhydroxyl radicals (HO 2 . ) too, were detected in bleaching chemistry but not yet in dentistry. Therefore, the study aims to detect the OH . and HO 2 . from bleaching agents with their relative integral value (RIV) using 31 P nuclear magnetic resonance ( 31 PNMR) spectroscope. Radicals were generated with UV light in 30% H 2 O 2 , 35% carbamide peroxide (CP), sodium perborate tetrahydrate (SPT) and; neutral and alkaline 30% H 2 O 2 . Radicals were spin-trapped with DIPPMPO in NMR tubes for each test agents as a function of time (0, 1, 2, 3min) at their original pH. Peaks were detected for OH . and HO 2 . on NMR spectrograph. RIV were read and compared for individual radicals detected. Only OH . were detected from acidic and neutral bleaching agent (30% acidic and neutral H 2 O 2 , 35%CP); both HO 2 . and OH . from 30% alkaline H 2 O 2 ; while only HO 2 . from more alkaline SPT. RIV for OH . was maximum at 1min irradiation of acidic 30%H 2 O 2 and 35%CP and minimum at 1min irradiation of neutral 30%H 2 O 2 . RIV for HO 2 . was maximum at 0min irradiation of alkaline 30%H 2 O 2 and minimum at 2min irradiation of SPT. The bleaching agents having pH- neutral and acidic were always associated with OH . ; weak alkaline with both OH . and HO 2 . ; and strong alkaline with HO 2 . only. It is recommended to check the pH of the bleaching agents and if found acidic, should be made alkaline to minimize oxidative damage to enamel itself and then to pulp/periodontal tissues. H 2 O 2 : hydrogen peroxide CP: carbamide peroxide SP: sodium perborate SPT: sodium perborate tetrahydrate ROS: reactive oxygen species 31 PNMR: 31 P nuclear magnetic resonance spectroscope RIV: relative integral value OH 2 . : hydroxyl radical HO 2 . : perhydroxyl radical O 2 . : super oxide radical DIPPMPO: 5-(Diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide DEPMPO: 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide DMPO: 5,5-dimethyl-1-pyrroline-N-oxide D 2 O: heavy water EDTA: ethylene diamine tetra acetic acid.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... form of encryption, and be free of any defects or viruses. For additional information about the EPA's... k OH ) with the hydroxyl radical (OH); (ii) the maximum incremental reactivities (MIR) of ethane and... metrics are discussed below. The k OH is the reaction rate constant of the compound with the OH radical in...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... avoid the use of special characters, any form of encryption, and be free of any defects or viruses. For... reaction rate constant (known as k OH ) with the hydroxyl radical (OH); (ii) the maximum incremental... with the OH radical in the air. This reaction is typically the first step in a series of chemical...
Hepatoprotective and antioxidant capacity of Melochia corchorifolia extracts.
Rao, B Ganga; Rao, Y Venkateswara; Rao, T Mallikarjuna
2013-07-01
To evaluate hepato protective and antioxidant capacity of Melochia corchorifolia (M. corchorifolia) aerial part extracts. Antioxidant activity was evaluated by using three free radicals (Superoxide, Hydroxyl and DPPH) and hepatoprotective activity was assessed against CCl4 induced liver intoxication in rats. The extracts produced concentration dependent percentage protection in decrease of serum enzymes and percentage inhibition on free radicals. Among all extracts methanol extract showed better activity with percentage protection of SGOT (78.98%), SGPT (79.65%), ALP (82.48%) and total bilirubin (80.0%) levels against CCl4 liver intoxication and also methanolic extract showed better activity with IC50 values on superoxide, hydroxyl and DPPH radicals were 127 μ g, 240 μ g and 179 μ g. From the results obtained during the study it could be concluded that M. corchorifolia aerial part extracts have antioxidant and hepatoprotective components. Further study is necessary for isolation and characterization of bioactive molecules which are responsible for hepatoprotective and antioxidant activity. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Cohen, R. C.; Hazen, N. L.; Lapson, L. B.; Allen, N. T.; Hanisco, T. F.; Oliver, J. F.; Lanham, N. W.; Demusz, J. N.; Anderson, J. G.
1994-01-01
The odd-hydrogen radicals OH and HO2 are central to most of the gas-phase chemical transformations that occur in the atmosphere. Of particular interest is the role that these species play in controlling the concentration of stratospheric ozone. This paper describes an instrument that measures both of these species at volume mixing ratios below one part in 10(exp 14) in the upper troposphere and lower stratosphere. The hydroxyl radical (OH) is measured by laser induced fluorescence at 309 nm. Tunable UV light is used to pump OH to the first electric state near 282 nm. the laser light is produced by a high-repetition rate pulsed dye-laser powered with all solid-state pump lasers. HO2 is measured as OH after gas-phase titration with nitric oxide. Measurements aboard a NASA ER-2 aircraft demonstrate the capability of this instrument to perform reliably with very high signal-to-noise ratios (greater than 30) achieved in short integration times (less than 20 sec).
Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang
2007-09-01
Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.
Characterization and Neutralization of Recovered Lewisite Munitions
2006-12-01
chlorine being rated as 1.0.51 Oxidative Species Relative Oxidizing Strength* Fluorine 2.23 Hydroxyl Radical 2.06 Atomic Oxygen 1.78 Hydrogen...containing carbon-carbon double bonds, aldehyde groups or hydroxyl groups. As an electrophile , the permnanganate ion is strongly attracted to the electrons
Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study
NASA Astrophysics Data System (ADS)
Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.
2017-09-01
Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.
Adeleye, Abdulwasiu O; Ajiboye, Taofeek O; Iliasu, Ganiyat A; Abdussalam, Folakemi A; Balogun, Abdulazeez; Ojewuyi, Oluwayemisi B; Yakubu, Musa T
2014-08-01
This study investigated the effect of Dialium guineense pulp phenolic extract on aflatoxin B1 (AFB1)-induced oxidative imbalance in rat liver. Reactive oxygen species (ROS) scavenging potentials of free and bound phenolic extract of D. guineense (0.2-1.0 mg/mL) were investigated in vitro using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide ion (O2(-)), hydrogen peroxide (H2O2), hydroxyl radical, and ferric ion reducing system. In the in vivo study, 35 animals were randomized into seven groups of five rats each. Free and bound phenolic extract (1 mg/mL) produced 66.42% and 93.08%, 57.1% and 86.0%, 62.0% and 90.05%, and 60.11% and 72.37% scavenging effect on DPPH radical, O2(-) radical, H2O2, and hydroxyl radical, while ferric ion was significantly reduced. An AFB1-mediated decrease in the activities of ROS detoxifying enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose 6 phosphate dehydrogenase) was significantly attenuated (P<.05). AFB1-mediated elevation in the concentrations of oxidative stress biomarkers; malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl, and percentage DNA fragmentation were significantly lowered by D. guineense phenolic extract (P<.05). Overall, the in vitro and in vivo effects suggest that D. guineense phenolic extract elicited ROS scavenging and detoxification potentials, as well as the capability of preventing lipid peroxidation, protein oxidation, and DNA fragmentation.
Olugbami, J O; Gbadegesin, M A; Odunola, O A
2014-09-01
Plant-derived antioxidants with free radical scavenging activities can be relevant as chemopreventive agents against the numerous diseases associated with free radicals and reactive oxygen species. Some phytoconstituents possess antioxidant activities in biological systems. On this basis, we evaluated the antioxidant potential, and determined the total phenolic and flavonoid contents of the e thanol e xtract of the s tem bark of A nogeissus l eiocarpus [ EESAL ]. Antioxidant assays carried out include: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phosphomolybdate, β-carotene bleaching, ferric reducing, and hydroxyl radical scavenging activities. Results of DPPH assay showed no significant difference ( p < 0.001) between EESAL and butylated hydroxyanisole [BHA], while EESAL exhibited a significantly ( p < 0.001) higher activity than BHT [butylated hydroxytoluene]. Phosphomolybdate method recorded a total antioxidant capacity of 190.00 ± 70.53 µg butylated hydroxytoluene equivalents [BHTE]/mg dry extract, while β-carotene bleaching assay gave percent antioxidant activities of both EESAL and BHT as 81.46±1.62 and 80.90±1.39 respectively. Ferric reducing abilities of both EESAL and ascorbic acid increased in a concentration-dependent manner with EESAL displaying a significantly ( p < 0.001) higher reductive activity than vitamin C. EESAL displayed a significantly higher hydroxyl radical scavenging activity as compared with BHT at the lowest concentration with no significant difference at the highest concentration. Total phenolic and flavonoid contents of EESAL were obtained as 608.10 ± 2.12 µg GAE/mg and 78.96 ± 3.37 µg QE/mg respectively. Taken together, the free radical scavenging and antioxidant activity of EESAL is likely due to its high phenolic content with complementary effects of the flavonoid components.
Yang, Zhihui; Su, Rongkui; Luo, Shuang; Spinney, Richard; Cai, Meiqiang; Xiao, Ruiyang; Wei, Zongsu
2017-07-15
Hydroxyl radical ( • OH) and sulfate radical anion (SO 4 •- ) based advanced oxidation technologies (AOTs) are effective methods to treat trace organic contaminants (TrOCs) in engineered waters. Although both technologies result in the same overall removal of TrOCs, the mechanistic differences between these two radicals involved in the oxidation of TrOCs remain unclear. In this study, we experimentally examined the degradation kinetics of neutral ibuprofen (IBU), a representative TrOC, by • OH and SO 4 •- at pH3 in UV/H 2 O 2 and UV/persulfate systems, respectively. The second-order rate constants (k) of IBU with • OH and SO 4 •- were determined to be 3.43±0.06×10 9 and 1.66±0.12×10 9 M -1 s -1 , respectively. We also theoretically calculated the thermodynamic and kinetic behaviors for reactions of IBU with • OH and SO 4 •- using the density functional theory (DFT) M06-2X method with 6-311++G** basis set. The results revealed that H-atom abstraction is the most favorable pathway for both • OH and SO 4 •- , but due to the steric hindrance SO 4 •- exhibits significantly higher energy barriers than • OH. The theoretical calculations corroborate our experimental observation that SO 4 •- has a smaller k value than • OH in reacting with IBU. These comparative results are of fundamental and practical importance in understanding the electrophilic interactions between radicals and IBU molecules, and to help select preferred radical oxidation processes for optimal TrOCs removal in engineered waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Cherdkiatikul, Thiti; Suwanwong, Yaneenart
2014-07-01
Allophycocyanin and c-phycocyanin have been reported to be potent antioxidants. In this work, the genes encoding the apo-proteins of allophycocyanin α (ApcA), allophycocyanin β (ApcB), c-phycocyanin α (CpcA), and c-phycocyanin β (CpcB) from Spirulina platensis were cloned, and the recombinant proteins were produced in Escherichia coli to study their antioxidant effects. All four recombinant phycocyanins could be produced in the soluble form and purified to more than 97% purity. The results of radical scavenging assays showed that the Trolox equivalent values for peroxyl radical scavenging by the ApcA, ApcB, CpcA, and CpcB proteins were 1.81 ± 0.2 µM, 1.98 ± 0.22 µM, 0.95 ± 0.15 µM, and 1.49 ± 0.15 µM, respectively. The IC50 values for hydroxyl radical scavenging of ApcA, ApcB, CpcA, CpcB, and Trolox were 269 ± 9 µg/mL, 190 ± 5 µg/mL, 129 ± 8 µg/mL, 108 ± 4 µg/mL, and 195 ± 12 µg/mL, respectively. These results indicated that allophycocyanin exhibited higher activity than c-phycocyanin in scavenging peroxyl radicals, whereas c-phycocyanin exhibited higher activity than allophycocyanin in scavenging hydroxyl radicals. All of the apo-phycocyanin subunits possessed strong antioxidant activities and can be further developed and applied to the food and drug industries. However, the selection of the most useful antioxidant should depend on the type of targeted free radical to obtain the highest efficiency. © 2014 Society for Laboratory Automation and Screening.
Maiguma, Takayoshi; Kaji, Hiroaki; Makino, Kazutaka; Teshima, Daisuke
2009-07-01
Our study aimed to find more effective protective agents against mucosa toxicity induced by methotrexate and 5-fluorouracil. We focused on the relationship between oral mucositis and keratinocyte injury and examined methotrexate and 5-fluorouracil-induced cytotoxicity in normal human epidermal keratinocyte cell lines. Cell viability and superoxide radical activity were measured based on converting WST-1 (4-[3-(4-indophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzen disulfonate) to a water-soluble formazan dye. DNA synthesis by 5-bromo-2'-deoxyuridine incorporation was measured as an indirect parameter of cell proliferation. Allopurinol and amifostine were used as the radical scavengers. l-glutamine was used as a mucosa-protective agent. A cyclooxygenase inhibitor interrupting the production of hydroxyl radicals in the arachidonic acid cascade was also examined. 5-fluorouracil and methotrexate caused cytotoxicity due to the activation of intracellular superoxide radicals specifically on normal human epidermal keratinocytes. From the electron spin resonance study, it was found that allopurinol was a superoxide radical scavenger, while amifostine was hydroxyl radical scavenger. Allopurinol showed no effect on the cytotoxicity due to 5-fluorouracil and methotrexate. The cell injury induced by methotrexate was restored by amifostine. However, the cell injury induced by 5-fluorouracil was markedly recovered by a selective cyclooxygenase-1 inhibitor compared to amifostine. It was suggested that amifostine and cyclooxygenase-1 inhibitor could be useful protective agents against methotrexate and 5-fluorouracil chemotherapeutic toxicity. Additionally, this in vitro cell injury model using normal human epidermal keratinocytes may be useful for understanding the pathophysiology of oral mucositis induced by chemotherapeutic agents.
Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun
2014-03-01
Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.
Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.
Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J
2013-01-01
Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.
Space opportunities for tropospheric chemistry research
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Hoell, James M.; Mcneal, Robert J.
1986-01-01
The use of the Space Shuttle to measure tropospheric trace species is examined. Factors which affect the measurement of tropospheric trace species are discussed. The Academy of Sciences 1985 report categorized the trace species into levels: first-level gases include water vapor, O3, CO, and CH4, and the second-level gases are N2O, NO2, NH3, SO2, chlorofluoromethanes, and HCl. The effects of first-level gases on the earth's climate, the photochemistry/chemistry of the troposphere, and the photochemical/chemical production and destruction of the hydroxyl radical are studied; the distribution and magnitude of the hydroxyl radical in the troposphere are analyzed in terms of water vapor, O3, CO, and CH4.
Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke
2018-05-15
Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ji, Xiu-ling; Cheng, Jin-ping; Wang, Wen-hua; Qu, Li-ya; Zhao, Xiao-xiang; Zhuang, Hui-sheng
2006-10-01
Sprague-Dawley rats were reared by environmental mercury contaminated rice to survey the potential health risk of Wanshan mercury mining area. Electron spin resonance (ESR) was introduced to detect the species and the intensities of free radicals, using spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results showed that the mercury-contaminated rice significantly increased the levels of free radicals and MDA in rat brain at 7 days (p < 0.05). ESR spectrums showed that the principal spin adducts resulted from the trapping of alkyl free radical (alphaH = 22.7 x 10(-4)T +/- 1.6 x 10(-4)T, alphaN = 15.5 x 10(-4)T +/- 0.5 x 10(-4)T), and hydroxyl radical. Levels of free radicals and MDA increased slowly until after 90-day exposure period (83%, 100%). Element correlation analysis showed high correlations of mercury and selenium in the brain of rat fed with Wanshan rice, suggesting that the coexisting selenium in rice exhibited antagonistic effects on both mercury accumulation and toxicity. The slight increases of free radicals in rat brain at 7, 20 and 30-day exposure periods should be related with the scavenger effect of Se.
Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan
2016-12-01
Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension
NASA Astrophysics Data System (ADS)
Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.
2014-10-01
In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).
[Spectral analysis of transient species of quinoline degradation].
Wang, Shi-Long; Zhu, Da-Zhang; Sun, Xiao-Yu; Shi, Jun; Ni, Ya-Ming; Wang, Wen-Feng; Yao, Si-De
2006-08-01
Quinoline's degradation was studied by pulse radiolysis. It was found that hydrated electron, hydrogen radical, hydroxyl radical and SO4*- can react with quinoline. The absorption spectra of the transient species of quinoline were obtained, and related constants were determined, but it was found that the species of Br2*- and N3*- can't react with quinoline. The results give us some advices for studing the degradation of quinoline.
Preignition and Autoignition Behavior of the Xylene Isomers
2010-03-01
of the carbon-carbon bond at the carbon atom one removed from the radical site (Law, 2006). 10 ketohydroperoxide produces another hydroxyl radical...paraffin, naphthene , and aromatic content of jet fuel samples fairly well (Holley et al., 2007). A more detailed chemical speciation has been...an intermediate from toluene oxidation in the PFR facility. This also removes concern that phenol may have reacted during the quenching process, if
Gangwar, Mayank; Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B; Goel, R K; Nath, Gopal
2014-01-01
Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines.
Green, Amy M.; Barber, Victoria P.; Fang, Yi; ...
2017-11-06
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less
A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.
Utsumi, Hideo; Han, Youn-Hee; Ichikawa, Kazuhiro
2003-12-01
Hydroxyl (OH) radical is proposed as an important factor in the ozonation of water. In the present study, the enhancing effect of 3-chlorophenol on OH radical generation was mathematically evaluated using electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocity of DMPO-OH generation in ozonated water containing 3-chlorophenol was quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus which was controlled by home-made software. The initial velocity of DMPO-OH generation increased as a function of the concentration of ozone and the more effectively of 3-chlorophenol concentration. The relation among ozone concentration, amount of 3-chlorophenol and the initial velocity (nu(0)) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, nu(0) (10(-6)M/s)=[9.7 x [3-chlorophenol (10(-9)M)] + 0.0005]exp(57 x [ozone (10(-9)M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.99. The equation for the enhancing effect by 3-chlorophenol should provide useful information to optimize the condition in ozone treatment process of water containing phenolic pollutants.
Gautam, Manish Kumar; Sharma, Amit Kumar; Tripathi, Yamini B.; Goel, R. K.; Nath, Gopal
2014-01-01
Mallotus philippinensis is an important source of molecules with strong antioxidant activity widely used medicinal plant. Previous studies have highlighted their anticestodal, antibacterial, wound healing activities, and so forth. So, present investigation was designed to evaluate the total antioxidant activity and radical scavenging effect of 50% ethanol fruit glandular hair extract (MPE) and its role on Human Erythrocytes. MPE was tested for phytochemical test followed by its HPLC analysis. Standard antioxidant assays like DPPH, ABTS, hydroxyl, superoxide radical, nitric oxide, and lipid peroxidation assay were determined along with total phenolic and flavonoids content. Results showed that MPE contains the presence of various phytochemicals, with high total phenolic and flavonoid content. HPLC analysis showed the presence of rottlerin, a polyphenolic compound in a very rich quantity. MPE exhibits significant strong scavenging activity on DPPH and ABTS assay. Reducing power showed dose dependent increase in concentration absorption compared to standard, Quercetin. Superoxide, hydroxyl radical, lipid peroxidation, nitric oxide assay showed a comparable scavenging activity compared to its standard. Our finding further provides evidence that Mallotus fruit extract is a potential natural source of antioxidants which have a protective role on human Erythrocytes exhibiting minimum hemolytic activity and this justified its uses in folklore medicines. PMID:25525615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Amy M.; Barber, Victoria P.; Fang, Yi
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less
NASA Astrophysics Data System (ADS)
Karamah, E. F.; Leonita, S.; Bismo, S.
2018-01-01
Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC
Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie
2018-01-24
The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.
Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I
2017-11-21
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.
Green, Amy M.; Barber, Victoria P.; Fang, Yi; Klippenstein, Stephen J.; Lester, Marsha I.
2017-01-01
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50. PMID:29109292
Antioxidant and Toxicity Studies of 50% Methanolic Extract of Orthosiphon stamineus Benth
Lim, Chung Pin; Fung Ang, Lee; Por, Lip Yee; Wong, Siew Tung; Asmawi, Mohd. Zaini
2013-01-01
The present study evaluated the antioxidant activity and potential toxicity of 50% methanolic extract of Orthosiphon stamineus (Lamiaceae) leaves (MEOS) after acute and subchronic administration in rats. Superoxide radical scavenging, hydroxyl radical scavenging, and ferrous ion chelating methods were used to evaluate the antioxidant properties of the extract. In acute toxicity study, single dose of MEOS, 5000 mg/kg, was administered to rats by oral gavage, and the treated rats were monitored for 14 days. While in the subchronic toxicity study, MEOS was administered orally, at doses of 1250, 2500, and 5000 mg/kg/day for 28 days. From the results, MEOS showed good superoxide radical scavenging, hydroxyl radical scavenging, ferrous ion chelating, and antilipid peroxidation activities. There was no mortality detected or any signs of toxicity in acute and subchronic toxicity studies. Furthermore, there was no significant difference in bodyweight, relative organ weight, and haematological and biochemical parameters between both male and female treated rats in any doses tested. No abnormality of internal organs was observed between treatment and control groups. The oral lethal dose determined was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of MEOS for both male and female rats is considered to be 5000 mg/kg per day. PMID:24490155
Membrane damage effect of therapeutic ultrasound on Ehrlich ascitic tumor cells.
Hao, Qiao; Liu, Quanhong; Wang, Xiaobing; Wang, Pan; Li, Tao; Tong, Wan Yan
2009-02-01
The biologic effects and the underlying mechanisms of Ehrlich ascitic tumor (EAT) cells induced by ultrasound were investigated in this study. Cells were subjected to ultrasonic irradiation with a frequency of 2.17 MHz and an intensity of 3 W/cm(2) for variable periods of time. Trypan blue exclusion was used to detect the integrity of cellular membrane; the membrane permeability was investigated by the incorporation of fluorescein isothiocyanate dextran during ultrasound exposure; and the cell membrane ultrastructure changes were observed under a scanning electron microscope. The potential mechanism was estimated from the generation of hydroxyl radicals, the lipid peroxidation levels, and intracellular reactive oxygen radicals production. The cell membrane damage effects induced by ultrasound increased with a prolonged exposure time; the fluorescent rates of the cells irradiated with ultrasound for 30 and 60 seconds were 11.46% and 18.50%, respectively; the amount of hydroxyl radicals in 30 (26.10 U/mL) and 60 seconds (28.47 U/mL) were significantly enhanced, compared with the control group (24.44 U/mL); then, the level of lipid peroxidation was also changed from 0.27 to 0.54 (30 seconds) and 1.21 nmol/mL (60 seconds). Shear forces and free radicals produced by acoustic cavitation may play important roles in these actions.
Tokdemir, Sibel; Nelson, William H
2005-06-01
Three radical species were detected in an EPR/ENDOR study of X-irradiated hypoxanthine.HCl.H2O single crystals at room temperature: RI was identified as the product of net H addition to C8, RII was identified as the product of net H addition to C2, and RIII was identified as the product of OH addition to C8. The observed set of radicals was the same for room-temperature irradiation as for irradiation at 10 K followed by warming the crystals to room temperature; however, the C2 H-addition and C8 OH-addition radicals were not detectable after storage of the crystals for about 2 months at room temperature. Use of selectively deuterated crystals permitted unique assignment of the observed hyperfine couplings, and results of density functional theory calculations on each of the radical structures were consistent with the experimental results. Comparison of these experimental results with others from previous crystal-based systems and model system computations provides insight into the mechanisms by which the biologically important purine C8 hydroxyl addition products are formed. The evidence from solid systems supports the mechanism of net water addition to one-electron oxidized purine bases and demonstrates the importance of a facial approach between the reactants.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina
2011-01-01
Background Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Methods Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. Results These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS.+. Conclusion The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. PMID:22132863
NASA Astrophysics Data System (ADS)
Sato, Shingo; Tsunoda, Minoru; Suzuki, Minoru; Kutsuna, Masahiro; Takido-uchi, Kiyomi; Shindo, Mitsuru; Mizuguchi, Hitoshi; Obara, Heitaro; Ohya, Hiroaki
2009-01-01
Various hybrid compounds comprised of two types of nitroxide radicals and either a pentamethine (Cy5) or trimethine cyanine (Cy3) were synthesized. The nitroxide radicals were linked either via an ester-bond to one or two N-alkyl carboxyl-terminated groups of Cy5, or via two amido-bonds (aminocarbonyl or carbonylamino group) to the 5-position of the indolenine moieties of Cy5 and Cy3. Changes in fluorescence and ESR intensities of the hybrid compounds were measured before and after addition of Na ascorbate in PBS (pH 7.0) to reduce the radicals. Among the hybrid compounds synthesized, those that linked the nitroxide radicals via an aminocarbonyl residue at the 5-position of the indolenine moieties on Cy5 and Cy3 exhibited a 1.8- and 5.1-fold increase in fluorescence intensity with the reduction of the nitroxide segment by the addition of Na ascorbate, respectively. In contrast, fluorescence intensity was not enhanced in the other hybrid compounds. Thus, the hybrid compounds which exhibited an increase in fluorescent intensity with radical reduction can be used in the quantitative measurement of reducing species such as Fe 2+ and ascorbic acid, and hydroxyl radicals. Because these hybrid compounds have the advantage of fluorescing at longer wavelengths—661 (Cy5) or 568 (Cy3) nm, respectively, they can be used to measure radical-reducing species or radicals either in solution or in vivo.
Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents.
Park, Seong-Cheol; Kim, Nam-Hong; Yang, Wonseok; Nah, Jae-Woon; Jang, Mi-Kyeong; Lee, Dongwon
2016-01-10
Reactive oxygen species (ROS) produced by host phagocytes exert antibacterial action against a variety of pathogens and ROS-induced oxidative stress is the governing mechanism for the antibacterial activity of major bactericidal antibiotics. In particular, hydroxyl radical is a strong and nonselective oxidant which can damage biomolecules such as DNA, proteins and lipids. Ferrous ion is known to convert mild oxidant hydrogen peroxide (H2O2) into highly reactive and toxic hydroxyl radicals, referred to as Fenton reaction. Herein, we report a new class of antibacterial agents based on Fenton reaction-performing nanostructures, composed of H2O2-generating polymer (PCAE) and iron-containing ferrocene. Amphiphilic PCAE was designed to incorporate H2O2-generating cinnamaldehyde through acid-cleavable linkages and self-assemble to form thermodynamically stable micelles which could encapsulate ferrocene in their hydrophobic core. All the experiments in vitro display that ferrocene-loaded PCAE micelles produce hydroxyl radicals to kill Escherichia coli and Pseudomonas aeruginosa through membrane damages. Intraperitoneally injected ferrocene-loaded PCAE micelles significantly reduced the lung damages and therefore increased the survival rate of mice infected with drug resistant P. aeruginosa. Given their potent antibacterial activity, ferrocene-loaded PCAE micelles hold great potential as a new class of ROS-manipulating antibacterial agents. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Willems, Gert; Benedikt, Jan; von Keudell, Achim
2016-09-01
A thorough understanding and good control of produced neutral and charged species by cold atmospheric plasmas is essential for potential environmental and/or bio-medical applications. In this study we use the COST reference micro plasma jet (µ-APPJ), which is a radio-frequency capacitive coupled plasma source with 1 mm electrode distance, which has been operated in helium-water vapour mixture and has been studied as a potential source of hydroxyl radicals and hydrogen peroxide molecules. The water vapour concentration was up to 1.2%. Molecular Beam mass spectrometry is used as diagnostic tool. An absolute calibration of hydrogen peroxide was conducted using a double bubbler concept, because the ionization cross section for hydrogen peroxide is not available. Additionally the effluent chemistry was investigated by use of a 0D and 2D model. Absolute densities of hydrogen peroxide and hydroxyl radicals from atmospheric plasma will be presented. Their dependency on water vapour concentration in the carrier gas as well as distance to target have been investigated. The measured density is between 5E-13 cm-3 (2.4ppm) and 1.5E-14 cm-3 (7.2ppm) for both hydrogen peroxide molecules and hydroxyl radicals. The achieved results are in good agreement with other experiments.
Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.
2015-01-01
Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570
Li, Junting; Zhao, Qi; Tang, Yanli
2016-06-13
We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.
Li, Qing; Sun, Xueqi; Gu, Guodong
2018-01-01
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains. PMID:29597269
Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong
2018-03-28
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 < 0.01 mg mL -1 ) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
2012-01-01
Background Sonchus asper (SA) is traditionally used for the treatment of various ailments associated with liver, lungs and kidneys. This study was aimed to investigate the therapeutic potential of nonpolar (hexane, SAHE; ethyl acetate, SAEE and chloroform, SACE) and polar (methanol, SAME) crude extracts of the whole plant. Methods To achieve these goals, several parameters including free-radical (DPPH•, ABTS•+, H2O2 and •OH) scavenging, iron chelating activity, scavenging of superoxide radicals, total flavonoids and total phenolic content (TPC) were examined. Results The SA extracts presented a remarkable capacity to scavenge all the tested reactive species with IC50 values being found at the μg ⁄ ml level. The SAME was shown to have the highest TPCs while lowest IC50 values for the DPPH•, ABTS•+ radical scavenging capacities and iron chelating scavenging efficiency, moreover, SAME had best activities in scavenging of superoxide radicals and hydrogen peroxide as well as potently scavenged the hydroxyl radicals. Conclusion These results suggest the potential of S. asper as a medicine against free-radical-associated oxidative damage. PMID:22305477
Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego
2014-01-01
(+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics. PMID:24705541
Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego
2014-01-01
(+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about the mechanism of inactivation by bactericidal antibiotics.
Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting
Kiselar, Janna G.; Chance, Mark R.
2010-01-01
Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposures of proteins to a “white” x-ray beam for milliseconds provide sufficient oxidative modifications to surface amino acid side chains that can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular sub-domains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal to noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis driven structural mass spectrometry experiments. PMID:20812376
Determining the local origin of hydroxyl radical generation during phacoemulsification.
Aust, Steven D; Terry, Scott; Hebdon, Thomas; Gunderson, Broc; Terry, Michael; Dimalanta, Ramon
2011-06-01
To determine the local origin of hydroxyl radicals during phacoemulsification using an ultrasonic phacoemulsification device that includes longitudinal and torsional modalities. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were conducted using the Infiniti Vision System and Ozil handpiece. Hydroxyl radical concentrations during longitudinal and torsional phacoemulsification were quantitated as malondialdehyde (MDA) determined spectrophotometrically using the deoxyribose assay. The difference between the total concentration found in the aspirated solution at steady-state concentrations and the pre-aspirate levels deductively determined the concentration of MDA formed along the interior of the sonicating tip. The time to reach 50% of steady state as a function of reaction vessel volume was determined. The mean maximum for torsional ultrasound at 100% amplitude was 7.70 nM ± 0.38 (SD), 91.1% of which was generated outside the tip. During longitudinal ultrasound at 100% power, MDA concentration in the aspirated solution was 29.5 ± 0.3 nM, 71.6% of which was generated outside the tip. The time (seconds) to reach 50% of maximum for longitudinal ultrasound using 5 mL, 10 mL, and 20 mL reaction vessels was 12.6 ± 1.5, 21.0 ± 1.5, and 25.3 ± 3.4, respectively. Although a significantly greater proportion of the hydroxyl radicals generated during ultrasound modality were formed outside the phaco tip (91.1% torsional; 71.6% longitudinal), torsional ultrasound generated only about one-fourth the amount of MDA as longitudinal ultrasound in total and about one-third that generated outside the tip (7.02 nM versus 21.1 nM). No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.
Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4 H 6 O 6 ) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysismore » in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4 H 4 O 6 ) and three C 3 fragmentation products (C 3 H 4 O 4 , C 3 H 2 O 4 , and C 3 H 2 O 5 ). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4 H 4 O 6 ), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C ), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less
Tachikawa, Mariko; Yamanaka, Kenzo
2014-11-01
Synergistic disinfection and removal of biofilms by ozone (O3) water in combination with hydrogen peroxide (H2O2) solution was studied by determining disinfection rates and observing changes of the biofilm structure in situ by confocal laser scanning microscopy (CLSM) using an established biofilm of Pseudomonas fluorescence. The sequential treatment with O3, 1.0-1.7 mg/L, followed by H2O2, 0.8-1.1%, showed synergistic disinfection effects, while the reversed treatment, first H2O2 followed by O3, showed only an additive effect. The decrease of synergistic disinfection effect by addition of methanol (CH3OH), a scavenger of hydroxyl radical (OH), into the H2O2 solution suggested generation of hydroxyl radicals on or in the biofilm by the sequential treatment with O3 followed by H2O2. The primary treatment with O3 increased disinfection rates of H2O2 in the secondary treatment, and the increase of O3 concentration enhanced the rates. The cold temperature of O3 water (14 °C and 8 °C) increased the synergistic effect, suggesting the increase of O3 adsorption and hydroxyl radical generation in the biofilm. CLSM observation showed that the sequential treatment, first with O3 followed by H2O2, loosened the cell connections and thinned the extracellular polysaccharides (EPS) in the biofilm. The hydroxyl radical generation in the biofilm may affect the EPS and biofilm structure and may induce effective disinfection with H2O2. This sequential treatment method may suggest a new practical procedure for disinfection and removal of biofilms by inorganic oxidants such as O3 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hara, Shuichi; Kobayashi, Masamune; Kuriiwa, Fumi; Mukai, Toshiji; Mizukami, Hajime
2012-03-15
Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac. Copyright © 2012 Elsevier Inc. All rights reserved.
Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film
NASA Technical Reports Server (NTRS)
Long, E. R., Jr.; Long, S. A. T.
1985-01-01
The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.
Isoprene Peroxy Radical Dynamics.
Teng, Alexander P; Crounse, John D; Wennberg, Paul O
2017-04-19
Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C 4 or C 1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O 2 ) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O 2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ bimolecular ). At τ bimolecular ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ bimolecular > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C 4 is estimated to be ∼4 s -1 at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C 4 for typical atmospheric conditions (τ bimolecular = 100 s and T = 25 C). In contrast, unimolecular chemistry following OH addition at C 1 is slower and less important.
Antioxidant activities of Vaccinium uliginosum L. extract and its active components.
Kim, Young-Hee; Bang, Chae-Young; Won, Eun-Kyung; Kim, Jong-Pyung; Choung, Se-Young
2009-08-01
Vaccinium uliginosum L. (also known as bog bilberry) is a low-growing deciduous shrub classified in the Ericaceae family of plants, which includes numerous Vaccinium berries, blueberries, and cranberries. Berries of the Ericaceae family are known to contain organic acids, vitamins, glycosides, and anthocyanins and have been reported to have antioxidant activity. In order to identify the antioxidative principles of V. uliginosum, we separated water extracts into polyphenol, anthocyanin-rich (pigment), and sugar/acid fractions by using ethyl acetate, acidic methanol (MeOH), and 0.01 N HCl. Antioxidant activities were assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide radical, and hydroxyl radical assays. The crude extract and fractions containing polyphenol and pigment exhibited the greatest antioxidant activities with 50% inhibitory concentration (IC(50)) values of 85.8 microg/mL, 33.2 microg/mL, and 16.7 microg/mL, respectively, for the DPPH assay and 48.1 microg/mL, 83.8 microg/mL, and 51.9 microg/mL for the nonenzymatic superoxide radical assay. The fractions containing polyphenol, pigment, and sugar/acid significantly inhibited xanthine oxidase. To investigate the functional compounds from the active fractions, we purified the polyphenol fraction and separated the compounds by using chromatographic techniques. The crude extract was dissolved in MeOH and further purified by reversed-phase high-performance liquid chromatography (HPLC) using MeOH-water (35:65 vol/vol) (with 0.04% trifluoroacetic acid) to obtain VU-EA-1 (16.6 mg), VU-EA-2 (8.5 mg), VU-EA-3 (19.8 mg), VU-EA-4 (12.8 mg), VU-EA-5 (6.5 mg), and VU-EA-6 (23.5 mg). The MeOH-washed fraction from the HPLC was concentrated and purified by reversed-phase HPLC using MeOH-water (50:50 vol/vol) to give VU-EA-10 (12.4 mg). Antioxidant activity was assessed by DPPH, superoxide radical, and hydroxyl radical assays. The isolated compounds exhibited dose-dependent antioxidant activity with IC(50) values of 7.6 microg/mL (VU-EA-10) for the DPPH assay, 67.8 microg/mL (VU-EA-4) for the nonenzymatic superoxide radical assay, and 3.7 microg/mL (VU-EA-10) and 7.6 microg/ml (VU-EA-6) for the enzymatic superoxide radical assay and 30% inhibitory concentration values of 0.58 microg/mL (VU-EA-1), 0.57 microg/mL (VU-EA-5), and 0.70 microg/mL (VU-EA-6) for the hydroxyl radical assay. In conclusion, V. uliginosum had potent antioxidative activity, and flavonoids were isolated as the main active principles.
Niu, Ben; Zhang, Hao; Giblin, Daryl; Rempel, Don L; Gross, Michael L
2015-05-01
Fast photochemical oxidation of proteins (FPOP) employs laser photolysis of hydrogen peroxide to give OH radicals that label amino acid side-chains of proteins on the microsecond time scale. A method for quantitation of hydroxyl radicals after laser photolysis is of importance to FPOP because it establishes a means to adjust the yield of •OH, offers the opportunity of tunable modifications, and provides a basis for kinetic measurements. The initial concentration of OH radicals has yet to be measured experimentally. We report here an approach using isotope dilution gas chromatography/mass spectrometry (GC/MS) to determine quantitatively the initial •OH concentration (we found ~0.95 mM from 15 mM H2O2) from laser photolysis and to investigate the quenching efficiencies for various •OH scavengers.
NASA Astrophysics Data System (ADS)
Wang, Bing; Yang, Zewei; An, Hao; Zhai, Jianping; Li, Qin; Cui, Hao
2015-01-01
TiO2 was coated on the surface of hydroxylated fly ash cenospheres (FACs) by the sol-gel method. Platinum (Pt) was then deposited on these TiO2/FAC particles by a photoreduction method to form PTF photocatalyst. The photocatalytic activity of PTF for the degradation of methylene blue (MB) under visible-light irradiation was determined. The PTF sample that was calcined at 450 °C and had a Pt/TiO2 mass ratio of 1.5% exhibited the optimal photocatalytic activity for degradation of MB with a catalyst concentration of 3 g L-1. MB was photodecomposed by PTF in aqueous solution more effectively at alkali pH than at acidic pH, because more MB molecules were adsorbed on the surface of PTF under alkaline conditions than that under acidic. The effect of various inorganic anions (HCO3-, F-, SO42-, NO3-, and Cl-) on the photodegradation of MB by PTF was also investigated. Addition of anions with a concentration of 5 mM enhanced the photocatalytic efficiency of PTF because of the improved adsorption of MB. This effect weakened as the anion concentration was increased, which was attributed to the ability of the anions to scavenge hydroxyl radicals and holes. Our results indicated that the photodegradation of MB took place mainly on the catalyst surface. The generation of hydroxyl radicals in the photocatalytic reaction was measured by the fluorescence method. KI was used to determine the participation of holes in the photocatalytic reaction. Both hydroxyl radicals and valence-band holes were detected in the PTF system. Recycling tests revealed that calcination of the used PTF helped to regain its photocatalytic activity.
Indirect Estimation of Tropospheric and Stratospheric Hydroxyl Radical Concentration
NASA Astrophysics Data System (ADS)
Li, M.; Williams, J.
2017-12-01
Hydroxyl radical (OH) react with many gasous compounds in the atmosphere and is regarded as the cleanser of our atmosphere and affect human health, air quality and climate. Mean age of air, which means the average transit time since an air parcel is emitted from earth surface until sampled, is derived from SF6 based on aircraft observations in mid-latitude UTLS region. The domain loss of methyl chloride and methane is the removal by OH, thus using pseudo first order reaction the OH concentration is calculated against mean age. A tropospheric mean OH concentration is calculated in the range of (4 8)*10^5 molecules cm-3 and a stratospheric mean OH concentration is around (3 5)*10^5 molecules cm-3.
Carbon kinetic isotope effect in the oxidation of methane by the hydroxyl radical
NASA Technical Reports Server (NTRS)
Cantrell, Christopher A.; Shetter, Richard E.; Mcdaniel, Anthony H.; Calvert, Jack G.; Davidson, James A.
1990-01-01
The reaction of the hydroxyl radical (HO) with the stable carbon isotopes of methane has been studied as a function of temperature from 273 to 353 K. The measued ratio of the rate coefficients for reaction with (C-12)H4 relative to (C-13)H4 (k12/k13) was 1.0054 (+ or - 0.0009 at the 95 percent confidence interval), independent of temperature within the precision of the measurement, over the range studied. The precision of the present value is much improved over that of previous studies, and this result provides important constraints on the current understanding of the cycling of methane through the atmosphere through the use of carbon isotope measurements.
Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J.
1999-01-01
Oxidation reaction rate parameters for molecular ozone (O3) and hydroxyl (HO) radicals with a variety of hydrophobic organic acids (HOAs) isolated from different geographic locations were determined from batch ozonation studies. Rate parameter values, obtained under equivalent dissolved organic carbon concentrations in both the presence and absence of non-NOM HO radical scavengers, varied as a function of NOM structure. First-order rate constants for O3 consumption (k(O3)) averaged 8.8 x 10-3 s-1, ranging from 3.9 x 10-3 s-1 for a groundwater HOA to > 16 x 10-3 s-1 for river HOAs with large terrestrial carbon inputs. The average second-order rate constant (k(HO,DOC) between HO radicals and NOM was 3.6 x 108 l (mol C)-1 s-1; a mass of 12 g C per mole C was used in all calculations. Specific ultraviolet absorbance (SUVA) at 254 or 280 nm of the HOAs correlated well (r > 0.9) with O3 consumption rate parameters, implying that organic ??-electrons strongly and selectively influence oxidative reactivity. HO radical reactions with NOM were less selective, although correlation between k(HO,DOC) and SUVA existed. Other physical-chemical properties of NOM, such as aromatic and aliphatic carbon content from 13C-NMR spectroscopy, proved less sensitive for predicting oxidation reactivity than SUVA. The implication of this study is that the structural nature of NOM varies temporally and spatially in a water source, and both the nature and amount of NOM will influence oxidation rates.
NASA Astrophysics Data System (ADS)
Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.
2007-12-01
The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.
Cretu, Elena; Karonen, Maarit; Salminen, Juha-Pekka; Mircea, Cornelia; Trifan, Adriana; Charalambous, Christiana; Constantinou, Andreas I; Miron, Anca
2013-11-01
A crude hydromethanolic extract from Pinus brutia bark and its fractions (diethyl ether, ethyl acetate, n-butanol, and aqueous fractions) were studied with regard to their phenolic content and antioxidant activities. The total phenolics and proanthocyanidins in each extract were quantified by spectrophotometric methods; the polyphenolic profile was analyzed by RP-HPLC-DAD-ESI-MS. All extracts were tested with regard to their ability to scavenge free radicals (ABTS radical cation, superoxide and hydroxyl radicals), reduce ferric ions, and inhibit 15-lipoxygenase. P. brutia bark extracts had high phenolic contents (303.79±7.34-448.90±1.39 mg/g). Except diethyl ether extract, all other extracts contained proanthocyanidins ranging from 225.79±3.94 to 250.40±1.44 mg/g. Several polyphenols were identified by RP-HPLC-DAD-ESI-MS: taxifolin in diethyl ether extract, a taxifolin-O-hexoside, catechin, procyanidin dimers, and trimers in ethyl acetate extract. Except diethyl ether extract, all other extracts were effective scavengers of superoxide and hydroxyl radicals (EC₅₀=33.5±1.1-54.93±2.85 μg/mL and 0.47±0.06-0.6±0.0 mg/mL, respectively). All extracts had noticeable 15-lipoxygenase inhibitory effects (EC₅₀=22.47±0.75-34.43±2.25 μg/mL). We conclude that P. brutia bark is very promising for the dietary supplements industry due to its high free radical scavenging and 15-lipoxygenase inhibitory effects.
Hydroxyl free radical production during torsional phacoemulsification.
Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon
2010-12-01
To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Thompson, A. E.; Rudolph, J.; Huang, L.
2001-12-01
To interpret measurements of stable carbon isotope ratios of ambient NMHC, we need to understand the isotopic composition of the emissions, and the isotope fractionation associated with the removal of NMHC from the atmosphere. Oxidation by OH-radicals is by far the most important atmospheric process for removal of NMHC. In this presentation measurements of the kinetic isotope effects (KIEs) for the reactions of hydroxyl radicals with several C5-C8 alkanes, including cyclic, branched and straight-chain alkanes, as well as C6-C9 aromatics are presented. All KIEs are positive: compounds containing only 12C atoms react faster than 13C labelled compounds. KIEs for light n-alkanes are typically between 1.5-4‰ and are larger than mass dependent collision frequencies, deviating from the collision frequency as carbon number increases. For n-alkanes there is no statistically significant difference between the KIEs of structural isomers. KIEs for the reactions of light alkenes and aromatics with OH-radicals are considerably higher than for alkane reactions, ranging from 3-18‰ . The KIEs for the aromatic reactions can be described by a 33.3+/-2.0‰ fractionation for the addition of an OH-radical to the aromatic ring and an inverse dependency on the number of carbon atoms, added to the mass dependent collision frequency. There are indications for minor structure specific effects, however the deviations from the idealised inverse carbon number dependence is relatively small and the limited number of studied alkyl benzenes does not yet allow the identification of systematic dependencies.
Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu
2018-02-14
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Pulse radiolysis in model studies toward radiation processing
NASA Astrophysics Data System (ADS)
Von Sonntag, C.; Bothe, E.; Ulanski, P.; Deeble, D. J.
1995-02-01
Using the pulse radiolysis technique, the OH-radical-induced reactions of poly(vinyl alcohol) PVAL, poly(acrylic acid) PAA, poly(methacrylic acid) PMA, and hyaluronic acid have been investigated in dilute aqueous solution. The reactions of the free-radical intermediates were followed by UV-spectroscopy and low-angle laser light-scattering; the scission of the charged polymers was also monitored by conductometry. For more detailed product studies, model systems such as 2,4-dihydroxypentane (for PVAL) and 2,4-dimethyl glutaric acid (for PAA) was also investigated. With PVA, OH-radicals react predominantly by abstraction of an H-atom in α-position to the hydroxyl group (70%). The observed bimolecular decay rate constant of the PVAL-radicals decreases with time. This has been interpreted as being due to an initially fast decay of proximate radicals and a decrease of the probability of such encounters with time. Intramolecular crosslinking (loop formation) predominates at high doses per pulse. In the presence of O 2, peroxyl radicals are formed which in the case of the α-hydroxyperoxyl radicals can eliminate HO 2-radicals in competition with bimolecular decay processes which lead to a fragmentation of the polymer. In PAA, radicals both in α-position (characterized by an absorption near 300 nm) and in β-position to the carboxylate groups are formed in an approximately 1:2 ratio. The lifetime of the radicals increases with increasing electrolytic dissociation of the polymer. The β-radicals undergo a slow (intra- as well as intermolecular) H-abstraction yielding α-radicals, in competition to crosslinking and scission reactions. In PMA only β-radicals are formed. Their fragmentation has been followed by conductometry. In hyaluronic acid, considerable fragmeentation is observed even in the absence of oxygen which, in fact, has some protective effect against this process. Thus free-radical attack on this important biopolymer makes it especially vulnerable with respect to a reduction of its viscosity, and in rheumatic diseases this effect may be the reason for their painfulnes.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Han, Y H; Ichikawa, K; Utsumi, H
2004-01-01
Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.
Girgih, Abraham T; Chao, Dongfang; Lin, Lin; He, Rong; Jung, Stephanie; Aluko, Rotimi E
2015-12-01
Isolated pea protein (IPP) dispersions (1%, w/v) were pretreated with high pressure (HP) of 200, 400, or 600 MPa for 5 min at 24 °C or high temperature (HT) for 30 min at 100 °C prior to hydrolysis with 1% (w/w) Alcalase. HP pretreatment of IPP at 400 and 600 MPa levels led to significantly (P<0.05) improved (>40%) oxygen radical absorption capacity (ORAC) of hydrolysates. 2,2-Diphenyl-1-picrylhydrazyl, superoxide radical and hydroxyl radical scavenging activities of pea protein hydrolysates were also significantly (P<0.05) improved (25%, 20%, and 40%, respectively) by HP pretreatment of IPP. Protein hydrolysates from HT IPP showed no ORAC, superoxide or hydroxyl scavenging activity but had significantly (P<0.05) improved (80%) ferric reducing antioxidant power. The protein hydrolysates had weaker antioxidant properties than glutathione but overall, the HP pretreatment was superior to HT pretreatment in facilitating enzymatic release of antioxidant peptides from IPP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cao, Hui; Jia, Xueping; Shi, Jian; Xiao, Jianbo; Chen, Xiaoqing
2016-07-01
Dietary stilbenoids are associated with many benefits for human health, which depend on their bioavailability and bioaccessibility. The stilbenoid-human serum albumin (HSA) interactions are investigated to explore the structure-affinity relationship and influence on the stability, free radical scavenging activity and cell uptake of stilbenoids. The structure-affinity relationship of the stilbenoids-HSA interaction was found as: (1) the methoxylation enhanced the affinity, (2) an additional hydroxyl group increases the affinity and (3) the glycosylation significantly weakened the affinity. HSA obviously masked the free radical scavenging potential of stilbenoids. The stabilities of stilbenoids in different medium were determined as: HSA solution>human plasma>Dulbecco's modified Eagle's medium. It appears that the milk enhanced the cell uptake of stilbenoids with multi-hydroxyl groups and weakened the cell uptake of stilbenoids with methoxyl group on EA.hy 926 endothelial cells. The stilbenoids are hardly absorbed by human umbilical vein endothelial cells in the presence of milk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dong, Ya-Ru; Cheng, Shu-Jie; Qi, Guo-Hong; Yang, Zhi-Ping; Yin, Shi-Yu; Chen, Gui-Tang
2017-04-01
FVP is polysacchrides obtained from Flammulina velutipes. A polysacchride named FVP2 was isolated from FVP by DEAE cellulose-52 chromatography and Sephadex G-100 size-exclusion chromatography. FVP-Fe and FVP2-Fe were synthesized by neutralization of FeCl 3 carbohydrate solution. The antibacterial and antifungal activities of FVP, FVP2, FVP-Fe, FVP2-Fe were investigated and their antioxidant effects on hydroxyl, 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion, 2,2'-azobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, reducing power, inhibition of malondialdehyde (MDA) were assessed in vitro. The results suggested that FVP-Fe and FVP2-Fe significantly suppressed the growth of bacteria Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, and have relatively strong antioxidant activity to scavenge superoxide anion radical. In addition, FVP exhibited strong antioxidant activity to eliminate hydroxyl, DPPH, ABTS radicals, had high reducing power and inhibited the MDA production of health mice liver homogenate induced by auto-oxidation and Fe 2+ -H 2 O 2 system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xu; Xiong, Youling L; Sato, Hiroaki; Kumazawa, Yoshiyuki
2016-12-21
Differential oxidative modifications of myofibrillar protein (MP) by hydroxyl radicals generated in an enzymatic system with glucose oxidase (GluOx) in the presence of glucose/FeSO 4 versus a Fenton system (H 2 O 2 /FeSO 4 ) were investigated. Pork MP was modified at 4 °C and pH 6.25 with hydroxyl radicals produced from 1 mg/mL glucose in the presence of 80, 160, or 320 μg/mL GluOx and 10 μM FeSO 4 . Total sulfhydryl content, solubility, cross-linking pattern, and gelation properties of MP were measured. H 2 O 2 production proceeded linearly with the concentration of GluOx and increased with reaction time. GluOx- and H 2 O 2 -dose-dependent protein polymerization, evidenced by faded myosin heavy chain and actin in SDS-PAGE as well as significant decreases in sulfhydryls, coincided with protein solubility loss. Firmer and more elastic MP gels were produced by GluOx than by the Fenton system at comparable H 2 O 2 levels due to an altered radical reaction pathway.
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman
2016-01-01
Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903
Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat
2016-12-01
Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.
García Einschlag, Fernando S; Carlos, Luciano; Capparelli, Alberto L
2003-10-01
The rate constants for hydroxyl radical reaction toward a set of nitroaromatic substrates kS, have been measured at 25 degrees C using competition experiments in the UV/H2O2 process. For a given pair of substrates S1 and S2, the relative reactivity beta (defined as kS1/kS2) was calculated from the slope of the corresponding double logarithmic plot, i.e., of ln[S1] vs. ln[S2]. This method is more accurate and remained linear for larger conversions in comparison with the plots of ln[S1] and ln[S2] against time. The rate constants measured ranged from 0.33 to 8.6 x 10(9) M(-1)s(-1). A quantitative structure-reactivity relationship was found using the Hammett equation. Assuming sigma values to be additive, a value of -0.60 was obtained for the reaction constant rho. This value agrees with the high reactivity and the electrophilic nature of HO* radical.
NASA Astrophysics Data System (ADS)
Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.
2018-01-01
Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.
Laser-saturated fluorescence measurements in laminar sooting diffusion flames
NASA Technical Reports Server (NTRS)
Wey, Changlie
1993-01-01
The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.
New insights on dimethylaminoethanol (DMAE) features as a free radical scavenger.
Malanga, Gabriela; Aguiar, María Belen; Martinez, Hugo D; Puntarulo, Susana
2012-03-01
Recently, a number of synthetic drugs used in a variety of therapeutic indications have been reported to have antiaging effects. Among them, Dimethylaminoethanol (DMAE), an anologue of dietylaminoethanol, is a precursor of choline, which in turn allows the brain to optimize the production of acetylcholine that is a primary neurotransmitter involved in learning and memory. The data presented here includes new information on the ability of the compound to scavenge specific free radicals, assessed by Electron Spectroscopic Resonance (EPR), to further analyze the role of DMAE as an antioxidant. DMAE ability to directly react with hydroxyl, ascorbyl and lipid radicals was tested employing in vitro assays, and related to the supplemented dose of the compound.
Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C
2009-05-30
Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2005-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High Temperature Decomposition of Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Hu, Lianmei; Yu, Wenlan; Li, Ying; Tang, Zhaoxin
2014-01-01
The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities. PMID:24719856
Schopfer, Peter; Plachy, Claudia; Frahry, Gitta
2001-01-01
Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2′,7′-dichlorofluorescin to fluorescent 2′,7′-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens. PMID:11299341
Vacuum ultraviolet photoionization cross section of the hydroxyl radical.
Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio
2018-05-14
The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.
Chen, Peiying; Yong, Yangyang; Gu, Yifan; Wang, Zeliang; Zhang, Shizhu; Lu, Ling
2015-01-01
Polysaccharides from mushrooms including Pleurotus eryngii, P. ostreatus, P. nebrodensis, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, Ganoderma lucidum, and Hericium erinaceus were isolated by water extraction and alcohol precipitation. Our results suggest that all tested polysaccharides have the significant antioxidant capacities of scavenging free radicals (1,1-diphenyl-2-picrylhydrazyl and hydroxyl radicals). Among them, the H. erinaceus polysaccharide exhibits the highest 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity, whereas the L. edodes polysaccharide shows the strongest scavenging ability for hydroxyl radicals. Furthermore, using the MCF-7 breast cancer cell line and HeLa cells, all 8 selected polysaccharides are able to inhibit the proliferation of tumor cells, but the strength of inhibition varied depending on the mushroom species and the concentration used. Notably, G. lucidum polysaccharide shows the highest inhibition activity on MCF-7 cells. By comparison, H. erinaceus polysaccharide has the strongest inhibitory effect on HeLa cells. Moreover, high-performance liquid chromatography with a carbohydrate analysis column showed significant differences in polysaccharide components among these mushrooms. Thus our data suggest that the different species of mushrooms have the variable functions because of their own specific polysaccharide components. The 8 mushroom polysaccharides have the potential to be used as valuable functional food additives or sources of therapeutic agents for antioxidant and cancer treatments, especially polysaccharides from H. erinaceus, L. edodes, and G. lucidum.
Vacuum ultraviolet photoionization cross section of the hydroxyl radical
NASA Astrophysics Data System (ADS)
Dodson, Leah G.; Savee, John D.; Gozem, Samer; Shen, Linhan; Krylov, Anna I.; Taatjes, Craig A.; Osborn, David L.; Okumura, Mitchio
2018-05-01
The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O(1D) + H2O in a flow reactor in He at 8 Torr. The initial O(1D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O(3P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O(3P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O(3P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.
The preparation and antioxidant activity of glucosamine sulfate
NASA Astrophysics Data System (ADS)
Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng
2009-05-01
Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.
Air pollutants degrade floral scents and increase insect foraging times
NASA Astrophysics Data System (ADS)
Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.
2016-09-01
Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.
Lian, Lushi; Yao, Bo; Hou, Shaodong; Fang, Jingyun; Yan, Shuwen; Song, Weihua
2017-03-07
Advanced oxidation processes (AOPs), such as hydroxyl radical (HO • )- and sulfate radical (SO 4 •- )-mediated oxidation, are alternatives for the attenuation of pharmaceuticals and personal care products (PPCPs) in wastewater effluents. However, the kinetics of these reactions needs to be investigated. In this study, kinetic models for 15 PPCPs were built to predict the degradation of PPCPs in both HO • - and SO 4 •- -mediated oxidation. In the UV/H 2 O 2 process, a simplified kinetic model involving only steady state concentrations of HO • and its biomolecular reaction rate constants is suitable for predicting the removal of PPCPs, indicating the dominant role of HO • in the removal of PPCPs. In the UV/K 2 S 2 O 8 process, the calculated steady state concentrations of CO 3 •- and bromine radicals (Br • , Br 2 •- and BrCl •- ) were 600-fold and 1-2 orders of magnitude higher than the concentrations of SO 4 •- , respectively. The kinetic model, involving both SO 4 •- and CO 3 •- as reactive species, was more accurate for predicting the removal of the 9 PPCPs, except for salbutamol and nitroimidazoles. The steric and ionic effects of organic matter toward SO 4 •- could lead to overestimations of the removal efficiencies of the SO 4 •- -mediated oxidation of nitroimidazoles in wastewater effluents.
Antimutagenic and free radical scavenger effects of leaf extracts from Accacia salicina.
Boubaker, Jihed; Mansour, Hedi Ben; Ghedira, Kamel; Chekir-Ghedira, Leila
2011-12-01
Three extracts were prepared from the leaves of Accacia salicina; ethyl acetate (EA), chloroform (Chl) and petroleum ether (PE) extracts and was designed to examine antimutagenic, antioxidant potenty and oxidative DNA damage protecting activity. Antioxidant activity of A. salicina extracts was determined by the ability of each extract to protect against plasmid DNA strand scission induced by hydroxyl radicals. An assay for the ability of these extracts to prevent mutations induced by various oxidants in Salmonella typhimurium TA102 and TA 104 strains was conducted. In addition, nonenzymatic methods were employed to evaluate anti-oxidative effects of tested extracts. These extracts from leaf parts of A. salicina showed no mutagenicity either with or without the metabolic enzyme preparation (S9). The highest protections against methylmethanesulfonate induced mutagenicity were observed with all extracts and especially chloroform extract. This extract exhibited the highest inhibitiory level of the Ames response induced by the indirect mutagen 2- aminoanthracene. All extracts exhibited the highest ability to protect plasmid DNA against hydroxyl radicals induced DNA damages. The ethyl acetate (EA) and chloroform (Chl) extracts showed with high TEAC values radical of 0.95 and 0.81 mM respectively, against the ABTS(.+). The present study revealed the antimutagenic and antioxidant potenty of plant extract from Accacia salicina leaves. © 2011 Boubaker et al; licensee BioMed Central Ltd.
Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V
2008-05-21
Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.
Polyphenolic content and antioxidant activity of some wild Saudi Arabian Asteraceae plants.
Shahat, Abdelaaty A; Ibrahim, Abeer Y; Elsaid, Mansour S
2014-07-01
To study the antioxidant properties of crude extract of different Asteraceae plants. The antioxidant properties of six extracts were evaluated using different antioxidant tests, including free radical scavenging, reducing power, metal chelation, superoxide anion radical scavenging, total antioxidant capacity and inhibition of lipid peroxidation activities. Picris cyanocarpa (P. cyanocarpa) and Anthemis deserti (A. deserti) had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger while Achillia fragrantissima (A. fragrantissima) and Artemissia monosperma (A. monosperma) were the most efficient as ion chelator (100% at 100, 200 and 400 μg/mL) A. fragrantissima and Rhantarium appoposum (R. appoposum) showed 100% inhibition on peroxidation of linoleic acid emulsion at 200 and 400 μg/mL, while butylatedhydroxy toluene and ascorbic acid showed 100 and 95% inhibition percentage at 400 μg/mL, respectively. Those various antioxidant activities were compared to standard antioxidants such as butylated hydroxyl toluene and ascorbic acid. In most tests P. cyanocarpa and A. deserti had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.
Simandan, T; Sun, J; Dix, T A
1998-01-01
DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719
Antioxidant activity and oxidative stress protection of duck proteins hydrolysates in SK-N-SH cells.
Guo, Yuxing; Pan, Daodong; Wu, Zhen; Zhao, Chuanchuan; Cao, Jinxuan
2013-02-26
Studies have found that natural antioxidants, which are free-radical scavengers, can reduce the risk of diseases caused by free radicals. This work investigated the antioxidant properties of duck proteins hydrolysates. The free-radical scavenging function of CP-1 (M(r) > 10 kDa), CP-2 (5 kDa < M(r) < 10 kDa) and CP-3 (M(r) < 5 kDa), obtained through ultrafiltration and gel filtration were evaluated. The results showed that the lower molecular weight fraction exhibited a stronger free-radical scavenging ability. The highest free-radical scavenging activity was detected in the fraction of p4 purified from CP-3 using Sephadex G-15 column chromatography. The 50% inhibitory value (IC(50)) of p4 for scavenging radicals of superoxide, hydroxyl and 1,1-diphenyl-2-pycrylhydrazyl (DPPH) were, respectively, 0.97 mg mL(-1), 0.84 mg mL(-1) and 1.84 mg mL(-1). Furthermore, the p4 fraction at a concentration of 10 μg mL(-1) increased cell viability from 84.8% to 94% under antioxidative stress in neuroblastoma SK-N-SH cells.
Electrons initiate efficient formation of hydroperoxides from cysteine.
Gebicki, Janusz M
2016-09-01
Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the -SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.
Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.
Ko, F N; Cheng, Z J; Lin, C N; Teng, C M
1998-07-15
The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.
Pawar, Amol Ashok; Halivni, Shira; Waiskopf, Nir; Ben-Shahar, Yuval; Soreni-Harari, Michal; Bergbreiter, Sarah; Banin, Uri; Magdassi, Shlomo
2017-07-12
Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.
Hu, Yingmei; Bai, Yanhong; Yu, Hu; Zhang, Chunhong; Chen, Jierong
2013-09-01
In this paper, degradation of selected organophosphate pesticides (dichlorvos and dimethoate) in wastewater by dielectric barrier discharge plasma (DBD) was studied. DBD parameters, i.e. discharge powers and air-gap distances, differently affect their degradation efficiency. The results show that better degradation efficiency is obtained with a higher discharge power and a shorter air-gap distance. The effect of radical intervention degradation was also investigated by adding radical scavenger (tert-butyl alcohol) to the pesticide solution during the experiments. The result shows that the degradation efficiency is restrained in the presence of radical scavenger. It clearly demonstrates that hydroxyl radicals are most likely the main driver for degradation process. Moreover, the kinetics indicate that the disappearance rate of pesticides follows the first-order rate law when the initial concentration of the solution is low, but shifts to zero-order at a higher initial concentration.
Minimization of free radical damage by metal catalysis of multivitamin/multimineral supplements.
Rabovsky, Alexander B; Komarov, Andrei M; Ivie, Jeremy S; Buettner, Garry R
2010-11-23
Multivitamin/multimineral complexes are the most common dietary supplements. Unlike minerals in foods that are incorporated in bioorganic structures, minerals in dietary supplements are typically in an inorganic form. These minerals can catalyze the generation of free radicals, thereby oxidizing antioxidants during digestion. Here we examine the ability of a matrix consisting of an amino acid and non-digestible oligosaccharide (AAOS) to blunt metal-catalyzed oxidations. Monitoring of ascorbate radical generated by copper shows that ascorbate is oxidized more slowly with the AAOS matrix than with copper sulfate. Measurement of the rate of oxidation of ascorbic acid and Trolox® by catalytic metals confirmed the ability of AAOS to slow these oxidations. Similar results were observed with iron-catalyzed formation of hydroxyl radicals. When compared to traditional forms of minerals used in supplements, we conclude that the oxidative loss of antioxidants in solution at physiological pH is much slower when AAOS is present.
Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian
2016-04-01
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
Rodrigo-Moreno, Ana; Andrés-Colás, Nuria; Poschenrieder, Charlotte; Gunsé, Benet; Peñarrubia, Lola; Shabala, Sergey
2013-04-01
Transition metals such as copper can interact with ascorbate or hydrogen peroxide to form highly reactive hydroxyl radicals (OH(•) ), with numerous implications to membrane transport activity and cell metabolism. So far, such interaction was described for extracellular (apoplastic) space but not cytosol. Here, a range of advanced electrophysiological and imaging techniques were applied to Arabidopsis thaliana plants differing in their copper-transport activity: Col-0, high-affinity copper transporter COPT1-overexpressing (C1(OE) ) seedlings, and T-DNA COPT1 insertion mutant (copt1). Low Cu concentrations (10 µm) stimulated a dose-dependent Gd(3+) and verapamil sensitive net Ca(2+) influx in the root apex but not in mature zone. C1(OE) also showed a fivefold higher Cu-induced K(+) efflux at the root tip level compared with Col-0, and a reduction in basal peroxide accumulation at the root tip after copper exposure. Copper caused membrane disruptions of the root apex in C1(OE) seedlings but not in copt1 plants; this damage was prevented by pretreatment with Gd(3+) . Our results suggest that copper transport into cytosol in root apex results in hydroxyl radical generation at the cytosolic side, with a consequent regulation of plasma membrane OH(•) -sensitive Ca(2+) and K(+) transport systems. © 2012 Blackwell Publishing Ltd.
Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E
2009-12-30
The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.A.; Brasseur, G.P.; Zimmerman, P.R.
Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). With the average hydroxyl radical concentration fixed, the methane source term was computed as {approximately}623 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.3 years. The second model identified source regions for methane frommore » rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. This methane source distribution resulted in an estimate of the global total methane source of {approximately}611 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.5 years. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies. Using a recent measurement of the reaction rate of hydroxyl radical and methane leads to estimates of the global total methane source for SF1 of {approximately}524 Tg CH{sub 4} giving an atmospheric lifetime of {approximately}10.0 years and for SF2{approximately}514 Tg CH{sub 4} yielding a lifetime of {approximately}10.2 years.« less
NASA Astrophysics Data System (ADS)
Bhavani, R.; Vijayalakshmi, R.; Venkat Kumar, S.; Rajeshkumar, S.
2017-11-01
In this present investigation we analysed the antimicrobial and antioxidant activities of ethanol extract of Myristica dactyloides. The antimicrobial activity of the ethanol extract was evaluated by the agar well diffusion method against of E. coli, Klebsiella pneumonia, Streptococcus sp, and Staphylococcus aureus at different concentrations. The antibacterial activity showed the result in a dose-dependent manner. The free radical scavenging was evaluated against DPPH, hydroxyl, and nitric oxide radicals. In DPPH, hydroxyl and nitric oxide scavenging assay showed the IC 50 value of the extract was found to be 20 μg/ml, 48.25 and 30 μg/ml, respectively. The plant can be considered as promising antioxidant properties with high potential value for drug development for various diseases.
Mortelette, H; Moisan, C; Sébert, P; Belhomme, M; Amérand, A
2010-08-01
Mitochondrion is the main production site for reactive oxygen species (ROS). In endotherms, the existence of a positive relationship between ROS production and metabolic rate is acknowledged. But, little is known about ectotherms, especially fish, with a metabolic rate dependent on the environmental temperature. The maximal oxygen consumption and the production of highly reactive hydroxyl radicals by permeabilized red muscles of yellow and silver eels and trouts were measured concomitantly and compared to those of rats chosen for their comparable body mass, but different metabolic rate. The positive correlation found in fish between the metabolic rate and the ROS production showed a shift with respect to mammals. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.
He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong
2016-01-01
Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity. PMID:27916796
He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong
2016-11-28
Four seaweed polysaccharides were extracted from Sarcodia ceylonensis , Ulva lactuca L., Gracilaria lemaneiformis , and Durvillaea antarctica , respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box-Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight ( M W ) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight ( M W ) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays-2,2-azino -bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power-and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The reducing power of DAP was relatively more pronounced than that of the three other polysaccharides. However, the nitrite scavenging activities of the four seaweed polysaccharides were weaker than other antioxidant activity (ABTS), hydroxyl radical scavenging capacity, and reducing power. In addition, GLP exhibited lower activities than the other three samples in all of the tests for the antioxidant activity.
Boonrattanakij, Nonglak; Joysampao, Atsawin; Pobsuktanasub, Tuksinaiya; Anotai, Jin; Ruangchainikom, Chalermchai
2017-12-15
Phenol-production wastewater is difficult to treat biologically by aerobic processes to meet the effluent standard COD of 120 mg L -1 because it contains several highly refractory aromatic pollutants, particularly dimethyl phenyl carbinol. Pretreatment revealed that dimethyl phenyl carbinol was slowly oxidized by molecular ozone; however, it readily reacted with hydroxyl radicals to yield acetophenone as a primary product. Acetophenone was further oxidized, first through five different pathways to form benzoic acid, phenyl glyoxalic acid, 4-4'-diacetyl biphenyl, and several hydroxylated aromatic compounds, and later to aliphatic carboxylic acids via ring cleavage. Regardless of system configuration (homogeneous vs heterogeneous), operating mode (batch vs continuous), and chemical concentration, the average intrinsic rate constants were 1.05 × 10 10 and 9.29 × 10 9 M -1 s -1 for dimethyl phenyl carbinol and acetophenone, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu
2014-01-10
In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be responsible for the good clinical effects of APL on T2MD through targeting oxidative stress and postprandial hyperglycaemia. So APL may be good sources of natural antioxidants and α-glucosidase inhibitors exhibiting remarkable potential value for the therapy of T2DM.
Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey
2018-01-01
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers.
Barik, Atanu; Singh, Beena G; Sharma, Asmita; Jain, Vimal K; Priyadarsini, K Indira
2014-11-06
One electron redox reaction of two asymmetric 3,5-dimethyl pyrazole derivatives of selenoethers attached to ethanoic acid (DPSeEA) and propionic acid (DPSePA) were studied by pulse radiolysis technique using transient absorption detection. The reaction of the hydroxyl ((•)OH) radical with DPSeEA or DPSePA at pH 7 produced transients absorbing at 500 nm and at 300 nm, respectively. The absorbance at 500 nm increased with increasing parent concentration indicating formation of dimer radical cations. From the absorbance changes, the equilibrium constants for the formation of dimer radical cation of DPSeEA and DPSePA were estimated as 2020 and 1608 M(-1), respectively. The rate constants at pH 7 for the reaction of the (•)OH radical with DPSeEA and DPSePA were determined to be 9.6 × 10(9) and 1.4 × 10(10) M(-1) s(-1), respectively. The dimer radical cation of DPSeEA and DPSePA decayed by first order kinetics with a rate constant of 2.8 × 10(4) and 5.5 × 10(3) s(-1), respectively. The yield of radical cations of DPSeEA and DPSePA were estimated from the secondary electron transfer reaction, which corresponds to 38% and 48% of (•)OH radical yield, respectively. Some fraction of monomer radical cation undergoes decarboxylation reaction, and the yield of decarboxylation was 25% and 20% for DPSeEA and DPSePA, respectively. These results have implication in understanding their antioxidant activity. The reaction of trichloromethyl peroxyl radical, glutathione, and ascorbic acid further support their antioxidant behavior.
Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.
Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z
2018-05-01
Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ambient Particulate Matter Induces Oxidative Dna Damage in Lung Epithelial Cells.
Knaapen, A M; Schins, R P; Steinfartz, Y; Doris, H; Dunemann, L; Borm, P J
2000-01-01
Although epidemiological studies have established a correlation between PMIO levels and acute cardiovascular and respiratory complications, hardly any data is available on possible chronic effects such as cancer. The purpose of this study was to investigate the production of free radicals by ambient particulate matter (TSP) and to link these data to oxidative DNA damage in lung epithelial cells. In line with previous findings on PMIO, supercoiled plasmid DNA was depleted by JSP as well as JSP supernatant (p < .001), and this effect was reduced in the presence of mannitol (5 mM). Using electron spin resonance (ESR) and the spin trap dimethyl-1-pyrroline N-oxide (DMPO) we were able to show that hydroxy/radicals ('OH) are formed from both JSP and JSP supernatant. The DMPO-OH signal was completely abrogated when TSP was preincubated with deferoxamine (5 mM), showing the importance of iron and other soluble metals in this process. Atomic absorption spectroscopy (AAS) analysis of the TSP supernatant showed the presence of soluble Fe, V, and Ni (respectively 253.0, 14.7, and 76.0 µ/g insoluble TSP). To investigate the biological significance of OH formation by TSP, 8-hydroxydeoxyguanosine (8-oxodC) was measured in a rat type II cell line by immunocytochemistry. The formation of this hydroxyl-radical-specific DNA adduct was increased twofold (p < .01) after incubation with TSP supernatants, and this effect was inhibited by deferoxamine (p < .01). In summary, our results provide direct evidence that ambient particulate matter generates hydroxyI radicals in acellular systems. Furthermore, we showed that these particulates induce the hydroxyl-radical-specific DNA lesion 8-oxodC in lung target cells via an iron-mediated mechanism.
Anitha, Thirugnanasambandhar Sivasubramanian; Muralidharan, Arumugam Ramachandran; Annadurai, Thangaraj; Jesudasan, Christdas Arul Nelson; Thomas, Philip Aloysius
2013-01-01
Purpose To investigate the possible free radical-scavenging activity of an extract of Cineraria maritima on selenite-induced cataractous lenses in Wistar rat pups. Methods In the present study, Wistar rat pups were divided into three experimental groups. On P10, Group I (control) rat pups received an intraperitoneal injection of 0.89% saline. Rats in groups II (selenite-challenged, untreated) and III (selenite-challenged, C. maritima treated) received a subcutaneous injection of sodium selenite (19 μmol/kg bodyweight); Group III rat pups also received an intraperitoneal injection of the extract of C. maritima (350 mg/kg bodyweight) once daily P9–14. Both eyes of each pup were examined from P16 until P30. Cytochemical localization of nitroblue tetrazolium salts and generation of superoxide, hydroxyl, and nitric oxide levels were measured. The expression of the inducible nitric oxide synthase gene was evaluated with reverse transcription-PCR. Immunoblot analysis was also performed to confirm the differential expression of the inducible nitric oxide synthase protein. Results Subcutaneous injection of sodium selenite led to severe oxidative damage in the lenticular tissues, shown by increased formation of formazan crystals, elevated generation of superoxide, hydroxyl, and nitric oxide radicals, and elevated inducible nitric oxide synthase gene and protein expression that possibly contributed to the opacification of the lens and thus cataract formation. When rat pups were treated with intraperitoneal administration of the extract of C. maritima, the generation of free radicals as well as the messenger ribonucleic acid and protein expression of inducible nitric oxide synthase were maintained at near normal levels. Conclusions The data generated by this study suggest that an ethanolic extract of C. maritima possibly prevents cataractogenesis in a rat model by minimizing free radical generation. PMID:24357923
Kumar, Manish; Chandel, Madhu; Kaur, Paramjeet; Pandit, Kritika; Kaur, Varinder; Kaur, Sandeep; Kaur, Satwinderjeet
2016-01-01
From the centuries, Lawsonia inermis L. (Henna) is utilized in traditional health care system as a medicinal and cosmetic agent. The present study was intended to assess antiradical, DNA protective and antiproliferative activity of water extract of Lawsonia inermis L. leaves (W-LI). Antioxidant activity was estimated using various in vitro assays such as DPPH, ABTS, superoxide anion radical scavenging, FRAP, deoxyribose degradation and DNA protection assay. Growth inhibitory effects of W-LI were assessed using MTT assay against different cancer cell lines viz. HeLa, MCF-7, A549, C6 and COLO-205. From the results of antioxidant assays, it was found that W-LI quenched DPPH and ABTS cation radicals with IC50 value of 352.77 µg/ml and 380.87 µg/ml respectively. It demonstrated hydroxyl radical scavenging potential of 59.75 % at highest test dose of 1000 µg/ml in deoxyribose degradation assay. The results of FRAP assay showed that W-LI also possesses significant reducing activity. Extract inhibited hydroxyl radical induced pBR322 plasmid DNA strand scission, thus conferring DNA protection. Growth inhibition of various cancer cell lines was achieved to the varying extent on treatment with W-LI. Further, it was observed that activity was quite promising against colon cancer COLO-205 cells (GI50 121.03 µg/ml). HPLC profiling of W-LI revealed the presence of different polyphenolic compounds such as ellagic acid, catechin, quercetin, kaempferol etc. which might be contributing towards antioxidant and cytotoxic activity. The present study demonstrated that polyphenols rich W-LI extract from leaves of L. inermis possesses ability to inhibit oxidative radicals and cancer cells proliferation. PMID:28337113
Wang, Ziying; Shao, Yisheng; Gao, Naiyun; Lu, Xian; An, Na
2018-02-01
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×10 7 M -1 s -1 and (3.7±0.1)×10 9 M -1 s -1 , respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (k o ) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The k o of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The k o values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl - ) promoted the degradation of DEP at low Cl - concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Ke-Xin; Wang, Chun-Ming; Wang, Gui-Ying; Zhao, Zhi-Jun
2014-08-01
The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15°C), room (23°C) or warm temperature (30°C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15°C, but decreased at 30°C compared with that at 23°C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A
2009-04-07
A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.
Radical probing of spliceosome assembly.
Grewal, Charnpal S; Kent, Oliver A; MacMillan, Andrew M
2017-08-01
Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2004-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
High temperature decomposition of hydrogen peroxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde F. (Inventor)
2011-01-01
Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.
Li, Meng; Chong, Yu; Fu, Peter P; Xia, Qingsu; Croley, Timothy R; Lo, Y Martin; Yin, Jun-Jie
2017-11-15
Although nanosized ingredients, including TiO 2 nanoparticles (NPs), can be found in a wide range of consumer products, little is known about the effects these particles have on other active compounds in product matrices. These NPs can interact with reactive oxygen species (ROS), potentially disrupting or canceling the benefits expected from antioxidants. We used electron spin resonance spectrometry to assess changes in the antioxidant capacities of six dietary antioxidants (ascorbic acid, α-tocopherol, glutathione, cysteine, epicatechin, and epicatechin gallate) during exposure to P25 TiO 2 and/or simulated sunlight. Specifically, we determined the ability of these antioxidants to scavenge 1-diphenyl-2-picryl-hydrazyl radical, superoxide radical, and hydroxyl radical. Exposure to simulated sunlight alone did not lead to noticeable changes in radical-scavenging abilities; however, in combination with P25 TiO 2 NPs, the scavenging abilities of most antioxidants were weakened. We found glutathione to be the most resistant to treatment with sunlight and NPs among these six antioxidants.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.
Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Pathak, Vinay; Prasad, Ankush
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060
Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2016-03-08
There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO 2. This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO 2. As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions,more » constrained by experiments over orders of magnitude changes in [OH] and [SO 2], suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ([SO 2] ≥ 40 ppb) occur on similar time scales as analogous gas-phase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. (Chemical Equation Presented).« less
Ozone-mist spray sterilization for pest control in agricultural management
NASA Astrophysics Data System (ADS)
Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun
2013-02-01
We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Halogen radicals contribute to photooxidation in coastal and estuarine waters
Parker, Kimberly M.; Mitch, William A.
2016-01-01
Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335
NASA Astrophysics Data System (ADS)
Xu, Xuan; Sun, Yaofang; Fan, Zihong; Zhao, Deqiang; Xiong, Shimin; Zhang, Bingyao; Zhou, Shiyu; Liu, Guotao
2018-03-01
Many studies have focused on the use of BiVO4 as a photocatalyst, but few have investigated the production of free radicals during the photocatalytic process. Following synthesis of flowerlike BiVO4 and characterization by X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) Scanning electron microscopy (EDX), UV-Vis and XPS, we successfully prepared BiVO4. Then we used electron spin resonance (ESR) to determine the production and degradation of individual active free radicals, including the superoxide radical (•O2‑) and the hydroxyl radical (•OH). In the first experiment, we used ESR to detect the signals of free radicals (•O2‑ and •OH) under varying oxygen conditions. The results shown that in addition to production by •O2‑, •OH could also be produced by oxidation of h+ to OH‑. In the next experiment, we detected •OH under varying pH to identify the result of the first experiment, and found that signal intensities increased with increasing pH, indicating the mechanism for •OH production. Finally, we conducted a trapping experiment to examine free radical degradation mechanisms. We identified •OH and h+ as the main active free radicals and showed the complete production about •OH. These results improve current knowledge of free radical production mechanisms, which can be used to enhance the photocatalytic performance of BiVO4.
Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A
2017-08-10
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...
2017-07-14
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.
A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less
NASA Astrophysics Data System (ADS)
Lewis, Scott Romak
Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water was demonstrated. Another toxic organic compound of interest for water treatment applications is trichloroethylene (TCE). Due to its limited solubility in water, a majority of the TCE is often present in the form of droplets. In this study, effective TCE droplet degradation using chelate-modified, iron-catalyzed free radical reactions at near-neutral pH was demonstrated. In order to predict the degradation of aqueous and non-aqueous phase TCE for these reactions, a mathematical model was constructed through the use of droplet mass transfer correlations and free radical reaction kinetics. KEYWORDS: Functionalized membrane, free radical, hydrogen peroxide, chelate-modified, membrane reactor
An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.
Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela
2002-09-01
EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.
Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.
Mailhot, G; Sarakha, M; Lavedrine, B; Cáceres, J; Malato, S
2002-11-01
The degradation of diethyl phthalate (DEP) photoinduced by Fe(III) in aqueous solutions has been investigated under solar irradiation in the compound parabolic collector reactor at Plataforma Solar de Almeria. Hydroxyl radicals *OH, responsible of the degradation, are formed via an intramolecular photoredox process in the excited state of Fe(III) aquacomplexes. The primary step of the reaction is mainly due to the attack of *OH radicals on the aromatic ring. For prolonged irradiations DEP and its photoproducts are completely mineralized due to the regeneration of the absorbing species and the continuous formation of *OH radicals that confers a catalytic aspect to the process. Consequently, the degradation photoinduced by Fe(III) could be an efficient method of DEP removal from water.
[In vitro studies on antioxidant and antimicrobial activities of polysaccharide from Lycoris aurea].
Ru, Qiao-Mei; Pei, Zhen-Ming; Zheng, Hai-Lei
2008-10-01
To study the preliminary antioxidant and antimicrobial activities of polysaccharide extracted from Lycoris aurea. The scavenging activities of the polysaccharide in vitro on superoxide radical (O2-*), hydroxyl radical (*OH), alkyl radical (R*) and hydrogen peroxide (H2O2) were investigated by modified chemical systems. Meanwhile, the antimicrobial activities were tested using paper-discagar diffusion method. In general, the antioxidant activities of the polysaccharide were lower compared with Vc. However, the scavenging effects to *OH and H2O2 were parallel to Vc. Meanwhile, polysaccharide from Lycoris aurea had strong antimicrobial activities against Micrococcus luteus, Bacillus pumilus and Staphylococcus aureus. The polysaccharide extracted from L. aurea can scavenge *OH and H2O2 effectively and inhibit Gram-positive bacterias.
Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin
2018-03-02
The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.
Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song
2014-09-01
There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.
OH, HO2, and HO2* Radical Chemistry During PROPHET-AMOS 2016: Measurements and Model Comparison
NASA Astrophysics Data System (ADS)
Bottorff, B.; Lew, M.; Rickly, P.; Stevens, P. S.
2017-12-01
The hydroxyl (OH) and peroxy radicals, both the hydroperoxy radical (HO2) and organic peroxy radicals (RO2), play an important role in atmospheric chemistry. In addition to controlling lifetimes of many trace gases important to issues of global climate change, reactions of these radicals can also lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in remote forest environments have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOX conditions. In the summer of 2016, OH, HO2 and HO2* (HO2 + αRO2) radicals were measured using the Indiana University Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Program for Research on Oxidants: PHtochemistry, Emissions, and Transport- Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS). This campaign took place in a forested area in northern Michigan characterized by high mixing ratios of isoprene and low mixing ratios of NOX. Ambient measurements from this campaign will be compared to previous measurements at this site and to modeled predictions using both the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism. Potential interferences associated with the OH measurements will also be examined.
Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.
Sebbar, N; Bozzelli, J W; Bockhorn, H
2014-01-09
Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.
Cheng, Chiu Tung; Chan, Man Nin; Wilson, Kevin R.
2016-07-09
Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this paper investigates the OH-radical initiated oxidation of aqueous tartaric acid (C 4H 6O 6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time)more » coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C 4 functionalization product (C 4H 4O 6) and three C 3 fragmentation products (C 3H 4O 4, C 3H 2O 4, and C 3H 2O 5). The C 4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO 2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C 4H 4O 6), the major reaction product. While in general, C–C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OS C), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OS C = 1.5). Finally, these results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.« less
Dong, Qiang; Yang, Kai; Wong, Stephanie M; O'Brien, Peter J
2010-10-06
Excessive sugar intake in animal models may cause tissue damage associated with oxidative and carbonyl stress cytotoxicity as well as inflammation. Fructose became a 100-fold more cytotoxic if hepatocytes were exposed to a non-toxic infusion of H(2)O(2) so as to simulate H(2)O(2) released by Kupffer cells or infiltrating immune cells. In order to determine the molecular mechanisms involved, protein carbonylation of fructose and its metabolites were determined using the 2,4-dinitrophenylhydrazine method. In a cell-free system, fructose was found to carbonylate bovine serum albumin (BSA) only if low concentrations of FeII/H(2)O(2) were added. Protein carbonylation by the fructose metabolites glyceraldehyde or glycolaldehyde was also markedly increased by FeII/H(2)O(2). The protein carbonylation may be attributed to glyoxal formation by hydroxyl radicals as the glyoxal trapping agent aminoguanidine or hydroxyl radical scavengers prevented protein carbonylation. Glyoxal was also much more effective than other carbonyls at causing protein carbonylation. When BSA was replaced by isolated rat hepatocytes, fructose metabolite glyceraldehyde in the presence of non-toxic 2 microM FeII:8-hydroxyquinoline (HQ) and a H(2)O(2) generating system (glucose/glucose oxidase) markedly increased cytotoxicity, protein carbonylation and reactive oxygen species (ROS)/H(2)O(2) formation. Furthermore this was prevented by hydroxyl radical scavengers or aminoguanidine, a glyoxal scavenger. CuII: 8-hydroxyquinoline increased H(2)O(2) induced hepatocyte protein carbonylation less but was prevented by aminoguanidine. However, cytotoxicity and protein carbonylation induced by glyceraldehyde/CuII:HQ/H(2)O(2) were not affected by hydroxyl radical scavengers. Although fatty liver induced by an excessive sugar diet in animal models has been proposed as the first hit for non-alcoholic steatohepatitis (NASH) we propose that oxidative stress induced by the oxidation of fructose or fructose metabolites catalysed by Fenton FeII/H(2)O(2) could be a 'second hit'. A perpetual cycle of oxidative stress in hepatocytes could lead to cytotoxicity and contribute to NASH development. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Federico J.; INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba; Brice, Joseph T.
2015-10-28
Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing amore » 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.« less
Mohsin, Mohammed; Negi, P; Ahmed, Z
2011-01-01
The antioxidant potential of wild strain of Lingzhi or Reishi medicinal mushroom Ganoderma lucidum from Central Himalayan Hills (2000 m MSL) was evaluated, and compared with its in vitro cultured mycelia grown on malt extract broth in the laboratory. Antioxidant activities of both wild and cultivated G. lucidum in terms of IC₅₀ (mg/ mL) were determined against different in vitro radical systems such as DPPH (1, 1-diphenyl-2-picrylhydrazyl), ABTS [2,2'-azinobis (3-ethylenebenzothiazoline-6-sulphonic acid)] and hydroxyl radicals, in addition to ferric reducing antioxidant power assay. Polyphenol contents were also determined, in order to assess their effects on the antioxidant activity of extracts. All the extracts showed significant antioxidant activity, and maximum scavenging was observed in the case of methanolic extracts of wild G. lucidum with minimum IC50 values 0.953 ± 0.040, 0.690 ± 0.014 and 3.295 ± 0.027 mg/mL, respectively, for DPPH, ABTS, and hydroxyl radicals. The efficacy of wild G. lucidum as a rich source of natural antioxidant was established for nutraceutical development.
NASA Astrophysics Data System (ADS)
Nakajima, H.; Arakaki, T.; Anastasio, C.
2008-12-01
Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.
Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water
Beitz; Bechmann; Mitzner
1999-01-01
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.
Zhao, Jing; Xiong, Youling L; McNear, Dave H
2013-02-01
Antioxidant activity of soy protein (SP) and its hydrolyzed peptides has been widely reported. During scavenging of radicals, these antioxidative compounds would be oxidatively modified, but their fate is not understood. The objective of this study was to evaluate the structural characteristics of SP hydrolysates (SPHs), compared to intact SP, when used to neutralize hydroxyl radicals (•OH). SPHs with degree of hydrolysis (DH) 1 to 5 were prepared with Alcalase. Antioxidant activity of SPHs was confirmed by lipid oxidation inhibition measured with thiobarbituric acid-reactive substances, ability to scavenge 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radicals, and ferrous ion chelation capability. Oxidation of SPHs was initiated by reaction with •OH generated from 0.1 mM FeCl(3) , 20 mM H(2) O(2) , and 1.0 mM ascorbate. After oxidative stress, carbonyl content of SPHs increased by 2- to 3-fold and sulfhydryl groups decreased by up to 42% compared to nonoxidized samples (P < 0.05). Methionine, histidine, and lysine residues were significantly reduced as a result of inactivating •OH (P < 0.05). Attenuated total reflectance-Fourier transform infrared and circular dichroism spectroscopy suggested the conversion of helical structure to strands and turns. Oxidatively modified SPHs had a lower intrinsic fluorescence intensity but similar solubility when compared to nonoxidized samples. These structural changes due to •OH stress may impact the ingredient interaction and functionality of SPHs in food products. © 2013 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated watermore » (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.« less
NASA Astrophysics Data System (ADS)
Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan
2015-01-01
To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.
NASA Astrophysics Data System (ADS)
Waring, Michael S.; Wells, J. Raymond
2015-04-01
Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
Li, Wei; Orozco, Ruben; Camargos, Natalia; Liu, Haizhou
2017-04-04
Persulfate (S 2 O 8 2- )-based in situ chemical oxidation (ISCO) has gained more attention in recent years due to the generation of highly reactive and selective sulfate radical (SO 4 •- ). This study examined the effects of important groundwater chemical parameters, i.e., alkalinity, pH, and chloride on benzene degradation via heterogeneous persulfate activation by three Fe(III)- and Mn(IV)-containing aquifer minerals: ferrihydrite, goethite, and pyrolusite. A comprehensive kinetic model was established to elucidate the mechanisms of radical generation and mineral surface complexation. Results showed that an increase of alkalinity up to 10 meq/L decreased the rates of persulfate decomposition and benzene degradation, which was associated with the formation of unreactive surface carbonato complexes. An increase in pH generally accelerated persulfate decomposition due to enhanced formation of reactive surface hydroxo complexation. A change in the chloride level up to 5 mM had a negligibly effect on the reaction kinetics. Kinetics modeling also suggested that SO 4 •- was transformed to hydroxyl radical (HO • ) and carbonate radical (CO 3 •- ) at higher pHs. Furthermore, the yields of two major products of benzene oxidation, i.e., phenol and aldehyde, were positively correlated with the branching ratio of SO 4 •- reacting with benzene, but inversely correlated with that of HO • or CO 3 •- , indicating that SO 4 •- preferentially oxidized benzene via pathways involving fewer hydroxylation steps compared to HO • or CO 3 •- .
Flash photolysis and pulse radiolysis studies on collagen Type I in acetic acid solution.
Sionkowska, Alina
2006-07-03
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).
NASA Astrophysics Data System (ADS)
Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi
2014-10-01
This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.
Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang
2016-01-01
The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals. Copyright © 2015. Published by Elsevier B.V.
Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon
2005-09-01
Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.
Preliminary studies on the activities of spin traps as scavengers of free radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunbiyi, P.O.; Washington, I.
1991-03-15
The spin trapping agents, N-t-Butyl-a-phenyl-nitrone (PBN) and 5,5-Dimethyl-1-pyroline-N-oxide (DMPO) have been used to investigate the primary free radicals involved in various tissue injuries. Also, PBN and DMPO can provide some protection against free radical-induced lung injuries. However, their therapeutic potentials as free radical scavengers remained unexamined. In this study, the effects of PBN and DMPO on guinea pig lung microsomal lipid peroxidation were investigated using thiobarbituric acid-reactive substance assay. Superoxide anions (O{sup 2}{minus}) were generated in an enzymatic and a non-enzymatic system. PBN and DMPO each, significantly inhibited NADPH-stimulated lipid peroxidation irrespective of the presence of Fe{sup 3+}. Cytochrome cmore » reduction by the enzymatic and nitro blue tetrazolium reduction by the non-enzymatic O{sup 2}{minus} generating systems were both inhibited by PBN and DMPO as well as superoxide dismutase and dimethyl sulfoxide when compared with the controls. The spin traps exhibited lower potencies in these systems than the reference compounds, SOD and DMSO, which are well established as O{sup 2}{minus} and hydroxyl radical scavengers respectively. Results demonstrate the free radical scavenging properties of PBN and DMPO. This is an indication of their possible usefulness as antioxidants.« less
HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison
NASA Astrophysics Data System (ADS)
Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.
2015-12-01
Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).
Avci, Pinar; Freire, Fernanda; Banvolgyi, Andras; Mylonakis, Eleftherios; Wikonkal, Norbert M; Hamblin, Michael R
2016-01-01
Aim: Ascorbate can inhibit growth and even decrease viability of various microbial species including Candida albicans. However the optimum conditions and the mechanism of action are unclear. Materials/methodology: Candida albicans shaken for 90 min in a buffered solution of ascorbate (90 mM) gave a 5-log reduction of cell viability, while there was no killing without shaking, in growth media with different carbon sources or at 4°C. Killing was inhibited by the iron chelator 2,2′-bipyridyl. Hydroxyphenyl fluorescein probe showed the intracellular generation of hydroxyl radicals. Results/conclusion: Ascorbate-mediated killing of C. albicans depends on oxygenation and metabolism, involves iron-catalyzed generation of hydroxyl radicals via Fenton reaction and depletion of intracellular NADH. Ascorbate could serve as a component of a topical antifungal therapy. PMID:27855492
Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F
2015-11-15
Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves. Copyright © 2015 Elsevier B.V. All rights reserved.
Himori, N; Suzuki, T; Ueno, K
1995-03-01
We demonstrate here that aniracetam has the ability to block the formation of cytotoxic hydroxyl radicals (.OH) during ischaemia-reperfusion of mouse brain. The fact that brain ischeamia for 40 min followed by reperfusion increased .OH was evidenced by detection of a peaked increase at 20 min after an ischaemic insult in the formation of 2,3-dihydroxybenzoate (DHBA) from salicylate in cerebroventricular perfusate, a means of monitoring .OH formation. A clearcut increase in dopamine was also observed during and after brain ischaemia. The ischaemia-reperfusion mice given aniracetam at an intraperitoneal dose of 30 or 100 mg kg-1 showed a smaller increase in the formation of DHBA than those given the vehicle only. Aniracetam at 100 mg kg-1 significantly suppressed the formation of DHBA by approximately 80%, becoming evident at 20 min after reperfusion and thereafter. Protection against death in mice insulted with a 40-min brain ischaemia (3/13 vs 13/25) was observed following 100 mg kg-1 aniracetam. The increase in the dopamine levels was substantially reduced following aniracetam treatment and the reduction became significant at 20 min after reperfusion and thereafter in parallel with attenuation by aniracetam of DHBA formation. This finding suggests that the inhibitory activity of aniracetam in attenuating the hydroxyl free-radical formation in ischaemic mice is probably due, at least in part, to its palliative action on the dopaminergic neurons.
Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae
2018-05-11
Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.
Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.
Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun
2002-02-01
Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p < .05) of o- and m-tyrosine as compared to the controls. In addition, chewing AQ containing Piper betle inflorescence generated higher amounts of m-tyrosine, but not o-tyrosine, in saliva than did chewing AQ containing betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues.
Formation Of Nitrous Acid In Various Environments And Its Contribution To Hydroxyl Radical Budget
NASA Astrophysics Data System (ADS)
Li, X.; Lu, K.; Liu, Y.; Rohrer, F.; Häseler, R.; Bohn, B.; Fuchs, H.; Hofzumahaus, A.; Wahner, A.; Kiendler-Scharr, A.; Zeng, L.; Zhang, Y.
2017-12-01
Nitrous acid (HONO) is an important trace gas in the atmosphere due to its contribution to the cycles of nitrogen oxides (NOx) and hydrogen oxides (HOx). Yet the formation mechanism of HONO during daytime remains large uncertainty. In the past ten years, we performed ground HONO measurements using the LOPAP technique in different seasons in two major mega-city areas, i.e., North China Plain and Pearl River Delta. Spatial distribution of HONO over different regions in Europe was also observed by the same technique on-board the Zeppelin NT airship in 2012 and 2013. For all field observations, parameters (OH, HO2, NOx, photolysis frequencies, aerosols, etc.) influencing the HONO budget were measured simultaneous, which allows us to investigate the source of HONO and its contribution to the hydroxyl radical budget. In this presentation, we summarize the general features of HONO in the planetary boundary layer in terms of its daytime concentration, spatial distribution, and source strength, and contribution to the primary OH production. Various proposed HONO formation mechanisms have been tested in order to explain the widely exited missing daytime HONO production of 100 - 200 ppt h-1 . We will show that there is not a stand alone mechanism can be used for explaining the HONO formation in various environments. Design of field experiments which effectively separate different physical and chemical processes would be helpful to pin down the major daytime HONO source and to understand its influence on the hydroxyl radical budget.
Hayashi, Eisei; Mokudai, Takayuki; Yamada, Yasutomo; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi
2012-08-01
The present study aimed to evaluate in vitro and in vivo antibacterial activity of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of oral infection diseases such as periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by the photolysis of H(2)O(2) in which 1 mol l(-1) H(2)O(2) was irradiated with a dual wavelength-light emitting diode (LED) at wavelengths of 400 and 465 nm was confirmed by applying an electron spin resonance-spin trapping technique. Secondly, the bactericidal effect of the system was examined under a similar condition in which Staphylococcus aureus suspended in 1 mol l(-1) H(2)O(2) was irradiated with LED light, resulting in substantial reduction of the colony forming unit (CFU) of the bacteria within a short time as 2 min. Finally, in vivo antibacterial effect of the photolysis of H(2)O(2) on a rat model of S. aureus infection was evaluated by a culture study. Since a significant reduction of recovered CFU of S. aureus was obtained, it is expected that in vitro antibacterial effect attributable to hydroxyl radicals generated by photolysis of H(2)O(2) could be well reflected in in vivo superficial bacterial infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pan, Wen-Yu; Huang, Chieh-Cheng; Lin, Tzu-Tsen; Hu, Hsin-Yi; Lin, Wei-Chih; Li, Meng-Ju; Sung, Hsing-Wen
2016-02-01
This work develops a composite system of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) that can synergistically induce physical and chemical damage to methicillin-resistant Staphylococcus aureus (MRSA) that are present in subcutaneous abscesses. rGO-IONP was synthesized by the chemical deposition of Fe(2+)/Fe(3+) ions on nanosheets of rGO in aqueous ammonia. The antibacterial efficacy of the as-prepared rGO-IONP was evaluated in a mouse model with MRSA-infected subcutaneous abscesses. Upon exposure to a near-infrared laser in vitro, rGO-IONP synergistically generated localized heat and large amounts of hydroxyl radicals, which inactivated MRSA. The in vivo results reveal that combined treatment with localized heat and oxidative stress that is caused by hydroxyl radicals accelerated the healing of wounds associated with MRSA-infected abscesses. The above results demonstrate that an rGO-IONP nanocomposite system that can effectively inactivate multiple-drug-resistant bacteria in subcutaneous infections was successfully developed. The emergence of methicillin-resistant S. aureus (MRSA) has posed a significant problem in the clinical setting. Thus, it is imperative to develop new treatment strategies against this. In this study, the authors described the use of reduced graphene oxide (rGO)-iron oxide nanoparticles (rGO-IONP) to induce heat and chemical damage to MRSA. This approach may provide a platform the design of other treatment modalities against multiple-drug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.