The Astronomical Low-Frequency Array
NASA Technical Reports Server (NTRS)
Jones, D. L.; Allen, R. J.; Blume, W. H.; Desch, M. M.; Erickson, W. C.; Kaiser, M. L.; Kassim, N. E.; Kuiper, T. B. H.; Mahoney, M. J.; Marsh, K. A.;
1996-01-01
An array of satellites is proposed to make astronomic observations in the low frequency range of a few tens of MHz down to roughly 100 kHz, a range that cannot be observed through the ionosphere. The array would be in a solar orbit to avoid radio interference from Earth and to simplify trajectory tracking and control.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...
The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy
NASA Technical Reports Server (NTRS)
Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.;
1999-01-01
A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.
NASA Technical Reports Server (NTRS)
Tarter, J.
1985-01-01
This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.
NASA Technical Reports Server (NTRS)
Tarter, J. C.
1984-01-01
This paper describes several attempts to utilize various radio telescopes in a manner that is termed 'parasitic', that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.
Tarter, J
1985-01-01
This paper describes several attempts to utilize various radio telescopes in a manner that we term "parasitic," that is in a manner that does not interrupt or seriously impact the standard astronomical observing programs in progress at the radio observatories. In the extreme case, only recorded astronomical data are accessed off-line, after the fact, without any burden on the observatory at all.
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation
NASA Astrophysics Data System (ADS)
Salazar, Jeffrey David; Parsons, Aaron
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.
The effects of correlated noise in phased-array observations of radio sources
NASA Technical Reports Server (NTRS)
Dewey, Rachel J.
1994-01-01
Arrays of radio telescopes are now routinely used to provide increased signal-to-noise when observing faint point sources. However, calculation of the achievable sensitivity is complicated if there are sources in the field of view other than the target source. These additional sources not only increase the system temperatures of the individual antennas, but may also contribute significant 'correlated noise' to the effective system temperature of the array. This problem has been of particular interest in the context of tracking spacecraft in the vicinity of radio-bright planets (e.g., Galileo at Jupiter), but it has broader astronomical relevance as well. This paper presents a general formulation of the problem, for the case of a point-like target source in the presence of an additional radio source of arbitrary brightness distribution. We re-derive the well known result that, in the absence of any background sources, a phased array of N indentical antennas is a factor of N more sensitive than a single antenna. We also show that an unphased array of N identical antennas is, on average, no more sensitive than a single antenna if the signals from the individual antennas are combined prior to detection. In the case where a background source is present we show that the effects of correlated noise are highly geometry dependent, and for some astronomical observations may cause significant fluctuations in the array's effective system temperature.
Radio interference in the near-earth environment
NASA Technical Reports Server (NTRS)
Erickson, W. C.
1988-01-01
Natural and man-made radio frequency interference (RFI) are potentially serious obstacles to the successful operation of an array of spacecraft used for low frequency (1 to 30 MHz) radio interferometry in the near-earth environment. Several satellites and planetary probes have carried radio astronomy experiments, and the moderate data base that they provide are examined to help understand the near-earth RFI environment. The general conclusion is that the region of space within 100 earth-radii of the earth is a hostile environment for any radio astronomy experiment. If a low frequency array in earth orbit is to yield useful astronomical results, severe interference problems must be anticipated and overcome. A number of recommendations are made to further examine the feasibility of such an array.
NASA Astrophysics Data System (ADS)
Ishitsuka, J. K.; Ishitsuka, M.; Inoue, M.; Kaifu, N.; Miyama, S.; Tsuboi, M.; Ohishi, M.; Fujisawa, K.; Kasuga, T.; Kondo, T.; Horiuchi, S.; Umemoto, T.; Miyoshi, M.; Miyazawa, K.; Bushimata, T.; Vidal, E. D.
2006-08-01
In 1984 Nippon Electric Company constructed an INTELSAT antenna at 3,370 meters above the sea level on the Peruvian Andes. Entel Peru, the Peruvian telecommunications company, managed the antenna station until 1993. This year the government transferred the station to a private telecommunications company, Telefónica del Peru. Since the satellite communications were rapidly replaced by transoceanic fiber optics, the beautiful 32 meters parabolic antenna has been unused since 2002.. In cooperation with the National Astronomical Observatory of Japan we began to convert the antenna into a radio telescope. Because researches on interstellar medium around Young Stellar Objects (YSO) will be able to observe the methanol masers that emit at 6.7 GHz, initially we will monitor the 6.7 GHz methanol masers and survey the southern sky. An ambient temperature receiver with Trx= 60 K was developed at Nobeyama Radio Observatory and is ready to be installed. The antenna control system is the Field System FS9 software installed in a Linux PC. An interface between the antenna and the PC was developed at Kashima Space Research Center in Japan. In the near future we plan to install the 2 GHz, 8 GHz, 12 GHz and 22 GHz receivers. The unique location and altitude of the Peruvian Radio Observatory will be useful for VLBI observations in collaboration with global arrays such as the VLBA array for astronomical observation and geodetic measurements. For Peru where few or almost no astronomical observational instruments are available for research, the implementation of the first radio observatory is a big and challenging step, and foster sciences at graduate and postgraduate levels of universities. Worldwide telecommunications antennas possibly are unused and with relative few investment could be transformed into a useful observational instrument.
NASA Astrophysics Data System (ADS)
Weston, S. D.
2008-04-01
This thesis presents the design and development of a process to model Very Long Base Line Interferometry (VLBI) aperture synthesis antenna arrays. In line with the Auckland University of Technology (AUT) Institute for Radiophysics and Space Research (IRSR) aims to develop the knowledge, skills and experience within New Zealand, extensive use of existing radio astronomical software has been incorporated into the process namely AIPS (Astronomical Imaging Processing System), MIRIAD (a radio interferometry data reduction package) and DIFMAP (a program for synthesis imaging of visibility data from interferometer arrays of radio telescopes). This process has been used to model various antenna array configurations for two proposed New Zealand sites for antenna in a VLBI array configuration with existing Australian facilities and a passable antenna at Scott Base in Antarctica; and the results are presented in an attempt to demonstrate the improvement to be gained by joint trans-Tasman VLBI observation. It is hoped these results and process will assist the planning and placement of proposed New Zealand radio telescopes for cooperation with groups such as the Australian Long Baseline Array (LBA), others in the Pacific Rim and possibly globally; also potential future involvement of New Zealand with the SKA. The developed process has also been used to model a phased building schedule for the SKA in Australia and the addition of two antennas in New Zealand. This has been presented to the wider astronomical community via the Royal Astronomical Society of New Zealand Journal, and is summarized in this thesis with some additional material. A new measure of quality ("figure of merit") for comparing the original model image and final CLEAN images by utilizing normalized 2-D cross correlation is evaluated as an alternative to the existing subjective visual operator image comparison undertaken to date by other groups. This new unit of measure is then used ! in the presentation of the results to provide a quantative comparison of the different array configurations modelled. Included in the process is the development of a new antenna array visibility program which was based on a Perl code script written by Prof Steven Tingay to plot antenna visibilities for the Australian Square Kilometre Array (SKA) proposal. This has been expanded and improved removing the hard coded fixed assumptions for the SKA configuration, providing a new useful and flexible program for the wider astronomical community. A prototype user interface using html/cgi/perl was developed for the process so that the underlying software packages can be served over the web to a user via an internet browser. This was used to demonstrate how easy it is to provide a friendlier interface compared to the existing cumbersome and difficult command line driven interfaces (although the command line can be retained for more experienced users).
VLA Detects Unexplained Radio Emission From Three Brown Dwarfs
NASA Astrophysics Data System (ADS)
2005-01-01
Astronomers have discovered three brown dwarfs -- enigmatic objects that are neither stars nor planets -- emitting radio waves that scientists cannot explain. The three newly-discovered radio-emitting brown dwarfs were found as part of a systematic study of nearby brown dwarfs using the National Science Foundation's Very Large Array (VLA) radio telescope. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) Until 2001, scientists believed that brown dwarfs, which are intermediate in mass between stars and planets, could not emit detectable amounts of radio waves. That year, summer students at the VLA made the first discovery of radio emission from a brown dwarf. Subsequently, as many as a half- dozen more radio-emitting brown dwarfs were discovered. "It clearly had become time to make a systematic study and try to find out just what percentage of brown dwarfs are emitting radio waves," said Rachel Osten, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Osten was assisted in the project in the summer of 2004 by Lynnae Quick, a student at North Carolina Agricultural and Technical State University; Tim Bastian, also an astronomer at NRAO; and Suzanne Hawley, an astronomer at the University of Washington. The research team presented their results to the American Astronomical Society's meeting in San Diego, CA. The three new detections of radio-emitting brown dwarfs are just the first results from the systematic study, which aims to observe all the known brown dwarfs within about 45 light-years of Earth. "We want to be able to say definitively just how common radio emission is among brown dwarfs," Osten explained. The study involves observing 65 individual brown dwarfs, so these new detections represent just the beginning of the results expected from the study. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs had long been thought to exist, but proved difficult to find. Astronomers found the first brown dwarf in 1995, and a few hundred now are known. The type of radio emission seen in the brown dwarfs arises in more-massive stars as a result of plasma interacting with the star's magnetic field. However, astronomers have noted that this type of activity declines in less-massive stars. This is why they expected brown dwarfs, with masses less than that of any star, to lack radio emission. Surprisingly, based on discoveries since 2001, it now appears that radio-emitting magnetic activity may actually become more common in these very low-mass objects. "We don't have an explanation for this," Osten said. The scientists hope that brown-dwarf radio emission may give them a new tool for analysis. "Since both stars and the planets in our Solar System produce radio emission, detailed study of the radio emission properties of these brown dwarfs may enable us to distinguish where the boundary between stellar and planetary behavior occurs in these not-quite-stars, not-quite-planets," Osten explained. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data
NASA Astrophysics Data System (ADS)
Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.
2012-09-01
SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.
A lunar far-side very low frequency array
NASA Technical Reports Server (NTRS)
Burns, Jack O. (Editor); Duric, Nebojsa (Editor); Johnson, Stewart (Editor); Taylor, G. Jeffrey (Editor)
1989-01-01
Papers were presented to consider very low frequency (VLF) radio astronomical observations from the moon. In part 1, the environment in which a lunar VLF radio array would function is described. Part 2 is a review of previous and proposed low-frequency observatories. The science that could be conducted with a lunar VLF array is described in part 3. The design of a lunar VLF array and site selection criteria are considered, respectively, in parts 4 and 5. Part 6 is a proposal for precursor lunar VLF observations. Finally, part 7 is a summary and statement of conclusions, with suggestions for future science and engineering studies. The workshop concluded with a general consensus on the scientific goals and preliminary design for a lunar VLF array.
NASA Astrophysics Data System (ADS)
Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.
In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.
Launch Will Create a Radio Telescope Larger than Earth
NASA Astrophysics Data System (ADS)
NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long Baseline Interferometry project at JPL. "Observations of cosmic masers -- naturally-occurring microwave radio amplifiers -- will tell us new things about the process of star formation and activity in the heart of other galaxies." "By the 1980s, radio astronomers were observing the universe with assemblages of radio telescopes whose resolving power was limited only by the size of the Earth. Now, through a magnificent international effort, we will be able to break this barrier and see fine details of celestial objects that are beyond the reach of a purely ground-based telescope array. We anticipate a rich harvest of new scientific knowledge from VSOP," said Dr. Paul Vanden Bout, Director of NRAO. In the first weeks after launch, scientists and engineers will "test the deployment of the reflecting mesh telescope in orbit, the wide-band data link from the satellite to the ground, the performance of the low noise amplifiers in orbit, and the high-precision orbit determination and attitude control necessary for VLBI observations with an orbiting telescope," according to Dr. Joel Smith, manager of the U.S. Space VLBI project at JPL. Scientific observations are expected to begin in May. The 26-foot diameter orbiting radio telescope will observe celestial radio sources in concert with a number of the world's ground-based radio telescopes. The 1,830-pound satellite will be launched from ISAS' Kagoshima Space Center, at the southern tip of Kyushu, one of Japan's main islands, and will be the first launch with ISAS' new M-5 series rocket. The satellite will go into an elliptical orbit, varying between 620 to 12,400 miles above the Earth's surface. This orbit provides a wide range of distances between the satellite and ground-based telescopes, which is important for producing a high-quality image of the radio source being observed. One orbit of the Earth will take about six hours. The satellite's observations will concentrate on some of the most distant and intriguing objects in the universe, where the extremely sharp radio "vision" of the new system can provide much-needed information about a number of astronomical mysteries. For years, astronomers have known that powerful "engines" in the hearts of quasars and many galaxies are pouring out tremendous amounts of energy. They suspect that supermassive black holes, with gravitational fields so strong that not even light can escape them, lie in the centers of these "engines." The mechanism at work in the centers of quasars and active galaxies, however, remains a mystery. Ground-based radio telescopes, notably NRAO's Very Long Baseline Array (VLBA), have revealed fascinating new details in recent years, and VSOP is expected to add a wealth of new information on these objects, millions or billions of light-years distant from Earth. Many of these same objects act as super-powerful particle accelerators to eject "jets" of subatomic particles at nearly the speed of light. Scientists plan to use VSOP to monitor the changes and motions in these jets to learn more about how they originate and interact with their surroundings. The satellite also will aim at regions in the sky where giant collections of water and other molecules act as natural amplifiers of radio emission much as lasers amplify light. These regions, called cosmic masers, are found in areas where new stars are forming and near the centers of galaxies. Observations can provide the detail needed to measure motions of individual maser "spots" within these regions, and provide exciting new information about the star-forming regions and the galaxies where the masers reside. In addition, high-resolution studies of cosmic masers can allow astronomers to calculate distances to them with unprecedented accuracy, and thus help resolve continuing questions about the size and age of the universe. The project is a major international undertaking, with about 40 radio telescopes from more than 15 countries having committed time to co-observe with the satellite. This includes the National Science Foundation's Very Long Baseline Array (VLBA), an array of 10 telescopes spanning the United States from Hawaii to Saint Croix; NASA's Deep Space Network (DSN) sites in California, Spain, and Australia; the European VLBI Network, more than a dozen telescopes ranging from the United Kingdom to China; a Southern Hemisphere array of telescopes stretching from eastern Australia to South Africa; and Japan's network of domestic radio telescopes. In the United States, NASA is funding critical roles in the VSOP mission at both JPL and NRAO. JPL has built an array of three new tracking stations at its DSN sites in Goldstone, CA; Madrid, Spain; and near Canberra, Australia. A large existing tracking station at each of these sites has also been converted to an extremely sensitive radio telescope for simultaneous observations with the satellite. JPL also is providing precision orbit determination, scientific and operational planning support to the Japanese, and advice to U.S. astronomers who wish to observe with the satellite. NRAO is building a new tracking station at Green Bank, WV; contributing observing time on the VLBA array of telescopes; modifying existing data analysis hardware and software, and aiding astronomers with the analysis of the VSOP data. Much of the observational data will be processed at NRAO's facility in Socorro, NM, using the VLBA Correlator, a special purpose high-performance computer designed to process VLBI data. VSOP is the culmination of many years of planning and work by scientists and engineers around the world. Tests using NASA's Tracking and Data Relay Satellite System (TDRSS) proved the feasibility of space VLBI in 1986. Just last year, those old data were used again to test successfully the data-reduction facilities for VSOP. JPL manages the U.S. Space Very Long Baseline Interferometry project for NASA's Office of Space Science, Washington, DC. The VLBA, headquartered in Socorro, NM, is part of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Fish-Eye Observing with Phased Array Radio Telescopes
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.
The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.
Observatory Sponsoring Astronomical Image Contest
NASA Astrophysics Data System (ADS)
2005-05-01
Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery and to provide a showcase for a broad range of astronomical research and celestial objects," Adams added. In addition, NRAO is developing enhanced data visualization techniques and data-processing recipes to assist radio astronomers in making quality images and in combining radio data with data collected at other wavelengths, such as visible-light or infrared, to make composite images. "We encourage all our telescope users to take advantage of these techniques to showcase their research," said Juan Uson, a member of the NRAO scientific staff and the observatory's EPO scientist. "All these efforts should demonstrate the vital and exciting roles that radio telescopes, radio observers, and the NRAO play in modern astronomy," Lo said. "While we want to encourage images that capture the imagination, we also want to emphasize that extra effort invested in enhanced imagery also will certainly pay off scientifically, by revealing subtleties and details that may have great significance for our understanding of astronomical objects," he added. Details of the NRAO Image Contest, which will become an annual event, are on the observatory's Web site. The observatory will announce winners on October 15. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Discovering the invisible universe
NASA Astrophysics Data System (ADS)
Friedman, Herbert
1991-02-01
The history of astronomical observations outside the visible range is surveyed in a review for general readers. Consideration is given to Jansky's discovery of cosmic radio emission, the pioneering radio observers of the 1940s, the larger radio telescopes built since 1950, aperture synthesis and the Very Large Array, terrestrial and space VLBI networks, ground-based and satellite observations in the IR band, the discovery and early laboratory characterization of X-rays, and X-ray observations from sounding rockets and satellites. Extensive photographs, drawings, diagrams, and sample images are provided.
The history of radio telescopes, 1945-1990
NASA Astrophysics Data System (ADS)
Sullivan, Woodruff T.
2009-08-01
Forged by the development of radar during World War II, radio astronomy revolutionized astronomy during the decade after the war. A new universe was revealed, centered not on stars and planets, but on the gas between the stars, on explosive sources of unprecedented luminosity, and on hundreds of mysterious discrete sources with no optical identifications. Using “radio telescopes” that looked nothing like traditional (optical) telescopes, radio astronomers were a very different breed from traditional (optical) astronomers. This pathbreaking of radio astronomy also made it much easier for later “astronomies” and their “telescopes” (X-ray, ultraviolet, infrared, gamma-ray) to become integrated into astronomy after the launch of the space age in the 1960s. This paper traces the history of radio telescopes from 1945 through about 1990, from the era of converted small-sized, military radar antennas to that of large interferometric arrays connected by complex electronics and computers; from the era of strip-chart recordings measured by rulers to powerful computers and display graphics; from the era of individuals and small groups building their own equipment to that of Big Science, large collaborations and national observatories.
Amateur Planetary Radio Data Archived for Science and Education: Radio Jove
NASA Astrophysics Data System (ADS)
Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.
2015-12-01
The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO). We believe that Radio Jove represents another fertile area for citizen science to contribute to overall scientific investigation.
NRAO Teams With NASA Gamma-Ray Satellite
NASA Astrophysics Data System (ADS)
2007-06-01
The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can accelerate jets of material to nearly light speed. "The gamma-ray and radio observations will show scientists different aspects of many still-mysterious objects and processes. By providing a simple procedure for astronomers to win observing time on radio telescopes to follow up on our new gamma-ray discoveries, we're ensuring that we get the maximum scientific return from both," said GLAST project scientist Steve Ritz of NASA's Goddard Space Flight Center in Greenbelt, Md. "The importance of this coordinated approach has been highlighted by a recent two-day workshop at Goddard, in which we discussed the scientific benefits and coordination of radio Very Long Baseline Interferometry observations made in conjunction with GLAST." NRAO's radio telescopes have been used for many years as part of multiwavelength observing programs in conjunction with both ground-based and space-based observatories. Usually, however, astronomers had to submit separate observing proposals to two or more review committees, with no guarantee that they would win observing time on all desired telescopes. For its part, NASA spacecraft such as the Compton Gamma-Ray Observatory and the Chandra X-ray Observatory have opened wide new windows on the high-energy universe. Astronomers, including those on a recent NSF Senior Review panel, have urged reductions in administrative barriers to gaining observing time at multiple wavelengths. "This NRAO-GLAST agreement eases the process of winning observing time on NRAO telescopes to complement the GLAST all-sky gamma-ray survey. In particular, the continent-wide VLBA is the only existing radio telescope that can image and monitor the sites of extreme gamma-ray flares in distant galaxies," said Jim Ulvestad, NRAO's Director for VLA-VLBA Operations. "We expect to see arrangements like this become much more common in the future, to the benefit of the science." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NASA's GLAST mission is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.
GBT, VLA Team Up to Produce New Image of Orion Nebula
NASA Astrophysics Data System (ADS)
2002-01-01
Combining the best features of the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope (GBT) in West Virginia with those of the NSF's Very Large Array (VLA) in New Mexico, astronomers have produced a vastly improved radio image of the Orion Nebula and developed a valuable new technique for studying star formation and other astrophysical processes. GBT-VLA Image of Orion Nebula GBT-VLA Image of Orion Nebula "Our GBT image of the Orion Nebula is the best image ever produced with a single-dish radio telescope and it illustrates the superb performance of this new telescope," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "By combining data from the GBT with that from the VLA, we get an image that reflects reality far better than images from the separate telescopes could do," she added. Shepherd worked with Ron Maddalena from NRAO in Green Bank and Joe McMullin, from NRAO in Socorro. The astronomers presented their work to the American Astronomical Society meeting in Washington, DC. Single-dish radio telescopes such as the GBT, dedicated in 2000, are able to capture the large-scale structure of objects such as the Orion Nebula. However, they are unable to discern the fine detail revealed by multi-antenna arrays such as the VLA. Conversely, a VLA-like array is "blind" to the larger-scale structures. Combining the data from both types of radio telescopes to produce an image showing both large- and small-scale structures in the same celestial object has been a difficult, laborious task. "We are developing new observing techniques and software to make this task much easier and quicker," said McMullin. "We now have achieved in hours what used to take months or even longer to do, but we are producing an observational tool that will allow astronomers to make much higher-fidelity images that will greatly improve our understanding of several important astronomical processes," McMullin added. For this observation, both the individual images from each telescope as well as the combined image were produced using the AIPS++ (Astronomical Information Processing System) software, developed, in part, by NRAO. The observers worked with Tim Cornwell, NRAO's Associate Director for Data Management, to develop the techniques used to combine the images. The Orion Nebula, easily visible in amateur telescopes, is a giant cloud of gas some 1,500 light-years away in which new stars are forming. The GBT-VLA radio image, Shepherd said, shows new details that will allow scientists to better understand how ionized gas near the young, hot stars at the nebula's center flows outward toward the edge of the nebula. The ability to produce combined GBT-VLA images also may revise scientists' understanding of other objects. For example, says NRAO Director Paul Vanden Bout, "Astronomers have seen many pockets of ionized Hydrogen gas in star-forming clouds with the VLA that are thought to be ultra-compact. It may be that they are, in fact, larger than thought and, using the GBT in addition to the VLA will show us the true picture." The importance of this observing technique lies in its ability to greatly improve the fidelity of images. "By fidelity we mean how closely the image actually reflects reality. We now have a powerful new tool for improving the fidelity of our images when we look at objects that are close enough to appear relatively large in the sky but which also contain fine detail within the larger structure," Shepherd said. "This will have a big impact on a number of research areas such as star formation in our Galaxy, planetary nebulae, supernova remnants, as well as dynamics and star formation in near-by galaxies," she added. The new technique also paves the way for effective use of the Expanded VLA, which will incorporate state-of-the-art electronics and digital equipment to replace now-aging technologies dating from the VLA's construction in the 1970s. In addition, the new capabilities can be used with the Atacama Large Millimeter Array (ALMA), a millimeter-wave observatory to be constructed in Chile as a partnership among North American, European and Japanese astronomers. The combined GBT-VLA image was produced from observations made at a radio frequency of 8.4 GHz. The VLA observations were made in 2000 and the GBT observations in November of 2001. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
"Radio Astronomy, Whatever That May Be." The Marginalization of Early Radio Astronomy
NASA Astrophysics Data System (ADS)
Jarrell, Richard
2005-01-01
Today we see radio astronomy as a fully-integrated part of astronomy; it is now just one of several available wavelength regimes and many astrophysicists who use radio data are not radio astronomers themselves. At the beginning, it was very different. Between 1946 and 1960, radio astronomy emerged as an important speciality but it was an area little understood by mainstream astronomers. Radio astronomers rarely published in astronomical journals, gave papers at astronomical conferences or were accorded much notice. The pioneers in the field were not astronomers themselves and had little in common with astronomers. In this paper I note the various ways in which radio astronomy was alienated from the mainstream in its first decade and some of the reasons this alienation occurred. I will also speculate on when and how the integration began to occur.
Astronomers to Mark 20th Anniversary of the Very Large Array
NASA Astrophysics Data System (ADS)
2000-07-01
On August 23, scientists will mark the 20th anniversary of the National Science Foundation's Very Large Array (VLA), the most powerful, flexible and widely-used radio telescope in the world. "Twenty years ago, the VLA brought dramatic new observing capabilities to the world's astronomers, and today there is hardly a branch of astronomy that has not been profoundly impacted by the prolific research output of this radio telescope," said Dr. Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO). The anniversary will be marked in a ceremony at NRAO's Array Operations Center in Socorro, NM. The keynote speaker for this ceremony will be U.S. Senator Pete V. Domenici, R-NM. Also speaking will be Dr. Rita Colwell, NSF Director; Dr. Anneila Sargent, president-elect of the American Astronomical Society; Vanden Bout; Dr. Riccardo Giacconi, president of Associated Universities, Inc. (AUI); Dr. Paul Martin, chairman of the AUI board of trustees; and Dr. Miller Goss, NRAO's director of VLA/VLBA operations. "More than 2,200 researchers from hundreds of institutions around the world have used the VLA for more than 10,000 observing projects," said Vanden Bout. "Research conducted at the VLA has had a major impact across the entire breadth of astronomy, from nearby objects such as the Sun and planets of our own Solar System, to forming galaxies and quasars billions of light-years away in the farthest reaches of the Universe," Vanden Bout added. Major discoveries made by the VLA have ranged from the surprising detection of water ice on Mercury, the nearest planet to the Sun, to the first detection of radio emission from a Gamma Ray Burster in 1997. The VLA also discovered the first "Einstein Ring" gravitational lens in 1987, and the first "microquasar" within our own Milky Way Galaxy in 1994. Over the past two decades, the VLA also has made major contributions to our understanding of active regions on the Sun, the physics of superfast "cosmic jets" of material pouring from the hearts of distant galaxies, the mysterious central region of our own Galaxy, and the atmospheres of other stars, among many others. The results of research conducted with the VLA fill thousands of pages in numerous scientific journals and are cited throughout modern astronomy textbooks. In addition to such accomplishments, the VLA also has served as a prime tool for training young astronomers. More than 200 Ph.D degrees have been awarded by U.S. and foreign universities based on dissertation research done using the VLA. "Despite all these accomplishments, however, we are not simply looking back on this occasion," said Goss. "Instead, we have prepared a detailed plan for expanding the capabilities of the VLA, and keeping it at the forefront of science in the 21st Century. The Expanded VLA will incorporate new technologies to replace some of the 1970s-era equipment that remains, and add new antennas. The result will be an astronomical tool ten times more capable than the current VLA." The VLA is a collection of 27 steel-and-aluminum parabolic dish antennas, each with a dish 82 feet in diameter and weighing 230 tons. These antennas are arranged in a giant "Y" pattern 20 miles across on the high-desert Plains of San Agustin, 50 miles west of Socorro, New Mexico. All 27 antennas work together as a single radio-telescope system to produce exquisitely-detailed images of radio-emitting objects in the Universe. Received signals from all the VLA's antennas are brought together and computer-processed to make the images. In the 1950s, British astronomer Sir Martin Ryle developed the technique of using multiple, widely-separated radio-telescope antennas working together to make images far more detailed than could be made with any single antenna that could be feasibly built. Ryle received the 1974 Nobel Prize in Physics for this work. In 1956, the NSF created the National Radio Astronomy Observatory in Green Bank, WV, and contracted with Associated Universities, Inc., a private, nonprofit research organization, to build and operate the observatory. "We at AUI are proud to have built and operated the NRAO - and the VLA - since its beginning," said Dr. Riccardo Giacconi, the current president of AUI and former Director General of the European Southern Observatory. "The VLA has greatly improved our understanding of the Universe, and the Expanded VLA will be one of the prime facilities for meeting the challenges of 21st-Century astrophysics," added Giacconi. While NRAO scientists and engineers were constructing and using single-dish radio telescopes at Green Bank, they also worked on plans for a radio-telescope array based on Ryle's technique. By 1962, the phrase "Very Large Array" came into common use to describe this project. The Green Bank Interferometer, a three-antenna system, began operation in 1964, and was used extensively to gain practical experience in operating such arrays. In addition, it made significant scientific contributions. In 1967, NRAO astronomers and engineers completed the first formal proposal for a Very Large Array. The NSF submitted the VLA proposal to Congress in 1971, and the project received Congressional authorization in 1972. The Plains of San Agustin were selected as the VLA site that same year. Work at the VLA site began in 1974, and NRAO personnel began moving to New Mexico in 1975. By October of 1975, the first VLA antenna was complete and used to observe a galaxy 50 million light-years away in the constellation Virgo. In 1976, two VLA antennas were used together for the first time. In 1977, with six antennas operational, the VLA began to be used routinely for astronomical observations. The last VLA antenna became operational in 1980. The VLA was formally dedicated in October of 1980, and all details of the construction were completed in January of 1981, nearly a year ahead of the schedule that had been prepared in 1973, and at the budgeted cost of $78.6 million in 1972 dollars. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
George, Martin; Orchiston, Wayne; Wielebinski, Richard
2018-04-01
Beginning in the early 1960s, the University of Tasmania became very involved in low frequency radio astronomical studies, which was to continue into the 1980s. Although important low frequency arrays were set up at Penna and Richmond, the main location for this activity by the University was in the vicinity of Hobart Airport, known as Llanherne. This paper describes the work performed there at frequencies of 30 MHz and below, mainly for studying radio emission from Jupiter and the Galaxy. The largest of the installations was the Llanherne Low Frequency Array, a 640 × 640 m antenna array adjacent to Holyman Avenue; it was well known to the public because of its high visibility to airport patrons. Other installations were set up closer to the airport runway. Various researchers, including Graeme Ellis, Hilary Cane and others, made observations at Llanherne.
NASA Astrophysics Data System (ADS)
2005-03-01
Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, “Nature”. This radio image of the central region of the Milky Way Galaxy holds a new radio source, GCRT J1745-3009. The arrow points to an expanding ring of debris expelled by a supernova. CREDIT: N.E. Kassim et al., Naval Research Laboratory, NRAO/AUI/NSF Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. “"We hit the jackpot!” Hyman said referring to the observations. “An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 — five bursts in fact, and repeating at remarkably constant intervals.” Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. “Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths,” NRL astronomer Dr. Joseph Lazio pointed out, “very little has been done to look for radio bursts, which are often easier for astronomical objects to produce.” The team has monitored the Galactic center for new transient sources and for variability in approximately 250 known sources, but the five bursts from the new radio source, named GCRT J1745-3009, were by far the most powerful seen. The five bursts were of equal brightness, with each lasting about 10 minutes, and occurring every 77 minutes. The source of the bursts is transient Hyman noted. “It has not been detected since 2002 nor is it present on earlier images.” Although the exact nature of the object remains a mystery, the team members currently believe that GCRT J1745-3009 is either the first member of a new class of objects or an unknown mode of activity of a known source class. One important clue to understanding the origin of the radio bursts is that the emission appears to be “coherent,” Hyman said. “There are very few classes of coherent emitters in the universe. Natural astronomical masers — the analog of laser emission at microwave wavelengths — are one class of coherent sources, but these emit in specific wavelengths. In contrast, the new transient’s bursts were detected over a relatively large bandwidth.” The new radio source is located below the expanding ring of debris of this supernova remnant. The plot illustrates the radio light curve of the five detected bursts occurring every 77 minutes. “In addition to these intriguing properties, NRL astronomer Dr. Paul Ray and colleague, Dr. Craig Markwardt of NASA’s Goddard Space Flight Center, have searched the source for X-ray emission but have not found any convincing evidence. “The non-detection of X-ray emission is intriguing,” Ray said. “Many sources that emit transient X-ray flares, such as black hole binary star systems, also have associated radio emission. If upon further observations, X-ray emission is definitively detected or ruled out, this will be a significant help in understanding the nature of this remarkable source.” “Needless to say, the discovery of these transients has been very exciting for our students,” Hyman added. Participating in this research program has inspired at least two of Hyman?s students — Jennifer Neureuther and Mariana Lazarova — to pursue graduate studies in astronomy. This project was supported at Sweet Briar College by funding from Research Corporation and the Jeffress Foundation. Basic research in radio astronomy at NRL is supported by the Office of Naval Research. Further Research Hyman and his NRL colleagues plan to continue monitoring the Galactic center and search for the source again with the VLA and other X-ray and radio telescopes. They are also developing (with Dr. Kent Wood of NRL) a model that attempts to account for the radio bursts as a new type of outburst from a class of sources known as “magnetars.” NRL is also contributing to an effort to build the world’s largest and most sensitive low-frequency telescope, called the Long Wavelength Array (LWA), which may revolutionize future searches for other radio transient sources. Current plans call for the LWA, which is being developed by the University of New Mexico-led Southwest Consortium, to be sited in New Mexico, not far from the VLA. “One of the key advantages of observing at long radio wavelengths,” explained NRL astronomer, Dr. Namir Kassim, “is that the field-of-view is so large that a single observation can efficiently detect transient phenomena over a large region.” “When completed, the LWA may uncover hundreds of previously unknown radio transients, some of which may be examples of Jupiter-like planets orbiting other stars,” Kassim added. Jupiter is the most famous example of a nearby radio transient. About Sweet Briar College Sweet Briar College is consistently ranked among the nation’s top liberal arts colleges.ÿ Founded in 1901 as an independent undergraduate college for women, Sweet Briar continues its commitment to the education of women, offering a full range of liberal arts majors, including subjects traditionally considered male domains. Its customized educational programs combine the liberal arts with preparation for professional life, equipping students to successfully enter graduate school and/or the workforce. Sweet Briar’s excellent academic reputation, spectacular campus and attention to the individual attract smart, confident women both nationally and internationally. The College is located on more than 3,000 acres in the Blue Ridge Mountains just north of Lynchburg, Va. For more information visit www.sbc.edu. About The Naval Research Laboratory NRL is the Department of the Navy’s corporate laboratory and conducts a broad program of scientific research, technology and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA. For more information about NRL, visit www.nrl.navy.mil. About the National Radio Astronomy Observatory The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NRAO designs, builds and operates the world’s most sophisticated and advanced radio telescopes. Facilities include the Very Large Array, the 100-meter Robert C. Byrd Green Bank Telescope, the Very Long Baseline Array, and the Atacama Large Millimeter Array. For more information about NRAO, visit www.nrao.edu.
Astronomers Win Protection for Key Part of Radio Spectrum
NASA Astrophysics Data System (ADS)
2000-06-01
Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are easily clogged up. It's very important that we keep them as free as possible from interference." The new spectrum allocations were welcomed by Dr Johannes Andersen, General Secretary of the International Astronomical Union, which represents astronomers worldwide. "Protecting our ability to observe the Universe is the top priority for the International Astronomical Union," he said. "This action shows that international bodies accept the need for environmental emission standards in space as well as on Earth, for the benefit of all."
Genetic programming applied to RFI mitigation in radio astronomy
NASA Astrophysics Data System (ADS)
Staats, K.
2016-12-01
Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.
NASA Astrophysics Data System (ADS)
Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.
1990-03-01
It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.
NASA Astrophysics Data System (ADS)
Finger, R.; Curotto, F.; Fuentes, R.; Duan, R.; Bronfman, L.; Li, D.
2018-02-01
Radio Frequency Interference (RFI) is a growing concern in the radio astronomy community. Single-dish telescopes are particularly susceptible to RFI. Several methods have been developed to cope with RF-polluted environments, based on flagging, excision, and real-time blanking, among others. All these methods produce some degree of data loss or require assumptions to be made on the astronomical signal. We report the development of a real-time, digital adaptive filter implemented on a Field Programmable Gate Array (FPGA) capable of processing 4096 spectral channels in a 1 GHz of instantaneous bandwidth. The filter is able to cancel a broad range of interference signals and quickly adapt to changes on the RFI source, minimizing the data loss without any assumption on the astronomical or interfering signal properties. The speed of convergence (for a decrease to a 1%) was measured to be 208.1 μs for a broadband noise-like RFI signal and 125.5 μs for a multiple-carrier RFI signal recorded at the FAST radio telescope.
NRAO Scientists on Team Receiving International Astronautics Award
NASA Astrophysics Data System (ADS)
2005-10-01
The International Academy of Astronautics (IAA) is presenting an award to a pioneering team of scientists and engineers who combined an orbiting radio-astronomy satellite with ground-based radio telescopes around the world to produce a "virtual telescope" nearly three times the size of the Earth. The team, which includes two scientists from the National Radio Astronomy Observatory (NRAO), will receive the award in a ceremony Sunday, October 16, in Fukuoka, Japan. VSOP Satellite and Ground Telescopes Artist's conception of HALCA satellite and ground observatories together making "virtual telescope" (blue) about three times the size of Earth. CREDIT: ISAS, JAXA (Click on image for larger version) The IAA chose the VLBI Space Observatory Program (VSOP), an international collaboration, to receive its 2005 Laurels for Team Achievement Award, which recognizes "extraordinary performance and achievement by a team of scientists, engineers and managers in the field of Astronautics to foster its peaceful and international use." VSOP team members named in the IAA award include NRAO astronomers Edward Fomalont, of Charlottesville, Virginia, and Jonathan Romney, of Socorro, New Mexico. "This is a well-deserved award for an international team whose hard work produced a scientific milestone that yielded impressive results and provides a foundation for more advances in the future," said Dr. Fred K.Y Lo, NRAO Director. The VSOP program used a Japanese satellite, HALCA (Highly Advanced Laboratory for Communications and Astronomy), that included an 8-meter (26-foot) radio telescope. HALCA was launched in 1997 and made astronomical observations in conjunction with ground-based radio telescopes from 14 countries. Five tracking stations, including one at NRAO's Green Bank, West Virginia, facility, received data from HALCA which later was combined with data from the ground-based telescopes to produce images more detailed than those that could have been made by ground-based systems alone. The NRAO's Very Long Baseline Array (VLBA), a continent-wide system of radio telescopes ranging from Hawaii to the Caribbean, was one of the principal ground-based networks working with HALCA. The VLBA's powerful special-purpose computer, called a correlator, was a prime workhorse for processing the data from VSOP astronomical observations. Very long baseline interferometry (VLBI) is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance, or "baselines" between telescopes, the greater the resolving power. The IAA award citation notes that the VSOP team "realized the long-held dream of radio astronomers to extend those baselines into space, by observing celestial radio sources with the HALCA satellite, supported by a dedicated network of tracking stations, and arrays of ground radio telescopes from around the world." The VSOP team was able to approximately triple the resolving power available with only ground-based telescopes. The first experiment in such space-ground observation was made in 1986, using a NASA Tracking and Data Relay Satellite. The VSOP project grew as an international effort after that experiment, and provided observing time to astronomers from around the world. During the VSOP observational program, the combined space-ground system made more than 780 individual astronomical observations and also made an all-sky survey of the cores of active galaxies. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In addition to providing large amounts of observing time on the VLBA and building and operating the Green Bank tracking station, NRAO staff also modified existing hardware and software and aided astronomers from around the world in analyzing VSOP data. On behalf of the entire VSOP Team, the IAA highlighted "the astronomers and engineers who made key contributions to realizing, and operating, a radio telescope bigger than the Earth." In addition to Fomalont and Romney, they are: Hisashi Hirabayashi, of the Institute of Space and Astronautical Science and Japan Aerospace Exploration Agency (ISAS/JAXA), Haruto Hirosawa (ISAS/JAXA), Peter Dewdney of Canada's Dominion Radio Astrophysical Observatory, Leonid Gurvits of the Joint Institute for VLBI in Europe (JIVE, The Netherlands), Makoto Inoue of the National Astronomical Observatory of Japan (NAOJ), David Jauncey of the Australia Telescope National Facility, Noriyuki Kawaguchi (NAOJ), Hideyuki Kobayashi (NAOJ), Kazuo Miyoshi (Mitsubishi Electric Corporation, Japan), Yasuhiro Murata (ISAS/JAXA), Takeshi Orii (NEC, Japan) Robert Preston of NASA's Jet Propulsion Laboratory (JPL), and Joel Smith (JPL). The International Academy of Astronautics was founded in August 1960 in Stockholm, Sweden, during the 11th International Astronautical Congress. The Academy aims to foster the development of astronautics for peaceful purposes; recognize individuals who have distinguished themselves in a related branch of science or technology; provide a program through which members may contribute to international endeavours; cooperation in the advancement of aerospace science. Previous recipients of the Laurels for Team Achievement Award are the Russian Mir Space Station Team (2001), the U.S. Space Shuttle Team (2002), the Solar and Heliospheric Observatory (SOHO) Team (2003), and the Hubble Space Telescope Team (2004). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say
NASA Astrophysics Data System (ADS)
2000-01-01
A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline Array (VLBA) radio telescope in 1995. Further VLBA observations of NGC 4258 allowed astronomers to calculate an extremely accurate distance to that galaxy last year. "We're excited to find this phenomenon in a second galaxy, but we're also tantalized by the evidence that these masers respond to variations of the central engine," Gallimore said. In order to amplify radio signals, masers, like their visible-light counterparts, lasers, require a source of energy, called the pumping energy. The scientists believe the masers in NGC 1068 get that pumping energy from a highly-energetic, superhot disk of material that is being pulled into the black hole. That disk, called an accretion disk, emits X-rays that the astronomers think start a chain of events that powers the masers. Such accretion disks can be unstable, dramatically changing their energy output from time to time. "When the accretion disk puts out more energy, the masers should brighten, and when it puts out less energy, they should get fainter. If the accretion disk gets too bright, however, water molecules are destroyed and the masers turn off. We think that's what we're seeing in this galaxy," Gallimore said. "We want to watch this in the future to learn more, not only about the masers, but also about the accretion disk itself," he said. The strongest evidence that the masers are responding to variations in the output of the central engine came from watching variations in the brightness of masers on opposite sides of the water molecule disk. The masers on both sides of the molecular disk, some 5 light-years across, brightened within about two weeks of each other. "If this were caused by something within that molecular disk itself, it would take about 10,000 years to affect both sides of the disk, because of the orbital times involved. However, both sides of the disk are the same distance from the central engine, so they can both respond to the central engine simultaneously," Gallimore explained. The black hole at NGC 1068's center, the scientists say, is about 10 million times more massive than the Sun. NGC 1068 also is known as Messier 77 (M77), one of the objects listed in French astronomer Charles Messier's catalog of non-stellar objects. First observed in 1780, it appeared in the version of Messier's catalog published in 1781. In 1914, Lowell Observatory astronomer Vesto Slipher measured the Doppler shift in the galaxy's light, showing that the galaxy is receding from Earth at a speed of about 1,100 kilometers per second. The galaxy's water masers, which amplify radio signals at a frequency of 22 GHz, were discovered in 1984. The galaxy is visible in moderate-sized amateur telescopes. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NRAO Makes Available VLA Sky Survey Maps
NASA Astrophysics Data System (ADS)
1994-06-01
An original and comprehensive data set potentially full of scientific surprises now is available to astronomers, students and the public through the information superhighway. Radio images of the sky produced by the Very Large Array radio telescope -- one of the premier astronomical instruments in the world -- as part of a massive survey now are stored in an electronic repository avail- able over the Internet computer communications network. "Each of these sensitive new sky maps shows about a thou- sand radio-emitting objects, most of which have never been seen before," said Dr. J. J. Condon, leader of the National Radio As- tronomy Observatory (NRAO) survey team. "We are releasing them as soon as they are completed because they contain more data than we could possibly analyze by ourselves." "By using electronic distribution, we can open this tre- mendous resource of information for computer analysis by all as- tronomers immediately, without waiting for traditional publication," Condon added. The radio images are copyright NRAO/ AUI. Permission is granted for use of the material without charge for scholarly, educational and private non-commercial purposes. "It is entirely conceivable -- even probable -- that valuable discoveries will be made by students or amateur astrono- mers who devote the time to study these maps carefully," said team member Dr. W. D. Cotton. "Making this new information available electronically means that more people can participate in adding to its scientific value." The maps are a product of the NRAO VLA Sky Survey (NVSS), which began its observational phase in September of 1993 and will cover 82 percent of the sky when completed by the end of 1996. The NVSS is expected to produce a catalog of more than two million ra- dio-emitting objects in the sky, and it is the first sky survey sensitive to linearly polarized emission from radio sources beyond our own Milky Way galaxy. "The NVSS is being made as a service to the entire astronomical community," Condon said. The survey will require about 2,500 hours of VLA observing time to complete. The data from the NVSS will become available in several forms, including complete processed maps, lists of the radio-emit- ting objects found, and data from which astronomers may produce maps tailored to their own interests. The data products are being placed in the public electronic repository as soon as NRAO scien- tists have verified their accuracy. Those interested should contact Condon at Internet address jcondon@nrao.edu for more information about accessing the data. The Very Large Array, in west-central New Mexico, is a radio telescope consisting of 27 dish antennas, each 82 feet in diameter, arranged in the shape of a Y. The arms of the Y are 13 miles long, and the 230-ton antennas are routinely moved into dif- ferent positions along the arms to provide a "zoom lens" capability for the telescope. Dedicated in 1980, the VLA is used annually by more than 600 astronomers from around the world. One of the most versatile instruments available to astronomers, it can observe ob- jects ranging from planets, comets and asteroids in our own solar system out to distant radio galaxies and quasars near the edge of the observable universe. In addition to the NVSS, the VLA also is making another, more detailed, survey of a smaller region of the sky. This survey, called FIRST (Faint Images of the Radio Sky at Twenty centimeters), will yield very accurate positions of radio-emitting objects in the same area of the sky to be surveyed in visible light by the Sloan Digital Sky Survey. The FIRST survey is headed by Dr. Robert H. Becker of the University of California at Davis and Lawrence Liv- ermore National Laboratory.
Building a VO-compliant Radio Astronomical DAta Model for Single-dish radio telescopes (RADAMS)
NASA Astrophysics Data System (ADS)
Santander-Vela, Juan de Dios; García, Emilio; Leon, Stephane; Espigares, Victor; Ruiz, José Enrique; Verdes-Montenegro, Lourdes; Solano, Enrique
2012-11-01
The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.
Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Falcke, Heino; Herrnstein, Robeson M.; Zhao, Jun-Hui; Goss, W. M.; Backer, Donald C.
2004-04-01
We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 +/- 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of 60+25
A symbiotic approach to SETI observations: use of maps from the Westerbork Synthesis Radio Telescope
NASA Technical Reports Server (NTRS)
Tarter, J. C.; Israel, F. P.
1982-01-01
High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.
Tarter, J C; Israel, F P
1982-01-01
High spatial resolution continuum radio maps produced by the Westerbork Synthesis Radio Telescope (WSRT) of The Netherlands at frequencies near the 21 cm HI line have been examined for anomalous sources of emmission coincident with the locations of nearby bright stars. From a total of 542 stellar positions investigated, no candidates for radio stars or ETI signals were discovered to formal limits on the minimum detectable signal ranging from 7.7 x 10(-22) W/m2 to 6.4 x 10(-24) W/m2. This preliminary study has verified that data collected by radio astronomers at large synthesis arrays can profitably be analysed for SETI signals (in a non-interfering manner) provided only that the data are available in the form of a more or less standard two dimensional map format.
NASA Astrophysics Data System (ADS)
Goldsmith, John
2014-07-01
The international radio astronomy initiative known as the Square Kilometre Array is a cutting-edge science project, aimed atdramatically expanding our vision and understanding of the Universe. The $2billion+ international project is being shared between Southern Africa and Australia. The Australian component, centred in the Murchison region of Western Australia, is based upon collaboration with Aboriginal communities. A collaborative project called "Ilgarijiri- Things Belonging to the Sky" shared scientific and Aboriginal knowledge of the night sky. Through a series of collaborative meetings and knowledge sharing, the Ilgarijiri project developed and showcased Aboriginal knowledge of the night sky, via an international touring Aboriginal art exhibition, in Australia, South Africa, the USA and Europe. The Aboriginal art exhibition presents Aboriginal stories relating to the night sky, which prominently feature the 'Seven Sisters' and the 'Emu', as well as the collaborative experience with radio astronomers. The success of the Ilgarijiri collaborative project is based upon several principles, which can help to inform and guide future cultural collaborative projects.
Radio Synthesis Imaging - A High Performance Computing and Communications Project
NASA Astrophysics Data System (ADS)
Crutcher, Richard M.
The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.
Phase Synchronization for the Mid-Frequency Square Kilometre Array Telescope
NASA Astrophysics Data System (ADS)
Schediwy, Sascha; Gozzard, David; Stobie, Simon; Gravestock, Charles; Whitaker, Richard; Alachkar, Bassem; Malan, Sias; Boven, Paul; Grainge, Keith
2018-01-01
The Square Kilometre Array (SKA) project is an international effort to build the world’s most sensitive radio telescope operating in the 50 MHz to 14 GHz frequency range. Construction of the SKA has been divided into phases, with the first phase (SKA1) accounting for the first 10% of the telescope's receiving capacity. During SKA1, a low-frequency aperture array comprising over a hundred thousand individual dipole antenna elements will be constructed in Western Australia (SKA1-low), while an array of 197 parabolic-dish antennas, incorporating the 64 dishes of MeerKAT, will be constructed in South Africa (SKA1-mid).Radio telescope arrays such as the SKA require phase-coherent reference signals to be transmitted to each antenna site in the array. In the case of the SKA1-mid, these reference signals will be generated at a central site and transmitted to the antenna sites via fiber-optic cables up to 175 km in length. Environmental perturbations affect the optical path length of the fiber and act to degrade the phase stability of the reference signals received at the antennas, which has the ultimate effect of reducing the fidelity and dynamic range of the data.Since 2011, researchers at the University of Western Australia (UWA) have led the development of an actively-stabilized phase-synchronization system designed specifically to meet the scientific needs and technical challenges of the SKA telescope. Recently this system has been select as the official phase synchronization system for the SKA1-mid telescope. The system is an evolution of Atacama Large Millimeter Array’s distributed ‘photonic local oscillator system’, incorporating key advances made by the international frequency metrology community over the last decade, as well as novel innovations developed by UWA researchers.In this presentation I will describe the technical details of the system; outline how the system's performance was tested using metrology techniques in a laboratory setting, on 186 km of overhead fibre at the South African SKA site, and verified using existing astronomical radio interferometers; and how the system can enhance the astronomical performance of the SKA1-mid telescope.
LIMITS ON THE EVENT RATES OF FAST RADIO TRANSIENTS FROM THE V-FASTR EXPERIMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayth, Randall B.; Tingay, Steven J.; Deller, Adam T.
2012-07-10
We present the first results from the V-FASTR experiment, a commensal search for fast transient radio bursts using the Very Long Baseline Array (VLBA). V-FASTR is unique in that the widely spaced VLBA antennas provide a discriminant against non-astronomical signals and a mechanism for the localization and identification of events that is not possible with single dishes or short baseline interferometers. Thus, far V-FASTR has accumulated over 1300 hr of observation time with the VLBA, between 90 cm and 3 mm wavelength (327 MHz-86 GHz), providing the first limits on fast transient event rates at high radio frequencies (>1.4 GHz).more » V-FASTR has blindly detected bright individual pulses from seven known pulsars but has not detected any single-pulse events that would indicate high-redshift impulsive bursts of radio emission. At 1.4 GHz, V-FASTR puts limits on fast transient event rates comparable with the PALFA survey at the Arecibo telescope, but generally at lower sensitivities, and comparable to the 'fly's eye' survey at the Allen Telescope Array, but with less sky coverage. We also illustrate the likely performance of the Phase 1 SKA dish array for an incoherent fast transient search fashioned on V-FASTR.« less
Antenna design and implementation for the future space Ultra-Long wavelength radio telescope
NASA Astrophysics Data System (ADS)
Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino
2018-04-01
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.
New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy
NASA Astrophysics Data System (ADS)
1998-12-01
SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive and versatile astronomical observatories in the world since its dedication in 1980. The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the Caribbean. In both the VLA and VLBA, the cosmic radio waves received by each antenna are combined with those received from every other antenna in the system to produce images with extremely great resolving power, or ability to see fine detail. The more widely separated the antennas, the greater the resolving power. The greatest separation between antennas of the VLA is 20 miles; in the VLBA, 5,000 miles. If your eyes could see the same level of detail as the VLA, you could, at the distance from New York to Los Angeles, make out an object the size of a small car. With the resolving power of the VLBA, you could read the owner's manual. The VLBA can make images hundreds of times more detailed than those available from the Hubble Space Telescope. However, because of the way in which such multi-antenna radio telescopes, called interferometers, work, there is a gap between the levels of detail obtainable with the VLA and the VLBA. Linking the VLA to the VLBA Pie Town antenna is the first step toward filling in that gap and allowing astronomers to see all scales of structure -- small, medium-sized, and large -- in objects such as stars, galaxies and quasars. Additional antennas, distributed throughout New Mexico, would fully fill that gap. Adding the new antennas to the VLA "would provide the capability to image astronomical objects on all spatial scales, from the very largest to the very smallest. The combination of the VLA and VLBA then would be the only single instrument in astronomy covering such a range of spatial scales, and thus a tool of great and unique value to science," said Vanden Bout. LEFT: NRAO Director Paul Vanden Bout, left, speaks with U.S. Senator Pete Domenici, right, following the ceremony at the Array Operations Center in Socorro Dec. 15. Nobel Laureate Robert Wilson is in the background. The added antennas are part of a comprehensive plan that the NRAO has developed for upgrading the VLA. The existing array of antennas was authorized by Congress in 1972 and built from 1974 to 1980. The upgrade plan also includes replacing the original electronic and digital equipment from the 1970s with modern technology. Such refurbishment will improve the VLA's scientific capabilities from tenfold to a hundredfold in all research areas, and for a modest investment would provide an enhanced facility many times more powerful than the original VLA. "Though the VLA today is hundreds of times more capable than its original design, some of the technologies of the 1970s that still are in use threaten the instrument with premature obsolescence," said Miller Goss, NRAO's director of VLA/VLBA operations. "Replacing those with today's technology will assure the VLA's continued role as one of the world's premier astronomical research facilities. The success of the Pie Town-VLA link shows one way this can happen." "We are enthusiastic and excited about this development, not only because of the scientific value of the Pie Town link itself, but more importantly because it proves the concept of expanding the VLA," said Robert Dickman, of the NSF's Division of Astronomical Sciences. "The AUI Board of Trustees, in providing 30 percent of the support for the optical fiber link from its corporate reserves, recognizes the scientific importance of making this connection between the VLA and the VLBA," said Martha P. Haynes, AUI's Interim President. Referring to the scientific phenomenon of forming images using the arrays to produce "interferometric fringes," Haynes, a radio astronomer herself, remarked that "We view the provision of corporate matching funds for this project as a 'fringe benefit' for NRAO." Work on the Pie Town-VLA link began in late 1997. Project engineer Ron Beresford, who came from the Australia Telescope National Facility to work on the link, said "This is the longest fiber-optic link yet demonstrated in radio astronomy. Radio telescopes in Australia and elsewhere are connected by a few miles of fiber, but the link between Pie Town and the VLA is more than 20 times longer than any other such fiber link." The project involved designing, building and testing specialized electronic equipment to connect both the VLA and the Pie Town antenna to the fiber-optic cable. In addition, both hardware and software at the VLA had to be modified to allow using the Pie Town antenna as an integral part of the VLA. "This was an extremely complex undertaking, and it succeeded because of an outstanding team effort involving scientists, engineers and technicians," Goss said. The VLA and VLBA are facilities of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
World War II Radar and Early Radio Astronomy
NASA Astrophysics Data System (ADS)
Smith, G.
2005-08-01
The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.
Astronomers Make First Images With Space Radio Telescope
NASA Astrophysics Data System (ADS)
1997-07-01
Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as part of the VLBA instrument, was modified over the past four years to allow it to incorporate data from the satellite. Correlation of the observational data was completed successfully on June 12, after the exact timing of the satellite recording was established. Further computer processing produced an image of PKS 1519-273 -- the first image ever produced using a radio telescope in space. For Jim Ulvestad, the NRAO astronomer who made the first image, the success ended a long quest for this new capability. Ulvestad was involved in an experiment more than a decade ago in which a NASA communications satellite, TDRSS, was used to test the idea of doing radio astronomical imaging by combining data from space and ground radio telescopes. That experiment showed that an orbiting antenna could, in fact, work in conjunction with ground-based radio observatories, and paved the way for HALCA and a planned Russian radio astronomy satellite called RadioAstron. "This first image is an important technical milestone, and demonstrates the feasibility of a much more advanced mission, ARISE, currently being considered by NASA," Ulvestad said. The first image showed no structure in the object, even at the extremely fine level of detail achievable with HALCA; it is what astronomers call a "point source." This object also appears as a point source in all-ground-based observations. In addition, the 1986 TDRSS experiment observed the object, and, while this experiment did not produce an image, it indicated that PKS 1519-273 should be a point source. "This simple point image may not appear very impressive, but its beauty to us is that it shows our entire, complex system is functioning correctly. The system includes not only the orbiting and ground-based antennas, but also the orbit determination, tracking stations, the correlator, and the image-processing software," said Jonathan Romney, the NRAO astronomer who led the development of the VLBA correlator, and its enhancement to process data from orbiting radio telescopes. "We would be skeptical of a complex image if we had not been able to obtain a good point image first," Romney added. A second observing target, the quasar 1156+295, observed on June 5, made a more interesting picture. Seen by ground-based radio observatories, this object, at a distance of 6.5 billion light years, has been known to show an elongation in its structure to the northeast of the core. However, seen with the space-ground system, it is clearly shown to have both a core and a complex "jet" emerging from the core. Such jets, consisting of subatomic particles moving near the speed of light, are seen in many quasars and active galaxies throughout the universe. In fact, 1156+295 is one of a class of objects recently found by NASA's Compton Gamma-Ray Observatory to exhibit powerful gamma-ray emission; such objects are among the most compact and energetic known in the universe. "By showing that this object actually is a core-jet system, HALCA has produced its first new scientific information, and demonstrates its imaging capabilities for a variety of astrophysical investigations," Romney said. "This image shows that the jet extends much closer to the core, or 'central engine' of the quasar than is shown by ground-only imaging," Romney added. "This is an exciting and historical achievement for radio astronomy," said Miller Goss, NRAO's VLA/VLBA Director. "At NRAO, we have seen our colleagues -- scientists, electrical engineers, computer programmers and technicians in Socorro and Green Bank -- work for years on this project. Now, they can take pride in their success." Radio astronomers, like astronomers using visible light, usually seek to make images of the objects at which they aim their telescopes. Because radio waves are much longer than light waves, a radio telescope must be much larger than an optical instrument in order to see the same amount of detail. Greater ability to see detail, called resolving power, has been a quest of radio astronomers for more than half a century. To see a level of detail equal to that revealed by optical telescopes would require a radio-telescope dish miles across. In the 1950s, British and Australian scientists developed a technique that used smaller, widely-separated antennas, and combined their signals to produce resolving power equal to that of a single dish as large as the distance between the smaller dishes. This technique, called interferometry, is used by the VLA, with 27 antennas and a maximum separation of 20 miles, and the VLBA, with 10 antennas and a maximum separation of 5,000 miles. Systems such as the VLBA, in which the antennas are so widely separated that data must be individually tape-recorded at each site and combined after the observation, are called Very Long Baseline Interferometry (VLBI) systems. VLBI was developed by American and Canadian astronomers and was first successfully demonstrated in 1967. The VLBA, working with radio telescopes in Europe, represents the largest radio telescope that can be accommodated on the surface of the Earth. With an orbit that carries it more than 13,000 miles above the Earth, HALCA, working with the ground-based telescopes, extends the "sharp vision" of radio astronomy farther than ever before. Using HALCA, radio astronomers expect to routinely produce images with more than 100 times the detail seen by the Hubble Space Telescope. Astronomers around the world are waiting to use the satellite to seek answers to questions about some of the most distant and intriging objects in the universe. As much as one-third of the VLBA's observing time will be devoted to observations in conjunction with HALCA. Over the expected five-year lifetime of HALCA, scientists hope to observe hundreds of quasars, pulsars, galaxies, and other objects. Launched from Japan's Kagoshima Space Center, HALCA orbits the Earth every six hours, ranging from 350 to 13,200 miles high. The 1,830-pound satellite has a dish antenna 26 feet in diameter. The antenna, folded like an umbrella for the launch, was unfolded under radio control from the ground on Feb. 26. The antenna was pointed toward PKS 1519-273 after a three-month checkout of the spacecraft's electronics, computers and guidance systems. HALCA observations represent a true international scientific collaboration. In addition to the HALCA spacecraft, built, launched, and operated by Japan's ISAS, the participation of a large number of ground-based radio telescopes is also essential. NRAO's VLBA and VLA instruments, including the VLBA correlator, will be a vital component of this collaboration. Other radio telescopes in the U.S., Japan, Europe, and Australia, also will participate. NRAO's facility at Green Bank, WV, is one of five tracking stations where the data collected on the spacecraft are received and recorded. Another is at an ISAS facility in Japan, and JPL operates three additional tracking stations, in California, Australia, and Spain. JPL also collects information from all tracking stations to determine the very accurate spacecraft orbit necessary to reduce these observations. The NRAO Space VLBI efforts in Socorro and Green Bank were supported by funding from the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.
2005-12-01
Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.
Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers
NASA Astrophysics Data System (ADS)
Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.
2018-04-01
Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.
Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.
NASA Astrophysics Data System (ADS)
2001-04-01
Caption : PR Photo 14/01 shows how the ALMA facility may look like when it is ready at Chajnantor. Courtesy NAOJ . Representatives from Europe, Japan, and North America met in Tokyo today and signed a Resolution affirming their mutual intent to construct and operate a giant radio telescope in co-operation with the Republic of Chile, where the telescope will be located. The Atacama Large Millimeter/Submillimeter Array (ALMA) is conceived as a radio telescope comprised of sixty-four transportable 12-meter diameter antennas distributed over an area 14 km in extent. Japanese participation will allow enhanced imaging and spectroscopy, especially at submillimeter wavelengths. By pointing all the antennas in unison toward a single astronomical object, and combining the signals detected by all the antennas with a super-fast digital signal processor, this gigantic radio telescope achieves an imaging detail 10 times better than that of the Hubble Space Telescope. The combined area of all 64 antennas used to collect signals from celestial objects is more than 40 times larger than that available to astronomers using existing submillimeter telescopes. ALMA will be built on the Andean plateau at 5,000 meters altitude near the Atacama Desert of northern Chile. This site provides the exceptionally dry atmospheric conditions necessary for astronomical observations at millimeter and submillimeter wavelengths (wavelengths between the radio and far-infrared spectral regions). Observations with this telescope will have a profound impact on virtually all fields of astrophysical research. The most important targets include the most distant (i.e., the youngest) galaxies as they emerged in the early Universe. These are expected to have become rapidly enshrouded in the dust produced by the first stars; the dust absorbs much of the starlight making the galaxies difficult to see in the optical wavebands, but these same galaxies shine brightly at millimeter and submillimeter wavelengths. In our own Galaxy, ALMA will study the morphology, the motions and the chemistry of dust-enshrouded regions where stars and planets are being formed. ALMA will shed light on these optically `dark' celestial regions that carry key information on the origin of the richness of structure in the Universe and clues to the origin of life. ALMA is a merger of three large projects - The Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter and Submillimeter Array (LMSA) of Japan - each of which has been endorsed as the top-priority project in their respective astronomical communities. The European and North American projects were merged into ALMA in 1999 and joint design and development of ALMA began at that time. The National Research Council of Canada is participating with the U.S. in the project. With Japan joining the project as a third partner equal with North America and Europe, and with Chile also taking part, ALMA has become one of the first truly global projects in the history of fundamental science. In the agreement signed today, the partners pledge to use their best efforts to obtain full approval and funding for their participation in ALMA. With the schedule planned, the telescope should be in full operation in 2010. Note [1]: This Press Release is issued jointly by ESO for its members plus UK and Spain, by the National Astronomical Observatory of Japan (NAOJ), by the US National Science Foundation (NSF) and by CONICYT in Chile. The embargo period coincides with a Press Conference by the partners in Tokyo (Japan). Links to earlier Press Releases etc. about ALMA are found on the dedicated webpage.
The Spectrum Landscape: Prospects for Terrestrial Radio Astronomy
NASA Astrophysics Data System (ADS)
Liszt, Harvey Steven
2018-01-01
Radio astronomers work within broad constraints imposed by commercial and other non-astronomical uses of the radio spectrum, somewhat modified to accommodate astronomy’s particular needs through the provision of radio quiet zones, radio frequency allocations, coordination agreements and other devices of spectrum management. As radio astronomers increase the instantaneous bandwidth, frequency coverage and sensitivity of their instruments, these external constraints, and not the limitations of their own instruments, will increasingly be the greatest obstacles to radio astronomy’s ability to observe the cosmos from the surface of the Earth. Therefore, prospects for future radio astronomy operations are contingent on situational awareness and planning for the impact of non-astronomical uses of the radio frequency spectrum. New radio astronomy instruments will have to incorporate adaptive reactions to external developments, and radio astronomers should be encouraged to think in untraditional ways. Increased attention to spectrum management is one of these. In this talk I’ll recap some recent developments such as the proliferation of 76 – 81 GHz car radar and orbiting earth-mapping radars, either of which can burn out a radio astronomy receiver. I’ll summarize present trends for non-astronomical radio spectrum use that will be coming to fruition in the next decade or so, categorized into terrestrial fixed and mobile, airborne and space-borne uses, sub-divided by waveband from the cm to the sub-mm. I’ll discuss how they will impact terrestrial radio astronomy and the various ways in which radio astronomy should be prepared to react. Protective developments must occur both within radio astronomy’s own domain – designing, siting and constructing its instruments and mitigating unavoidable RFI – and facing outward toward the community of other spectrum users. Engagement with spectrum management is no panacea but it is an important means, and perhaps the only means, by which radio astronomy can take an active role in shaping its terrestrial environment.
Antenna data storage concept for phased array radio astronomical instruments
NASA Astrophysics Data System (ADS)
Gunst, André W.; Kruithof, Gert H.
2018-04-01
Low frequency Radio Astronomy instruments like LOFAR and SKA-LOW use arrays of dipole antennas for the collection of radio signals from the sky. Due to the large number of antennas involved, the total data rate produced by all the antennas is enormous. Storage of the antenna data is both economically and technologically infeasible using the current state of the art storage technology. Therefore, real-time processing of the antenna voltage data using beam forming and correlation is applied to achieve a data reduction throughout the signal chain. However, most science could equally well be performed using an archive of raw antenna voltage data coming straight from the A/D converters instead of capturing and processing the antenna data in real time over and over again. Trends on storage and computing technology make such an approach feasible on a time scale of approximately 10 years. The benefits of such a system approach are more science output and a higher flexibility with respect to the science operations. In this paper we present a radically new system concept for a radio telescope based on storage of raw antenna data. LOFAR is used as an example for such a future instrument.
Continent-Spanning Radio Telescope Blazes Trails At the Frontiers of Astrophysics
NASA Astrophysics Data System (ADS)
1999-06-01
The supersharp radio "vision" of the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) is revealing unprecedented details of astronomical objects from stars in our own cosmic neighborhood to galaxies billions of light-years away. Astronomers from across North America and beyond are presenting the results of VLBA research at the American Astronomical Society's (AAS) meeting in Chicago. "The VLBA is one of the most powerful tools in the world for astronomy," said Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO), which operates the VLBA. "It can produce images hundreds of times more detailed than those produced by the Hubble Space Telescope, and that capability has yielded some spectacular scientific results." Examples of VLBA research presented at the AAS meeting include the most accurate measurement ever made of the distance to another galaxy; the detection of our Solar System's orbital motion around the center of our own Galaxy; a "movie" showing the expansion of debris from a star's explosion in a galaxy 11 million light-years away; and a "movie" of gas motions in the atmosphere of a star more than 1,000 light-years away -- the first time gas motions have ever been tracked in a star other than the Sun. With ten giant dish antennas spread from Hawaii in the Pacific to St. Croix in the Caribbean, all working together as a single telescope, the VLBA is "the world's biggest astronomical instrument," Vanden Bout said. The VLBA has been in full operation for more than five years. A pair of sessions at the AAS meeting is devoted to reports of research using the VLBA. In more than 40 scientific presentations, astronomers tell how they used the VLBA to gain valuable new information about nearly every area from the frontiers of astrophysics. Some of those reporting on their VLBA research are graduate students working on their Ph.D degrees. "We are particularly proud that this instrument, one of the world's premier facilities for astronomy, is being used by the next generation of astronomers," said Miller Goss, NRAO's Director for VLA/VLBA Operations. "In addition, we are telling astronomers who have not yet used the VLBA how we can help them use it for their own research." As a national facility provided by the NSF, the VLBA is available free of charge to scientists, based on peer review of their proposed observing projects. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
New Images Show Unprecedented Detail of Neighbor Galaxy's Gas
NASA Astrophysics Data System (ADS)
2001-01-01
Using radio telescopes in the United States and Europe, astronomers have made the most detailed images ever of Hydrogen gas in a spiral galaxy other than the Milky Way. The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico and the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands to produce an image of the galaxy M33, known to amateur astronomers as the Pinwheel Galaxy. Doppler-Shift Image of M33's Gas "An image with the level of detail we have achieved opens the door to learning fundamental new facts about the relationship between massive stars and the galaxy's complicated gaseous environment. This, in turn, will help us better understand how galaxies age," said David Thilker, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Thilker worked with Robert Braun of the Netherlands Foundation for Research in Astronomy and Rene Walterbos of New Mexico State University in Las Cruces. The scientists reported their findings today at the American Astronomical Society's meeting in San Diego, CA. The VLA and WSRT received radio waves at a wavelength of 21 centimeters that are naturally emitted by Hydrogen atoms. Using this data, the astronomers produced images showing the distribution of neutral atomic Hydrogen in M33. In addition, because the atoms emit at a very specific wavelength, the scientists could detect the galaxy's rotation by tuning the telescopes' radio receivers to receive radio waves whose length has been changed by Doppler shifting. The new images show details of the galaxy smaller than 130 light-years. "With more computer processing, we will be able to see features as small as 65 light-years," Thilker said. "This, we believe, will allow us to see 'bubbles' in the galaxy's gas that have been inflated as the result of one or more supernova explosions," Thilker added. At a distance from Earth of about 2.7 million light-years, M33 is a member of the Local Group of galaxies, which also includes our own Milky Way and the Andromeda Galaxy. With a diameter of about 60,000 light-years, it is roughly half the size of the Milky Way. Under vary dark skies, people with excellent vision can see M33 with the unaided eye. With common amateur telescopes, its spiral arms can be seen. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The NRAO Observing for University Classes Program
NASA Astrophysics Data System (ADS)
Cannon, John M.; Van Moorsel, Gustaaf A.
2017-01-01
The NRAO "Observing for University Classes" program is a tremendous resource for instructors of courses in observational astronomy. As a service to the astronomical and educational communities, the NRAO offers small amounts of observing time on the Very Large Array (VLA) and the Very Long Baseline Array to such instructors. The data can be used by students and faculty to demonstrate radio astronomy theory with modern data products. Further, the results may lead to publication; this is a unique opportunity for faculty members to integrate research into the classroom. Previous experience with NRAO facilities is required for instructors; individuals without radio astronomy experience can take advantage of other NRAO educational opportunities (e.g., the Synthesis Imaging Workshop) prior to using the program. No previous experience with radio astronomy data is required for students; this is the primary target audience of the program. To demonstrate concept, this poster describes three different VLA observing programs that have been completed using the "Observing for University Classes" resource at Macalester College; undergraduate students have published the results of all three of these programs. Other recent "Observing for University Classes" programs are also described.
Tremendous Mass Concentration in Strange Galaxy Revealed by VLBA
NASA Astrophysics Data System (ADS)
1995-01-01
A dense whirling mass orbiting what almost certainly is a black hole of truly Brobdingnagian proportions has been discovered at the heart of an active galaxy some 21 million light years from Earth. The astronomical observations were made by an international team of Japanese and American astronomers using a continent-wide radio telescope funded by the National Science Foundation. The work is reported in the January 12th issue of Nature. The tremendous concentration of mass, equivalent to 40 million suns, in the center of the galaxy NGC4258 in the constellation Canes Venatici, was revealed by the apparent rotation of a molecular disk that surrounds it. The observations showed that the disk of dense material is orbiting within the galaxy's nucleus at velocities -- up to 650 miles per second -- that require the gravitational pull of such a massive object. The high angular resolution and sensitivity of the Very Long Baseline Array of the National Radio Astronomy Observatory allowed precise measurements of the differential rotation of the material in the disk, which provides the most direct and definitive evidence to date for the presence of a supermassive black hole in the center of another galaxy. Black holes, so dense that nothing -- not even light -- can escape their gravitational fields, have long been thought to be present in the centers of active galaxies, where they would act as central engines driving a variety of exotic and energetic phenomena that are seen on much larger scales, such as jets and powerful X ray emission. NGC 4258, a spiral some 90,000 light-years across, is known to have jets of gas that are twisted into the shape of a helix emerging from the nucleus at speeds of 400 miles per second. Makoto Miyoshi of Japan's Mizusawa Astrogeodymanics Observatory; James Moran, James Herrnstein and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA; Naomasa Nakai of Japan's Nobeyama Radio Observatory; Philip Diamond of the National Radio Astronomy Observatory in Socorro, NM; and Makoto Inoue, also of Nobeyama, presented their discovery today to the 185th meeting of the American Astronomical Society in Tucson, Arizona. "The beautiful definition of the motion in the disk and its structure, and the high density of the central object -- at least ten thousand times that of any known star cluster -- convinces us that this must be a black hole.'' says James Moran. "The dynamics of the disk are fairly simple, and we suspect it may offer us a laboratory for measuring a host of other fundamental phenomena in astrophysics.'' Miller Goss, assistant director of NRAO for VLBA/ VLA Operations comments, ''this is a sensational result, showing the excellent science that comes from skilled use of the highest- resolution instrument available to astronomers... It's particularly nice to see such valuable contributions coming from the early use of the VLBA." The team of astronomers used the VLBA to study a disk of molecules deep within the nucleus of NGC 4258. The disk, tiny compared to the galaxy, contains heated water molecules that amplify microwave radio emissions in a manner similar to the way in which a laser amplifies light. The disk is oriented fortuitously so that pencil-like beams of microwaves are directed toward the earth. These powerful naturally-occurring microwave amplifiers, called masers, were discovered in the galaxy in 1982. In 1992 Nakai, Inoue and Miyoshi, using a radio telescope at Nobeyama, Japan, made the surprising discovery that some of the masers had very high velocities with respect to the galaxy. The large apparent velocities they observed could not be accounted for by the galaxy's normal rotation. At that time, the Japanese researchers suggested that the masers might be orbiting a black hole. Research by Greenhill and colleagues, using the technique of Very Long Baseline Interferometry (VLBI), provided preliminary support for this hypothesis. The VLBA, an instrument built specifically for VLBI, now has confirmed the hypothesis and allowed astronomers to paint a surprisingly clear picture of activity in the depths of this galactic nucleus. Since microwaves are not attenuated by the gas and dust that naturally lie in galactic nuclei, radio astronomers are able to look more deeply than are optical astronomers. The astronomers calculate that the density of the central object is at least 100 million solar masses per cubic light-year. If this mass were in the form of a star cluster, the stars would be separated by average distances only somewhat greater than the diameter of the Solar System. Such a cluster could probably not survive the inevitable collisions between the stars, leading to the conclusion that the central mass is probably a black hole. The mass density estimated to lie in this central region is at least ten times greater than that of any other black-hole candidate. "The properties of this disk provide compelling evidence for the presence of a massive black hole," the astronomers wrote in their paper in Nature. Independent measurements, made at the Haystack Observatory and at the Max Planck Institute for Radio Astronomy in Germany, of the gravitational acceleration of the masers as they are swept along in the disk also allowed the astronomers to determine the distance to the galaxy with greater precision than had been done before. Previous estimates of the galaxy's distance ranged from about 11 million to nearly 23 million light years. Incorporating these VLBA observations, the astronomers obtained a distance estimate of 20.8 million light years, plus or minus 4.2 million light-years. This direct geometric distance estimate provides an important reference point in the ongoing work to measure the size and age of the universe. The group will continue to observe the disk over the next few years with the VLBA. Inoue comments, "We predict that the masers should move relative to one another by about 35 microarcseconds in one year. The rotation should be clearly evident with the tremendous angular resolution of the VLBA. This will allow a precise trigonometric determination of the distance to the galaxy, as well as a detailed look at the orbit of the molecular disk." The VLBA observations were made at a radio frequency of 22 GHz. The VLBA, dedicated in 1993, is a system of ten 82-foot-diameter (25 meter) dish antennas located across the U.S. from Hawaii to the Virgin Islands. All ten antennas work as a single instrument and are controlled from the NRAO's Array Operations Center in Socorro, New Mexico. The VLBA is providing astronomers with unprecedented opportunities to make routine, high- quality radio observations. For the observations of NGC 4258, the VLBA was joined by the Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The VLBA and the VLA are facilities of the National Radio Astronomy Observatory, operated by Associated Universities, Inc., under cooperative agreement with the National Science Foundation. Moran said that the VLBA correlator, the special-purpose processor that combines the data from each telescope and forms the heart of the multi-antenna radio telescope, "is at least 50 times more powerful than any previous correlator. It is really awesome to see the data zip through the correlator. As a system, the VLBA represents a major advance for the field in terms of data capacity, sensitivity, dynamic range and ease of use." The galaxy NGC 4258 is also known as Messier 106, and is visible in moderate-sized amateur telescopes in the nighttime winter sky of the northern hemisphere, near the Big Dipper.
Go Home NRAO: National Radio Astronomy Observatory Search NRAO... Go Home About NRAO Research Facilities Contact Us Careers Director's Office Maps & Directions Learn & Explore Radio Astronomy Brochures & Posters Presentations Essential Radio Astronomy Ask an Astronomer Astronomers Home >
SETI-ITALIA 2008: On-going searches and future prospects
NASA Astrophysics Data System (ADS)
Montebugnoli, S.; Bartolini, M.; Bianchi, G.; Cosmovici, C.; Monari, J.; Orlati, A.; Perini, F.; Pluchino, S.; Pupillo, G.; Salerno, E.; Schillirò, F.; Zoni, L.
2010-12-01
The Medicina Radioastronomical Station is located nearby Bologna, in Italy. It consists of two receiving antennas currently dedicated to the astronomical research at radio frequencies. The 32 m diameter parabolic dish performs observations from 1.4 to 22 GHz whereas the Northern Cross (a 30.000 m 2 wide T-shaped array transit antenna) works at 408 MHz. So far SETI observations have been performed using a SERENDIP IV high resolution spectrometer connected to the parabolic antenna. Data acquisition were performed meanwhile the antenna was employed in ordinary astronomical observations (piggy-back mode). An innovative method to search for possible extraterrestrial signals could be provided by using the UHF Northern Cross transit telescope. In this paper observational modalities and the required technological set-up are investigated.
Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes
NASA Astrophysics Data System (ADS)
Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.
Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4π steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.
The Next-Generation Very Large Array: Technical Overview
NASA Astrophysics Data System (ADS)
McKinnon, Mark; Selina, Rob
2018-01-01
As part of its mandate as a national observatory, the NRAO is looking toward the long range future of radio astronomy and fostering the long term growth of the US astronomical community. NRAO has sponsored a series of science and technical community meetings to consider the science mission and design of a next-generation Very Large Array (ngVLA), building on the legacies of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Array (VLA).The basic ngVLA design emerging from these discussions is an interferometric array with approximately ten times the sensitivity and ten times higher spatial resolution than the VLA and ALMA radio telescopes, optimized for operation in the wavelength range 0.3cm to 3cm. The ngVLA would open a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milli-arcsecond resolution, as well as unprecedented broadband continuum polarimetric imaging of non-thermal processes. The specifications and concepts for major ngVLA system elements are rapidly converging.We will provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing will be presented. We will also describe the major development activities that are presently underway to advance the design.
32 GHz Celestial Reference Frame Survey for Dec < -45 deg.
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina
2013-04-01
(We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. As it turned out ATCA had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.
History of Chandra X-Ray Observatory
2004-09-24
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Technical Reports Server (NTRS)
2004-01-01
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Astrophysics Data System (ADS)
Nita, Gelu M.; Gary, Dale E.
2016-08-01
Following our prior theoretical and instrumental work addressing the problem of automatic real-time radio frequency interference (RFI) detection and excision from astronomical signals, the wideband Spectral Kurtosis (SK) spectrometer design we proposed is currently being considered as an alternative to the traditional spectrometers when building the new generation of radio instruments. The unique characteristic of an SK spectrometer is that it accumulates both power and power-squared, which are then used to compute an SK statistical estimator proven to be very effective in detecting and excising certain types of RFI signals. In this paper we introduce a novel measurement technique that exploits the power and power square statistics of an SK spectrometer to determine durations and signal-to-noise ratios of transient signals, whether they are RFI or natural signals, even when they are below the time resolution of the instrument. We demonstrate this novel experimental technique by analyzing a segment of data recorded by the Expanded Owens Valley Solar Array Subsystem Testbed (EST) during a solar radio burst in which microwave spike bursts occurred with durations shorter than the 20 ms time resolution of the instrument. The duration of one well-observed spike is quantitatively shown to be within a few percent of 8 ms despite the 20 ms resolution of the data.
PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†
NASA Astrophysics Data System (ADS)
Naghibzadeh, Shahrzad; van der Veen, Alle-Jan
2018-06-01
Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.
Sky Survey Provides New Radio View of Universe
NASA Astrophysics Data System (ADS)
2004-10-01
Astronomers using the National Science Foundation's Very Large Array (VLA) have overcome longstanding technical hurdles to map the sky at little-explored radio frequencies that may provide a tantalizing look deep into the early Universe. The scientists have released images and data covering half of the sky visible from the VLA, and hope to complete their survey within a year. Radio Galaxies A "rogues' gallery" of radio galaxy types seen in the VLSS. CREDIT: NRAO/AUI/NSF (Click on Image for Graphics Page) The VLA Low-frequency Sky Survey (VLSS) is producing sky images made at an observing frequency of 74 MHz, a far lower frequency than used for most current radio-astronomy research. "Because of the Earth's ionosphere, such a low frequency has proven very difficult for high-quality imaging, and it is only in the past few years that we have developed the techniques that make a project like the VLSS possible," said Rick Perley, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Because the high-quality VLSS images will give astronomers a look at the Universe through what essentially is a new "window," they expect the images to reveal some rare and important objects. "We expect to find very distant radio galaxies -- galaxies spewing jets of material at nearly light speed and powered by supermassive black holes," said Joseph Lazio of the Naval Research Laboratory in Washington, DC. "By determining just how distant these radio galaxies are, we will learn how early the black holes formed in the history of the Universe," he added. Another tantalizing possibility is that the low-frequency images may reveal "halos" and "relics" produced by collisions of galaxies in clusters. If the halos and relics are found in the distant, and thus early, Universe, it will give scientists important clues about the timetable for formation of large-scale structure. In addition, the astronomers hope that the VLSS images may show previously-undiscovered pulsars -- superdense, spinning neutron stars. Massive planets -- "super Jupiters" circling stars beyond the Sun -- also might reveal themselves through bursts of radio emission at the frequency of this survey, the astronomers speculated. Images from the survey are being made available to other scientists as soon as they are completed. The survey will use some 800 hours of VLA observing time. The newly-released images and data are available via the NRAO Web site. "By doing this survey and making the results available, we are bringing low-frequency radio data, previously quite difficult to produce, to all astronomers in a simple and easy manner," Perley said. "We also expect that this survey will spur additional research into objects that scientists find puzzling or interesting," Perley saidd. "We really will have to wait for years to know the full scientific benefit of this survey," he said. In addition to Perley and Lazio, the VLSS team includes James Condon and William Cotton of NRAO; Aaron Cohen and Wendy Lane of the National Research Council and the Naval Research Laboratory; Namir Kassim of the Naval Research Laboratory; and William Erickson of the University of Maryland and University of Tasmania. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Science with the VLA Sky Survey (VLASS)
NASA Astrophysics Data System (ADS)
Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group
2015-01-01
The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start observing in 2016.
NASA Astrophysics Data System (ADS)
Molenaar, G.; Smirnov, O.
2018-07-01
KERN is a bi-annually released set of radio astronomical software packages. It should contain most of the standard tools that a radio astronomer needs to work with radio telescope data. The goal of KERN is to save time and prevent frustration in setting up of scientific pipelines, and to assist in achieving scientific reproducibility.
Gas Clouds in Whirlpool Galaxy Yield Important Clues Supporting Theory on Spiral Arms
NASA Astrophysics Data System (ADS)
2004-06-01
Astronomers studying gas clouds in the famous Whirlpool Galaxy have found important clues supporting a theory that seeks to explain how the spectacular spiral arms of galaxies can persist for billions of years. The astronomers applied techniques used to study similar gas clouds in our own Milky Way to those in the spiral arms of a neighbor galaxy for the first time, and their results bolster a theory first proposed in 1964. M51 The spiral galaxy M51: Left, as seen with the Hubble Space Telescope; Right, radio image showing location of Carbon Monoxide gas. CREDIT: STScI, OVRO, IRAM (Click on image for larger version) Image Files Optical and Radio (CO) Views (above image) HST Optical Image with CO Contours Overlaid Radio/Optical Composite Image of M51 VLA/Effelsberg Radio Image of M51, With Panel Showing Magnetic Field Lines The Whirlpool Galaxy, about 31 million light-years distant, is a beautiful spiral in the constellation Canes Venatici. Also known as M51, it is seen nearly face-on from Earth and is familiar to amateur astronomers and has been featured in countless posters, books and magazine articles. "This galaxy made a great target for our study of spiral arms and how star formation works along them," said Eva Schinnerer, of the National Radio Astronomy Observatory in Socorro, NM. "It was ideal for us because it's one of the closest face-on spirals in the sky," she added. Schinnerer worked with Axel Weiss of the Institute for Millimeter Radio Astronomy (IRAM) in Spain, Susanne Aalto of the Onsala Space Observatory in Sweden, and Nick Scoville of Caltech. The astronomers presented their findings to the American Astronomical Society's meeting in Denver, Colorado. The scientists analyzed radio emission from Carbon Monoxide (CO) molecules in giant gas clouds along M51's spiral arms. Using telescopes at Caltech's Owens Valley Radio Observatory and the 30-meter radio telescope of IRAM, they were able to determine the temperatures and amounts of turbulence within the clouds. Their results provide strong support for a theory that "density waves" explain how spiral arms can persist in a galaxy without winding themselves so tightly that, in effect, they disappear. The density-wave theory, proposed by Frank Shu and C.C. Lin in 1964, says that a galaxy's spiral pattern is a wave of higher density, or compression, that revolves around the galaxy at a speed different from that of the galaxy's gas and stars. Schinnerer and her colleagues studied a region in one of M51's spiral arms that presumably has just overtaken and passed through the density wave. Their data indicate that gas on the trailing edge of the spiral arm, which has most recently passed through the density wave, is both warmer and more turbulent than gas in the forward edge of the arm, which would have passed through the density wave longer ago. "This is what we would expect from the density-wave theory," Schinnerer said. "The gas that passed through the density wave earlier has had time to cool and lose the turbulence caused by the passage," she added. "Our results show, for the first time, how the density wave operates on a cloud-cloud scale, and how it promotes and prevents star formation in spiral arms," Aalto said. The next step, the scientists say, is to look at other spiral galaxies to see if a similar pattern is present. That will have to wait, Schinnerer said, because the radio emission from CO molecules that provides the information on temperature and turbulence is very faint. "When the Atacama Large Millimeter Array (ALMA) comes on line, it will have the ability to extend this type of study to other galaxies. We look forward to using ALMA to test the density-wave model more thoroughly," Schinnerer said. ALMA is a millimeter-wave observatory that will use 64, 12-meter-diameter dish antennas on the Atacama Desert of northern Chile. Now under construction, ALMA will provide astronomers with an unprecedented capability to study the Universe at millimeter wavelengths. The Whirlpool Galaxy was discovered by the French comet-hunter Charles Messier on October 13, 1773. He included it as object number 51 in his now-famous catalog of astronomical objects that, in a small telescope, might be mistaken for a comet. In 1845, the British astronomer Lord Rosse discovered the spiral structure in the galaxy. For amateur astronomers using telescopes in dark-sky locations, M51 is a showpiece object. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NRAO Salutes Past, Looks to Future In 50th-Anniversary Science Meeting
NASA Astrophysics Data System (ADS)
2007-06-01
Radio telescopes now in operation or under construction will be indispensible to scientists wrestling with the big, unanswered questions of 21st-Century astrophysics. That was the conclusion of a wide-ranging scientific meeting held in Charlottesville, Virginia, June 18-21, to mark the 50th anniversary of the National Radio Astronomy Observatory (NRAO). 1957 Dedication Dedication of NRAO, 17 October 1957. Left to right: R.M. Emberson, L.V. Berkner, G.A. Nay, J.W. Findlay (seated in front of 140ft telescope model), N.L. Ashton, D.S. Heeschen, H. Hockenberry. CREDIT: NRAO/AUI/NSF Click on Image for Larger File ALMA Artist's conception of completed ALMA. CREDIT: NRAO/AUI/ESO Click on Image for Larger File (2.4 MB) Nearly 200 scientists from around the world heard presentations about the frontiers of astrophysics and how the challenges at those frontiers will be met. In specialties as disparate as seeking the nature of the mysterious Dark Energy that is speeding the Universe's expansion to unraveling the details of how stars and planets are formed, more than 70 presenters looked toward future research breakthroughs. "NRAO's telescopes have made landmark contributions to the vast explosion of astronomical knowledge of the past half- century, and we look eagerly to making even more important contributions in the coming decades," said Fred K.Y. Lo, NRAO's director. Over the four days of the meeting, discussions ranged from recollections of radio astronomy's pioneering days of vacuum-tube equipment and paper chart recorders to the design of telescopes that will produce amounts of data that will strain today's computers. Presenters pointed out that, in the coming decades, radio telescope observations will advance not only astronomy but also fields of basic physics such as gravitational radiation, particle physics, and the fundamental physical constants. "This meeting provided a great overview of where astrophysics stands today and where the challenges and opportunities of the future lie. We had a good mix of veterans from the early days of radio astronomy and the young researchers who will carry the science well into the observatory's next half-century," said NRAO astronomer Jim Condon, who organized the scientific program. In addition to the presentations, meeting participants got an in-depth tour of the NRAO Technology Center, where the observatory is developing and building state-of-the-art electronics for radio astronomy. A half-century ago, NRAO staffers were preparing to break ground for the observatory's first telescope at Green Bank, West Virginia. That telescope was dedicated the next year. It was followed by ever more capable telescopes, culminating in the Robert C. Byrd Green Bank Telescope, the largest fully-steerable dish antenna in the world. Work at Green Bank laid the technical foundation for the Very Large Array, near Socorro, New Mexico, which was dedicated in 1980. The continent-wide Very Long Baseline Array was dedicated in 1993. NRAO, along with partners in Europe and Japan, is constructing the Atacama Large Millimeter Array (ALMA) in northern Chile, a facility that will bring entirely new observing capabilities to the world's astronomers. ALMA is expected to provide the opportunity for major advances in the understanding of how stars and planets are formed, and to reveal some of the first stars and galaxies that formed in the early Universe, among other achievements. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Watson, F.; Couch, W.
2017-12-01
Australians have watched the sky for tens of thousands of years. The nineteenth century saw the foundation of government observatories in capital cities such as Sydney and Melbourne. While early twentieth-century astronomy focused largely on solar physics, the advent of radio astronomy at the end of the Second World War enabled Australia to take a leading role in the new science, with particular emphasis on low-frequency studies. Today, the radio quietness of its outback interior provides an excellent location for the Australian core of the Square Kilometre Array. Australian optical astronomy has flourished since the 1960s, with the 3.9-metre Anglo-Australian Telescope becoming the principal national facility in 1974. Access to ESO’s facilities at the La Silla Paranal Observatory is warmly welcomed by all Australian astronomers.
VLBA Reveals Formation Region of Giant Cosmic Jet
NASA Astrophysics Data System (ADS)
1999-10-01
Astronomers have gained their first glimpse of the mysterious region near a black hole at the heart of a distant galaxy, where a powerful stream of subatomic particles spewing outward at nearly the speed of light is formed into a beam, or jet, that then goes nearly straight for thousands of light-years. The astronomers used radio telescopes in Europe and the U.S., including the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) to make the most detailed images ever of the center of the galaxy M87, some 50 million light-years away. "This is the first time anyone has seen the region in which a cosmic jet is formed into a narrow beam," said Bill Junor of the University of New Mexico, in Albuquerque. "We had always speculated that the jet had to be made by some mechanism relatively near the black hole, but as we looked closer and closer to the center, we kept seeing an already-formed beam. That was becoming embarrassing, because we were running out of places to put the formation mechanism that we knew had to be there." Junor, along with John Biretta and Mario Livio of the Space Telescope Science Institute, in Baltimore, MD, now have shown that M87's jet is formed within a few tenths of a light-year of the galaxy's core, presumed to be a black hole three billion times more massive than the sun. In the formation region, the jet is seen opening widely, at an angle of about 60 degrees, nearest the black hole, but is squeezed down to only 6 degrees a few light-years away. "The 60-degree angle of the inner part of M87's jet is the widest such angle yet seen in any jet in the universe," said Junor. "We found this by being able to see the jet to within a few hundredths of a light-year of the galaxy's core -- an unprecedented level of detail." The scientists reported their findings in the October 28 issue of the journal Nature. At the center of M87, material being drawn inward by the strong gravitation of the black hole is formed into a rapidly-spinning flat disk, called an accretion disk. The subatomic particles are thought to be pushed outward from the poles of this disk. The scientists believe that magnetic fields in the disk are twisted tightly as the disk spins and then channel the electrically-charged particles into a pair of narrow jets. "Our new image of M87 supports this idea of magnetic fields doing the work of forming the stream of particles into a narrow jet," said Biretta. Jets such as the one in M87 are seen emerging from numerous galaxies throughout the universe. "What we learn about how M87's jet is formed and shaped can be applied to others," said Livio. "These jets coming from radio galaxies and quasars are among the greatest 'particle accelerators' in the universe, but we don't fully understand how they work. This new information will help scientists decipher the physics of these powerful 'engines,'" he added. "We can see such jets very far away, even at distances of billions of light-years," said Junor. "They are fascinating to us because they show how nature is somehow using the accretion disk and the jet to tap into the enormous gravitational energy of a black hole and use that energy to 'light up' the outer regions of the galaxy." "We have never thought these jets are created fully-formed," said Biretta. "They need some space in which to reach the stable configuration we see at larger scales. We now have seen that space for the first time, and this will help show which theoretical models might be right." He added that "magnetic fields are almost certainly involved," and said that future radio-telescope observations will attempt to find evidence of the magnetic fields. The astronomers studied M87 because it is one of the nearest jet- emitting galaxies and its strong radio emission made it an excellent target for radio telescopes. In addition to the VLBA, a continent-wide radio-telescope system, they used the NSF's Very Large Array, a radio telescope near Socorro, NM, and radio telescopes in Germany, Italy, Finland, Sweden and Spain. The signals from all the telescopes were combined to produce an image with extremely great resolution, or ability to discern fine detail. The combination of radio telescopes formed, in effect, a telescope the size of the Earth. In addition to using NSF's VLBA, Junor received financial support for his research from the NSF. Biretta and Livio received support from NASA. Both radio observations with the VLBA and optical observations with the Hubble Space Telescope have measured the motions of concentrations of material in M87's jets, and have shown the material to be moving at apparent speeds greater than that of light. This "superluminal" motion is a geometric illusion created by material moving nearly, but under, the speed of light, but in a direction somewhat toward the Earth. M87 also is known by radio astronomers as Virgo A, the strongest emitter of radio waves in the constellation Virgo. The galaxy was discovered by the French astronomer Charles Messier in 1781. The jet was first seen in 1918 by Lick Observatory astronomer Heber Curtis, who described it as "a curious straight ray." The galaxy's radio emission was first observed by Australian astronomers in 1948/49. M87 is the largest of thousands of galaxies in the Virgo Cluster of galaxies. The Local Group of galaxies, of which our own Milky Way is a member, is in the outskirts of the Virgo Cluster. The VLA and VLBA are instruments of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract with NASA's Goddard Space Flight Center, Greenbelt, MD. ### CAPTION for Radio Images: Radio images of the galaxy M87 at different scales show, top left, giant, bubble-like structures where radio emission is thought to be powered by the jets from the galaxy's central black hole; top right, the jets of subatomic particles coming from the core; and bottom, the new VLBA image of the region close to the core, where the jet is formed into a narrow beam. The scales of the images are shown by white bars in each image: 10 kpc (kiloparsecs) is equal to 32,600 light-years; 1 kpc equals 3,260 light-years; and 0.01 pc equals 0.0326 light- years, or 2,062 times the distance from the Earth to the Sun. The small circle labeled 6Rs shows six times the Schwarzschild Radius, (radius of the event horizon) for the galaxy's black hole. That length corresponds to slightly more than 9 times the distance from the Sun to Pluto. The top two images are from the National Science Foundation's Very Large Array (VLA) radio telescope; the lower one from the NSF's Very Long Baseline Array (VLBA). Credit: National Radio Astronomy Observatory/Associated Universities, Inc. CAPTION for Graphic: Artist's conception of the formation region of M87's jet. Accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light- year of the black hole. Credit: Space Telescope Science Institute.
An Overview of Geodetic and Astrometric VLBI at the Hartebeesthoek Radio Astronomy Observatory
NASA Astrophysics Data System (ADS)
de Witt, A.; Gaylard, M.; Quick, J.; Combrinck, L.
2013-08-01
For astronomical Very Long Baseline Interferometry (VLBI), the Hartebeesthoek Radio Astronomy Observatory (HartRAO), in South Africa operates as part of a number of networks including the European and Australian VLBI networks, global arrays and also space VLBI. HartRAO is the only African representative in the international geodetic VLBI network and participates in regular astrometric and geodetic VLBI programmes. HartRAO will play a major role in the realization of the next generation full-sky celestial reference frame, especially the improvement of the celestial reference frame in the South. The observatory also provides a base for developing the African VLBI Network (AVN), a project to convert redundant satellite Earth-station antennas across Africa to use for radio astronomy. The AVN would greatly facilitate VLBI observations of southern objects. We present an overview of the current capabilities as well as future opportunities for astrometric and geodetic VLBI at HartRAO.
32 GHz Celestial Reference Frame Survey for Dec < -45 deg.
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina
2014-04-01
(We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. During the last scheduled LBA session for this project we discovered ATCA/Mopra had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.
The versatile GBT astronomical spectrometer (VEGAS): Current status and future plans
NASA Astrophysics Data System (ADS)
Prestage, Richard M.; Bloss, Marty; Brandt, Joe; Chen, Hong; Creager, Ray; Demorest, Paul; Ford, John; Jones, Glenn; Kepley, Amanda; Kobelski, Adam; Marganian, Paul; Mello, Melinda; McMahon, David; McCullough, Randy; Ray, Jason; Roshi, D. Anish; Werthimer, Dan; Whitehead, Mark
2015-07-01
The VEGAS multi-beam spectrometer (VEGAS) was built for the Green Bank Telescope (GBT) through a partnership between the National Radio Astronomy Observatory (NRAO) and the University of California at Berkeley. VEGAS is based on a Field Programmable Gate Array (FPGA) frontend and a heterogeneous computing backend comprised of Graphical Processing Units (GPUs) and CPUs. This system provides processing power to analyze up to 8 dual-polarization or 16 single-polarization inputs at bandwidths of up to 1.25 GHz per input. VEGAS was released for "shared-risk" observing in March 2014 and it became the default GBT spectral line backend in August 2014. Some of the early VEGAS observations include the Radio Ammonia Mid-Plane Survey, mapping of HCN/HCO+ in nearby galaxies, and a variety of radio-recombination line and pulsar projects. We will present some of the latest VEGAS science highlights.
The Very Large Array Data Processing Pipeline
NASA Astrophysics Data System (ADS)
Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako
2018-01-01
We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an international consortium of scientists and software developers based at the National Radio Astronomical Observatory (NRAO), the European Southern Observatory (ESO), and the National Astronomical Observatory of Japan (NAOJ).
Early Dutch radio astronomy (1940-1970) : the people and the politics
NASA Astrophysics Data System (ADS)
Elbers, Astrid
2015-12-01
Radio astronomy was born during the Second World War. The early post-war radio astronomy group in the Netherlands was one of the most important radio astronomy groups in the world. There are several reasons for this. Firstly: Dutch radio astronomers were trained as (optical) astronomers, while in most countries engineers and physicists with a background in wartime radar research were the first radio 'astronomers'. This was because radio telescopes shared the technology of wartime radar installations. Because Dutch astronomers were not familiar with the new kind of instrumentation, they had to conclude strategic alliances with industrial partners such as Philips, the PTT and the KNMI. These alliances would offer much more than merely technical know-how, which means that the disadvantage would prove to be an advantage in the end. Secondly: astronomy was still a very small-scale undertaking in the early post-war period. Even so, ZWO was still a very small organisation. The fact that so few people were involved meant that the impact of a personal network could be enormous. Thirdly: the Dutch post-war context was remarkably favourable to science: it was considered to be a key factor in the rebuilding of the country.
Astronomers' Do-It-Yourself Project Opening A New Window on the Universe
NASA Astrophysics Data System (ADS)
1999-05-01
Rolling up their sleeves to build and install new equipment for the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope, a team of astronomers has opened a new window on the universe, revealing tantalizing new information about the explosions of massive stars, the workings of galaxies with supermassive black holes at their centers, and clusters of galaxies. "We're going back to the region of wavelengths where Karl Jansky started radio astronomy in 1932," said Namir Kassim, of the Naval Research Laboratory (NRL), in Washington, D.C. "This is one of the most poorly explored regions of the electromagnetic spectrum, yet it offers tremendous potential to learn exciting new information about everything from the Sun and planets to galaxy clusters and the universe itself," Kassim said. Kassim, along with Rick Perley of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; William Erickson, a professor emeritus at the University of Maryland; and Joseph Lazio, also of NRL, presented results of their observations with the new VLA system at the American Astronomical Society's meeting in Chicago. The new system uses the 27 dish antennas of the VLA, each 25 meters (82 feet) in diameter, to receive cosmic radio emissions at a frequency of 74 MHz, or a wavelength of about four meters. This frequency, lower than that of the FM broadcast band, is far below the usual frequencies, 1- 50 GHz, used for radio astronomy. "Though the region of 15-150 MHz is where Jansky and Grote Reber did the first radio-astronomy work in the 1930s and 1940s, it has long been neglected because of technical difficulties of working in that region," said Perley. Still, the astronomers said, there is much to be learned by studying the universe at these wavelengths. "There are phenomena associated with the Sun and planets, with other objects in our own Milky Way Galaxy, and with other galaxies and clusters of galaxies, and potentially ancient emission from the Universe itself that we can see only by observing at these longer wavelengths," Kassim said. The results of their first observations with the new VLA system have proven their point. Aiming the VLA at the supernova remnant Cassiopeia A, the shell of debris from a giant stellar explosion, they found evidence for cool gas inside the shell that has not yet been shocked by the "reverse shock" that propagates backwards through the "ejecta" towards the explosion's center "We know how old this supernova remnant is -- about 300 years -- and whether or not the reverse shock would have passed through all the ejecta yet depends on the nature of the star that exploded and the characteristics of its winds and surroundings before its death," Kassim said. "Finding unshocked gas inside this remnant, the first direct case for such material detected in the radio part of the spectrum, confirms the predictions of supernova evolution theory and thereby advances them." Other observations showed giant, radio-emitting "bubbles" in the galaxy M87 in the constellation Virgo. These objects, also seen with the VLA at the somewhat higher frequency of 330 MHz, raised questions about how old they were and how they were powered, as well as how they are linked to the even larger halo of X-ray emission generated around this galaxy. "The shape and extent of these huge, radio-emitting regions suggests that they are relatively young, expanding, and are being powered by particles shot out of the galaxy's nucleus by the gravitational energy of a supermassive black hole," said Kassim. "Comparison of the higher frequency images with our new one made at 74 MHz show exactly the correspondence we would expect if the black hole is powering these regions," he added. The researchers, together with astronomer Phillip Kronberg and his collaborators from the University of Toronto, also looked at the Coma Cluster of galaxies, some 450 million light-years distant. "There is a radio-emitting halo around this cluster, and our image made at 74 MHz greatly improves our knowledge of its extent and properties. This is crucial to figuring out how the halo got there in the first place," Kassim said. In the region of the Coma Cluster, the scientists made a "super" wide-field image. This image, showing an area some 15 degrees on a side, shows hundreds of radio-emitting objects, including extremely distant galaxies. Dubbed the "VLA Coma Deep Field," the image is "one of the most spectacular made recently at the VLA," Kassim said. "The amount of information obtained from only a single pointing of the VLA is awesome. Images like this will be extremely valuable in learning about the early universe," he said. All of these results came about because of the astronomers' persistence in pursuing a long-sought goal of equipping the VLA to observe at the new frequency. Erickson has been a long-time proponent of low-frequency radio astronomy. Both Perley and Kassim were Ph.D students of Erickson at the University of Maryland. The 330-MHz capability, also supported by NRL, was added to the VLA in the 1980s, and the group managed to install equipment for 74 MHz on eight of the VLA's 27 antennas a few years ago. They still wanted all the antennas equipped, however. "We knew we could use off-the-shelf components and equip antennas for about a thousand dollars each," said Perley, "but we just couldn't seem to squeeze the loose change out of anyone." Then Kassim pursuaded the Naval Research Laboratory to provide funding for the project. The astronomers then went to work to get the most performance for the money. Erickson, aided by NRL engineer Brian Hicks and Kassim, did the actual construction of 74-MHz receivers at NRL. The astronomers also worked alongside engineers and technicians, climbing on the VLA's giant dish antennas to install the new equipment. Hicks is presently constructing additional 74 MHz receivers at NRL for eventual tests on Very Long Baseline Array antennas The result, Perley said, "is not bad for a do-it-yourself project." In the first observing session using the new equipment, astronomers from four continents studied a wide range of celestial objects, and the results "were a spectacular success. We proved that you can make good images with the VLA at this frequency. The problem always was the difficulty in processing data to correct for ionospheric effects on the incoming radio waves. New computing techniques now have solved that problem." "We have shattered the ionospheric barrier and solved the wide- field imaging problem," Kassim said. The research results presented at the AAS meeting "show the great value of this new capability," Kassim said. "In addition to our work on supernova remnants, active galaxies and galaxy clusters, other papers presented at this meeting show that this frequency range is extremely valuable for solar research," Kassim added. "In fact, the success of the VLA at this frequency shows that we could learn even more from this new window on the universe by building a much larger and more sensitive instrument dedicated to long-wavelength radio astronomy -- the Low Frequency Array (LOFAR). An international consortium, initially involving NRL, NRAO, and the Netherlands Foundation for Radio Astronomy, currently is forming to develop LOFAR, an instrument which would see more detail and fainter objects than we can today," Kassim said. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Basic research in radio astronomy at the Naval Research Laboratory is supported by the Office of Naval Research.
NASA Astrophysics Data System (ADS)
Maoz, Dan; Loeb, Abraham
2017-06-01
If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.
Exploring the performance of large-N radio astronomical arrays
NASA Astrophysics Data System (ADS)
Lonsdale, Colin J.; Doeleman, Sheperd S.; Cappallo, Roger J.; Hewitt, Jacqueline N.; Whitney, Alan R.
2000-07-01
New radio telescope arrays are currently being contemplated which may be built using hundreds, or even thousands, of relatively small antennas. These include the One Hectare Telescope of the SETI Institute and UC Berkeley, the LOFAR telescope planned for the New Mexico desert surrounding the VLA, and possibly the ambitious international Square Kilometer Array (SKA) project. Recent and continuing advances in signal transmission and processing technology make it realistic to consider full cross-correlation of signals from such a large number of antennas, permitting the synthesis of an aperture with much greater fidelity than in the past. In principle, many advantages in instrumental performance are gained by this 'large-N' approach to the design, most of which require the development of new algorithms. Because new instruments of this type are expected to outstrip the performance of current instruments by wide margins, much of their scientific productivity is likely to come from the study of objects which are currently unknown. For this reason, instrumental flexibility is of special importance in design studies. A research effort has begun at Haystack Observatory to explore large-N performance benefits, and to determine what array design properties and data reduction algorithms are required to achieve them. The approach to these problems, involving a sophisticated data simulator, algorithm development, and exploration of array configuration parameter space, will be described, and progress to date will be summarized.
Observing the 2017 Total Solar Eclipse from the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Kirwan, Sean Matthew; Cline, J. Donald; Krochmal, Mark; Donald Cline, Mark Krochmal
2017-01-01
The Pisgah Astronomical Research Institute (PARI) is located directly under the path of totality of next year’s solar eclipse and possesses two 26m radio telescopes capable of interferometry at simultaneously at 2.3 GHz and 8.4 GHZ. PARI is preparing these radio telescopes for use by the astronomical community to observe solar eclipse. We will present the status of PARI’s radio telescopes and information on access for the eclipse. We will also present the status and availability of several optical telescopes.
Astronomy from the Moon: A New Frontier for 21st Century Astrophysics
NASA Astrophysics Data System (ADS)
Durst, Steve
2018-06-01
The International Lunar Observatory Association of Hawai'i USA continues into its second decade with research and development of South Pole instruments for astronomy, observation and communication from the Moon. Since the pioneering first astronomy observations from the Moon by Apollo 16 Commander John Young (an ILOA founding-emeritus director until his recent passing), with China Lunar Ultraviolet Telescope LUT operations and current American and European considerations for far-side radio telescopes, today's climate is most promising for a diversity of lunar-based astronomy locations, instruments and technologies. ILOA is aiming to advance this frontier through its Galaxy First Light Imaging program, being developed through contracts with Moon Express and Canadensys Aerospace Corp.A wide variety of extreme and unique lunar conditions enable many astronomy activities and installations, on the Moon's near-side, far-side, north pole, and south pole: The extremely thin lunar exosphere favors observations in millimeter / submillimeter to optical, UV, X-ray, and gamma-ray wavelengths; the highly stable platform that is the Moon provides for long-duration observations; ultra cold, shaded areas for cryogenic infrared instruments; far-side radio-quiet environment for radio telescopes and VLF astronomy; 1/6-Earth gravity for production and utilization of new, very lightweight materials and instruments, including large refractors, 100-m class liquid mirror telescopes, and possibly 1,000-m class radio telescopes and interferometer antenna arrays vastly larger than Atacama LMA; North and especially South Pole sites, with high peaks and long solar power windows, offer perhaps the widest variety of lunar conditions and opportunities for astronomical innovation on the Moon: a veritable "condominium of observatories".21st century astrophysics seems likely to find Luna a very busy and productive new frontier, as American Astronomical Society and IAU members will validate, with astronomers providing rationale and direction for lunar outpost build-out, while offering Galaxy / Cosmos perspective on the human advance towards a multi world civilization.
[An encounter with extraterrestrial intelligence].
Hisabayashi, Hisashi
2003-12-01
It is much easier to find extraterrestrial intelligence than to detect simple organisms living on other planets. However, it is hard to communicate with such intelligence without the mutual understanding of inter-stellar communication protocol. The radio SETI (The Search for Extra-Terrestrial Intelligence) was initiated with the pioneering work of F. Drake in 1960, one year after the historical SETI paper by Cocconi and Morrison. This talk explains that SETI evolves with two bases of science; the understanding of our universe and the development of technology. Since SETI has had strong connection with radio astronomy from its early beginning, the impacts of radio astronomical findings and technological breakthrough can be seen in many aspects of the SETI history. Topics of this talk include the detection of microwave 3 K background radiation in the universe. Interstellar atomic and molecular lines found in radio-wave spectra provide the evidence of pre-biotic chemical evolution in such region. Radio telescope imaging and spectral technique are closely associated with methodology of SETI. Topics of the talk extend to new Allen Telescope Array and projected Square Kilometer Array. Recent optical SETI and the discoveries of extra solar planets are also explained. In the end, the recent understanding of our universe is briefly introduced in terms of matter, dark matter and dark energy. Even our understanding of the universe has been evolutionarily revolved and accumulated after 1960, we must recognize that our universe is still poorly understood and that astronomy and SETI are required to proceed hand in hand.
NASA Astrophysics Data System (ADS)
Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.
2017-03-01
Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.
NRAO Names New Head of New Mexico Operations
NASA Astrophysics Data System (ADS)
2001-10-01
The National Radio Astronomy Observatory (NRAO) has named Jim Ulvestad the new Assistant Director for New Mexico Operations in Socorro, New Mexico, effective December 15. As Assistant Director, Ulvestad will oversee the operation and management of two of NRAO's principal research facilities, the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). He succeeds W. Miller Goss, who is stepping down as Assistant Director after serving in that capacity since 1988. Jim Ulvestad Ulvestad "We are delighted that Jim will assume this vital position for our observatory," said NRAO Director Paul Vanden Bout. "His solid background as a researcher, his broad knowledge of the astronomical community and his detailed understanding of the VLA and the VLBA will help us keep these facilities at the cutting edge of science in the coming years." Vanden Bout also praised Goss, who will remain on the observatory's research staff, for his leadership of the VLA and VLBA over the past 14 years. "Miller's goal always was to make these radio telescopes the most productive possible tools for science, and to serve the scientific community with distinction. He succeeded, and the excellent reputation of NRAO's Socorro Operations among scientists is a tribute to his efforts," Vanden Bout said. "I look forward to continuing to work with NRAO's outstanding New Mexico staff in a new capacity," Ulvestad said. "I am confident they will meet the challenge of operating the most scientifically productive ground-based telescope of the last 20 years, at the same time that we are dramatically expanding the technical capabilities of the VLA and planning for improvements to the VLBA," he added. Ulvestad, currently NRAO's Deputy Assistant Director in Socorro, joined the observatory in 1996 after spending 12 years on the staff of NASA's Jet Propulsion Laboratory (JPL) in Pasadena, CA. He received his Ph.D in astronomy from the University of Maryland and worked as a postdoctoral research associate at the NRAO facility in Charlottesville, VA, prior to joining JPL. He has served on a number of professional panels and working groups, and is author of numerous scientific papers and reports. Ulvestad's astronomical research has focused on active galaxies, galaxies with massive black holes at their cores, and the phenomena related to them. He also has done extensive work on the techniques of high-resolution radio interferometry, including the use of orbiting radio telescopes. Together with other NRAO-New Mexico staff, he led NRAO's successful effort to link the VLBA antenna at Pie Town, NM, to the VLA with a real-time fiber-optic connection, producing the capability to double the resolution, or ability to discern detail, of the VLA. Goss, who joined NRAO in 1988, after working at radio observatories in the Netherlands, Germany, Australia and the U.S., will remain at NRAO as a staff scientist, pursuing a wide range of research interests as well as supervising graduate-student research projects. Under Goss' leadership, numerous technical improvements were made to the VLA. Also, the continent-wide VLBA's construction was completed and that instrument, which provides astronomers with the most detailed images available from any telescope, was brought on-line. "After 14 years of managing the VLA and VLBA, I look forward to becoming a full-time user of these outstanding radio telescopes," Goss said. "I have worked with Jim Ulvestad for many years and know he will do an excellent job as the new Assistant Director," Goss added. As Ulvestad assumes his new role, the NRAO is beginning the VLA Expansion Project, a two-step plan to increase the scientific capability of the VLA tenfold. Built during the 1970s and dedicated in 1980, the VLA has been used to advance the understanding of nearly every type of object in the universe. The VLA Expansion Project will replace obsolete original technology with current technology and add new facilities to the system, ensuring that the VLA remains at the leading edge of astronomical research. In addition to the instruments headquartered at Socorro, the NRAO operates the Robert C. Byrd Green Bank Telescope in Green Bank, WV, the world's largest fully steerable radio telescope. NRAO also is collaborating with Europe and Japan on the design and construction of the Atacama Large Millimeter Array (ALMA), an array of 64 antennas that will be built in the Chilean Andes over the next decade. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
802GHz integrated horn antennas imaging array
NASA Technical Reports Server (NTRS)
Ali-Ahmad, Walid Y.; Rebeiz, Gabriel M.; Dave, Hemant; Chin, Gordon
1991-01-01
Pattern measurements at 802GHz of a single element in 256-element integrated horn imaging array are presented. The integrated-horn antenna consists of a dipole-antenna suspended on a 1-micron dielectric membrane inside a pyramidal cavity etched in silicon. The theoretical far-field patterns, calculated using reciprocity and Floquet-modes representation of the free-space field, agree well with the measured far-field patterns at 802GHz. The associated directivity for a 1.40 lambda horn aperture, calculated from the measured E and H-plane patterns is 12.3dB + or - 0.2dB. This work demonstrates that high-efficiency integrated-horn antennas are easily scalable to terahertz frequencies and could be used for radio-astronomical and plasma-diagnostic applications.
NASA Astrophysics Data System (ADS)
Alloin, D. M.; Mariotti, J.-M.
Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.
Fourier Plane Image Combination by Feathering
NASA Astrophysics Data System (ADS)
Cotton, W. D.
2017-09-01
Astronomical objects frequently exhibit structure over a wide range of scales whereas many telescopes, especially interferometer arrays, only sample a limited range of spatial scales. To properly image these objects, images from a set of instruments covering the range of scales may be needed. These images then must be combined in a manner to recover all spatial scales. This paper describes the feathering technique for image combination in the Fourier transform plane. Implementations in several packages are discussed and example combinations of single dish and interferometric observations of both simulated and celestial radio emission are given.
Astronomers Discover Spectacular Structure in Distant Galaxy
NASA Astrophysics Data System (ADS)
1999-01-01
Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many galaxy clusters. "The new structures that we found in M87 show that the story is much more complicated," Eilek said. "What we know about radio jets suggests that the energy being pumped into this region from the galaxy's central black hole exceeds the energy being lost in the X-ray emission. This system is more like a heating flow than a cooling flow. We're going to have to revise our ideas about the physics of what's going on in regions like this." M87, discovered by the French astronomer Charles Messier in 1781, is the strongest radio-emitting object in the constellation Virgo. Its jet was described by Lick Observatory astronomer Heber Curtis in 1918 as "a curious straight ray ... apparently connected with the nucleus by a thin line of matter." In 1954, Walter Baade reported that the jet's light is strongly polarized. M87's X-ray emission was discovered in 1966. M87 is the largest of the thousands of galaxies in the Virgo Cluster. The Local Group of galaxies, of which our own Milky Way is one, is part of the Virgo Cluster's outskirts. The galaxy's radio emissions first were observed by Australian astronomers in 1947, but the radio telescopes of that time were unable to discern much detail. They could, however, show that there is a structure more than 100,000 light-years across. Subsequent radio images, particularly those made using the sharp radio "vision" of the VLA, were primarily aimed at studying the inner 10,000 light-years or so, and showed great detail in the galaxy's jet. Astronomers even have followed the motions of concentrations of material within the jet over time. These observations, however, did not show much about the larger structure that was seen by earlier radio astronomers, leaving its details largely a mystery. Radio Images of M87 at Vastly Different Size Scales The mystery was solved by using the VLA to observe at longer radio wavelengths, thus revealing larger-scale structures. The processing speeds of modern computers and recently-developed imaging techniques also were necessary to show the exquisite details seen in the newest VLA image of M87. The result was spectacular. "Not only did we see beautiful details that we hadn't seen before, but we also got a new and more complicated idea of the physics of this region," Owen said. "The theories about cooling flows offered an explanation for the X-ray emission in galaxy clusters, but critics contended that other evidence we should see for this infalling matter, such as new stars forming in the denser parts of the flows, was absent," Owen said. "Now, in this case, we see that the inward flow can be counterbalanced by the energy coming outward from the galaxy's core, so the material may not become dense enough to trigger star formation." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This is a VLA image of the galaxy M87, showing details of the large-scale, radio-emitting "bubbles" believed to be powered by the black hole at the galaxy's center. The galaxy's center (and the black hole) lie deep within the bright, reddish region in this image. The structure in this image is approximately 200,000 light-years across. This image was made at a radio wavelength of 90 centimeters. CREDIT: F.N. Owen, J.A. Eliek and N.E. Kassim, National Radio Astronomy Observatory, Associated Universities, Inc.
Beyond the Borders of a Galaxy
NASA Technical Reports Server (NTRS)
2008-01-01
[figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view The outlying regions around the Southern Pinwheel galaxy, or M83, are highlighted in this composite image from NASA's Galaxy Evolution Explorer and the National Science Foundation's Very Large Array in New Mexico. The blue and pink pinwheel in the center is the galaxy's main stellar disk, while the flapping, ribbon-like structures are its extended arms. The Galaxy Evolution Explorer is an ultraviolet survey telescope. Its observations, shown here in blue and green, highlight the galaxy's farthest-flung clusters of young stars up to 140,000 light-years from its center. The Very Large Array observations show the radio emission in red. They highlight gaseous hydrogen atoms, or raw ingredients for stars, which make up the lengthy, extended arms. Astronomers are excited that the clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the 'backwoods' of a galaxy. In this image, far-ultraviolet light is blue, near-ultraviolet light is green and radio emission at a wavelength of 21 centimeters is red. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the 'deepest,' or longest-exposure, images of a nearby galaxy in ultraviolet light. This deeper view shows more clusters of stars, as well as stars in the very remote reaches of the galaxy, up to 140,000 light-years away from its core. The view at the left is a combination of the ultraviolet picture at the right and data taken by the telescopes of the National Science Foundation's Very Large Array in New Mexico. The radio data, colored here in red, reveal extended galactic arms of gaseous hydrogen atoms, which are raw ingredients for stars. Astronomers are excited that the remote clusters of baby stars match up with the extended arms, because this helps them better understand how stars can be created out in the boondocks of a galaxy. M83 is located 15 million light-years away in the southern constellation Hydra. In the Galaxy Evolution Explorer image on the right, near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow and far-ultraviolet light is blue. In the combined image at the left, far-ultraviolet light is blue, near-ultraviolet light is green, and the radio emission at a wavelength of 21 centimeters is red.The Expanded Very Large Array: A Radio Telescope for the 21st Century
NASA Astrophysics Data System (ADS)
2000-06-01
The world's most productive and widely-used radio telescope, the National Science Foundation's Very Large Array (VLA), can be improved tenfold with an expansion project proposed by the National Radio Astronomy Observatory (NRAO). "This project will ensure that the scientific community has a state-of-the-art research tool to meet the astronomical research challenges of the 21st Century," said Paul Vanden Bout, NRAO Director. Aerial View of the VLA Plans for the Expanded VLA (EVLA) and its potential for new scientific contributions were described today in a series of presentations at the American Astronomical Society's meeting in Rochester, NY. The EVLA project plans to replace dated equipment left over from the VLA's original construction in the 1970s and add eight new radio- telescope dish antennas to the current, 27-dish system. It received a strong endorsement last month when the Astronomy and Astrophysics Survey Committee of the National Academy of Sciences gave the project one of its highest ratings as a priority for the next decade in its report entitled "Astronomy and Astrophysics in the New Millennium." "The Survey Committee's endorsement shows that the astronomical research community strongly supports the Expanded VLA," said NRAO astronomer Jim Ulvestad, who spoke to reporters at the AAS meeting. "The VLA has long been a unique and critical resource for all of astronomy, and we look forward to turning it into a dramatic, new research tool." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The Expanded VLA will be operated by the same skilled staff present today. The New Mexico Array "This project will increase the capability of the VLA tenfold in all scientific aspects," said Rick Perley, NRAO's project scientist for the VLA Expansion Project. "This tremendous new capability will cost the NSF about 140 million, far less than the present value of the VLA. In addition, the operational costs remain about the same and the maintenance costs may even fall because of the increased reliability of newer equipment," Perley added. The VLA Expansion Project is a two-phase program, with the detailed plans for the first phase already submitted to the NSF. The first phase will cost a total of 76.2 million, 49.9 million of which is requested from the NSF. "We already have a commitment of 2 million from Mexico and are negotiating with Canada for key technical equipment worth $10 million," Perley said. "By bringing all the VLA's electronics up to today's state of the art, using modern fiber-optic data transmission techniques, and adding new antennas, we get an essentially new astronomical instrument with vastly increased capabilities at a fraction of the cost of starting from scratch," Ulvestad said. The Expanded VLA will allow scientists to gain new insights into outstanding problems throughout a wide range of astronomical specialties. Some of these new capabilities will include: * Better images of cosmic "nurseries" where new stars are being formed and disks of gas and dust surrounding those new stars are forming into systems of planets. "These regions are obscured by gas and dust from view by optical telescopes. The EVLA will be a prime tool for understanding the processes ongoing in these regions," said NRAO astronomer Mark Claussen, who presented a paper on this aspect of the EVLA. * Improved ability to study the mysterious, shrouded region at the center of our own Milky Way Galaxy, where a black hole more than 2.5 million times more massive than the Sun lurks. * Ability to gain important new information about the atmospheres of other stars, their life cycles, and how events on other stars relate to processes on our own Sun, which also will be studied much more effectively with the Expanded VLA. * The capability to help answer numerous other unresolved astronomical questions, including the numbers of small asteroids in the Solar System, the origin of clusters of galaxies, the nature of binary stars that emit powerful bursts of X-rays, and the size and structure of the Universe. The Survey Committee report listed the Expanded VLA as an important contributor to new understanding in three high-priority research areas for the next decade: studies of star and planet formation; research into black holes; and unraveling details about the "dawn of the modern universe." Dedicated in 1980, the VLA is the most powerful, flexible and widely- used radio telescope in the world. It brought dramatically-improved observational capabilities to the scientific community two decades ago, and has contributed significantly to nearly every branch of astronomy. More than 2,200 scientists have used the VLA for more than 10,000 separate observing projects. Astronomers seek more than twice as much VLA observing time than can be provided. Since the VLA's dedication, many technical improvements have made it much more capable than its original design contemplated. However, some of the technologies incorporated into the VLA during its construction, while highly advanced for their time, now limit its capabilities, causing it to fall well short of its potential as a tool for science. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Engine's Running, But Where's the Fuel?
NASA Astrophysics Data System (ADS)
2006-01-01
Astronomers have found a relatively tiny galaxy whose black-hole-powered "central engine" is pouring out energy at a rate equal to that of much larger galaxies, and they're wondering how it manages to do so. The astronomers used the National Science Foundation's Very Large Array (VLA) radio telescope and optical telescopes at the Apache Point Observatory to study a galaxy dubbed J170902+641728, more than a billion light-years from Earth. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) "This thing looks like a quasar in VLA images, but quasars come in big galaxies, not little ones like this," said Neal Miller, an astronomer with the National Radio Astronomy Observatory. In visible-light images, the galaxy is lost in the glare from the bright central engine, but those images place strong limits on the galaxy's size, Miller explained. Miller and Kurt Anderson of New Mexico State University presented their findings to the American Astronomical Society's meeting in Washington, DC. Most galaxies have black holes at their centers. The black hole, a concentration of mass whose gravity is so strong that not even light can escape it, can draw material into itself from the surrounding galaxy. If the black hole has gas or stars to "eat," that process generates large amounts of energy as the infalling gas is compressed and heated to high temperatures. This usually is seen in young galaxies,massive galaxies, or in galaxies that have experienced close encounters with companions, stirring up the material and sending it close enough to the black hole to be gobbled up. The black hole in J170902+641728 is about a million times more massive than the Sun, the astronomers say. Their images show that the galaxy can be no larger than about 2,000 light-years across. Our Milky Way Galaxy is about 100,000 light-years across. "There are other galaxies that are likely to be the same size as this one that have black holes of similar mass. However, their black holes are quiet -- they're not putting out the large amounts of energy we see in this one. We're left to wonder just why this one is so active," Miller said. Answering that question may help astronomers better understand how galaxies and their central black holes are formed. "This galaxy is a rare find -- a tiny galaxy that is still building up the mass of its black hole. It's exciting to find an object that can help us understand this important aspect of galaxy evolution," Miller said. J170902+641728 is part of a cluster of galaxies that the scientists have studied with the VLA, with the 3.5-meter telescope at Apache Point Observatory, and with the Sloan Digital Sky Survey telescope at Apache Point. All these telescopes are in New Mexico. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Apache Point Observatory is a facility of the Astrophysical Research Consortium which also manages the Sloan Digital Sky Survey.
Possible Analog for Early Solar System Disk Found
NASA Astrophysics Data System (ADS)
1998-10-01
SOCORRO, NM -- The smallest protoplanetary disk ever seen rotating around a young star has been detected by an international team of astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope. If confirmed, this result could provide an "ideal laboratory" for studying potential planet-forming disks of a size similar to the one that formed our Solar System. The researchers used the VLA to image the core of an object known as NGC 2071, some 1300 light years from Earth. The team of astronomers was able to measure the rotation of a disk seen around a young star by tracking water masers - clusters of super-heated molecules that amplify radio emission -- within it. This is the first direct evidence of such motion in a protoplanetary disk. "This result is exciting because only through understanding protoplanetary disks can scientists answer the question of how easy - or hard - it is to create planets," said Jose M. Torrelles of the Institute for Astrophysics of Andalucia in Granada, Spain, leader of the research team. "Other protoplanetary disks have been found, but the system in NGC 2071 is the first that may be comparable to the disk that created our own Solar System. Its size is similar to the orbit of the planet Neptune around our Sun." "Because there is very little matter in one of these protoplanetary disks -- typically less than one hundredth the mass of our Sun -- they are extremely difficult to detect and study" said Paul Ho of the Harvard-Smithsonian Center for Astrophysics and another team member. "We needed the highest possible resolution of the VLA to do this work." The VLA is an array of twenty-seven radio dishes, each 25 meters in diameter, located outside of Socorro. The individual antennas can be moved along tracks to change the array's alignment. The work on NGC 2071 was done when the array was stretched out to over 36 kilometers, thus providing the extremely high resolution necessary to image the system. This disk, although tiny when compared to some suspected planet-forming systems recently discovered by other astronomical techniques, contains several compact clusters of water molecules that amplify microwave radio emissions in a manner similar to the way a laser amplifies light. By tracking the motions of these powerful, naturally occurring amplifiers, or "masers," the researchers could determine that a mass about the size of our Sun lies at the center of this disk. The researchers also detected a powerful radio jet, centered on the disk of water masers but perpendicular to it, shooting out of NGC 2071. Theorists have speculated that such jets are produced by accretion disks around very young stars, where flowing winds are driven outward by material that fails to fall onto the star. This may represent the smallest -- and perhaps earliest -- example of this disk-jet phenomenon seen to date. "We're pretty sure that systems like this, with disks of gas and dust surrounding a young star, turn into solar systems containing planets, moons and comets, but we don't know exactly how they do it," said Dr. Luis Rodriguez of the National Autonomous University of Mexico. "This particular object, because we can see all these phenomena and measure the rotation speeds and masses, is going to provide us an ideal laboratory for studying the mysterious process of planet formation." In addition to Torrelles and Ho, the other authors of the report published in the 1 October 1998 issue of the Astrophysical Journal were Drs. Jose F. Gomez of the Laboratory for Space and Astrophysics, Guillem Anglada of the Institute of Astrophysics of Andalucia, Spain, and Rodriguez and Dr. Salvador Curiel of the National Autonomous University of Mexico. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by the Associated Universities, Inc.
Harvey Butcher: a passion for astronomical instrumentation
NASA Astrophysics Data System (ADS)
Bhathal, Ragbir
2014-11-01
This paper covers some aspects of the scientific life of Harvey Butcher who was the Director of the Research School for Astronomy and Astrophysics at the Australian National University in Canberra from September 2007 to January 2013. He has made significant contributions to research on the evolution of galaxies, nucleosynthesis, and on the design and implementation of advanced astronomical instrumentation including LOFAR (Low Frequency Array Radio telescope). He is well known for his discovery of the Butcher-Oemler effect. Before coming to Australia he was the Director of the Netherlands Foundation for Research in Astronomy from September 1991 to January 2007. In 2005 he was awarded a Knighthood in the Order of the Netherlands Lion for contributions to interdisciplinary science, innovation and public outreach.This paper is based on an interview conducted by the author with Harvey Butcher for the National Project on Significant Australian Astronomers sponsored by the National Library of Australia. Except otherwise stated, all quotations used in this paper are from the Butcher interview which has been deposited in the Oral History Archives of the National Library.
The Early Development of Indian Radio Astronomy: A Personal Perspective
NASA Astrophysics Data System (ADS)
Swarup, Govind
In this chapter I recall my initiation into the field of radio astronomy during 1953-1955 at CSIRO, Australia; the transfer of thirty-two 6-feet (1.8-m) diameter parabolic dishes from Potts Hill, Sydney, to India in 1958; and their erection at Kalyan, near Bombay (Mumbai), in 1963-1965. The Kalyan Radio Telescope was the first modern radio telescope built in India. This led to the establishment of a very active radio astronomy group at the Tata Institute of Fundamental Research, which subsequently built two world-class radio telescopes during the last 50 years and also contributed to the development of an indigenous microwave antenna industry in India. The Ooty Radio Telescope, built during 1965-1970, has an ingenious design which takes advantage of India's location near the Earth's Equator. The long axis of this 530-m × 30-m parabolic cylinder was made parallel to the Equator, by placing it on a hill with the same slope as the geographic latitude ( 11°), thus allowing it to track celestial sources continuously for 9.5 h every day. By utilizing lunar occultations, the telescope was able to measure the angular sizes of a large number of faint radio galaxies and quasars with arc-second resolution for the first time. Subsequently, during the 1990s, the group set up the Giant Metrewave Radio Telescope (GMRT) near Pune in western India, in order to investigate certain astrophysical phenomena which are best studied at decimetre and metre wavelengths. The GMRT is an array of 30 fully steerable 45-m diameter parabolic dishes, which operates at several frequencies below 1.43 GHz. These efforts have also contributed to the international proposal to construct the Square Kilometre Array (SKA). This chapter is a revised version of Swarup (Journal of Astronomical History and Heritage, 9: 21-33, 2006).
Blast from the Past Gives Clues About Early Universe
NASA Astrophysics Data System (ADS)
2009-10-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have gained tantalizing insights into the nature of the most distant object ever observed in the Universe -- a gigantic stellar explosion known as a Gamma Ray Burst (GRB). The explosion was detected on April 23 by NASA's Swift satellite, and scientists soon realized that it was more than 13 billion light-years from Earth. It represents an event that occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars," said Dale Frail of the National Radio Astronomy Observatory. Astronomers turned telescopes from around the world to study the blast, dubbed GRB 090423. The VLA first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later. "It's important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast," said Derek Fox of Pennsylvania State University. "The result is a unique look into the very early Universe that we couldn't have gotten any other way," he added. The scientists concluded that the explosion was more energetic than most GRBs, was a nearly-spherical blast, and that it expanded into a tenuous and relatively uniform gaseous medium surrounding the star. Astronomers suspect that the very first stars in the Universe were very different -- brighter, hotter, and more massive -- from those that formed later. They hope to find evidence for these giants by observing objects as distant as GRB 090423 or more distant. "The best way to distinguish these distant, early-generation stars is by studying their explosive deaths, as supernovae or Gamma Ray Bursts," said Poonam Chandra, of the Royal Military College of Canada, and leader of the research team. While the data on GRB 090423 don't indicate that it resulted from the death of such a monster star, new astronomical tools are coming that may reveal them. "The Atacama Large Millimeter/submillimeter Array (ALMA), will allow us to pick out these very-distant GRBs more easily so we can target them for intense followup observations. The Expanded Very Large Array, with much greater sensitivity than the current VLA, will let us follow these blasts much longer and learn much more about their energies and environments. We'll be able to look back even further in time," Frail said. Both ALMA and the EVLA are scheduled for completion in 2012. Chandra, Frail and Fox worked with Shrinivas Kulkarni of Caltech, Edo Berger of Harvard University, S. Bradley Cenko of the University of California at Berkeley, Douglas C.-J. Bock of the Combined Array for Research in Millimeter-wave Astronomy in California, and Fiona Harrison and Mansi Kasliwal of Caltech. The scientists described their research in a paper submitted to the Astrophysical Journal Letters.
NASA Astrophysics Data System (ADS)
Mattmann, Chris
2014-04-01
In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.
NASA Astrophysics Data System (ADS)
Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.
2018-05-01
A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.
Project PARAS: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia
1992-01-01
An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.
Citizen Science Opportunity With the NASA Heliophysics Education Consortium (HEC)-Radio JOVE Project
NASA Astrophysics Data System (ADS)
Fung, S. F.; Higgins, C.; Thieman, J.; Garcia, L. N.; Young, C. A.
2016-12-01
The Radio JOVE project
Radio Continuum Surveys with Square Kilometre Array Pathfinders
NASA Astrophysics Data System (ADS)
Norris, Ray P.; Afonso, J.; Bacon, D.; Beck, Rainer; Bell, Martin; Beswick, R. J.; Best, Philip; Bhatnagar, Sanjay; Bonafede, Annalisa; Brunetti, Gianfranco; Budavári, Tamás; Cassano, Rossella; Condon, J. J.; Cress, Catherine; Dabbech, Arwa; Feain, I.; Fender, Rob; Ferrari, Chiara; Gaensler, B. M.; Giovannini, G.; Haverkorn, Marijke; Heald, George; Van der Heyden, Kurt; Hopkins, A. M.; Jarvis, M.; Johnston-Hollitt, Melanie; Kothes, Roland; Van Langevelde, Huib; Lazio, Joseph; Mao, Minnie Y.; Martínez-Sansigre, Alejo; Mary, David; Mcalpine, Kim; Middelberg, E.; Murphy, Eric; Padovani, P.; Paragi, Zsolt; Prandoni, I.; Raccanelli, A.; Rigby, Emma; Roseboom, I. G.; Röttgering, H.; Sabater, Jose; Salvato, Mara; Scaife, Anna M. M.; Schilizzi, Richard; Seymour, N.; Smith, Dan J. B.; Umana, Grazia; Zhao, G.-B.; Zinn, Peter-Christian
2013-03-01
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), e-MERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), MeerKAT (South Africa), and the Murchison Widefield Array. Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. To achieve these exciting scientific goals, many technical challenges must be addressed by the survey instruments. Given the limited resources of the global radio-astronomical community, it is essential that we pool our skills and knowledge. We do not have sufficient resources to enjoy the luxury of re-inventing wheels. We face significant challenges in calibration, imaging, source extraction and measurement, classification and cross-identification, redshift determination, stacking, and data-intensive research. As these instruments extend the observational parameters, we will face further unexpected challenges in calibration, imaging, and interpretation. If we are to realise the full scientific potential of these expensive instruments, it is essential that we devote enough resources and careful study to understanding the instrumental effects and how they will affect the data. We have established an SKA Radio Continuum Survey working group, whose prime role is to maximise science from these instruments by ensuring we share resources and expertise across the projects. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
World-Wide Effort Produces Dramatic "Movie" of Cosmic Jet
NASA Astrophysics Data System (ADS)
2001-05-01
Astronomers using a world-wide collection of radio telescopes, including the National Science Foundation's Very Long Baseline Array (VLBA) of the National Radio Astronomy Observatory (NRAO), have made a dramatic "movie" of a voracious, superdense neutron star repeatedly spitting out subatomic particles at nearly the speed of light into two narrow jets as it pulls material from a companion star. The movie shows these jets ejecting clouds of hot plasma that are then "zapped" by pulses of energy in the jets as they move away from the neutron star. Frame from Radio-Telescope 'Movie' of Scorpius X-1 "We have directly measured the speed of energy flow in a cosmic jet for the first time," said Ed Fomalont, an astronomer at the NRAO in Charlottesville, Virginia. Fomalont worked with Barry Geldzahler and Charles Bradshaw of George Mason University in Fairfax, Virginia. The astronomers used the VLBA, the NSF's Very Large Array (VLA) and the Green Bank 140-foot telescope, along with radio telescopes from the European VLBI Network, Australia, Japan and South Africa to record the double-star system's eruptions continuously for 56 hours. "This study is going to be extremely valuable in helping us understand a phenomenon that we see throughout the universe," Fomalont said. Cosmic jets of superfast particles are ejected from the cores of numerous galaxies. On a smaller scale, similar jets are ejected from binary-star systems closer to home, in our own Milky Way Galaxy. While the jets from galaxy cores are thought to be powered by supermassive black holes millions of times more massive than the Sun, the closer "microquasars" are powered by much smaller black holes or by neutron stars only a few times more massive than the sun. "Studying one of the closer, smaller examples will help us understand how they all work, including the bigger ones," Geldzahler said. "The jets coming from distant galaxies are harder to study because of their much greater distance and the slowness of their evolution. The changes we saw in an hour take thousands of years in the distant galaxies," he added. The astronomers observed Scorpius X-1, a system consisting of a neutron star roughly 1.5 times the mass of the sun and a "normal" star about the same mass as the sun. The two, more than 9,000 light-years from Earth in the constellation Scorpius, orbit each other every 18 hours and 53 minutes. Scientific instruments aboard a brief rocket flight over New Mexico in 1962 revealed that X-rays are coming from the system, and the pair of stars has been observed extensively since then. For the latest study, whose results are published in the May 20 issue of the Astrophysical Journal Letters, Fomalont, Geldzahler and Bradshaw used telescopes around the world to make highly-detailed radio images of the ejections. As the object went below the horizon for one set of radio telescopes, it was rising for the next set, allowing continuous imaging for the 56-hour period. The Very Long Baseline Array In the U.S., the astronomers used the VLBA, a network of 10 radio telescopes spread across U.S. territory from Hawaii to the Virgin Islands. They also used the European VLBI Network, including telescopes in the United Kingdom, Italy, Poland, Spain, Sweden and the Netherlands, plus a telescope in South Africa and one at the NRAO in Green Bank, WV. In addition, they used the Asia-Pacific Telescope Array which included five telescopes in Australia, plus telescopes in China, Japan and South Africa. "To keep watching this thing as the Earth turned, we had to use most of the major radio telescopes in the world, and the necessary coordination took months to organize," Fomalont said. At the same time, two optical observatories, Braeside Observatory and the Steward Observatory 90-inch telescope on Kitt Peak, and the orbiting Rossi X-ray Timing Explorer observed the object. "These observations tell us what is happening near the neutron star and the accretion disk" said Bradshaw. "All of the energy in the jet and the radio source is produced from this small region." The individual radio telescopes were combined into larger "virtual telescopes" capable of producing extremely detailed images. The "movie" of Scorpius X-1 consists of images showing detail roughly equivalent to being able to read a newspaper in Los Angeles from the distance of New York. Cosmic jets, most astronomers believe, arise when a massive object, such as a neutron star or a black hole, draws in material. Instead of being sucked directly into the massive object, the material first forms a whirling "accretion disk" that closely orbits the central object. Friction within the accretion disk can heat it to temperatures so hot that it radiates X-rays. Excess energy also is vented by ejecting subatomic particles from the poles of the disk at speeds nearly that of light. "These things are tremendous particle accelerators, propelling huge amounts of matter at fantastic speeds. Unfortunately, we don't understand the physics of how they work very well at all. That's why we're so excited to have this 'movie' of extremely detailed images to help us figure out what is really going on in this system," Geldzahler said. "Ed and I have been studying Scorpius X-1 for nearly 20 years and we finally got the resources to probe deeply into its evolution." During the 56 hours in June of 1999 when the astronomers were observing, Scorpius X-1 cooperated by being very active. The object's core, near the orbiting pair of stars, showed changes in the brightness of its radio emission. In addition, "lobes" of bright radio emission were pushed outward by the jets at about half the speed of light. These lobes, the scientists think, are produced when the fast moving particles in the jet, created from the accretion disk, collide with the surrounding interstellar material caught in the flow. Near the beginning of the movie, one moving set of lobes disappeared, but new lobes were ejected from the core a few hours later and proceeded outward. The movie also shows Einstein's relativity in action. Although two clouds are pushed by the jets in opposite directions away from the core, the cloud moving toward the Earth appears to be 15 times brighter and moving two times as fast as the cloud moving away from us. "We believe that both clouds are similar and the difference that we see is just a relativistic illusion caused by their fast motions," said Fomalont. Twice, the core flared in brightness as it shot a burst of electrons outward at more than 95 percent of light speed. As this burst reached the lobes, the collision of the fast electrons with the lobe material caused the lobes to brighten. The exquisite detail and continuous formation of the radio images allowed the scientists to directly measure the speed of the fast electrons in the beam, marking the first time ever that the speed of energy flow in such a cosmic jet has been measured. "Scorpius X-1 put on a great show for us. Now it's up to us to figure out how it performs its act," said Fomalont. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
VLBA Detects Earth's Motion Around the Milky Way's Center
NASA Astrophysics Data System (ADS)
1999-06-01
It takes our Solar System more than 200 million years to orbit the center of the Milky Way Galaxy, 26,000 light-years away. Despite that tremendously long time span, astronomers using the National Science Foundation's (NSF) powerful Very Long Baseline Array (VLBA) radio telescope have shown they can detect this orbital motion in ten days! In addition, they have made a new and more accurate determination of just how long it takes us to circle our Galaxy -- 226 million years. "Not only is this a tremendous technical achievement, but it also has allowed us to greatly strengthen the scientific case for a supermassive black hole at the Galaxy's center -- definitely ruling out a multiple-star system," said Mark Reid of the Harvard-Smithsonian Center for Astrophysics. Reid, along with Anthony Readhead and Rene Vermuelen of Caltech and Robert Treuhaft of the Jet Propulsion Laboratory, announced their discovery at the American Astronomical Society's meeting in Chicago. The scientists used the continent-wide VLBA, part of the NSF's National Radio Astronomy Observatory (NRAO), to observe a radio-wave-emitting object called Sagittarius A* (pronounced "A-star"), that has been thought to mark the exact center of the Milky Way since its discovery more than two decades ago. They were able to measure its position on the sky within nearly one ten-thousandth of a second of arc -- a precision 600,000 times greater than that of the human eye and more than 500 times greater than that of the Hubble Space Telescope. With this precision, the astronomers were able to detect the slight apparent shift in position of Sagittarius A* compared to the positions of much more-distant quasars behind it. That apparent shift was caused by the motion of the Solar System around the Galaxy's center. "From these measurements, we estimate that we are moving at about 135 miles per second in our orbit around the center of the Milky Way," Reid said. "Even though it takes more than 200 million years for us to complete an orbit of the Galaxy's center, we can detect this motion in ten days' observing with the VLBA!" The observations allowed the scientists to calculate a more accurate figure for how long it takes the Solar System to orbit the Galaxy's center. "Our new figure of 226 million years is accurate to within six percent," Reid said. "The measurements we made with the VLBA place Sagittarius A* very close to, and most likely at, the exact (dynamical) center of our Galaxy, just as we expected," Reid said. "Right now, the new data also indicate that the minimum mass for this object is about 1,000 times the mass of the Sun. This rules out a multiple-star system and strengthens the idea that this object, much smaller than our own Solar System, contains a black hole about 2.6 million times more massive than the Sun," Reid added. "We plan future observations that will increase the accuracy of our measurements even further, and, we suspect, raise the minimum mass for this object by as much as 100 times," Reid said. The Milky Way's center, a complex region containing not only Sagittarius A* but also numerous supernova remnants and magnetic features, is obscured from optical telescopes by dust. Sagittarius A* was discovered in 1974 by astronomers using radio telescopes at the NRAO facility in Green Bank, WV. The NRAO's Very Large Array (VLA) and the VLBA both have been used for numerous studies of the Galactic Center region. The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power, or ability to see fine detail, of any telescope currently operational. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Learning radio astronomy by doing radio astronomy
NASA Astrophysics Data System (ADS)
Vaquerizo Gallego, J. A.
2011-11-01
PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.
VLBA Reveals Closest Pair of Supermassive Black Holes
NASA Astrophysics Data System (ADS)
2006-05-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found the closest pair of supermassive black holes ever discovered in the Universe -- a duo of monsters that together are more than 150 million times more massive than the Sun and closer together than the Earth and the bright star Vega. The VLBA The VLBA CREDIT: NRAO/AUI/NSF "These two giant black holes are only about 24 light-years apart, and that's more than 100 times closer than any pair found before," said Cristina Rodriguez, of the University of New Mexico (UNM) and Simon Bolivar University in Venezuela. Black holes are concentrations of mass with gravity so strong that not even light can escape them. The black hole pair is in the center of a galaxy called 0402+379, some 750 million light-years from Earth. Astronomers presume that each of the supermassive black holes was once at the core of a separate galaxy, then the two galaxies collided, leaving the black holes orbiting each other. The black holes orbit each other about once every 150,000 years, the scientists say. "If two black holes like these were to collide, that event would create the type of strong gravitational waves that physicists hope to detect with instruments now under construction," said Gregory Taylor, of UNM. The physicists will need to wait, though: the astronomers calculate that the black holes in 0402+379 won't collide for about a billion billion years. "There are some things that might speed that up a little bit," Taylor remarked. An earlier VLBA study of 0402+379, an elliptical galaxy, showed the pair of radio-wave-emitting objects near its core. Further studies using the VLBA and the Hobby-Eberly Telescope in Texas, revealed that the pair of objects is indeed a pair of supermassive black holes. "We needed the ultra-sharp radio 'vision' of the VLBA, particularly at the high radio frequencies of 22 and 43 GigaHertz, to get the detail needed to show that those objects are a pair of black holes," Taylor said. The VLBA is a continent-wide system of ten radio-telescope antennas. It provides the greatest ability to see fine detail, called resolving power, of any telescope in astronomy. "Astronomers have thought for a long time that close pairs of black holes should result from galaxy collisions," Rodriguez said. Still, finding them has proven difficult. Until now, the closest confirmed pairs of supermassive black holes were at least 4,500 light-years apart. Pairs of smaller black holes, each only a few times the mass of the Sun, have been found in our own Milky Way Galaxy, but 0402+379 harbors the pair of supermassive black holes that are the closest to each other yet found. Galactic collisions are common throughout the Universe, and astronomers think that the binary pairs of supermassive black holes that result can have important effects on the subsequent evolution of the galaxies. In a number of predicted scenarios, such giant pairs of black holes will themselves collide, sending gravitational waves out through the Universe. Such gravitational waves could be detected with a proposed joint space mission between NASA and the European Space Agency, the Laser Interferometer Space Antenna. "Such black-hole collisions undoubtedly are important processes, and we need to understand them. Finding ever-closer pairs of supermassive black holes is the first step in that process. Even finding one such system has dramatically changed our expectations, and informed us about what to look for," Taylor said. Taylor and his collaborators are currently using the VLBA to carry out the largest survey of compact radio-emitting objects ever undertaken, in the hope of finding more such pairs. Rodriguez and Taylor worked with Robert Zavala of the U.S. Naval Observatory, Allison Peck of the SubMillimeter Array of the Harvard- Smithsonian Center for Astrophysics, Lindsey Pollack of the University of California at Santa Cruz, and Roger Romani of Stanford University. Their results have been accepted for publication in the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Radio Telescope Reveals Secrets of Massive Black Hole
NASA Astrophysics Data System (ADS)
2008-04-01
At the cores of many galaxies, supermassive black holes expel powerful jets of particles at nearly the speed of light. Just how they perform this feat has long been one of the mysteries of astrophysics. The leading theory says the particles are accelerated by tightly-twisted magnetic fields close to the black hole, but confirming that idea required an elusive close-up view of the jet's inner throat. Now, using the unrivaled resolution of the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), astronomers have watched material winding a corkscrew outward path and behaving exactly as predicted by the theory. Galactic core and jet Artist's conception of region near supermassive black hole where twisted magnetic fields propel and shape jet of particles (Credit: Marscher et al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF). Click on image for high-resolution file. Watch Video of Black-Hole-Powered Jet (Credit: Cosmovision, Wolfgang Steffen) Download: NTSC Format (90MB) | PAL Format (90MB) "We have gotten the clearest look yet at the innermost portion of the jet, where the particles actually are accelerated, and everything we see supports the idea that twisted, coiled magnetic fields are propelling the material outward," said Alan Marscher, of Boston University, leader of an international research team. "This is a major advance in our understanding of a remarkable process that occurs throughout the Universe," he added. Marscher's team studied a galaxy called BL Lacertae (BL Lac), some 950 million light-years from Earth. BL Lac is a blazar, the most energetic type of black-hole-powered galactic core. A black hole is a concentration of mass so dense that not even light can escape its gravitational pull. Supermassive black holes in galaxies' cores power jets of particles and intense radiation in similar objects including quasars and Seyfert galaxies. Material pulled inward toward the black hole forms a flattened, rotating disk, called an accretion disk. As the material moves from the outer edge of the disk inward, magnetic field lines perpendicular to the disk are twisted, forming a tightly-coiled bundle that, astronomers believe, propels and confines the ejected particles. Closer to the black hole, space itself, including the magnetic fields, is twisted by the strong gravitational pull and rotation of the black hole. Theorists predicted that material moving outward in this close-in acceleration region would follow a corkscrew-shaped path inside the bundle of twisted magnetic fields. They also predicted that light and other radiation emitted by the moving material would brighten when its rotating path was aimed most directly toward Earth. Marscher and his colleagues predicted there would also be a flare later when the material hits a stationary shock wave called the "core" some time after it has emerged from the acceleration region. "That behavior is exactly what we saw," Marscher said, when his team followed an outburst from BL Lac. In late 2005 and early 2006, the astronomers watched BL Lac with an international collection of telescopes as a knot of material was ejected outward through the jet. As the material sped out from the neighborhood of the black hole, the VLBA could pinpoint its location, while other telescopes measured the properties of the radiation emitted from the knot. Bright bursts of light, X-rays, and gamma rays came when the knot was precisely at locations where the theories said such bursts would be seen. In addition, the alignment of the radio and light waves -- a property called polarization -- rotated as the knot wound its corkscrew path inside the tight throat of twisted magnetic fields. "We got an unprecedented view of the inner portion of one of these jets and gained information that's very important to understanding how these tremendous particle accelerators work," Marscher said. In addition to the continent-wide VLBA, an array of 10 radio telescopes spread from Hawaii to the Virgin Islands, the team used telescopes at the Steward Observatory, the Crimean Astrophysical Observatory, Lowell Observatory, Perugia University Astronomical Observatory, Abastumani Astrophysical Observatory, NASA's Rossi X-Ray Timing Explorer, the University of Michigan Radio Astronomy Observatory, and the Metsahovi Radio Observatory. The astronomers reported their findings in the April 24 issue of the journal Nature. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Students Use VLA to Make Startling Brown-Dwarf Discovery
NASA Astrophysics Data System (ADS)
2001-03-01
A group of summer students making a long-shot astronomical gamble with the National Science Foundation's (NSF) Very Large Array (VLA) have found the first radio emission ever detected from a brown dwarf, an enigmatic object that is neither a star nor a planet, but something in between. Their surprising discovery is forcing experts to re-think their theories about how brown dwarfs work. The Very Large Array "Many astronomers are surprised at this discovery, because they didn't expect such strong radio emission from this object," said Shri Kulkarni, a Caltech professor who was on the team that first discovered a brown dwarf in 1995, and advisor to one of the students. "What is so cool is that this is research that probably nobody else would have tried to do because of its low chance of success. That made it ideal for summer students -- we had almost nothing to lose," said Kate Becker, a student at Oberlin College in Ohio. "The radio emission these students discovered coming from this brown dwarf is 10,000 times stronger than anyone expected," said Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "This student project is going to open up a whole new area of research for the VLA," Frail added. The students, in addition to Becker, are: Edo Berger from Caltech; Steven Ball from New Mexico Tech in Socorro, NM; Melanie Clarke from Carleton College in Northfield, MN; Therese Fukuda from the University of Denver; Ian Hoffman from the University of New Mexico in Albuquerque; Richard Mellon from The Pennsylvania State University; Emmanuel Momjian from the University of Kentucky; Nathanial Murphy from Amherst College in Amherst, MA; Stacey Teng from the University of Maryland; Timothy Woodruff from Southwestern University in Georgetown, TX; Ashley Zauderer from Agnes Scott College in Decatur, GA; and Robert Zavala from New Mexico State University in Las Cruces, NM. Frail also is an author of the research paper, published in the March 15 edition of the scientific journal Nature. Berger, Hoffman, Momjian and Murphy are graduate students, and the rest were participants in the NSF-funded Research Experiences for Undergraduates program. The 14 students spent last summer working with NRAO scientists in Socorro. While each student had their own scientist-mentor, the VLA summer students also traditionally receive some VLA observing time for a collaborative project of their own. They sought ideas for their project from the NRAO staff, and, when they asked Frail, he suggested that they look at the latest research result from the recently-launched Chandra X-ray satellite. The students went to the Chandra World Wide Web site, and found that the satellite had detected an X-ray flare from the brown dwarf LP944-20. "We did some background reading, and realized that, based on predictions, the brown dwarf would be unobservable with the VLA, but we decided to try it anyway," said Berger. "Everybody we talked to said there was almost no chance that we'd see anything at all," said Becker. "They added, though, that it would be really exciting if we did," she said. The students had been given three hours of VLA observing time for their project. They used an hour and a half of it on the brown dwarf. The day after their observation, the students gathered at the NRAO Array Operations Center in Socorro to process their data and make their images. Berger, who had experience processing VLA data, worked alone in the same room as the other students, who were working together on another computer. Berger finished first and was shocked at his image. "I saw a bright object at the exact position of the brown dwarf, and was pretty sure I had made a mistake," Berger said. He waited for the others, who were working under the guidance of another NRAO astronomer. Ten minutes later, their image appeared on the screen, also showing the bright object at the brown dwarf's location. "We all got excited," said Berger, who then began breaking the hour and a half's worth of data up into smaller slices of time. This showed that the brown dwarf's radio emission had risen to a strong peak, then weakened. That meant that the star had undergone a flare. "Then we got real excited," Berger said. They immediately sought and received more observing time, ultimately capturing two more flares. "They got very lucky," Frail said. "The thing flared during their observation. Other astronomers had looked for radio emission from brown dwarfs and not found any. This one flared at just the right time," Frail added. "It was just an incredible fluke that we found it," said Becker. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs had long been thought to exist. Actually finding them, however, proved difficult. After decades of searching, astronomers found the first brown dwarf in 1995, and a few dozen now are known. The strong radio emission was unexpected because brown dwarfs, according to conventional theories, are not supposed to have magnetic fields strong enough to generate the radio emission. "The presumed internal structure of a brown dwarf will not permit a strong enough magnetic field," said Frail. "It looks like we're going to have to re-examine how we believe brown dwarfs work," he said. "The mere fact that they detected radio emission is remarkable," said Tim Bastian, an astronomer at the NRAO in Charlottesville, Virginia, who added that this object "will likely have something to teach us." "We're going to have to study this and other brown dwarfs more extensively with the VLA to answer the questions raised by our summer students' discovery," Frail said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Integrated detector array technology for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.
1984-01-01
The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.
Linking Deep Astrometric Standards to the ICRF
NASA Astrophysics Data System (ADS)
Frey, S.; Platais, I.; Fey, A. L.
2007-07-01
The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.
Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning
NASA Technical Reports Server (NTRS)
Doran, G.
2013-01-01
In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.
Brown Dwarfs: A New Class of Stellar Lighthouse
NASA Astrophysics Data System (ADS)
2007-04-01
Brown dwarfs, thought just a few years ago to be incapable of emitting any significant amounts of radio waves, have been discovered putting out extremely bright "lighthouse beams" of radio waves, much like pulsars. A team of astronomers made the discovery using the National Science Foundation's Very Large Array (VLA) radio telescope. Artist's Conception of Brown Dwarf Artist's conception of "mini-aurorae" at poles of brown dwarf, producing beams of strong radio emission. CREDIT: Hallinan et al., NRAO/AUI/NSF Click on image for page of graphics and full information "These beams rotate with the brown dwarf, and we see them when the beam passes over the Earth. This is the same way we see pulses from pulsars," said Gregg Hallinan of the National University of Ireland Galway. "We now think brown dwarfs may be a missing link between pulsars and planets in our own Solar System, which also emit, but more weakly," he added. Brown dwarfs are enigmatic objects that are too small to be stars but too large to be planets. They are sometimes called "failed stars" because they have too little mass to trigger hydrogen fusion reactions at their cores, the source of the energy output in larger stars. With roughly 15 to 80 times the mass of Jupiter, the largest planet in our Solar System, brown dwarfs were long thought to exist. However, it was not until 1995 that astronomers were able to actually find one. A few dozen now are known. In 2001, a group of summer students at the National Radio Astronomy Observatory used the VLA to observe a brown dwarf, even though they had been told by seasoned astronomers that brown dwarfs are not observable at radio wavelengths. Their discovery of a strong flare of radio emission from the object surprised astronomers and the students' scientific paper on the discovery was published in the prestigous scientific journal Nature. Hallinan and his team observed a set of brown dwarfs with the VLA last year, and found that three of the objects emit extremely strong, repeating pulses of radio waves. They concluded that the pulses come from beams emitted from the magnetic poles of the brown dwarfs. This is similar to the beamed emission from pulsars, which are superdense neutron stars, and much more massive than brown dwarfs. The characteristics of the beamed radio emission from the brown dwarfs suggest to the scientists that it is produced by a mechanism also seen at work in planets, including Jupiter and Earth. This process involves electrons interacting with the planet's magnetic field to produce radio waves that then are amplified, or strengthened, by natural masers that amplify radio waves the same way a laser amplifies light waves. "The brown dwarfs we observed are between planets and pulsars in the strength of their radio emissions," said Aaron Golden, also of the National University of Ireland Galway. "While we don't think the mechanism that's producing the radio waves in brown dwarfs is exactly the same as that producing pulsar radio emissions, we think there may be enough similarities that further study of brown dwarfs may help unlock some of the mysteries about how pulsars work," he said. While pulsars were discovered 40 years ago, scientists still do not understand the details of how their strong radio emissions are produced. The brown dwarfs rotate at a much more leisurely pace than pulsars. While pulsars rotate -- and produce observed pulses -- typically several times a second to hundreds of times a second, the brown dwarfs observed with the VLA are showing pulses roughly once every two to three hours. Hallinan and Golden worked with Stephen Bourke and Caoilfhionn Lane, also of the National University of Ireland Galway; Tony Antonova and Gerry Doyle of Armagh Observatory in Northern Ireland; Robert Zavala and Fred Vrba of the U.S.Naval Observatory in Flagstaff, Arizona; Walter Brisken of the National Radio Astronomy Observatory in Socorro, New Mexico; and Richard Boyle of the Vatican Observatory Research Group at Steward Observatory in Arizona. The scientists presented their results to the Royal Astronomical Society's National Astronomy Meeting at the University of Central Lancashire in the United Kingdom. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This work was supported by Science Foundation Ireland under its Research Frontiers Programme, the Higher Education Authority's Programme for Research in Third Level Institutions, and the Irish Research Council for Science, Engineering and Technology.
Observatories Combine to Crack Open the Crab Nebula
2017-12-08
Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This composite image of the Crab Nebula, a supernova remnant, was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. Credits: NASA, ESA, NRAO/AUI/NSF and G. Dubner (University of Buenos Aires) #nasagoddard #space #science
NASA Astrophysics Data System (ADS)
2003-02-01
Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy clusters, and the detection of organic and other molecules in space. The ALMA partners will construct the telescope at an altitude of 16,500 feet in the Atacama Desert in the Chilean Andes. This unique site is perhaps the best location on Earth to study millimeter and sub-millimeter light because these wavelengths are absorbed by moisture in the atmosphere. "Astronomers will have a pristine view of that portion of the electromagnetic spectrum from the ALMA site," said Colwell. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF executes the project through the National Radio Astronomy Observatory (NRAO), which is operated under cooperative agreement by Associated Universities, Inc. (AUI). The National Research Council of Canada will partner with the NSF in the North American endeavor. "The NRAO is very pleased to have the leading role in this project on behalf of the North American partners," said Dr. Fred K.Y. Lo, director of the NRAO in Charlottesville, Virginia. "ALMA will be one of astronomy's premier tools for studying the Universe," said Nobel Laureate Riccardo Giacconi, president of AUI. "The entire astronomical community is anxious to have the unprecedented power and resolution that ALMA will provide." The President of the ESO Council, Professor Piet van der Kruit, agrees: "ALMA heralds a breakthrough in sub-millimeter and millimeter astronomy, allowing some of the most penetrating studies of the Universe ever made. It is safe to predict that there will be exciting scientific surprises when ALMA enters into operation." By signing this agreement, ESO and the NSF give the green light for the joint construction of the ALMA telescope, which will cost approximately $552 million U.S. (in FY 2000 dollars). To oversee the construction and management of ALMA, a joint ALMA Board has been established by the partners. This board met for the first time on February 24-25, 2003, and witnessed the signing at the NSF headquarters in Arlington, Virginia. Dr. Joseph Bordogna, deputy director of the NSF, represented Dr. Colwell at the actual ceremony. Chile, the host country for ALMA, has shown its support for the telescope by issuing a Presidential decree granting AUI permission to work on the ALMA project, and by signing an agreement between ESO and the government of the Republic of Chile. These actions by the government of Chile were necessary formal steps to secure the telescope site in that country. ESO is an intergovernmental, European organization for astronomical research. It has ten member countries. ESO operates astronomical observatories in Chile and has its headquarters in Garching, near Munich, Germany. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
PARTNeR for Teaching and Learning Radio Astronomy Basics
NASA Astrophysics Data System (ADS)
Vaquerizo, Juan Ángel
2010-10-01
NASA has three satellite tracking stations around the world: CDSCC (Canberra, Australia), GDSCC (Goldstone, USA) and MDSCC (Madrid, Spain). One of the antennas located at MDSCC, DSS-61, is not used for satellite tracking any more and thanks to an agreement between INTA (Instituto Nacional de TA~l'cnica Aeroespacial) and NASA, it has been turned into an educational radio telescope. PARTNeR (Proyecto Académico con el RadioTelescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is a High School and University radio astronomy educational program that allows teachers and students to control this 34-meter radio telescope and conduct radio astronomical observations via the Internet. As radio astronomy is not a popular subject and astronomy has little presence in the High School Curriculum, teachers need specific training in those subjects to implement PARTNeR. Thus, High School teachers joining the project take a course to learn about the science of radio astronomy and how to use the antenna in their classrooms. Also, teachers are provided with some learning activities they can do with their students. These lesson plans are focused on the implementation of the project within an interdisciplinary framework. All educational resources are available on PARTNeR website. PARTNeR is an inquiry based approach to science education. Nowadays, students can join in three different observational programmes: variability studies in quasars, studies of radio-bursts in X-ray binaries (microquasars), and mapping of radio sources in the galactic plane. Nevertheless, any other project can be held after an evaluation by the scientific committee. The operational phase of the project started in the academic year 2003-04. Since then, 85 High Schools, seven Universities and six societies of amateur astronomers have been involved in the project. During the 2004-09 period, 103 High School teachers from Spain and Portugal have attended the training courses, and 105 radio astronomical remote observations have been performed with users. Until now, more than 2,000 students have been involved in radio astronomical observations.
Radio Astronomers Lift "Fog" on Milky Way's Dark Heart: Black Hole Fits Inside Earth's Orbit
NASA Astrophysics Data System (ADS)
2004-04-01
Thirty years after astronomers discovered the mysterious object at the exact center of our Milky Way Galaxy, an international team of scientists has finally succeeded in directly measuring the size of that object, which surrounds a black hole nearly four million times more massive than the Sun. This is the closest telescopic approach to a black hole so far and puts a major frontier of astrophysics within reach of future observations. The scientists used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the breakthrough. Milky Way Nucleus The Milky Way's nucleus, as seen with the VLA. Sagittarius A* is the bright white dot at center. CREDIT: NRAO/AUI/NSF, Jun-Hui Zhao, W.M. Goss (Click on Image for Larger Version) "This is a big step forward," said Geoffrey Bower, of the University of California-Berkeley. "This is something that people have wanted to do for 30 years," since the Galactic center object, called Sagittarius A* (pronounced "A-star"), was discovered in 1974. The astronomers reported their research in the April 1 edition of Science Express. "Now we have a size for the object, but the mystery about its exact nature still remains," Bower added. The next step, he explained, is to learn its shape, "so we can tell if it is jets, a thin disk, or a spherical cloud." The Milky Way's center, 26,000 light-years from Earth, is obscured by dust, so visible-light telescopes cannot study the object. While radio waves from the Galaxy's central region can penetrate the dust, they are scattered by turbulent charged plasma in the space along the line of sight to Earth. This scattering had frustrated earlier attempts to measure the size of the central object, just as fog blurs the glare of distant lighthouses. "After 30 years, radio telescopes finally have lifted the fog and we can see what is going on," said Heino Falcke, of the Westerbork Radio Observatory in the Netherlands, another member of the research team. The bright, radio-emitting object would fit neatly just inside the path of the Earth's orbit around the Sun, the astronomers said. The black hole itself, they calculate, is about 14 million miles across, and would fit easily inside the orbit of Mercury. Black holes are concentrations of matter so dense that not even light can escape their powerful gravity. The new VLBA observations provided astronomers their best look yet at a black hole system. "We are much closer to seeing the effects of a black hole on its environment here than anywhere else," Bower said. The Milky Way's central black hole, like its more-massive cousins in more-active galactic nuclei, is believed to be drawing in material from its surroundings, and in the process powering the emission of the radio waves. While the new VLBA observations have not provided a final answer on the nature of this process, they have helped rule out some theories, Bower said. Based on the latest work, he explained, the top remaining theories for the nature of the radio- emitting object are jets of subatomic particles, similar to those seen in radio galaxies; and some theories involving matter being accelerated near the edge of the black hole. As the astronomers studied Sagittarius A* at higher and higher radio frequencies, the apparent size of the object became smaller. This fact, too, Bower said, helped rule out some ideas of the object's nature. The decrease in observed size with increasing frequency, or shorter wavelength, also gives the astronomers a tantalizing target. "We think we can eventually observe at short enough wavelengths that we will see a cutoff when we reach the size of the black hole itself," Bower said. In addition, he said, "in future observations, we hope to see a 'shadow' cast by a gravitational lensing effect of the very strong gravity of the black hole." In 2000, Falcke and his colleagues proposed such an observation on theoretical grounds, and it now seems feasible. "Imaging the shadow of the black hole's event horizon is now within our reach, if we work hard enough in the coming years," Falcke added. Another conclusion the scientists reached is that "the total mass of the black hole is very concentrated," according to Bower. The new VLBA observations provide, he said, the "most precise localization of the mass of a supermassive black hole ever." The precision of these observations allows the scientists to say that a mass of at least 40,000 Suns has to reside in a space corresponding to the size of the Earth's orbit. However, that figure represents only a lower limit on the mass. Most likely, the scientists believe, all the black hole's mass -- equal to four million Suns -- is concentrated well inside the area engulfed by the radio-emitting object. To make their measurement, the astronomers had to go to painstaking lengths to circumvent the scattering effect of the plasma "fog" between Sagittarius A* and Earth. "We had to push our technique really hard," Bower said. Bower likened the task to "trying to see your yellow rubber duckie through the frosted glass of the shower stall." By making many observations, only keeping the highest-quality data, and mathematically removing the scattering effect of the plasma, the scientists succeeded in making the first-ever measurement of Sagittarius A*'s size. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In addition to Bower and Falcke, the research team includes Robin Herrnstein of Columbia University, Jun-Hui Zhao of the Harvard-Smithsonian Center for Astrophysics, Miller Goss of the National Radio Astronomy Observatory, and Donald Backer of the University of California-Berkeley. Falcke also is an adjunct professor at the University of Nijmegen and a visiting scientist at the Max-Planck Institute for Radioastronomy in Bonn, Germany. Sagittarius A* was discovered in February of 1974 by Bruce Balick, now at the University of Washington, and Robert Brown, now director of the National Astronomy and Ionospheric Center at Cornell University. It has been shown conclusively to be the center of the Milky Way, around which the rest of the Galaxy rotates. In 1999, Mark Reid of the Harvard-Smithsonian Center for Astrophysics and his colleagues used VLBA observations of Sagittarius A* to detect the Earth's motion in orbit around the Galaxy's center and determined that our Solar System takes 226 million years to make one circuit around the Galaxy. In March 2004, 55 astronomers gathered at the National Radio Astronomy Observatory facility in Green Bank, West Virginia, for a scientific conference celebrating the discovery of Sagittarius A* at Green Bank 30 years ago. At this conference, the scientists unveiled a commemorative plaque on one of the discovery telescopes. The Very Long Baseline Array, part of the National Radio Astronomy Observatory, is a continent-wide radio-telescope system, with 10, 240-ton dish antennas ranging from Hawaii to the Caribbean. It provides the greatest resolving power, or ability to see fine detail, of any telescope in astronomy, on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Status of LOFAR Data in HDF5 Format
NASA Astrophysics Data System (ADS)
Alexov, A.; Schellart, P.; ter Veen, S.; van der Akker, M.; Bähren, L.; Greissmeier, J.-M.; Hessels, J. W. T.; Mol, J. D.; Renting, G. A.; Swinbank, J.; Wise, M.
2012-09-01
The Hierarchical Data Format, version 5 (HDF5) is a data model, library, and file format for storing and managing data. It is designed for flexible and efficient I/O and for high volume, complex data. The Low Frequency Array (LOFAR) project is solving the challenge of data size and complexity using HDF5. Most of LOFAR's standard data products will be stored using HDF5; the beam-formed time-series data and transient buffer board data have already transitioned from project-specific binary format to HDF5. We report on our effort to pave the way towards new astronomical data encapsulation using HDF5, which can be used by future ground and space projects. The LOFAR project has formed a collaboration with NRAO, the Virtual Astronomical Observatory (VAO) and the HDF Group to obtain funding for a full-time staff member to work on documenting and developing standards for astronomical data written in HDF5. We hope our effort will enhance HDF5 visibility and usage within the community, specifically for LSST, the SKA pathfinders (ASKAP, MeerKAT, MWA, LWA), and other major new radio telescopes such as EVLA, ALMA, and eMERLIN.
Some new astronomical facilities in China
NASA Astrophysics Data System (ADS)
Wang, Shouguan
1989-10-01
For the 1990's, plans for some astronomical facilities and related research are being carried out in China. This report describes in some detail plans for radio astronomical facilities, a 150/220 cm Schmidt telescope, and experiments on a porcelain mirror material.
Assessment study of infrared detector arrays for low-background astronomical research
NASA Technical Reports Server (NTRS)
Ando, K. J.
1978-01-01
The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.
Extraordinary Cosmic Laboratory Helps Unravel Mysteries of a Galaxy's Powerful Central "Engine"
NASA Astrophysics Data System (ADS)
An extraordinary cosmic laboratory 21 million light-years away is providing radio astronomers their best opportunity yet to decipher the mysteries of the ultra-powerful "engines" at the hearts of many galaxies and quasars. An international research team using the National Science Foundation's Very Long Baseline Array (VLBA) and Very Large Array (VLA) radio telescopes has peered deeply into the core of the galaxy NGC 4258, learning important new information about the mysterious region from which high-speed jets of subatomic particles are ejected. The scientists announced their findings today at the American Astronomical Society meeting in Toronto, Ontario. The new research provides significant quantitative support for a theoretical model for the origin of such jets first proposed in 1979. NGC 4258 is the galaxy in which a warped disk of water molecules was discovered in 1994. That disk, observed in detail with the VLBA, was shown to be orbiting a central mass some 35 million times more massive than the Sun. That central mass, the astronomers believe, is a black hole. More recent studies of the disk and its surroundings have given astronomers their most detailed look yet at the heart of an active galactic nucleus (AGN), including the ability to pinpoint the exact center of the system, where the black hole resides. The 1994 observations provided the best evidence to date for the existence of a black hole at the heart of a galaxy. Black holes, so dense that not even light can escape their gravitational fields, have long been suspected as the driving force behind the energetic central engines of AGNs. The fortuitous existence of the molecular disk in NGC 4258 has helped astronomers use the ultrasharp radio "vision" of the continent-wide VLBA to probe with unprecedented clarity into the heart of that galaxy's central engine. The researchers are: James Herrnstein, James Moran, and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics; Philip Diamond of the National Radio Astronomy Observatory in Socorro, NM; Mikoto Miyoshi of Japan's Misusawa Astrogeodynamics Observatory; and Naomasa Nakai and Makoto Inoue of Japan's Nobeyama Radio Observatory. The work formed the basis of Herrnstein's Ph.D. dissertation at Harvard University. The extraordinary detail of the observations is made possible by the fact that the water molecules in the disk orbiting the black hole are amplifying microwave radio emissions in the same manner that a laser amplifies light. These natural amplifiers are called cosmic masers, and they produce bright targets for radio telescopes. Study of water masers at the center of NGC 4258 is what revealed the orbiting disk in 1994. Further studies of the water masers in NGC 4258 now have allowed the research team to deduce the exact location of the object orbited by the disk. In addition, new observations of the galaxy's center show radio emission the astronomers believe traces the inner parts of the high-speed jets. Combined, these new observations allow measurement of the distance between the black hole and the innermost observable portions of the jets. Such measurement is extremely important, because the standard theoretical model, proposed in 1979 by Roger Blandford of Caltech and Arieh Konigl of the University of Chicago, makes a clear prediction that all detected radio emission will be offset from the central engine generating the jets. The new radio observations of NGC 4258 are the first to show the exact location of the core of an AGN, and thus the first to allow measurement of the offset between the core and the detected emission closest to it. Significantly, the offset measured in NGC 4258 is fully consistent with the quantitative prediction made by the model of Blandford and Konigl. "There has been a lot of speculation about the relationship between radio jets and black holes over the years," said Herrnstein. "But this measurement precisely pins down the geometric relationship between them in this object." In addition to these measurements, the research team also has recorded the movement of individual maser regions within the orbiting disk. Such motion was expected, and helps further confirm the fact that the masers are indeed part of a disk orbiting a black hole. These motions are seen in masers within the part of the disk closest to our line of sight, where orbital motion would be most evident to us. The masers observed at the edges of the disk (as seen from Earth) do not show any such measurable proper motion over time. Moran notes that "Although the period of rotation of the megamaser disk is about 800 years, the movement of the masers during the two years of observations was about 60 microarcseconds, equivalent to a motion of about one millimeter seen at a distance of 3,000 kilometers. Being able to witness the disk turning at such a great distance is very exciting." Another benefit will come from combining the measurements of the proper motions with measurements of the Doppler shift in the radio emission from the masers at the disk's edge. These two pieces of information allow the astronomers to calculate the distance to NGC 4258 with greater precision than before. This distance calculation will not be subject to many of the uncertainties that plague other extragalactic distance measurements, and thus will help calibrate the still-uncertain cosmic distance scale for other galaxies. The researchers still are refining their calculations of the distance, but expect to arrive at a figure accurate within 5 percent. "Such precision is possible because of the well-understood dynamics of the system," said Greenhill. "It is a purely trigonometric method, independent of the normal hierarchy of extragalactic distance indicators." The galaxy NGC 4258 also is known as Messier 106, and is visible in moderate-sized amateur telescopes in the nighttime winter sky of the northern hemisphere, near the Big Dipper. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Harvard-Smithsonian Center for Astrophysics is operated by the Harvard College Observatory and the Smithsonian Astrophysical Observatory.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1992-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1989-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
NASA Astrophysics Data System (ADS)
Akins, Alexander Brooks; Steffes, Paul G.
2017-10-01
Radio astronomical observations of the lower-cloud and sub-cloud regions of the Venusian atmosphere at millimeter wavelengths can provide insight into the nature of the sub-cloud sulfur chemistry. Previous observations (de Pater et al., Icarus 90, 1991 and Sagawa, J. Natl. Inst. of Inf. And Comm. Tech. 55, 2008) indicate substantial variations in Venus disc brightness at millimeter wavelengths, likely due to variations in SO2 and H2SO4 vapor abundances. Although previous measurements of H2SO4 vapor opacity provide accurate information at centimeter wavelengths (Kolodner and Steffes, Icarus 132, 1998), extrapolation to millimeter wavelength observations is speculative. A Fabry-Perot open resonator with a quality factor in excess of 15,000 has been designed to measure the opacity of H2SO4 vapor in a CO2 atmosphere under Venus temperature and pressure conditions below the clouds. The resonator system has been designed using corrosion-resistant materials to ensure data integrity. Opacity measurements made with this system target the 2-4 millimeter wavelength range, applicable to recent Atacama Large Millimeter Array observations of Venus. Initial laboratory results for H2SO4 vapor opacity will be presented, and the implications of these results for pressure broadened opacity formalisms will be discussed. In addition to radio astronomical observations, these results of these measurements can aid in the interpretation of radiometer and radio occultation measurements from future Venus missions, such as the Venera D orbiter. This work is supported by the NASA Solar System Workings Program under grant NNX17AB19G.
Powerful Radio Burst Indicates New Astronomical Phenomenon
NASA Astrophysics Data System (ADS)
2007-09-01
Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant. "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen Hawking. The newly-discovered radio burst, the researchers said, might be the "last gasp" of a black hole as it finally evaporates completely. "We're actively looking for more of these powerful, short bursts, in other archival pulsar surveys, and hope to resolve the mystery of their origin," said McLaughlin. "In addition, if we can associate these events with galaxies of known distance, the radio dispersion we measure can be used as a powerful new way to determine the amount of material in intergalactic space," she added. The Parkes radio telescope is part of the Australia Telescope, which is funded by the Commonwealth of Australia for operation as a National Facility. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Scientists Celebrate VLBA's First Decade As Astronomy's Sharpest "Eye" on the Universe
NASA Astrophysics Data System (ADS)
2003-06-01
Scientists from around the globe are gathered in Socorro, New Mexico, to mark the tenth anniversary of the National Science Foundation's Very Long Baseline Array (VLBA) , a continent-wide radio telescope that produces the most detailed images of any instrument available to the world's astronomers. The VLBA The VLBA CREDIT: NRAO/AUI/NSF Nearly 200 scientists are presenting 160 research papers on topics including geophysics, star and planet formation, supernova explosions, galaxies, supermassive black holes, and future directions of research and instrumentation in astronomy. The meeting is sponsored by the National Radio Astronomy Observatory (NRAO) and the New Mexico Institute of Mining and Technology (NM Tech). The meeting is being held on the NM Tech campus in Socorro. "In ten years of operation, the VLBA has made landmark contributions to astronomy. In this scientific meeting, we are acknowledging those contributions and looking forward to an even more exciting future of frontier research," said James Ulvestad, director of VLA/VLBA operations for the NRAO. "The presentations at this meeting show that the VLBA is being used to study a much broader range of astronomical objects than was anticipated by its designers," said Prof. Roger Blandford of Caltech, who delivered the meeting's opening Keynote Address. Dedicated in 1993, the $85-million VLBA includes ten, 240-ton radio-telescope antennas, ranging from Hawaii in the west to the U.S. Virgin Islands in the east. Two are in New Mexico, one near Pie Town in Catron County and the other at Los Alamos. The VLBA is operated from the NRAO's Array Operations Center in Socorro. Acting like a giant eye 5,000 miles wide, the VLBA can produce the sharpest images of any telescope on Earth or in space. Its ability to see fine detail, called resolving power, is equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA's scientific achievements include making the most accurate distance measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; "movies" of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. In coming years, scientists plan to use the VLBA, along with other radio-telescope facilities, to gain important new insights on astronomical bodies ranging from nearby stars to the most distant galaxies, seen as they were billions of years ago. The VLBA also will help improve the celestial coordinate system used for spacecraft navigation and other purposes. Blandford outlined a number of future research challenges, including understanding how pulsars produce their powerful beams of light and radio waves, learning how supermassive black holes and their nearby environments produce superfast cosmic jets, trying to understand solar bursts, using gravitational lenses to study the distant Universe, and understanding the mechanisms of gamma ray bursts and their "afterglows." "I am heartened to see the number of young astronomers at this meeting who are using the VLBA and will use it to help answer these important scientific questions," Blandford added. Closer to home, the VLBA can be "turned around" to produce extremely precise measurements on the Earth. This capability allows scientists to study the motion of Earth's tectonic plates, to track "wobbles" in our planet's rotation, and to measure subtle changes attributed to atmospheric motions and climate change. The meeting in Socorro began June 8 and runs through June 12. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Astrophysics in Southern Africa
NASA Astrophysics Data System (ADS)
Whitelock, Patricia
2008-03-01
The government of South Africa has identified astronomy as a field in which their country has a strategic advantage and is consequently investing very significantly in astronomical infrastructure. South Africa now operates a 10-m class optical telescope, the Southern African Large Telescope (SALT), and is one of two countries short listed to host the Square Kilometre Array (SKA), an ambitious international project to construct a radio telescope with a sensitivity one hundred times that of any existing telescope. The challenge now is to produce an indigenous community of users for these facilities, particularly from among the black population which was severely disadvantaged under the apartheid regime. In this paper I briefly describe the observing facilities in Southern Africa before going on to discuss the various collaborations that are allowing us to use astronomy as a tool for development, and at the same time to train a new generation of astronomers who will be well grounded in the science and linked to their colleagues internationally.
Millimeter and submillimeter wave spectroscopy of propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan
2017-12-01
The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.
Multiple-Beam Detection of Fast Transient Radio Sources
NASA Technical Reports Server (NTRS)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-01-01
A method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test sequence of VLBA data, and both are efficient enough for deployment in real-time, online transient detection applications.
NASA Astrophysics Data System (ADS)
Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian
2017-04-01
Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic field throughout the inner heliosphere.
Multiwavelength and Statistical Research in Space Astrophysics
NASA Technical Reports Server (NTRS)
Feigelson, Eric D.
1997-01-01
The accomplishments in the following three research areas are summarized: multiwavelength study of active galactic nuclei; magnetic activity of young stellar objects; and statistical methodology for astronomical data analysis. The research is largely based on observations of the ROSAT and ASCA X-ray observatories, complemented by ground-based optical and radio studies. Major findings include: discovery of inverse Compton X-ray emission from radio galaxy lobes; creation of the largest and least biased available sample of BL Lac objects; characterization of X-ray and nonthermal radio emission from T Tauri stars; obtaining an improved census of young stars in a star forming region and modeling the star formation history and kinematics; discovery of X-ray emission from protostars; development of linear regression methods and codes for interpreting astronomical data; and organization of the first cross-disciplinary conferences for astronomers and statisticians.
NRAO Response to NSF Senior Review of Astronomy Facilities
NASA Astrophysics Data System (ADS)
2006-11-01
The National Science Foundation's (NSF) Astronomy Senior Review Committee report (pdf file), released today, made major recommendations for restructuring the NSF's ground-based astronomy efforts, including significant changes for the National Radio Astronomy Observatory (NRAO). The committee's report urged that leadership in radio astronomy, including millimeter- and submillimeter-wave observatories, "remain centered at NRAO as it is, by far, the largest radio astronomy organization in the world." The report praised the record of management of NRAO and the scientific capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA), the Expanded Very Large Array (EVLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA). However, the report also recommended that some reductions and changes occur at the NRAO by 2011. Specifically, the report recommended that: (a) VLBA operations make a transition to a significant reliance on international funding or risk closure; (b) GBT operations costs be reduced; and (c) NRAO scientific staff costs be reduced. "The Senior Review Committee had the very difficult task of reconciling the needs of current facilities and funding new facilities for the future of astronomy. We appreciate their efforts and look forward to working with the NSF to ensure that the valuable and unique research capabilities of our NRAO telescopes continue to serve the astronomical community," said Dr. Fred K.Y. Lo, NRAO Director. The VLBA provides the greatest angular resolution, or ability to see fine detail, of any telescope in the world, greatly exceeding the capabilities of the Hubble Space Telescope and the future Square Kilometre Array. The committee recognized that, "if the VLBA is closed, a unique capability would likely be lost for decades." "The VLBA is used by scientists from around the world because of its unique capabilities. It has produced landmark research milestones and the committee recognized in its report that the VLBA now is poised to become even more scientifically productive. We will aggressively pursue international assistance in keeping this world-class research tool operational, and are optimistic that we will succeed," Lo said. The Robert C. Byrd Green Bank Telescope, termed by the committee a "new and highly promising telescope," already has taken the lead in some important research fields. While the committee recommended reductions in the operational costs of the GBT, the NRAO already has been taking steps to make the operations as efficient as possible, commensurate with adequate support for productive science operations. "We look forward to an independent cost analysis by specialists in telescope operations and business administration," Lo said, adding that, "In the meantime, we will redouble efforts to explore alternative modes of operation while continuing to enhance scientific capabilities." The scientific staff of NRAO, composed of Ph.D astronomers, provides scientific guidance for the development and operations of the telescopes, assistance and mentoring to scientists using the telescopes and to students, and serves in key management and operational roles. The expertise embodied in NRAO's staff is a unique resource for planning the next generation of radio astronomy facilities. "As astronomy becomes more reliant on multi-wavelength investigations and NRAO telescopes are used more by researchers unfamiliar with radio observational techniques, the support provided by an excellent scientific staff will become even more important," Lo said. "Throughout this whole process, the NRAO will continue to carry out its mission of enabling cutting-edge research, attracting and training future scientists and engineers, and stimulating public interest in science," Lo said. The NRAO will work closely with the NSF in the coming months as the NSF considers the Senior Review recommendations. "The future of the NRAO is extremely bright," Lo said. "Our scientific focus is on some of the most important and challenging questions of 21st-Century astronomy. With the GBT and VLBA, EVLA and ALMA coming on line, we will remain a flagship observatory for the astronomical research community of the U.S. and the world," he said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Astronomers Surprised to Find Elongated Radio-Emitting Region At Center of Milky Way
NASA Astrophysics Data System (ADS)
1998-12-01
For the first time, astronomers have determined the intrinsic size and shape of the highly charged region of radio emission surrounding what most scientists believe to be a supermassive black hole at the center of our own Milky Way Galaxy. The new evidence may force theorists to revise their ideas about how material behaves in the vicinity of black holes. Using the National Science Foundation's Very Long Baseline Array (VLBA) of radio telescopes, an international team of astronomers from the United States and Taiwan studied the area generally thought to mark the Galactic center. This object, known as Sgr A*, and commonly called "Sagittarius A-star," is some 26,000 light years from Earth in the constellation of Sagittarius. Instead of finding something symmetrical, as expected, the researchers observed an odd, cigar-shaped area of radio emission. "If placed in our Solar System at the Sun's location, it would extend beyond Mars," says K. Y. Lo of the Academia Sinica Institute of Astronomy and Astrophysics in Taipei and leader of the research team. "But it would be only a quarter of that distance wide." The VLBA data support the current hypothesis that the central object has a mass about 2.5 million times that of the Sun. The researchers think Sgr A* may be an extremely energetic inner region of ionized gas accreting onto a supermassive black hole. "However, none of the competing models for a black hole can completely explain both the small size and asymmetrical shape of Sgr A* we have observed," says Jun-Hui Zhao, a member of the team from the Harvard-Smithsonian Center for Astrophysics. "The models would have to be changed to include some other mechanism such as a jet or wind to help explain the VLBA data." The nature of Sgr A* has been a long-standing puzzle in astronomy since its discovery in 1974 by Bruce Balick and Bob Brown. Since then, there have been many theories about the structure and emission mechanism of Sgr A*, but, in the past few years, astronomers have found increasing evidence that it is a supermassive black hole. The team of astronomers used the VLBA to determine the structure of Sgr A* at five radio wavelengths (6.0, 3.6, 2.0, 1.35 cm, and 7 mm). At long radio wavelengths the radiation from Sgr A* is seriously blurred due to the scattering by the interstellar electrons between the Galactic center and the Earth. But, as one moves to shorter wavelengths, the scatter -- or distortion -- decreases exponentially, thereby creating increasingly clearer images. Indeed, at the shortest wavelength of 7 mm, the scattering effects are finally small enough to reveal the true size and shape of Sgr A*. For an object of 2.5 million solar masses, its Schwarzschild radius -- or outer edge of the "gravity well" from which not even light itself can escape from the black hole's pull -- would be only about 7.5 million kilometers. That distance translates into only a twentieth of the mean distance between the Earth and the Sun -- an extraordinarily small area. The astronomers are particularly intrigued that the radio-emitting area immediately surrounding the event horizon has an elongated shape. The VLBA, a series of 10 individual telescopes located at sites across North America, can create, in effect, an enormous single telescope with an aperture thousands of kilometers wide, thus providing the resolution necessary to probe the relatively small region at the core of our galaxy. "We needed to be able to resolve very fine detail in order to determine Sgr A*'s size and shape," said Paul Ho of the Harvard-Smithsonian Center for Astrophysics. "The only way we were able to find these exciting results was through the excellent data we received from the VLBA." The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Closest Gamma Ray Burst Providing Scientists With Crucial Test for Burst Physics
NASA Astrophysics Data System (ADS)
2003-05-01
The closest Gamma Ray Burst (GRB) yet known is providing astronomers with a rare opportunity to gain information vital to understanding these powerful cosmic explosions. Extremely precise radio-telescope observations already have ruled out one proposed mechanism for the bursts. "This is the closest and brightest GRB we've ever seen, and we can use it to decipher the physics of how these bursts work," said Greg Taylor of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Taylor worked with Dale Frail, also of the NRAO, along with Prof. Shri Kulkarni and graduate student Edo Berger of Caltech in studying a GRB detected on March 29, 2003. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. VLBA image of GRB 030329 VLBA IMAGE of GRB 030329 CREDIT: NRAO/AUI/NSF (Click on Image for Larger Version) Taylor and Frail used the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and other radio telescopes to study the burst, known as GRB 030329. In a series of observations from April 1 to May 19, they determined the size of the expanding "fireball" from the burst and measured its position in the sky with great precision. At a distance of about 2.6 billion light-years, GRB 030329 is hardly next door. However, compared to other GRBs at typical distances of 8-10 billion light-years, it presents an easier target for study. "We only expect to see one burst per decade this close," said Frail. The precise measurement of the object's position allowed the scientists to show that one theoretical model for GRBs can be ruled out. This model, proposed in 2000, says that the radio-wave energy emitted by the GRB comes from "cannonballs" of material shot from the explosion at extremely high speeds. "The 'cannonball model' predicted that we should see the radio-emitting object move across the sky by a specific amount. We have not seen that motion," Taylor said. The currently standard "fireball model" of GRBs says that the radio emission comes from a rapidly-expanding shock wave. This model was first proposed by Peter Meszaros, Bohdan Paczynski and Sir Martin Rees, who won the American Astronomical Society's Bruno Rossi Prize in 2000 for their work. In this standard model, as the shock wave expands outward, the emission becomes fainter, but the center of the observed emission does not change position. The cannonball model, however, proposes that the emission arises from distinct concentrations of matter shot outward from the burst. As they move farther from the burst, their motion should be detected as a change in their position in the sky. On April 3, proponents of the cannonball model predicted a specific amount of motion for GRB 030329 and suggested that the VLBA's sharp radio "vision" could detect the motion and confirm their prediction. Instead, "our observations are consistent with no motion at all," Taylor said. "This is at odds with the cannonball model -- they made a specific prediction based on their model and the observations do not bear them out," he added. The scientists' direct measurement of the size of the GRB fireball also will provide new insights into the physics behind the burst. "By directly measuring the size and the expansion rate, we can start putting some real limits on the physics involved," Taylor said. First, he said, "We already can confirm that the fireball is expanding at nearly the speed of light, as the standard model predicts. Next, once our May observations are fully analyzed, we can put limits on the energy of the burst and provide a test of the standard model." Taylor and Frail observed GRB 030329 with the VLBA on April 1 and April 6. On April 22, they used the 100-meter radio telescope in Effelsberg, Germany in addition to the VLBA. On May 19, they used the VLBA, the Very Large Array (VLA) in New Mexico, the NSF's Robert C. Byrd Green Bank Telescope in West Virginia, and the Effelsberg telescope. In addition to gamma-ray and X-ray observations, visible light from GRB 030329 was observed by 65 telescopes around the world. At its brightest, the visible light from this burst was detectable with moderate-sized amateur telescopes. Gamma Ray Bursts were first detected in 1967 by a satellite monitoring compliance with the 1963 atmospheric nuclear test-ban treaty. For three decades thereafter, astronomers were unable to determine their distances from Earth, and thus were unable to begin understanding the physics underlying the explosions. In 1997, the first distance measurements were made to GRBs, and the NSF's Very Large Array (VLA) detected the first radio emission from a GRB afterglow. Once scientists determined that GRBs originate in distant galaxies and that they probably occur in regions of those galaxies where stars are actively forming, some 200 proposed models for what causes GRBs were reduced to a handful of viable models. Most scientists now believe that GRBs arise from a violent explosion that ends the life of a star much more massive than the Sun. Whereas such an explosion as a typical supernova leaves a dense neutron star, a GRB explosion leaves a black hole, a concentration of mass with gravitational pull so strong that not even light can escape it. The VLBA is a continent-wide system of ten radio- telescope antennas, ranging from Hawaii in the west to the U.S. Virgin Islands in the east, providing the greatest resolving power, or ability to see fine detail, in astronomy. Dedicated in 1993, the VLBA is operated from the NRAO's Array Operations Center in Socorro, New Mexico. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Radio and Optical Telescopes for School Students and Professional Astronomers
NASA Astrophysics Data System (ADS)
Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.
2013-01-01
The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
NASA Astrophysics Data System (ADS)
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
U.S.-Canadian Partnership in Radio Astronomy Valuable for Science, NRAO Director Says
NASA Astrophysics Data System (ADS)
2001-10-01
The United States and Canada intend to collaborate on two of the most important radio astronomy projects of the new century - the Atacama Large Millimeter Array (ALMA) and the Expanded Very Large Array (EVLA), astronomers from both countries announced today. "This cooperative program - the North American Partnership in Radio Astronomy - involves the key projects that will dominate radio astronomy world-wide," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "This partnership will multiply the efforts of both nations' astronomers for the benefit of science. It builds on a long tradition of cooperative efforts in radio astronomy, and will ensure that we continue that tradition into the new millennium," Vanden Bout said. The U.S.-Canada radio astronomy partnership is outlined in two letters of intent signed recently. The first, between the U.S. National Science Foundation (NSF) and Canada's National Research Council (NRC), states that both agencies will use their best efforts to obtain the necessary funding for construction and operation of ALMA. The second, between the National Radio Astronomy Observatory, funded by the NSF, and the Herzberg Institute of Astrophysics, funded by the NRC, forms a partnership in the EVLA. The VLA Expansion Project is a two-phase program designed to improve the scientific capabilities of the VLA tenfold by replacing 1970s-vintage equipment with modern technologies and adding new radio-telescope antennas to the existing 27-antenna array. Dedicated in 1980, the VLA has been used for more than 10,000 observing projects covering nearly every area of astrophysics. It is the most powerful, flexible and widely-used radio telescope in the world. The Expanded VLA will provide the improved observational capabilities needed to meet the research challenges of the coming years. In addition to the participation by Canada, funds have been pledged by Mexico. Both Mexico and Germany have funded VLA improvements in the past. A proposal to the NSF requesting U.S. funds for the EVLA is currently under review by the National Science Foundation. The agreement between the NRAO and the Herzberg Institute of Astrophysics (HIA) calls for HIA to build a new correlator - the digital "heart" that combines the received signals from multiple antennas to make those antennas work as a single, powerful telescope - for the EVLA. The new correlator will represent a contribution of 10 million (US). The full EVLA project will cost about 150 million, to be done in two phases, the first costing 75 million. "Canada has a strong program of radio astronomy, and in particular a skilled team of specialists in designing correlators, and we are pleased to have their talents directed toward building a new machine for the VLA," Vanden Bout said. ALMA will consist of 64 12-meter-diameter dish antennas comprising a single imaging telescope to study the universe at millimeter and submillimeter wavelengths - the region between radio waves and infrared waves. An international project being designed and developed by the U.S. and European nations, ALMA will be located on a high-altitude site in the Atacama desert of Chile. "ALMA will give scientists an unprecedented look at the structure of the early universe and revolutionary insights on how stars and planets form, among many other contributions," Vanden Bout said. "The EVLA will bring unmatched power and versatility to the study of objects as close as the Sun and planets and as far as primeval galaxies at the edge of the observable universe. Together, these two instruments will be at the forefront of 21st Century astrophysics," he added. "ALMA has been a bilateral project involving the United States and Europe. These new agreements with Canada turn ALMA into a partnership between Europe and North America," Vanden Bout said. Design and development work on ALMA has been ongoing since 1998, funded by the NSF and European organizations. Canadians already have participated in this work. ALMA is planned for completion this decade. The new partnership calls for Canada to seek funding for a 20 million (US) contribution toward construction of ALMA. The total construction cost of ALMA is 552 million (2000 US), to be shared equally between Europe and North America. Under both letters of intent, applications for observing time on ALMA and NRAO radio telescopes, including the VLA, the Very Long Baseline Array (VLBA), and the Green Bank Telescope (GBT), from Canadian scientists will be treated the same as applications from U.S. scientists. Also, Canadian scientists will be appointed to NRAO advisory and oversight committees, and U.S. scientists will be appointed to similar Canadian committees. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Capabilities and Present Status of The Sicaya Radio Telescope in Peru
NASA Astrophysics Data System (ADS)
Ishitsuka, J. K.; Kobayashi, H.; Miyoshi, M.
2017-07-01
The private telephone company, Telefónica del Perú, stopped operations of the Sicaya Intelsat Station in 2000, we knew that they were looking for some institution to own the Station in 2002 and begun conversations. Finally in 2008, the whole communications station with a 32-meters parabolic antenna was donated to the Geophysical Institute of Peru. Many things have happened since that, but finally we are almost ready to have a radio telescope. National Astronomical Observatory of Japan contributed enormously to set up the radio telescope. Initially as a single dish radio telescope, it will observe methanol maser at 6.7 GHz of young stellar objects. In the near future, equipping for VLBI observations is in the scope. Sicaya is situated on the central part of Peru at 3,370 meters of altitude and the weather is benign for radio astronomical observations, also humidity is low and allows have radio telescopes free of rust.
Dramatic Outburst Reveals Nearest Black Hole
NASA Astrophysics Data System (ADS)
2000-01-01
Scientists have discovered the closest black hole yet, a mere 1,600 light years from Earth. Its discovery was heralded by four of the most dramatic rapid X-ray intensity changes ever seen from one star. Astronomers from the Massachusetts Institute of Technology (MIT) and the National Science Foundation's National Radio Astronomy Observatory (NRAO) announced their findings at the American Astronomical Society's meeting in Atlanta. The black hole in the constellation Sagittarius, along with a normal star dubbed V4641 Sgr, form a violent system that briefly flooded part of our Milky Way Galaxy with X-rays and ejected subatomic particles moving at nearly the speed of light one day last September. At the peak of its X-ray output, V4641 Sgr was the brightest X-ray emitter in the sky. Astronomers call this type of system an X-ray nova because it suddenly becomes a bright source of X-rays, but this object shows characteristics never seen in an X-ray nova. "V4641 Sgr turns on and off so fast that it seems to represent a new subclass of X-ray novae," said Donald A. Smith, postdoctoral associate in MIT's Center for Space Research. Smith worked on data from this object with MIT principal research scientist Ronald Remillard and NRAO astronomer Robert Hjellming. "In X-rays, the intensity rose by a factor of more than 1,000 in seven hours, then dropped by a factor of 100 in two hours," Remillard said. The radio emission was seen as an image of an expanding "jet" of particles shooting out from the binary system. After reaching a maximum, the radio intensity dropped by a factor of nearly 40 within two days. "Radio telescopes give us a quick glimpse of something moving at a fantastically high velocity," Hjellming said. Black holes harbor enormous gravitational force that can literally rip the gas away from a nearby star. This transfer of gas is visible in many forms of radiation. Both orbiting X-ray telescopes and ground-based radio and optical telescopes saw the outburst of V4641 Sgr. The radio observations revealed the presence of a jet escaping from the system at mind-boggling speeds. Only three other galactic X-ray stellar systems have been found to eject material at such speeds. They have been dubbed "microquasars" because, on a smaller scale, they resemble quasars, which lie at the hearts of distant galaxies and also spew out high-velocity jets of particles. In galaxy-core quasars, the black holes are millions of times more massive than the Sun; in the more nearby microquasars the black holes are roughly three to twenty times more massive than the Sun. The extremely high velocity of the jets suggests that their origin lies close to the event horizon of a black hole. Microquasar activity is thought to arise when the black hole in the binary system draws material away from its companion star. The material surrounding the black hole forms a rapidly spinning disk called an accretion disk. This disk is heated by friction to millions of degrees, causing it to emit X-rays. As spiralling gas moves into the gravity well of the black hole, it moves faster and faster. Magnetic fields in the disk are believed to expel the charged subatomic particles at speeds close to that of light. As the charged particles interact with the magnetic fields, they emit radio waves. If some of the material escapes by being magnetically expelled into space, the matter may continue moving at the tremendous speed it had attained near the black hole. After their ejection, the jets of particles expand and cool, fading from astronomers' view. V4641 Sgr excites astronomers because it is close and because it acted so differently from other microquasars. In other microquasars, outbursts have dimmed more slowly over weeks or months rather than hours. "There's something fundamentally different about this one; it's more extreme than any other example," Hjellming said. "And because this system happens to be so close to us, `it is very likely that there are more objects like V4641 Sgr waiting to be discovered," said Smith. "The rapidly flaring systems in our galaxy may have been too faint and too fast for us to notice them," added Smith. What makes it so different? Astronomers aren't sure, but Remillard speculated that, "in V4641 Sgr, either the matter can flow into the black hole without forming a large accretion disk, or the black hole itself is significantly different in its mass, spin or charge." "Theory is lagging far behind the observations in terms of explaining what's going on in this system," Hjellming said. The drama of V4641 Sgr began Sept. 15, 1999, when Australian amateur astronomer Ron Stubbings noticed that the "star" was more than six times brighter than it had been the night before. He sent an e-mail message around the world. One recipient, Japanese astronomer Taichi Kato, recalled that this object had been associated with variable X-ray emission by scientists working with the Dutch-Italian BeppoSAX spacecraft. Kato forwarded the message to Smith, a member of the All-Sky Monitor (ASM) team using the Rossi X-ray Timing Explorer (RXTE) satellite. The ASM surveys the entire sky about once every two hours, and Smith found that the most recent observation of V4641 showed it as a bright X-ray emitter. Subsequent observations showed the rapid rise and fall of the object's X-ray brightness. A few hours later, it flared again. Within 24 hours, the National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico was observing V4641 Sgr. "We could immediately see that it had structure -- it was big," Hjellming said. The first VLA observation showed an object three times longer than the distance from the Sun to Pluto. "What we were seeing was the jets, and we could tell they were moving so fast that they already had expanded to a considerable size," he said. The VLA observations showed that the object's jet was moving at nine-tenths the speed of light. Other radio telescopes observing the object were NRAO's Green Bank Interferometer in West Virginia; the Australia Telescope Compact Array; the Molonglo Observatory Synthesis Telescope, also in Australia; the MERLIN array in Britain; the Ratan 600-meter radio telescope in Russia; and radio telescopes at the Owens Valley Radio Observatory in California. The radio observations also provided the distance measurement for the binary system. The dramatic X-ray flare on Sept. 15 was not the only time V4641 Sgr exploded into activity. Further examination of ASM data revealed a bright flare (about one-third as intense as the brightest flare) on Sept. 14th that lasted between three minutes and three hours. In response to the ASM team's alert, Michael McCollough and Peter Woods, members of the BATSE team at Marshall Space Flight Center, scoured their data for evidence of V4641 Sgr. In addition to the flares seen by the ASM, they found a third rapid flare that peaked two hours after the brightest flare, reaching a peak intensity about half that of the brightest flare. The RXTE Proportional Counter Array (PCA), a very large X-ray telescope, was rapidly reoriented to observe V4641 Sgr about 4.5 hours after the brightest flare. A fourth event, lasting 20 minutes, was recorded by the PCA to reach an intensity of one-sixth that of the brightest flare. The PCA data reveal complex substructure, with luminosity changes by a factor of four within one second, and by a factor of 500 within minutes. No further high-energy emission from V4641 Sgr has been observed with any satellite since the end of the flare seen by the PCA. "Combining the data from all three instruments, we saw four of the most dramatic rapid X-ray intensity changes ever seen from one star," Smith said. "This behavior is new. We've never see anything like it." The proximity of the object "gives us an unusual close-up look at this phenomenon," Hjellming said. If future searches for brief X-ray flares reveal that there are more objects like V4641 Sgr, "we will have a whole new source of information that can help us decipher just how jets in X-ray binaries work," Remillard said. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The RXTE is a NASA explorer mission consisting of X-ray instruments built by teams at Goddard Space Flight Center, MIT and the University of California at San Diego.
High-Tech 'Heart' of New-Generation Radio Telescope Passes First Test
NASA Astrophysics Data System (ADS)
2008-08-01
The Expanded Very Large Array (EVLA), part of the National Radio Astronomy Observatory (NRAO), took a giant step toward completion on August 7 with successful testing of advanced digital hardware designed to combine signals from its upgraded radio-telescope antennas to produce high resolution images of celestial objects. Successful Moment NRAO Crew Views Successful Computer Display Of WIDAR "First Fringes" Seated, front to back: Barry Clark, Ken Sowinski, Michael Rupen, Kevin Ryan. Standing, front to rear: Mark McKinnon, Rick Perley, Hichem Ben Frej. CREDIT: Dave Finley, NRAO/AUI/NSF Click on image for larger file. By upgrading the 1970s-era electronics of its original Very Large Array (VLA), NRAO is creating a major new radio telescope that is ten times more sensitive than before. Using the EVLA, astronomers will observe fainter and more-distant objects than previously possible and use vastly improved analysis tools to decipher their physics. The heart of the new electronics that makes this transformation possible is a high-performance, special-purpose supercomputer, called the WIDAR Correlator. It has been designed and is being built by the National Research Council of Canada at the Dominion Radio Astrophysical Observatory (DRAO) of the Herzberg Institute for Astrophysics, and serves as Canada's contribution to the EVLA project. The design of the correlator incorporates an NRC-patented new digital electronic architecture. The successful test, at the VLA site 50 miles west of Socorro, New Mexico, used prototype correlator electronics to combine the signals from two upgraded VLA antennas to turn them into a single, high-resolution telescope system, called an interferometer. The technical term for this achievement is called "first fringes." Each upgraded EVLA antenna produces 100 times more data than an original VLA antenna. When all 27 antennas are upgraded, they will pump data into the WIDAR correlator at a rate equal to 48 million digital telephone calls. To process this torrent of data, the correlator will make 10 million billion calculations per second. Powerful, multi-antenna imaging radio-telescope systems use pairs of antennas as their basic building blocks. Each of the VLA's 27 giant dish antennas is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of some astronomical object. The successful two-antenna test thus verifies the design of the new correlator. "This achievement marks the first time that the complete chain of electronics for the EVLA has worked together, and represents a huge milestone in the project. Our congratulations go to our Canadian colleagues and to the NRAO staff members participating in this project. This is a job well done," said Fred Lo, Director of the National Radio Astronomy Observatory. The VLA Expansion, a ten-year project approved in 2001, is funded by 55 million from the United States National Science Foundation (NSF) and 1.75 million from the Mexican government. The Canadian correlator represents a contribution of about $17 million to the project. Throughout the project, the VLA has continued to operate, using a mix of the old and new-style antennas to provide an ongoing research tool. Over its lifetime, the VLA has been the most scientifically-productive ground-based telescope in the history of astronomy. When completed in 2012, the EVLA will be the most powerful centimeter-wavelength radio telescope in the world. The technology developed for the EVLA will enable progress on the next generation radio telescope called the Square Kilometer Array (SKA). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Plots of amplitude (top) and phase (bottom) from WIDAR correlator "first fringes" on August 7, 2008.
VLA's Sharpened Vision Shows Details of Still-Forming Star
NASA Astrophysics Data System (ADS)
2001-01-01
Using a new observing capability of the National Science Foundation's Very Large Array (VLA) radio telescope, astronomers have discovered a solar-system-sized disk of gas and dust feeding material onto a young star with 8 to 10 times the mass of the Sun. This is the first time an inner "accretion disk" has been seen around such a massive star. The VLA images also revealed the inner portion of an energetic outflow of material powered by the accretion disk. Artist's conception "Disks and outflows in young stars increase dramatically in mass and energy as the mass of the young star increases. We don't know if the same process is at work in all young stars or how the disks can both power an outflow that extends more than 15 light-years and also start the process of forming planets," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "By studying the birth of massive young stars, we're pushing the limits of our understanding and trying to learn if there are critical differences between the outflows from high and low mass young stars," she added Shepherd and Mark Claussen, also from the NRAO in Socorro, and Stan Kurtz of the National Autonomous University in Mexico, presented their findings today at the American Astronomical Society's meeting in San Diego, CA. The scientists made the discovery using the VLA connected by a newly- operational fiber-optic link to one of the radio-telescope antennas of the NSF's Very Long Baseline Array (VLBA), located at Pie Town, NM, 32 miles away from the VLA. Linking the VLA to the Pie Town antenna almost doubled the resolving power, or ability to see fine detail, available to the astronomers. "We could not have seen these structures without using the Pie Town antenna connected to the VLA," said Claussen. Work on the VLA-Pie Town fiber-optic link, financed by the NSF and Associated Universities, Inc., which operates NRAO for the NSF, began in late 1997. The linked facilities first were available for routine astronomical observations last autumn. In late November, the scientists pointed the sharpened vision of the combined telescopes at an object called G192.16-3.82, more than 6,000 light-years distant in the constellation Orion. First observed in 1990, G192.16-3.82 was found to be a massive young star powering one of the largest stellar outflows -- extending more than 30 light years from end to end -- in the entire Milky Way Galaxy. Earlier observations showed the young star is surrounded by a large, rotating disk with a diameter greater than 1,000 times the Sun-Earth distance. Astronomers, however, believed that the outflow had to originate from a structure much smaller than this disk. The VLA-Pie Town system gave them their first glimpse of the suspected smaller structure, another disk slightly larger than our own Solar System containing enough gas and dust to make 20 Suns. In addition, they saw the inner portion of the outflow of material powered by that disk. The new observations also showed that the smaller disk probably is truncated by the gravitational pull of another, previously-unseen young star less massive than the first. Close to the larger protostar, the outflow is wide, covering an angle of about 40 degrees. "With smaller protostars, the outflow begins wide but then is narrowed down to a thin jet relatively close to its origin. However, when the protostar is more massive, the outflow tends to remain wide," Shepherd said. "We think that magnetic fields narrow down the flow from the smaller protostars. It's possible that when the flow contains much more mass, such as in this system, the magnetic fields may be just too weak in most cases to get this done," she said. "Our new observations now make it possible to test this idea by comparing computer simulations to what we see in the real universe," Shepherd said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials, magazine articles and numerous published photos, the VLA has been one of the world's most versatile and productive astronomical observatories since its dedication in 1980. VLA image and model of system The VLBA is a continent-wide system of 10 radio telescopes distributed across the continental United States, Hawaii and St. Croix in the U.S. Virgin Islands. Dedicated in 1993, the VLBA has made important contributions to the understanding of stars in the Milky Way, the workings of distant galaxies, and to calibrating the distance scale of the universe. Both the VLA and the VLBA use multiple radio-telescope antennas to produce greater resolving power than is possible with an individual antenna. Because of the different sizes of these two arrays of antennas, they produce images showing different levels of detail. NRAO scientists and engineers have developed plans to combine the VLA with the VLBA antennas closest to it, in New Mexico, Texas and Arizona, along with a number of new antennas, to fill in a gap in resolving power that exists between the VLA and VLBA. If this plan is funded, the closer VLBA antennas and the new antennas will be connected to the VLA by fiber-optic links to produce the Expanded VLA (EVLA). "The successful linking of the Pie Town VLBA antenna to the VLA shows that we can connect these radio-telescope antennas with fiber-optic cable over long distances and make them work as a single instrument," said Claussen, who worked extensively on the project. "This has produced a valuable new capability for astronomers to use now -- as shown by our study of this young stellar system -- but it also proves that our concept for expanding the VLA is technically sound," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Robert J.
2010-01-01
Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.
Origin of Enigmatic Galactic-center Filaments Revealed
NASA Astrophysics Data System (ADS)
2004-06-01
Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected were oriented perpendicular to the plane of the Galaxy, which would have aligned them with the Galaxy’s own magnetic field. "The problem with this hypothesis is that more recent images have revealed a population of weaker filaments oriented randomly in relation to the plane of the Galaxy," said Yusef-Zadeh. "This makes it difficult to explain the origin of the filaments by an organized Galactic magnetic field." In March and June of 2004, a team of astronomers using the GBT made images of the Galactic center at various wavelengths. The purpose of these surveys was to help identify radio features produced by hot gas (thermal emission) and those produced in magnetic fields (non-thermal emission). In general, thermal features radiate more strongly at shorter wavelengths and non-thermal at longer wavelengths. By comparing the GBT images with earlier VLA data taken of the same region, Yusef-Zadeh determined that a number of the non-thermal filaments seemed to connect to concentrated areas of thermal emission, which identify pockets of star formation. Galatic Center Combined radio image from the Very Large Array and Green Bank Telescope. The linear filaments near the top are some of the nonthermal radio filaments (NRFs) studied by the researchers. Other features, such as supernova remnants (SNRs) and the area surrounding our Galaxy's supermassive black hole (Sgr A) are shown. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) "What this showed us is that two seemingly disparate processes, thermal and non-thermal radio emission, can be created by the very same phenomenon," said Yusef-Zadeh. "In this case, that phenomenon is pockets of starburst activity." Yusef-Zadeh notes that the exact mechanism for how the areas of starburst generate the magnetic fields is still being investigated. "There are many ideas about the mechanism that generates these filaments," added Yusef-Zadeh, "but one possibility is that they are produced by the collision of winds blown off from individual stars." The star-forming regions associated with the filaments may contain about 100 massive stars each. The center of the Milky Way Galaxy is shrouded from optical telescopes by dense clouds of dust and gas. Radio telescopes, however, are able to pierce through the optical veil and see the features within. Concealed at the very heart of our Galaxy is a supermassive black hole. Known as Sagittarius A* (pronounced A-star), this area is a very powerful source of radio waves and was first detected by Karl Jansky in 1932. While the VLA can image fine scale structures with great precision, it can not always detect extended radio emission. The GBT, however, can help fill in the gaps. Together, they create a more complete image than either instrument could produce separately. "The ability to combine the data from the two telescopes," said Cotton, "gives us a very powerful tool for understanding how the smallest features relate to the overall structure. This is particularly important when you want to study an area like the center of our Galaxy." In addition to Yusef-Zadeh, Hewitt, and Cotton, the GBT survey was conducted by Casey Law and Douglas Roberts of Northwestern University; and Ron Maddalena of the National Radio Astronomy Observatory. The VLA is a single radio telescope made up of 27 separate antennas located on the Plains of San Agustin near Socorro, New Mexico. The GBT is the world’s largest fully steerable radio telescope, and it is located in Green Bank, West Virginia. Both telescopes are operated by the NRAO. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The Five-Hundred Aperture Spherical Radio Telescope (fast) Project
NASA Astrophysics Data System (ADS)
Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei
Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.
Ground-based Space Weather Monitoring with LOFAR
NASA Astrophysics Data System (ADS)
Wise, Michael; van Haarlem, Michiel; Lawrence, Gareth; Reid, Simon; Bos, Andre; Rawlings, Steve; Salvini, Stef; Mitchell, Cathryn; Soleimani, Manuch; Amado, Sergio; Teresa, Vital
As one of the first of a new generation of radio instruments, the International LOFAR Telescope (ILT) will provide a number of unique and novel capabilities for the astronomical community. These include remote configuration and operation, dynamic real-time processing and system response, and the ability to provide multiple simultaneous streams of data to a community whose scientific interests run the gamut from lighting in the atmospheres of distant planets to the origins of the universe itself. The LOFAR (LOw Frequency ARray) system is optimized for a frequency range from 30-240 MHz and consists of multiple antenna fields spread across Europe. In the Netherlands, a total 36 LOFAR stations are nearing completion with an initial 8 international stations currently being deployed in Germany, France, Sweden, and the UK. Digital beam-forming techniques make the LOFAR system agile and allow for rapid repointing of the telescope as well as the potential for multiple simultaneous observations. With its dense core array and long interferometric baselines, LOFAR has the potential to achieve unparalleled sensitivity and spatial resolution in the low frequency radio regime. LOFAR will also be one of the first radio observatories to feature automated processing pipelines to deliver fully calibrated science products to its user community. As we discuss in this presentation, the same capabilities that make LOFAR a powerful tool for radio astronomy also provide an excellent platform upon which to build a ground-based monitoring system for space weather events. For example, the ability to monitor Solar activity in near real-time is one of the key scientific capabilities being developed for LOFAR. With only a fraction of its total observing capacity, LOFAR will be able to provide continuous monitoring of the Solar spectrum over the entire 10-240 MHz band down to microsecond timescales. Autonomous routines will scan these incoming spectral data for evidence of Solar flares and be capable of generating various responses including alerting external observatories or reallocating internal observing capacity to create short cadence (1-10 sec) images of the Sun. More uniquely, the core development, already invested by LOFAR to produce astronomical images of the sky, makes an excellent framework on which to build a near real-time ionospheric monitor and thereby study the effects of space weather events on our atmosphere. One of the key technical challenges to producing high quality scientific images in the low frequency radio regime are the effects of the active ionosphere over the detector array on signal propagation through the earth's atmosphere. To correct for these effects, the current LOFAR system includes an adaptive calibration employing both single and multi-layer phase screen models for the ionosphere. The output of this calibration automatically produces continuous ionospheric measurements with a data cadence in seconds. Although limited to the sky over the array, the resulting TEC maps can have vertical and horizontal resolutions down to 2m and relative accuracies of 0.001 TECU. The intent is to publish both Solar and ionospheric data-streams to the space weather community providing an excellent complement to existing space-based monitoring assets. In this presentation, we will describe the current and planned capabilities of the LOFAR system as well as show some first examples of the potential data products taken during the ongoing commissioning phase. We will also discuss plans to build upon the current LOFAR infrastructure and provide a source of near real-time monitoring data to the space weather community.
PARAS program: Phased array radio astronomy from space
NASA Astrophysics Data System (ADS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-06-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
PARAS program: Phased array radio astronomy from space
NASA Technical Reports Server (NTRS)
Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael
1992-01-01
An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.
2016-07-11
The galaxy UGC 1382 has been revealed to be far larger and stranger than previously thought. Astronomers relied on a combination of ground-based and space telescopes to uncover the true nature of this "Frankenstein galaxy." The composite image shows the same galaxy as viewed with different instruments. The component images are also available. In the image at left, UGC 1382 appears to be a simple elliptical galaxy, based on optical data from the Sloan Digital Sky Survey (SDSS). But spiral arms emerged when astronomers incorporated ultraviolet data from the Galaxy Evolution Explorer (GALEX) and deep optical data from SDSS, as seen in the middle image. Combining that with a view of low-density hydrogen gas (shown in green), detected at radio wavelengths by the Very Large Array, scientists discovered that UGC 1382 is a giant, and one of the largest isolated galaxies known. GALEX in particular was able detect very faint features because it operated from space, which is necessary for UV observations because ultraviolet light is absorbed by the Earth's atmosphere. Astronomers also used Stripe 82 of SDSS, a small region of sky where SDSS imaged the sky 80 times longer than the original standard SDSS survey. This enabled optical detection of much fainter features as well. http://photojournal.jpl.nasa.gov/catalog/PIA20695
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1997-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
Radio Telescopes' Precise Measurements Yield Rich Scientific Payoffs
NASA Astrophysics Data System (ADS)
2008-01-01
Having the sharpest pictures always is a big advantage, and a sophisticated radio-astronomy technique using continent-wide and even intercontinental arrays of telescopes is yielding extremely valuable scientific results in a wide range of specialties. That's the message delivered to the American Astronomical Society's meeting in Austin, Texas, by Mark Reid of the Harvard-Smithsonian Center for Astrophysics, a leading researcher in the field of ultra-precise astronomical position measurements. Very Long Baseline Interferometry provides extremely high precision that can extend use of the parallax technique to many more celestial objects. Parallax is a direct means of measuring cosmic distances by detecting the slight shift in an object’s apparent position in the sky caused by Earth’s orbital motion. Credit: Bill Saxton, NRAO/AUI/NSF "Using radio telescopes, we are measuring distances and motions of celestial bodies with unprecedented accuracy. That's helping us better understand many processes ranging from star formation to the scale of the entire Universe," Reid said. The observing technique, called Very Long Baseline Interferometry (VLBI), was pioneered in 1967, but has come into continuous use only in the past 10-15 years. The National Science Foundation's Very Long Baseline Array (VLBA), a system of 10 radio-telescope antennas ranging from Hawaii to the Caribbean, was dedicated in 1993. There are other VLBI systems in Europe and Asia, and large radio telescopes around the world cooperate regularly to increase sensitivity. VLBI observations routinely produce images hundreds of times more detailed than those made at visible-light wavelengths by the Hubble Space Telescope. Several groups of researchers from across the globe use the VLBA to study stellar nurseries in our own Milky Way Galaxy and measure distances to regions where new stars are forming. The key has been to improve measurement accuracy to a factor of a hundred times better than that produced by the highly successful Hipparcos satellite. Using small clouds of gas in star-forming regions that strongly amplify radio waves, called cosmic masers, the astronomers measured the tiny shift in the object's position in the sky caused by the Earth's orbit around the sun. This, in turn, yielded highly-accurate distances by the simple surveying technique of triangulation, the "gold standard" of distance measuring techniques available to astronomers. Dr. Mark Reid Dr. Mark Reid Credit: CfA Click image for high-resolution file (1.02 MB) "Knowing the distance accurately means we also know the luminosities, masses and ages of the young stars much more accurately, and that is vital to understanding how star formation works," Reid said. In addition, he pointed out, the VLBA observations have shown the motions of the young stars in the Milky Way are much more complicated than simple circular motion. Massive young stars appear to be born orbiting the Milky Way considerably slower than older stars. "This might be explained by the interaction of giant molecular clouds, the ultimate sites of massive star formation, as they "surf" spiral density waves in the Milky Way." An international team of scientists led by Reid has used VLBI to detect the slight change in apparent position of the object at the Milky Way's center caused by our Solar System's orbit around that center. "It takes our Solar System more than 200 million years to circle the center of our Galaxy, and yet we can detect that motion in only a couple weeks with the VLBA -- truly astounding!" Reid said. The VLBA studies of the Galactic Center have shown that an object called Sagittarius A* is at the exact gravitational center of our Galaxy. That means, the scientists say, that the object must be incredibly massive. "The VLBA measurements, combined with infrared observations of stellar orbits around this object, provide overwhelming evidence that it's a supermassive black hole," Reid explained. "These observations are also going to make it possible to re-define the coordinate system used to map the entire Galaxy," Reid added. Looking farther outward, astronomers achieved a longstanding goal of measuring the spin of another galaxy. In 2005, Reid and his colleagues measured both the rotational spin and the motion in space of the galaxy M33, nearly 2.4 million light-years from Earth. Astronomers in the 1920s had attempted such a feat, but their results were not accurate enough. "This achievement had to wait for the VLBA," Reid said. This and subsequent work has put strong limits on the amount of unseen "dark matter" around the giant Andromeda galaxy, which M33 orbits. A continuing goal is to use VLBI observations to measure the orbits of these and other galaxies within the Local Group of galaxies to which our own Milky Way belongs. VLBA The Very Long Baseline Array (VLBA), the National Radio Astronomy Observatory’s continent-wide radio-telescope system. The VLBA provides the greatest resolving power, or ability to see detail, of any instrument in astronomy. Credit: NRAO/AUI/NSF In 1999, astronomers set a new standard for a distance measurement outside the Local Group of galaxies when they used the VLBA to make a direct geometric distance measurement to a galaxy called NGC 4258, 23.5 million light-years from Earth. That measurement, accurate to within 7 percent, caused other scientists to revise their indirect-measurement techniques for the rest of the Universe. The NGC 4258 distance was calculated by measuring the motion of masers in a disk of gas containing water molecules and orbiting a supermassive black hole at the galaxy's center. "Now, other galaxies are being observed in hopes of extending direct distance measurement even farther out in the Universe," Reid said. "One candidate, called UGC 3789, at a distance of about 160 million light-years, will be measured with about 10 percent accuracy. Our goal is to further improve these measurements and to measure 5 to 10 other galaxies in order to determine the Hubble constant (the expansion rate of the Universe) to 3 percent accuracy. This would put limits on key parameters of the dark energy that apparently is accelerating the expansion of the Universe," Reid added. The kind of accurate measurement of distances and motions that VLBI observations provide can benefit numerous other areas of astronomy, Reid pointed out. For example, the distances to pulsars have been measured directly with the VLBA, yielding better understanding of their characteristics. The technique also could reveal planets circling some nearby stars. "Anytime you can do something as dramatic as improving measurement accuracy by a hundredfold, you're bound to get a great scientific payoff," Reid said. "We're looking forward to exciting new results in the coming years," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Facilities for US radioastronomy
NASA Technical Reports Server (NTRS)
Thaddeus, P.
1982-01-01
An overview of the radio-astronomy field is given, and prospects ready for construction at NASA are presented. A very-long-baseline array consisting of ten 25 m antennas, with a limiting wavelength of 7 mm and an angular resolution at that wavelength of 2 x 10 to the 4th arcsec is discussed. Eighty percent of the phase information will be obtained by closure around the 36 independent triangles, and high quality aperture-synthesis maps will be produced at all wavelengths. The 25 m telescope will be capable of several applications including the discovery of new molecules in our galaxy (in particular, the envelope of the evolved carbon star IRC + 10216), the detection of CO to distances of perhaps 100 million light years, and the understanding of the events which occur as stars are formed from molecular clouds, and as energy is fed back into the molecular gas by new stars. The submillimeter-wave telescope contains the last atmospheric radio windows where astronomical observations can be made from the earth's surface. The need for funding is stressed.
Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network
NASA Astrophysics Data System (ADS)
An, T.; Sohn, B. W.; Imai, H.
2018-02-01
The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.
Radio Telescopes Provide Key Clue on Black Hole Growth
NASA Astrophysics Data System (ADS)
2007-01-01
Astronomers have discovered the strongest evidence yet found indicating that matter is being ejected by a medium-sized black hole, providing valuable insight on a process that may have been key to the development of larger black holes in the early Universe. The scientists combined the power of all the operational telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) to peer deep into the heart of the galaxy NGC 4395, 14 million light-years from Earth in the direction of the constellation Canes Venatici. NGC 4395 Core VLBI image of extended radio emission from core of NGC 4395, indicating suspected outflow powered by black hole CREDIT: Wrobel & Ho, NRAO/AUI/NSF Click on image for larger file Optical (visible light) image of NGC 4395 See here for detail and credit information for optical image. "We are seeing in this relatively nearby galaxy a process that may have been responsible for building intermediate-mass black holes into supermassive ones in the early Universe," said Joan Wrobel, an NRAO scientist in Socorro, NM. Wrobel and Luis Ho of the Observatories of the Carnegie Institution of Washington in Pasadena, CA, presented their findings to the American Astronomical Society's meeting in Seattle, WA. Black holes are concentrations of matter so dense that not even light can escape their powerful gravitational pull. The black hole in NGC 4395 is about 400,000 times more massive than the Sun. This puts it in a rarely-seen intermediate range between the supermassive black holes at the cores of many galaxies, which have masses millions to billions of times that of the Sun, and stellar-mass black holes only a few times more massive than the Sun. Energetic outflows of matter are common to both the supermassive and the stellar-mass black holes, but the new radio observations of NGC 4395 provided the first direct image of such a suspected outflow from an intermediate-mass black hole. The outflows presumably are generated by little-understood processes involving a spinning disk of material being drawn toward the black hole at the disk's center. "An outflow from a black hole can regulate its growth by pushing back on material being drawn toward it. This is an important aspect of black hole development. Our observations offer new and unique information on how this process works for intermediate-mass black holes," Ho said. "Intermediate-mass black holes may have been the starting points for the supermassive black holes that we now see throughout the Universe. By studying this contemporary analog to those earlier objects, we hope to learn how the less-massive ones grew into the more-massive ones," Wrobel explained. The black hole in NGC 4395 was added to a small number of known intermediate-mass black holes in 2005, when a research team led by Brad Peterson of the Ohio State University calculated its mass based on ultraviolet observations. Other ultraviolet and X-ray observations gave tantalizing hints that material might be flowing outward from the black hole. "Fortunately, this object also is detectable by radio telescopes, so we could use very high precision radio observing techniques to make extremely detailed images," Wrobel said. Wrobel and Ho used a technique called Very Long Baseline Interferometry (VLBI), in which multiple radio-telescope antennas are used together to simulate a much larger "virtual telescope," providing extremely great resolving power, or ability to see fine detail. The astronomers used all of NRAO's telescopes in their coordinated VLBI array, including the continent-wide Very Long Baseline Array (VLBA), the 27-antenna Very Large Array (VLA) in New Mexico, and the giant Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The combination of antennas spread far apart as well as the large amount of signal-collecting area in this system allowed the scientists to make a detailed image of the faint radio emission caused by fast-moving electrons in the suspected outflow from the black hole interacting with magnetic fields. The resulting image showed the suspected outflow stretching approximately one light-year from the black hole. "This direct image bolsters the case for an outflow that was suggested by the earlier indirect evidence from the ultraviolet and X-ray observations," Wrobel said. "By measuring the length of this suspected outflow, we offer a unique constraint on theoretical models for how intermediate-mass black holes operate," Ho said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Big Computing in Astronomy: Perspectives and Challenges
NASA Astrophysics Data System (ADS)
Pankratius, Victor
2014-06-01
Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds a distinguished doctorate and a Habilitation degree in Computer Science from the University of Karlsruhe. Contact him at pankrat@mit.edu, victorpankratius.com, or Twitter @vpankratius.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Radiophysicist and astronomer, born Ararat, Victoria, Australia, pioneered the use of a Lloyd's mirror arrangement for radio interferometry at Dover Heights in Australia, and located the source of solar radio noise within the disc of the Sun. As John Hey had suggested, the radio noise came from sunspots....
NASA Astrophysics Data System (ADS)
Fargion, Daniele; Oliva, Pietro; de Sanctis Lucentini, Pier Giorgio; Khlopov, Maxim Yu.
The Sun albedo of Cosmic Rays (CRs) at GeVs energy has been discovered recently by the FERMI satellite. They are traces of atmospheric CRs hitting solar atmosphere and reflecting skimming gamma photons. Even if relevant for astrophysics, as being a trace of atmospheric solar CR noises they cannot offer any signal of neutrino astronomy. On the contrary, the Moon with no atmosphere, may become soon a novel filtering calorimeter and an amplifier of energetic muon astronomical neutrinos (at TeV up to hundred TeVs energy); these lepton tracks leave an imprint in their beta decay while in flight to Earth. Their TeV electron air-shower are among the main signals. Also, a more energetic, but more rare, PeV up to EeV tau lunar neutrino events may be escaping as a tau lepton from the Moon: τ PeV secondaries, then, may be shining on Earth’s atmosphere in lunar shadows in a surprising way. One or a few gamma air-shower events inside the Moon shadows may occur each year in near future Cherenkov telescope array (CTA) or large high altitude air shower observatory (LHAASO) TeV gamma array detector, assuming a nonnegligible astrophysical TeV up to hundred TeV neutrino component (with respect to our terrestrial ruling atmospheric ones); these signals will open a new wonderful passe-partout keyhole for neutrino, been seen along the Moon. The lunar solid angle is small and the muon or tau expected rate is rare, but with the future largest tau radio array as the giant radio array for neutrino detection (GRAND), one might well discover such neutrino imprint.
Astronomers Discover Six-Image Gravitational Lens
NASA Astrophysics Data System (ADS)
2001-08-01
An international team of astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope and NASA's Hubble Space Telescope (HST) to discover the first gravitational lens in which the single image of a very distant galaxy has been split into six different images. The unique configuration is produced by the gravitational effect of three galaxies along the line of sight between the more-distant galaxy and Earth. Optical and Radio Images of Gravitational Lens "This is the first gravitational lens with more than four images of the background object that is produced by a small group of galaxies rather than a large cluster of galaxies," said David Rusin, who just received his Ph.D. from the University of Pennsylvania. "Such systems are expected to be extremely rare, so this discovery is an important stepping stone. Because this is an intermediate case between gravitational lenses produced by single galaxies and lenses produced by large clusters of galaxies, it will give us insights we can't get from other types of lenses," Rusin added. The gravitational lens, called CLASS B1359+154, consists of a galaxy more than 11 billion light-years away in the constellation Bootes, with a trio of galaxies more than 7 billion light-years away along the same line of sight. The more-distant galaxy shows signs that it contains a massive black hole at its core and also has regions in which new stars are forming. The gravitational effect of the intervening galaxies has caused the light and radio waves from the single, more-distant galaxy to be "bent" to form six images as seen from Earth. Four of these images appear outside the triangle formed by the three intermediate galaxies and two appear inside that triangle. "This lens system is a very interesting case to study because it is more complicated than lenses produced by single galaxies, and yet simpler than lenses produced by clusters of numerous galaxies," said Chris Kochanek of the Harvard-Smithsonian Center for Astrophysics (CfA). "When we understand this system, we will have a much clearer picture of how galaxies are changed by being part of a bigger cluster of galaxies," he added. B1359+154 was discovered in 1999 by the Cosmic Lens All-Sky Survey, an international collaboration of astronomers who use radio telescopes to search the sky for gravitational lenses. Images made by the NSF's Very Large Array in New Mexico and by Britain's MERLIN radio telescope showed six objects suspected of being gravitational-lens images, but the results were inconclusive. Rusin and his team used the VLBA and HST in 1999 and 2000 to make more-detailed studies of B1359+154. The combination of data from the VLBA and HST convinced the astronomers that B1359+154 actually consists of six lensed images of a single background galaxy. The VLBA images were made from data collected during observations at a radio frequency of 1.7 GHz. "This is a great example of modern, multi-wavelength astronomy," said Rusin. "We need the radio telescopes to detect the gravitational lenses in the first place, then we need the visible-light information from Hubble to show us additional detail about the structure of the system." Armed with the combined VLBA and HST data about the positions and brightnesses of the six images of the background galaxy as well as the positions of the three intermediate galaxies, the astronomers did computer simulations to show how the gravitation of the three galaxies could produce the lens effect. They were able to design a computer model of the system that, in fact, produces the six images seen in B1359+154. "Our computer model certainly is not perfect, and we need to do more observations of this system to refine it, but we have clearly demonstrated that the three galaxies we see can produce a six-image lens system," said Martin Norbury, a graduate student at Jodrell Bank Observatory in Britain. "We think this work will give us an excellent tool for studying much-denser clusters of galaxies and the relationships of the individual cluster galaxies to the 'halo' of dark matter in which they are embedded," he added. Clusters of galaxies are known to produce gravitational lenses with up to eight images of a single background object. However, the number of galaxies in such a cluster makes it difficult for astronomers to decipher just how their gravitational effects have combined to produce the multiple images. Researchers hope to be able to understand the lensing effect well enough to use the lenses to show them how galaxies, gas and unseen dark matter in clusters are distributed. A system such as B1359+154, with only three galaxies involved in the lensing, can help astronomers learn how complex gravitational lenses work. "The next big step is to use HST to see the pattern of rings produced by the galaxy surrounding the black hole. We already see hints of them, but with the upgrades to HST in the next servicing mission we should be able to trace it completely both to pin down the structure of the lens and to have an enormously magnified image for studying the distant host galaxy," Kochanek said. In addition to Rusin, Kochanek and Norbury, the researchers are: Emilio Falco of the CfA; Chris Impey of Steward Observatory at the University of Arizona; Joseph Lehar of the CfA; Brian McLeod of the CfA; Hans-Walter Rix of the Max Planck Institute for Astronomy in Germany; Chuck Keeton of Steward Observatory; Jose Munoz of the Astrophysical Institute of the Canaries in Tenerife, Spain; and Chien Peng of Steward Observatory. The team published its results in the Astrophysical Journal. The VLBA is a system of 10 radio-telescope antennas that work together as a single astronomical instrument. The antennas are spread across the United States, from Hawaii in the west to the U.S. Virgin Islands in the east. A radio telescope system more than 5,000 miles across, the VLBA produces extremely detailed images. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA,, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international Cooperation between NASA and the European Space Agency.
NASA Astrophysics Data System (ADS)
Remijan, Anthony John
2015-08-01
The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.
VLA Observations Confirm Origin of Gamma Ray Bursts in Short-Lived Stars
NASA Astrophysics Data System (ADS)
1998-06-01
Radio telescope studies of the fiery afterglow of a Gamma Ray Burst have provided astronomers with the best clues yet about the origins of these tremendous cosmic cataclysms since their discovery more than 30 years ago. Observations with the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope confirm that a blast seen to occur on March 29 had its origin in a star-forming region in a distant galaxy. "There are two leading theories for the causes of Gamma Ray Bursts," said Dale Frail of the NSF National Radio Astronomy Observatory (NRAO) in Socorro, NM. "According to one theory, the blasts occur in the death throes of pairs of old stars. The other requires them to arise from exploding, massive, short-lived stars that still reside within the star-forming gas and dust from which they formed. The VLA studies of the burst show that at least this one almost certainly occurred within a star-forming region. This result also explains why half of the Gamma Ray Burst afterglows are not detected by optical telescopes." Frail heads a VLA observing team including Greg Taylor, also of NRAO, and Shri Kulkarni of Caltech, that reported its findings to the American Astronomical Society meeting in San Diego, CA. The March 29 burst was seen clearly by radio telescopes (the accompanying image is GRB 980329 as seen by the VLA) but only very faintly with optical instruments. "That is extremely important," said Taylor. "This burst was very faint at visible wavelengths, brighter at infrared wavelengths and brighter still at radio wavelengths. This is a clear indication that the exploding object was surrounded by dust. Dust is most commonly found in star-forming regions." This strongly favors one of the two leading theories about Gamma Ray Bursts over the other. One explanation for these tremendously energetic fireballs is that a pair of superdense neutron stars collides. The other is that a single, very massive star explodes in a "hypernova," more powerful than a supernova, at the end of its normal life. The hypernova explosion, scientists believe, would come only a few million years after the giant star was formed, while it is still within the cloud of gas and dust from which it formed. Neutron stars, on the other hand, are formed by supernova explosions that give a "kick" to the resulting neutron star, propelling it at high speeds. An orbiting pair of neutron stars, astronomers think, would collide only after hundreds of millions of years of orbital decay, by which time they would be far away from the gas and dust of their birthplace. "The observations already have provided crucial insight; we intend to continue observing the relic of the March 29 burst with the VLA, and in the coming months, we will gain new information that will help further refine our ideas about these fireballs," Frail said. "We're going to learn about the size and expansion rate of the fireball and test predictions made by the models." "These observations indicate the extraordinary importance of radio astronomy for providing information that can be gained in no other way about one of the major frontier areas of astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The March 29 burst (GRB 980329) was the second such blast to have its afterglow detected at radio wavelengths. Last year, the VLA made the first radio detection of a GRB afterglow, finding radio emission coming from the location of a Gamma Ray Burst on May 8, 1997 (GRB 970508). "Of the world's radio telescopes, only the VLA has the sensitivity and resolving power to quickly detect these radio afterglows of Gamma Ray Bursts and study them in detail over extended periods of time," Taylor said. "Even so, we only see the brightest one-third of them. With upgraded capabilities at the VLA, as planned by NRAO, we will see them all." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Emerging Picture of Black Hole in Double-Star System Promises Exciting Yield of New Physics Data
NASA Astrophysics Data System (ADS)
1995-06-01
As scientists from the National Radio Astronomy Observatory (NRAO) report on analysis of "moving pictures" of powerful jets of material emerging from a double-star system 10,000 light-years away, new evidence from other research confirms that the source of the jets is a black hole. A series of images made with the Very Long Baseline Array (VLBA) and Very Large Array (VLA) radio telescopes, made by Robert Hjellming and Michael Rupen of NRAO, appears in the June 8 issue of the scientific journal Nature. When these radio "snapshots" of jets emerging from an X-ray nova in the constellation Scorpius were made in August and September of 1994, the source of the jets was only suspected of harboring a black hole. It is now certain that a black hole is the source of the jets, thanks to an intense observing effort using ground-and space-based telescopes at wavelengths ranging from gamma rays to radio waves. The system, discovered only last year, with a star similar in size to our Sun orbiting the black hole, now promises to show astronomers -- at long last -- details of how black holes can power super-energetic jets of material to nearly the speed of light. The latest results come from studies made with radio and optical telescopes operated for the National Science Foundation. Black holes are concentrations of matter so dense that their gravitational attraction prevents even light from escaping them. "This is the first time we can say that one of the components of a jet-emitting binary is a black hole based on fundamental astronomy, rather than on fitting observational data to complicated models," said Hjellming, an NRAO astronomer in Socorro, NM. This resulted from observations of the object -- called GRO J1655-40 -- with instruments covering widely different parts of the electromagnetic spectrum -- observations that reinforced each other to make a solid case. Researchers are excited about the discovery. It means, they say, that scientists can study this object and begin to focus on how a black-hole binary system produces jets. The object "will provide some real breakthroughs in the future," said Charles Bailyn of Yale University. Astronomers believe that the jets of material emitted by such systems arise somehow from a disk of material (called an accretion disk) orbiting the black hole. The material in the disk, pulled from the companion star by the powerful gravity of the black hole, is accelerated and heated as it nears the black hole. The new object "is the best known system for studying jets from accretion disks," Hjellming said. While the black hole in GRO J1655-40 is only several times the mass of the Sun, supermassive black holes -- millions of times more massive than the sun -- are believed to lie at the hearts of active galaxies and quasars throughout the universe. Despite the great difference in mass, astronomers think the physical mechanisms by which all these black holes and accretion disks produce their powerful jets are similar. That means, said Rupen, that GRO J1655-40 is now "THE key system for studying black holes and astrophysical jets. It's a fundamentally important object because we know many of its important parameters and we can observe it at all wavelengths. In addition, this is the perfect time to find it because we have satellites to observe it at X- and Gamma rays." The extremely high-resolution images produced by NRAO's VLBA, Rupen said, already have shown that black hole-accretion disk systems and their jets are far more complicated than previously thought. From a researcher's perspective, GRO J1655-40 "really is a system that has everything," said Bailyn. Astronomers expect that further study of GRO J1655-40 will help answer key questions about the relationships among the black hole, the accretion disk, the jets and the companion star. The observations at many wavelengths are important to show links between the different parts of the system. In addition, it helps tremendously, the astronomers said, that the object is nearby, bright, and shows rapid changes. The double-star system was discovered by the orbiting Compton Gamma Ray Observatory on July 27, 1994. Ten days later, it was found to be emitting radio waves by an Australian radio observatory. Since its discovery, it has undergone outbursts of both X-ray and radio emission. It is about 10,000 light-years distant, within our own Milky Way Galaxy. Hjellming and Rupen used the VLA and VLBA radio telescopes, based in Socorro, NM, to study GRO J1655-40 in detail over several months. Their results, published in the June 8 Nature, show that the object has powerful jets of subatomic particles moving from its core at 92 percent of the speed of light. Some condensations in the jets even appeared to move faster than light, an illusion called superluminal motion. The radio images made with the continent-wide VLBA show a complex set of motions and variations in the twin jets emitted in opposite directions by GRO J1655-40. Hjellming and Rupen found that outgoing material in the jets is following a "corkscrew" pattern, rotating around the central axis of the jets about every three days. Another important piece of the puzzle was filled in this spring. Charles Bailyn and Jerome Orosz of Yale University, Jeff McClintock of the Harvard-Smithsonian Center for Astrophysics, and Ron Remillard of the Massachusetts Institute of Technology, used the 4-meter optical telescope at Cerro Tololo International Observatory (CTIO) in Chile to confirm that GRO J1655-40 is what astronomers call a spectroscopic binary -- a double star system revealed by examining its light when split into component wavelengths. In addition, they used other CTIO telescopes to record the variations in light intensity from GRO J1655-40. This revealed the vital fact that the two objects in the system are regularly passing in front of each other, or eclipsing. This, along with the spectral information, allowed the astronomers to use standard techniques to calculate the masses of the two stars in GRO J1655-40. The results show that the larger one is more than 3 times the mass of the Sun -- a figure they said is "above the maximum stable mass of a neutron star, confirming the generally-held belief that the compact primary of this binary system is a black hole." The optical research was reported in a circular issued by the International Astronomical Union. CTIO is operated by the National Optical Astronomy Observatories (NOAO). The optical data indicate that the companion star is orbiting the black hole every 2.62 days, close to the period of the corkscrew motion in the jets seen by the radio observers. The search for confirmed black holes has been long. As early as 1795, Pierre LaPlace noted that the "escape velocity" required to leave an astronomical body could, if the body consisted of sufficiently concentrated mass, reach the speed of light. In 1916, Karl Schwarzchild formulated the basic equation describing black holes. Astronomers speculated that massive stars, at the ends of their lives, could collapse into black holes. The idea was not received without resistance. In 1935, the famed physicist Arthur Eddington said there should be "a law of nature to prevent the star from behaving in this absurd way." Still, the theory of black holes progressed to become part of mainstream astronomy. A confirmed candidate for an actual black hole, however, remained elusive until recent years. When astrophysical jets of fast-moving particles were discovered, black holes were immediately suspected of being the source of their power, but confirmation of that suspicion also remained elusive. GRO J1655-40 is within our own Milky Way Galaxy. In January, an international team of astronomers announced that, using the VLBA, they had measured orbital speeds in a disk of water molecules circling the core of another galaxy, NGC 4258, some 21 million light-years distant. Their measurements indicated that the disk of molecules was circling a central mass nearly 40 million times the mass of the Sun. That object remains the best candidate for a black hole outside the Milky Way. The VLA, the VLBA and the Cerro Tololo International Observatory are facilities of the National Science Foundation
"Missing Link" Revealing Fast-Spinning Pulsar Mysteries
NASA Astrophysics Data System (ADS)
2009-05-01
Astronomers have discovered a unique double-star system that represents a "missing link" stage in what they believe is the birth process of the most rapidly-spinning stars in the Universe -- millisecond pulsars. "We've thought for some time that we knew how these pulsars get 'spun up' to rotate so swiftly, and this system looks like it's showing us the process in action," said Anne Archibald, of McGill University in Montreal, Canada. Pulsar and Companion Neutron star with accretion disk (left) drawing material from companion star (right). CREDIT:Bill Saxton, NRAO/AUI/NSF Animations of this system and its evolution. Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates. Most rotate a few to tens of times a second, slowing down over thousands of years. However, some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up. The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar. This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation's (NSF) Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory (NRAO). The astronomers then found that the object had been detected by NSF's Very Large Array (VLA) radio telescope during a large sky survey in 1998, and had been observed in visible light by the Sloan Digital Sky Survey in 1999, revealing a Sun-like star. When observed again in 2000, the object had changed dramatically, showing evidence for a rotating disk of material, called an accretion disk, surrounding the neutron star. By May of 2002, the evidence for this disk had disappeared. "This strange behavior puzzled astronomers, and there were several different theories for what the object could be," said Ingrid Stairs of the University of British Columbia, who has been visiting the Australia Telescope National Facility and Swinburne University this year. The 2007 GBT observations showed that the object is a millisecond pulsar, spinning 592 times per second. "No other millisecond pulsar has ever shown evidence for an accretion disk," Archibald said. "We know that another type of binary-star system, called a low-mass X-ray binary (LMXB), also contains a fast-spinning neutron star and an accretion disk, but these don't emit radio waves. We've thought that LMXBs probably are in the process of getting spun up, and will later emit radio waves as a pulsar. This object appears to be the 'missing link' connecting the two types of systems," she explained. "It appears this thing has flipped from looking like an LMXB to looking like a pulsar, as it experienced an episode during which material pulled from the companion star formed an accretion disk around the neutron star. Later, that mass transfer stopped, the disk disappeared, and the pulsar emerged," said Scott Ransom of the NRAO. The scientists have studied J1023 in detail with the GBT, with the Westerbork radio telescope in the Netherlands, with the Arecibo radio telescope in Puerto Rico, and with the Parkes radio telescope in Australia. Their results indicate that the neutron star's companion has less than half the Sun's mass, and orbits the neutron star once every four hours and 45 minutes. "This system gives us an unparalled 'cosmic laboratory' for studying how millisecond pulsars evolve," Stairs said. Maura McLaughlin, of West Virginia University, agrees: "Future observations of this system at radio and other wavelengths are sure to hold many surprises." Archibald, Ransom, Stairs and McLaughlin are members of an international scientific team with representatives from McGill University, the University of British Columbia, the NRAO, West Virginia University, and others. The scientists announced their discovery in the May 21 online issue of the journal Science.
Observatories Combine to Crack Open the Crab Nebula
2017-12-08
Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This video starts with a composite image of the Crab Nebula, a supernova remnant that was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. The video dissolves to the red-colored radio-light view that shows how a neutron star’s fierce “wind” of charged particles from the central neutron star energized the nebula, causing it to emit the radio waves. The yellow-colored infrared image includes the glow of dust particles absorbing ultraviolet and visible light. The green-colored Hubble visible-light image offers a very sharp view of hot filamentary structures that permeate this nebula. The blue-colored ultraviolet image and the purple-colored X-ray image shows the effect of an energetic cloud of electrons driven by a rapidly rotating neutron star at the center of the nebula. Read more: go.nasa.gov/2r0s8VC Credits: NASA, ESA, J. DePasquale (STScI)
VLBA Scientists Study Birth of Sunlike Stars
NASA Astrophysics Data System (ADS)
1999-06-01
Three teams of scientists have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to learn tantalizing new details about how Sun-like stars are formed. Young stars, still growing by drawing in nearby gas, also spew some of that material back into their surroundings, like impatient infants that eat too quickly. The VLBA observations are giving astronomers new insights on both processes -- the accretion of material by the new stars and the outflows of material from them. "For the first time, we're actually seeing what happens right down next to the star in these young systems," said Mark Claussen, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Claussen and other researchers announced their findings at the American Astronomical Society's meeting in Chicago. Material attracted by a young star's gravitational pull forms a flat, orbiting disk, called an accretion disk, in which the material circles closer and closer to the star until finally drawn into it. At the same time, material is ejected in "jets" speeding from the poles of the accretion disk. "The VLBA is showing us the first images of the region close to the star where the material in these jets is accelerated and formed into the `beams' of the jet," Claussen said. "We don't understand the details of these processes well," Claussen said. "These VLBA research projects are beginning to help unravel the mysteries of how stars like the Sun form." The teams are observing clumps of water vapor that naturally amplify radio emissions to see details smaller than the orbit of Mercury in young stellar systems as well as track gas motions. The clumps of gas are called masers, and amplify radio emission in much the same way that a laser amplifies light emission. "These images are just fantastic," said Al Wootten of NRAO in Charlottesville, VA. The maser clumps or "spots," emitting radio waves at a specific wavelength, can be tracked as they move over time. In addition, by measuring the Doppler shift in the wavelength of these emissions, astronomers can determine the speed at which the gas is moving. In an object known as S106FIR, 2,000 light-years away in the constellation Cygnus, a team of Japanese and U.S. VLBA observers led by Ray Furuya, a graduate student from Japan's Nobeyama Radio Observatory, has tracked the motion of material outward in the jet. This object, embedded in a dense cloud of molecular gas, the material from which the star is forming, shows maser spots moving in two directions as the jets emerge from both poles of the accretion disk. "The water masers are the only way we can detect the outflow from this young star," Furuya said. The VLBA observations can discern details as small as half the distance from the Earth to the Sun. "We can see outflow on scales the size of our Solar System. We think this object is one of the youngest protostars known," Furuya said. In another object, dubbed IRAS 16293-2422, in the constellation Ophiuchus, astronomers believe the water masers clearly show the outflowing jets of a young star and may be tracing the accretion disk as well. The young star is one of a pair of stars in a binary system some 500 light-years distant. The water-vapor masers are seen around only one of the pair, however. "In this system, we see outflow in the jet and also an elliptical ring of masers that may be part of the accretion disk," said Wootten, leader of the team observing this object. "The VLBA is showing us details as small as the size of Mercury's orbit around the Sun, a great help in understanding the physics going on there," Wootten said. A team composed largely of astronomers from the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, also used the VLBA to study water masers in a young stellar object 2,500 light-years away in Cepheus. This team sees maser spots moving in opposite directions away from the young star on scales of ten times the diameter of the solar system, presumably tracing the jet or wind. On smaller scales, there is a circular loop of masers which the astronomers believe surrounds the young stellar object. "The loop probably represents the edge of a dusty shell of gas smaller than the Earth's orbit. The star is several times the mass of the Sun and its heat evaporates material closer in," said Nimesh Patel, leader of the team. The ability to see the details of stars still undergoing their formation processes is extremely valuable to understanding the details of those processes, according to Claussen, a member of the teams led by Furuya and Wootten. "The VLBA images show detail about 100 times better than those routinely available from other radio telescopes," Claussen said. "Studying these systems by observing the clumps of water vapor that act as masers is not particularly difficult with the VLBA. There are hundreds of young stars that we can study this way, and that means that we have a tremendous opportunity to learn just how stars similar to our Sun are formed and interact with their surroundings in the early parts of their lives." The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power, or ability to see fine detail, of any telescope currently operational. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Radio Frequency Interference Site Survey for Thai Radio Telescopes
NASA Astrophysics Data System (ADS)
Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.
2017-09-01
Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.
NASA Astrophysics Data System (ADS)
Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.
2016-01-01
We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.
Blind detection of giant pulses: GPU implementation
NASA Astrophysics Data System (ADS)
Ait-Allal, Dalal; Weber, Rodolphe; Dumez-Viou, Cédric; Cognard, Ismael; Theureau, Gilles
2012-01-01
Radio astronomical pulsar observations require specific instrumentation and dedicated signal processing to cope with the dispersion caused by the interstellar medium. Moreover, the quality of observations can be limited by radio frequency interference (RFI) generated by Telecommunications activity. This article presents the innovative pulsar instrumentation based on graphical processing units (GPU) which has been designed at the Nançay Radio Astronomical Observatory. In addition, for giant pulsar search, we propose a new approach which combines a hardware-efficient search method and some RFI mitigation capabilities. Although this approach is less sensitive than the classical approach, its advantage is that no a priori information on the pulsar parameters is required. The validation of a GPU implementation is under way.
ERIC Educational Resources Information Center
Hiatt, Blanchard
1980-01-01
Presents a description of the world's largest radio/radar antenna, the Areciba Observatory in Puerto Rico. Activities at the observatory are discussed as well as the scientific research in the field of radio astronomy. (SA)
Cosmic Blasts Much More Common, Astronomers Discover
NASA Astrophysics Data System (ADS)
2006-08-01
A cosmic explosion seen last February may have been the "tip of an iceberg," showing that powerful, distant gamma ray bursts are outnumbered ten-to-one by less-energetic cousins, according to an international team of astronomers. A study of the explosion with X-ray and radio telescopes showed that it is "100 times less energetic than gamma ray bursts seen in the distant universe. We were able to see it because it's relatively nearby," said Alicia Soderberg, of Caltech, leader of the research team. The scientists reported their findings in the August 31 issue of the journal Nature. The explosion is called an X-ray flash, and was detected by the Swift satellite on February 18. The astronomers subsequently studied the object using the National Science Foundation's Very Large Array (VLA) radio telescope, NASA's Chandra X-ray Observatory, and the Ryle radio telescope in the UK. "This object tells us that there probably is a rich diversity of cosmic explosions in our local Universe that we only now are starting to detect. These explosions aren't playing by the rules that we thought we understood," said Dale Frail of the National Radio Astronomy Observatory. Illustration of a Magnetar Illustration of a Magnetar The February blast seems to fill a gap between ordinary supernova explosions, which leave behind a dense neutron star, and gamma ray bursts, which leave behind a black hole, a concentration of mass so dense that not even light can escape it. Some X-ray flashes, the new research suggests, leave behind a magnetar, a neutron star with a magnetic field 100-1000 times stronger than that of an ordinary neutron star. "This explosion occurred in a galaxy about 470 million light-years away. If it had been at the distances of gamma ray bursts, as much as billions of light-years away, we would not have been able to see it," Frail said. "We think that the principal difference between gamma ray bursts and X-ray flashes and ordinary supernova explosions is that the blasts that produce gamma rays and X-rays have disks of material rotating rapidly about the central object," Soderberg said. The powerful gamma ray bursts tap the tremendous gravitational energy of their black hole to produce strong beams of energetic radiation, while less-energetic X-ray bursts like the Feburary event tap energy from the strong magnetic field of the magnetar, the scientists speculated. "This discovery means that the 'zoo' of cosmic explosions has just gotten more numerous and more diverse. It also means that our understanding of how the cores of massive stars collapse to produce this variety of explosions is less complete than we had thought," Frail added. Multiwavelength follow-up observations were required by the team to measure the total energy release of the explosion. In particular, Soderberg adds that "Radio observations with the Very Large Array were additionally required to determine the geometry of the ejecta. We find that unlike typical GRBs which produce pencil-beam jets, this object more resembles a spherical explosion." In addition to Soderberg and Frail, the research team includes Shri Kulkarni. Ehud Nakar, Edo Berger, Brian Cameron, Avishay Gal-Yam, Re'em Sari, Mansi Kasiwal, Eran Ofek, Arne Rau, Brad Cenko, Eric Persson and Dae-Sik Moon of Caltech, Derrick Fox and Dave Burrows of Pennsylvania State University, Roger Chevalier of the University of Virginia, Tsvi Piran of the Hebrew University, Paul Price of the University of Hawaii, Brian Schmidt of Mount Stromlo Observatory in Australia, Guy Pooley of the Mullard Radio Astronomy Observatory in the UK, Bryan Penprase of Pomona College, and Neil Gehrels of the NASA Goddard Space Flight Center. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. http://www.nrao.edu/
The Sardinia Radio Telescope . From a technological project to a radio observatory
NASA Astrophysics Data System (ADS)
Prandoni, I.; Murgia, M.; Tarchi, A.; Burgay, M.; Castangia, P.; Egron, E.; Govoni, F.; Pellizzoni, A.; Ricci, R.; Righini, S.; Bartolini, M.; Casu, S.; Corongiu, A.; Iacolina, M. N.; Melis, A.; Nasir, F. T.; Orlati, A.; Perrodin, D.; Poppi, S.; Trois, A.; Vacca, V.; Zanichelli, A.; Bachetti, M.; Buttu, M.; Comoretto, G.; Concu, R.; Fara, A.; Gaudiomonte, F.; Loi, F.; Migoni, C.; Orfei, A.; Pilia, M.; Bolli, P.; Carretti, E.; D'Amico, N.; Guidetti, D.; Loru, S.; Massi, F.; Pisanu, T.; Porceddu, I.; Ridolfi, A.; Serra, G.; Stanghellini, C.; Tiburzi, C.; Tingay, S.; Valente, G.
2017-12-01
Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients.
NRAO Astronomer Wins Max-Planck Research Award
NASA Astrophysics Data System (ADS)
2005-04-01
Dr. Christopher Carilli, a National Radio Astronomy Observatory (NRAO) astronomer in Socorro, New Mexico, has been chosen to receive the prestigious Max Planck Research Award from the Alexander von Humboldt Foundation and the Max Planck Society in Germany. Christopher Carilli Dr. Christopher Carilli Click on image for more photos CREDIT: NRAO/AUI/NSF Carilli, a radio astronomer, and German particle physicist Christof Wetterich are the 2005 recipients of the award, conferred on "one researcher working in Germany and one working abroad who have already gained an international reputation and who are expected to produce outstanding achievements in the framework of international collaboration," according to an announcement from the Humboldt Foundation. "This is a great honor for Chris, and we are proud to see him receive such important international recognition for the excellence of his research," said NRAO Director Fred K.Y. Lo. Carilli's research has focused on studying very distant galaxies in the early Universe, and a quest to find the first luminous objects, such as stars or galaxies, to emerge. His most recent interests focus on unveiling the mysteries of what cosmologists call the "Epoch of Reionization," when the first stars and galaxies ionized the neutral hydrogen that pervaded the young Universe. Carilli and his research colleagues have used NRAO's Very Large Array and other radio telescopes to discover that the molecular raw material for star formation already was present in a galaxy seen as it was about 800 million years after the Big Bang, less than 1/16 the current age of the Universe. The Max Planck Research Award provides 750,000 Euros (currently about $900,000), to be used over five years, for research. The funding is provided by the German Ministry of Education and Research. Carilli will use the funding to support young researchers and to build scientific instrumentation, with a focus on fostering radio studies of cosmic reionization and the first galaxies. "The phone call from Prof. Fruehwald, president of the Humboldt Foundation, was quite a shock, and overwhelming, but much appreciated," Carilli said. "Now I just have to make good on their investment. Fortunately, I have a lot of help. I consider this award a recognition of our team's efforts over the last few years." The team includes collaborators in Bonn, Profs. Karl Menten and Frank Bertoldi; Heidelberg, Drs. Fabian Walter and Eva Schinnerer; and in France, Dr. Pierre Cox and Prof. Alain Omont. Carilli added: "In an era of big international telescope projects, I think we have set the standard for successful international research collaborations. These folks are not only my professional colleagues, but good friends." Carilli received a B.A. in Physics and Astronomy from the University of Pennsylvania and, in 1989, a Ph.D. in Physics from the Massachusetts Institute of Technology. After serving in research positions at NRAO in Socorro, the Harvard-Smithsonian Center for Astrophysics, and Leiden Observatory in the Netherlands, Carilli joined NRAO's permanent scientific staff in 1996. He also was a visiting Humboldt fellow in Bonn in 1999. He serves on a number of scientific advisory committees, and recently was chair of the international science advisory committee for the Square Kilometer Array project. He has co-edited five books and authored numerous research papers in a wide variety of scientific journals. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Bifrost: a Modular Python/C++ Framework for Development of High-Throughput Data Analysis Pipelines
NASA Astrophysics Data System (ADS)
Cranmer, Miles; Barsdell, Benjamin R.; Price, Danny C.; Garsden, Hugh; Taylor, Gregory B.; Dowell, Jayce; Schinzel, Frank; Costa, Timothy; Greenhill, Lincoln J.
2017-01-01
Large radio interferometers have data rates that render long-term storage of raw correlator data infeasible, thus motivating development of real-time processing software. For high-throughput applications, processing pipelines are challenging to design and implement. Motivated by science efforts with the Long Wavelength Array, we have developed Bifrost, a novel Python/C++ framework that eases the development of high-throughput data analysis software by packaging algorithms as black box processes in a directed graph. This strategy to modularize code allows astronomers to create parallelism without code adjustment. Bifrost uses CPU/GPU ’circular memory’ data buffers that enable ready introduction of arbitrary functions into the processing path for ’streams’ of data, and allow pipelines to automatically reconfigure in response to astrophysical transient detection or input of new observing settings. We have deployed and tested Bifrost at the latest Long Wavelength Array station, in Sevilleta National Wildlife Refuge, NM, where it handles throughput exceeding 10 Gbps per CPU core.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
2002-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft- and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres,
German Astronomer Karl Menten Is 2007 Jansky Awardee
NASA Astrophysics Data System (ADS)
2007-06-01
Associated Universities, Inc., (AUI) and the National Radio Astronomy Observatory (NRAO) have awarded the 2007 Karl G. Jansky Lectureship to Professor Karl M. Menten of the Max-Planck-Institute for Radioastronomy in Bonn, Germany. The Jansky Lectureship is an honor established by the trustees of AUI to recognize outstanding contributions to the advancement of astronomy. Karl M. Menten Professor Karl M. Menten CREDIT: NRAO/AUI Click on image for high-resolution file (433 KB) Professor Menten is an extraordinarily productive scientist whose research has improved our fundamental understanding in a number of areas of astronomy. He has studied the chemistry of molecular clouds from which new stars are formed, the process of star formation in our own Milky Way Galaxy and in the early Universe, and the outer atmospheres of stars nearing the end of their "normal" lives. In 1991, Menten used NRAO's 140-foot Telescope at Green Bank, West Virginia, to discover strong radio emission from methanol masers in star-forming regions. These masers amplify, or strengthen, radio emission the same way a laser amplifies visible-light emission. Menten developed the observation of these methanol masers into a powerful tool for studying the formation of stars much more massive than our Sun, because the strong maser emission points astronomers to the stellar birthplaces. In addition, Menten pioneered the use of ultra-high-resolution observations with NRAO's Very Long Baseline Array to observe masers to make precision determinations of the structure, size and dynamics of the Milky Way. Menten received his doctoral degree in 1987 from the University of Bonn, Germany. He then joined the Harvard-Smithsonian Center for Astrophysics, working there until 1996, when he became the Director for Millimeter and Submillimeter Astronomy at the Max-Planck-Institute for Radioastronomy. In addition to that position, he also has been a Professor for Experimental Astrophysics at the University of Bonn since 2001. He initiated the Atacama Pathfinder Experiment (APEX), a 12-meter diameter telescope high in Chile's Atacama Desert, where the Atacama Large Millimeter/submillimeter Array (ALMA) is being built. APEX pioneered submillimeter-wavelength observations at Atacama, proving the quality of the site for such research. As Jansky Lecturer, Menten will give a presentation entitled, "Tuning in to the Molecular Universe," at NRAO facilities in Charlottesville, Virginia, Green Bank, West Virginia, and Socorro, New Mexico. The dates of these lectures, which are free and open to the public, will be announced later this summer. This is the forty-second Jansky Lectureship. First awarded in 1966, it is named in honor of the man who, in 1932, first detected radio waves from a cosmic source. Karl Jansky's discovery of radio waves from the central region of the Milky Way started the science of radio astronomy. Other recipients of the Jansky award include five Nobel laureates (Drs. Subrahmanyan Chandrasekhar, Arno Penzias, Robert Wilson, William Fowler, and Joseph Taylor) as well as Jocelyn Bell-Burnell, discoverer of the first pulsar, and Vera Rubin, discoverer of dark matter in galaxies. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
SETI reloaded: Next generation radio telescopes, transients and cognitive computing
NASA Astrophysics Data System (ADS)
Garrett, Michael A.
2015-08-01
The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.
Characterization of surface tilt of foundations for high-precision radio-astronomic antennas
NASA Astrophysics Data System (ADS)
Hoff, Brian D.; Puga, Jose P.
2010-07-01
The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas operating in the millimeter and sub-millimeter wavelength range. It will be located at an altitude above 5000m in the Chajnantor Plateau in northern Chile. There are 192 antenna foundations under construction at ALMA's Array Operations Site (AOS). Interchangeability between foundations will permit a variety of array configurations. Foundations provide the physical interface to the bedrock, as well as to the underground signal and power cable conduits. To achieve ALMA's precision requirements, the antenna pointing angular error budget is strict with anticipated non-repeatable error on the order of a few arc seconds. This level of precision imposes rigorous requirements on antenna foundations. The objective of this study is to demonstrate the methodology of precision tilt measurements combined with finite element simulation predictions to portray the qualitative nature of the antenna foundation surface deformation. Characteristics of foundation surface tilt have been examined in detail. Although the actual foundation has demonstrated much less resistance to tilt than the finite element representation, the simulation has predicted some key characteristics of the tilt pattern. The large deviations from the ideal have incited speculations into the compliance of materials, ambiguities in the construction, thermal effects and several other aspects described herein. This research has served as groundwork to characterize ALMA's foundation surface behavior on a micro-degree level and to identify subsequent studies to pursue. This in turn has contributed to the diagnosis of antenna pointing anomalies.
Ir A.H. de Voogt: life and career of a radio pioneer
NASA Astrophysics Data System (ADS)
Strom, R. G.
2007-06-01
There are probably few radio astronomers who would be able to recall A.H. de Voogt, which is unfortunate, but at the same time unsurprising: for he published no original astronomical research, never carried out pioneering observations, nor is his name linked to either theoretical or instrumental breakthroughs. Yet he was described by the man who first observed the 21 cm hydrogen line from the Netherlands as a radio astronomy pioneer, at the very birth of the Dutch effort. He was, moreover, a trail blazer at the cutting edge of radio, not once but twice in his career. Without him it is unlikely that the 21 cm line would have been observed in the Netherlands in 1951, and arguably the H I mapping of the Milky Way under Jan Oort's leadership would have taken place much later, if at all. Radio astronomy observing itself might well have been compromised by interference had it not been for De Voogt's foresight. \\ Anthonet Hugo de Voogt (1892-1969) built, while still a teenager, one of the very first amateur radio stations (call letters VO: *** -/- - -) in Holland, earned the radio-telegrapher's diploma during his student days, and was intimately involved in the foundation of the Dutch Society for Radio-Telegraphy in 1916. Until the 1920s, he was very active in amateur radio and astronomy circles. Trained in electrical engineering at Delft, he joined the PTT (Post Office) as a telegraph engineer in 1919, worked his way through the ranks to become head of the telephone district of Breda in 1939, and was promoted to head the PTT Radio Service just days after the end of the war. As his department was responsible for overseas radio communication, he initiated a research effort to study radio propagation in the ionosphere and the effects of solar activity. To this end, he rescued a number of Würzburg-Riese 7.5-m radar antennas abandoned at the end of the war, made one available for Jan Oort's H I work, and launched a series of radio astronomical initiatives. His group also built a number of antennas, monitored solar emission, and participated in the International Geophysical Year (1957-1958).
Radio Telescopes Reveal Youngest Stellar Corpse
NASA Astrophysics Data System (ADS)
2004-06-01
Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and collapses violently, rebounding in a cataclysmic blast that spews most of its material into interstellar space. What remains is either a neutron star, with its material compressed to the density of an atomic nucleus, or a black hole, with its matter compressed so tightly that its gravitational pull is so strong that not even light can escape it. A team of scientists studied a supernova called SN 1986J in a galaxy known as NGC 891. The supernova was discovered in 1986, but astronomers believe the explosion actually occurred about three years before. Using the National Science Foundation's Very Long Baseline Array (VLBA), Robert C. Byrd Green Bank Telescope (GBT), and Very Large Array (VLA), along with radio telescopes from the European VLBI Network, they made images that showed fine details of how the explosion evolves over time. "SN 1986J has shown a brightly-emitting object at its center that only became visible recently. This is the first time such a thing has been seen in any supernova," said Michael Bietenholz, of York University in Toronto, Ontario. Bietenholz worked with Norbert Bartel, also of York University, and Michael Rupen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, on the project. The scientists reported their findings in the June 10 edition of Science Express. "A supernova is likely the most energetic single event in the Universe after the Big Bang. It is just fascinating to see how the smoke from the explosion is blown away and how now after all these years the fiery center is unveiled. It is a textbook story, now witnessed for the first time," Bartel said. Analysis of the bright central object shows that its characteristics are different from the outer shell of explosion debris in the supernova. "We can't yet tell if this bright object at the center is caused by material being sucked into a black hole or if it results from the action of a young pulsar, or neutron star," said Rupen. "It's very exciting because it's either the youngest black hole or the youngest neutron star anybody has ever seen," Rupen said. The youngest pulsar found to date is 822 years old. Finding the young object is only the beginning of the scientific excitement, the astronomers say. "We'll be watching it over the coming years. First, we hope to find out whether it's a black hole or a neutron star. Next, whichever it is, it's going to give us a whole new view of how these things start and develop over time," Rupen said. For example, Rupen explained, if the object is a young pulsar, learning the rate at which it is spinning and the strength of its magnetic field would be extremely important for understanding the physics of pulsars. The scientists point out that it will be important to observe SN 1986J at many wavelengths, not just radio, but also in visible light, infrared and others. In addition, the astronomers also now want to look for simiilar objects elsewhere in the Universe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The TF1 Radio Astronomy Working Group in the Andean ROAD: goals and challenges for 2025
NASA Astrophysics Data System (ADS)
Chaparro Molano, G.
2017-07-01
Since the creation of the Andean Regional Office of Astronomy for Development (OAD) of the International Astronomical Union, one of the main goals has been to foster a scientific culture of radio astronomy in countries of the central and northern Andes (Bolivia, Colombia, Ecuador, Perú, and Venezuela). For this reason, Andean ROAD Task Force 1 (Research and Education in Universities) created the Radio Astronomy Working Group to set a path along which collaborative endeavors can grow and yield scientific results. The first official meeting of the Working Group took place in Bogotá, Colombia during the 2nd Astronomá en los Andes Workshop (2015) where scientists actively developing projects in radio astronomy set goals for the near future, such as improving mobility for researchers and students, developing collaborations in related areas such as engineering and data science, and building transnational collaborations aiming at developing VLBI across the countries of the Andean ROAD and beyond. In this poster, I present current projects and associated research groups (ROAS - Perú, SiAMo - Colombia, Alfa-Orion UTP - Colombia, RAIG - Chile) and discuss goalposts and current challenges in the development of transnational radioastronomical projects. As a case study, I present the development and early astronomical results of the privately funded UECCI 4m Radio Telescope for 21 cm line observations in Bogotá, Colombia.
Expanded Owens Valley Solar Array Science and Data Products
NASA Astrophysics Data System (ADS)
Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.
2010-05-01
The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.
Distance Measurement Solves Astrophysical Mysteries
NASA Astrophysics Data System (ADS)
2003-08-01
Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of distance. "Our measurements showed that the pulsar is about 950 light-years from Earth, essentially the same distance as the supernova remnant," said Steve Thorsett, of the University of California, Santa Cruz. "That means that the two almost certainly were created by the same supernova blast," he added. With that problem solved. the astronomers then turned to studying the pulsar's neutron star itself. Using a variety of data from different telescopes and armed with the new distance measurement, they determined that the neutron star is between 16 and 25 miles in diameter. In such a small size, it packs a mass roughly equal to that of the Sun. The next result of learning the pulsar's actual distance was to provide a possible answer to a longstanding question about cosmic rays. Cosmic rays are subatomic particles or atomic nuclei accelerated to nearly the speed of light. Shock waves in supernova remnants are thought to be responsible for accelerating many of these particles. Scientists can measure the energy of cosmic rays, and had noted an excess of such rays in a specific energy range. Some researchers had suggested that the excess could come from a single supernova remnant about 1000 light-years away whose supernova explosion was about 100,000 years ago. The principal difficulty with this suggestion was that there was no accepted candidate for such a source. "Our measurement now puts PSR B0656+14 and the Monogem Ring at exactly the right place and at exactly the right age to be the source of this excess of cosmic rays," Brisken said. With the ability of the VLBA, one of the telescopes of the NRAO, to make extremely precise position measurements, the astronomers expect to improve the accuracy of their distance determination even more. "This pulsar is becoming a fascinating laboratory for studying astrophysics and nuclear physics," Thorsett said. In addition to Brisken and Thorsett, the team of astronomers includes Aaron Golden of the National University of Ireland, Robert Benjamin of the University of Wisconsin, and Miller Goss of NRAO. The scientists are reporting their results in papers appearing in the Astrophysical Journal Letters in August. The VLBA is a continent-wide system of ten radio- telescope antennas, ranging from Hawaii in the west to the U.S. Virgin Islands in the east, providing the greatest resolving power, or ability to see fine detail, in astronomy. Dedicated in 1993, the VLBA is operated from the NRAO's Array Operations Center in Socorro, New Mexico. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Scientists Track Collision of Powerful Stellar Winds
NASA Astrophysics Data System (ADS)
2005-04-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have tracked the motion of a violent region where the powerful winds of two giant stars slam into each other. The collision region moves as the stars, part of a binary pair, orbit each other, and the precise measurement of its motion was the key to unlocking vital new information about the stars and their winds. WR 140 Image Sequence Motion of Wind Collision Region Graphic superimposes VLBA images of wind collision region on diagram of orbit of Wolf-Rayet (WR) star and its giant (O) companion. Click on image for larger version (412K) CREDIT: Dougherty et al., NRAO/AUI/NSF In Motion: Shockwave File Animated Gif File AVI file Both stars are much more massive than the Sun -- one about 20 times the mass of the Sun and the other about 50 times the Sun's mass. The 20-solar-mass star is a type called a Wolf-Rayet star, characterized by a very strong wind of particles propelled outward from its surface. The more massive star also has a strong outward wind, but one less intense than that of the Wolf-Rayet star. The two stars, part of a system named WR 140, circle each other in an elliptical orbit roughly the size of our Solar System. "The spectacular feature of this system is the region where the stars' winds collide, producing bright radio emission. We have been able to track this collision region as it moves with the orbits of the stars," said Sean Dougherty, an astronomer at the Herzberg Institute for Astrophysics in Canada. Dougherty and his colleagues presented their findings in the April 10 edition of the Astrophysical Journal. The supersharp radio "vision" of the continent-wide VLBA allowed the scientists to measure the motion of the wind collision region and then to determine the details of the stars' orbits and an accurate distance to the system. "Our new calculations of the orbital details and the distance are vitally important to understanding the nature of these Wolf-Rayet stars and of the wind-collision region," Dougherty said. The stars in WR 140 complete an orbital cycle in 7.9 years. The astronomers tracked the system for a year and a half, noting dramatic changes in the wind collision region. "People have worked out theoretical models for these collision regions, but the models don't seem to fit what our observations have shown," said Mark Claussen, of the National Radio Astronomy Observatory in Socorro, New Mexico. "The new data on this system should provide the theorists with much better information for refining their models of how Wolf-Rayet stars evolve and how wind-collision regions work," Claussen added. The scientists watched the changes in the stellar system as the star's orbits carried them in paths that bring them nearly as close to each other as Mars is to the Sun and as far as Neptune is from the Sun. Their detailed analysis gave them new information on the Wolf-Rayet star's strong wind. At some points in the orbit, the wind collision region strongly emitted radio waves, and at other points, the scientists could not detect the collison region. Wolf-Rayet stars are giant stars nearing the time when they will explode as supernovae. "No other telescope in the world can see the details revealed by the VLBA," Claussen said. "This unmatched ability allowed us to determine the masses and other properties of the stars, and will help us answer some basic questions about the nature of Wolf-Rayet stars and how they develop." he added. The astronomers plan to continue observing WR 140 to follow the system's changes as the two massive stars continue to circle each other. Dougherty and Claussen worked with Anthony Beasley of the Atacama Large Millimeter Array office, Ashley Zauderer of the University of Maryland and Nick Bolingbroke of the University of Victoria, British Columbia. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Technology Advances at the NRAO Green Bank Telescope
NASA Astrophysics Data System (ADS)
Lockman, Felix James
2015-08-01
The 100 meter diameter Green Bank Telescope, with its large frequency coverage, great sensitivity, all-sky tracking, and location at a protected, radio-quiet site, offers a unique platform for technological advances in astronomical instrumentation that can yield an immediate scientific payoff.MUSTANG-1.5 is a feedhorn-coupled bolometer array for 3mm that has recently been installed on the telescope. It has 64 pixels (expandable to 223) and offers sensitivity to angular scales from 9" to more than 3' over a band from 75 GHz to 105 GHz. Its capabilities for science at 3mm are complimentary to, and in some cases superior to, those offered by ALMA. MUSTANG-1.5 is a collaboration between UPenn., NIST, NRAO, and other institutions.ARGUS is a 16-pixel focal plane array for millimeter spectroscopy that will be in use on the GBT in 2015. The array architecture is designed as a scalable technology pathfinder for larger arrays, but by itself it will provide major capabilities for spectroscopy from 75-107 GHz with 8" angular resolution over a wide field-of-view. It is a collaboration between Stanford Univ., Caltech, JPL, Univ. Maryland, Univ. Miami, and NRAO.FLAG is a prototype phased array receiver operating at 21cm wavelength that is under development for the GBT. It will produce multiple beams over a wide field of view with a sensitivity competitive with that of single-pixel receivers, allowing rapid astronomical surveys. FLAG is a collaboration between BYU, WVU, and NRAO.Also under development is a mm-wave phased array receiver for the GBT, designed to operate near 90 GHz as a prototype for very large format phased array receivers in the 3mm band. It is a collaboration between UMass and BYU.VEGAS is the new spectrometer for the GBT, offering multiple configurations well matched to GBT receivers from 1 to 100 GHz and suitable for use with focal plane arrays. It is a collaboration between UCal (Berkeley) and NRAO.The new receivers and spectrometers create extremely big data sets during both observation and later processing. Studies are under way at the GBT of data-streaming methodologies and pipeline processing techniques to meet the challenges posed by this new generation of instrumentation.
Sensivity studies for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Collado, Tarek Hassan
2015-06-01
Since the creation of the first telescope in the 17th century, every major discovery in astrophysics has been the direct consequence of the development of novel observation techniques, opening new windows in the electromagnetic spectrum. After Karl Jansky discovered serendipitously the first radio source in 1933, Grote Reber built the first parabolic radio telescope in his backyard, planting the seed of a whole new field in astronomy. Similarly, new technologies in the 1950s allowed the establishment of other fields, such as the infrared, ultraviolet or the X-rays. The highest energy end of the electromagnetic spectrum, the γ-ray range, represents the last unexplored window for astronomers and should reveal the most extreme phenomena that take place in the Universe. Given the technical complexity of γ-ray detection and the extremely relative low fluxes, γ-ray astronomy has undergone a slower development compared to other wavelengths. Nowadays, the great success of consecutive space missions together with the development and refinement of new detection techniques from the ground, has allowed outstanding scientific results and has brought gamma-ray astronomy to a worthy level in par with other astronomy fields. This work is devoted to the study and improvement of the future Cherenkov Telescope Array (CTA), the next generation of ground based γ-ray detectors, designed to observe photons with the highest energies ever observed from cosmic sources.
Low-background detector arrays for infrared astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.
1989-01-01
The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.
The contribution of the Georges Heights Experimental Radar Antenna to Australian radio astronomy
NASA Astrophysics Data System (ADS)
Orchiston, Wayne; Wendt, Harry
2017-12-01
During the late 1940s and throughout the1950s Australia was one of the world’s foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation’s Division of Radiophysics based in Sydney. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials attached to recycled radar receivers, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division’s short-lived Georges Heights Field Station but in 1948 was relocated to the new Potts Hill Field Station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, galactic and extragalactic research programs that it was used for.
A search for narrow band signals with SERENDIP II: a progress report
NASA Technical Reports Server (NTRS)
Werthimer, D.; Brady, R.; Berezin, A.; Bowyer, S.
1988-01-01
Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.
A search for narrow band signals with SERENDIP II: a progress report.
Werthimer, D; Brady, R; Berezin, A; Bowyer, S
1988-01-01
Commensal programs for the Search for Extraterrestrial Intelligence (SETI), carried out concurrently with conventional radio astronomical observing programs, can be an attractive and cost-effective means of exploring the large multidimensional search space intrinsic to this effort. Our automated commensal system, SERENDIP II, is a high resolution 131,072 channel spectrometer. It searches for 0.49 Hz signals in sequential 64,700 Hz bands of the IF signal from a radio telescope being used for an astronomical observation. Upon detection of a narrow band signal with power above a preset threshold, the frequency, power, time, and telescope direction are recorded for later study. The system has been tested at the Hat Creek Radio Astronomy Observatory 85 ft telescope and the NASA-JPL Deep Space Station (DSS 14) 64 m telescope. It is currently collecting data at the National Radio Astronomy Observatory 300 ft telescope.
Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries
NASA Astrophysics Data System (ADS)
Sullivan, Woodruff T., III
2012-01-01
Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).
Radio Astronomers Get Their First Glimpse of Powerful Solar Storm
NASA Astrophysics Data System (ADS)
2001-08-01
Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an expanding set of loops similar to the loops seen at visible wavelengths. The radio loops, astronomers believe, indicate regions where electrons are being accelerated to nearly the speed of light at about the time the ejection process is getting started. The same ejection observed by the radio telescope also was observed by orbiting solar telescopes. Depending on what later radio observations show, the solar studies may reveal new insights into the physics of other astronomical phenomena. For example, shocks in the corona and the interplanetary medium accelerate electrons and ions, a process believed to occur in supernova remnants - the expanding debris from stellar explosions. The electrons also may be accelerated by processes associated with magnetic reconnection, a process that occurs in the Earth's magnetosphere. "The Sun is an excellent physics laboratory, and what it teaches us can then help us understand other astrophysical phenomena in the universe," Bastian said. The radio detection of a coronal mass ejection also means that warning of the potentially dangerous effects of these events could come from ground-based radio telescopes, rather than more-expensive orbiting observatories. "With solar radio telescopes strategically placed at three or four locations around the world, coronal mass ejections could be detected 24 hours a day to provide advance warning," Bastian said. The Nancay station for radio astronomy is a facility of the Paris Observatory. The Nancay Radioheliograph is funded by the French Ministry of Education, the Centre National de la Recherche Scientifique, and by the Region Centre. This research has also been supported by the Centre National d'Etudes Spatiales. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Tanarro, I; Alemán, B; de Vicente, P; Gallego, J D; Pardo, J R; Santoro, G; Lauwaet, K; Tercero, F; Díaz-Pulido, A; Moreno, E; Agúndez, M; Goicoechea, J R; Sobrado, J M; López, J A; Martínez, L; Doménech, J L; Herrero, V J; Hernández, J M; Peláez, R J; López-Pérez, J A; Gómez-González, J; Alonso, J L; Jiménez, E; Teyssier, D; Makasheva, K; Castellanos, M; Joblin, C; Martín-Gago, J A; Cernicharo, J
2018-01-01
We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH 3 OH, CH 3 CH 2 OH, HCOOH, OCS, CS, SO 2 (<10 -3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O 2 and CS 2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments.
NASA Astrophysics Data System (ADS)
Tanarro, I.; Alemán, B.; de Vicente, P.; Gallego, J. D.; Pardo, J. R.; Santoro, G.; Lauwaet, K.; Tercero, F.; Díaz-Pulido, A.; Moreno, E.; Agúndez, M.; Goicoechea, J. R.; Sobrado, J. M.; López, J. A.; Martínez, L.; Doménech, J. L.; Herrero, V. J.; Hernández, J. M.; Peláez, R. J.; López-Pérez, J. A.; Gómez-González, J.; Alonso, J. L.; Jiménez, E.; Teyssier, D.; Makasheva, K.; Castellanos, M.; Joblin, C.; Martín-Gago, J. A.; Cernicharo, J.
2018-01-01
We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10-3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments. Movies are available at http://www.aanda.org
Tanarro, I.; Alemán, B.; de Vicente, P.; Gallego, J.D.; Pardo, J.R.; Santoro, G.; Lauwaet, K.; Tercero, F.; Díaz-Pulido, A.; Moreno, E.; Agúndez, M.; Goicoechea, J.R.; Sobrado, J.M.; López, J.A.; Martínez, L.; Doménech, J.L.; Herrero, V.J.; Hernández, J.M.; Peláez, R.J.; López-Pérez, J.A.; Gómez-González, J.; Alonso, J.L.; Jiménez, E.; Teyssier, D.; Makasheva, K.; Castellanos, M.; Joblin, C.; Martín-Gago, J.A.; Cernicharo, J.
2017-01-01
We present a proof of concept on the coupling of radio astronomical receivers and spectrometers with chemical reactors and the performances of the resulting setup for spectroscopy and chemical simulations in laboratory astrophysics. Several experiments including cold plasma generation and UV photochemistry were performed in a 40 cm long gas cell placed in the beam path of the Aries 40 m radio telescope receivers operating in the 41-49 GHz frequency range interfaced with fast Fourier transform spectrometers providing 2 GHz bandwidth and 38 kHz resolution. The impedance matching of the cell windows has been studied using different materials. The choice of the material and its thickness was critical to obtain a sensitivity identical to that of standard radio astronomical observations. Spectroscopic signals arising from very low partial pressures of CH3OH, CH3CH2OH, HCOOH, OCS, CS, SO2 (<10−3 mbar) were detected in a few seconds. Fast data acquisition was achieved allowing for kinetic measurements in fragmentation experiments using electron impact or UV irradiation. Time evolution of chemical reactions involving OCS, O2 and CS2 was also observed demonstrating that reactive species, such as CS, can be maintained with high abundance in the gas phase during these experiments. PMID:29277841
The Telecommunications and Data Acquisition
NASA Technical Reports Server (NTRS)
Renzetti, N. A. (Editor)
1981-01-01
Progress in the development and operations of the Deep Space Network is reported including developments in Earth based radio technology as applied to other research programs. These programs include application of radio interferometry at microwave frequencies to geodetic measurements and geodynamics, use of deep space stations individually and in pairs as an interferometer by radio astronomers for astrophysics research by direct observations of radio sources, and radio search for extraterrestrial intelligence in the microwave region of the electromagnetic spectrum.
New View of Distant Galaxy Reveals Furious Star Formation
NASA Astrophysics Data System (ADS)
2007-12-01
A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the star formation at those times. "This means that future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) can reveal many more such galaxies and give us a much more complete picture of star formation in the early Universe," he added. Lennox Cowie of the University of Hawaii said, "We found out in the last decade that most of the recent star formation in the Universe occurs in large dusty galaxies, but we had always expected that early star formation would be dominated by smaller and less obscured galaxies. Now it seems that even at very early times it may be the same big dusty star formers that are the sites of most of the star formation. That's quite a surprise." Astronomers believe that large galaxies originally formed through mergers of smaller objects. Seeing a large galaxy such as GOODS 850-5 forming stars so rapidly at such an early time in the history of the Universe is a surprise. "Either the mergers that formed the galaxy happened much faster than we thought or some other process altogether produced the galaxy," Wang said. Wang and Cowie worked with Jennifer van Saders of Rutgers University and NRAO, Amy Barger of the University of Wisconsin-Madison, and Jonathan Williams of the University of Hawaii. The scientists published their findings in the December 1 edition of the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.The Submillimeter Array is an 8-element interferometer located atop Mauna Kea in Hawaii. It is a collaboration between the Smithsonian Astrophysical Observatory and the Institute of Astronomy and Astrophysics of the Academia Sinica of Taiwan.
Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
Harris, Alan W. (Editor); Bowell, Edward (Editor)
1992-01-01
Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.
ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope
NASA Astrophysics Data System (ADS)
2003-11-01
Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of space through which light cannot penetrate." Wayne Van Citters, Division Director for the NSF's Division of Astronomical Sciences represented Dr. Colwell at this ceremony. "ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe," said Dr. Catherine Cesarsky, Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA, also to young scientists and engineers." SCIENCE WITH ALMA ALMA will receive millimeter and sub-millimeter wavelength electromagnetic radiation from space. This portion of the spectrum, which is more energetic than most radio waves yet less energetic than visible and infrared light, holds the key to understanding a great variety of fundamental processes, including planet and star formation, and the formation and evolution of galaxies and galaxy clusters in the early Universe. The possibility to detect emission from organic and other molecules in space is of particularly high interest. "ALMA will push the limits of engineering to provide a telescope array at a fantastic site for astronomers to peer at the beginnings of the Universe, galaxies, stars and planets, and perhaps even life," said Dr. Fred K.Y. Lo, director of the National Radio Astronomy Observatory (NRAO). The millimeter and sub-millimeter radiation that ALMA will study is able to penetrate the vast clouds of dust and gas that populate interstellar and intergalactic space, revealing previously hidden details about astronomical objects. This energy, however, is blocked by atmospheric moisture here on Earth. To conduct research in this critical portion of the spectrum, astronomers need a site that is very dry, and preferably at a very high altitude where the atmosphere is thinner. Extensive tests showed that the sky above the high-altitude Chajnantor plain in the Atacama Desert has the unsurpassed clarity and stability needed to perform efficient observations with ALMA. ALMA OPERATION ALMA will be the highest altitude, full-time ground-based observatory in the world. Work at this altitude, however, is very challenging. To help ensure the safety of the scientists and engineers at ALMA, operations will be conducted from the Operations Support Facility, a compound located close to the cities of Toconao and San Pedro de Atacama, which is at a more comfortable 2,900 meters (9,500 feet) above sea level. Phase 1 of the ALMA Project, which included the design and development, was completed in 2002. The beginning of Phase 2 of this project happened on February 25, 2003, when the NSF and ESO signed an agreement to construct and operate ALMA. Construction will continue until 2012; however, initial scientific observations are planned in 2007, with a partial array of the first antennas. ALMA's operation will progressively increase until 2012 with the installation of the remaining antennas. The entire project will cost approximately $552 million U.S. (in FY 2000 dollars). Earlier this year, the ALMA Board selected Professor Massimo Tarenghi, formerly manager of ESO's VLT (Very Large Telescope) Project, to become ALMA Director. He is confident that he and his team will succeed. "We may have a lot of hard work in front of us," he said, "but all of us in the team are excited about this unique project. We are ready to work for the international astronomical community and to provide them in due time with a unique instrument allowing trailblazing research projects in many different fields of modern astrophysics." HOW IT WILL WORK ALMA will be composed of 64 high-precision antennas, each 12 meters in diameter. The ALMA antennas can be repositioned, allowing the telescope to function much like the zoom lens on a camera. At its largest, ALMA will be 14 kilometers (8.7 miles) across. This will allow the telescope to observe the fine-scale details of astronomical objects. At its smallest, approximately 150 meters (492 feet) across, ALMA will be able to study the large-scale structures of these same objects. ALMA will function as an interferometer, meaning it will combine the signals from all its antennas (two at a time) to simulate a telescope the size of the distance between the antennas. With 64 antennas, ALMA will generate 2016 individual antenna pairs (baselines) during its observations. To handle this much data, ALMA will rely on a very powerful, specialized computer called a correlator, which will perform 16,000 million-million operations per second. Currently, the two prototype ALMA antennas are undergoing rigorous testing at the NRAO's Very Large Array site, near Socorro, New Mexico. INTERNATIONAL COLLABORATION For this ambitious project, ALMA has become a joint effort among several nations and scientific institutions. This will be the first truly global project of ground-based astronomy, an essential development in view of the increasing technological sophistication and the high costs of the front line astronomy installations. "Today marks the official start of construction," said Dr. Colwell. "But the ALMA partnership also breaks ground with a novel collaboration that ensures equal access by astronomers on at least three continents. International partnerships are quickly becoming the norm of the millennium, enabling organizations and nations to combine funds to achieve greater scientific capability. NSF is proud to participate in the creation of an instrument that will provide unprecedented power for science and immeasurable knowledge for all." At the groundbreaking in Chile, the ALMA partners unveiled the ALMA logo.
Radio Telescopes Reveal Unseen Galactic Cannibalism
NASA Astrophysics Data System (ADS)
2008-06-01
Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while quasars and blazars are hundreds of times more powerful. The astronomers picked a number of relatively nearby Seyfert galaxies that had previously been observed with visible-light telescopes. They then carefully studied the Seyferts with the VLA, specifically looking for radio waves emitted by hydrogen atoms. The VLA images showed the vast majority of the Seyferts were disturbed by encounters with neighbor galaxies. By comparison, similar VLA images of inactive galaxies showed that very few were disturbed. "This comparison clearly shows a connection between close galactic encounters and the black-hole-powered activity in the cores," said Ya-Wen Tang, who began this work at the Institute of Astronomy & Astrophysics, Academia Sinica (ASIAA), in Taiwan and now is a graduate student at the National Taiwan University. "This is the best evidence yet for the fueling of Seyfert galaxies. Other mechanisms have been proposed, but they have shown little if any difference between Seyferts and inactive galaxies," Tang added. "Our results show that images of the hydrogen gas are a powerful tool for revealing otherwise-invisible gravitational interactions among galaxies," said Jeremy Lim, also of ASIAA. "This is a welcome advance in our understanding of these objects, made possible by the best and most extensive survey ever made of hydrogen in Seyferts," Lim said. Kuo, Tang and Lim worked with Paul Ho, of ASIAA and the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Integrated Millimeter-Wave Frequency Multiplers
NASA Astrophysics Data System (ADS)
Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.
2001-11-01
Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.
"Movie Star" Acting Strangely, Radio Astronomers Find
NASA Astrophysics Data System (ADS)
1999-01-01
Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the first-ever time-lapse "movie" showing details of gas motions around a star other than our Sun. The study, the largest observational project yet undertaken using Very Long Baseline Interferometry, has produced surprising results that indicate scientists do not fully understand stellar atmospheres. The "movie" shows that the atmosphere of a pulsating star more than 1,000 light-years away continues to expand during a part of the star's pulsation period in which astronomers expected it to start contracting. Philip Diamond and Athol Kemball, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, announced their findings at the American Astronomical Society's meeting in Austin, TX, today. "The continued expansion we're seeing contradicts current theoretical models for how these stars work," Diamond said. "The models have assumed spherical symmetry in the star's atmosphere, and our movie shows that this is not the case. Such models suggest that a shock wave passes outward from the star. Once it's passed, then the atmosphere should begin to contract because of the star's gravity. We've long passed that point and the contraction has not begun." The time-lapse images show that the gas motions are not uniform around the star. Most of the motion is that of gas moving directly outward from the star's surface. However, in about one-fourth of the ring, there are peculiar motions that do not fit this pattern. The scientists speculate that the rate of mass loss may not be the same from all parts of the star's surface. "A similar star behaved as predicted when studied a few years ago, so we're left to wonder what's different about this one," Diamond said. "Right now, we think that different rates of mass loss in the two stars may be the cause of the difference. This star is losing mass at 100 times the rate of the star in the earlier study." "This is the first time anyone has been able to follow the motions of gas in the atmosphere of any star other than the sun. Our results raise a lot of questions that we can't answer yet, but this will give the theorists new information to work with," said Diamond. The star, called TX Cam, in the constellation Camelopardalis, is a variable star whose brightness changes regularly over a period of 557 days. In 1997, the NRAO astronomers began a series of observations aimed at tracking gas motions in the star's outer atmosphere through a full pulsation cycle. Observing with the VLBA every two weeks, they now have accumulated 37 separate images, which they combined to make the "movie." They were able to measure the gas motions because one of the gases in the star's atmosphere, Silicon Monoxide (SiO), can act as a natural amplifier of radio signals. Such cosmic masers amplify radio emission similar to the way that a laser amplifies light emission. Regions where this maser activity occurs appear as bright spots on radio telescope images when the telescope's receivers are tuned to the specific frequency emitted by the masers. With the extremely high resolving power, or ability to see detail, of the VLBA, the astronomers were able to follow the motions of individual maser regions within the star's atmosphere. These served as tracers of overall gas motions. "Such a study only became possible when the VLBA became operational, and with the availability of computers able to handle the quantity of data produced," Kemball said. The SiO maser regions appear to form a ring around the star. The ring's diameter is greater than the distance from the Sun to Saturn, and has expanded from 10 to 20 percent over the course of the VLBA observations. "The continued expansion was our first surprise, but we've only scratched the surface of the immense amount of data our observations have produced," Diamond said. "Since we think that magnetic fields are playing a large role in how this gas behaves, we're going to do further analysis of the data to try to confirm this." Other studies using the VLBA data will seek to learn additional details about the structure, motions, time evolution, mass-loss process, magnetic field structure and physical conditions in the inner regions of the envelope of gas surrounding TX Cam. The VLBA is a continent-wide system of ten radio telescope antennas, each 25 meters (82 feet) in diameter and weighing 240 tons. They are distributed across the continental U.S., Hawaii and the U.S. Virgin Islands. Operated from a control center in Socorro, New Mexico, all ten antennas work together as if they were a single telescope more than 5,000 miles in diameter. This allows the VLBA to produce radio images hundreds of times more detailed than the Hubble Space Telescope produces using visible light. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space
NASA Astrophysics Data System (ADS)
2005-03-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion. This will allow them to answer important questions about the composition, history and fates of the two galaxies as well as of the Milky Way. "We want to determine the orbits of M31 and M33. That will help us learn about their history, specifically, how close have they come in the past?" Reid explained. "If they have passed very closely, then maybe M33's small size is a result of having material pulled off it by M31 during the close encounter," he added. Accurate knowledge of the motions of both galaxies also will help determine if there's a collision in their future. In addition, orbital analysis can give astronomers valuable clues about the amount and distribution of dark matter in the galaxies. M33's motion in space M33's motion in space, relative to M31 and the Milky Way CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The direct measurement of M33's transverse angular spin is the first time such a measurement has been done accurately. In the 1920s, some astronomers thought they had measured the spin of spiral galaxies, but their results proved to be in error. More recently, radio astronomers have measured the Doppler shift of hydrogen gas in galaxies to determine the spin speed, which, when combined with the angular spin, gives a direct estimate of the distance of the galaxy. The astronomers' task was not simple. Not only did they have to detect an impressively tiny amount of motion across the sky, but they also had to separate the actual motion of M33 from the apparent motion caused by our Solar System's motion around the center of the Milky Way. The motion of the Solar System and the Earth around the Galactic center, some 26,000 light-years away, has been accurately measured using the VLBA over the last decade. "The VLBA is the only telescope system in the world that could do this work," Reid said. "Its extraordinary ability to resolve fine detail is unmatched and was the absolute prerequisite to making these measurements." Reid worked with Andreas Brunthaler of the Max Planck Institute for Radioastronomy in Bonn, Germany; Heino Falcke of ASTRON in the Netherlands; Lincoln Greenhill, also of the Harvard- Smithsonian Center for Astrophysics; and Christian Henkel, also of the Max Planck Institute in Bonn. The scientists reported their findings in the March 4 issue of the journal Science. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in orbit. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA's scientific achievements include making the most accurate distance measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; movies of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Pulsar Bursts Coming From Beachball-Sized Structures
NASA Astrophysics Data System (ADS)
2003-03-01
In a major breakthrough for understanding what one of them calls "the most exotic environment in the Universe," a team of astronomers has discovered that powerful radio bursts in pulsars are generated by structures as small as a beach ball. VLA Image of Crab Nebula VLA Image of Crab Nebula (Click on Image for Larger Version) Pulsar Diagram Diagram of a Pulsar (Click on Image for Larger Version) "These are by far the smallest objects ever detected outside our solar system," said Tim Hankins, leader of the research team, which studied the pulsar at the center of the Crab Nebula, more than 6,000 light-years from Earth. "The small size of these regions is inconsistent with all but one proposed theory for how the radio emission is generated," he added. The other members of the team are Jeff Kern, James Weatherall and Jean Eilek. Hankins was a visiting scientist at Arecibo Observatory in Puerto Rico at the time the pulsar observations were made. He and Eilek are professors at the New Mexico Institute of Mining and Technology (New Mexico Tech) in Socorro, NM. Kern is a graduate student at NM Tech and a predoctoral fellow at the National Radio Astronomy Observatory (NRAO) in Socorro. Weatherall is an adjunct professor at NM Tech, currently working at the Federal Aviation Administration. The astronomers reported their discovery in the March 13 edition of the scientific journal Nature. Pulsars are superdense neutron stars, the remnants of massive stars that exploded as supernovae. Pulsars emit powerful beams of radio waves and light. As the neutron star spins, the beam sweeps through space like the beam of a lighthouse. When such a beam sweeps across the Earth, astronomers see a pulse from the pulsar. The Crab pulsar spins some 33 times every second. British radio astronomers discovered pulsars in 1967, one receiving the Nobel Prize for the discovery. In the years since, the method by which pulsars produce their powerful beams of electromagnetic radiation has remained a mystery. With the help of engineers at the NRAO, Hankins and his team designed and built specialized electronic equipment that allowed them to study the pulsar's radio pulses on extremely small time scales. They took this equipment to the National Science Foundation's giant, 1,000-foot-diameter radio telescope at Arecibo. With their equipment, they analyzed the Crab pulsar's superstrong "giant" pulses, breaking them down into tiny time segments. The researchers discovered that some of the "giant" pulses contain subpulses that last no longer than two nanoseconds. That means, they say, that the regions in which these subpulses are generated can be no larger than about two feet across -- the distance that light could travel in two nanoseconds. This fact, the researchers say, is critically important to understanding how the powerful radio emission is generated. A pulsar's magnetosphere -- the region above the neutron star's magnetic poles where the radio waves are generated -- is "the most exotic environment in the Universe," said Kern. In this environment, matter exists as a plasma, in which electrically charged particles are free to respond to the very strong electric and magnetic fields in the star's atmosphere. The very short subpulses the researchers detected could only be generated, they say, by a strange process in which density waves in the plasma interact with their own electrical field, becoming progressively denser until they reach a point at which they "collapse explosively" into superstrong bursts of radio waves. "None of the other proposed mechanisms can produce such short pulses," Eilek said. "The ability to examine these pulses on such short time scales has given us a new window through which to study pulsar radio emission," she added. The Crab pulsar is one of only three pulsars known to emit superstrong "giant" pulses. "Giant" pulses occur occasionally among the steady but much weaker "normal" pulses coming from the neutron star. Some of the brief subpulses within the Crab's "giant" pulses are second only to the Sun in their radio brightness in the sky. Although the mechanism that converts the plasma energy to radio waves in the Crab's "giant" pulses may be unique to the Crab pulsar, it is feasible that all radio pulsars may operate the same way. The research team now is observing signals from other pulsars to see if they are fundamentally different. The subpulses in the Crab's "giant" pulses are so strong that the team's equipment could detect them even if they originated not in our own Milky Way Galaxy, but in a nearby galaxy. The Crab Nebula is a cloud of glowing debris from a star that was seen to explode on July 4, 1054. Chinese astronomers noted the bright new star that outshone the planet Venus and was visible in daylight for 23 days. A rock carving at New Mexico's Chaco Canyon probably indicates that Native American skywatchers also noted the bright intruder in the sky. The nebula was discovered by John Bevis in 1731 and independently rediscovered by French astronomer Charles Messier on August 28, 1758. Messier made the Crab Nebula (named because of its crab-like shape) the first object in his famous catalog of non-stellar objects, a catalog widely popular among amateur astronomers with small telescopes. In 1948, radio emission was discovered coming from the Crab Nebula. In 1968, astronomers at Arecibo Observatory discovered the pulsar in the heart of the nebula. The following year, astronomers at Arizona's Steward Observatory discovered visible-light pulses also coming from the pulsar, making this the first pulsar found to emit visible light in addition to radio waves. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation.
Surprise: Dwarf Galaxy Harbors Supermassive Black Hole
NASA Astrophysics Data System (ADS)
2011-01-01
The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA.
Ecos del Cosmos: A radio astroexperience at the Universitat de Valencia
NASA Astrophysics Data System (ADS)
Marco, E.; Ballesteros, F. J.; Ortiz-Gil, A.
2017-03-01
During the last three years Ecos del Cosmos has been a radio program dedicated to spreading astronomical hot news to the Universitat de València community and beyond, and also topics of general astronomical interest. To do this, this program by Ràdio Universitat has conducted live interviews with researchers, explored relationships of astronomy with humanities and society, performed contests and explained in a simple way the main monthly ephemerides. A version of Ecos del Cosmos was broadcasted in the Onda Cero’s summer program ''Jelo en verano''conducted by Arturo Tellez.
Operator Interface for the ALMA Observing System
NASA Astrophysics Data System (ADS)
Grosbøl, P.; Schilling, M.
2009-09-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.
GeV-gamma-ray emission regions
2017-12-08
NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....
NRAO Welcomes Taiwan as a New North American ALMA Partner
NASA Astrophysics Data System (ADS)
2008-12-01
The National Radio Astronomy Observatory (NRAO) has announced a formal agreement enabling Taiwanese astronomers to participate in the North American component of the international ALMA partnership, alongside American and Canadian astronomers. Taiwan's efforts will be led by the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). ALMA, the Atacama Large Millimeter/submillimeter Array, is the most ambitious ground-based astronomical observatory in history. Currently under construction in Chile’s Atacama Desert at an altitude of 16,500 feet, it promises to revolutionize our understanding of the formation of planets, stars, and galaxies when it begins full science operations early in the next decade. The agreement, signed by the Taipei Economic and Cultural Representative Office and the American Institute in Taiwan, provides for approximately $20 million in ALMA construction funding through the National Science Council (NSC), Taiwan’s equivalent to the US National Science Foundation (NSF) and Canada's National Research Council (NRC), which have jointly funded North America's existing contribution to the international ALMA project. Activities under the agreement will include joint research projects, development projects, collaboration on construction, support of observatory operations and other forms of cooperation. Access to ALMA observing time will be shared, as will membership on advisory committees. “Taiwan is a world-class center for submillimeter-wavelength astronomical research, and we’re delighted that the ALMA project and all its future users will benefit from the resources and expertise that Taiwan’s deepening participation brings to this great, global endeavor,” said Dr. Fred Lo, NRAO's director. This new agreement increases and diversifies Taiwan’s Academia Sinica investment in ALMA beyond the levels achieved through its participation in the East Asian component of the ALMA partnership, which is led by the National Astronomical Observatory of Japan. The agreement mirrors previous ones affording Taiwan astronomers enhanced access to NRAO’s US-based research facilities. “ALMA will be one of the greatest ground-based observatories of the coming decade, and we look forward eagerly to working alongside our colleagues at the NRAO, and with the other ALMA partners, to make ALMA even more successful,” said Dr. Paul Ho, ASIAA’s director. The ALMA Project is a partnership between the scientific communities of East Asia, Europe and North America with Chile. ALMA is funded in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada and the National Science Council of Taiwan. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.
A Virtual Tour of the Radio Astronomy Process
NASA Astrophysics Data System (ADS)
Conrad, S. B.; Finley, D. G.; Claussen, M. J.; Ulvestad, J. S.
2000-12-01
In the summer of 2000, two teachers working on a Masters of Science Teaching Degree at New Mexico Tech and participating in the Research Experience for Teachers (RET) program sponsored by the National Science Foundation, spent eight weeks as interns researching and working on projects at the National Radio Astronomy Observatory (NRAO) which will directly benefit students in their classrooms and also impact other science educators. One of the products of the interships is a set of web pages for NRAO's web page educational section. The purpose of these web pages is to familiarize students, teachers, and other people with the process that a radio astronomer goes through to do radio astronomy science. A virtual web tour was created of this process. This required interviewing radio astronomers and other professionals involved with this process at the NRAO (e.g. engineers, data analysts, and operations people), and synthesizing the interviews into a descriptive, visual-based set of web pages. These pages do meet the National as well as New Mexico Standards and Benchmarks for Science Education. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.
A Multiple Use MF/HF Radio Array for Radio Research, Development, and Education
2016-04-27
reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: A Multiple Use MF/HF Radio Array for Radio Research , Development...inspiring high school and university- level student projects. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers ...references, in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) An MF/HF antenna array for radio and radar imaging
How Do Multiple-Star Systems Form? VLA Study Reveals "Smoking Gun"
NASA Astrophysics Data System (ADS)
2006-12-01
Astronomers have used the National Science Foundation's Very Large Array (VLA) radio telescope to image a young, multiple-star system with unprecedented detail, yielding important clues about how such systems are formed. Most Sun-sized or larger stars in the Universe are not single, like our Sun, but are members of multiple-star systems. Astronomers have been divided on how such systems can form, producing competing theoretical models for this process. Multiple Star Formation Graphic Proposed Formation Process for L1551 IRS5 CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and full information The new VLA study produced a "smoking gun" supporting one of the competing models, said Jeremy Lim, of the Institute of Astronomy & Astrophysics, Academia Sinica, in Taipei, Taiwan, whose study, done with Shigehisa Takakuwa of the National Astronomical Observatory of Japan, is published in the December 10 issue of the Astrophysical Journal. Ironically, their discovery of a third, previously-unknown, young star in the system may support a second theoretical model. "There may be more than one way to make a multiple-star system," Lim explained. The astronomers observed an object called L1551 IRS5, young, still-forming protostars enshrouded in a cloud of gas and dust, some 450 light-years from Earth in the direction of the constellation Taurus. Invisible to optical telescopes because of the gas and dust, this object was discovered in 1976 by astronomers using infrared telescopes. A VLA study in 1998 showed two young stars orbiting each other, each surrounded by a disk of dust that may, in time, congeal into a system of planets. Lim and Takakuwa re-examined the system, using improved technical capabilities that greatly boosted the quality of their images. "In the earlier VLA study, only half of the VLA's 27 antennas had receivers that could collect the radio waves, at a frequency of 43 GigaHertz (GHz), coming from the dusty disks. When we re-observed this system, all the antennas could provide data for us. In addition, we improved the level of detail by using the Pie Town, NM, antenna of the Very Long Baseline Array, as part of an expanded system," Lim said. The implementation and improvement of the 43 GHz receiving system was a collaborative program among the German Max Planck Institute, the Mexican National Autonomous University, and the U.S. National Radio Astronomy Observatory. Two popular theoretical models for the formation of multiple-star systems are, first, that the two protostars and their surrounding dusty disks fragment from a larger parent disk, and, second, that the protostars form independently and then one captures the other into a mutual orbit. "Our new study shows that the disks of the two main protostars are aligned with each other, and also are aligned with the larger, surrounding disk. In addition, their orbital motion resembles the rotation of the larger disk. This is a 'smoking gun' supporting the fragmentation model," Lim said. However, the new study also revealed a third young star with a dust disk. "The disk of this one is misaligned with those of the other two, so it may be the result of either fragmentation or capture," Takakuwa said. The misalignment of the third disk could have come through gravitational interactions with the other two, larger, protostars, the scientists said. They plan further observations to try to resolve the question. "We have a very firm indication that two of these protostars and their dust disks formed from the same, larger disk-like cloud, then broke out from it in a fragmentation process. That strongly supports one theoretical model for how multiple-star systems are formed. The misalignment of the third protostar and its disk leaves open the possibility that it could have formed elsewhere and been captured, and we'll continue to work on reconstructing the history of this fascinating system," Lim summarized. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Marochnik, L. S.
Joseph Samuelovich Shklovsky was born in the town of Glukhov in Ukraine. In 1933 he entered the physicsmath department of Vladivostok University and two years later transferred to the physics department of Moscow University (MGU). In 1938 this young physicist-optician was accepted as a graduate student by the astrophysics department of the P.K. Shternberg State Astronomical Institute (GAISh) at MGU, an institute with which he was to be associated his entire life.Then there followed the start of the war, evacuation to Ashkhabad (because of his poor eyesight he was not sent to the front), then his return to Moscow and GAISh, where he worked for many years at the leading edge of the post-war revolution in astronomy. The last forty years have been characterized by unprecedented development of observational methods and technology such as radio telescopes and interferometers and infrared, ultraviolet, X-ray, and gamma-ray astronomy. New classes of objects have been discovered: radio stars, radio galaxies, quasars, infrared sources, pulsars, cosmic ray bursters, sources of gamma bursts, background radiation at all wave- lengths, and, in particular, background radio radiation. "The question `What is this?' must be central." This is the main testament that Shklovsky left to younger researchers. He was one of the first astronomers to recognize the necessity of studying any astronomical object at all wavelengths in the electromagnetic spectrum. Only under such conditions can one hope to construct a proper model and understand the object's nature. His study of galactic radio emissions appeared in 1947. In that same year he participated in an expedition to observe the total star eclipse in Brazil, the first such expedition to be equipped with a radio telescope. Beginning in 1950 Shklovsky took part in the first infrared observations using an image convertor. His pioneering work: Galactic Infrared Radiation, was published in 1953.
Array analysis of electromagnetic radiation from radio transmitters for submarine communication
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Mezentsev, Andrew; Watson, Robert; Gaffet, Stéphane; Astin, Ivan; Evans, Adrian
2014-12-01
The array analyses used for seismic and infrasound research are adapted and applied here to the electromagnetic radiation from radio transmitters for submarine communication. It is found that the array analysis enables a determination of the slowness and the arrival azimuth of the wave number vectors associated with the electromagnetic radiation. The array analysis is applied to measurements of ˜20-24 kHz radio waves from transmitters for submarine communication with an array of 10 radio receivers distributed over an area of ˜1 km ×1 km. The observed slowness of the observed wave number vectors range from ˜2.7 ns/m to ˜4.1 ns/m, and the deviations between the expected arrival azimuths and the observed arrival azimuths range from ˜-9.7° to ˜14.5°. The experimental results suggest that it is possible to determine the locations of radio sources from transient luminous events above thunderclouds with an array of radio receivers toward detailed investigations of the electromagnetic radiation from sprites.
New Technologies Promise Dramatic Increase In Capabilities of the Very Large Array
NASA Astrophysics Data System (ADS)
1996-06-01
The National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico is an exceedingly powerful scientific instrument, and has transformed many areas of astronomy in its more than 15 years of operation. It has been used by more astronomers and has produced more scientific papers than any other radio telescope. Though its position as one of the world's premier radio telescopes will remain unchallenged for a long time, new technologies could increase its scientific capabilities greater than tenfold. Details were presented today to the American Astronomical Society's meeting in Madison, Wisconsin. An enhanced VLA, incorporating state-of-the-art technologies, would provide scientists with a number of important, new capabilities, including detailed investigations of the physics of solar radio bursts; improved radar probes of planets, asteroids and comets; the ability to image protoplanetary disks around young stars; more rapid response and effective observations of transient events such as supernovae; new types of information about gas both within our own Galaxy and in other galaxies; and greatly improved ability to study clusters of galaxies and extremely distant objects in the Universe. In addition, the enhanced VLA will serve as an improved partner with the Very Long Baseline Array (VLBA), a continent-wide radio telescope, also part of the National Radio Astronomy Observatory (NRAO). "The VLA upgrade proposes an essentially new instrument, created from two existing instruments, with power and capability far exceeding that of either one alone," said Rick Perley, NRAO Project Scientist for the VLA Upgrade Project. "It builds on the existing staff and infrastructure and would hardly affect operations costs. In today's fiscal climate, this provides the benefit of a `new' instrument with outstanding scientific capability at the least cost," Perley added. The VLA was built in the 1970s and dedicated in 1980. At the time of its completion, it was a state-of-the-art instrument. Even today, "it exceeds all other radio astronomy facilities with its combination of sensitivity, flexibility, speed, and overall imaging quality," Perley said. However, many of the technologies used by the VLA, such as computing, high-speed data transfer, and radio receivers, have greatly advanced over the past 15 years. "The VLA has in place all the needed infrastructure to take maximum advantage of these technological advances at minimum cost," Perley said. The VLA of the future, Perley said, could have: * Sensitivity improved by a factor of 2 to 15, depending on frequency; * A capacity for gathering information on spectral lines increased by a factor of 16; * Complete frequency coverage, versus very spotty current coverage; * Resolution increased by a factor of about 8; and * Complete integration with the VLBA (a long-term project). This would produce an instrument with "an outstanding, unique capability: continuous frequency coverage over a factor of 500 and continuous resolution coverage over a factor of a million, with the best sensitivity of any current instrument," Perley said. The scientific capability of the VLA now is limited in many areas by the aging technology currently employed. These limitations can be solved inexpensively by replacing the older equipment with new, state-of-the-art technology. The National Radio Astronomy Observatory began the VLA Upgrade Project with a scientific workshop held in Socorro, NM, in January of 1995. Scientists from many specialties within astronomy and planetary science were invited to this workshop to present their needs for future observations. The participants of this workshop produced a book outlining the goals of the VLA Upgrade Project. Another scientific workshop is planned for 1997. NRAO scientists and engineers now are working in groups to focus on specific aspects of the upgrade project. "We continue to solicit feedback from all interested members of the scientific community on how we can best serve their needs with an improved VLA for the next century," Perley said. For more information about the VLA Upgrade Project, and other NRAO instruments, visit the NRAO World Wide Web Home Page.
Surprise: Dwarf Galaxy Harbors Supermassive Black Hole
NASA Astrophysics Data System (ADS)
2011-01-01
The surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy is a strong indication that supermassive black holes formed before the buildup of galaxies, the astronomers said. The galaxy, called Henize 2-10, 30 million light-years from Earth, has been studied for years, and is forming stars very rapidly. Irregularly shaped and about 3,000 light-years across (compared to 100,000 for our own Milky Way), it resembles what scientists think were some of the first galaxies to form in the early Universe. "This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before," said Amy Reines, a Ph.D. candidate at the University of Virginia. Supermassive black holes lie at the cores of all "full-sized" galaxies. In the nearby Universe, there is a direct relationship -- a constant ratio -- between the masses of the black holes and that of the central "bulges" of the galaxies, leading them to conclude that the black holes and bulges affected each others' growth. Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate. This, they said, was strong evidence that black holes developed before their surrounding galaxies. "Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy's bulge is formed," Reines said. Reines, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation's Very Large Array radio telescope and with the Hubble Space Telescope. They found a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast "jets" of material spewed outward from areas close to a black hole. They then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. "Not many dwarf galaxies are known to have massive black holes," Sivakoff said. While central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense "super star clusters." "This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time," Johnson said. The astronomers reported their findings in the January 9 online edition of Nature, and at the American Astronomical Society's meeting in Seattle, WA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
2002-06-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun reach the end of their "normal" lives, in which they are powered by nuclear fusion of hydrogen atoms in their cores, they begin to blow off their outer atmospheres, then eventually collapse to a white dwarf, about the size of the Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Planetary nebulae, many visible to amateurs with backyard telescopes, have been studied by astronomers for years. About 1600 planetary nebulae have been found, and astronomers believe many more exist in our Milky Way Galaxy. Some are spherical, but most are not, displaying a variety of often intricate, beautiful shapes. The fact that many of these objects are not spherical was long known, but a series of spectacular images made with the Hubble Space Telescope in 1997 reinforced that fact dramatically. "The problem for scientists is, how do you get from a star that we know is a sphere to a planetary nebula that is far from being a sphere and yet came from that star," said Imai. Some theorists suggested that old stars must be somehow producing jets of material that help form the odd-shaped planetary nebulae, but such jets had, until now, never been seen. W43A was known to have regions near it in which water molecules are amplifying, or strengthening, radio emission at a frequency of 22 GigaHertz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation. Imai's team used the VLBA, the sharpest radio "eye" in the world, to find out where these masers are. To their surprise, they found that the maser regions are strung out in two curved lines, moving in opposite directions from the star at about 325,000 miles per hour. "The path of the jets is curved like a corkscrew, as if whatever is squirting them out is slowly rotating, or precessing, like a child's top wobbles just before it falls down," said Diamond. What is producing the jets? "We're not sure," Diamond said. "Traditional wisdom says that it takes a disk of material closely orbiting the star to produce jets, but we don't yet know how such a disk could be produced around such an old star," he added. The astronomers are probably very lucky to have caught W43A in what they believe is a brief transitional stage of its life. "Our analysis of the water jets indicates that they are only a few decades old," Imai said. "Once the star collapses of its own gravity into a dense white dwarf, its intense ultraviolet radiation will rip apart the water molecules, making observations such as ours impossible," he added. Planetary nebulae may be the worst-named class of objects in astronomy, because, despite the name, they have nothing to do with planets. The French astronomer Charles Messier discovered the first one, now known as the "Dumbbell Nebula" to amateur astronomers, in 1764. Sir William Herschel, who discovered the planet Uranus in 1781, later began a systematic survey of the entire sky and found more objects similar to the Dumbbell. Because their appearance resembled, to him, the appearance of Uranus in a telescope, he coined the term "planetary nebula," a name that has stuck ever since. Astronomers have long known that these objects are not actually related to planets, but the name has remained to confuse generations of students. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Perspectives of intellectual processing of large volumes of astronomical data using neural networks
NASA Astrophysics Data System (ADS)
Gorbunov, A. A.; Isaev, E. A.; Samodurov, V. A.
2018-01-01
In the process of astronomical observations vast amounts of data are collected. BSA (Big Scanning Antenna) LPI used in the study of impulse phenomena, daily logs 87.5 GB of data (32 TB per year). This data has important implications for both short-and long-term monitoring of various classes of radio sources (including radio transients of different nature), monitoring the Earth’s ionosphere, the interplanetary and the interstellar plasma, the search and monitoring of different classes of radio sources. In the framework of the studies discovered 83096 individual pulse events (in the interval of the study highlighted July 2012 - October 2013), which may correspond to pulsars, twinkling springs, and a rapid radio transients. Detected impulse events are supposed to be used to filter subsequent observations. The study suggests approach, using the creation of the multilayered artificial neural network, which processes the input raw data and after processing, by the hidden layer, the output layer produces a class of impulsive phenomena.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1988-01-01
In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.
Indexing data cubes for content-based searches in radio astronomy
NASA Astrophysics Data System (ADS)
Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.
2016-01-01
Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that seeks to provide the capability of content-based searches on data cubes to the astronomical community.
MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.
NASA Astrophysics Data System (ADS)
Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.
2017-12-01
The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically < 50 to 100 MHz). The four main radio sources observed in this frequency are the Earth, the Sun, Jupiter and Saturn. They are observed either from ground (down to 10 MHz) or from space. Ground observatories are more sensitive than space observatories and capture high resolution data streams (up to a few TB per day for modern instruments). Conversely, space-borne instruments can observe below the ionospheric cut-off (10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physcis data. Data visualization tools developed by The CDPP (http://cdpp.eu, Centre de Données de la Physique des Plasmas, in Toulouse, France) and the University of Iowa (Autoplot, http://autoplot.org) are available to display and analyse space physics time series and spectrograms. A planetary radio emission simulation software is developed in LESIA (ExPRES: Exoplanetary and Planetary Radio Emission Simulator). The VESPA (Virtual European Solar and Planetary Access) provides a search interface that allows to discover data of interest for scientific users, and is based on IVOA standards (astronomical International Virtual Observatory Alliance). The University of Iowa also develops Das2server that allows to distribute data with adjustable temporal resolution. MASER is making use of all these tools and standards to distribute datasets from space and ground radio instruments available from the Observatoire de Paris, the Station de Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.
Monitoring Radio Frequency Interference in Southwest Virginia
NASA Astrophysics Data System (ADS)
Rapp, Steve
2010-01-01
The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.
Background Information on the Very Long Baseline Array
NASA Astrophysics Data System (ADS)
A continent-wide radio telescope system offering the greatest resolving power of any astronomical instrument operational today Overview: The National Science Foundation's VLBA is a system of ten identical radio-telescope antennas controlled from a common headquarters and working together as a single instrument. The radio signals received by each individual antenna contribute part of the information used to produce images of celestial objects with hundreds of times more detail than Hubble Space Telescope images. Scientific Areas: The VLBA can contribute to any astronomical research area where quality, high-resolution radio images will advance knowledge of the field. In its first five years of full operation, the VLBA has produced dramatic new information in these areas: * Stars: With the VLBA, astronomers have tracked gas motions in the atmosphere of a star other than the Sun for the first time; made the first maps of the magnetic field of a star other than the Sun; and studied the violent dances of double-star pairs in which one of the pair is a superdense neutron star or a black hole. * Protostars, star formation, and protoplanetary disks: The VLBA has provided scientists with some of the best views yet of very young stars and the complex regions in which they are born. VLBA images have shown outflows of gas from young stars and disks of material orbiting these new stars - material that later may form planetary systems. * Supernovae and Supernova Remnants: The VLBA has directly measured the expansion of a shell of exploded debris from the supernova SN 1993J, in the galaxy M81, some 11 million light-years from Earth. This has allowed scientists to learn new details about the explosion itself and its surroundings as well as calculate the distance to the supernova by using the VLBA data in conjunction with information from optical telescopes. VLBA images have shown regions of shocked gas in supernova remnants. * The Milky Way: Radio waves from extragalactic objects, such as quasars, are affected by variations in the interstellar medium of the Milky Way. By measuring these effects with the VLBA, scientists are gaining valuable information about this tenuous component of our own Galaxy. Similar studies can tell about the distribution of hydrogen gas in our Galaxy. The great resolving power of the VLBA will allow astronomers to directly measure the distance to the Milky Way's center, some 30,000 light-years away, and has detected the tiny apparent shift in its position caused by our Solar System's motion around that center. The Solar System takes more than 200 million years to complete an orbit of the Galaxy's center, but the VLBA can detect that motion in less than a month! * Other Galaxies and Active Galactic Nuclei: The sharp radio "vision" of the VLBA has allowed scientists to study other galaxies in unprecedented detail. Numerous VLBA studies have focused on active galactic nuclei - the "monsters" at the hearts of many galaxies thought to harbor supermassive black holes at their cores. The black hole is thought to be surrounded by a rotating disk of material being sucked into it, and jets of subatomic particles accelerated to nearly the speed of light by the gravitational energy of the black hole. VLBA studies have given strong support to this "standard model" of an active galactic nucleus, showing the accretion disk in several such systems, and even measuring motions in one such disk. VLBA observations also have provided strong evidence that the material in the jets may be a mixture of matter and antimatter. * Cosmology: The VLBA's resolving power has allowed the farthest direct distance measurements yet made, of galaxies up to 23 million light- years away. Farther still, the VLBA is being used to study gravitational lenses in attempts to use such lens systems to accurately measure extremely great distances, and thus to refine estimates of the size and age of the universe. VLBA observations also are being used to detect possible structure in extremely distant objects, to learn about the nature of the universe when it was but a fraction of its current age. Operations: The VLBA is operated from the National Radio Astronomy Observatory's (NRAO) Array Operations Center (AOC) in Socorro, New Mexico. The staff of the AOC also supports the Very Large Array, a system of 27 antennas 50 miles west of Socorro. The NRAO is a facility of the National Science Foundation, and its instruments, including the VLBA, are available to the scientific community on a peer-reviewed basis. Scientists whose observing proposals are successful can obtain extensive assistance from NRAO astronomers and technical staff in preparing for their observations and in processing their data after the observations. Through this process, numerous graduate students now are using the VLBA for their dissertation research. History: Construction of the VLBA began in 1986, and the last observing station was completed in 1993. Astronomical observations with the partially-completed system began in 1987. All 10 VLBA stations were used for observing the first time in May of 1993. The official opening of the VLBA was held in Socorro, NM, on August 20, 1993. The total cost of constructing the VLBA was $85 million. Stations: The VLBA has stations at: St. Croix, U.S. Virgin Islands; Hancock, New Hampshire; North Liberty, Iowa; Fort Davis, Texas; Los Alamos, New Mexico; Pie Town, New Mexico; Kitt Peak, Arizona; Owens Valley, California; Brewster, Washington; and Mauna Kea, Hawaii. Technical Data: The VLBA's 240-ton dish antennas are 25 meters (82 feet) in diameter. They are equipped with receivers capable of detecting signals at frequencies ranging from 300 MegaHertz to 86 GigaHertz in non-continuous bands. During observations, data is collected at each station and recorded on magnetic tape. Each 18,000-foot reel of this tape holds 750 GBytes of data. Following observation, the tapes are shipped to Socorro. In Socorro, the VLBA Correlator, a special-purpose digital machine that combines the signals from all antennas, can perform 750 billion mathematical operations per second. The VLBA can produce images with a resolution of less than a thousandth of a second of arc. Such resolution is the equivalent of being able to stand in New York and read a newspaper in Los Angeles. The VLBA routinely works with other radio telescopes elsewhere in the world and in space.
Calibration of radio-astronomical data on the cloud. LOFAR, the pathway to SKA
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez-Expósito, S.; Garrido, J.; Ruiz, J. E.; Best, P. N.; Verdes-Montenegro, L.
2015-05-01
The radio interferometer LOFAR (LOw Frequency ARray) is fully operational now. This Square Kilometre Array (SKA) pathfinder allows the observation of the sky at frequencies between 10 and 240 MHz, a relatively unexplored region of the spectrum. LOFAR is a software defined telescope: the data is mainly processed using specialized software running in common computing facilities. That means that the capabilities of the telescope are virtually defined by software and mainly limited by the available computing power. However, the quantity of data produced can quickly reach huge volumes (several Petabytes per day). After the correlation and pre-processing of the data in a dedicated cluster, the final dataset is handled to the user (typically several Terabytes). The calibration of these data requires a powerful computing facility in which the specific state of the art software under heavy continuous development can be easily installed and updated. That makes this case a perfect candidate for a cloud infrastructure which adds the advantages of an on demand, flexible solution. We present our approach to the calibration of LOFAR data using Ibercloud, the cloud infrastructure provided by Ibergrid. With the calibration work-flow adapted to the cloud, we can explore calibration strategies for the SKA and show how private or commercial cloud infrastructures (Ibercloud, Amazon EC2, Google Compute Engine, etc.) can help to solve the problems with big datasets that will be prevalent in the future of astronomy.
A user interface framework for the Square Kilometre Array: concepts and responsibilities
NASA Astrophysics Data System (ADS)
Marassi, Alessandro; Brajnik, Giorgio; Nicol, Mark; Alberti, Valentina; Le Roux, Gerhard
2016-07-01
The Square Kilometre Array (SKA) project is responsible for developing the SKA Observatory, the world's largest radio telescope, with eventually over a square kilometre of collecting area and including a general headquarters as well as two radio telescopes: SKA1-Mid in South Africa and SKA1-Low in Australia. The SKA project consists of a number of subsystems (elements) among which the Telescope Manager (TM) is the one involved in controlling and monitoring the SKA telescopes. The TM element has three primary responsibilities: management of astronomical observations, management of telescope hardware and software subsystems, management of data to support system operations and all stakeholders (operators, maintainers, engineers and science users) in achieving operational, maintenance and engineering goals. Operators, maintainers, engineers and science users will interact with TM via appropriate user interfaces (UI). The TM UI framework envisaged is a complete set of general technical solutions (components, technologies and design information) for implementing a generic computing system (UI platform). Such a system will enable UI components to be instantiated to allow for human interaction via screens, keyboards, mouse and to implement the necessary logic for acquiring or deriving the information needed for interaction. It will provide libraries and specific Application Programming Interfaces (APIs) to implement operator and engineer interactive interfaces. This paper will provide a status update of the TM UI framework, UI platform and UI components design effort, including the technology choices, and discuss key challenges in the TM UI architecture, as well as our approaches to addressing them.
On the Centennial of Willy Fowler and Grote Reber: It Takes All Kinds
NASA Astrophysics Data System (ADS)
Tenn, Joseph S.
2011-01-01
William A. Fowler and Grote Reber were born in 1911, grew up in the American Midwest, and started out studying engineering. Neither ever made professional use of optical telescopes, and initially neither considered himself an astronomer. Reber was a radio engineer who followed up on Karl Jansky's surprising discovery of radio emissions from the sky by building his own radio telescope, and for several years he was the world's only radio astronomer. His discoveries showed that much new information could be obtained about the Universe by detecting and analysing what he called "cosmic static". Fowler was a nuclear physicist who took over leadership of a group at Caltech begun by C.C. Lauritsen and made the Kellogg Radiation Lab the world's leading site for learning about the reactions that power the stars and produce all but the lightest elements. He devoted most of his time in his later years to theoretical work in nuclear astrophysics. Personally, the two were quite different: Fowler, who spent more than sixty years at Caltech, was an insider, an influential member of many committees and organizations, and a president of the American Physical Society. Reber was an outsider who hardly ever worked with others and did nearly all of his astronomical research as an amateur. Fowler left more than 50 Ph.D. students, many postdoctoral fellows, two children, and a grandchild. Reber left neither academic nor biological descendants. Despite their different styles, both the radio engineer and the nuclear physicist made enormous contributions to twentieth century astronomy.
Radio-Astronomical Instruments Observations (Selected Articles),
1982-08-02
NL SIIDAUG 82 L I MATVEYENKO, G S MISEZHNIKOV UNCLASSIFIED FTO_ ID(RS) -0564-82 N FTD-ID(RS) T -0564-82 FOREIGN TECHNOLOGY DIVISION RADIO-ASTRONOMICAL...INSTR1ThMNTS OBSERVATIONS (Selected Articles) 3 71982 Approved for public release; LAJ distribuion~ urJA’nited. • I . FTD- ID(RS) T -0564-82 UNEDITED... T , t * r a yy y y 7, u F, f E # Ye, ye; E, e* X x X x Kh, kh X C Zh, zn .4 u L q Ts, ts - -. Z ,. 4 f 14 Ch ,ch U 7 H u I , i w Sh, sh 2 R ia Y, y
Harold F. Weaver: California Astronomer
NASA Astrophysics Data System (ADS)
Shields, J. C.
1993-05-01
This talk will give an overview of an oral history recently completed with Harold F. Weaver, Professor Emeritus of Astronomy at the University of California at Berkeley. Weaver grew up in California and studied as an undergraduate at Berkeley, where he also pursued graduate work incorporating research at Lick and Mount Wilson Observatories. After pursuing postdoctoral research at Yerkes Observatory and war work in Cambridge (Massachusetts) and Berkeley, Weaver was appointed to the staff of Lick Observatory. In 1951 he joined the faculty at Berkeley, where he later played a major role in founding Hat Creek Radio Observatory. As Director of the Berkeley Radio Astronomy Laboratory, Weaver oversaw construction of the 85-foot telescope at Hat Creek, which is the subject of a special session at this meeting. Two aspects of Weaver's career will be highlighted. The first is the somewhat unusual and very successful transition in Weaver's observational research from emphasis on classical photographic techniques at optical wavelengths to use of emerging radio technology for the study of Galactic structure. The second is service provided by Weaver to the American Astronomical Society and Astronomical Society of the Pacific at several key junctures in the development of both organizations.
VLBA Observations Put New Twist on Quasar Jet Model
NASA Astrophysics Data System (ADS)
2005-06-01
When a pair of researchers aimed the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope toward a famous quasar, they sought evidence to support a popular theory for why the superfast jets of particles streaming from quasars are confined to narrow streams. Instead, they got a surprise that "may send the theorists back to the drawing boards," according to one of the astronomers. 3C 273's Jet A VLBA RADIO IMAGE of the quasar 3C 273's core and jet, top. At bottom, inside an outline (green) of the overall jet image, is a color-coded image of the measured amount by which radio waves have been rotated. This measurement provides clues about the nature and environment of the jet, composed of subatomic particles propelled from the galaxy at a speed nearly that of light. CREDIT: Zavala and Taylor, NRAO/AUI/NSF (Click on images for larger versions.) 3C 273's Jet "We did find the evidence we were looking for, but we also found an additional piece of evidence that seems to contradict it," said Robert Zavala, an astronomer at the U.S. Naval Observatory's Flagstaff, Arizona, station. Zavala and Greg Taylor, of the National Radio Astronomy Observatory and the Kavli Institute of Particle Astrophysics and Cosmology, presented their findings to the American Astronomical Society's meeting in Minneapolis, Minnesota. Quasars are generally thought to be supermassive black holes at the cores of galaxies, the black hole surrounded by a spinning disk of material being drawn inexorably into the black hole's gravitational maw. Through processes still not well understood, powerful jets of particles are propelled outward at speeds nearly that of light. A popular theoretical model says that magnetic-field lines in the spinning disk are twisted tightly together and confine the fast-moving particles into narrow "jets" streaming from the poles of the disk. In 1993, Stanford University and Kavli Institute astrophysicist Roger Blandford suggested that such a twisted magnetic field would produce a distinct pattern in the alignment, or polarization, of radio waves coming from the jets. Zavala and Taylor used the VLBA, capable of producing the most detailed images of any telescope in astronomy, to seek evidence of Blandford's predicted pattern in a well-known quasar called 3C 273. "We saw exactly what Blandford predicted, supporting the idea of a twisted magnetic field. However, we also saw another pattern that is not explained by such a field," Zavala said. In technical terms, the twisted magnetic field should cause a steady change, or gradient, in the amount by which the alignment (polarization) of the radio waves is rotated as one looks across the width of the jet. That gradient showed up in the VLBA observations. However, with a twisted magnetic field, the percentage of the waves that are similarly aligned, or polarized, should be at its greatest at the center of the jet and decrease steadily toward the edges. Instead, the observations showed the percentage of polarization increasing toward the edges. That means, the astronomers say, there either is something wrong with the twisted-magnetic-field model or its effects are washed out by interactions between the jet and the interstellar medium that it is drilling through. "Either way, the theorists have to get to work to figure out how this can happen," Zavala said. When notified of the new results, Blandford said, "these observations are good enough to warrant further development of the theory." 3C 273 is one of the most famous quasars in astronomy, and was the first to be recognized as a very distant object in 1963. Caltech astronomer Maarten Schmidt was working on a brief scientific article about 3C273 on the afternoon of February 5 that year when he suddenly recognized a pattern in the object's visible-light spectrum that allowed an immediate calculation of its distance. He later wrote that "I was stunned by this development..." Just minutes later, he said, he met his colleague Jesse Greenstein, who was studying another quasar, in a hallway. In a matter of another few minutes, they found that the second one also was quite distant. 3C 273 is about two billion light-years from Earth in the constellation Virgo, and is visible in moderate-sized amateur telescopes. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. "The extremely sharp radio 'vision' of the VLBA was absolutely necessary to do this work," Zavala explained. "We used the highest radio frequencies at which we could detect 3C273's jet to maximize the detail we could get, and this effort paid off with great science," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Historic Radio Astronomy Working Group
NASA Astrophysics Data System (ADS)
2007-06-01
This special issue of Astronomische Nachrichten contains the proceedings of a session of the Historic Radio Astronomy Working Group of the International Astronomical Union that took place during the 26th General Assembly of the IAU in Prague on 17th August 2006. In addition to the talks presented in Prague some contributions were solicited to give a more complete overview of `The Early History of European Radio Astronomy'.
Astronomers gossip about the (cosmic) neighborhood.
Jayawardhana, R
1994-09-09
The Hague, Netherlands, last month welcomed 2000 astronomers from around the world for the 22nd General Assembly of the International Astronomical Union (IAU). From 15 to 27 August, they participated in symposia and discussions on topics ranging from the down-to-Earth issue of light and radio-frequency pollution to the creation of elements at the farthest reaches of time and space, in the big bang. Some of the most striking news, however, came in new findings from our galaxy and its immediate surroundings.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
Magnetic Fields Sculpt Narrow Jets From Dying Star
NASA Astrophysics Data System (ADS)
2006-03-01
Molecules spewed outward from a dying star are confined into narrow jets by a tightly-wound magnetic field, according to astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to study an old star about 8,500 light-years from Earth. Magnetic Field Around Jet Artist's Conception Shows Tightly-Wound Magnetic Field Confining Jet CREDIT: NRAO/AUI/NSF (Click on image for larger version) The star, called W43A, in the constellation Aquila, is in the process of forming a planetary nebula, a shell of brightly-glowing gas lit by the hot ember into which the star will collapse. In 2002, astronomers discovered that the aging star was ejecting twin jets of water molecules. That discovery was a breakthrough in understanding how many planetary nebulae are formed into elongated shapes. "The next question was, what is keeping this outpouring of material confined into narrow jets? Theoreticians suspected magnetic fields, and we now have found the first direct evidence that a magnetic field is confining such a jet," said Wouter Vlemmings, a Marie Curie Fellow working at the Jodrell Bank Observatory of the University of Manchester in England. "Magnetic fields previously have been detected in jets emitted by quasars and protostars, but the evidence was not conclusive that the magnetic fields were actually confining the jets. These new VLBA observations now make that direct connection for the very first time," Vlemmings added. By using the VLBA to study the alignment, or polarization, of radio waves emitted by water molecules in the jets, the scientists were able to determine the strength and orientation of the magnetic field surrounding the jets. "Our observations support recent theoretical models in which magnetically-confined jets produce the sometimes-complex shapes we see in planetary nebulae," said Philip Diamond, also of Jodrell Bank Observatory. During their "normal" lives, stars similar to our Sun are powered by the nuclear fusion of hydrogen atoms in their cores. As they near the end of their lives they begin to blow off their outer atmospheres and eventually collapse down to a white dwarf star about the size of Earth. Intense ultraviolet radiation from the white dwarf causes the gas thrown off earlier to glow, producing a planetary nebula. Astronomers believe that W43A is in the transition phase that will produce a planetary nebula. That transition phase, they say, is probably only a few decades old, so W43A offers the astronomers a rare opportunity to watch the process. While the stars that produce planetary nebulae are spherical, most of the nebulae themselves are not. Instead, they show complex shapes, many elongated. The earlier discovery of jets in W43A showed one mechanism that could produce the elongated shapes. The latest observations will help scientists understand the mechanisms producing the jets. The water molecules the scientists observed are in regions nearly 100 billion miles from the old star, where they are amplifying, or strengthening, radio waves at a frequency of 22 GHz. Such regions are called masers, because they amplify microwave radiation the same way a laser amplifies light radiation. The earlier observations showed that the jets are coming out from the star in a corkscrew shape, indicating that whatever is squirting them out is slowly rotating. Vlemmings and Diamond worked with Hiroshi Imai of Kagoshima University in Japan. The astronomers reported their work in the March 2 issue of the scientific journal Nature. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Population density effect on radio frequencies interference (RFI) in radio astronomy
NASA Astrophysics Data System (ADS)
Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat
2012-06-01
Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.
New Galaxies From Old? VLA Observations Strengthen the Case
NASA Astrophysics Data System (ADS)
1996-01-01
Astronomers using the Very Large Array (VLA) radio telescope have found some of the best evidence to date that small, new galaxies can form from material pulled out of older galaxies. The new observations seriously weaken models of galactic evolution that attempt to explain the various types of galaxies seen in the universe as the result of different, but independent, processes. Steve Gottesman of the University of Florida in Gainesville, Tim Hawarden of the Joint Astronomy Center in Hilo, Hawaii, Caroline Simpson of Florida International University in Miami and Benjamin Malphrus of Morehead State University in Morehead, Kentucky, presented the results today to the American Astronomical Society meeting in San Antonio, TX. The astronomers used the VLA, a facility of the National Science Foundation, to study a galaxy system some 180 million light-years distant in the constellation Centaurus called NGC 5291. NGC 5291 is a peculiar spiral galaxy that appears to be interacting with a nearby object called the Seashell. The VLA observations show a large, elongated cloud of neutral hydrogen gas surrounding NGC 5291 and the Seashell. Within that gas cloud there are several concentrations. These mostly coincide with faint "knots" which were first seen on optical photographs taken twenty years ago with the UK Schmidt Telescope in Australia for the ESO/SRC Southern Sky Survey. In a detailed study at that time, using the 4-meter Anglo-Australian Telescope (AAT) and the 65m Parkes radio telescope, the knots were shown to be giant star-forming regions and the system was found to contain an extremely large cloud of gas. Though details were lacking then, astronomers suggested that the larger knots would turn out to be galaxies either in the process of formation or recently formed from the material of the parent system. Subsequently, similar suggestions were made about concentrations of material in the "tidal tails" ejected by galactic collisions elsewhere in the sky, but it was not possible to put the suggestions on a firm footing. This latest research, however, shows conclusively that one of the knots in the NGC 5291 system is indeed a dwarf irregular galaxy similar to the Magellanic Clouds, companion galaxies to our own Milky Way. The knot of gas, in which stars are being formed, has about 5 billion times the mass of the Sun. "In order for it to be considered an independent galaxy, it must meet two conditions -- its mass must remain gravitationally bound against its own kinetic energy and it must remain bound against the gravitational effect of the primary galaxy. This knot in the NGC 5291 system has the stable properties, the required mass, and sufficient distance from the remnant galaxies that, were it an isolated system, it would be classified as an actively star-forming dwarf irregular galaxy," said Gottesman. In addition, the researchers' analysis of the VLA observations indicates that several other knots seen in the region probably are protogalaxies or young dwarf irregular galaxies in various stages of development. "It was a great thrill to see that the VLA images resolved the hydrogen cloud into concentrations associated with the star-forming knots we studied 17 years ago, and especially rewarding to see our suspicion that some knots would turn out to be young galaxies so nicely verified," said Hawarden, who was part of the earlier research team. The new observations, combined with earlier evidence from interacting systems such as Arp 105 and NGC 7252, strengthen the idea that galaxy collisions must be considered an important agent of galactic evolution. "This is strong evidence that galaxies, especially in clusters where they can interact with each other and with any hot medium present in the cluster, can and do evolve in dramatic ways, including being able to form genuinely young systems," Simpson said. Malphrus added, "An important implication of this research is that genuinely young galaxies may evolve from the debris formed of material tidally removed by galactic interactions. We look forward to verification of this by the discovery of additional examples of genuinely young irregular galaxies in interacting systems." The astronomers used the VLA, a 27-antenna radio telescope west of Socorro, NM, at times when its antennas were spaced in two different configurations in order to gain both high resolving power and high sensitivity for the images. Observations of the radio spectral line of neutral hydrogen allowed the astronomers to use the Doppler shift in frequency of the received radio emissions to derive information about the velocity of the gas in different parts of the cloud. Reduction and analysis of the data were made possible by a grant received from the National Aeronautics and Space Administration Joint Ventures in Research (NASA-JOVE) Project. Initial observations were made with the Very Large Array, an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities Incorporated. Digitized image and object positions were obtained using the Guide Star Astrometric Support Program developed at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
ALMA Achieves Major Milestone With Antenna-Link Success
NASA Astrophysics Data System (ADS)
2007-03-01
The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, now under construction at an elevation of 16,500 feet in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimeter and submillimeter wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. Scientists are eager to use this transformational capability to study the first stars and galaxies that formed in the early Universe, to learn long-sought details about how stars are formed, and will trace the motion of gas and dust as it whirls toward the surface of newly-formed stars and planets. "This was fantastic work. Using our two prototype antennas to observe Saturn was the first complete, end-to-end test of the advanced systems we are building for ALMA," said Adrian Russell, North American Project Manager for ALMA. "ALMA is an extraordinary international endeavor, and the collaboration of partners from around the world is vital to the success of the project," Russell added. "The success of this test is fundamental proof that the hardware and software now under development for ALMA will work to produce a truly revolutionary astronomical tool," said Massimo Tarenghi, Director of the Joint ALMA Office. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile," said Catherine Cesarsky, ESO's Director General. In addition to the leading-edge electronic and electro-optical hardware and custom software that proved itself by producing ALMA's first fringes, the system's antennas are among the most advanced in the world. The stringent requirements for the antennas included extremely precise reflecting surfaces, highly accurate ability to point at desired locations in the sky, and the ability to operate reliably in the harsh, high-altitude environment of the ALMA site. The ALMA Test Facility includes prototype antennas built by VertexRSI in the U.S. and by the AEC Consortium (ALCATEL Space of France and European Industrial Engineering of Italy). These antennas were evaluated individually at the ATF. Both prototypes were fitted with electronic equipment for receiving, digitizing and transmitting signals back to a central facility. At the ATF, a small-scale prototype version of ALMA's giant central, special-purpose computer, called a correlator, has been installed. The correlator combines the signals to make the antennas work together as a single astronomical instrument. The full-scale ALMA correlator is being built at the National Radio Astronomy Observatory's Technology Center in Charlottesville, Virginia, and will be installed at the high-altitude site in Chile when completed. ALMA also will include Japanese antennas built by Mitsubishi. ALMA is an international astronomy facility. It is a partnership of Europe, Japan, and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan, and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI).
Factors affecting calculation of L
NASA Astrophysics Data System (ADS)
Ciotola, Mark P.
2001-08-01
A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient, radio signals from billions of stars. SETI could succeed tomorrow, or it may be an endeavor for multiple generations. We are a very young technology in a very old galaxy. While our own leakage radiation continues to outshine the Sun at many frequencies, we remain detectable to others. When our use of the spectrum becomes more efficient, it will be time to consider deliberate transmissions and the really tough questions: Who will speak for Earth? What will they say?
Integrated infrared detector arrays for low-background astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.
1979-01-01
Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.
Big Data Challenges for Large Radio Arrays
NASA Technical Reports Server (NTRS)
Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa
2012-01-01
Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of VMESs in the 14.47-14.5 GHz (Earth-to-space) frequency band in the vicinity of radio astronomy... location, and the applicable coordination zone. Table 1—Applicable Radio Astronomy Service (RAS) Facilities... Astronomical Research Institute, Rosman, NC 35°11′59″ 82°52′19″ 160. U of Michigan Radio Astronomy Observatory...
Code of Federal Regulations, 2012 CFR
2012-10-01
... of VMESs in the 14.47-14.5 GHz (Earth-to-space) frequency band in the vicinity of radio astronomy... location, and the applicable coordination zone. Table 1—Applicable Radio Astronomy Service (RAS) Facilities... Astronomical Research Institute, Rosman, NC 35°11′59″ 82°52′19″ 160. U of Michigan Radio Astronomy Observatory...
Code of Federal Regulations, 2011 CFR
2011-10-01
... of VMESs in the 14.47-14.5 GHz (Earth-to-space) frequency band in the vicinity of radio astronomy... location, and the applicable coordination zone. Table 1—Applicable Radio Astronomy Service (RAS) Facilities... Astronomical Research Institute, Rosman, NC 35°11′59″ 82°52′19″ 160. U of Michigan Radio Astronomy Observatory...
Resurfacing the Jodrell Bank Mk II radio telescope
NASA Astrophysics Data System (ADS)
Spencer, R. E.; Haggis, J. S.; Morrison, I.; Davis, R. J.; Melling, R. J.
The improvement of the short-wavelength performance of the Jodrell Bank Mk II radio telescope is described. A final rms profile error of 0.6 mm was achieved due to the invention of an inexpensive technique of panel construction and measurement combined with the use of radio-astronomical holographic techniques to measure the telescope under actual operating conditions. Some further improvements to extend the short wavelength performance are suggested.
NASA Technical Reports Server (NTRS)
Steffes, P. G.
1985-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often lead to significant misinterpretation of available opacity data. Steffes and Eshleman showed that under environmental conditions corresponding to the middle atmosphere of Venus, the microwave absorption due to atmospheric SO2 was 50 percent greater than that calculated from Van Vleck-Weiskopff theory. Similarly, the opacity from gaseous H2SO4 was found to be a factor of 7 greater than theoretically predicted for conditions of the Venus middle atmosphere. The recognition of the need to make such measurements over a range of temperatures and pressures which correspond to the periapsis altitudes of radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements.
NASA Astrophysics Data System (ADS)
Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.
2016-07-01
Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.
NASA Astrophysics Data System (ADS)
Ivanov, D. V.; Uratsuka, M.-R.; Ipatov, A. V.; Marshalov, D. A.; Shuygina, N. V.; Vasilyev, M. V.; Gayazov, I. S.; Ilyin, G. N.; Bondarenko, Yu. S.; Melnikov, A. E.; Suvorkin, V. V.
2018-04-01
The article presents the main possibilities of using the projected Russian-Cuban geodynamic colocation station on the basis of the Institute of Geophysics and Astronomy of the Ministry of Science, Technology and the Environment of the Republic of Cuba to carry out radio observations and monitoring the near-Earth space. Potential capabilities of the station are considered for providing various observational programs: astrophysical observations; observations by space geodesy methods using radio very long baselines interferometers, global navigation satellite systems, laser rangers, and various Doppler systems, as well as monitoring of artificial and natural bodies in the near-Earth and deep space, including the ranging of asteroids approaching the Earth. The results of modeling the observations on the planned station are compared with that obtained on the existing geodynamic stations. The efficiency of the projected Russian-Cuban station for solving astronomical tasks is considered.
Young Galaxy Surrounded by Material Needed to Make Stars, VLA Reveals
NASA Astrophysics Data System (ADS)
2001-01-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered a massive reservoir of cold gas from which a primeval galaxy formed its first stars. Looking more than 12 billion years into the past, the scientists found that the young galaxy experiencing a "burst" of star formation was surrounded by enough cold molecular gas to make 100 billion suns. Optical and Radio Images of APM 08279+5255 at About the Same Scale "This is the first time anyone has seen the massive reservoir of cold gas required for these incredible 'starbursts' to produce a galaxy," said Chris Carilli, an astronomer at the NSF's National Radio Astronomy Observatory (NRAO) in Socorro, NM. "There is much more gas here than we anticipated," Carilli added. The research team was led by Padeli Papadoupoulos of Leiden Observatory in the Netherlands and also included Rob Ivison of University College London and Geraint Lewis of the Anglo-Australian Observatory in Australia. The scientists reported their findings in the January 4 edition of the journal Nature. The astronomers found the gas when studying a quasar called APM 08279+5255, discovered in 1998. Observations with optical and infrared telescopes revealed that the quasar, a young galaxy with a voracious black hole at its center, was forming new stars rapidly in a starburst. At a distance of more than 12 billion light-years, the quasar is seen as it was more than 12 billion years ago, just a billion or so years after the Big Bang. "This thing is at the edge of the dark ages," before the first stars in the universe were born, said Carilli. The year after its discovery, APM 08279+5255 was found to have warm carbon monoxide (CO) gas near its center, heated by the energy released as the galaxy's black hole devours material. The VLA observations revealed cold CO gas much more widely distributed than its warmer counterpart. Based on observations of closer objects, the astronomers presume the CO gas is accompanied by large amounts of molecular hydrogen gas (H2). Cold CO gas never has been detected before in such a distant object. Though APM 08279+5255 is a young galaxy undergoing its first massive burst of star formation, the CO gas indicates that very massive stars formed quickly, lived through their short lifetimes, and exploded as supernovae. Carbon and Oxygen, the component elements of CO, are formed in the cores of stars, so their presence in the cold gas tells the astronomers that massive, short-lived stars had to have exploded already, spreading these elements throughout the galaxy's interstellar gas. "The original discovery of this quasar was quite a surprise, as observations revealed it is among the most luminous objects known in the universe. The discovery of this massive reservoir of cold gas is equally surprising. It provides vital clues to the birth of galaxies, such as our own Milky Way," Lewis said. Discovery of the gas was made possible by the galaxy's great distance. The expansion of the universe "stretches" light and radio waves to longer wavelengths -- the more distant the object, the more stretching is seen. Radio waves emitted by the cold CO gas originally had wavelengths of about 1.3 and 2.6 millimeters, but were "redshifted" to wavelengths of 7 and 13 millimeters -- wavelengths the VLA can receive. "It took eight years to refine this technique, but the effort has been worthwhile. This is the golden age of cosmology. We are learning more and more about our universe, from the smallest planets to the largest galaxy clusters. This new result is a crucial piece in the jigsaw and may help resolve many misconceptions about how galaxies form and evolve" Ivison said. "Because of its sensitivity and its ability to make detailed images, the VLA is the only telescope able to unveil these large reservoirs of cold molecular gas in the distant universe," Carilli said. "In addition, as we expand the technical capabilities of the VLA in the coming years, making it even more sensitive and able to show more detail, it will become the world's premier tool for studying this vital aspect of the young universe." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
An MF/HF radio array for radio and radar imaging of the ionosphere
NASA Astrophysics Data System (ADS)
Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence
2016-07-01
The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.
Pulsar Observations with Radio Telescope FAST
NASA Astrophysics Data System (ADS)
Nan, Ren-Dong; Wang, Qi-Ming; Zhu, Li-Chun; Zhu, Wen-Bai; Jin, Cheng-Jin; Gan, Heng-Qian
2006-12-01
FAST, Five hundred meter Aperture Spherical Telescope, is the Chinese effort for the international project SKA, Square Kilometer Array. An innovative engineering concept and design pave a new road to realizing huge single dish in the most effective way. Three outstanding features of the telescope are the unique karst depressions as the sites, the active main reflector which corrects spherical aberration on the ground to achieve full polarization and wide band without involving complex feed system, and the light focus cabin driven by cables and servomechanism plus a parallel robot as secondary adjustable system to carry the most precise parts of the receivers. Besides a general coverage of those critical technologies involved in FAST concept, the progresses in demonstrating model being constructed at the Miyun Radio Observatory of the NAOC is introduced. Being the most sensitive radio telescope, FAST will enable astronomers to jumpstart many of science goals, for example, the natural hydrogen line surveying in distant galaxies, looking for the first generation of shining objects, hearing the possible signal from other civilizations, etc. Among these subjects, the most striking one could be pulsar study. Large scale survey by FAST will not only improve the statistics of the pulsar population, but also may offer us a good fortune to pick up more of the most exotic, even unknown types like a sub-millisecond pulsar or a neutron star -- black hole binary as the telescope is put into operation.
Featured Image: A Detailed Look at the Crab Nebula
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Planning on watching fireworks tomorrow? Heres an astronomical firework to help you start the celebrations! A new study has stunningly detailed the Crab Nebula (click for a closer look), a nebula 6,500 light-years away thought to have been formedby a supernova explosion and the subsequent ultrarelativistic wind emitted by the pulsar at its heart. Led by Gloria Dubner (University of Buenos Aires), the authors of this study obtained new observations of the Crab Nebula from five different telescopes. They compiled these observations to compare the details of the nebulas structure across different wavelengths, which allowedthem to learnabout the sources of various features within the nebula. In the images above, thetop left shows the 3 GHz data from the Very Large Array (radio). Moving clockise, the radio data (shown in red) is composited with: infrared data from Spitzer Space Telescope, optical continuum from Hubble Space Telescope, 500-nm optical datafrom Hubble, and ultraviolet data from XMM-Newton. The final two images are of the nebula center, and they are composites of the radio imagewith X-ray data from Chandra and near-infrared data from Hubble. To read more about what Dubner and collaborators learned (and to see more spectacular images!), check out the paper below.CitationG. Dubner et al 2017 ApJ 840 82. doi:10.3847/1538-4357/aa6983
Radio Telescopes to Keep Sharp Eye on Mars Lander
NASA Astrophysics Data System (ADS)
2008-05-01
As NASA's Phoenix Mars Lander descends through the Red Planet's atmosphere toward its landing on May 25, its progress will be scrutinized by radio telescopes from the National Radio Astronomy Observatory (NRAO). At NRAO control rooms in Green Bank, West Virginia, and Socorro, New Mexico, scientists, engineers and technicians will be tracking the faint signal from the lander, 171 million miles from Earth. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF To make a safe landing, Phoenix must make a risky descent, slowing down from nearly 13,000 mph at the top of the Martian atmosphere to only 5 mph in the final seconds before touchdown. NASA officials point out that fewer than half of all Mars landing missions have been successful, but the scientific rewards of success are worth the risk. Major events in the spacecraft's atmospheric entry, descent and landing will be marked by changes in the Doppler Shift in the frequency of the vehicle's radio signal. Doppler Shift is the change in frequency caused by relative motion between the transmitter and receiver. At Green Bank, NRAO and NASA personnel will use the giant Robert C. Byrd Green Bank Telescope (GBT) to follow the Doppler changes and verify that the descent is going as planned. The radio signal from Phoenix is designed to be received by other spacecraft in Mars orbit, then relayed to Earth. However, the GBT, a dish antenna with more than two acres of collecting surface and highly-sensitive receivers, can directly receive the transmissions from Phoenix. "We'll see the frequency change as Phoenix slows down in the Martian atmosphere, then there will be a big change when the parachute deploys," said NRAO astronomer Frank Ghigo. When the spacecraft's rocket thrusters slow it down for its final, gentle touchdown, its radio frequency will stabilize, Ghigo said. "We'll have confirmation of these major events through our direct reception several seconds earlier than the controllers at NASA's Jet Propulsion Laboratory will get the relayed information," Ghigo added. In Socorro, scientists will collect signals from Phoenix with antennas of the continent-wide Very Long Baseline Array (VLBA), which produces the sharpest images of any astronomical instrument in existence. They will use the VLBA's ability to mark the position of objects in the sky with pinpoint precision to reconstruct the craft's location relative to other spacecraft at Mars to within about 100 feet, despite its great distance from Earth. The VLBA observations will demonstrate NRAO's capability to provide extremely precise measurements of spacecraft positions. This capability may be used to improve the navigational accuracy of future interplanetary missions. NRAO telescopes have contributed to the success of several previous space missions. The VLBA Very Long Baseline Array CREDIT: NRAO/AUI/NSF In 1989, the Very Large Array (VLA) received signals from the Voyager 2 spacecraft as it flew by the distant planet Neptune. The combined collecting area of the 27 VLA antennas and their sensitive receivers made possible a higher data-transmission rate from the spacecraft, thus enabling scientists to obtain more images of Neptune, its rings, and its moons. In 1995, the VLA captured signals from the Galileo spaccraft's probe as the probe dived into the giant planet Jupiter's atmosphere. Like Phoenix, the Galileo probe was designed to send its information to the main spacecraft, which would then relay the signal to Earth. However, the VLA's direct reception of the probe's signal measured the Doppler shift in the signal's frequency and made measurements of Jovian wind speeds 10 times more accurate than they otherwise would have been. In 2005, the GBT and the VLBA snagged the signal from the Huygens probe as it descended into the atmosphere of Saturn's moon Titan. The Doppler measurements of wind speeds made by NRAO and other radio telescopes provided the only wind data from the mission, because of a malfunction in communication between Huygens and its "mother ship" Cassini. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Infrared charge-injection-device array performance at low background
NASA Technical Reports Server (NTRS)
Mccreight, C. R.; Goebel, J. H.
1981-01-01
Low-background tests of a 1 x 32 Si:Bi charge-injection-device (CID) IR detector are carried out to evaluate its feasibility for space-based astronomical observations. Optimum performance is obtained at a temperature of 11 K. The sensitivity is found to compare well with that of discrete extrinsic silicon photoconductors. The measured sensitivity and the apparent absence of anomalous effects make extrinsic silicon CID arrays very promising for astronomical applications.
Juno Listens to Jupiter Auroras Sing
2016-09-02
During its close flyby of Jupiter on August 27, 2016, the Waves instrument on NASA's Juno spacecraft received radio signals associated with the giant planet's very intense auroras. This video displays these radio emissions in a format similar to a voiceprint, showing the intensity of radio waves as a function of frequency and time. The largest intensities are indicated in warmer colors. The frequency range of these signals is from 7 to 140 kilohertz. Radio astronomers call these "kilometric emissions" because their wavelengths are about a kilometer long. The time span of this data is 13 hours, beginning shortly after Juno's closest approach to Jupiter. Accompanying this data display is an audio rendition of the radio emissions, shifted into a lower register since the radio waves are well above the audio frequency range. In the video, a cursor moves from left to right to mark the time as the sounds are heard. These radio emissions were among the first observed by early radio astronomers in the 1950s. However, until now, they had not been observed from closely above the auroras themselves. From its polar orbit vantage point, Juno has -- for the first time -- enabled observations of these emissions from very close range. The Juno team believes that Juno flew directly through the source regions for some of these emissions during this flyby, which was Juno's first with its sensors actively collecting data. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21037
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; DeVincenzi, D. (Technical Monitor)
2001-01-01
Astronomers study light and basically, almost everything we know about the universe has been figured out through the study of light gathered by telescopes on the earth, in the earth's atmosphere, and in space. This light comes in many different colors, the sum of which comprises what is commonly I known as the electromagnetic (EM) spectrum. Unfortunately, the earth's atmosphere blocks almost all of wavelengths in the EM spectrum. Only the visible (400-700 mn) and radio (approx. 1-150 m) "windows" are accessible from the ground, and thus have the longest observational "history." These early restrictions on the observational astronomer also gave rise to classifying "kinds" of astronomy based on their respective EM portion, such as the term "radio astronomy."
Investigation on the Frequency Allocation for Radio Astronomy at the L Band
NASA Astrophysics Data System (ADS)
Abidin, Z. Z.; Umar, R.; Ibrahim, Z. A.; Rosli, Z.; Asanok, K.; Gasiprong, N.
2013-09-01
In this paper, the frequency allocation reserved for radio astronomy in the L band set by the International Telecommunication Union (ITU), which is between 1400 and 1427 MHz, is reviewed. We argue that the nearby frequencies are still very important for radio astronomers on the ground by investigating radio objects (H i sources) around 1300-1500 MHz. The L-band window is separated into a group of four windows, namely 1400-1427 MHz (window A), 1380-1400 MHz (window B), 1350-1380 MHz (window C), and 1300-1350 MHz (window D). These windows are selected according to their redshifts from a rest frequency for hydrogen spectral line at 1420.4057 MHz. Radio objects up to z ≈ 0.1 or frequency down to 1300 MHz are examined. We argue that since window B has important radio objects within the four windows, this window should also be given to radio astronomy. They are galaxies, spiral galaxies, and galaxy clusters. This underlines the significance of window B for radio astronomers on the ground. By investigating the severeness of radio frequency interference (RFI) within these windows, we have determined that window B still has significant, consistent RFI. The main RFI sources in the four windows have also been identified. We also found that the Department of Civil Aviation of Malaysia is assigned a frequency range of 1215-1427 MHz, which is transmitted within the four windows and inside the protected frequency for radio astronomy. We also investigated the RFI in the four windows on proposed sites of future radio astronomy observatories in Malaysia and Thailand and found the two best sites as Universiti Pendidikan Sultan Idris (UPSI) and Ubon Ratchathani, respectively. It has also been determined that RFI in window B increases with population density.
Session 21.3 - Radio and Optical Site Protection
NASA Astrophysics Data System (ADS)
Sefako, Ramotholo
2016-10-01
Advancement in radio technology means that radio astronomy has to share the radio spectrum with many other non-astronomical activities, majority of which increase radio frequency interference (RFI), and therefore detrimentally affecting the radio observations at the observatory sites. Major radio facilities such as the SKA, in both South Africa and Australia, and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China will be very sensitive, and therefore require protection against RFI. In the case of optical astronomy, the growing urbanisation and industrialisation led to optical astronomy becoming impossible near major cities due to light and dust pollution. Major optical and IR observatories are forced to be far away in remote areas, where light pollution is not yet extreme. The same is true for radio observatories, which have to be sited away from highly RFI affected areas near populated regions and major cities. In this review, based on the Focus Meeting 21 (FM21) oral presentations at the IAU General Assembly on 11 August 2015, we give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, successes (e.g at 21 cm HI line), defeats and challenges at other parts of the spectrum. We discuss the available legislative initiatives to protect the radio astronomy sites for large projects like SKA (in Australia and South Africa), and FAST against the RFI. For optical protection, we look at light pollution with examples of its effect at Xinglong observing station of the National Astronomical Observatories of China (NAOC), Ali Observatory in Tibet, and Asiago Observatory in Italy, as well as the effect of conversion from low pressure sodium lighting to LEDs in the County of Hawaii.
ALMA Telescope Passes Major Milestone with Successful Antenna Link
NASA Astrophysics Data System (ADS)
2009-05-01
The Atacama Large Millimeter/submillimeter Array (ALMA), an immense international telescope project under construction in northern Chile, reached a major milestone on April 30, when two ALMA antennas were linked together as an integrated system to observe an astronomical object for the first time. The milestone achievement, technically termed "First Fringes," came at ALMA’s Operations Support Facility, 9,500 feet above sea level. Faint radio waves emitted by the planet Mars were collected by the two 12-meter diameter ALMA antennas, then processed by state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of imaging systems that enable radio telescopes to deliver pictures that approach or even exceed the resolving power of visible light telescopes. In such a system, each antenna is combined electronically with every other antenna to form a multitude of antenna pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed early in the next decade, ALMA’s 66 antennas will provide over a thousand such antenna pairings, with distances between antennas exceeding ten miles. This will enable ALMA to see with a sharpness surpassing that of the best space telescopes. The antennas will operate at an altitude of 16,500 feet, high above the OSF, in one of the best locations on Earth for millimeter-wavelength astronomy, the Chajnantor Plateau in Chile’s Atacama Desert. Last week’s successful Mars observation was conducted at an observing frequency of 104.2 GHz. Astronomers measured the distinctive varying “fringes” detected by the interferometer as the planet moved across the sky. “This is a great success,” said Adrian Russell, North American ALMA Project Director at the National Radio Astronomy Observatory (NRAO), “not because we observed a naked-eye planet, but because we observed something in the sky interferometrically using the genuine hardware that soon will be making its way up to the mountain to the Array Operations Site. Components from North America, Asia, and Europe are all working together to form a single mammoth telescope, and that bodes well for ALMA’s success.” “This can only be achieved with the perfect synchronization of the antennas and the electronic equipment: a precision much better than one millionth of a millionth of a second between equipment located many kilometers apart. The extreme environment where the ALMA observatory is located, with its strong winds, high altitude, and wide range of temperatures, just adds to the complexity of the observatory and to the fascinating engineering challenges we face,” commented Richard Murowinski, ALMA Project Engineer at the Joint ALMA Observatory (JAO) in Chile. ALMA will provide astronomers with the world's most advanced tool for exploring the Universe at millimeter and submillimeter wavelengths. It will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. Scientists are eager to use this transformational capability to study stars and galaxies that formed in the early Universe, to learn long-sought details about how stars are born, and to trace the motion of gas and dust as it whirls toward the surface of newly-formed stars and planets. “This is another important step forward for ALMA as it proves that the various hardware components can work well together. The efforts of all the staff involved in this first antenna integration show the strength of our global collaboration and give much confidence that we can get to full operations with ALMA as one great astronomical observatory,” said Thijs de Graauw, ALMA Director at the JAO. “We are on target to do the first interferometry tests at the 5000-meter-high site by the end of this year, and by the end of 2011 we plan to have at least 16 antennas working together as a single giant telescope.” The ALMA Project is a partnership between the scientific communities of East Asia, Europe and North America with Chile. ALMA is funded in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada and the National Science Council of Taiwan. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc. Notes for Editors: With ALMA, astronomers will study the cool Universe: the molecular gas and dust that constitute the building blocks of stars, planetary systems, galaxies, and of life itself, providing new and necessary information on the creation of stars and planets. It will also reveal distant galaxies from the primal universe that we will see as they were more than ten billion years ago, representing not only an important observation instrument for scientists, but also a new cosmic vision for humanity. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Southern Observatory (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
The Effectiveness of Internet-Controlled Astronomical Research Instrumentation for Education
ERIC Educational Resources Information Center
Pratap, Preethi; Salah, Joseph
2004-01-01
Over the last decade, remote instruments have become widely used in astronomy. Educational applications are more recent. This paper describes a program to bring radio astronomy into the undergraduate classroom through the use of a remote research-grade radio telescope, the MIT Haystack Observatory 37 m telescope. We examine the effectiveness of…
International VLBI Service for Geodesy and Astrometry 2004 Annual Report
NASA Technical Reports Server (NTRS)
Behrend, Dirk (Editor); Baver, Karen D. (Editor)
2005-01-01
Contents include the following: Combination Studies using the Cont02 Campaign. Coordinating Center report. Analysis coordinator report. Network coordinator report. IVS Technology coordinator report. Algonquin Radio observatory. Fortaleza Station report for 2004. Gilmore Creek Geophysical Observatory. Goddard Geophysical and Astronomical observatory. Hartebeesthoek Radio Astronomy Observatory (HartRAO). Hbart, Mt Pleasant, station report for 2004. Kashima 34m Radio Telescope. Kashima and Koganei 11-m VLBI Stations. Kokee Park Geophysical Observatory. Matera GGS VLBI Station. The Medicina Station status report. Report of the Mizusawa 10m Telescope. Noto Station Activity. NYAL Ny-Alesund 20 metre Antenna. German Antarctic receiving Station (GARS) O'higgins. The IVS network station Onsala space Observatory. Sheshan VLBI Station report for 2004. 10 Years of Geodetic Experiments at the Simeiz VLBI Station. Svetloe RAdio Astronomical Observatory. JARE Syowa Station 11-m Antenna, Antarctica. Geodetic Observatory TIGO in Concepcion. Tsukuba 32-m VLBI Station. Nanshan VLBI Station Report. Westford Antenna. Fundamental-station Wettzell 20m Radiotelescope. Observatorio Astroonomico Nacional Yebes. Yellowknife Observatory. The Bonn Geodetic VLBI Operation Center. CORE Operation Center Report. U.S. Naval Observatory Operation Center. The Bonn Astro/Geo Mark IV Correlator.
Grote Reber, Radio Astronomy Pioneer, Dies
NASA Astrophysics Data System (ADS)
2002-12-01
Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became something of a minor tourist attraction, he later recalled. Using electronics he designed and built that pushed the technical capabilities of the era, Reber succeeded in detecting "cosmic static" in 1939. In 1941, Reber produced the first radio map of the sky, based on a series of systematic observations. His radio-astronomy work continued over the next several years. Though not a professional scientist, his research results were published in a number of prestigious technical journals, including Nature, the Astrophysical Journal, the Proceedings of the Institute of Radio Engineers and the Journal of Geophysical Research. Reber also received a number of honors normally reserved for scientists professionally trained in astronomy, including the American Astronomical Society's Henry Norris Russell Lectureship and the Astronomical Society of the Pacific's Bruce Medal in 1962, the National Radio Astronomy Observatory's Jansky Lectureship in 1975, and the Royal Astronomical Society's Jackson-Gwilt Medal in 1983. Reber's original dish antenna now is on display at the National Radio Astronomy Observatory's site in Green Bank, West Virginia, where Reber worked in the late 1950s. All of his scientific papers and records as well as his personal and scientific correspondence are held by the NRAO, and will be exhibited in the observatory's planned new library in Charlottesville, Virginia. Reber's amateur-radio callsign, W9GFZ, is held by the NRAO Amateur Radio Club. This callsign was used on the air for the first time since the 1930s on August 25, 2000, to mark the dedication of the Robert C. Byrd Green Bank Telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Chilean Teachers Begin Exchange Program Visit in Magdalena
NASA Astrophysics Data System (ADS)
2007-01-01
Two teachers from the town of San Pedro de Atacama, in the northern desert of the South American nation of Chile, arrive in Magdalena, New Mexico, Sunday, January 28, for a two-week visit that is part of a Sister Cities program sponsored by Associated Universities, Inc. (AUI), the nonprofit research corporation that operates the National Radio Astronomy Observatory (NRAO). They will be accompanied by their town's mayor. Myriam Nancy Rivera Mercado, Head of the high school in San Pedro, Gabriela Fernanda Rodriguez Moraleda, a tourism teacher there, and San Pedro Mayor Sandra Berna Martinez will begin a visit that includes classroom observations in the Magdalena schools, a reception hosted by the Magdalena Village Council, and a Mayor's Breakfast with Magdalena Mayor Jim Wolfe. They also will meet local residents, tour the Bosque del Apache National Wildlife Refuge with a second-grade class, visit an area ranch, tour the Very Large Array (VLA) radio telescope, and see Socorro's Community Arts Party. "These teachers will learn much about New Mexico, the United States, and our educational system, and will take this new knowledge back to their students and their community," said NRAO Education Officer Robyn Harrison. The visit is part of a Sister Cities program initiated and funded by AUI, which operates the NRAO for the U.S. National Science Foundation. Radio astronomy is a common link between San Pedro de Atacama and Magdalena. San Pedro is near the site of the Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project now under construction with funding by major partners in North America, Europe, and Japan. Magdalena is near the site of NRAO's VLA radio telescope. In Magdalena, the Village Council and Mayor Wolfe formalized their participation in the Sister Cities program last September, and San Pedro ratified the program in December. In San Pedro, the ceremony ratifying the agreement was attended by U.S. Ambassador to Chile Craig K. Kelly. The Chilean teachers are visiting Magdalena while they are on their Southern Hemisphere summer vacation, and Magdalena's schools are in session. Two Magdalena teachers, Joleen Welborn and Sandra Montoya, will visit San Pedro in June, while they are on summer vacation and the Chilean schools will be in session. Dr. Eduardo Hardy, the AUI/NRAO representative in Chile, will accompany the Chilean teachers on their visit, which has been coordinated by Harrison. "ALMA is a groundbreaking example of the type of international cooperation that marks the future of astronomy. We are especially pleased to sponsor a program that brings together two communities that both enjoy proximity to world-class astronomical research facilities," said Dr. Fred K.Y. Lo, NRAO Director. "While separated by many miles, San Pedro de Atacama and Magdalena have much in common. Both are small communities in high desert environments, and both are next to telescopes where the world's astronomers will be making many exciting discoveries in the coming decades. Bringing these two communities together will advance education and international understanding," Harrison said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Highlighting the history of Japanese radio astronomy. 5: The 1950 Osaka solar grating array proposal
NASA Astrophysics Data System (ADS)
Wendt, Harry; Orchiston, Wayne; Ishiguro, Masato; Nakamura, Tsuko
2017-04-01
In November 1950, a paper was presented at the 5th Annual Assembly of the Physical Society of Japan that outlined the plan for a radio frequency grating array, designed to provide high-resolution observations of solar radio emission at 3.3 GHz. This short paper provides details of the invention of this array, which occurred independently of W.N. Christiansen's invention of the solar grating array in Australia at almost the same time.
Radio Observations of the Ionosphere From an Imaging Array and a CubeSat
NASA Astrophysics Data System (ADS)
Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.
2017-12-01
The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the radio data received by GimmeRF in the topside ionosphere, with the goal of better understanding the geometry and therefore the mechanisms of the radio emission processes.
NASA Astrophysics Data System (ADS)
Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai
2016-01-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
NASA Astrophysics Data System (ADS)
Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.
2015-10-01
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.
Latest results of the Tunka Radio Extension
NASA Astrophysics Data System (ADS)
Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Marshalkina, T.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.
2017-06-01
The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15% and the depth of the shower maximum with a resolution of better than 40 g/cm2. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.
Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy
NASA Astrophysics Data System (ADS)
Duan, Ran
A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).
BIG MAC: A bolometer array for mid-infrared astronomy, Center Director's Discretionary Fund
NASA Technical Reports Server (NTRS)
Telesco, C. M.; Decher, R.; Baugher, C.
1985-01-01
The infrared array referred to as Big Mac (for Marshall Array Camera), was designed for ground based astronomical observations in the wavelength range 5 to 35 microns. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilized cold reimaging optics and an up looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.
Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement
NASA Astrophysics Data System (ADS)
1999-06-01
A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an estimate of the age of the universe. In order to do this, you need an unambiguous, absolute distance to another galaxy. We are pleased that the NSF's VLBA has for the first time determined such a distance, and thus provided the calibration standard astronomers have always sought in their quest for accurate distances beyond the Milky Way," said Morris Aizenman, Executive Officer of the National Science Foundation's (NSF) Division of Astronomical Sciences. "For astronomers, this measurement is the golden meter stick in the glass case," Aizenman added. The international team of astronomers used the VLBA to measure directly the motion of gas orbiting what is generally agreed to be a supermassive black hole at the heart of NGC 4258. The orbiting gas forms a warped disk, nearly two light-years in diameter, surrounding the black hole. The gas in the disk includes water vapor, which, in parts of the disk, acts as a natural amplifier of microwave radio emission. The regions that amplify radio emission are called masers, and work in a manner similar to the way a laser amplifies light emission. Determining the distance to NGC 4258 required measuring motions of extremely small shifts in position of these masers as they rotate around the black hole. This is equivalent to measuring an angle one ten-thousandth the width of a human hair held at arm's length. "The VLBA is the only instrument in the world that could do this," said Moran. "This work is the culmination of a 20-year effort at the Harvard Smithsonian Center for Astrophysics to measure distances to cosmic masers," said Irwin Shapiro, Director of that institution. Collection of the data for the NGC 4258 project was begun in 1994 and was part of Herrnstein's Ph.D dissertation at Harvard University. Previous observations with the VLBA allowed the scientists to measure the speed at which the gas is orbiting the black hole, some 39 million times more massive than the Sun. They did this by observing the amount of change in the wavelength of the radio waves caused by the Doppler effect. The gas is orbiting at a speed of more than two million miles per hour. The orbiting disk of gas is almost edge-on as viewed from Earth. The astronomers obtained the orbital speeds and the positions of the masers in the disk by measuring the Doppler Shift of the masers at the disk's sides, where the gas is moving almost directly away from the Earth on one side and toward the Earth on the other. Measurements of the different orbital speeds at different distances from the black hole, made in 1994, allowed them to determine the mass of the black hole. These measurements required the great resolving power, or ability to see fine detail, of the VLBA. This picture of an orbiting disk was confirmed by measurement of centrifugal acceleration, according to the scientists. The newest observations were focused on maser "spots" on the near edge of the disk, where orbital motion shifts their position in the sky, though by an extremely small amount. The VLBA, however, was able to detect this extremely small movement, called "proper motion" by astronomers. This motion was detected by observing the galaxy at 4- to 8-month intervals over more than three years. "By knowing the speed at which the gas is orbiting and then measuring its motion across the sky, we can use plain old trigonometry to calculate the distance," Greenhill said. He added, however, that "you need a bit of luck to be able to do this. So far, we know of only 22 galaxies with water masers in their nuclear regions that also are relatively nearby. Then, the geometry of the disk, relative to Earth, has to be right to allow us to make such a measurement" The VLBA measurement of NGC 4258's distance differs significantly from the distance to that galaxy determined through HST observations of Cepheid variable stars. Using such stars, a team of astronomers led by University of California-Berkeley scientist Eyal Maoz has made preliminary and as-yet unpublished estimates of the distance to NGC 4258 as either 27 or 29 million light-years, depending on assumptions about the characteristics of this type of star in that galaxy. Other Cepheid-based galaxy distances were used to calculate the expansion rate of the universe, called the Hubble Constant, announced by a team of HST observers last week. "This difference could mean that there may be more uncertainty in Cepheid-determined distances than people have realized," said Moran. "Providing this directly-determined distance to one galaxy -- a distance that can serve as a milestone -- should be helpful in determining distances to other galaxies, and thus the Hubble Constant and the size and age of the universe" The VLBA is a system of ten radio-telescope antennas, each 25 meters (82 feet) in diameter, stretching some 5,000 miles from Mauna Kea in Hawaii to St. Croix in the U.S. Virgin Islands. Operated from NRAO's Array Operations Center in Socorro, NM, the VLBA offers astronomers the greatest resolving power of any telescope anywhere. The NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Background information: Determining Cosmic Distances Determining cosmic distances obviously is vital to understanding the size of the universe. In turn, knowing the size of the universe is an important step in determining its age. "The size puts a limit on how much expansion could have occurred since the Big Bang, and thus tells us something about the age," said Moran. However, determining cosmic distances has proven to be a particularly thorny problem for astronomers. In the third century, B.C., the Greek astronomer Aristarchus devised a method of using trigonometry to determine the relative distances of the Moon and Sun, but in practice his method was difficult to use. Though a great first step, he missed the mark by a factor of 20. It wasn't until 1761 that trigonometric methods produced a relatively accurate distance to Venus, thus calibrating the size of the Solar System. The first accurate distance to another star was determined trigonometrically by Friedrich Wilhelm Bessel in 1838. Traditional trigonometric methods of measuring celestial distances require extremely accurate measurement of an object's position in the sky. By measuring the apparent shift in an object's position, called parallax, caused by the Earth's journey around the Sun, the distance to the object can be calculated. Until recent years, such measurements were limited by the atmosphere's degrading effect on optical observations. Recently, the Hipparcos satellite has measured stellar distances accurate to within 10 percent out to about 300 light-years. Beyond the range of parallax measurements, astronomers were forced to use indirect methods of estimating distances. Many of these methods make presumptions about the intrinsic brightness of objects, then estimate the distance by measuring how much fainter they appear on Earth. The faintness is presumed to be caused by the distance, according to the inverse-square law (doubling of the distance reduces brightness by a factor of four). Thus, stars of a particular spectral class are all presumed to be of the same intrinsic brightness. Such techniques have been used to estimate distances of stars out to about 25,000 light-years, still not far enough to estimate distance beyond our own Milky Way Galaxy. Early in the 20th Century, Henrietta Leavitt, of Harvard College Observatory, discovered that variable-brightness stars known as Cepheid variables showed a useful property -- the longer their pulsation periods, the brighter they are intrinsically. Once the absolute distance to a few Cepheids was determined, these stars were used to measure distances beyond the Milky Way. In the 1920s, Edwin Hubble used Cepheid-variable distance determinations to show that, contrary to then-prevalent opinion, many "nebulae" were, in fact, other galaxies far distant from our own. Distances determined using Cepheid variables, along with measurements of the Doppler shift of other galaxies' light, allowed Hubble to discover the expansion of the universe, the basis of the Big Bang theory. The Cepheid technique still is one of the building blocks of the extragalactic distance scale. However, because of absorption of light by interstellar dust and subtle differences among the stars themselves, this technique is subject to considerable uncertainty. Similarly, techniques that use a specific type of supernova (Type Ia) presumed to be of uniform intrinsic brightness, while able to make distance estimates farther than the Cepheid technique, still are subject to uncertainties. The NSF's VLBA, with resolving power hundreds of times better than even the Hubble Space Telescope, has allowed direct trigonometric techniques to be applied in measuring much greater distances than ever before. The VLBA measured the expansion of the shell of exploding debris from the supernova SN 1993J in the galaxy M81, 11 million light- years away. This information, combined with optical observations that measured the speed of the expanding debris by the Doppler shift of its emitted spectral lines, allowed a trigonometric calculation of the distance to M81. Now, with the VLBA's direct measurement of motions in the gas disk surrounding NGC 4258, trigonometric measurement, not subject to the vagaries of dust absorption and other uncertaintities in an object's brightness, has been extended to a distance of more than 23 million light-years.
Dwarf Galaxy Gives Giant Surprise
NASA Astrophysics Data System (ADS)
2005-01-01
An astronomer studying small irregular galaxies discovered a remarkable feature in one galaxy that may provide key clues to understanding how galaxies form and the relationship between the gas and the stars within galaxies. Liese van Zee of Indiana University, using the National Science Foundation's Very Large Array (VLA) radio telescope, found that a small galaxy 16 million light-years from Earth is surrounded by a huge disk of hydrogen gas that has not been involved in the galaxy's star-formation processes and may be primordial material left over from the galaxy's formation. UGC 5288 Radio/Optical Image of UGC 5288 Bright white center object is visible-light image; Purple is giant hydrogen-gas disk seen with VLA CREDIT: Van Zee, NOAO, NRAO/AUI/NSF (Click on Image for Larger Version) "The lack of interaction between the large gas disk and the inner, star-forming region of this galaxy is a perplexing situation. When we figure out how this has happened, we'll undoubtedly learn more about how galaxies form," van Zee said. She presented her findings to the American Astronomical Society's meeting in San Diego, CA. The galaxy van Zee studied, called UGC 5288, had been regarded as just one ordinary example of a very numerous type of galaxy called dwarf irregular galaxies. As part of a study of such galaxies, she had earlier made a visible-light image of it at Kitt Peak National Observatory. When she observed it later using the VLA, she found that the small galaxy is embedded in a huge disk of atomic hydrogen gas. In visible light, the elongated galaxy is about 6000 by 4000 light-years, but the hydrogen-gas disk, seen with the VLA, is about 41,000 by 28,000 light-years. The hydrogen disk can be seen by radio telescopes because hydrogen atoms emit and absorb radio waves at a frequency of 1420 MHz, a wavelength of about 21 centimeters. A few other dwarf galaxies have large gas disks, but unlike these, UGC 5288's disk shows no signs that the gas was either blown out of the galaxy by furious star formation or pulled out by a close encounter with another galaxy. "This gas disk is rotating quite peacefully around the galaxy," van Zee explained. That means, she said, that the gas around UGC 5288 most likely is pristine material that never has been "polluted" by the heavier elements produced in stars. What's surprising, said Martha Haynes, an astronomer at Cornell University in Ithaca, NY, is that the huge gas disk seems to be completely uninvolved in the small galaxy's star-formation processes. "You need the gas to make the stars, so we might have thought the two would be better correlated," Haynes said. "This means we really don't understand how the star-forming gas and the stars themselves are related," she added. In addition, Haynes said, it is exciting to find such a large reservoir of apparently unprocessed matter. "This object and others like it could be the targets for studying pristine material in the Universe," she said. Haynes also was amused to point out that a galaxy that looked "boring" to some in visible-light images showed such a remarkable feature when viewed with a radio telescope. "This shows that you can't judge an object by its appearance at only one wavelength -- what seems boring at one wavelength may be very exciting at another." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Astronomers Use Moon in Effort to Corral Elusive Cosmic Particles
NASA Astrophysics Data System (ADS)
2010-11-01
Seeking to detect mysterious, ultra-high-energy neutrinos from distant regions of space, a team of astronomers used the Moon as part of an innovative telescope system for the search. Their work gave new insight on the possible origin of the elusive subatomic particles and points the way to opening a new view of the Universe in the future. The team used special-purpose electronic equipment brought to the National Science Foundation's Very Large Array (VLA) radio telescope, and took advantage of new, more-sensitive radio receivers installed as part of the Expanded VLA (EVLA) project. Prior to their observations, they tested their system by flying a small, specialized transmitter over the VLA in a helium balloon. In 200 hours of observations, Ted Jaeger of the University of Iowa and the Naval Research Laboratory, and Robert Mutel and Kenneth Gayley of the University of Iowa did not detect any of the ultra-high-energy neutrinos they sought. This lack of detection placed a new limit on the amount of such particles arriving from space, and cast doubt on some theoretical models for how those neutrinos are produced. Neutrinos are fast-moving subatomic particles with no electrical charge that readily pass unimpeded through ordinary matter. Though plentiful in the Universe, they are notoriously difficult to detect. Experiments to detect neutrinos from the Sun and supernova explosions have used large volumes of material such as water or chlorine to capture the rare interactions of the particles with ordinary matter. The ultra-high-energy neutrinos the astronomers sought are postulated to be produced by the energetic, black-hole-powered cores of distant galaxies; massive stellar explosions; annihilation of dark matter; cosmic-ray particles interacting with photons of the Cosmic Microwave Background; tears in the fabric of space-time; and collisions of the ultra-high-energy neutrinos with lower-energy neutrinos left over from the Big Bang. Radio telescopes can't detect neutrinos, but the scientists pointed sets of VLA antennas around the edge of the Moon in hopes of seeing brief bursts of radio waves emitted when the neutrinos they sought passed through the Moon and interacted with lunar material. Such interactions, they calculated, should send the radio bursts toward Earth. This technique was first used in 1995 and has been used several times since then, with no detections recorded. The latest VLA observations have been the most sensitive yet done. "Our observations have set a new upper limit -- the lowest yet -- for the amount of the type of neutrinos we sought," Mutel said. "This limit eliminates some models that proposed bursts of these neutrinos coming from the halo of the Milky Way Galaxy," he added. To test other models, the scientists said, will require observations with more sensitivity. "Some of the techniques we developed for these observations can be adapted to the next generation of radio telescopes and assist in more-sensitive searches later," Mutel said. "When we develop the ability to detect these particles, we will open a new window for observing the Universe and advancing our understanding of basic astrophysics," he said. The scientists reported their work in the December edition of the journal Astroparticle Physics.
Radio-Frequency and Wideband Modulation Arraying
NASA Technical Reports Server (NTRS)
Brockman, M. H.
1984-01-01
Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.
NASA Technical Reports Server (NTRS)
Chapman, R. D.
1978-01-01
An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.
Signal Processing for a Lunar Array: Minimizing Power Consumption
NASA Technical Reports Server (NTRS)
D'Addario, Larry; Simmons, Samuel
2011-01-01
Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)
1987-03-01
radio astrono - mers. The latter point is very severe particularly in Japan. There is one and only way to relax this severe constraint, which is to...promoted by radio astronomers at Tokyo Astrono - mical Observatory, University of Tokyo, at the Research Institute of Atmospherics, Nagoya University, and
Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey
NASA Astrophysics Data System (ADS)
High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.
2016-01-01
Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less
ALMA telescope reaches new heights
NASA Astrophysics Data System (ADS)
2009-09-01
The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory has taken another step forward - and upwards. One of its state-of-the-art antennas was carried for the first time to the 5000m plateau of Chajnantor, in the Chilean Andes, on the back of a custom-built giant transporter. The antenna, which weighs about 100 tons and has a diameter of 12 metres, was transported up to the high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for ALMA's observations of the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 2900 m altitude of the ALMA Operations Support Facility. It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "This is an important moment for ALMA. We are very happy that the first transport of an antenna to the high site went flawlessly. This achievement was only possible through contributions from all international ALMA partners: this particular antenna is provided by Japan, the heavy-lift transporter by Europe, and the receiving electronics inside the antenna by North America, Europe, and Asia", said Wolfgang Wild, European ALMA Project Manager. The trip began when one of the two ALMA transporters, named Otto, lifted the antenna onto its back. It then carried its heavy load along the 28 km road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 12 km/hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas are the most advanced submillimetre-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site. This means surviving strong winds and temperatures between +20 and -20 Celsius whilst being able to point precisely enough that they could pick out a golf ball at a distance of 15 km, and to keep their smooth reflecting surfaces accurate to better than 25 micrometres (less than the typical thickness of a human hair). Once the transporter reached the high plateau it carried the antenna to a concrete pad - a docking station with connections for power and fibre optics - and positioned it with an accuracy of a few millimetres. The transporter is guided by a laser steering system and, just like some cars today, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 18.5 km and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. "Transporting our first antenna to the Chajnantor plateau is a epic feat which exemplifies the exciting times in which ALMA is living. Day after day, our global collaboration brings us closer to the birth of the most ambitious ground-based astronomical observatory in the world", said Thijs de Graauw, ALMA Director. This first ALMA antenna at the high site will soon be joined by others and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimetre and submillimetre wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, but also from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born and remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimetre wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Status of air-shower measurements with sparse radio arrays
NASA Astrophysics Data System (ADS)
Schröder, Frank G.
2017-03-01
This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.
Milky Way a Swifter Spinner, More Massive, New Measurements Show
NASA Astrophysics Data System (ADS)
2009-01-01
Fasten your seat belts -- we're faster, heavier, and more likely to collide than we thought. Astronomers making high-precision measurements of the Milky Way say our home Galaxy is rotating about 100,000 miles per hour faster than previously understood. That increase in speed, said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics, increases the Milky Way's mass by 50 percent, bringing it even with the Andromeda Galaxy. "No longer will we think of the Milky Way as the little sister of the Andromeda Galaxy in our Local Group family." Milky Way Artist's Conception of our Milky Way Galaxy: Blue, green dots indicate distance measurements. CREDIT: Robert Hurt, IPAC; Mark Reid, CfA, NRAO/AUI/NSF JPEG graphic with scale marks on sides PostScript graphic with scale marks on sides The larger mass, in turn, means a greater gravitational pull that increases the likelihood of collisions with the Andromeda galaxy or smaller nearby galaxies. Our Solar System is about 28,000 light-years from the Milky Way's center. At that distance, the new observations indicate, we're moving at about 600,000 miles per hour in our Galactic orbit, up from the previous estimate of 500,000 miles per hour. The scientists are using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to remake the map of the Milky Way. Taking advantage of the VLBA's unparalleled ability to make extremely detailed images, the team is conducting a long-term program to measure distances and motions in our Galaxy. They reported their results at the American Astronomical Society's meeting in Long Beach, California. The scientists observed regions of prolific star formation across the Galaxy. In areas within these regions, gas molecules are strengthening naturally-occuring radio emission in the same way that lasers strengthen light beams. These areas, called cosmic masers, serve as bright landmarks for the sharp radio vision of the VLBA. By observing these regions repeatedly at times when the Earth is at opposite sides of its orbit around the Sun, the astronomers can measure the slight apparent shift of the object's position against the background of more-distant objects. "The new VLBA observations of the Milky Way are producing highly-accurate direct measurements of distances and motions," said Karl Menten of the Max Planck Institute for Radio Astronomy in Germany, a member of the team. "These measurements use the traditional surveyor's method of triangulation and do not depend on any assumptions based on other properties, such as brightness, unlike earlier studies." The astronomers found that their direct distance measurements differed from earlier, indirect measurements, sometimes by as much as a factor of two. The star-forming regions harboring the cosmic masers "define the spiral arms of the Galaxy," Reid explained. Measuring the distances to these regions thus provides a yardstick for mapping the Galaxy's spiral structure. "These direct measurements are revising our understanding of the structure and motions of our Galaxy," Menten said. "Because we're inside it, it's difficult for us to determine the Milky Way's structure. For other galaxies, we can simply look at them and see their structure, but we can't do this to get an overall image of the Milky Way. We have to deduce its structure by measuring and mapping," he added. The VLBA can fix positions in the sky so accurately that the actual motion of the objects can be detected as they orbit the Milky Way's center. Adding in measurements of motion along the line of sight, determined from shifts in the frequency of the masers' radio emission, the astronomers are able to determine the full 3-dimensional motions of the star-forming regions. Using this information, Reid reported that "most star-forming regions do not follow a circular path as they orbit the Galaxy; instead we find them moving more slowly than other regions and on elliptical, not circular, orbits." The researchers attribute this to what they call spiral density wave shocks, which can take gas in a circular orbit, compress it to form stars, and cause it to go into a new, elliptical orbit. This, they explained, helps to reinforce the spiral structure. Reid and his colleagues found other surprises, too. Measuring the distances to multiple regions in a single spiral arm allowed them to calculate the angle of the arm. "These measurements," Reid said, "indicate that our Galaxy probably has four, not two, spiral arms of gas and dust that are forming stars." Recent surveys by NASA's Spitzer Space Telescope suggest that older stars reside mostly in two spiral arms, raising a question of why the older stars don't appear in all the arms. Answering that question, the astronomers say, will require more measurements and a deeper understanding of how the Galaxy works. The VLBA, a system of 10 radio-telescope antennas stretching from Hawaii to New England and the Caribbean, provides the best ability to see the finest detail, called resolving power, of any astronomical tool in the world. The VLBA can routinely produce images hundreds of times more detailed than those produced by the Hubble Space Telescope. The VLBA's tremendous resolving power, equal to being able to read a newspaper in Los Angeles from the distance of New York, is what permits the astronomers to make precise distance determinations. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
Highlighting the History of Japanese Radio Astronomy: 1: An Introduction
NASA Astrophysics Data System (ADS)
Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Kaifu, Norio; Hayashi, Masa; Nakamura, Tsuko; Stewart, Ronald; Yokoo, Hiromitsu
2012-11-01
Japan was one of a number of nations that made important contributions in the fledgling field of radio astronomy in the years immediately following WWII. In this paper we discuss the invention of the Yagi-Uda antenna and the detection of solar radio emission in 1938, before reviewing radio astronomical developments that occurred between 1948 and 1961 in Osaka, Nagoya, Tokyo and Hiraiso. In order to place these early Japanese experiments in a national and international context we briefly review the world-wide development of radio astronomy in the immediate post-War years before discussing the growth of optical astronomy in Japan at this time.
Obituary: Grote Reber, 1911-2002
NASA Astrophysics Data System (ADS)
Kellermann, Kenneth I.
2003-12-01
Grote Reber, a pioneer of radio astronomy died in Tasmania, Australia on 20 December 2002, two days before his 91st birthday. Reber was born in Chicago on 22 December 1911 and grew up in the Chicago suburb of Wheaton, IL. His father, Schuyler Colefax Reber, who was a lawyer and part owner of a canning factory, died when Grote was only 21; his mother, Harriet Grote was an elementary school teacher in Wheaton. Among her 7th and 8th grade students at Longfellow School in Wheaton was young Edwin Hubble with whom Grote later exchanged views on cosmology. Grote graduated from the Armour Institute of Technology (now the Illinois Institute of Technology) with a degree in Electrical Engineering. He excelled in electronics courses but did less well in mathematics. After receiving his degree in 1933, Grote held a series of jobs with various Chicago companies including the Stewart-Warner and Belmont Radio Corporations. Grote had a lifelong interest in electronics. At the age of 16, he received his amateur radio license, W9GFZ, signed by then Secretary of the Interior, Herbert Hoover. After contacting over 50 countries, he was looking for new challenges. He had read about Karl Jansky's discovery of cosmic radio emission and tried to interest astronomers at Yerkes Observatory, but except for Jesse Greenstein, they showed little interest. ``So," as he later related, ``I consulted with myself and decided to build a dish." He took astronomy courses from Philip Keenan and others at the University of Chicago. Using $2,000 of his own funds (about his annual salary), he took the summer of 1937 off from his engineering job at the Stewart-Warner Corporation to erect a 32-ft parabolic transit dish in a vacant lot next to his mother's house. Using his experience and skills as an electrical engineer and radio amateur he designed, built and tested a series of sensitive radio receivers, which he placed at the focal point of his parabolic dish. Following a succession of failures, in the spring of 1939, he finally succeeded in detecting the galactic radio noise and went on to make the first maps of radio emission from the galaxy and, in 1943, to detect radio emission from the sun. Automobile ignition noise interfered with Reber's observations, so he observed only at night, laboriously writing down every minute the readings from his detector output. In the daytime, he returned to his job in Chicago, catching a few hours sleep each evening before returning to his observations; on weekends he analyzed his data. At first, Grote's discoveries were received with skepticism by the astronomical community and he had great difficulty in getting his papers accepted for publication in the astronomical literature. As he later claimed, ``The astronomers of the time didn't know anything about radio or electronics, and the radio engineers didn't know anything about astronomy. They thought the whole affair was at best a mistake, and at worst a hoax." But, following visits of Kennan and others to his Wheaton facility, he finally convinced "Astrophysical Journal" editor, Otto Struve, and others of the importance of his work. In addition to his classic publications in the "Astrophysical Journal", "Nature", and the "Proceedings of the Institute of Radio Engineers" (now the Institute of Electronic and Electrical Engineering), he also wrote influential reports in "Popular Science", "Scientific American" and "Sky and Telescope". In 1947, together with Jesse Greenstein, he wrote the first review of radio astronomy which was published in the journal, "Observatory". Plagued by local interference, he discussed with Otto Struve moving his antenna to a better site in Texas and also the possibility of building a much larger 200-ft dish. Reber recognized that an equatorial mount would be very expensive and proposed to use an alt-az mount together with an analogue coordinate converter of the type later implemented in Dwingeloo and Jodrell Bank. Through his younger brother Schuyler, then a business student at Harvard, he gained the interest of Harlow Shapley and Fred Whipple but he was unable to obtain any financial support from Harvard or any other university. Following his mother's death in 1945, Grote reluctantly accepted a position with the National Bureau of Standards in Washington and arranged to have his antenna re-erected in Washington where it was put on an alt-azimuth mount. But he was frustrated with government bureaucracy and disillusioned by the growing atmosphere of McCarthyism in Washington. In 1951, he moved to Hawaii where he pursued a variety of research programs in radio astronomy as well as atmospheric and ionospheric physics from the top of Haleakula on the island of Maui. From Hawaii, he moved on to Tasmania in 1954, in order to exploit the ionospheric transparency associated with the south magnetic pole. While radio astronomers in the rest of the world were exploiting the newly emerging microwave technology to move to shorter and shorter wavelengths, Grote, characteristically departing from conventional ``wisdom," concentrated on the extremely long wavelengths. Working with Bill Ellis at the University of Tasmania, Reber designed and built a series of arrays to study Galactic radio emission and absorption at wavelengths of a few hundred meters. Following several years spent at the CSIRO Ionospheric Prediction Service, Grote moved from Hobart to Bothwell, in central Tasmania, where he designed and built an energy efficient home and where he lived for many years and made good friends. With the growing importance after WWII of the contributions being made throughout the world by radio astronomy, Reber's pioneering studies ultimately became widely recognized. In 1961 he received the Cresson Prize from the Franklin Institute and in 1962, an honorary Doctor of Science degree from Ohio State University. He also received the AAS Russell Lecture Prize and the Bruce Medal of the Astronomical Society of the Pacific. Throughout his life, he had a strong interest in political and social issues. Writing to the Director of the NSF and the President of the NAS, he argued against big science and to reduce funding for large radio telescopes such as the VLA. Throughout his career, he questioned the ``big-bang" universe and authored a widely distributed paper on ``The Endless Boundless Universe." He was greatly concerned about the consequences of world population growth and preserving our natural resources, particularly the overuse of fossil fuels, which motivated his research on electric cars and consideration of increased use of sailing ships. He had no tolerance for scientific or other activities that did not meet his high standards but he was generous in giving recognition and praise to those whose work he admired. A college era friend recently described Grote as ``nervously energetic, enthusiastic, with a keen mind that went everywhere, an ever present, lively, sardonic, iconoclastic sense of humor, and strong opinions." In addition to his pioneering work in radio astronomy, Reber also pursued and published research in a variety of fields ranging from radio circuitry and ionospheric physics to studies of cosmic rays, the atmosphere, archaeology and the growth of beans. He held a number of patents, including one for a radio sextant to ``shoot the sun" on cloudy days. Throughout most of his career, he worked as an amateur relying on his deep curiosity along with his imagination and skills as an electronics engineer combined with his persistent, forceful personality, and stubborn disregard for conventional opinion. At various times, he held guest appointments at the National Radio Astronomy Observatory, Ohio State University, the Australian Commonwealth Scientific and Industrial Research Organization and, starting in 1951, he also received generous support from the Research Corporation in New York. However, he valued his independence and was skeptical of the strings that would be attached to any institutional support. He was scornful of establishment science, with its ``self appointed pontiffs," but his achievements were ultimately widely recognized by professional astronomers. Reber's extraordinary achievements as an amateur were probably unique in 20th century science.
Charge-injection-device 2 x 64 element infrared array performance
NASA Technical Reports Server (NTRS)
Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.
1985-01-01
Three 2 x 64 element Si:Bi accumulation-mode charge-injection-device (CID) arrays were tested at low and moderate background to evaluate their usefulness for space-based astronomical observations. Testing was conducted both in the laboratory and in ground-based telescope IR observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3 x 10 to the -17th W/sq rt Hz. This sensitivity compares well with that of nonintegrating discrete extrinsic silicon photoconductors. The array well capacity was significantly smaller than predicted. The measured sensitivity makes extrinsic silicon CID arrays useful for certain astronomical applications. However, their readout efficiency and frequency response represent serious limitations in low-background applications.
Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds
NASA Technical Reports Server (NTRS)
Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.
1985-01-01
Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.
New Archiving Distributed InfrastructuRe (NADIR): Status and Evolution
NASA Astrophysics Data System (ADS)
De Marco, M.; Knapic, C.; Smareglia, R.
2015-09-01
The New Archiving Distributed InfrastructuRe (NADIR) has been developed at INAF-OATs IA2 (Italian National Institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives), as an evolution of the previous archiving and distribution system, used on several telescopes (LBT, TNG, Asiago, etc.) to improve performance, efficiency and reliability. At the present, NADIR system is running on LBT telescope and Vespa (Italian telescopes network for outreach) Ramella et al. (2014), and will be used on TNG, Asiago and IRA (Istituto Radio Astronomia) archives of Medicina, Noto and SRT radio telescopes Zanichelli et al. (2014) as the data models for radio data will be ready. This paper will discuss the progress status, the architectural choices and the solutions adopted, during the development and the commissioning phase of the project. A special attention will be given to the LBT case, due to some critical aspect of data flow and policies and standards compliance, adopted by the LBT organization.
Europe Agrees on Common Strategy to Initiate Study of LSA/MMA
NASA Astrophysics Data System (ADS)
1998-09-01
Council Specifies ESO's Role in Planning In an extraordinary meeting at the ESO Headquarters, the ESO Council today endorsed ESO's involvement in the planning of a major new astronomical facility in the southern hemisphere. Some years from now, the Large Southern Array/Millimetre Array (LSA/MMA) may become the world's prime sub-mm/mm radio observatory [1] at a pristine site at 5000 m altitude in the Chilean Andes, not very far from the VLT Paranal Observatory. Background One of the highest-priority items in astronomy today is a large millimetre-wavelength array. This would be a millimetre counterpart to the ESO VLT and the NASA/ESA Hubble Space Telescope (HST), with similar scientific objectives and comparable high angular resolution and sensitivity. An antenna array with about 10,000 m 2 area would provide very high sensitivity and angular resolution, compatible with that of the VLT and HST. Such a large collecting area implies an array with many antennas and baselines, which give the added advantage of fast, high-quality images. The site must be high, dry, large, and flat - a high plateau in the Atacama desert is ideal, and has the great advantage of being in the southern hemisphere, important for compatibility with the VLT. Thus, discussions in Europe have focussed on a "Large Southern Array" (LSA) . The scientific case for such a telescope is overwhelming. It would be able to study the origins of galaxies and stars: the epoch of first galaxy formation and the evolution of galaxies at later stages, including the dust-obscured star-forming galaxies that the HST and VLT cannot see, and all phases of star formation hidden away in dusty molecular clouds. But the LSA will go far beyond these main science drivers - it will have a major impact on virtually all areas of astronomy, and make millimetre astronomy accessible to all astronomers. It may well have as big a user community as the VLT itself. European involvement in millimetre astronomy Europe already has a strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing submillimetre performance with a total collecting area of 7,000 m 2 , could be built at the high (5000 m) Chajnantor site , an hour from the array control center at the town of San Pedro de Atacama. It is this collaborative facility that is presently referred to as the Large Southern Array/Millimetre Array (LSA/MMA) . The decision by the ESO Council The ESO Council today passed a resolution that emphasizes the great potential of this proposed astronomical facility for scientific discoveries. It will operate in a relatively unexplored waveband region and with imaging and spectral resolution vastly better than anything now available. The ESO Council requests the ESO Executive to develop a proposal for ESO's role in the design and development phase of the new facility to be submitted to Council in its December 1998 meeting. This phase (Phase I) will cover the technical, financial, human resources, scheduling and organizational aspects for the development, construction, commissioning and operation of the LSA/MMA. The ESO Council supports the intention to create a European Coordinating Committee with participation of ESO that will discuss related policy and technical matters. A European Negotiating Team will then be established that will discuss with the U.S. and other interested nations the conditions of the union of the LSA and MMA as a single common enterprise. Note: [1] The corresponding wavelength interval is about 0.3 to 10 mm. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Mobile radio interferometric geodetic systems
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Niell, A. E.; Ong, K. M.; Resch, G. M.; Morabito, D. D.; Claflin, E. S.; Lockhart, T. G.
1978-01-01
Operation of the Astronomical Radio Interferometric Earth Surveying (ARIES) in a proof of concept mode is discussed. Accuracy demonstrations over a short baseline, a 180 km baseline, and a 380 km baseline are documented. Use of ARIES in the Sea Slope Experiment of the National Geodetic Survey to study the apparent differences between oceanographic and geodetic leveling determinations of the sea surface along the Pacific Coast is described. Intergration of the NAVSTAR Global Positioning System and a concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) is briefly reviewed.
Study of Ultra-High Energy Cosmic Rays from Extensive Air Showers Radio Emission
NASA Astrophysics Data System (ADS)
Petrov, Igor; Kozlov, Vladimir; Petrov, Zim; Knurenko, Stanislav; Pravdin, Mikhail
The study of cosmic rays with the help of radio detection from extensive air showers may be an alternative to traditional detecting methods, which use a large area array installed with hundreds and thousands of scintillation detectors for charged particles, or the detectors of measuring the emission produced by relativistic particles of EAS in the optical wavelengths. Processes that lead to the emission of electromagnetic radiation are well known and calculations show that the air shower radio emission depends on the processes of development of the electromagnetic cascade, i.e. related with the longitudinal development of the shower, with the magnetic field near sea level etc. In this regard, there is a question to establish the correlation between characteristics of EAS both longitudinal and lateral development and radio emission parameters observed when air shower particles pass through the atmosphere. For this purpose, in Yakutsk, radio array for detecting air shower radio emission was established. The array consists of the antenna field on which crossed antennas are installed; antennas oriented E - W and N - S. Radio emission measurements are conducted at frequency 32 MHz, free from industrial noise. In 2008 - 2013 years, Yakutsk array has measured several seasons of registration of EAS events, including showers with energies above 10 (19) eV. In the course of the data analysis the following results were obtained: a) lateral distribution of the radio signal plotted as a function of distance from the shower axis ; b) a correlation between the amplitude of the radio signal with the energy of the shower, which is determined by measuring the fluxes of charged particles , muons and EAS Cerenkov radiation (energy balance method); c) we made evaluation of the depth of maximum development of the shower using form of radio emission LDF measured in ultra-high energy showers; g) a comparison of the Yakutsk array data with data from other arrays.
International Agreement Will Advance Radio Astronomy
NASA Astrophysics Data System (ADS)
2007-12-01
Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous observations to produce extremely high-resolution images, and another network (the High Sensitivity Array) that uses the same technique with large telescopes to observe particularly faint celestial objects. With this technique, NRAO telescopes work with MPIfR's Effelsberg telescope to produce images hundreds of times more detailed than those from the Hubble Space Telescope. Both institutions also are part of the international collaboration building the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile and of the international planning effort to build a Square Kilometer Array. The VLBA is a system of ten antennas, each with a dish 25 meters in diameter. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 8000 kilometers. Under the new agreement, the two institutions will continue their previous observational collaborations, and in addition will share resources to improve the technical capabilities of each other's telescopes, particularly at short wavelengths, They also will collaborate in the peer-reviewed process each uses to allocate observing time, and agree to mutually maintain an "open skies" policy allowing open access to each other's telescopes on a peer-reviewed basis. The agreement notes the report of the U.S. National Science Foundation's (NSF) Senior Review committee, which called upon the NRAO to seek partners to contribute to the operation of the VLBA. The MPIfR affirms its strong interest in maintaining the VLBA's unique scientific capabilities, and its monetary contribution toward the 22 GHz upgrade of the VLBA is a solid sign of that commitment. "The VLBA provides the greatest resolving power of any instrument in astronomy, and the MPIfR's contribution to enhancing its capabilities is an important validation of the VLBA's importance to frontier astrophysics," Lo said. The joint VLBA project calls for the MPIfR to fund the receiving-system upgrades and the NRAO to perform the work. The project is scheduled to be complete, with all 10 VLBA antennas upgraded, in August of 2008. The upgrade will make the VLBA's receiving system for 22 GHz 30 percent more sensitive. This will enhance the VLBA's capability to advance a key area of science using rotating disks of water molecules at the cores of distant galaxies to make precise measurements of the distances to those galaxies. This technique, first used in the late 1990s, can measure large cosmic distances directly, without relying on various assumptions required for more indirect techniques. The improved precision is important to resolving a number of frontier astrophysical problems, including the nature of the mysterious "dark energy" that appears to be accelerating the expansion of the Universe. This research project involves scientists from both MPIfR and NRAO, and, in addition to the VLBA, the Effelsberg telescope, the GBT and the VLA. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Max Planck Institute for Radio Astronomy is one of about 80 research institutes of the Max Planck Society for the Promotion of Research in Germany.
Experience with the UKIRT InSb array camera
NASA Technical Reports Server (NTRS)
Mclean, Ian S.; Casali, Mark M.; Wright, Gillian S.; Aspin, Colin
1989-01-01
The cryogenic infrared camera, IRCAM, has been operating routinely on the 3.8 m UK Infrared Telescope on Mauna Kea, Hawaii for over two years. The camera, which uses a 62x58 element Indium Antimonide array from Santa Barbara Research Center, was designed and built at the Royal Observatory, Edinburgh which operates UKIRT on behalf of the UK Science and Engineering Research Council. Over the past two years at least 60% of the available time on UKIRT has been allocated for IRCAM observations. Described here are some of the properties of this instrument and its detector which influence astronomical performance. Observational techniques and the power of IR arrays with some recent astronomical results are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.
2016-03-20
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in themore » sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.« less
The Miyun 50 m Pulsar Radio Telescope
NASA Astrophysics Data System (ADS)
Jin, C.; Cao, Y.; Chen, H.; Gao, J.; Gao, L.; Kong, D.; Su, Y.; Wang, M.
2006-12-01
The National Astronomical Observatories, Chinese Academy of Sciences is now building a 50 m radio telescope at the Miyun Station. In this paper, we give a brief introduction to the Miyun Station. The main specifications and the status of construction of the 50 m radio telescope are described. We are now building an L-band pulsar receiver for this new 50 m telescope. The status of this receiver project is also described. The 50 m telescope, together with the pulsar receiver, will make it a powerful radio telescope to carry out pulsar observations and researches in the near future.
Radio Measurements of Air Showers with LOPES
NASA Astrophysics Data System (ADS)
Schröder, F. G.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.
2013-02-01
LOPES is a digital antenna array for the radio measurement of cosmic-ray air showers at energies around 1017 eV. It is triggered by the KASCADE-Grande air-shower array at the Karlsruhe Institute of Technology (KIT), Germany. Because of an absolute amplitude calibration and a sophisticated data analysis, LOPES can test models for the radio emission to an up-to-now unachieved level, thus improving our understanding of the radio emission mechanisms. Recent REAS simulations of the air-shower radio emission come closer to the measurements than any previously tested simulations. We have determined the radio-reconstruction precision of interesting air-shower parameters by comparing LOPES reconstructions to both REAS simulations and KASCADE-Grande measurements, and present our latest results for the angular resolution, the energy and the Xmax reconstruction based on the radio measurement of about 500 air showers. Although the precision of LOPES is limited by the high level of anthropogenic noise at KIT, it opens a promising perspective for next-generation radio arrays in regions with a lower ambient noise level.
"Axis of Universe" Not Seen in Data, Astronomers Say
NASA Astrophysics Data System (ADS)
1997-04-01
A claim that the universe has a preferred direction is not supported by recent observational evidence, according to three astronomers who analyzed data from the Very Large Array (VLA) radio telescope in New Mexico and the W.M. Keck Telescope in Hawaii. John Wardle of Brandeis University, Rick Perley of the National Radio Astronomy Observatory, and Marshall Cohen of the California Institute of Technology responded to an article in the April 21 issue of Physical Review Letters, in which Borge Nodland of the University of Rochester and John Ralston of the University of Kansas claimed to have found that the universe has a distinct axis that affects electromagnetic radiation (light, radio waves, etc.). Nodland and Ralston said that their analysis of previous radio observations of 160 galaxies, made in the 1970s and 1980s, showed that radiation coming from objects had its direction of polarization rotated by different amounts, depending on the direction of the galaxies. The amount of polarization rotation, they said, increases with the distance of the galaxies, and depends on direction, indicating that the universe has an axis along which more rotation occurs. Wardle, Perley and Cohen say that recent, high-quality observations with the VLA and the 10-meter W.M. Keck telescope show "that the radio and optical data directly refute" the contention of Nodland and Ralston. The more-recent data, consisting of polarization images of galaxies and quasars at a variety of distances and in different directions, simply do not show any evidence for Nodland and Ralston's "cosmic corkscrew" effect, the researchers say. Wardle, Perley and Cohen have submitted their results to Physical Review Letters. Galaxies and quasars, and the "jets" of subatomic particles ejected at great speeds by some of these objects, have definite patterns of polarized emission of light and radio waves. These patterns are well-known and established. If the polarization of their light were rotated by some cosmological effect, the known relationships between the objects and the direction of polarization of their light should be altered, Wardle, Perley and Cohen reasoned. They examined polarization images to seek evidence for such alteration. For example, the quasar PKS 2209+152, nearly 9 billion light-years distant, should, according to the Nodland and Ralston "corkscrew" hypothesis, have had the polarization of its radio emission rotated by about 90 degrees. Instead, VLA observations showed no rotation at all. After studying VLA and Keck data on 26 galaxies and quasars, Wardle, Perley and Cohen conclude that "the observational data at both optical and radio wavelengths show that any rotation of the plane of polarizaton over cosmological distances is unmeasurably small and is indistinguishable from zero." Wardle said, "The best fit to the high resolution optical and radio data shows that any effect is at least a hundred times smaller than that claimed by Nodland and Ralston." The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The W.M. Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California and NASA; it was made possible by the generous financial support of the W.M. Keck Foundation.
Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew
2017-01-01
The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation
NASA Astrophysics Data System (ADS)
2003-12-01
Astronomers have discovered a key signpost of rapid star formation in a galaxy 11 billion light-years from Earth, seen as it was when the Universe was only 20 percent of its current age. Using the National Science Foundation's Very Large Array (VLA) radio telescope, the scientists found a huge quantity of dense interstellar gas -- the environment required for active star formation -- at the greatest distance yet detected. A furious spawning of the equivalent of 1,000 Suns per year in a distant galaxy dubbed the Cloverleaf may be typical of galaxies in the early Universe, the scientists say. Cloverleaf galaxy VLA image (green) of radio emission from HCN gas, superimposed on Hubble Space Telescope image of the Cloverleaf galaxy. The four images of the Cloverleaf are the result of gravitational lensing. CREDIT: NRAO/AUI/NSF, STScI (Click on Image for Larger Version) "This is a rate of star formation more than 300 times greater than that in our own Milky Way and similar spiral galaxies, and our discovery may provide important information about the formation and evolution of galaxies throughout the Universe," said Philip Solomon, of Stony Brook University in New York. While the raw material for star formation has been found in galaxies at even greater distances, the Cloverleaf is by far the most distant galaxy showing this essential signature of star formation. That essential signature comes in the form of a specific frequency of radio waves emitted by molecules of the gas hydrogen cyanide (HCN). "If you see HCN, you are seeing gas with the high density required to form stars," said Paul Vanden Bout of the National Radio Astronomy Observatory (NRAO). Solomon and Vanden Bout worked with Chris Carilli of NRAO and Michel Guelin of the Institute for Millimeter Astronomy in France. They reported their results in the December 11 issue of the scientific journal Nature. In galaxies like the Milky Way, dense gas traced by HCN but composed mainly of hydrogen molecules is always associated with regions of active star formation. What is different about the Cloverleaf is the huge quantity of dense gas along with very powerful infrared radiation from the star formation. Ten billion times the mass of the Sun is contained in dense, star-forming gas clouds. "At the rate this galaxy is seen to be forming stars, that dense gas will be used up in only about 10 million years," Solomon said. In addition to giving astronomers a fascinating glimpse of a huge burst of star formation in the early Universe, the new information about the Cloverleaf helps answer a longstanding question about bright galaxies of that era. Many distant galaxies have supermassive black holes at their cores, and those black holes power "central engines" that produce bright emission. Astronomers have wondered specifically about those distant galaxies that emit large amounts of infrared light, galaxies like the Cloverleaf which has a black hole and central engine. "Is this bright infrared light caused by the black-hole-powered core of the galaxy or by a huge burst of star formation? That has been the question. Now we know that, in at least one case, much of the infrared light is produced by intense star formation," Carilli said. The rapid star formation, called a starburst, and the black hole are both generating the bright infrared light in the Cloverleaf. The starburst is a major event in the formation and evolution of this galaxy. "This detection of HCN gives us a unique new window through which we can study star formation in the early Universe," Carilli said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Most Distant X-Ray Jet Yet Discovered Provides Clues To Big Bang
NASA Astrophysics Data System (ADS)
2003-11-01
The most distant jet ever observed was discovered in an image of a quasar made by NASA's Chandra X-ray Observatory. Extending more than 100,000 light years from the supermassive black hole powering the quasar, the jet of high-energy particles provides astronomers with information about the intensity of the cosmic microwave background radiation 12 billion years ago. The discovery of this jet was a surprise to the astronomers, according to team members. Astronomers had previously known the distant quasar GB1508+5714 to be a powerful X-ray source, but there had been no indication of any complex structure or a jet. "This jet is especially significant because it allows us to probe the cosmic background radiation 1.4 billion years after the Big Bang," said Aneta Siemiginowska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., lead author of a report on this research in the November 20th Astrophysical Journal Letters. Prior to this discovery, the most distant confirmed X-ray jet corresponded to a time about 3 billion years after the Big Bang. Quasars are thought to be galaxies that harbor an active central supermassive black hole fueled by infalling gas and stars. This accretion process is often observed to be accompanied by the generation of powerful high-energy jets. Radio image of GB1508 Radio Image of GB1508 As the electrons in the jet fly away from the quasar at near the speed of light, they move through the sea of cosmic background radiation left over from the hot early phase of the universe. When a fast-moving electron collides with one of these background photons, it can boost the photon's energy up into the X-ray band. The X-ray brightness of the jet depends on the power in the electron beam and the intensity of the background radiation. "Everyone assumes that the background radiation will change in a predictable way with time, but it is important to have this check on the predictions," said Siemiginowska. "This jet is hopefully just the first in a large sample of these distant objects that can be used to tell us how the intensity of the cosmic microwave background changed over time." "In fact, if this interpretation is correct, then discovery of this jet is consistent with our previous prediction that X-ray jets can be detected at arbitrarily large distances!" said team member Dan Schwartz, also of the Harvard-Smithsonian Center for Astrophysics. Chandra originally observed GB1508+5714 with the purpose of studying the X-ray emission from the dust located between the Earth and the far-flung quasar. The jet was found by Siemiginowska and her colleagues when they examined the data once it became available publicly in the Chandra archive. This led another astronomer to then carefully look at radio observations of the object. Indeed, archived Very Large Array data confirmed the existence of the jet associated with the quasar GB1508+5714. A paper on the radio observations of GB1508+5714 has been accepted by Astrophysical Journal Letters from Teddy Cheung of Brandeis University in Waltham, Mass. Another group of astronomers led by Weimin Yuan of the University of Cambridge, UK independently reported the discovery of the extended emission in GB1508+5714 in X-rays. In a paper to be published in an upcoming issue of the Monthly Notices of the Royal Astronomical Society, the authors note that significant energy is being deposited in the outer regions of the host galaxy at a very early stage. This energy input could have a profound effect on the evolution of the galaxy by triggering the formation of stars, or inhibiting the growth of the galaxy through accretion of matter from intergalactic space. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Astronomical Surveys, Catalogs, Databases, and Archives
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2016-06-01
All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.
Construction of a Radio-Telescope Prototype in the 12 GHz Band
NASA Astrophysics Data System (ADS)
Ordóñez, J.; Quijano, A.; Luna, A.
2017-07-01
Radio astronomy is important in the branch of the Astronomy that studies the celestial bodies through their emissions in the domain of the radio waves, to obtain information of these bodies, astronomers must design new types of telescopes that can capture radiation at different wavelengths, including radio telescopes. This paper presents the construction of a prototype of an educational radio telescope, which is made using materials that are easily accessible and inexpensive. The construction of a radio telescope, will allow to carry out research in the field of radio astronomy, since at present it has not been possible to penetrate this branch due to the lack of an adequate equipment in the University of Nariño. The issues that are addressed in the construction of this instrument, its use and the analysis of the data, are very varied and with a high content of multidiciplinariety, gathering basic topics in areas such as astrophysics, physics, electronics, computing, mechanics, which are necessary for Concrete the efficient use of this instrument. For the development of the project, it counts with the advice of the director and researcher of the astronomical observatory of the University of Nariño MSc. Alberto Quijano Vodniza and Dr. Abraham Luna Castellanos of the National Institute of Astrophysics, Optics and Electronics INAOE. In addition to the construction of radiotelescope the final phase consists of the storage and analysis of data obtained with the observation of some celestial bodies that comply with The range in the 12 GHz band for study.
Optical Characteristics of Astrometric Radio Sources OCARS
NASA Astrophysics Data System (ADS)
Malkin, Z.
2013-04-01
In this paper, the current status of the catalog of Optical Characteristics of Astrometric Radio Sources OCARS is presented. The catalog includes radio sources observed in various astrometric and geodetic VLBI programs in 1979-2012. For these sources the physical object type, redshift and visual or infrared magnitude is given when available. Detailed comments are provided when some problems with published data were encountered. Since the first version created in December 2007, the catalog is continuously developed and expanded in respect to inclusion of new radio sources and addition of new or correction of old astrophysical data. Several sources of information are used for OCARS. The main of them are the NASA/IPAC Extragalactic Database (NED) and SIMBAD astronomical databases. Besides several astronomical journals and arXiv depository are regularly monitored, so that new data is included in OCARS just after publication. The redshift for about 150 sources have been determined from dedicated optical spectroscopic observations. As of October 2012, OCARS catalog includes 7173 radio sources. 3898 sources have known redshift, and 4860 sources have known magnitude. In 2009, it was used as a supplement material to the ICRF2. The list of radio sources with a good observational history but lacking astrophysical information is provide for planning of optical observations of the most important astrometric sources. The OCARS catalog is updated, in average every several weeks and is available at http://www.gao.spb.ru/english/as/ac_vlbi/ocars.txt.
Middle Atmosphere Program. Handbook for MAP, volume 25
NASA Technical Reports Server (NTRS)
Roper, R. G. (Editor)
1987-01-01
GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.
Major Conference about Astronomical Technology in Munich
NASA Astrophysics Data System (ADS)
2000-03-01
Press Conference on Monday, March 27, 2000 Which are the latest astronomical discoveries made with the new 8-10 metre class astronomical telescopes? Will it be possible to construct even more powerful instruments on the ground and in space to explore the near and distant Universe at all wavelengths from gamma-rays to radio waves? Which research areas in this dynamical science are likely to achieve break-throughs with emerging new technologies? These are some of the central themes that will be discussed by more than 600 specialists from all over the world at an international conference in Munich (Germany), "Astronomical Telescopes and Instruments 2000" , beginning on Monday, March 27, 2000. During five days, the modern architecture of the new International Congress Center in the Bavarian capital will be the scene of lively exchanges about recent progress at the world's top-class astronomical research facilities and the presentation of inspired new ideas about future technological opportunities. The conference will be accompanied by numerous on-site exhibition stands by the major industries and research organisations in this wide field. This meeting is the latest in a series, organised every second year, alternatively in the USA and Europe by the International Society for Optical Engineering (SPIE) , this year with the European Southern Observatory (ESO) as co-sponsor and host institution. The conference will be opened in the morning of March 27 by the Bavarian Minister of Science, Research and Arts, Hans Zehetmair . His address will be followed by keynote speeches by Massimo Tarenghi (European Southern Observatory), James B. Breckenridge (National Science Foundation, USA), Harvey Butcher (Netherlands Foundation for Research in Astronomy) and Albrecht Ruediger (Max Planck Institut für Quantenoptik, Germany). The conference is subtitled "Power Telescopes and Instrumentation into the New Millennium" and will be attended by leading scientists and engineers from all continents. There will be plenary sessions and specialised working group meetings on virtually all subject areas related to modern astronomical technology, ranging from optical design, materials and fabrication to telescope structures, detectors and the associated discovery and research prospects. While the performance and results from the new, large ground-based facilities like the ESO Very Large Telescope (VLT) will constitute one of the focal points, much attention will also be devoted to new projects in space astronomy, e.g., the Next Generation Space Telescope (NGST) , the planned successor to the Hubble Space Telescope (HST). Other space missions to be discussed are the XMM-Newton and Chandra X-Ray observatories. Radio Telescopes , herunder the projected Atacama Large Millimetre Array (ALMA) , as well as Optical Interferometry are other hot subjects, as are the current plans for optical telescopes in the extremely large class , with surface diameters of 30 - 100 metres. Press Conference An international Press Conference will be held at the meeting site in the Munich International Conference Center on Monday, March 27, at 12:15 hrs local time (CET) . It will be attended by some of the key participants, with possibilities for individual interviews. More information about the Press Conference is available from
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.
2012-04-01
We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.
Coping with Radio Frequency Interference
NASA Astrophysics Data System (ADS)
Lewis, B. M.
2009-01-01
The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.
Astronomer's new guide to the galaxy: largest map of cold dust revealed
NASA Astrophysics Data System (ADS)
2009-07-01
Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre-wave camera on the ESO-operated APEX telescope. APEX is located at an altitude of 5100 m on the arid plateau of Chajnantor in the Chilean Andes -- a site that allows optimal viewing in the submillimetre range. The Universe is relatively unexplored at submillimetre wavelengths, as extremely dry atmospheric conditions and advanced detector technology are required for such observations. The interstellar medium -- the material between the stars -- is composed of gas and grains of cosmic dust, rather like fine sand or soot. However, the gas is mostly hydrogen and relatively difficult to detect, so astronomers often search for these dense regions by looking for the faint heat glow of the cosmic dust grains. Submillimetre light allows astronomers to see these dust clouds shining, even though they obscure our view of the Universe at visible light wavelengths. Accordingly, the ATLASGAL map includes the denser central regions of our galaxy, in the direction of the constellation of Sagittarius -- home to a supermassive black hole (ESO 46/08) -- that are otherwise hidden behind a dark shroud of dust clouds. The newly released map also reveals thousands of dense dust clumps, many never seen before, which mark the future birthplaces of massive stars. The clumps are typically a couple of light-years in size, and have masses of between ten and a few thousand times the mass of our Sun. In addition, ATLASGAL has captured images of beautiful filamentary structures and bubbles in the interstellar medium, blown by supernovae and the winds of bright stars. Some striking highlights of the map include the centre of the Milky Way, the nearby massive and dense cloud of molecular gas called Sagittarius B2, and a bubble of expanding gas called RCW120, where the interstellar medium around the bubble is collapsing and forming new stars (see ESO 40/08). "It's exciting to get our first look at ATLASGAL, and we will be increasing the size of the map over the next year to cover all of the galactic plane visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA -- it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
The MeqTrees software system and its use for third-generation calibration of radio interferometers
NASA Astrophysics Data System (ADS)
Noordam, J. E.; Smirnov, O. M.
2010-12-01
Context. The formulation of the radio interferometer measurement equation (RIME) for a generic radio telescope by Hamaker et al. has provided us with an elegant mathematical apparatus for better understanding, simulation and calibration of existing and future instruments. The calibration of the new radio telescopes (LOFAR, SKA) would be unthinkable without the RIME formalism, and new software to exploit it. Aims: The MeqTrees software system is designed to implement numerical models, and to solve for arbitrary subsets of their parameters. It may be applied to many problems, but was originally geared towards implementing Measurement Equations in radio astronomy for the purposes of simulation and calibration. The technical goal of MeqTrees is to provide a tool for rapid implementation of such models, while offering performance comparable to hand-written code. We are also pursuing the wider goal of increasing the rate of evolution of radio astronomical software, by offering a tool that facilitates rapid experimentation, and exchange of ideas (and scripts). Methods: MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time (hours rather than weeks or months) for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code. Results: MeqTrees is already widely used as the simulation tool for new instruments (LOFAR, SKA) and technologies (focal plane arrays). It has demonstrated that it can achieve a noise-limited dynamic range in excess of a million, on WSRT data. It is the only package that is specifically designed to handle what we propose to call third-generation calibration (3GC), which is needed for the new generation of giant radio telescopes, but can also improve the calibration of existing instruments.
Intercepted signals for ionospheric science
NASA Astrophysics Data System (ADS)
Lind, F. D.; Erickson, P. J.; Coster, A. J.; Foster, J. C.; Marchese, J. R.; Berkowitz, Z.; Sahr, J. D.
2013-05-01
The ISIS array (Intercepted Signals for Ionospheric Science) is a distributed, coherent software radio array designed for the study of geospace phenomena by observing the scatter of ambient radio frequency (RF) signals. ISIS data acquisition and analysis is performed using the MIDAS-M platform (Millstone Data Acquisition System - Mobile). Observations of RF signals can be performed between HF and L-band using the Array nodes and appropriate antennas. The deployment of the Array focuses on observations of the plasmasphere boundary layer. We discuss the concept of the coherent software radio array, describe the ISIS hardware, and give examples of data from the system for selected applications. In particular, we include the first observations of E region irregularities using the Array. We also present single-site passive radar observations of both meteor trails and E region irregularities using adaptive filtering techniques.
VEGAS: VErsatile GBT Astronomical Spectrometer
NASA Astrophysics Data System (ADS)
Bussa, Srikanth; VEGAS Development Team
2012-01-01
The National Science Foundation Advanced Technologies and Instrumentation (NSF-ATI) program is funding a new spectrometer backend for the Green Bank Telescope (GBT). This spectrometer is being built by the CICADA collaboration - collaboration between the National Radio Astronomy Observatory (NRAO) and the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California Berkeley.The backend is named as VErsatile GBT Astronomical Spectrometer (VEGAS) and will replace the capabilities of the existing spectrometers. This backend supports data processing from focal plane array systems. The spectrometer will be capable of processing up to 1.25 GHz bandwidth from 8 dual polarized beams or a bandwidth up to 10 GHz from a dual polarized beam.The spectrometer will be using 8-bit analog to digital converters (ADC), which gives a better dynamic range than existing GBT spectrometers. There will be 8 tunable digital sub-bands within the 1.25 GHz bandwidth, which will enhance the capability of simultaneous observation of multiple spectral transitions. The maximum spectral dump rate to disk will be about 0.5 msec. The vastly enhanced backend capabilities will support several science projects with the GBT. The projects include mapping temperature and density structure of molecular clouds; searches for organic molecules in the interstellar medium; determination of the fundamental constants of our evolving Universe; red-shifted spectral features from galaxies across cosmic time and survey for pulsars in the extreme gravitational environment of the Galactic Center.
NASA Technical Reports Server (NTRS)
1990-01-01
This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.
Status of the radio technique for cosmic-ray induced air showers
NASA Astrophysics Data System (ADS)
Schröder, Frank G.
2016-10-01
Radio measurements yield calorimetric information on the electromagnetic shower component around the clock. However, until recently it was not clear whether radio measurements can compete in accuracy with established night-time techniques like air-Cherenkov or air-fluorescence detection. Due to recent progress in the radio technique as well as in the understanding of the emission mechanisms, the performance of current radio experiments has significantly improved. Above 100 PeV, digital, state-of-the-art antenna arrays achieve a reconstruction accuracy for the energy similar to that of other techniques, and can provide an independent measurement of the absolute energy scale. Furthermore, radio measurements are sensitive to the mass composition of the primary particles: First, the position of the shower maximum can be reconstructed from the radio signal. Second, in combination with muon detectors the measurement of the electromagnetic component provides complementary information on the primary mass. Since the radio footprint is huge for inclined showers, and the radio signal does not suffer absorption in the atmosphere, future radio arrays either focus on inclined showers at the highest energy, or on ultra-high precision measurements with extremely dense arrays. This proceeding reviews the current status of radio experiments and simulations as well as future plans.
Youngest Stellar Explosion in Our Galaxy Discovered
NASA Astrophysics Data System (ADS)
2008-05-01
Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from the star's explosion. They did this by comparing images of the object, called G1.9+0.3, made more than two decades apart. In 1985, astronomers led by Green observed G1.9+0.3 with the VLA and identified it as a supernova remnant. At that time, they estimated its age as between 400 and 1,000 years. It is near the center of our Galaxy, roughly 25,000 light-years from Earth. In 2007, another team of astronomers, led by Stephen Reynolds of North Carolina State University, observed the object with the Chandra X-Ray Observatory. To their surprise, their image showed the object to be about 16 percent larger than in the 1985 VLA image. "This is a huge difference. It means the explosion debris is expanding very quickly, which in turn means the object is much younger than we originally thought," Reynolds explained. However, this expansion measurement came from comparing a radio image to an X-ray image. To make an "apples to apples" comparison, the scientists sought and were quickly granted observing time on the VLA. "I've never seen a large astronomical institution move so fast," said Reynolds. Their new VLA observations confirmed the supernova remnant's rapid expansion. The discovery provides scientists with a valuable source of new information about exploding stars. "Our previous situation was as if someone studying humans could look at babies and at adults, but could not study teenagers. Now, we're filling in that gap," said Reynolds. The object already has provided surprises. The velocities of its explosion debris and extreme energies of its particles are unprecedented. "No other object in the Galaxy has properties like this," said Reynolds. "Finding G1.9+0.3 is extremely important for learning more about how some stars explode and what happens in the aftermath," he added. The discovery was possible because radio and X-ray telescopes, unlike visible-light telescopes, can penetrate the thick clouds of gas and dust in our Galaxy. "Looking out of the Milky Way, we can see some supernova explosions with optical telescopes across half of the Universe, but when they're in this murk, we can miss them in our own cosmic back yard," Reynolds said. "Fortunately, the expanding gas cloud from the explosion shines brightly in radio waves and X-rays for thousands of years. X-ray and radio telescopes can see through all that obscuration and show us what we've been missing," he added. Because of the obscuration, no one could have seen the original explosion 140 years ago. The astronomers are reporting their results in papers published in the Astrophysical Journal Letters and Monthly Notices of the Royal Astronomical Society. Background Information: Supernova Explosions Supernova explosions are the violent death throes of stars. These explosions release in one event as much energy as is being released by all the rest of the stars in a galaxy -- typically 100 billion or so. Supernovae seen in other galaxies can outshine the rest of their galaxy for days. The supernovae that have occurred in our own Galaxy and were not obscured by the gas and dust that obscured G1.9+0.3 have often provided a spectacular sight. Historical records indicate that ancient astronomers noted supernova explosions at least as early as A.D. 393, and probably earlier. The pre-telescopic astronomers Tycho Brahe and Johannes Kepler made extensive observations of supernovae in 1572 and 1604. Chinese astronomers noted that a supernova in 1054 was bright enough to be seen in the daytime. A supernova in 1006 remained visible for two years. Supernovae that result from the deaths of stars much more massive than the Sun enrich the galaxy with chemical elements that are produced in the cores of those stars before they explode. The heavy elements, such as carbon, oxygen, iron, siicon and calcium, that make up planets and their inhabitants were made available by supernova explosions. In addition to enriching the material between stars with heavy elements, supernovae stir up that material through the shock energy of the explosion. This is thought to help trigger the process of star formation in interstellar clouds of gas and dust. Many astronomers believe that our own Solar System is the result of such a supernova shock. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Computationally Efficient Radio Frequency Source Localization for Radio Interferometric Arrays
NASA Astrophysics Data System (ADS)
Steeb, J.-W.; Davidson, David B.; Wijnholds, Stefan J.
2018-03-01
Radio frequency interference (RFI) is an ever-increasing problem for remote sensing and radio astronomy, with radio telescope arrays especially vulnerable to RFI. Localizing the RFI source is the first step to dealing with the culprit system. In this paper, a new localization algorithm for interferometric arrays with low array beam sidelobes is presented. The algorithm has been adapted to work both in the near field and far field (only the direction of arrival can be recovered when the source is in the far field). In the near field the computational complexity of the algorithm is linear with search grid size compared to cubic scaling of the state-of-the-art 3-D MUltiple SIgnal Classification (MUSIC) method. The new method is as accurate as 3-D MUSIC. The trade-off is that the proposed algorithm requires a once-off a priori calculation and storing of weighting matrices. The accuracy of the algorithm is validated using data generated by low-frequency array while a hexacopter was flying around it and broadcasting a continuous-wave signal. For the flight, the mean distance between the differential GPS positions and the corresponding estimated positions of the hexacopter is 2 m at a wavelength of 6.7 m.
Telescopes As Big As the Earth
ERIC Educational Resources Information Center
MOSAIC, 1974
1974-01-01
Making simultaneous observations with radio antennas continents apart, astronomers are getting information from space not available before. The technique can be used to obtain information related to many problems on earth also. (RH)
NASA Astrophysics Data System (ADS)
Kuiper, K.; Condon, D.; Hilgen, F.; Laskar, J.; Mezger, K.; Pälike, H.; Quidelleur, X.; Schaltegger, U.; Sprovieri, M.; Storey, M.; Wijbrans, J. R.
2009-12-01
The principal scientific objective of the Marie Curie Initial Trainings Network GTSnext is to establish the next generation standard Geological Time Scale with unprecedented accuracy, precision and resolution through integration and intercalibration of state-of-the-art numerical dating techniques. Such time scales underlie all fields in the Earth Sciences and their application will significantly contribute to a much enhanced understanding of Earth System evolution. During the last decade deep marine successions were successfully employed to establish an astronomical tuning for the entire Neogene, as incorporated in the standard Geological Time Scale (ATNTS2004). In GTSnext we aim to fine-tune this Neogene time scale, before it can reliably be used to accurately determine phase relations between astronomical forcing and climate response in the Neogene and possibly also the Oligocene. Radio-isotopic dating of late Neogene ash layers offers excellent opportunities for gaining insight into isotope systematics via their independent dating by astronomical tuning. An example of this synergy is the development of astronomically calibrated standards for 40Ar/39Ar geochronology. The cross-calibration between the different methods might also yield information on the fundamental problem of potential residence times in U/Pb dating. Extension of the astronomical time scale into the Paleogene seems limited to ~40 Ma due to the accuracy of the current astronomical solution. However, the 405 kyr eccentricity component is very stable permitting its use in time scale calibrations back to 250 Ma using only this frequency. This cycle is strong and well developed in Oligocene and even Eocene records. Phase relations between cyclic paleo-climate records and the 405 kyr eccentricity cycle are typically straightforward and unambiguous. Therefore, a first-order tuning to ~405 kyr eccentricity can only be revised by shifting the tuning with (multiples of) ~405 kyr. Isotopic age constraints of both U/Pb and 40Ar/39Ar will be used to anchor floating astronomical tunings, but absolute uncertainties in isotopic ages should be less than ± 200 kyr. The Cretaceous is famous for its remarkable cyclic successions of marine pelagic sediments which bear the unmistakable imprint of astronomical climate forcing. As a consequence floating astrochronologies which are based on number of cycles have been developed for significant portions of the Cretaceous, covering a number of geological stages. Unfortunately, such floating time scales provide us only with the duration of stages but not with their age. However, due to significant improvements in numerical astronomical solutions for the Solar System and in the accuracy of radio-isotopic dating we will try to establish a tuned time scale for the Late Cretaceous. Classical cyclic sections in Europe (e.g. Sopelana, Spain) will be used for the tuning, but lack ash beds. Therefore, radio-isotopic age constraints necessary for the tuning will come from ash beds in the Western Interior Basin in North America. Here we will present the first results of the GTSnext project.
A galactic microquasar mimicking winged radio galaxies.
Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M
2017-11-24
A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.
Twinkle, Twinkle, Little Laser by Ben Bova
NASA Astrophysics Data System (ADS)
Bova, Ben
2000-03-01
Radio astronomers have had no success in the search for extraterrestrial intelligence (SETI). Astronomers are now studying the heavens for signals that intelligent beings might send using lasers. Laser lights have the advantage of directionality, monochromaticity, and coherence. This research, called "optical SETI," looks for optical or infrared pulses with detectors that can pick up a broad spectrum of frequencies. By confining the search to stars similar to the Sun, scientists hope to find evidence of life other than ours.
Crab Nebula from Five Observatories
2017-05-10
In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms. In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. More images and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21474
Radio Astronomers Develop New Technique for Studying Dark Energy
NASA Astrophysics Data System (ADS)
2010-07-01
Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical capabilities of current instruments -- the team used their intensity-mapping technique to accumulate the radio waves emitted by the hydrogen gas in large volumes of space including many galaxies. "Since the early part of the 20th Century, astronomers have traced the expansion of the Universe by observing galaxies. Our new technique allows us to skip the galaxy-detection step and gather radio emissions from a thousand galaxies at a time, as well as all the dimly-glowing material between them," said Jeffrey Peterson, of Carnegie Mellon University. The astronomers also developed new techniques that removed both man-made radio interference and radio emission caused by more-nearby astronomical sources, leaving only the extremely faint radio waves coming from the very distant hydrogen gas. The result was a map of part of the "cosmic web" that correlated neatly with the structure shown by the earlier optical study. The team first proposed their intensity-mapping technique in 2008, and their GBT observations were the first test of the idea. "These observations detected more hydrogen gas than all the previously-detected hydrogen in the Universe, and at distances ten times farther than any radio wave-emitting hydrogen seen before," said Ue-Li Pen of the University of Toronto. "This is a demonstration of an important technique that has great promise for future studies of the evolution of large-scale structure in the Universe," said National Radio Astronomy Observatory Chief Scientist Chris Carilli, who was not part of the research team. In addition to Chang, Peterson, and Pen, the research team included Kevin Bandura of Carnegie Mellon University. The scientists reported their work in the July 22 issue of the scientific journal Nature.
The Jansky VLA: Rebuilt for 21st Century Astronomy
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2016-01-01
At the start of this decade, the Very Large Array underwent a transformative upgrade. While retaining its original 27 antennas, the signal transmission and processing systems, originally developed and built in the 1970s, have been replaced with state of the art wideband receivers and a new data transmission system, as well as one of the most powerful correlators yet built. With a ten-fold increase in continuum sensitivity, up to 4 million frequency channels and complete frequency coverage from 1-50 GHz, the resulting increase in capability and versatility is analogous to the transition from photographic plate to CCD technology that revolutionized optical astronomy in the 1980s. Post upgrade, the Jansky VLA will be the most sensitive radio interferometer in the world for this decade, probing the sub-uJy radio sky for the first time, and will remain the most versatile, frequency-agile radio telescope for the foreseeable future. Underscoring this versatility, is the VLA's capability to trace both thermal and non-thermal emission over a wide range of spatial, time and velocity resolution. At the highest frequencies, this includes imaging cool gas in high redshift galaxies and dusty disks in nearby protoplanetary systems, while at the lowest frequencies tracing AGN activity and star formation back to the epoch of reionization. In the time domain, the VLA can respond to external triggers within 15 minutes to provide an instantaneous broadband radio spectrum of explosive events. I will review some of the exciting science emerging from the Jansky VLA as well as the range of science-ready data products that will make the VLA increasingly accessible to the wider astronomical community. Finally, I will briefly introduce the new VLA Sky Survey (VLASS), a community-driven project to image 80% of the sky over multiple epochs with the VLA, reaching a depth of ~70 uJy and detecting ~10 million radio sources at high spatial and spectral resolution with full polarization information.
The Southern Hemisphere VLBI experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R.A.; Meier, D.L.; Louie, A.P.
1989-07-01
Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.
Goddard Geophysical and Astronomical Observatory
NASA Technical Reports Server (NTRS)
Figueroa, Ricardo
2013-01-01
This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.
Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education
NASA Astrophysics Data System (ADS)
Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy
2010-01-01
Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.
The Antenna Bride and Bridegroom
NASA Astrophysics Data System (ADS)
2007-03-01
ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. Scientists are eager to use this transformational capability to study the first stars and galaxies that formed in the early Universe, to learn long-sought details about how stars are formed, and to trace the motion of gas and dust as it whirls toward the surface of newly-formed stars and planets. "The success of this test is fundamental proof that the hardware and software now under development for ALMA will work to produce a truly revolutionary astronomical tool," said Massimo Tarenghi, the ALMA Director. In addition to the leading-edge electronic and electro-optical hardware and custom software that proved itself by producing ALMA's first fringes, the system's antennas are among the most advanced in the world. The stringent requirements for the antennas included extremely precise reflecting surfaces, highly accurate ability to point at desired locations in the sky, and the ability to operate reliably in the harsh, high-altitude environment of the ALMA site. The ALMA Test Facility operates the two prototype antennas built by Alcatel Alenia Space and European Industrial Engineering in Europe, and by VertexRSI (USA). These antennas were evaluated individually at the ATF. Both prototypes were equipped with electronic equipment for receiving, digitizing and transmitting signals to a central facility, where the signals are combined to make the antennas work together as a single astronomical instrument. "The successful achievement of recording the first fringes with two ALMA antennas is certainly an important milestone in the scientific program," said Hans Rykaczewski, the European ALMA Project Manager. "It is encouraging and adds to our motivation to see that the principles of ALMA work - not only scientifically, but also from the point of view of organizing this project by partners located in four continents. This successful partnership is a good proof of principle for the future of large scientific projects in astronomy." The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership among Europe, Japan and North America, in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organisation for Astronomical Research in the Southern Hemisphere, in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC). ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan (NAOJ) and on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI).
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Schröder, Frank G.; Pierre Auger Collaboration
2016-07-01
The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.
Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope
NASA Astrophysics Data System (ADS)
Shanmugha Sundaram, GA
2015-08-01
Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.
Automated pupil remapping with binary optics
Neal, Daniel R.; Mansell, Justin
1999-01-01
Methods and apparatuses for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications.
Low-background performance of a monolithic InSb CCD array
NASA Technical Reports Server (NTRS)
Bregman, J. D.; Goebel, J. H.; Mccreight, C. R.; Matsumoto, T.
1982-01-01
A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed.
VLBA "Movie" Gives Scientists New Insights On Workings of Mysterious Microquasars
NASA Astrophysics Data System (ADS)
2004-01-01
Astronomers have made a 42-day movie showing unprecedented detail of the inner workings of a strange star system that has puzzled scientists for more than two decades. Their work is providing new insights that are changing scientists' understanding of the enigmatic stellar pairs known as microquasars. SS 433 Frame from SS 433 Movie: End to end is some 200 billion miles. CREDIT: Mioduszewski et al., NRAO/AUI/NSF Image Files Single Frame Overall Jet View (above image) VLBA Movie (animated gif, 2.3 MB) Animated graphic of SS 433 System (18MB) (Created using software by Robert Hynes, U.Texas) Annotated brightening graphic Unannotated brightening Frame 1 Unannotated brightening Frame 2 "This once-a-day series of exquisitely-detailed images is the best look anyone has ever had at a microquasar, and already has made us change our thinking about how these things work," said Amy Mioduszewski, of the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. The astronomers used the National Science Foundation's Very Long Baseline Array (VLBA), a system of radio telescopes stretching from Hawaii to the Caribbean, to follow daily changes in a binary-star system called SS 433, some 15,000 light-years from Earth in the constellation Aquila. Mioduszewski worked with Michael Rupen, Greg Taylor and Craig Walker, all of NRAO. They reported their findings to the American Astronomical Society's meeting in Atlanta, Georgia. SS 433 consists of a neutron star or black hole orbited by a "normal" companion star. The powerful gravity of the neutron star or black hole is drawing material from the stellar wind of its companion into an accretion disk of material tightly circling the dense, central object prior to being pulled onto that object. This disk propels jets of subatomic particles outward from its poles. In SS 433, the particles in the jets move at 26 percent of the speed of light; in other microquasars, the jet material moves at 90-95 percent of light speed. The disk in SS 433 wobbles like a child's top, causing its jets to move in a circle every 164 days. By imaging SS 433 daily, the astronomers were able to trace individual ejections of material in these jets as they moved outward from the center. In addition, they could track the jets' precession, the movement caused by the disk's wobble. In other microquasars, blobs of material shot from the core become fainter, as seen with radio telescopes, as they move outward. However, in SS 433, blobs routinely brighten at specific distances from the core. From earlier studies, researchers had concluded that such brightening always occurs at one specific distance. The VLBA movie shows, instead, that there are multiple brightening regions and not all blobs brighten at all the regions. "We think the ejected material brightens because it's slamming into something," Rupen said. "However, whatever it's hitting has to be replenished somehow so that the brightening can occur again when the jet sweeps through that area the next time," he added. "It also appears that it isn't always replenished, because the brightening doesn't always happen," Mioduszewski pointed out. The VLBA movie revealed vital new information about another part of SS 433 -- material moving outward from the core, but not part of the superfast jets. This material moves outward in a direction not quite perpendicular to the direction of the jets. Discovered with the VLBA in 2000, this material had been seen only in one-time snapshots before, but the movie shows the steady evolution of its movement for the first time. That motion was the key to a possible answer to two riddles -- the source of the slower-moving material itself and the source of whatever the jet blobs are hitting when they brighten. "What seems most plausible to us is that the accretion disk is putting out a broad wind," Rupen explained. That broad wind from the disk hits a denser wind coming from the "normal" companion star to generate the radio waves seen coming from the nonjet region. The same disk-generated wind could be the source of the material that replenishes the regions where the jet blobs brighten, the researchers say. "The motion we measure for this slower-moving material is fast enough -- about 10,000 kilometers per second -- to put new material in a brightening region before the jet circles around to that spot again," Mioduszewski said. Because accretion disks like that around the dense central star of SS 433 are known to be unstable, any wind put out by such a disk could vary, putting out symmetric chunks in opposite directions. This, the scientists think, may explain why the jet brightening regions don't always get replenished with the material needed to cause brightening. "We still have more questions than answers about this microquasar, but the VLBA movie shows us that following the system on a daily basis with such greatly-detailed images is the most powerful tool available so far to understand these phenomena," Rupen said. The astronomers now hope to follow SS 433 with the VLBA for an entire, 164-day cycle of the jet wobble. At the same time, they would like to observe the object with visible-light telescopes, then follow up with larger- scale images using the NSF's Very Large Array (VLA) radio telescope. The VLA images would trace blob motions in the jets beyond the distances traced with the VLBA. SS 433 and Microquasars SS 433 was first noted in the 1960s by astronomers Bruce Stephenson and Nicholas Sanduleak, who included it in a catalog they published of stars with unusual features in their spectra. As the 433rd object in Stephenson and Sanduleak's catalog, it became known as SS 433. In 1978, David Clark and Paul Murdin identified SS 433 as the visible-light counterpart of a small object that had been found to be emitting both radio waves and X-rays. The small object also sat within a large supernova remnant called W50. Clark and Murdin, using the Anglo-Australian Telescope in Australia, also produced a spectrum of SS 433 that showed strange features. In addition, the object not only varied in its brightness, but features within the spectrum changed. By 1979, further research, including work by Bruce Margon and George Abell, had shown that SS 433 was producing jets of material moving in opposite directions. The strange stellar system received a wealth of media coverage, dubbed "the star that is both coming and going" in one story. A 1981 Sky & Telescope article was entitled, "SS433 -- Enigma of the Century." The late Robert Hjellming of NRAO spearheaded studies of motions within the radio-emitting jets of SS 433 in the early 1980s. SS 433 was the first example of what are now termed microquasars, binary systems with either a neutron star or black hole orbited by another star, and emitting jets of material at high speeds. With the VLA's discovery of jets moving at 92 percent of the speed of light in an object called GRS 1915+105 in 1994, such systems became known as microquasars. Several others have since been discovered and studied. Because microquasars in our own Milky Way Galaxy are thought to produce their high-speed jets of material through processes similar to those that produce jets from the cores of galaxies, the nearby microquasars serve as a convenient "laboratory" for studying the physics of jets. The microquasars are closer and show changes more quickly than their larger cousins. The Very Long Baseline Array The VLBA The VLBA CREDIT: NRAO/AUI/NSF The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA's scientific achievements include making the most accurate distance measurement ever made of an object beyond the Milky Way Galaxy; the first mapping of the magnetic field of a star other than the Sun; movies of motions in powerful cosmic jets and of distant supernova explosions; the first measurement of the propagation speed of gravity; and long-term measurements that have improved the reference frame used to map the Universe and detect tectonic motions of Earth's continents. The VLBA is operated from the NRAO's Array Operations Center in Socorro, NM. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Young Star May Be Belching Spheres of Gas, Astronomers Say
NASA Astrophysics Data System (ADS)
2001-05-01
A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex observational project," said Luis F. Rodriguez, of Mexico's National Autonomous University. The arc of water masers can be fit to a nearly-perfect circle to within one part in a thousand. That, the researchers say, means that the water vapor in the arc most likely is part of a complete sphere. "The arc we see fits a circle so well that it is unlikely that any geometry other than that of a sphere would produce it," Ho said. The sphere would be about 1.5 times the size of the Solar System. Because the arc, and presumably the sphere of which it is part, is so thin and so uniform, the researchers say that it came from a single, short-lived ejection. In addition, other evidence suggests that the sphere from an earlier ejection now is being overtaken by a newer spherical bubble that took only about 33 years after being ejected to reach its observed size. "We now have at least one case, we believe, in which a young star has repeatedly ejected mass spherically in short bursts," Guillem Anglada, of the Institute of Astrophysics of Andalucia (CSIC), in Granada, Spain, said. "In light of our current understanding of star formation, we don't yet understand how this can happen, so we have an exciting new scientific challenge. It is surprising that nature can maintain such perfect symmetry, especially since the environment around the young star must be so varied. This appears to be a triumph of order over chaos," he added. The researchers, in addition to Rodriguez, Ho and Anglada, are: Jose M. Torrelles, Institute for Space Studies of Catalonia (IEEC)-Spanish Research Council (CSIC), Spain; Nimesh A. Patel and Lincoln Greenhill, of the Harvard-Smithsonian Center for Astrophysics; Jose F. Gomez, Laboratory for Space Astrophysics and Theoretical Physics of the National Institute for Aerospace Technology, Madrid, Spain; Salvador Curiel and Jorge Canto, of Mexico's National Autonomous University; and Guido Garay, Department of Astronomy of the University of Chile. The VLBA is part of the National Radio Astronomy Observatory. It consists of ten radio-telescope antennas, each 82 feet (25 meters) in diameter, spread across the U.S. from Hawaii to the U.S. Virgin Islands. Operated from Socorro, New Mexico, the VLBA provides astronomers with the greatest angular resolution, or ability to see fine detail, of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. Some 300 Smithsonian and Harvard scientists cooperate in broad programs of astrophysical research supported by Federal appropriations and University funds as well as contracts and grants from government agencies.
On AIPS++, a new astronomical information processing system
NASA Technical Reports Server (NTRS)
Croes, G. A.
1992-01-01
The AIPS system that has served the needs of the radio astronomical community remarkably well during the last 15 years is showing signs of age and is being replaced by a more modern system, AIPS++. As the name implies, AIPS++ will be developed in a object oriented fashion and will use C++ as its main programming language. The work is being done by a consortium of seven organizations, with coordinated activities worldwide. After a review of the history of the project to this date from management, astronomical and technical viewpoints, and the current state of the project, the paper concentrates on the tradeoffs implied by the choice of implementation style and the lessons we have learned, good and bad.
77 FR 17456 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...,000.00 to Adon Construction for the construction of a 120kw photovoltaic solar array system to be built in eight 15kw sub-arrays at NIST's WWVH radio station in Kauai, HI. The objective of the solar... Recovery Act), for inverters necessary for the construction of a solar array system at NIST's WWVH radio...
The many facets of extragalactic radio surveys: towards new scientific challenges
NASA Astrophysics Data System (ADS)
2015-10-01
Radio continuum surveys are a powerful tool to detect large number of objects over a wide range of redshifts and obtain information on the intensity, polarization and distribution properties of radio sources across the sky. They are essential to answer to fundamental questions of modern astrophysics. Radio astronomy is in the midst of a transformation. Developments in high-speed digital signal processing and broad-band optical fibre links between antennas have enabled significant upgrades of the existing radio facilities (e-MERLIN, JVLA, ATCA-CABB, eEVN, APERTIF), and are leading to next-generation radio telescopes (LOFAR, MWA, ASKAP, MeerKAT). All these efforts will ultimately lead to the realization of the Square Kilometre Array (SKA), which, owing to advances in sensitivity, field-of-view, frequency range and spectral resolution, will yield transformational science in many astrophysical research fields. The purpose of this meeting is to explore new scientific perspectives offered by modern radio surveys, focusing on synergies allowed by multi-frequency, multi-resolution observations. We will bring together researchers working on wide aspects of the physics and evolution of extra-galactic radio sources, from star-forming galaxies to AGNs and clusters of galaxies, including their role as cosmological probes. The organization of this conference has been inspired by the recent celebration of the 50th anniversary of the Northern Cross Radio Telescope in Medicina (BO), whose pioneering B2 and B3 surveys provided a significant contribution to radio astronomical studies for many decades afterwards. The conference was organized by the Istituto di Radioastronomia (INAF), and was held at the CNR Research Area in Bologna, on 20-23 October 2015. This Conference has received support from the following bodies and funding agencies: National Institute for Astrophysics (INAF), ASTRON, RadioNet3 (through the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 283393) and the Ministry of Foreign Affairs and International Cooperation, Directorate General for the Country Promotion (under the Bilateral Grant Agreement ZA14GR02 - Mapping the Universe on the Pathway to SKA). Scientific Organizing Committee: I. Prandoni (INAF-IRA) co-chair R. Morganti (ASTRON) co-chair P. Best (ROE) A. Bonafede (Hamburg Univ.) R. Braun (SKA Org) L. Feretti (INAF-IRA) M. Jarvis (Western Cape/Oxford Univ.) E. Murphy (Caltech) R. Norris (CSIRO) M. Perez-Torres (IAA) L. Saripalli (Raman) T. Venturi (INAF-IRA) Local Organizing Committee: R. Cassano (co-chair) I. Prandoni (co-chair) A. Casoni D. Guidetti R. Lico R. Ricci M. Stagni
Young Star Probably Ejected From Triple System
NASA Astrophysics Data System (ADS)
2003-01-01
Astronomers analyzing nearly 20 years of data from the National Science Foundation's Very Large Array radio telescope have discovered that a small star in a multiple-star system in the constellation Taurus probably has been ejected from the system after a close encounter with one of the system's more-massive components, presumed to be a compact double star. This is the first time any such event has been observed. Path of Small Star, 1983-2001 "Our analysis shows a drastic change in the orbit of this young star after it made a close approach to another object in the system," said Luis Rodriguez of the Institute of Astronomy of the National Autonomous University of Mexico (UNAM). "The young star was accelerated to a large velocity by the close approach, and certainly now is in a very different, more remote orbit, and may even completely escape its companions," said Laurent Loinard, leader of the research team that also included Monica Rodriguez in addition to Luis Rodriguez. The UNAM astronomers presented their findings at the American Astronomical Society's meeting in Seattle, WA. The discovery of this chaotic event will be important for advancing our understanding of classical dynamic astronomy and of how stars evolve, including possibly providing an explanation for the production of the mysterious "brown dwarfs," the astronomers said. The scientists analyzed VLA observations of T Tauri, a multiple system of young stars some 450 light-years from Earth. The observations were made from 1983 to 2001. The T Tauri system includes a "Northern" star, the famous star that gives its name to the class of young visible stars, and a "Southern" system of stars, all orbiting each other. The VLA data were used to track the orbit of the smaller Southern star around the larger Southern object, presumed to be a pair of stars orbiting each other closely. The astronomers' plot of the smaller star's orbit shows that it followed an apparently elliptical orbit around its twin companions, moving at about 6 miles per second. Then, between 1995 and 1998, it came within about 200 million miles (about two times the distance between the Sun and the Earth) of its companions. Following that encounter, it changed its path, moving away from its companion at about 12 miles per second, double its previous speed. "We clearly see that this star's orbit has changed dramatically after the encounter with its larger companions," said Luis Rodriguez. "By watching over the next five years or so, we should be able to tell if it will escape completely," he added. "We are very lucky to have been able to observe this event," said Loinard. Though studies with computer simulations long have shown that such close approaches and stellar ejections are likely, the time scales for these events in the real Universe are long -- thousands of years. The chance to study an actual ejection of a star from a multiple system can provide a critical test for the dynamical theories. If a young star is ejected from the system in which it was born, it would be cut off from the supply of gas and dust it needs to gain more mass, and thus its development would be abruptly halted. This process, the astronomers explain, could provide an explanation for the very-low-mass "failed stars" called brown dwarfs. "A brown dwarf could have had its growth stopped by being ejected from its parent system," Loinard said. The VLA observations were made at radio frequencies of 8 and 15 GHz. T Tauri, the "Northern" star in this system, is a famous variable star, discovered in October of 1852 by J.R. Hind, a London astronomer using a 7-inch diameter telescope. At its brightest, it is some 40 times brighter than when at its faintest. It has been studied extensively as a nearby example of a young stellar system. While readily accessible with a small telescope, it is not visible to the naked eye. The observed orbital changes took place in the southern components of the system, displaced from the visible star by about one hundred times the distance between the Sun and the Earth. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Zheng
2017-10-01
Concept of radio direction finding systems, which use radio direction finding is based on digital signal processing algorithms. Thus, the radio direction finding system becomes capable to locate and track signals by the both. Performance of radio direction finding significantly depends on effectiveness of digital signal processing algorithms. The algorithm uses the Direction of Arrival (DOA) algorithms to estimate the number of incidents plane waves on the antenna array and their angle of incidence. This manuscript investigates implementation of the DOA algorithms (MUSIC) on the uniform linear array in the presence of white noise. The experiment results exhibit that MUSIC algorithm changed well with the radio direction.
Early years of Radio Astronomy in the U.S.
NASA Astrophysics Data System (ADS)
Burke, B. F.
Radio Astronomy in the U.S. went through two distinct phases, the pioneering phase before the Second World War, when Karl Jansky and Grote Reber were the only two radio astronomers in the world, and the post-WWII era, when the subject blossomed throughout the world, especially in England and Australia, while U.S. radio astronomy languished at a relatively low level, until its resurgence a decade later. Here in Budapest we are celebrating the 70th anniversary of Jansky's discovery, and I shall start with a review of his work, and the subsequent work of Grote Reber, who died, regrettably, in December 2002. Two historical references will be cited frequently: Serendipitous Discoveries in Radio Astronomy (Kellermann & Sheets, eds. 1983, referred to as Paper 1) and the two historical collections edited by W.T. Sullivan, Classics in Radio Astronomy (1982, referred to as Paper 2) and The Early Years of Radio Astronomy (1984, Paper 3).
The first educational interferometer in Mexico (FEYMANS): A novel project
NASA Astrophysics Data System (ADS)
Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Saucedo Morales, Julio Cesar; Carreto, Francisco; Valdes Estrada, Erik; Wendolyn Blanco Cardenas, Monica; Rodríguez Garza, Carolina B.; Pech Castillo, Gerardo A.; Ángel Vaquerizo, Juan
2016-07-01
An interferometer is composed of several radio telescopes (dishes) separated by a defined distance and used in synchrony. This kind of array produces a superior angular resolution, better than the resolution achieved by a single dish of the same combined area. In this work we propose the First Educational Youth Mexican Array North South, FEYMANS. It consists of an educational interferometer with initially four dishes. This array harvests Mexico's geography by locating each dish at the periphery of the country; creating new scientific links of provincial populations with the capital. The FEYMANS project focus in high school students and their projects on physics, chemistry and astronomy as a final project. Also, it can be used for bachelor theses. The initial and central dish-node is planed to be in Mexico City. After its construction, the efforts will focus to build subsequent nodes, on the Northwest region, Northeast, or Southeast. Region Northwest will give service to Baja California, Sonora and Chihuahua states. Region Northeast will cover Coahuila, Nuevo Leon and Tamaulipas. Finally, region Southeast will give access to Yucatan, Quintana Roo, Campeche, Tabasco and Chiapas. This project has been conceived by young professional astronomers and Mexican experts that will operate each node. Also, we have the technical support of the "Max Planck Institute fuer Radioastronomy in Bonn Germany" and the educational model of the "PARTNeR" project in Spain. This interferometer will be financed by Mexico's Federal Congress and by Mexico City's Legislative Assembly (ALDF).
Very Large Array Retooling for 21st-Century Science
NASA Astrophysics Data System (ADS)
2008-02-01
An international project to make the world's most productive ground-based telescope 10 times more capable has reached its halfway mark and is on schedule to provide astronomers with an extremely powerful new tool for exploring the Universe. The National Science Foundation's Very Large Array (VLA) radio telescope now has half of its giant, 230-ton dish antennas converted to use new, state-of-the-art digital electronics to replace analog equipment that has served since the facility's construction during the 1970s. VLA and Radio Galaxy VLA Antennas Getting Modern Electronics To Meet New Scientific Challenges CREDIT: NRAO/AUI/NSF Click on image for more information, higher-resolution files "We're taking a facility that has made landmark discoveries in astronomy for three decades and making it 10 times more powerful, at a cost that's a fraction of its total value, by replacing outdated technology with modern equipment," said Mark McKinnon, project manager for the Expanded VLA (EVLA). Rick Perley, EVLA project scientist, added: "When completed in 2012, the EVLA will be 10 times more sensitive, cover more frequencies, and provide far greater analysis capabilities than the current VLA. In addition, it will be much simpler to use, making its power available to a wider range of scientists." The EVLA will give scientists new power and flexibility to meet the numerous challenges of 21st-Century astrophysics. The increased sensitivity will reveal the earliest epochs of galaxy formation, back to within a billion years of the Big Bang, or 93 percent of the look-back time to the beginning of the Universe. It will have the resolution to peer deep into the dustiest star-forming clouds, imaging protoplanetary disks around young stars on scales approaching that of the formation of terrestrial planets. The EVLA will provide unique capabilities to study magnetic fields in the Universe, to image regions near massive black holes, and to systematically track changes in transient objects such as supernovae and fast-moving jets from massive, compact objects such as neutron stars and black holes. Authorized by Congress in 1972, the VLA was constructed during the 1970s and dedicated in 1980. Astronomers began using it for research even before its completion. To date, nearly 2,500 scientists from around the world have used the VLA for more than 13,000 observing projects. More than 200 Ph.D dissertations have been based on data obtained from VLA observations. The VLA's discoveries have ranged from finding water ice on Mercury, the closest planet to the Sun, to revealing details of the complex region surrounding the black hole at the core of our own Milky Way Galaxy, to providing surprising evidence that a distant galaxy had already formed and produced stars prolifically less than a billion years after the Big Bang. Half, or fourteen, of the VLA's inventory of 28, 25-meter-diameter dish antennas now have been converted to the new, digital configuration. The antennas collect faint radio waves emitted by celestial objects. Data from all the antennas are brought to a central, special-purpose computing machine, called a correlator, to be combined into a form that allows scientists to produce detailed, high-quality images of the astronomical objects under investigation. This entire system for collecting, transmitting and analyzing the cosmic radio signals is being replaced for the EVLA. New, more sensitive radio receivers will cover the entire frequency range of 1-50 GHz. A 1970s-era waveguide system gives way to a modern, fiber-optic system that dramatically increases the amount of data that can be delivered from the antenna to the correlator. Finally, a new, state-of-the-art correlator - a special-purpose supercomputer - is being built by Canadian scientists and engineers. This correlator will easily handle the increased data flow, offers much greater observing flexibility, and provides vastly expanded capabilities for analyzing the data to gain scientific insight about the astronomical objects. "We're leapfrogging several generations of technological progress to make the EVLA a completely modern, 21st-Century scientific facility," said Fred K.Y. Lo, NRAO Director. Construction work on the EVLA began in 2001. The project costs 93.75 million in U.S. dollars - 58.7 million in new direct funding from the National Science Foundation, 1.75 million from Mexico, 17 million from Canada in the form of the new correlator, and 16.3 million in the form of labor from existing staff at the NRAO. The current value of the VLA infrastructure on which the EVLA is being built is estimated at 300 million. "The EVLA project is giving us 10 times the VLA's capability at one-third the cost of the current facility," McKinnon pointed out. To provide the improved scientific capabilities, the EVLA will boast some impressive technical feats. For example, the fiber-optic data transmission system will carry as much information instantaneously as the entire current U.S. internet. The EVLA receiving system will be so sensitive that it could detect the weak radio transmission from a cell phone at the distance of Jupiter - half a billion miles away. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Scheduling and calibration strategy for continuous radio monitoring of 1700 sources every three days
NASA Astrophysics Data System (ADS)
Max-Moerbeck, Walter
2014-08-01
The Owens Valley Radio Observatory 40 meter telescope is currently monitoring a sample of about 1700 blazars every three days at 15 GHz, with the main scientific goal of determining the relation between the variability of blazars at radio and gamma-rays as observed with the Fermi Gamma-ray Space Telescope. The time domain relation between radio and gamma-ray emission, in particular its correlation and time lag, can help us determine the location of the high-energy emission site in blazars, a current open question in blazar research. To achieve this goal, continuous observation of a large sample of blazars in a time scale of less than a week is indispensable. Since we only look at bright targets, the time available for target observations is mostly limited by source observability, calibration requirements and slewing of the telescope. Here I describe the implementation of a practical solution to this scheduling, calibration, and slewing time minimization problem. This solution combines ideas from optimization, in particular the traveling salesman problem, with astronomical and instrumental constraints. A heuristic solution using well established optimization techniques and astronomical insights particular to this situation, allow us to observe all the sources in the required three days cadence while obtaining reliable calibration of the radio flux densities. Problems of this nature will only be more common in the future and the ideas presented here can be relevant for other observing programs.
Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters
NASA Astrophysics Data System (ADS)
2008-10-01
(Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the Chandra X-ray Observatory. X-ray Chandra X-ray Image The X-ray emission comes from hot thermal gas, a well-known sign-post of massive galaxy clusters. Furthermore, its elongated shape indicates that the cluster has undergone a recent violent collision or "merger event" in which another group or cluster of galaxies was swallowed up by the gravitational potential of the main cluster. Interferometrics Inc. and NRL scientist Tracy Clarke, who is also the LWA System Scientist, notes "In addition to teaching us about the nature of Dark Matter, merging clusters are also important in studies of the mysterious nature of Dark Energy. Understanding these two strange components of the Universe will help us understand its ultimate destiny." In the radio image there is a strong, oblong source of emission located on the lower left periphery of the X-ray gas detected by Chandra; this is a separate source. In the center of the cluster, within the region indicated by a dashed circle, there is radio emission which changes significantly with wavelength. At the longest wavelength (125 cm, shown) it is clearly detected, but at a wavelength of 49 cm it is much fainter, and it is almost entirely gone at 21 cm wavelength. This multi-wavelength picture of the diffuse emission is in good agreement with theoretical predictions for particle acceleration by turbulent waves generated by a violent collision. People Who Read This Also Read... Black Holes Have Simple Feeding Habits NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Oldest Known Objects Are Surprisingly Immature Chandra Data Reveal Rapidly Whirling Black Holes In a broader astrophysical context, galaxy clusters are the largest gravitationally bound systems in the Universe and their collisions are the most energetic events since the Big Bang. Says team leader Gianfranco Brunetti (Instituto di Radioastronomia, Bologna, Italy), "The A521 system provides evidence that turbulence acts as a source of particle acceleration in an environment that is unique in the Universe due to its large spatial and temporal scales, and due to the low density and high temperature of the gas." The team included scientists from Instituto di Radioastronomia, the University of Bologna, the Smithsonian Astrophysical Observatory, the National Radio Astronomy Observatory, and the Naval Research Laboratory. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The LWA, funding for which is provided by the Office of Naval Research, is led by the University of New Mexico, and includes NRL, The Applied Research Laboratory at the University of Texas at Austin, Virginia Tech, the Los Alamos National Laboratory, and the University of Iowa, with contributions and cooperation from NRAO. The Long Wavelength Array (LWA) website is http://lwa.unm.edu The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.
Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments
NASA Astrophysics Data System (ADS)
Prele, D.
2015-08-01
As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.
Special Session 2: Cosmic Evolution of Groups and Clusters
NASA Astrophysics Data System (ADS)
Vrtilek, J. M.; David, L. P.
2015-03-01
During the past decade observations across the electromagnetic spectrum have led to broad progress in the understanding of galaxy clusters and their far more abundant smaller siblings, groups. From the X-rays, where Chandra and XMM have illuminated old phenomena such as cooling cores and discovered new ones such as shocks, cold fronts, bubbles and cavities, through rich collections of optical data (including vast and growing arrays of redshifts), to the imaging of AGN outbursts of various ages through radio observations, our access to cluster and group measurements has leaped forward, while parallel advances in theory and modeling have kept pace. This Special Session offered a survey of progress to this point, an assessment of outstanding problems, and a multiwavelength overview of the uses of the next generation of observatories. Holding the symposium in conjuction with the XXVIIIth General Assembly provided the significant advantage of involving not only a specialist audience, but also interacting with a broad cross-section of the world astronomical community.
Radio Astronomy at the Centre for High Performance Computing in South Africa
NASA Astrophysics Data System (ADS)
Catherine Cress; UWC Simulation Team
2014-04-01
I will present results on galaxy evolution and cosmology which we obtained using the supercomputing facilities at the CHPC. These include cosmological-scale N-body simulations modelling neutral hydrogen as well as the study of the clustering of radio galaxies to probe the relationship between dark and luminous matter in the universe. I will also discuss the various roles that the CHPC is playing in Astronomy in SA, including the provision of HPC for a variety of Astronomical applications, the provision of storage for radio data, our educational programs and our participation in planning for the SKA.
Automated pupil remapping with binary optics
Neal, D.R.; Mansell, J.
1999-01-26
Methods and apparatuses are disclosed for pupil remapping employing non-standard lenslet shapes in arrays; divergence of lenslet focal spots from on-axis arrangements; use of lenslet arrays to resize two-dimensional inputs to the array; and use of lenslet arrays to map an aperture shape to a different detector shape. Applications include wavefront sensing, astronomical applications, optical interconnects, keylocks, and other binary optics and diffractive optics applications. 24 figs.
The Use of Self-scanned Silicon Photodiode Arrays for Astronomical Spectrophotometry
NASA Technical Reports Server (NTRS)
Cochran, A. L.
1984-01-01
The use of a Reticon self scanned silicon photodiode array for precision spectrophotometry is discussed. It is shown that internal errors are + or - 0.003 mag. Observations obtained with a photodiode array are compared with observations obtained with other types of detectors with agreement, from 3500 A to 10500 A, of 1%. The photometric properties of self scanned photodiode arrays are discussed. Potential pitfalls are given.
The Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.
2009-01-01
Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.
LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training
2015-09-02
to 88 MHz) astrophysical radio transients. It consists of four geographically-separated stations, each comprising 12 phased array dipole antennas...All four stations have now started taking data. The observatory has also been a vital recruiting and training tool for physics students from the...to 88 MHz) astrophysical radio transients. It consists of four geographically-separated stations, each comprising 12 phased array dipole antennas
Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array
2010-10-01
and potentially the Lunar Radio Array. Subject headings: instrumentation: interferometers — methods : observational — radio continuum: gen- eral 1Remote...Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 USA 2NASA Lunar Science Institute, NASA Ames Research Center...Moffett Field, CA 94035 USA 3Space Science Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5382 USA 4Praxis, Inc
NASA Astrophysics Data System (ADS)
Buitink, S.; Hörandel, J. R.; de Jong, S.; Lahmann, R.; Nahnhauer, R.; Scholten, O.
2017-03-01
This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.
A decametric wavelength radio telescope for interplanetary scintillation observations
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.
1975-01-01
A phased array, electrically steerable radio telescope (with a total collecting area of 18 acres), constructed for the purpose of remotely sensing electron density irregularity structure in the solar wind, is presented. The radio telescope is able to locate, map, and track large scale features of the solar wind, such as streams and blast waves, by monitoring a large grid of natural radio sources subject to rapid intensity fluctuation (interplanetary scintillation) caused by the irregularity structure. Observations verify the performance of the array, the receiver, and the scintillation signal processing circuitry of the telescope.
A Radio-Frequency-over-Fiber link for large-array radio astronomy applications
NASA Astrophysics Data System (ADS)
Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.
2013-10-01
A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.
Stars Take Longer to Form, Need a 'Kick' to Get Started, Astronomers Say
NASA Astrophysics Data System (ADS)
2002-01-01
Star formation is a longer process than previously thought, and is heavily dependent on outside events, such as supernova explosions, to trigger it, a team of astronomers has concluded. The scientists reached their conclusions after making a detailed study of a number of the dark gas clouds in which new stars are formed. Optical and mm-wave overlay of dark cloud Optical image of the dark cloud L57, with white contours indicating submillimeter-wave emission from dust within the dark cloud. "Our observations indicate that we need to drastically revise our ideas about the very early stages of star formation," said Claire Chandler, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. Chandler, who worked with John Richer and Anja Visser at the Mullard Radio Astronomy Observatory in the United Kingdom, presented the results at the American Astronomical Society's meeting in Washington, D.C. The astronomers observed the gas clouds with the SCUBA camera on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. This instrument is sensitive to submillimeter-wavelength radiation, which lies between radio waves and infrared waves in the electromagnetic spectrum. They studied clouds that previously had been observed with optical and infrared telescopes. The SCUBA images allowed them to see aspects of the clouds not visible at other wavelengths. Some young "protostars" are so deeply embedded in their parent gas clouds that they are invisible to infrared telescopes, while others have become visible by consuming and blowing away much of their surrounding clouds. Earlier studies had indicated that the "invisible" stars are only about one-tenth as common as those visible to infrared telescopes. "What we see in our study, however, is equal numbers of both types," said Chandler, who added, "This means that both stages probably have about the same lifetime -- roughly 200,000 years each." Another conclusion coming from the study is that star formation is heavily dependent on a triggering event to get it started. Such a triggering event might be the shock wave from a supernova explosion that causes gas clouds to begin the gravitational collapse that ultimately results in a new star. Another challenge to traditional wisdom about the early stages of star formation came in the team's analysis of data on starless cores -- gas clouds that have not yet begun their collapse into stars. The astronomers found that the starless cores in their study are on the verge of collapsing, and probably have shorter lifetimes than previously thought. "This means that, contrary to what we thought before, you don't need strong magnetic fields to hold these things up against gravitational collapse, because they don't last that long," Chandler said. Much theoretical work on early star formation that focuses on the role of magnetic fields may need revision, the study indicates. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Explanatory Supplement to the Astronomical Almanac (3rd Edition)
NASA Astrophysics Data System (ADS)
Urban, Sean E.; Seidelmann, P. K.
2014-01-01
Publications and software from the the Astronomical Applications Department of the US Naval Observatory (USNO) are used throughout the world, not only in the Department of Defense for safe navigation, but by many people including other navigators, astronomers, aerospace engineers, and geodesists. Products such as The Nautical Almanac, The Astronomical Almanac, and the Multiyear Interactive Computer Almanac (MICA) are regarded as international standards. To maintain credibility, it is imperative that the methodologies employed and the data used are well documented. "The Explanatory Supplement to the Astronomical Almanac" (hereafter, "The ES") is a major source of such documentation. It is a comprehensive reference book on positional astronomy, covering the theories and algorithms used to produce The Astronomical Almanac, an annual publication produced jointly by the Nautical Almanac Office of USNO and Her Majesty's Nautical Almanac Office (HMNAO). The first edition of The ES appeared in 1961, and the second followed in 1992. Several major changes have taken place in fundamental astronomy since the second edition was published. Advances in radio observations allowed the celestial reference frame to be tied to extragalactic radio sources, thus the International Celestial Reference System replaced the FK5 system. The success of ESA's Hipparcos satellite dramatically altered observational astrometry. Improvements in Earth orientation observations lead to new precession and nutation theories. Additionally, a new positional paradigm, no longer tied to the ecliptic and equinox, was accepted. Largely because of these changes, staff at USNO and HMNAO decided the time was right for the next edition of The ES. The third edition is now available; it is a complete revision of the 1992 book. Along with subjects covered in the previous two editions, the book also contains descriptions of the major advancements in positional astronomy over the last 20 years, some of which are described above. Extensive references to online information are given. This paper will discuss this latest edition of the Explanatory Supplement.
NASA Technical Reports Server (NTRS)
Breckinridge, Jim B. (Editor)
1990-01-01
Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.
Astronomers Find Rare Beast by New Means
NASA Astrophysics Data System (ADS)
2010-01-01
For the first time, astronomers have found a supernova explosion with properties similar to a gamma-ray burst, but without seeing any gamma rays from it. The discovery, using the National Science Foundation's Very Large Array (VLA) radio telescope, promises, the scientists say, to point the way toward locating many more examples of these mysterious explosions. "We think that radio observations will soon be a more powerful tool for finding this kind of supernova in the nearby Universe than gamma-ray satellites," said Alicia Soderberg, of the Harvard-Smithsonian Center for Astrophysics. The telltale clue came when the radio observations showed material expelled from the supernova explosion, dubbed SN2009bb, at speeds approaching that of light. This characterized the supernova, first seen last March, as the type thought to produce one kind of gamma-ray burst. "It is remarkable that very low-energy radiation, radio waves, can signal a very high-energy event," said Roger Chevalier of the University of Virginia. When the nuclear fusion reactions at the cores of very massive stars no longer can provide the energy needed to hold the core up against the weight of the rest of the star, the core collapses catastrophically into a superdense neutron star or black hole. The rest of the star's material is blasted into space in a supernova explosion. For the past decade or so, astronomers have identified one particular type of such a "core-collapse supernova" as the cause of one kind of gamma-ray burst. Not all supernovae of this type, however, produce gamma-ray bursts. "Only about one out of a hundred do this," according to Soderberg. In the more-common type of such a supernova, the explosion blasts the star's material outward in a roughly-spherical pattern at speeds that, while fast, are only about 3 percent of the speed of light. In the supernovae that produce gamma-ray bursts, some, but not all, of the ejected material is accelerated to nearly the speed of light. The superfast speeds in these rare blasts, astronomers say, are caused by an "engine" in the center of the supernova explosion that resembles a scaled-down version of a quasar. Material falling toward the core enters a swirling disk surrounding the new neutron star or black hole. This accretion disk produces jets of material boosted at tremendous speeds from the poles of the disk. "This is the only way we know that a supernova explosion could accelerate material to such speeds," Soderberg said. Until now, no such "engine-driven" supernova had been found any way other than by detecting gamma rays emitted by it. "Discovering such a supernova by observing its radio emission, rather than through gamma rays, is a breakthrough. With the new capabilities of the Expanded VLA coming soon, we believe we'll find more in the future through radio observations than with gamma-ray satellites," Soderberg said. Why didn't anyone see gamma rays from this explosion? "We know that the gamma-ray emission is beamed in such blasts, and this one may have been pointed away from Earth and thus not seen," Soderberg said. In that case, finding such blasts through radio observations will allow scientists to discover a much larger percentage of them in the future. "Another possibility," Soderberg adds, "is that the gamma rays were 'smothered' as they tried to escape the star. This is perhaps the more exciting possibility since it implies that we can find and identify engine-driven supernovae that lack detectable gamma rays and thus go unseen by gamma-ray satellites." One important question the scientists hope to answer is just what causes the difference between the "ordinary" and the "engine-driven" core-collapse supernovae. "There must be some rare physical property that separates the stars that produce the 'engine-driven' blasts from their more-normal cousins," Soderberg said. "We'd like to find out what that property is." One popular idea is that such stars have an unusually low concentration of elements heavier than hydrogen. However, Soderberg points out, that does not seem to be the case for this supernova. Soderberg and Chevalier worked with Alak Ray and Sayan Chakrabarti of the Tata Institute of Fundamental Research in India; Poonam Chandra of the Royal Military College of Canada; and a large group of collaborators at the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the January 28 issue of the journal Nature.
HIDE & SEEK: End-to-end packages to simulate and process radio survey data
NASA Astrophysics Data System (ADS)
Akeret, J.; Seehars, S.; Chang, C.; Monstein, C.; Amara, A.; Refregier, A.
2017-01-01
As several large single-dish radio surveys begin operation within the coming decade, a wealth of radio data will become available and provide a new window to the Universe. In order to fully exploit the potential of these datasets, it is important to understand the systematic effects associated with the instrument and the analysis pipeline. A common approach to tackle this is to forward-model the entire system-from the hardware to the analysis of the data products. For this purpose, we introduce two newly developed, open-source Python packages: the HI Data Emulator (HIDE) and the Signal Extraction and Emission Kartographer (SEEK) for simulating and processing single-dish radio survey data. HIDE forward-models the process of collecting astronomical radio signals in a single-dish radio telescope instrument and outputs pixel-level time-ordered-data. SEEK processes the time-ordered-data, removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and aims to recover the astronomical radio signal. The two packages can be used separately or together depending on the application. Their modular and flexible nature allows easy adaptation to other instruments and datasets. We describe the basic architecture of the two packages and examine in detail the noise and RFI modeling in HIDE, as well as the implementation of gain calibration and RFI mitigation in SEEK. We then apply HIDE &SEEK to forward-model a Galactic survey in the frequency range 990-1260 MHz based on data taken at the Bleien Observatory. For this survey, we expect to cover 70% of the full sky and achieve a median signal-to-noise ratio of approximately 5-6 in the cleanest channels including systematic uncertainties. However, we also point out the potential challenges of high RFI contamination and baseline removal when examining the early data from the Bleien Observatory. The fully documented HIDE &SEEK packages are available at http://hideseek.phys.ethz.ch/ and are published under the GPLv3 license on GitHub.
Detection of Ultrahigh-Energy Cosmic Rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Krause, Raphael; Pierre Auger Collaboration
2017-02-01
Ultrahigh-energy cosmic rays interact with the Earth's atmosphere and produce great numbers of secondary particles forming an extensive air shower. These air showers emit radiation in the radio frequency range which delivers important information about the processes of radio emission in extensive air showers and properties of the primary cosmic rays, e.g. arrival direction, energy and mass with a duty cycle close to 100%. The radio extension of the world's largest cosmic-ray experiment, the Pierre Auger Observatory, is called the Auger Engineering Radio Array (AERA). In addition to the particle and fluorescence detectors of the Pierre Auger Observatory, AERA investigates the electromagnetic component of extensive air showers using 153 autonomous radio stations on an area of 17km2 .
Early VLA and AMI-LA Radio Detections of the Nova V392 Per
NASA Astrophysics Data System (ADS)
Linford, J. D.; Bright, J.; Chomiuk, L.; Fender, R.; van der Horst, A.; Mioduszewski, A.; Sokoloski, J.; Rupen, M.; Nelson, T.; Mukai, K.
2018-05-01
We report radio observations of the young nova V392 Per (ATel #11588, ATel #11590, ATel #11601, ATel #11605, and ATel #11617) with the Karl G. Janksy Very Large Array (VLA) and the Arcminute Microkelvin Imager Large Array (AMI-LA).
The ARIANNA Hexagonal Radio Array - performance and prospects
NASA Astrophysics Data System (ADS)
Hallgren, Allan
2016-04-01
The origin of the highest energy cosmic rays at ˜1020 eV is still unknown. Ultra-high energy neutrinos from the GZK process should provide information on the sources and their properties. A promising and cost effective method for observing GZK-neutrinos is based on detection of Askaryan radio pulses with antennas installed in ice. The ARIANNA project aims at instrumenting a 36*36 km2 large area on the Ross Ice Shelf with an array of radio detection stations. The deployment of a test system for ARIANNA, the Hexagonal Radio Array (HRA), was completed in December 2014. The three first stations were installed in 2012. Solar panels are used to drive the < 10 W stations. The system hibernated at sunset in April and all stations returned to operation in September. The site is essentially free of anthropogenic noise. Simple cuts eliminate background and provides for efficient selection of neutrino events. Prospects for the sensitivity of the full ARIANNA array to the flux of GZK neutrinos are shown.
Nearby Quasars Result From Galactic Encounters, VLA Studies Indicate
NASA Astrophysics Data System (ADS)
1998-12-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found previously unseen evidence that galaxy collisions trigger energetic quasar activity in relatively nearby galaxies. New radio images of galaxies with bright quasar cores show that, though the galaxies appear normal in visible-light images, their gas has been disrupted by encounters with other galaxies. "This is what theorists have believed for years, but even the best images from optical telescopes, including the Hubble Space Telescope, failed to show any direct evidence of interactions with other galaxies in many cases," said Jeremy Lim, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan. Lim, along with Paul Ho of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, reported their findings in the January 1 issue of Astrophysical Journal Letters. Quasars are among the most luminous objects in the universe, and generally are believed to be powered by material being drawn into a supermassive black hole at the center of a galaxy, releasing large amounts of energy. Many quasars are found at extremely great distances from Earth, billions of light-years away. Because the light from these quasars took billions of years to reach our telescopes, we see them as they were when they were much younger objects. These distant quasars are thought to "turn on" when the host galaxy's central black hole is "fueled" by material drawn in during an early stage of the galaxy's development, before the galaxy "settles down" to a more sedate life. However, other galaxies with quasar cores are much closer, and thus are older, more mature galaxies. Their quasar activity has been attributed to encounters with nearby galaxies -- encounters that disrupt material and provide new "fuel" to the black hole. The problem for this scenario was the lack of evidence for such galactic encounters in optical images of many nearby quasars. "Our VLA studies are the first to image the neutral atomic hydrogen gas in nearby quasar galaxies," said Ho. "This is important, because, in any galactic encounter, the gas is more easily disrupted than the stars in the galaxies, and the gas takes longer to return to normal after the encounter. This means we have a better chance of finding evidence of galactic encounters by imaging the gas using radio telescopes." The VLA can image the gas in such galaxies because it is particularly sensitive to the radio waves naturally emitted by hydrogen atoms. The researchers chose three quasars at distances of 670 million to 830 million light-years. The three galaxies surrounding these quasars had different appearances in optical images: one showed evidence of mild interaction with a neighboring galaxy; one appeared undisturbed but had a nearby neighbor; and the third appeared undisturbed and alone. When imaged with the VLA, all three showed strong evidence that their gas had been disrupted by an encounter with another galaxy. "This shows how well such radio images of the gas distribution in galaxies can reveal evidence of galactic interactions," Lim said. "We hope to make further studies and learn more about how these galaxy mergers actually stimulate the quasar activity." Quasars are among the most enigmatic objects in the universe. Though they appear on photographic plates made by astronomers more than a century ago, they looked like ordinary stars, and raised no curiosity. When radio telescopes were first used to make detailed maps of the sky in the 1950s, many strong sources of radio emission seemed to have no counterparts in visible light. In 1960, one of these bright radio-emitting objects was identified as a faint, bluish-looking "star" by astronomers using the 200-inch telescope on Palomar Mountain in California. That first quasar and others identified later puzzled astronomers because, when their light was analyzed to find the characteristic "signature" of emission at specific wavelengths shown by particular atoms, the pattern was at first indecipherable. In 1963, Maarten Schmidt of Caltech realized that the pattern made sense if the light's wavelength had been shifted through the Doppler effect by the object's motion away from Earth at greater velocities than had yet been seen. Because the universe is expanding, objects are moving away from Earth with greater speed at greater distances. The speeds seen in the quasars indicated that they were the most distant objects yet found, and, because they appear bright even at those great distances, must be extremely energetic. The idea that the tremendous amounts of energy released by quasars results from material being drawn into a black hole at the center of a galaxy quickly rose as the leading explanation. Galactic interactions were first proposed as an explanation for nearby quasar activity in 1972. Today, quasars are thought to be one of several types of active galactic nuclei, all of which are powered by central black holes. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Radio-Optical Image of Quasar and Companion Galaxy CAPTION: A combined optical-radio image of the quasar IRAS 17596+4221 and a companion galaxy. The orange areas are the hydrogen gas imaged by the VLA. In the optical image, there is no direct evidence for an interaction between the galaxy hosting the quasar and the companion galaxy. The extensions in the hydrogen gas, however, are a clear indication of disruption resulting from an interaction between the two galaxies.
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.
2010-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.
New VLA Images Unlocking Galactic Mysteries
NASA Astrophysics Data System (ADS)
2008-01-01
Astronomers have produced a scientific gold mine of detailed, high-quality images of nearby galaxies that is yielding important new insights into many aspects of galaxies, including their complex structures, how they form stars, the motions of gas in the galaxies, the relationship of "normal" matter to unseen "dark matter," and many others. An international team of scientists used more than 500 hours of observations with the National Science Foundation's Very Large Array (VLA) radio telescope to produce detailed sets of images of 34 galaxies at distances from 6 to 50 million light-years from Earth. Their project, called The HI Nearby Galaxy Survey, or THINGS, required two years to produce nearly one TeraByte of data. HI ("H-one") is an astronomical term for atomic hydrogen gas. The astronomers presented their initial findings to the American Astronomical Society's (AAS) meeting in Austin, Texas. "Studying the radio waves emitted by atomic hydrogen gas in galaxies is an extremely powerful way to learn what's going on in nearby galaxies. The THINGS survey uses that tool to provide sets of images of the highest quality and sensitivity for a substantial sample of galaxies of different types," said Fabian Walter, of the Max-Planck Institute for Astronomy in Heidelberg, Germany. IC2574M74 Dwarf galaxy IC2574, left, and spiral galaxy M74, in THINGS images. Credit: Walter et al., NRAO/AUI/NSF Click images for high-resolution files (33 KB & 25 KB) Spiral Galaxies in THINGS Most of the galaxies studied in the THINGS survey also have been observed at other wavelengths, including Spitzer space telescope infrared images and GALEX ultraviolet images. This combination provides an unprecedented resource for unravelling the mystery of how a galaxy's gaseous material influences its overall evolution. Analysis of THINGS data already has yielded numerous scientific payoffs. For example, one study has shed new light on astronomers' understanding of the gas-density threshold required to start the process of star formation. "Using the data from THINGS in combination with observations from NASA's space telescopes has allowed us to investigate how the processes leading to star formation differ in big spiral galaxies like our own and much smaller, dwarf galaxies," said Adam Leroy and Frank Bigiel of the Max-Planck Insitute for Astronomy at the Austin AAS meeting. Because atomic hydrogen emits radio waves at a specific frequency, astronomers can measure motions of the gas by noting the Doppler shift in frequency caused by those motions. "Because the THINGS images are highly detailed, we have been able to measure both the rotational motion of the galaxies and non-circular random motions within the galaxies," noted Erwin de Blok of the University of Cape Town, South Africa. Galaxy Dynamics in THINGS The motion measurements are providing new information about the mysterious, unseen "dark matter" in the galaxies. "The non-circular motions revealed by the THINGS observations, turn out to be too small to solve a long-standing problem in cosmology, namely the inability of state-of-the-art computer simulations to describe the distribution of dark matter in disk galaxies. It was thought that random motions could explain that inability, but our data show otherwise," de Blok explained. The THINGS images revealed what Elias Brinks of the University of Hertfordshire, UK, called a "stunning complexity of structures in the tenuous interstellar medium of the galaxies." These structures include large shells and "bubbles," presumably caused by multiple supernova explosions of massive stars. Analyzing the detail of these complex structures will help astronomers better understand the differences in star formation processes in the varied types of galaxies. Even such a simple question such as how big are the disks of gas in spiral galaxies had largely eluded astronomers previously. "The quality and sensitivity of the THINGS images has allowed us to see the actual edges of these disks in a large sample of galaxies," said Brinks. Dwarf Galaxies in THINGS The new survey also showed a fundamental difference between the nearby galaxies -- part of the "current" Universe, and far more distant galaxies, seen as they were when the Universe was much younger. "It appears that the gas in the galaxies in the early Universe is much more 'stirred up,' possibly because galaxies were colliding more frequently then and there was more intense star formation causing material outflows and stellar winds," explained Martin Zwaan of the European Southern Observatory. The information about gas in the more distant galaxies came through non-imaging analysis. These discoveries, the scientists predict, are only the tip of the iceberg. "This survey produced a huge amount of data, and we've only analyzed a small part of it so far. Further work is sure to tell us much more about galaxies and how they evolve. We expect to be surprised," Walter said. In addition to the presentations made at the Austin AAS meeting, THINGS team members also have submitted a series of scientific papers to the Astronomical Journal. The THINGS project is a large international collaboration led by Walter and includes research teams led by Brinks, de Blok, Michele Thornley of the Bucknell University in the U.S. and Rob Kennicutt of the Cambridge University in the UK. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Starburst-Driven Winds May Have Created Giant "Lobe" in Galactic Center
NASA Astrophysics Data System (ADS)
2004-06-01
An astronomer using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has discovered that two prominent features rising out of the center of the Milky Way Galaxy are actually the distant edges of the same superstructure. This object, which has the appearance of a "lobe," may have been formed during an epoch of furious star formation. Lobe Galactic center radio image with lobe feature shown in outline. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click for Image w/o lines) Astronomer Casey Law of Northwestern University presented his results at the Denver, Colorado, meeting of the American Astronomical Society. "The center of our Galaxy is an incredibly dynamic place and morphologically very difficult to untangle" said Law. "Among the many features we see there, including supernova remnants, hot star-forming regions, and massive molecular clouds, are two very prominent columns of radio-emitting material that seem to erupt out of the plane of the Galaxy. The nature and origin of these features have been the subjects of much speculation, but with the new data from the Green Bank Telescope we're finally able to discern that they are in fact part of the same superstructure." Much of what we know about the center of our Galaxy has come from studies conducted on radio telescopes. The center of the Milky Way is, in fact, hidden from view to optical telescopes due to intervening clouds of dust and gas. Radio waves, however, are able to pass through the obscuring material and reveal details about the core of our Galaxy. Astronomers now know that this area of the Milky Way -- approximately 26,000 light-years from Earth -- is a densely packed region brimming with hot , young stars, supernova remnants, and more esoteric features -- like long radio-emitting filaments. At the center of it all is a remarkably radio-bright region known as Sagittarius A* (pronounced A-star), which is known to contain a supermassive black hole. Deciphering what all these features are and how they are formed are particularly difficult tasks. To help better understand the nature and possible connection of the columns in this study, Law studied data taken by a team of astronomers who used the GBT to create what is being called "the best single-dish survey of the Galactic center." The team made several maps of the Galactic center at multiple wavelengths, from as short as 3.6 centimeters to as long as 90 centimeters. By comparing an object at multiple radio frequencies (known as the spectral index), astronomers can produce a more complete picture of that object and also determine how the radio waves were produced. Hot bodies, such as stellar nurseries and even our Sun, generate radio waves across the radio spectrum. This is known as thermal emission, and it is characterized by stronger emission at shorter wavelengths. Other radio waves are generated by the acceleration of electrons within a magnetic field, which is the same process that causes quasars and pulsars to emit radio waves. This is known as non-thermal emission and it is characterized by stronger emission at longer wavelengths. "By looking at the features in the Galactic center at multiple frequencies," said Farhad Yusef-Zadeh of Northwestern University and a member of the observation team, "we can not only distinguish between thermal and non-thermal processes, but we can also compare and contrast different features to see if they are related." In looking at the lobe, which rises approximately 450 light-years above the Galactic center, Law determined that the spectral index of both sides of the lobe matched almost identically. "Early radio surveys of the galactic center suggested that the two columns eventually connected above the plane of the Galaxy," said Law. "But the clear correlation we now see between these two distant features strongly suggests that they are part of the same structure and produced by the same process." One of the leading explanations of how these features were produced is by a wind of energetic particles driven by an epoch of starburst near the Galactic center. Law speculates that approximately 10 million years ago, there was a furious period of star formation, with many stars being born and quickly dying in a series of supernovae. "At that time, something caused an acceleration of star formation near the very center of our Galaxy that thrust this material out of the plane of the Galaxy. The hot, young stars would have generated a lot of wind, and the supernovae would have contributed more energy," added Law. "This collective energy would have blown a lot of gas out of the disk for an extended period, eventually producing the features we see today." As the hot gas and particles shot out of the plane they would have "shocked" or energized the gas in the interstellar medium, which would have concentrated and amplified the ambient magnetic fields. The magnetic fields would then have accelerated electrons in the interstellar medium, producing the non-thermal radio profiles of the lobe. Earlier work done by other researchers estimates that this feature could contain approximately 5,000,000 solar masses of material, and that -- in the starburst model -- it would take the energy of possibly 10,000 supernovae to eject that amount of material out of the plane of the Galaxy and produce the feature seen in the lobe. In addition to Law and Yusef-Zadeh, the team that conducted the multiwavelength GBT survey included Douglas Roberts and Jack Hewitt of Northwestern University, and William Cotton and Ron Maddalena of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Additional image without outline is here.
NASA Astrophysics Data System (ADS)
Bowman, Judd D.
2018-06-01
After stars formed in the early universe, their ultraviolet light altered the 21cm hyperfine state of hydrogen atoms, causing the atoms to absorb photons from the cosmic microwave background. The EDGES experiment has reported evidence for this signal as a decrease in the sky-averaged radio intensity observed today as a broad feature centered at 78 MHz due to cosmological redshift, corresponding to an age of about 200 million years after the Big Bang. Ground-based radio arrays are expected soon to detect and eventually to characterize the power spectrum of spatial fluctuations of the 21cm absorption signal. However, the Earth’s ionosphere and radio transmitters, particularly those in the FM radio band, will complicate the observations and likely will limit the ultimate goal of imaging the era of cosmic dawn in detail. A radio array in lunar orbit or on the lunar suface would avoid the limitations imposed by Earth ionosphere’s. The Moon’s farside is also uniquely shielded from human-generated radio interference. Locating the radio observatory on the lunar surface compared to orbit has potential advantages, including fixed locations for the antennas that require no propulsion to maintain and simpler operations. The lunar surface poses unique challenges for instruments, including surviving the 14-day lunar night when there is no sunlight and temperatures can fall to 100 K. Building on lessons from ground based arrays and design studies from the last decade that led to the Dark Ages Lunar Interferometer and the Lunar Array for Radio Cosmology concepts, we are exploring a trade space for key lunar array technology. Our trade space includes choices related to: 1) antenna design for optimizing sensitivity and mass, while maintaining mechanical and thermal stability and enabling cost-effective deployment scenarios; 2) location of the array on the lunar surface to provide an efficient observing paradigm and suitable environmental conditions; 3) data transportation and processing for collecting antenna measurements at a central location for correlation and reduction; and 4) power and environmental requirements. In this talk, I will report the status of these ongoing studies.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1998-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
A Phased Array of Widely Separated Antennas for Space Communication and Planetary Radar
NASA Astrophysics Data System (ADS)
Geldzahler, B.; Bershad, C.; Brown, R.; Cox, R.; Hoblitzell, R.; Kiriazes, J.; Ledford, B.; Miller, M.; Woods, G.; Cornish, T.; D'Addario, L.; Davarian, F.; Lee, D.; Morabito, D.; Tsao, P.; Soloff, J.; Church, K.; Deffenbaugh, P.; Abernethy, K.; Anderson, W.; Collier, J.; Wellen, G.
NASA has successfully demonstrated coherent uplink arraying with real time compensation for atmospheric phase fluctuations at 7.145-7.190 GHz (X-band) and is pursuing a similar demonstration 30-31 GHz (Ka-band) using three 12m diameter COTS antennas separated by 60m at the Kennedy Space Center in Florida. In addition, we have done the same demonstration with up to three 34m antennas separated by 250m at the Goldstone Deep Space Communication Complex in California at X-band 7.1 GHz. We have begun to infuse the capability at Goldstone into the Deep Space Network to provide a quasi-operational system. Such a demonstration can enable NASA to design and establish a high power (10 PW) high resolution (<10 cm), 24/7 availability radar system for (a) tracking and characterizing observations of Near Earth Objects (NEOs), (b) tracking, characterizing and determining the statistics of small-scale (≤10cm) orbital debris, (c) incorporating the capability into its space communication and navigation tracking stations for emergency spacecraft commanding in the Ka band era which NASA is entering, and (d) fielding capabilities of interest to other US government agencies. We present herein the results of our phased array uplink combining at near 7.17 and 8.3 GHz using widely separated antennas demonstrations, our moderately successful attempts to rescue the STEREO-B spacecraft (distance 2 astronomical units (185,000,000 miles), the first two attempts at imaging and ranging of near Earth asteroids, and progress in developing telescopes that are fully capable at radio and optical frequencies. And progress toward the implementation of our vision for going forward in implementing a high performance, low lifecycle cost multi-element radar array.
Observation management challenges of the Square Kilometre Array
NASA Astrophysics Data System (ADS)
Bridger, Alan; Williams, Stewart J.; Nicol, Mark; Klaassen, Pamela; Thompson, Roger S.; Knapic, Cristina; Jerse, Giovanna; Orlati, Andrea; Messina, Marco; Valame, Snehal
2016-07-01
The Square Kilometre Array (SKA) will be the world's most advanced radio telescope, designed to explore some of the biggest questions in astronomy today, such as the epoch of re-ionization, the nature of gravity and the origins of cosmic magnetism. SKA1, the first phase of SKA construction, is currently being designed by a large team of experts world-wide. SKA1 comprises two telescopes: a 200-element dish interferometer in South Africa and a 130000-element dipole antenna aperture array in Australia. To enable the ground-breaking science of the SKA an advanced Observation Management system is required to support both the needs of the astronomical community users and the SKA Observatory staff. This system will ensure that the SKA realises its scientiffc aims and achieves optimal scientific throughput. This paper provides an overview of the design of the system that will accept proposals from SKA users, and result in the execution of the scripts that will obtain science data, taking in the stages of detailed preparation, planning and scheduling of the observations and onwards tracking. It describes the unique challenges of the differing requirements of two telescopes, one of which is very much a software telescope, including the need to schedule the data processing as well as the acquisition, and to react to both internally and externally discovered transient events. The scheduling of multiple parallel sub-array use is covered, along with the need to handle commensal observing - using the same data stream to satisfy the science goals of more than one project simultaneously. An international team from academia and industry, drawing on expertise and experience from previous telescope projects, the virtual observatory and comparable problems in industry, has been assembled to design the solution to this challenging but exciting problem.
Measurement of horizontal air showers with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Kambeitz, Olga
2017-03-01
The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.
Future Astronomical Observatories on the Moon
NASA Technical Reports Server (NTRS)
Burns, Jack O. (Editor); Mendell, Wendell W. (Editor)
1988-01-01
Papers at a workshop which consider the topic astronomical observations from a lunar base are presented. In part 1, the rationale for performing astronomy on the Moon is established and economic factors are considered. Part 2 includes concepts for individual lunar based telescopes at the shortest X-ray and gamma ray wavelengths, for high energy cosmic rays, and at optical and infrared wavelengths. Lunar radio frequency telescopes are considered in part 3, and engineering considerations for lunar base observatories are discussed in part 4. Throughout, advantages and disadvantages of lunar basing compared to terrestrial and orbital basing of observatories are weighted. The participants concluded that the Moon is very possibly the best location within the inner solar system from which to perform front-line astronomical research.
NASA Astrophysics Data System (ADS)
Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.
2007-02-01
Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.
Collaborative visual analytics of radio surveys in the Big Data era
NASA Astrophysics Data System (ADS)
Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.
2017-06-01
Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.
The Management, Storage, Utilization of Astronomical Data in the 21st Century Version 1.00
NASA Astrophysics Data System (ADS)
Hanisch, Bob; Quinn, Peter; Lawrence, Andy; Hanisch, Bob
2004-03-01
The costs and resources associated with the development of forefront astronomical research capabilities often greatly exceed the funding capacities of individual universities, research organizations, and nations (e.g., Atacama Large Millimeter Array [ALMA], The Square Kilometre Array [SKA], and Extremely Large (optical) Telescopes in the 30m-100m class [ELTs]). Collaborative alliances of organizations and nations are therefore being formed to build new, facility-class astronomical observatories across the globe. This expansion and globalization of the astronomical research effort raises a number of major issues that need to be confronted and solved by astronomers, research funding bodies, and governments. Some of these issues are being met by other sciences and some are unique to the research diversity inherent in exploring the Universe through multiple, complementary wavelength windows. In all cases, the challenges of managing, maximally utilizing, and collaboratively sharing the huge volume of digital information flowing from these new observatories is focusing and leading the discussion of critical issues for success. This discussion paper seeks to identify a number of these major issues, to highlight a new vision for a common research infrastructure that will enable some of these issues to be addressed, and further, to identify some of the practical and policy issues associated with long term solutions and the maximal return on a global research investments.
Development of an Ultra-Wideband Receiver for the North America Array
NASA Astrophysics Data System (ADS)
Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.
2016-11-01
The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination efficiencies across the band of interest. In addition, we show experimental results of low-noise 70-nm gallium arsenide, metamorphic high-electron-mobility-transistor (HEMT) amplifier testing performed across the 1 to 18 GHz frequency range. Also presented are 8 to 48 GHz simulation results for 35-nm indium phosphide HEMT amplifiers.
Observations of Interplanetary Scintillation (IPS) Using the Mexican Array Radio Telescope (MEXART)
NASA Astrophysics Data System (ADS)
Mejia-Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Jeyakumar, S.
2010-08-01
The Mexican Array Radio Telescope (MEXART) consists of a 64×64 (4096) full-wavelength dipole antenna array, operating at 140 MHz, with a bandwidth of 2 MHz, occupying about 9660 square meters (69 m × 140 m) (
ALMA Telescope Reaches New Heights
NASA Astrophysics Data System (ADS)
2009-09-01
The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory took another step forward and upward, as one of its state-of-the-art antennas was carried for the first time to Chile's 16,500-foot-high plateau of Chajnantor on the back of a giant, custom-built transporter. The 40-foot-diameter antenna, weighing about 100 tons, was moved to ALMA's high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for observing the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only about half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 9,500-foot altitude of the ALMA Operations Support Facility (OSF). It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "The successful transport of the first ALMA Antenna to the high site marks the start of the next phase of the project. Now that we are starting to move the ALMA antennas to the high site, the real work begins and the exciting part is just beginning," said Adrian Russell, North American ALMA Project Manager. The antenna's trip began when one of the two ALMA transporters lifted the antenna onto its back, carrying its heavy load along the 17-mile road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 8 miles per hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas use state-of-the-art technology, and are the most advanced submillimeter-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site, to survive strong winds and extreme temperatures, to point precisely enough that they could pick out a golf ball at a distance of nine miles, and to keep their smooth reflecting surfaces accurate to less than the thickness of a human hair. Once the transporter reached the high plateau it carried the antenna to a concrete pad -- a docking station with connections for power and fiber optics -- and positioned it with an accuracy of a small fraction of an inch. The transporter is guided by a laser steering system and, just like some cars, also has ultrasonic collision detectors. These sensors ensure the safety of the state-of-the-art antennas as the transporter drives them across what will soon be a rather crowded plateau. Ultimately, ALMA will have at least 66 antennas distributed over about 200 pads, spread over distances of up to 11.5 miles and operating as a single, giant telescope. Even when ALMA is fully operational, the transporters will be used to move the antennas between pads to reconfigure the telescope for different kinds of observations. This first ALMA antenna at the high site will soon be joined by others, and the ALMA team looks forward to making their first observations from the Chajnantor plateau. They plan to link three antennas by early 2010, and to make the first scientific observations with ALMA in the second half of 2011. ALMA will help astronomers answer important questions about our cosmic origins. The telescope will observe the Universe using light with millimeter and submillimeter wavelengths, between infrared light and radio waves in the electromagnetic spectrum. Light at these wavelengths comes from some of the coldest, and from some of the most distant objects in the cosmos. These include cold clouds of gas and dust where new stars are being born, or remote galaxies towards the edge of the observable universe. The Universe is relatively unexplored at submillimeter wavelengths, as the telescopes need extremely dry atmospheric conditions, such as those at Chajnantor, and advanced detector technology. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. The National Radio Astronomy Observatory is the North American partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 40-foot and 23-foot diameter antennas. Russell noted that the first antenna's move to the high site illustrates the international nature of the project. "A Japanese antenna with North American electronics was carried by a European transporter," he explained.
IEEE Radio and Wireless Symposium Student Awards Support Request: 2010-2012
2012-01-01
Reconfigurable Architecture Enabling All-Digital Transmission for Cognitive Radios ……..3 Ultra-Wide Band Vivaldi Antenna Array using Low Loss SIW Power...1431714191, Iran 2University of Tennessee, Knoxville, TN, 37996, US Ultra-Wide Band Vivaldi Antenna Array using Low Loss SIW Power Divider and GCPW Wide
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
Astronomers Gain Important Insight on How Massive Stars Form
NASA Astrophysics Data System (ADS)
2006-09-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered key evidence that may help them figure out how very massive stars can form. Young Star Graphic Artist's Conception of Young Star Showing Motions Detected in G24 A1: (1) Infall toward torus, (2) Rotation and (3) outflow. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for larger graphic file (JPEG, 129K) "We think we know how stars like the Sun are formed, but there are major problems in determining how a star 10 times more massive than the Sun can accumulate that much mass. The new observations with the VLA have provided important clues to resolving that mystery," said Maria Teresa Beltran, of the University of Barcelona in Spain. Beltran and other astronomers from Italy and Hawaii studied a young, massive star called G24 A1 about 25,000 light-years from Earth. This object is about 20 times more massive than the Sun. The scientists reported their findings in the September 28 issue of the journal Nature. Stars form when giant interstellar clouds of gas and dust collapse gravitationally, compacting the material into what becomes the star. While astronomers believe they understand this process reasonably well for smaller stars, the theoretical framework ran into a hitch with larger stars. "When a star gets up to about eight times the mass of the Sun, it pours out enough light and other radiation to stop the further infall of material," Beltran explained. "We know there are many stars bigger than that, so the question is, how do they get that much mass?" One idea is that infalling matter forms a disk whirling around the star. With most of the radiation escaping without hitting the disk, material can continue to fall into the star from the disk. According to this model, some material will be flung outward along the rotation axis of the disk into powerful outflows. "If this model is correct, there should be material falling inward, rushing outward and rotating around the star all at the same time," Beltran said. "In fact, that's exactly what we saw in G24 A1. It's the first time all three types of motion have been seen in a single young massive star," she added. The scientists traced motions in gas around the young star by studying radio waves emitted by ammonia molecules at a frequency near 23 GHz. The Doppler shift in the frequency of the radio waves gave them the information on the motions of the gas. This technique allowed them to detect gas falling inward toward a large "doughnut," or torus, surrounding the disk presumed to be orbiting the young star. "Our detection of gas falling inward toward the star is an important milestone," Beltran said. The infall of the gas is consistent with the idea of material accreting onto the star in a non-spherical manner, such as in a disk. This supports that idea, which is one of several proposed ways for massive stars to accumulate their great bulk. Others include collisions of smaller stars. "Our findings suggest that the disk model is a plausible way to make stars up to 20 times the mass of the Sun. We'll continue to study G24 A1 and other objects to improve our understanding," Beltran said. Beltran worked with Riccardo Cesaroni and Leonardo Testi of the Astrophysical Observatory of Arcetri of INAF in Firenze, Italy, Claudio Codella and Luca Olmi of the Institute of Radioastronomy of INAF in Firenze, Italy, and Ray Furuya of the Japanese Subaru Telescope in Hawaii. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Eugenia, Marcu
2013-04-01
On 21.06.2010 the "Next Generation" Summer School has opened the doors for its first students. They were introduced in the astronomy world by astronomical observations, astronomy and radio-astronomy lectures, laboratory projects meant to initiate them into modern radio astronomy and radio communications. The didactic programme was structure as fallowing: 1) Astronomical elements from the visible spectrum (lectures + practical projects) 2) Radio astronomy elements (lectures + practical projects) 3) Radio communication base (didactic- recreative games) The students and professors accommodation was at the Agroturistic Pension "Popasul Iancului" situated at 800m from the Marisel Observatory. First day (summer solstice day) began with a practical activity: determination of the meridian by measurements of the shadow (the direction of one vertical alignment, when it has the smallest length). The experiment is very instructive and interesting because combines notions of physics, spatial geometry and basic astronomy elements. Next day the activities took place in four stages: the students processed the experimental data obtained on first day (on sheets of millimetre paper they represented the length of the shadow alignments according the time), each team realised its own sun quadrant, point were given considering the design and functionality of these quadrant, the four teams had to mimic important constellations on carton boards with phosphorescent sticky stars and the students, accompanied by the professors took a hiking trip to the surroundings, marking the interest point coordinates, using a GPS to establish the geographical coronations and at the end of the day the students realised a small map of central Marisel area based on the GPS data. On the third day, the students were introduced to basic notions of radio astronomy, the principal categories of artificial Earth satellites: low orbit satellites (LEO), Medium orbit satellites (MEO) and geostationary satellites (GEO). The lecture was sustained by Physicist Paul Dolea, researcher at BITNET CCSS and PhD in Electronic Engineer and Telecommunications at Technical University from Cluj. There were presented several didactic-demonstrative prototypes of radio transmission of audio and video signals, with directive reception antenna. We benefited from the BITNET firm help which allowed the students to visit the equipments for C and Ku bands reception, with 4m diameter parabolic antenna and 14 tones foundation. The students were also presented the S band communication equipment with low altitude artificial satellites. The parabolic antenna with 3m in diameter is able to detect everywhere on the sky the extremely fast satellites situated at thousands of kilometres distance, which "are crossing" the sky in only several minutes. Most of the students climbed the platform under the cupola designated to the astronomical observations in visible spectrum and took pictures. The following days were lectured on topics of theoretical astronomy and astrophysics and during the nights were made astronomical observations. All the students received diplomas to certify their participation to the first "Next Generation" Summer School. This summer school will be organised from now on every summer, in Marisel area from Cluj. Since then the summer school has been held each year.
VLA Expansion Project Gets Strong Endorsement From National Committee
NASA Astrophysics Data System (ADS)
2000-05-01
A project to expand the National Science Foundation's famed Very Large Array (VLA) radio telescope, improving its scientific capabilities tenfold, has received strong endorsement from a prestigous national panel of astronomers given the task of setting priorities for astronomical projects in the next decade. The Astronomy and Astrophysics Survey Committee, established by the National Research Council, the working arm of the National Academy of Sciences, gave the VLA Expansion one of the top ratings among proposed ground-based observatory projects in a report issued today. Center of the VLA "This ranking by the Survey Committee, which heard from hundreds of astronomers around the country, shows that the astronomical community places great importance on expanding the VLA," said Paul Vanden Bout, Director of the National Radio Astronomy Observatory (NRAO). "The VLA is a unique and critical resource for the world's astronomers, and the VLA Expansion Project will ensure that scientists have a state-of-the-art tool to meet the astronomical research challenges of the 21st Century," Vanden Bout added. The Survey Committee report listed the Expanded VLA as an important contributor to new understanding in three high-priority research areas for the next decade: studies of star and planet formation; research into black holes; and unraveling details about the "dawn of the modern universe." The VLA Expansion Project will use modern electronics and computer technology to greatly improve the VLA's ability to observe faint celestial objects and to analyze their radio emissions. A set of eight new dish antennas, added to the current 27-antenna system, will allow the VLA to produce images with ten times greater detail. The project will build on the VLA's current infrastructure, including its 230-ton dish antennas, the railroad tracks for moving those antennas, and the existing buildings and access roads. The Expanded VLA will be operated by the same skilled staff present today. "These improvements will increase the capability of the VLA tenfold in all scientific aspects," said Rick Perley, NRAO's project scientist for the VLA Expansion Project. "This tremendous increase in capability will cost the NSF about 140 million, far less than the present value of the VLA. In addition, the operational costs remain about the same and the maintenance costs may even fall because of the increased reliability of newer equipment," Perley added. The VLA Expansion Project is a two-phase program, with the detailed plans for the first phase already submitted to the NSF. The first phase will cost a total of 76.2 million, 49.9 million of which is requested from the NSF. "We already have a committment of 2 million from Mexico and are negotiating with Canada for key technical equipment worth $10 million," Perley said. Dedicated in 1980, the VLA is the most powerful, flexible and widely- used radio telescope in the world. It brought dramatically-improved observational capabilities to the scientific community in 1980, and has contributed significantly to nearly every branch of astronomy. More than 2,200 scientists have used the VLA for more than 10,000 separate observing projects. Astronomers seek more than twice as much VLA observing time than can be provided. Since the VLA's dedication, many technical improvements have made it much more capable than its original design contemplated. However, some of the technologies incorporated into the VLA during its construction, while highly advanced for their time, now limit its capabilities, causing it to fall well short of its potential as a tool for science. For example. in 1977, when the partially-completed VLA began making routine scientific observations, Seymour Cray unveiled the CRAY-1 supercomputer, then the most powerful computer in the world. "Cray's first machine had a clock speed of 80 MHz, and today we are throwing away PCs with processors that slow," said Perley. "By bringing all the VLA's electronics up to today's state of the art, using modern fiber-optic data transmission techniques, and adding new antennas, we get an essentially new astronomical instrument with vastly increased capabilities at a fraction of the cost of starting from scratch," Perley said. The Expanded VLA will allow scientists to gain new insights into outstanding problems throughout a wide range of astronomical specialties. Some of these new capabilities will include: * Better images of cosmic "nurseries" where new stars are being formed and disks of gas and dust surrounding those new stars are forming into systems of planets. "These regions are obscured by gas and dust from view by optical telescopes. The EVLA will be a prime tool for understanding the processes ongoing in these regions," Perley said. * Improved ability to study the mysterious, shrouded region at the center of our own Milky Way Galaxy, where a black hole more than 2.5 million times more massive than the Sun lurks. * Ability to gain important new information about the atmospheres of other stars, their life cycles, and how processes on other stars relate to processes on our own Sun, which also can be studied much more effectively with the Expanded VLA. * The capability to help answer numerous other unresolved astronomical questions, including the numbers of small asteroids in the Solar System, the origin of clusters of galaxies, the nature of binary stars that emit powerful bursts of X-rays, and the size and structure of the Universe. The report issued today is the fifth such report outlining priorities for astronomical initiatives for an upcoming decade. The first such "decadal review" panel issued its report in 1960, setting priorities for the decade of the 1960s. Subsequent reports established priorities for the 1970s, 1980s and the 1990s, the latter report issued in 1991. The Astronomy and Astrophysics Survey Committee was co-chaired by Christopher McKee of the University of California at Berkeley and 1993 Nobel laureate Joseph Taylor of Princeton University. There were 13 other members from institutions throughout the U.S. The 1971 panel report, issued by a committee led by Jesse L. Greenstein of Caltech, listed building the original VLA as a project "of the very highest urgency and priority." That same year, the NSF submitted the VLA project to Congress, which authorized building the VLA in 1972. The 1991 panel urged funding for an "extension" of the VLA to improve the quality and detail of VLA images. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Archiving of interferometric radio and mm/submm data at the National Radio Astronomy Observatory
NASA Astrophysics Data System (ADS)
Lacy, Mark
2018-06-01
Modern radio interferometers such as ALMA and the VLA are capable of producing ~1TB/day of data for processing into image products of comparable size. Besides the shear volume of data, the products themselves can be complicated and are sometimes hard to map into standard astronomical archive metadata. We also face similar issues to those faced by archives at other wavelengths, namely the role of archives as the basis of reprocessing platforms and facilities, and the validation and ingestion of user-derived products. In this talk I shall discuss the plans of NRAO in these areas over the next decade.
NASA Astrophysics Data System (ADS)
2011-02-01
The research councils discovered in December the allocation of money from the UK government's Comprehensive Spending Review, and have set out their delivery plans outlining how they will spend it. Details and decisions will follow consultation in the coming months. The first image from eMerlin, the UK's national radio astronomy facility, shows the power of the enhanced network of radio telescopes spread over 220 km and now linked by fibre optics. These links and advanced receivers will allow astronomers to see in a single day what would have previously taken them more than a year of observations.
The radio astronomy explorer satellite, a low-frequency observatory.
NASA Technical Reports Server (NTRS)
Weber, R. R.; Alexander, J. K.; Stone, R. G.
1971-01-01
The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.
Old Star's "Rebirth" Gives Astronomers Surprises
NASA Astrophysics Data System (ADS)
2005-04-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope are taking advantage of a once-in-a-lifetime opportunity to watch an old star suddenly stir back into new activity after coming to the end of its normal life. Their surprising results have forced them to change their ideas of how such an old, white dwarf star can re-ignite its nuclear furnace for one final blast of energy. Sakurai's Object Radio/Optical Images of Sakurai's Object: Color image shows nebula ejected thousands of years ago. Contours indicate radio emission. Inset is Hubble Space Telescope image, with contours indicating radio emission; this inset shows just the central part of the region. CREDIT: Hajduk et al., NRAO/AUI/NSF, ESO, StSci, NASA Computer simulations had predicted a series of events that would follow such a re-ignition of fusion reactions, but the star didn't follow the script -- events moved 100 times more quickly than the simulations predicted. "We've now produced a new theoretical model of how this process works, and the VLA observations have provided the first evidence supporting our new model," said Albert Zijlstra, of the University of Manchester in the United Kingdom. Zijlstra and his colleagues presented their findings in the April 8 issue of the journal Science. The astronomers studied a star known as V4334 Sgr, in the constellation Sagittarius. It is better known as "Sakurai's Object," after Japanese amateur astronomer Yukio Sakurai, who discovered it on February 20, 1996, when it suddenly burst into new brightness. At first, astronomers thought the outburst was a common nova explosion, but further study showed that Sakurai's Object was anything but common. The star is an old white dwarf that had run out of hydrogen fuel for nuclear fusion reactions in its core. Astronomers believe that some such stars can undergo a final burst of fusion in a shell of helium that surrounds a core of heavier nuclei such as carbon and oxygen. However, the outburst of Sakurai's Object is the first such blast seen in modern times. Stellar outbursts observed in 1670 and 1918 may have been caused by the same phenomenon. Astronomers expect the Sun to become a white dwarf in about five billion years. A white dwarf is a dense core left after a star's normal, fusion-powered life has ended. A teaspoon of white dwarf material would weigh about 10 tons. White dwarfs can have masses up to 1.4 times that of the Sun; larger stars collapse at the end of their lives into even-denser neutron stars or black holes. Computer simulations indicated that heat-spurred convection (or "boiling") would bring hydrogen from the star's outer envelope down into the helium shell, driving a brief flash of new nuclear fusion. This would cause a sudden increase in brightness. The original computer models suggested a sequence of observable events that would occur over a few hundred years. "Sakurai's object went through the first phases of this sequence in just a few years -- 100 times faster than we expected -- so we had to revise our models," Zijlstra said. The revised models predicted that the star should rapidly reheat and begin to ionize gases in its surrounding region. "This is what we now see in our latest VLA observations," Zijlstra said. "It's important to understand this process. Sakurai's Object has ejected a large amount of the carbon from its inner core into space, both in the form of gas and dust grains. These will find their way into regions of space where new stars form, and the dust grains may become incorporated in new planets. Some carbon grains found in a meteorite show isotope ratios identical to those found in Sakurai's Object, and we think they may have come from such an event. Our results suggest this source for cosmic carbon may be far more important than we suspected before," Zijlstra added. The scientists continue to observe Sakurai's Object to take advantage of the rare opportunity to learn about the process of re-ignition. They are making new VLA observations just this month. Their new models predict that the star will heat very quickly, then slowly cool again, cooling back to its current temperature about the year 2200. They think there will be one more reheating episode before it starts its final cooling to a stellar cinder. Zijlstra worked with Marcin Hajduk of the University of Manchester and Nikolaus Copernicus University, Torun, Poland; Falk Herwig of Los Alamos National Laboratory; Peter A.M. van Hoof of Queen's University in Belfast and the Royal Observatory of Belgium; Florian Kerber of the European Southern Observatory in Germany; Stefan Kimeswenger of the University of Innsbruck, Austria; Don Pollacco of Queen's University in Belfast; Aneurin Evans of Keele University in Staffordshire, UK; Jose Lopez of the National Autonomous University of Mexico in Ensenada; Myfanwy Bryce of Jodrell Bank Observatory in the UK; Stewart P.S. Eyres of the University of Central Lancashire in the UK; and Mikako Matsuura of the University of Manchester. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Scientific grade CCDs from EG & G Reticon
NASA Technical Reports Server (NTRS)
Cizdziel, Philip J.
1990-01-01
The design and performance of three scientific grade CCDs are summarized: a 1200 x 400 astronomical array of 27 x 27 sq micron pixels, a 512 x 512 scientific array of 27 x 27 sq micron pixels and a 404 x 64 VNIR array of 52 x 52 sq micron pixels. Each of the arrays is fabricated using a four phase, double poly, buried n-channel, multi-pinned phase CCD process. Performance data for each sensor is presented.
Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging
NASA Astrophysics Data System (ADS)
Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.
2016-12-01
Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we can localize the radio emission originating from the head or flanks of the CMEs in spite of the phase errors introduced by uncertainties in orbit and clock estimation.
NASA Astrophysics Data System (ADS)
1998-09-01
For more information on magnetars and soft gamma-ray repeaters, see the Background Information which includes a "movie" of the flashing magnetar nebula, as seen by the VLA. Astronomers have found evidence for the most powerful magnetic field ever seen in the universe. They found it by observing a long-sought, short-lived "afterglow" of subatomic particles ejected from a magnetar -- a neutron star with a magnetic field billions of times stronger than any on Earth and 100 times stronger than any other previously known in the Universe. The afterglow is believed to be the aftermath of a massive starquake on the neutron star's surface. "And where there's smoke, there's fire, and we've seen the 'smoke' that tells us there's a magnetar out there," says Dale Frail, who used the National Science Foundation's Very Large Array (VLA) radio telescope to make the discovery. "Nature has created a unique laboratory where there are magnetic fields far stronger than anything that can be created here on Earth. As a result, the study of these objects enables us to study the effects of extraordinarily intense magnetic fields on matter," explains Dr. Morris L. Aizenman, Executive Officer in the Division of Astronomy at the National Science Foundation. Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, along with Shri Kulkarni and Josh Bloom, astronomers at Caltech, discovered radio emission coming from a strange object 15,000 light-years away in our own Milky Way Galaxy. The radio emission was seen after the object experienced an outburst of gamma-rays and X-rays in late August. "This emission comes from particles ejected at nearly the speed of light from the surface of the neutron star interacting with the extremely powerful magnetic field," said Kulkarni. This is the first time this phenomenon, predicted by theorists, has been seen so clearly from a suspected magnetar. "Magnetars are expected to behave in certain ways. Astronomers have seen one type of their predicted activity previously, and now we've seen a completely different piece of evidence that says this is, in fact, a magnetar. That's exciting." Kulkarni said. The new discovery, the scientists say, will allow them to decipher further details about magnetars and their outbursts. SGR 1900+14 VLA Images of SGR 1900+14, with its short-lived radio emission turned off, left, and on, right. The radio emission comes from the interaction of subatomic particles with the magnetar's powerful magnetic field. The circles indicate the area from within which the X-ray emission of SGR 1900+14 comes. Magnetars were proposed in 1992 as a theoretical explanation for objects that repeatedly emit bursts of gamma-rays. These objects, called "soft gamma-ray repeaters," or SGRs, were identified in 1986. There still are only four of these known. They are believed to be rotating, superdense neutron stars, like pulsars, but with much stronger magnetic fields. Neutron stars are the remains of massive stars that explode as a supernova at the end of their normal lifetime. They are so dense that a thimbleful of neutron-star material would weigh 100 million tons. An ordinary pulsar emits "lighthouse beams" of radio waves that rotate with the star. When the star is oriented so that these beams sweep across the Earth, radio telescopes detect regularly-timed pulses. A magnetar is a neutron star with an extremely strong magnetic field, strong enough to rip atoms apart. In the units used by physicists, the strength of a magnetar's magnetic field is about a million billion Gauss; a refrigerator magnet has a field of about 100 Gauss. This superstrong magnetic field produces effects that distinguish magnetars from other neutron stars. First, the magnetic field is thought to act as a brake, slowing the star's rotation. The earlier discovery of pulsations several seconds apart in three SGRs indicated rotation rates slowed just as predicted by magnetar theory. Next, the magnetic field is predicted to cause "starquakes" in which the solid crust of the neutron star is cracked, releasing energy. That energy is released in two forms -- a burst of gamma-rays and X-rays and an ejection of subatomic particles at nearly the speed of light. The gamma-ray and X-ray burst lasts no more than a few minutes, while the ejected particles, interacting with the star's magnetic field, can produce detectable amounts of radio emission for several days. On August 27, the SGR called 1900+14 underwent a tremendous burst, the likes of which had not been seen since 1979. "For a number of years now, I've been routinely looking toward the region of sky where we thought this thing might be," said Frail, "hoping the magnetar would show itself." It did not disappoint; on September 3, the VLA found a new source of radio emission where one had not previously existed. The source quickly faded from view one week later. The immediate importance of this finding is that it provides a new and independent confirmation of the magnetar model. These impulsive particle "winds," predicted by theory, carry as much energy as the flashes of hard X-ray emission and are important in slowing down the spinning magnetar. This discovery also allows astronomers to pinpoint the exact location of the SGR to allow further study of the magnetar with other powerful telescopes. "Trying to find this source of gamma-rays was like nighttime sailing with a broken lighthouse; now, we're no longer in the dark, and can study the magnetar for years to come," said Bloom. In time, the free-flowing particle wind can inflate a nebula called a plerion. "This 'windbag nebula' can tell us a lot about the outflow of particles and the burst history of the object," Frail said. "In fact, studying this phenomenon can give us information about the magnetar that we can't learn any other way." The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
National Academy of Sciences Recommends Continued Support of ALMA Project
NASA Astrophysics Data System (ADS)
2000-05-01
A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes, will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert. The array is scheduled to be completed sometime in this decade. Millimeter-wave astronomy studies the universe in the spectral region where most of its energy lies, between the long-wavelength radio waves and the shorter-wavelength infrared waves. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. "Most of the photons in the Universe lie in the millimeter wavelength regime; among existing or planned instruments only ALMA can image the sources of these photons with the crispness required to understand the events of galaxy, star and planet formation which launched them into space," said NRAO's Dr. Alwyn Wootten, U.S. ALMA Project Scientist. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the European Southern Observatory, the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council, the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional (Spain), and the Swedish Natural Science Research Council. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Big data challenges for large radio arrays
NASA Astrophysics Data System (ADS)
Jones, D. L.; Wagstaff, K.; Thompson, D. R.; D'Addario, L.; Navarro, R.; Mattmann, C.; Majid, W.; Lazio, J.; Preston, J.; Rebbapragada, U.
2012-03-01
Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields. The Jet Propulsion Laboratory is developing technologies to address big data issues, with an emphasis in three areas: 1) Lower-power digital processing architectures to make highvolume data generation operationally affordable, 2) Date-adaptive machine learning algorithms for real-time analysis (or "data triage") of large data volumes, and 3) Scalable data archive systems that allow efficient data mining and remote user code to run locally where the data are stored.
Ancient Black Hole Speeds Through Sun's Galactic Neighborhood, Devouring Companion Star
NASA Astrophysics Data System (ADS)
2001-09-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found an ancient black hole speeding through the Sun's Galactic neighborhood, devouring a small companion star as the pair travels in an eccentric orbit looping to the outer reaches of our Milky Way Galaxy. The scientists believe the black hole is the remnant of a massive star that lived out its brief life billions of years ago and later was gravitationally kicked from its home star cluster to wander the Galaxy with its companion. "This discovery is the first step toward filling in a missing chapter in the history of our Galaxy," said Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission. "We believe that hundreds of thousands of very massive stars formed early in the history of our Galaxy, but this is the first black hole remnant of one of those huge primeval stars that we've found." "This also is the first time that a black hole's motion through space has been measured," Mirabel added. A black hole is a dense concentration of mass with a gravitational pull so strong that not even light can escape it. The research is reported in the Sept. 13 issue of the scientific journal Nature. XTE J1118+480 The object is called XTE J1118+480 and was discovered by the Rossi X-Ray satellite on March 29, 2000. Later observations with optical and radio telescopes showed that it is about 6,000 light-years from Earth and that it is a "microquasar" in which material sucked by the black hole from its companion star forms a hot, spinning disk that spits out "jets" of subatomic particles that emit radio waves. Most of the stars in our Milky Way Galaxy are within a thin disk, called the plane of the Galaxy. However, there also are globular clusters, each containing hundreds of thousands of the oldest stars in the Galaxy which orbit the Galaxy's center in paths that take them far from the Galaxy's plane. XTE J1118+480 orbits the Galaxy's center in a path similar to those of the globular clusters, moving at 145 kilometers per second (90 miles per second) relative to the Earth. How did it get into such an orbit? "There are two possibilities: either it formed in the Galaxy's plane and was somehow kicked out of the plane or it formed in a globular cluster and was kicked out of the cluster," said Vivek Dhawan, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. A massive star ends its life by exploding as a supernova, leaving either a neutron star or a black hole as a remnant. Some neutron stars show rapid motion, thought to result from a sideways "kick" during the supernova explosion. "This black hole has much more mass -- about seven times the mass of our Sun -- than any neutron star," said Dhawan. "To accelerate it to its present speed would require a kick from the supernova that we consider improbable," Dhawan added. "We think it's more likely that it was gravitationally ejected from the globular cluster," Dhawan said. Simulations of the gravitational interactions in globular clusters have shown that the black holes resulting from the collapse of the most massive stars should eventually be ejected from the cluster. "The star that preceded this black hole probably formed in a globular cluster even before our Galaxy's disk was formed," Mirabel said. "What we're doing here is the astronomical equivalent of archaeology, seeing traces of the intense burst of star formation that took place during an early stage of our Galaxy's development." The black hole has consumed so much of its companion star that the inner layers of the smaller star -- only about one-third the mass of the Sun -- now are exposed. The scientists believe the black hole captured the companion before being ejected from the globular cluster, as if it were grabbing a snack for the road. The Very Long Baseline Array "Because this microquasar happened to be relatively close to the Earth, we were able to track its motion with the VLBA even though it's normally faint," said Mirabel. "Now, we want to find more of these ancient black holes. There must be hundreds of thousands swirling around in our Galaxy." The astronomers used the VLBA to observe XTE J1118+480 in May and July of 2000, using the VLBA's great resolving power, or ability to see fine detail, to precisely measure the object's movement against the backdrop of more-distant celestial bodies. The VLBA observations were made at radio frequencies of 8.4 and 15.4 GHz. In addition, they found that the object appears in optical images made for the Palomar Observatory Sky Survey (POSS) taken 43 years apart. The POSS images were digitized to allow for rapid search and analysis by the Space Telescope Science Institute. The data from both the radio and optical images allowed the astronomers to calculate the object's orbital path around the Galactic center. "With the VLBA, we could start observing soon after this object was discovered and get extremely precise information on its position. Then, we were able to use the digitized data from the Palomar surveys to extend backward the time span of our information. This is a great example of applying multiple tools of modern astronomy -- telescopes covering different wavelengths and digital databases -- to a single problem," said Dhawan. In addition to Mirabel and Dhawan, the research was performed by Roberto Mignani of the European Southern Observatory; Irapuan Rodrigues, who is a fellow of the Brazilian National Research Council at the French Atomic Energy Commission; and Fabrizia Guglielmetti of the Space Telescope Science Institute in Baltimore, MD. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia
2015-12-01
Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.
Dr Elizabeth Alexander: First Female Radio Astronomer
NASA Astrophysics Data System (ADS)
Orchiston, Wayne
2005-01-01
During March-April 1945, solar radio emission was detected at 200 MHz by operators of a Royal New Zealand Air Force radar unit located on Norfolk Island. Initially dubbed the `Norfolk Island Effect', this anomalous radiation was investigated throughout 1945 by British-born Elizabeth Alexander, head of the Operational Research Section of the Radio Development Laboratory in New Zealand. Alexander prepared a number of reports on this work, and in early 1946 she published a short paper in the newly-launched journal, Radio & Electronics. A geologist by training, Elizabeth Alexander happened to be in the right place at the right time, and unwittingly became the first woman in the world to work in the field that would later become known as radio astronomy. Her research also led to further solar radio astronomy projects in New Zealand in the immediate post-war year, and in part was responsible for the launch of the radio astronomy program at the Division of Radiophysics, CSIRO, in Sydney.
The Mobile Laboratory for Radio-Frequency Interference Monitoring at the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Bolli, Pietro; Gaudiomonte, Francesco; Ambrosini, Roberto; Bortolotti, Claudio; Roma, Mauro; Barberi, Carlo; Piccoli, Fabrizio
2013-10-01
In this paper, a quite unique mobile laboratory for monitoring radio-frequency interference with a radio-astronomical observatory is described. The unit is fully operational at the new Sardinia Radio Telescope, a 64-m antenna now in the commissioning phase in Italy. The mobile laboratory is mainly used to identify the source of interference with the radio astronomy service using iterative triangulations in the azimuth directions. Both the design and realization of this prototype were handled with outstanding care to limit the emission of self-interference as much as possible. The laboratory was equipped with excellent microwave instruments in terms of sensitivity, frequency coverage, dynamic range, and various demodulation and signal-analysis facilities. The unit can be quickly switched to different RF and power-supply configurations, while offering operators a safe and efficient workplace, even in adverse meteorological and driving conditions. In the past months, the mobile laboratory has proven to be successful in detecting and identifying many radio interferers. Two examples of measurement campaigns are described.
The new 64m Sardinia Radio Telescope and VLBI facilities in Italy
NASA Astrophysics Data System (ADS)
Giovannini, Gabriele; Feretti, Luigina; Prandoni, Isabella; Giroletti, Marcello
2015-08-01
The Sardinia Radio Telescope (SRT) is a new major radio astronomical facility available in Italy for single dish and interferometric observations. It represents a flexible instrument for Radio Astronomy, Geodynamical studies and Space Science, either in single dish or VLBI mode. The SRT combines a 64m steerable collecting area, one of the largest all over the World with state-of-the-art technology (including an active surface) to enable high efficiency observations up to the 3-mm band.This new radio telescope together with the two 32m antennas in Noto and Medicina can be used for VLBI observations on a national basis (VLBIT). Data can be correlated in a short time (in real time soon) thanks to fiber-optics connection among the radio telescopes and the software correlator installed at the Radio Astronomy Institute in Bologna (IRA/INAF). In the poster I will present capabilities of the SRT telescope as well as the VLBIT project and I will shortly discuss the scientific prospects of the VLBIT.
NASA Astrophysics Data System (ADS)
Vanden Bout, Paul A.
2013-04-01
The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.
NASA Astrophysics Data System (ADS)
Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.
Astronomy in Cuba: practice and trends. An effort to develop a non-formal education programme
NASA Astrophysics Data System (ADS)
Pomares, Oscar A.
In the recent past years, a daily stronger movement of non-professional astronomers has become the center of development for astronomy, a subject of study practically absent now from the national education system in Cuba. A key roll in this movement has been played by the professional staff of the Department of Astronomy of the Institute of Geophysics and Astronomy. As direct outcome of this joint effort between astronomers and amateurs is the research on meteors and comets, presented in two national and one international scientific meeetings. The opening last year of the "Palacio de las Ciencias" in the main building of the country, "El Capitolio Nacional", the participation in conferences and workshops of professional astronomers facing the general public, and their participation in prime-time TV and radio programs open a way for the growth of astronomical knowledge among the Cuban people. Two national meeetings gathering together professional and non- professional astronomers have been held already. Future works in the NEOs international campaign are foreseen. Practice and trends of astronomy in Cuba clarify views of our future in the oldest natural science.
NASA Astrophysics Data System (ADS)
Vera, Victor; Aguilar, M.; Huisacayna, J.
2008-05-01
We present a review of our efforts to introduce astronomy as scientific career in Peru, showing how our astronomy outreach programs have been one of the most important keys to reach our national astronomical scientific goals, remarking the crucial role that the celebration of the IYA2009 must play, in order to promote PhD programmes in astronomy in developing countries. We show the importance of the creation of the Seminario Permanente de Astronomía y Ciencias Espaciales (SPACE) in the Universidad Nacional Mayor de San Marcos, as an academic scientific and cultural center in Peru, to support our 26 years-old "Astronomical Fridays” which are addressed to wide range of public, from schoolchildren to scientists. We also show how important was to rediscover our ancient astronomical cultural past of Incas in order to promote the construction of a Astronomical Center located near Cusco city over 4000 meters above sea level, which includes a tourist-educational observatory, a scientific optical observatory and a solar radio observatory.
Bernard Yarnton Mills AC FAA. 8 August 1920 - 25 April 2011
NASA Astrophysics Data System (ADS)
Frater, R. H.; Goss, W. M.; Wendt, H. W.
2013-12-01
Bernie Mills is remembered globally as an influential pioneer in the evolving field of radio astronomy. His contributions with the 'Mills Cross' at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Division of Radiophysics and later at the University of Sydney's School of Physics and the development of the Molonglo Observatory Synthesis Telescope (MOST) were widely recognized as astronomy evolved in the years 1948-85 and radio astronomy changed the viewpoint of the astronomer as a host of new objects were discovered.
A Common Lunar Lander (CLL) for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Bailey, Stephen
1991-01-01
Information is given in viewgraph form on the Artemis project, a plan to establish a permanent base on the Moon. Information includes a summary of past and future events, the program rationale, a summary of potential payloads, the physical characteristics of experiments, sketches of equipment, design study objectives, and details of such payloads as the Geophysical Station Network, teleoperated rovers, astronomical telescopes, a Moon-Earth radio interferometer, very low frequency radio antennas, the Lunar Polar Crater Telescope, Lunar Resource Utilization Experiments, and biological experiments.
NASA Astrophysics Data System (ADS)
Wang, Pei; Li, Di; Zhu, Weiwei; Zhang, Chengmin; Yan, Jun; Hou, Xian; Clark, Colin J.; Saz Parkinson, Pablo M.; Michelson, Peter F.; Ferrara, Elizabeth C.; Thompson, David J.; Smith, David A.; Ray, Paul S.; Kerr, Matthew; Shen, Zhiqiang; Wang, Na; Fermi-LAT Collaboration
2018-04-01
The Five hundred-meter Aperture Spherical radio Telescope (FAST), operated by the National Astronomical Observatories, Chinese Academy of Sciences, has discovered a radio millisecond pulsar (MSP) coincident with the unassociated gamma-ray source 3FGL J0318.1+0252 (Acero et al. 2015 ApJS, 218, 23), also known as FL8Y J0318.2+0254 in the recently released Fermi Large Area Telescope (LAT) 8-year Point Source List (FL8Y).
Astronomical observations with the University College London balloon borne telescope
NASA Technical Reports Server (NTRS)
Jennings, R. E.
1974-01-01
The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.
Blazar Jets Push Closer to Cosmic Speed Limit
NASA Astrophysics Data System (ADS)
2005-01-01
Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have discovered jets of plasma blasted from the cores of distant galaxies at speeds within one-tenth of one percent of the speed of light, placing these plasma jets among the fastest objects yet seen in the Universe. "This tells us that the physical processes at the cores of these galaxies, called blazars, are extremely energetic and are capable of propelling matter very close to the absolute cosmic speed limit," said Glenn Piner of Whittier College in Whittier, California. Piner, who worked on the project with student Dipesh Bhattari, also of Whittier College, Philip Edwards of the Japan Aerospace Exploration Agency, and Dayton Jones of NASA's Jet Propulsion Laboratory, presented their findings to the American Astronomical Society's meeting in San Diego, California. According to Einstein's Special Theory of Relativity, no object with mass can be accelerated to the speed of light. To get even close to the speed of light requires enormous amounts of energy. "For example, to accelerate a bowling ball to the speed newly measured in these blazars would require all the energy produced in the world for an entire week," Piner said, "and the blobs of plasma in these jets are at least as massive as a large planet". Blazars are active galactic nuclei -- energetic regions surrounding massive black holes at the centers of galaxies. Material being drawn into the black hole forms a spinning disk called an accretion disk. Powerful jets of charged particles are ejected at high speeds along the poles of accretion disks. When these jets happen to be aimed nearly toward the Earth, the objects are called blazars. Taking advantage of the extremely sharp radio "vision" of the continent-wide VLBA, the scientists tracked individual features in the jets of three blazars at distances from Earth ranging from 7.3 to 9 billion light-years. A Boston University team led by Svetlana Jorstad earlier had identified the three blazars as having potentially very high jet speeds based on VLBA observations in the mid-1990s. Piner and his colleagues observed the blazars again in 2002 and 2003 with much longer observations, and were able to confirm the high-speed motions in the faint blazar jets. Their measurements showed that features in the blazar jets were moving at apparent speeds more than 25 times greater than that of light. This phenomenon, called superluminal motion, is not real, but rather is an illusion caused by the fact that the material in the jet is moving at nearly the speed of light almost directly toward the observer. Because the jet features are moving toward Earth at almost the same speed as the radio waves they emit, they can appear to move across the sky at faster-than-light speeds. Scientists can correct for this geometrical effect to calculate a lower limit to the true speed of the features. "We typically see apparent speeds in blazar jets that are about five times the speed of light, and that corresponds to a true speed of more than 98 percent of light speed," Piner said. "Now, based on independent confirmation by two groups of astronomers, we see these three blazars with apparent speeds greater than 25 times that of light," Piner added. That apparent speed, the scientists said, corresponds to a true speed of greater than 99.9 percent of light speed, which is 186,282 miles per second. Based on other properties of blazars, the scientists believe that their interpretation of the data is accurate and that they have measured the extremely fast speeds in the three blazar jets. However, "we do have to be somewhat careful in interpreting these results, because it is possible that the observed motions represent the motion of some propagating disturbance in the plasma rather than the plasma itself, in the same way that a water wave can move across the surface of the ocean without physically transporting the water," Piner said. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. The VLBA is operated from the National Radio Astronomy Observatory's Array Operations Center in Socorro, NM. The research was supported by the National Science Foundation and the Research Corporation. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Taming the Data Deluge to Unravel the Mysteries of the Universe
NASA Astrophysics Data System (ADS)
Johnston-Hollitt, M.
2017-04-01
Modern Astrophysics is one of the most data intensive research fields in the world and is driving many of the required innovations in the "big data" space. Foremost in astronomy in terms of data generation is radio astronomy, and in the last decade an increase in global interest and investment in the field had led to a large number of new or upgraded facilities which are each currently generating petabytes of data per annum. The peak of this so-called 'radio renaissance' will be the Square Kilometre Array (SKA) - a global observatory designed to uncover the mysteries of the Universe. The SKA will create the highest resolution, fastest frame rate movie of the evolving Universe ever and in doing so will generate 160 terrabytes of data a second, or close to 5 zettabytes of data per annum. Furthermore, due to the extreme faintness of extraterrestrial radio signals, the telescope elements for the SKA must be located in radio quite parts of the world with very low population density. Thus the project aims to build the most data intensive scientific experiment ever, in some of the most remote places on Earth. Generating and serving scientific data products of this scale to a global community of researchers from remote locations is just the first of the "big data" challenges the project faces. Coordination of a global network of tiered data resources will be required along with software tools to exploit the vast sea of results generated. In fact, to fully realize the enormous scientific potential of this project, we will need not only better data distribution and coordination mechanisms, but also improved algorithms, artificial intelligence and ontologies to extract knowledge in an automated way at a scale not yet attempted in science. In this keynote I will present an overview of the SKA project, outline the "big data" challenges the project faces and discuss some of the approaches we are taking to tame the astronomical data deluge we face.
Scientists Toast the Discovery of Vinyl Alcohol in Interstellar Space
NASA Astrophysics Data System (ADS)
2001-10-01
Astronomers using the National Science Foundation's 12 Meter Telescope at Kitt Peak, AZ, have discovered the complex organic molecule vinyl alcohol in an interstellar cloud of dust and gas near the center of the Milky Way Galaxy. The discovery of this long-sought compound could reveal tantalizing clues to the mysterious origin of complex organic molecules in space. Vinyl Alcohol and its fellow isomers "The discovery of vinyl alcohol is significant," said Barry Turner, a scientist at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Va., "because it gives us an important tool for understanding the formation of complex organic compounds in interstellar space. It may also help us better understand how life might arise elsewhere in the Cosmos." Vinyl alcohol is an important intermediary in many organic chemistry reactions on Earth, and the last of the three stable members of the C2H4O group of isomers (molecules with the same atoms, but in different arrangements) to be discovered in interstellar space. Turner and his colleague A. J. Apponi of the University of Arizona's Steward Observatory in Tucson detected the vinyl alcohol in Sagittarius B -- a massive molecular cloud located some 26,000 light-years from Earth near the center of our Galaxy. The astronomers were able to detect the specific radio signature of vinyl alcohol during the observational period of May and June of 2001. Their results have been accepted for publication in the Astrophysical Journal Letters. Of the approximately 125 molecules detected in interstellar space, scientists believe that most are formed by gas-phase chemistry, in which smaller molecules (and occasionally atoms) manage to "lock horns" when they collide in space. This process, though efficient at creating simple molecules, cannot explain how vinyl alcohol and other complex chemicals are formed in detectable amounts. For many years now, scientists have been searching for the right mechanism to explain how the building blocks for vinyl alcohol and other chemicals are able to form the necessary chemical bonds to make larger molecules - those containing as many as six or more atoms. "It has been an ongoing quest to understand exactly how these more complex molecules form and become distributed throughout the interstellar medium," said Turner. Since the 1970s, scientists have speculated that molecules could form on the microscopic dust grains in interstellar clouds. These dust grains are thought to trap the fast-moving molecules. The surface of these grains would then act as a catalyst, similar to a car's catalytic converter, and enable the chemical reactions that form vinyl alcohol and the other complex molecules. The problem with this theory, however, is that the newly formed molecules would remain trapped on the dust grains at the low temperature characteristic of most of interstellar space, and the energy necessary to "knock them off" would also be strong enough to break the chemical bonds that formed them. "This last process has not been well understood," explained Turner. "The current theory explains well how molecules like vinyl alcohol could form, but it doesn't address how these new molecules are liberated from the grains where they are born." To better understand how this might be accomplished, the scientists considered the volatile and highly energetic region of space where these molecules were detected. Turner and others speculate that since this cloud lies near an area of young, energetic star formation, the energy from these stars could evaporate the icy surface layers of the grains. This would liberate the molecules from their chilly nurseries, depositing them into interstellar space where they can be detected by sensitive radio antennas on Earth. Astronomers are able to detect the faint radio signals that these molecules emit as they jump between quantum energy states in the act of rotating or vibrating. Turner cautions, however, that even though this discovery has shed new light on how certain highly complex species form in space, the final answer is still not in hand. "Although vinyl alcohol and its isomeric partners may well have formed on grains," said Turner "another important possibility has been found. The grain evaporative processes near star formation appear to release copious amounts of somewhat simpler molecules such as formaldehyde (H2CO) and methanol (CH3OH), which may be reacting in the gas phase to produce detectable amounts of vinyl alcohol and its isomers." A program to search for other families of isomers is planned, which the astronomers believe could distinguish between these two possibilities. The astronomers used 2- and 3-mm band radio frequencies to make their observations with the 12 Meter Telescope. This telescope was taken off-line by the NRAO to make way for the Atacama Large Millimeter Array, and is now operated by the Steward Observatory of the University of Arizona. Built in 1967, the telescope has had a long and productive history in detecting molecules in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
A Large Array of Small Antennas to Support Future NASA Missions
NASA Astrophysics Data System (ADS)
Jones, D. L.; Weinreb, S.; Preston, R. A.
2001-01-01
A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.
The Gould's Belt very large array survey. III. The Orion region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent
2014-07-20
We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg{sup 2}) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous resultsmore » from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.« less
The Gould's Belt Very Large Array Survey. III. The Orion Region
NASA Astrophysics Data System (ADS)
Kounkel, Marina; Hartmann, Lee; Loinard, Laurent; Mioduszewski, Amy J.; Dzib, Sergio A.; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Evans, Neal J., II; Briceño, Cesar; Tobin, John
2014-07-01
We present results from a high-sensitivity (60 μJy), large-scale (2.26 deg2) survey obtained with the Karl G. Jansky Very Large Array as part of the Gould's Belt Survey program. We detected 374 and 354 sources at 4.5 and 7.5 GHz, respectively. Of these, 148 are associated with previously known young stellar objects (YSOs). Another 86 sources previously unclassified at either optical or infrared wavelengths exhibit radio properties that are consistent with those of young stars. The overall properties of our sources at radio wavelengths such as their variability and radio to X-ray luminosity relation are consistent with previous results from the Gould's Belt Survey. Our detections provide target lists for follow-up Very Long Baseline Array radio observations to determine their distances as YSOs are located in regions of high nebulosity and extinction, making it difficult to measure optical parallaxes.
NASA Astrophysics Data System (ADS)
Castellanos, Aaron; Harp, G.
2014-01-01
The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.
Local Interstellar Medium. International Astronomical Union Colloquium No. 81
NASA Technical Reports Server (NTRS)
Kondo, Y. (Editor); Bruhweiler, F. C. (Editor); Savage, B. D. (Editor)
1984-01-01
Helium and hydrogen backscattering; ultraviolet and EUV absorption spectra; optical extinction and polarization; hot gases; soft X-ray observations; infrared and millimeter wavelengths; radio wavelengths and theoretical models of the interstellar matter within about 150 parsecs of the Sun were examined.
Astronomy and its importance for everyday life
NASA Astrophysics Data System (ADS)
Tiron, Stefan
2010-12-01
The author is dialogging with a journalist from the Moldavian National radio about the following topics: 1) The winter solstice 2) The astronomical phenomena for 2011 in Moldova (Sun's and Moon's eclipses) 3) The solar activity, its increasing during next year and its maximum
Study of Radio sources and interferences detected by MEXART
NASA Astrophysics Data System (ADS)
Villanueva Hernandez, P.; Gonzalez Esparza, J. A.; Carrillo, A.; Andrade, E.; Jeyacumar, S.; Kurtz, S.
2007-05-01
The Mexican Array Radio Telescope (MEXART) is a radio telescope that will perform studies of solar wind disturbances using the Interplanetary Scintillation (IPS) technique. The radiotelescope is its final calibration stage, and in this work we report two testings: the interference signals detected around the operation frequency, and the transit of the main radio sources detected by individual lines of 64 dipoles. These radio sources are: Sun, Casiopea, Crab nebula, Cygnus and Virgo. These testings allow us to know the response of the array elements in order to calibrate them. The final operation of the MEXART requires that the signal detected and transmitted by each East-West line of 64 dipoles arrives at the butler matrix (control room) with the same phase and amplitude.
Radio emission of energetic cosmic ray air showers: Polarization measurements with LOPES
NASA Astrophysics Data System (ADS)
Lopes Collaboration; Isar, P. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huang, X.; Huege, T.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration
2009-06-01
LOPES is a radio antenna array co-located with the Karlsruhe Shower Core and Array DEtector, KASCADE-Grande in Forschungszentrum Karlsruhe, Germany, which provides well-calibrated trigger information and air shower parameters for primary energies up to 10eV. By the end of 2006, the radio antennas were re-configured to perform polarization measurements of the radio signal of cosmic ray air showers, recording in the same time both, the East-West and North-South polarization directions of the radio emission. The main goal of these measurements is to reconstruct the polarization characteristics of the emitted signal. This will allow a detailed comparison with theoretical predictions. The current status of these measurements is reported here.
Calibration Test of an Interplanetary Scintillation Array in Mexico
NASA Astrophysics Data System (ADS)
Carrillo, A.; Gonzalez-Esparza, A.; Andrade, E.; Ananthakrishnan, S.; Praveen-Kumar, A.; Balasubramanian, V.
We report the calibration test of a radiotelecope to carry out interplanetary scintillation (IPS) observations in Mexico. This will be a dedicate (24 hrs) radio array for IPS observations of nearly 1000 well know radio sources in the sky to perform solar wind studies. The IPS array is located in the state of Michoacan at 350 km north-west from Mexico City, (19'48 degrees north and 101'41 degrees west, 2000 meters above the sea level). The radiotelescope operates in 140 MHz with a bandwith of 1.5 MHz. The antenna is a planar array with 64 X 64 full wavelength dipoles along 64 east-west rows of open wire transmission lines, occupying 10,000 square meters (70 x 140 m). We report the final testings of the antenna array, the matrix Butler and receivers. This work is a collaboration between the Universidad Nacional Autonoma de Mexico (UNAM) and the National Centre for Radio Astrophysics (NCRA), India. We expect to initiate the firs IPS observations by the end of this year.
Design and Performance of the Multiplexed SQUID/TES Array at Ninety Gigahertz
NASA Astrophysics Data System (ADS)
Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander
2018-01-01
We present the array performance and astronomical images from early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). MUSTANG-2 was installed on the GBT on December 2, 2016 and immediately began commissioning efforts, followed by science observations, which are expected to conclude June 2017. The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instrument including the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeterwave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the UC Berkeley Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2's first season 7 separate proposals were awarded a total of 230 hours of telescope time.
Observing Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.
2011-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.
High-School Student Discovers Strange Astronomical Object
NASA Astrophysics Data System (ADS)
2009-09-01
A West Virginia high-school student analyzing data from a giant radio telescope has discovered a new astronomical object -- a strange type of neutron star called a rotating radio transient. Lucas Bolyard, a sophomore at South Harrison High School in Clarksburg, WV, made the discovery while participating in a project in which students are trained to scrutinize data from the National Science Foundation's giant Robert C. Byrd Green The project, called the Pulsar Search Collaboratory (PSC), is a joint project of the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), funded by a grant from the National Science Foundation. Bolyard made the discovery in March, after he already had studied more than 2,000 data plots from the GBT and found nothing. "I was home on a weekend and had nothing to do, so I decided to look at some more plots from the GBT," he said. "I saw a plot with a pulse, but there was a lot of radio interference, too. The pulse almost got dismissed as interference," he added. Nonetheless, he reported it, and it went on a list of candidates for West Virginia University astronomers Maura McLaughlin and Duncan Lorimer to re-examine, scheduling new observations of the region of sky from which the pulse came. Disappointingly, the follow-up observations showed nothing, indicating that the object was not a normal pulsar. However, the astronomers explained to Bolyard that his pulse still might have come from a rotating radio transient. Confirmation didn't come until July. Bolyard was at the NRAO's Green Bank Observatory with fellow PSC students. The night before, the group had been observing with the GBT in the wee hours, and all were very tired. Then Lorimer showed Bolyard a new plot of his pulse, reprocessed from raw data, indicating that it is real, not interference, and that Bolyard is likely the discoverer of one of only about 30 rotating radio transients known. Suddenly, Bolyard said, he wasn't tired anymore. "That news made me full of energy," he exclaimed. Rotating radio transients are thought to be similar to pulsars, superdense neutron stars that are the corpses of massive stars that exploded as supernovae. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by a radio telescope. While pulsars emit these radio waves continuously, rotating radio transients emit only sporadically, one burst at a time, with as much as several hours between bursts. Because of this, they are difficult to discover and observe, with the first one only discovered in 2006. "These objects are very interesting, both by themselves and for what they tell us about neutron stars and supernovae," McLaughlin said. "We don't know what makes them different from pulsars -- why they turn on and off. If we answer that question, it's likely to tell us something new about the environments of pulsars and how their radio waves are generated," she added. "They also tell us there are more neutron stars than we knew about before, and that means there are more supernova explosions. In fact, we now almost have more neutron stars than can be accounted for by the supernovae we can detect," McLaughlin explained. The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the observing data were reserved for analysis by student teams. The student teams use analysis software to reveal evidence of pulsars. Each portion of the data is analyzed by multiple teams. In addition to learning to use the analysis software, the student teams also must learn to recognize man-made radio interference that contaminates the data. The project will continue through 2011. "The students get to actually look through data that has never been looked through before," Rosen said. From the training, she added, "the students get a wonderful grasp of what they're looking at, and they understand the science behind the plots that they're looking at." For at least one student, the PSC has brought to life the excitement of discovery. "Science is a lot more exciting for me now that I've made this discovery," Bolyard said. Scientific research, he learned, "is a lot of hard work, but it's worth it!" A year ago, he said, he wouldn't have thought of astronomy as a career, but the experience of discovery made astronomy at least a possibility for him. However, he added, "I'm still hoping to be a doctor."
NASA Astrophysics Data System (ADS)
Endres, Christian P.; Schlemmer, Stephan; Schilke, Peter; Stutzki, Jürgen; Müller, Holger S. P.
2016-09-01
The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources (usually) by radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxiliary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Separate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries. The Virtual Atomic and Molecular Data Centre, VAMDC, was founded more than 5 years ago as a common platform for atomic and molecular data. This platform facilitates exchange not only between spectroscopic databases related to astrophysics or astrochemistry, but also with collisional and kinetic databases. A dedicated infrastructure was developed to provide a common data format in the various databases enabling queries to a large variety of databases on atomic and molecular data at once. For CDMS, the incorporation in VAMDC was combined with several modifications on the generation of CDMS catalog entries. Here we introduce related changes to the data structure and the data content in the CDMS. The new data scheme allows us to incorporate all previous data entries but in addition allows us also to include entries based on new theoretical descriptions. Moreover, the CDMS entries have been transferred into a mySQL database format. These developments within the VAMDC framework have in part been driven by the needs of the astronomical community to be able to deal efficiently with large data sets obtained with the Herschel Space Telescope or, more recently, with the Atacama Large Millimeter Array.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1978-01-01
Specific fields of current investigation by satellite observation and ground-based radio-astronomical and optical techniques are discussed. Topics include: aspects of energetic particles trapped in the earth's magnetic field and transiently present in the outer magnetosphere and the solar, interplanetary, and terrestrial phenomena associated with them; plasma flows in the magnetosphere and the ionospheric effects of particle precipitation, with corresponding studies of the magnetosphere of Jupiter, Saturn, and possibly Uranus; the origin and propagation of very low frequency radio waves in the earth's magnetosphere and ionosphere; solar particle emissions and their interplanetary propagation and acceleration; solar modulation and the heliocentric radial dependence of the intensity of galactic cosmic rays; radio frequency emissions from the quintescent and flaring sun; shock waves in the interplanetary medium; radio emissions from Jupiter; and radio astronomy of pulsars, flare stars, and other stellar sources.
The eclipse of the Sun from 20 May 2015
NASA Astrophysics Data System (ADS)
Tiron, S. D.
2015-04-01
The interview of the Radio Moldova with astronomer about the coming Eclipse of the Sun, included the following topics: 1) The circumstances of the Total eclipse 2) The circumstances of the Partial Eclipse in the Republic of Moldova 3) Protection of eyes during Observations
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2015-08-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
The Nonhomogeneous Poisson Process for Fast Radio Burst Rates
Lawrence, Earl; Wiel, Scott Vander; Law, Casey; ...
2017-08-30
This paper presents the non-homogeneous Poisson process (NHPP) for modeling the rate of fast radio bursts (FRBs) and other infrequently observed astronomical events. The NHPP, well-known in statistics, can model dependence of the rate on both astronomical features and the details of an observing campaign. This is particularly helpful for rare events like FRBs because the NHPP can combine information across surveys, making the most of all available information. The goal of the paper is two-fold. First, it is intended to be a tutorial on the use of the NHPP. Second, we build an NHPP model that incorporates beam patternsmore » and a power law flux distribution for the rate of FRBs. Using information from 12 surveys including 15 detections, we find an all-sky FRB rate of 587 events per sky per day above a flux of 1 Jy (95% CI: 272, 924) and a flux power-law index of 0:91 (95% CI: 0.57, 1.25).« less
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieregg, A.G.; Bechtol, K.; Romero-Wolf, A., E-mail: avieregg@kicp.uchicago.edu, E-mail: bechtol@kicp.uchicago.edu, E-mail: andrew.romero-wolf@jpl.nasa.gov
The detection of high energy neutrinos (10{sup 15}–10{sup 20} eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (∼1 PeV) and the predicted cosmogenic flux at higher energies (∼10{sup 18} eV) . Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of icemore » to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.« less
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Canonica, Michael; Lanzoni, Patrick; Noell, Wilfried; Lani, Sebastien
2014-03-01
Multi-object spectroscopy (MOS) is a powerful tool for space and ground-based telescopes for the study of the formation and evolution of galaxies. This technique requires a programmable slit mask for astronomical object selection. We are engaged in a European development of micromirror arrays (MMA) for generating reflective slit masks in future MOS, called MIRA. MMA with 100 × 200 μm2 single-crystal silicon micromirrors were successfully designed, fabricated and tested. Arrays are composed of 2048 micromirrors (32 x 64) with a peak-to-valley deformation less than 10 nm, a tilt angle of 24° for an actuation voltage of 130 V. The micromirrors were actuated successfully before, during and after cryogenic cooling, down to 162K. The micromirror surface deformation was measured at cryo and is below 30 nm peak-to-valley. These performances demonstrate the ability of such MOEMS device to work as objects selector in future generation of MOS instruments both in ground-based and space telescopes. In order to fill large focal planes (mosaicing of several chips), we are currently developing large micromirror arrays integrated with their electronics.
Internet Resources for Radio Astronomy
NASA Astrophysics Data System (ADS)
Andernach, H.
A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.
NASA Technical Reports Server (NTRS)
Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)
1992-01-01
Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.
NASA Astrophysics Data System (ADS)
Tenn, Joseph S.
2007-12-01
In 2007 the Astronomical Society of the Pacific awarded the 100th Catherine Wolfe Bruce gold medal for lifetime contributions to astronomy. The first medalist, Simon Newcomb in 1898, was a celestial mechanician who supervised the computations of orbits and compilation of almanacs, while the second, Arthur Auwers in 1899, observed visually and compiled catalogs of stellar positions and motions. In contrast the last two medalists, Martin Harwit in 2007 and Frank Low in 2006, are pioneers of infrared astronomy from airplanes and satellites. In between have come theoretical and experimental physicists, mathematicians, and radio astronomers, but the majority of medalists have been optical observers, celestial mechanicians (in the early years) and theoretical astrophysicists. Although astronomers are usually honored with the medal twenty to sixty years after their best work is done, we are starting to see more practitioners of the new astronomies, but to date there have been few representatives of the large teams that now dominate astronomical research. I will present an overview of the medalists and how their fields, styles and demographic characteristics have changed.
Fastest Pulsar Speeding Out of Galaxy, Astronomers Discover
NASA Astrophysics Data System (ADS)
2005-08-01
A speeding, superdense neutron star somehow got a powerful "kick" that is propelling it completely out of our Milky Way Galaxy into the cold vastness of intergalactic space. Its discovery is puzzling astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to directly measure the fastest speed yet found in a neutron star. Pulsar's Path Across Sky Over about 2.5 million years, Pulsar B1508+55 has moved across about a third of the night sky as seen from Earth. CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 67 KB) The neutron star is the remnant of a massive star born in the constellation Cygnus that exploded about two and a half million years ago in a titanic explosion known as a supernova. Ultra-precise VLBA measurements of its distance and motion show that it is on course to inevitably leave our Galaxy. "We know that supernova explosions can give a kick to the resulting neutron star, but the tremendous speed of this object pushes the limits of our current understanding," said Shami Chatterjee, of the National Radio Astronomy Observatory (NRAO) and the Harvard-Smithsonian Center for Astrophysics. "This discovery is very difficult for the latest models of supernova core collapse to explain," he added. Chatterjee and his colleagues used the VLBA to study the pulsar B1508+55, about 7700 light-years from Earth. With the ultrasharp radio "vision" of the continent-wide VLBA, they were able to precisely measure both the distance and the speed of the pulsar, a spinning neutron star emitting powerful beams of radio waves. Plotting its motion backward pointed to a birthplace among groups of giant stars in the constellation Cygnus -- stars so massive that they inevitably explode as supernovae. "This is the first direct measurement of a neutron star's speed that exceeds 1,000 kilometers per second," said Walter Brisken, an NRAO astronomer. "Most earlier estimates of neutron-star speeds depended on educated guesses about their distances. With this one, we have a precise, direct measurement of the distance, so we can measure the speed directly," Brisken said. The VLBA measurements show the pulsar moving at nearly 1100 kilometers (more than 670 miles) per second -- about 150 times faster than an orbiting Space Shuttle. At this speed, it could travel from London to New York in five seconds. In order to measure the pulsar's distance, the astronomers had to detect a "wobble" in its position caused by the Earth's motion around the Sun. That "wobble" was roughly the length of a baseball bat as seen from the Moon. Then, with the distance determined, the scientists could calculate the pulsar's speed by measuring its motion across the sky. "The motion we measured with the VLBA was about equal to watching a home run ball in Boston's Fenway Park from a seat on the Moon," Chatterjee explained. "However, the pulsar took nearly 22 months to show that much apparent motion. The VLBA is the best possible telescope for tracking such tiny apparent motions." The star's presumed birthplace among giant stars in the constellation Cygnus lies within the plane of the Milky Way, a spiral galaxy. The new VLBA observations indicate that the neutron star now is headed away from the Milky Way's plane with enough speed to take it completely out of the Galaxy. Since the supernova explosion nearly 2 and a half million years ago, the pulsar has moved across about a third of the night sky as seen from Earth. "We've thought for some time that supernova explosions can give a kick to the resulting neutron star, but the latest computer models of this process have not produced speeds anywhere near what we see in this object," Chatterjee said. "This means that the models need to be checked, and possibly corrected, to account for our observations," he said. "There also are some other processes that may be able to add to the speed produced by the supernova kick, but we'll have to investigate more thoroughly to draw any firm conclusions," said Wouter Vlemmings of the Jodrell Bank Observatory in the UK and Cornell University in the U.S. The observations of B1508+55 were part of a larger project to use the VLBA to measure the distances and motions of numerous pulsars. "This is the first result of this long-term project, and it's pretty exciting to have something so spectacular come this early," Brisken said. The VLBA observations were made at radio frequencies between 1.4 and 1.7 GigaHertz. Chatterjee, Vlemmings and Brisken worked with Joseph Lazio of the Naval Research Laboratory, James Cordes of Cornell University, Miller Goss of NRAO, Stephen Thorsett of the University of California, Santa Cruz, Edward Fomalont of NRAO, Andrew Lyne and Michael Kramer, both of Jodrell Bank Observatory. The scientists presented their findings in the September 1 issue of the Astrophysical Journal Letters. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Future Trends in Solar Radio Astronomy and Coronal Magnetic-Field Measurements
NASA Astrophysics Data System (ADS)
Fleishman, Gregory; Nita, Gelu; Gary, Dale
Solar radio astronomy has an amazingly rich, but yet largely unexploited, potential for probing the solar corona and chromosphere. Radio emission offers multiple ways of detecting and tracking electron beams, studying chromospheric and coronal thermal structure, plasma processes, particle acceleration, and measuring magnetic fields. To turn the mentioned potential into real routine diagnostics, two major components are needed: (1) well-calibrated observations with high spatial, spectral, and temporal resolutions and (2) accurate and reliable theoretical models and fast numerical tools capable of recovering the emission source parameters from the radio data. This report gives a brief overview of the new, expanded, and planned radio facilities, such as Expanded Owens Valley Solar Array (EOVSA), Jansky Very Large Array (JVLA), Chinese Solar Radio Heliograph (CSRH), Upgraded Siberian Solar Radio Telescope (USSRT), and Frequency Agile Solar Radiotelescope (FASR) with the emphasis on their ability to measure the coronal magnetic fields in active regions and flares. In particular, we emphasize the new tools for 3D modeling of the radio emission and forward fitting tools in development needed to derive the magnetic field data from the radio measurements.
The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy
NASA Technical Reports Server (NTRS)
Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.
1997-01-01
This is the first report of a new contract. However, this project represents ongoing work, so there are completed tasks as well as newly started tasks to report. The project involves the completion of the IRAS Galaxy Atlas (IGA), a large image database produced using data from the Infrared Astronomical Satellite (IRAS). In this phase, the project switches from the production and characterization of the IGA to its use in astronomical research studies of massive star formation. The research utilizes the IGA as well as two other large data sets being produced by research partners.
Submillimeter wave detection with superconducting tunnel diodes
NASA Technical Reports Server (NTRS)
Wengler, Michael J.
1992-01-01
Superconductor-Insulator-Superconductor (SIS) diodes are the detector elements in the most sensitive heterodyne receivers available from 100 to 500 GHz. SIS mixers are the front end of radio astronomical systems around the world. SIS mixer technology is being extended to 1 THz and higher frequencies for eventual use on spaceborne astronomical experiments. Here is a short review of submillimeter SIS mixers. The role of impedance matching in the proper design of an SIS mixer is described. A variety of methods for achieving good impedance match at submillimeter frequencies are presented. The experimental state of the submillimeter SIS mixer art is described and summarized.
NASA Technical Reports Server (NTRS)
Vanallen, J. A.
1974-01-01
Various research projects in space physics are summarized. Emphasis is placed on: (1) the study of energetic particles in outer space and their relationships to electric, magnetic, and electromagnetic fields associated with the earth, the sun, the moon, the planets, and interplanetary medium; (2) observational work on satellites of the earth and the moon, and planetary and interplanetary spacecraft; (3) phenomenological analysis and interpretation; (4) observational work by ground based radio-astronomical and optical techniques; and (5) theoretical problems in plasma physics. Specific fields of current investigations are summarized.
An 'X-banded' Tidbinbilla interferometer
NASA Technical Reports Server (NTRS)
Batty, Michael J.; Gardyne, R. G.; Gay, G. J.; Jauncy, David L.; Gulkis, S.; Kirk, A.
1986-01-01
The recent upgrading of the Tidbinbilla two-element interferometer to simultaneous S-band (2.3 GHz) and X-band (8.4 GHz) operation has provided a powerful new astronomical facility for weak radio source measurement in the Southern Hemisphere. The new X-band system has a minimum fringe spacing of 38 arcsec, and about the same positional measurement capability (approximately 2 arcsec) and sensitivity (1 s rms noise of 10 mJy) as the previous S-band system. However, the far lower confusion limit will allow detection and accurate positional measurements for sources as weak as a few millijanskys. This capability will be invaluable for observations of radio stars, X-ray sources and other weak, compact radio sources.
The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration
NASA Astrophysics Data System (ADS)
Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.
2017-03-01
In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1987-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.
NASA Astrophysics Data System (ADS)
Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric
2018-06-01
We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.
Greenfield, P E; Roberts, D H; Burke, B F
1980-05-02
A full 12-hour synthesis at 6-centimeter wavelength with the Very Large Array confirms the major features previously reported for the double quasar 0957+561. In addition, the existence of radio jets apparently associated with both quasars is demonstrated. Gravitational lens models are now favored on the basis of recent optical observations, and the radio jets place severe constraints on such models. Further radio observations of the double quasar are needed to establish the expected relative time delay in variations between the images.
Extragalactic radio surveys in the pre-Square Kilometre Array era
2017-01-01
The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined. PMID:28791175
Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets
NASA Astrophysics Data System (ADS)
Jester, Sebastian; Falcke, Heino
2009-05-01
Low-frequency radio astronomy is limited by severe ionospheric distortions below 50 MHz and complete reflection of radio waves below 10-30 MHz. Shielding of man-made interference from long-range radio broadcasts, strong natural radio emission from the Earth's aurora, and the opportunity to set up a large distributed antenna array make the lunar far side a supreme location for a low-frequency radio array. A number of new scientific drivers for such an array, such as the study of the dark ages and epoch of reionization, exoplanets, and ultra-high energy cosmic rays, have emerged and need to be studied in greater detail. Here we review the scientific potential and requirements of these new scientific drivers and discuss the constraints for various lunar surface arrays. In particular, we describe observability constraints imposed by the interstellar and interplanetary medium, calculate the achievable resolution, sensitivity, and confusion limit of a dipole array using general scaling laws, and apply them to various scientific questions. Of particular interest for a lunar array are studies of the earliest phase of the universe which are not easily accessible by other means. These are the epoch of reionization at redshifts z = 6-20, during which the very first stars and galaxies ionized most of the originally neutral intergalactic hydrogen, and the dark ages prior to that. For example, a global 21-cm wave absorption signature from primordial hydrogen in the dark ages at z = 30-50 could in principle be detected by a single dipole in an eternally dark crater on the moon, but foreground subtraction would be extremely difficult. Obtaining a high-quality power spectrum of density fluctuations in the epoch of reionization at z = 6-20, providing a wealth of cosmological data, would require about 103-105 antenna elements on the moon, which appears not unreasonable in the long term. Moreover, baryonic acoustic oscillations in the dark ages at z = 30-50 could similarly be detected, thereby providing pristine cosmological information, e.g., on the inflationary phase of the universe. With a large array also exoplanet magnetospheres could be detected through Jupiter-like coherent bursts. Smaller arrays of order 102 antennas over ˜100 km, which could already be erected robotically by a single mission with current technology and launchers, could tackle surveys of steep-spectrum large-scale radio structures from galaxy clusters and radio galaxies. Also, at very low frequencies the structure of the interstellar medium can be studied tomographically. Moreover, radio emission from neutrino interactions within the moon can potentially be used to create a neutrino detector with a volume of several cubic kilometers. An ultra-high energy cosmic ray detector with thousands of square kilometer area for cosmic ray energies >1020eV could in principle be realized with some hundred antennas. In any case, pathfinder arrays are needed to test the feasibility of these experiments in the not too distant future. Lunar low-frequency arrays are thus a timely option to consider, offering the potential for significant new insights into a wide range of today's crucial scientific topics. This would open up one of the last unexplored frequency domains in the electromagnetic spectrum.
The Frontiers of the Astronomical Universe
ERIC Educational Resources Information Center
Pecker, Jean-Claude
1977-01-01
Reviews the current state of knowledge obtained by means of observations using the increasingly powerful or proficient instruments of astrophysics, radio astronomy, and space astronomy by satellite. In conclusion, he refers to certain mathematical entities introduced into the theory of the origins and evolution of the cosmos. (Author/MA)
Pulsars Probe the Low-Frequency Gravitational Sky: Pulsar Timing Arrays Basics and Recent Results
NASA Astrophysics Data System (ADS)
Tiburzi, Caterina
2018-03-01
Pulsar Timing Array experiments exploit the clock-like behaviour of an array of millisecond pulsars, with the goal of detecting low-frequency gravitational waves. Pulsar Timing Array experiments have been in operation over the last decade, led by groups in Europe, Australia, and North America. These experiments use the most sensitive radio telescopes in the world, extremely precise pulsar timing models and sophisticated detection algorithms to increase the sensitivity of Pulsar Timing Arrays. No detection of gravitational waves has been made to date with this technique, but Pulsar Timing Array upper limits already contributed to rule out some models of galaxy formation. Moreover, a new generation of radio telescopes, such as the Five hundred metre Aperture Spherical Telescope and, in particular, the Square Kilometre Array, will offer a significant improvement to the Pulsar Timing Array sensitivity. In this article, we review the basic concepts of Pulsar Timing Array experiments, and discuss the latest results from the established Pulsar Timing Array collaborations.
Radio Jove: Citizen Science for Jupiter Radio Astronomy
NASA Astrophysics Data System (ADS)
Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.
2016-12-01
The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.
Interagency telemetry arraying for Voyager-Neptune encounter
NASA Technical Reports Server (NTRS)
Brown, D. W.; Brundage, W. D.; Ulvestad, J. S.; Kent, S. S.; Bartos, K. P.
1990-01-01
The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented.
NASA Astrophysics Data System (ADS)
Gozzard, David R.; Schediwy, Sascha W.; Dodson, Richard; Rioja, María J.; Hill, Mike; Lennon, Brett; McFee, Jock; Mirtschin, Peter; Stevens, Jamie; Grainge, Keith
2017-07-01
In order to meet its cutting-edge scientific objectives, the Square Kilometre Array (SKA) telescope requires high-precision frequency references to be distributed to each of its antennas. The frequency references are distributed via fiber-optic links and must be actively stabilized to compensate for phase noise imposed on the signals by environmental perturbations on the links. SKA engineering requirements demand that any proposed frequency reference distribution system be proved in “astronomical verification” tests. We present results of the astronomical verification of a stabilized frequency reference transfer system proposed for SKA-mid. The dual-receiver architecture of the Australia Telescope Compact Array was exploited to subtract the phase noise of the sky signal from the data, allowing the phase noise of observations performed using a standard frequency reference, as well as the stabilized frequency reference transfer system transmitting over 77 km of fiber-optic cable, to be directly compared. Results are presented for the fractional frequency stability and phase drift of the stabilized frequency reference transfer system for celestial calibrator observations at 5 and 25 GHz. These observations plus additional laboratory results for the transferred signal stability over a 166 km metropolitan fiber-optic link are used to show that the stabilized transfer system under test exceeds all SKA phase-stability requirements within a broad range of observing conditions. Furthermore, we have shown that alternative reference dissemination systems that use multiple synthesizers to supply reference signals to sub-sections of an array may limit the imaging capability of the telescope.
The Chinese "Jing Xing" of 1006: Its Identity and Astrological Meaning
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
2006-08-01
The outburst of supernovae 1006 was one of most spectacular astronomical events in history. This event was observed in almost all civilizations. In the Song China, it was known as the appearance of a jing xing , one type of "guest stars". Based on a the descriptions given by various observers from China, Japan and Arabic world, this paper reconstructs the light curve of this supernovae. A close examination of the Chinese descriptions of its location also suggests that the remnant of this supernova might be identified with another radio source other than widely recognized "SN1006". Furthermore, this paper examines the astrological interpretations of this event given by the Chinese astronomers. It shows that such astronomical events had tremendous political implications and their astrological interpretations were shaped by political situation of the time.
The Development of Astronomy and Emergence of Astrophysics in New Zealand
NASA Astrophysics Data System (ADS)
Hearnshaw, John; Orchiston, Wayne
The development of astronomy and astrophysics in New Zealand from the earliest European exploration and settlement to the present day is discussed. The major contributions to astronomy by amateur astronomers are covered, as is the later development of astronomy and astrophysics in New Zealand's universities. The account includes the founding of professional observatories for optical astronomy at Mt. John (belonging to the University of Canterbury) and for radio astronomy at Warkworth (belonging to the Auckland University of Technology). Several major international collaborations in which New Zealand is participating (or has participated) are described, including SALT, MOA, IceCube and SKA. The founding and history of the Carter Observatory in Wellington, of the Stardome Observatory in Auckland (both engaged in astronomical education and outreach) and of the Royal Astronomical Society of New Zealand are briefly covered.
Current status of Polish Fireball Network
NASA Astrophysics Data System (ADS)
Wiśniewski, M.; Żołądek, P.; Olech, A.; Tyminski, Z.; Maciejewski, M.; Fietkiewicz, K.; Rudawska, R.; Gozdalski, M.; Gawroński, M. P.; Suchodolski, T.; Myszkiewicz, M.; Stolarz, M.; Polakowski, K.
2017-09-01
The Polish Fireball Network (PFN) is a project to monitor regularly the sky over Poland in order to detect bright fireballs. In 2016 the PFN consisted of 36 continuously active stations with 57 sensitive analogue video cameras and 7 high resolution digital cameras. In our observations we also use spectroscopic and radio techniques. A PyFN software package for trajectory and orbit determination was developed. The PFN project is an example of successful participation of amateur astronomers who can provide valuable scientific data. The network is coordinated by astronomers from Copernicus Astronomical Centre in Warsaw, Poland. In 2011-2015 the PFN cameras recorded 214,936 meteor events. Using the PFN data and the UFOOrbit software 34,609 trajectories and orbits were calculated. In the following years we are planning intensive modernization of the PFN network including installation of dozens of new digital cameras.
Radioastronomie d'amateur, détection de pulsars a 21 cm
NASA Astrophysics Data System (ADS)
Maintoux, Jean-Jacques
2017-01-01
Since the discovery of PSR B1919+21 in 1967, the study of radio pulsars has been so far the work of professional teams using large aperture arrays or single dish antennas. While the discovery of new pulsars is so far out of reach of amateurs astronomers with limited resources, we report the successful detection of 3 pulsars at 1420MHz with a 3.3m prime focus dish antenna, namely: B0329+54, B0950+08 and B1133+16. According to the Neutron Star list [6], this sets a new detection record given the very limited aperture of the antenna. In this paper, we expose how the sensibility and stability to achieve such detection was obtained with our constrained setup, then we discuss the data processing aspects, including the period calculation and folding for each PSR, as well as pulse profiles. With the upcoming upgrades to the telescope, more detections are likely to come. An ongoing observation of B2020+28 already yields promising results. Follow the last results here : http://www.f1ehn.org "radioastro"
1990-12-05
This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.
The local spiral structure of the Milky Way
Xu, Ye; Reid, Mark; Dame, Thomas; Menten, Karl; Sakai, Nobuyuki; Li, Jingjing; Brunthaler, Andreas; Moscadelli, Luca; Zhang, Bo; Zheng, Xingwu
2016-01-01
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral structure in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxy’s major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms. PMID:27704048
2017-12-08
NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. This composite shows the Cassiopeia A supernova remnant across the spectrum: Gamma rays (magenta) from NASA's Fermi Gamma-ray Space Telescope; X-rays (blue, green) from NASA's Chandra X-ray Observatory; visible light (yellow) from the Hubble Space Telescope; infrared (red) from NASA's Spitzer Space Telescope; and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, CXC/SAO/JPL-Caltech/Steward/O. Krause et al., and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
NASA Technical Reports Server (NTRS)
Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl
2000-01-01
We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.
NASA Astrophysics Data System (ADS)
2003-11-01
Scientists and dignitaries from Europe, North America and Chile are breaking ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths . ALMA - the "Atacama Large Millimeter Array" - will be a single instrument composed of 64 high-precision antennas located in the II Region of Chile, in the District of San Pedro de Atacama, at the Chajnantor altiplano, 5,000 metres above sea level. ALMA 's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimetre portion of the electromagnetic spectrum. The Atacama Large Millimeter Array (ALMA) is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. " ALMA will be a giant leap forward for our studies of this relatively little explored spectral window towards the Universe" , said Dr. Catherine Cesarsky , Director General of ESO. "With ESO leading the European part of this ambitious and forward-looking project, the impact of ALMA will be felt in wide circles on our continent. Together with our partners in North America and Chile, we are all looking forward to the truly outstanding opportunities that will be offered by ALMA , also to young scientists and engineers" . " The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument, " stated Dr. Rita Colwell , director of the U.S. National Science Foundation. " ALMA will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of space through which light cannot penetrate." On the occasion of this groundbreaking, the ALMA logo was unveiled. [ALMA Logo] Science with ALMA ALMA will capture millimetre and sub-millimetre radiation from space and produce images and spectra of celestial objects as they appear at these wavelengths. This particular portion of the electromagnetic spectrum, which is less energetic than visible and infrared light, yet more energetic than most radio waves, holds the key to understanding a great variety of fundamental processes, e.g., planet and star formation and the formation and evolution of galaxies and galaxy clusters in the early Universe. The possibility to detect emission from organic and other molecules in space is of particularly high interest. The millimetre and sub-millimetre radiation that ALMA will study is able to penetrate the vast clouds of dust and gas that populate interstellar (and intergalactic) space, revealing previously hidden details about astronomical objects. This radiation, however, is blocked by atmospheric moisture (water molecules) in the Earth's atmosphere. To conduct research with ALMA in this critical portion of the spectrum, astronomers thus need an exceptional observation site that is very dry, and at a very high altitude where the atmosphere above is thinner. Extensive tests showed that the sky above the high-altitude Chajnantor plain in the Atacama Desert has the unsurpassed clarity and stability needed to perform efficient observations with ALMA . ALMA operation ALMA will be the highest-altitude, full-time ground-based observatory in the world, at some 250 metres higher than the peak of Mont Blanc, Europe's tallest mountain. Work at this altitude is difficult. To help ensure the safety of the scientists and engineers at ALMA , operations will be conducted from the Operations Support Facility ( ALMA OSF) , a compound located at a more comfortable altitude of 2,900 metres, between the cities of Toconao and San Pedro de Atacama. Phase 1 of the ALMA Project, which included the design and development, was completed in 2002. The beginning of Phase 2 happened on February 25, 2003, when the European Southern Observatory (ESO) and the US National Science Foundation (NSF) signed a historic agreement to construct and operate ALMA , cf. ESO PR 04/03 . Construction will continue until 2012; however, initial scientific observations are planned already from 2007, with a partial array of the first antennas. ALMA 's operation will progressively increase until 2012 with the installation of the remaining antennas. The entire project will cost approximately 600 million Euros. Earlier this year, the ALMA Board selected Professor Massimo Tarenghi , formerly manager of ESO's VLT Project, to become ALMA Director. He is confident that he and his team will succeed: "We may have a lot of hard work in front of us" , he said, "but all of us in the team are excited about this unique project. We are ready to work for the international astronomical community and to provide them in due time with an outstanding instrument allowing trailblazing research projects in many different fields of modern astrophysics" . How ALMA will work ALMA will be composed of 64 high-precision antennas, each 12 metres in diameter. The ALMA antennas can be repositioned, allowing the telescope to function much like the zoom lens on a camera. At its largest, ALMA will be 14 kilometers across. This will allow the telescope to observe fine-scale details of astronomical objects. At its smallest configuration, approximately 150 meters across, ALMA will be able to study the large-scale structures of these same objects. ALMA will function as an interferometer (according to the same basic principle as the VLT Interferometer (VLTI) at Paranal). This means that it will combine the signals from all its antennas (one pair of antennas at a time) to simulate a telescope the size of the distance between the antennas. With 64 antennas, ALMA will generate 2016 individual antenna pairs ("baselines") during the observations. To handle this enormous amount of data, ALMA will rely on a very powerful, specialized computer (a "correlator"), which will perform 16,000 million million (1.6 x 10 16 ) operations per second. Currently, two prototype ALMA antennas are undergoing rigorous testing at the NRAO's Very Large Array site, near Socorro, New Mexico, USA. International collaboration For this ambitious project, ALMA has become a joint effort among many nations and scientific institutions. In Europe, ESO leads on behalf of its ten member countries (Belgium, Denmark, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland and the United Kingdom) and Spain. Japan may join in 2004, bringing enhancements to the project. Given the participation of North America, this will be the first truly global project of ground-based astronomy, an essential development in view of the increasing technological sophistication and the high costs of front-line astronomy installations. The first submillimeter telescope in the southern hemisphere was the 15-m Swedish-ESO Submillimetre Telescope (SEST) which was installed at the ESO La Silla Observatory in 1987. It has since been used extensively by astronomers, mostly from ESO's member states. SEST has now been decommissioned and a new submillimetre telescope, APEX, is about to commence operations at Chajnantor. APEX, which is a joint project between ESO, the Max Planck Institute for Radio Astronomy in Bonn (Germany), and the Onsala Space Observatory (Sweden), is an antenna comparable to the ALMA antennas.
Indirect observation of unobservable interstellar molecules
NASA Technical Reports Server (NTRS)
Herbst, E.; Green, S.; Thaddeus, P.; Klemperer, W.
1977-01-01
It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described.
The Murchison Widefield Array: solar science with the low frequency SKA Precursor
NASA Astrophysics Data System (ADS)
Tingay, S. J.; Oberoi, D.; Cairns, I.; Donea, A.; Duffin, R.; Arcus, W.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Bunton, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A.; deSouza, L.; Emrich, D.; Gaensler, B. M.; R, Goeke; Greenhill, L. J.; Hazelton, B. J.; Herne, D.; Hewitt, J. N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kennewell, J. A.; Kincaid, B. B.; Koenig, R.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Ord, S. M.; Pathikulangara, J.; Prabu, T.; Remillard, R. A.; Rogers, A. E. E.; Roshi, A.; Salah, J. E.; Sault, R. J.; Udaya-Shankar, N.; Srivani, K. S.; Stevens, J.; Subrahmanyan, R.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.
2013-06-01
The Murchison Widefield Array is a low frequency (80 - 300 MHz) SKA Precursor, comprising 128 aperture array elements (known as tiles) distributed over an area of 3 km diameter. The MWA is located at the extraordinarily radio quiet Murchison Radioastronomy Observatory in the mid-west of Western Australia, the selected home for the Phase 1 and Phase 2 SKA low frequency arrays. The MWA science goals include: 1) detection of fluctuations in the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the epoch of reionisation; 2) studies of Galactic and extragalactic processes based on deep, confusion-limited surveys of the full sky visible to the array; 3) time domain astrophysics through exploration of the variable radio sky; and 4) solar imaging and characterisation of the heliosphere and ionosphere via propagation effects on background radio source emission. This paper concentrates on the capabilities of the MWA for solar science and summarises some of the solar science results to date, in advance of the initial operation of the final instrument in 2013.
The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI)
NASA Technical Reports Server (NTRS)
Poglitsch, A.; Geis, N.; Genzel, R.; Haggerty, M.; Beeman, J. W.
1991-01-01
FIFI, an imaging spectrometer with two or three Fabry-Perot interferometers in a series for astronomical observations in the FIR range, is described. Spectral resolutions of 2 km/s can be obtained with FIFI. Design considerations are discussed as well as optics, the detector array, the transimpedance amplifier array, signal demodulation, data acquisition, and instrument control.
Imaging of Stellar Surfacess Using Radio Facilities Including ALMA
NASA Astrophysics Data System (ADS)
O'Gorman, Eamon
2018-04-01
Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.
BlackHoleCam: Fundamental physics of the galactic center
NASA Astrophysics Data System (ADS)
Goddi, C.; Falcke, H.; Kramer, M.; Rezzolla, L.; Brinkerink, C.; Bronzwaer, T.; Davelaar, J. R. J.; Deane, R.; de Laurentis, M.; Desvignes, G.; Eatough, R. P.; Eisenhauer, F.; Fraga-Encinas, R.; Fromm, C. M.; Gillessen, S.; Grenzebach, A.; Issaoun, S.; Janßen, M.; Konoplya, R.; Krichbaum, T. P.; Laing, R.; Liu, K.; Lu, R.-S.; Mizuno, Y.; Moscibrodzka, M.; Müller, C.; Olivares, H.; Pfuhl, O.; Porth, O.; Roelofs, F.; Ros, E.; Schuster, K.; Tilanus, R.; Torne, P.; van Bemmel, I.; van Langevelde, H. J.; Wex, N.; Younsi, Z.; Zhidenko, A.
Einstein’s General theory of relativity (GR) successfully describes gravity. Although GR has been accurately tested in weak gravitational fields, it remains largely untested in the general strong field cases. One of the most fundamental predictions of GR is the existence of black holes (BHs). After the recent direct detection of gravitational waves by LIGO, there is now near conclusive evidence for the existence of stellar-mass BHs. In spite of this exciting discovery, there is not yet direct evidence of the existence of BHs using astronomical observations in the electromagnetic spectrum. Are BHs observable astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Milky Way, which hosts the closest and best-constrained supermassive BH candidate in the universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment consists of making a standard astronomical image of the synchrotron emission from the relativistic plasma accreting onto Sgr A*. This emission forms a “shadow” around the event horizon cast against the background, whose predicted size (˜50μas) can now be resolved by upcoming very long baseline radio interferometry experiments at mm-waves such as the event horizon telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the next-generation near-infrared (NIR) interferometer GRAVITY at the very large telescope (VLT). The third experiment aims to detect and study a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama large millimeter array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and contributes directly to them at different levels. These efforts will eventually enable us to measure fundamental BH parameters (mass, spin, and quadrupole moment) with sufficiently high precision to provide fundamental tests of GR (e.g. testing the no-hair theorem) and probe the spacetime around a BH in any metric theory of gravity. Here, we review our current knowledge of the physical properties of Sgr A* as well as the current status of such experimental efforts towards imaging the event horizon, measuring stellar orbits, and timing pulsars around Sgr A*. We conclude that the Galactic center provides a unique fundamental-physics laboratory for experimental tests of BH accretion and theories of gravity in their most extreme limits.
Metal-Containing Molecules Beyond the Solar System: a Laboratory and Radio Astronomical Perspective
NASA Astrophysics Data System (ADS)
Ziurys, L. M.
2010-06-01
Although the history of interstellar molecules began around 1970, with the millimeter-wave detection of CO in the Orion Nebula, metal-containing species have been somewhat elusive for astronomical searches. Only in the past two decades have metal-bearing molecules been identified in space, starting with metal halides (NaCl, KCl, AlCl, and AlF), and then metal cyanide and isocyanide species (MgNC, MgCN, NaCN, and AlNC). Moreover, the metal-containing molecules seemed to be present in a single astronomical object: the envelope of a dying, carbon-rich star, IRC+10216. However, with improvements both in laboratory spectroscopy and telescope sensitivity, it is becoming clear that the relevance of metal-containing species in astrophysics is increasing. Metal oxide and hydroxide species, such as AlO and AlOH, have recently been identified in interstellar space. Metal-containing molecules are now being found in other astronomical sources, such as the oxygen-rich shell surrounding VY Canis Majoris, a supergiant star. These new astronomical discoveries will be presented, as well as the laboratory measurements that made them possible. New directions in rotational spectroscopy of metal-bearing molecules will also be discussed.
Despite Appearances, Cosmic Explosions Have Common Origin, Astronomers Discover
NASA Astrophysics Data System (ADS)
2003-11-01
A Fourth of July fireworks display features bright explosions that light the sky with different colors, yet all have the same cause. They just put their explosive energy into different colors of light. Similarly, astronomers have discovered, a variety of bright cosmic explosions all have the same origin and the same amount of total energy. This is the conclusion of an international team of astronomers that used the National Science Foundation's Very Large Array (VLA) radio telescope to study the closest known gamma-ray burst earlier this year. Artist's conception of burst Artist's Conception of Twin Jets in Energetic Cosmic Explosion CREDIT: Dana Berry, SkyWorks Digital (Click on Image for Larger Version) "For some reason we don't yet understand, these explosions put greatly varying percentages of their explosive energy into the gamma-ray portion of their output," said Dale Frail, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. That means, he said, that both strong and weak gamma-ray bursts, along with X-ray flashes, which emit almost no gamma rays, are just different forms of the same cosmic beast. The research team reported their results in the November 13 issue of the scientific journal Nature. The scientists trained the VLA on a gamma-ray burst discovered using NASA's HETE-2 satellite last March 29. This burst, dubbed GRB 030329, was the closest such burst yet seen, about 2.6 billion light-years from Earth. Because of this relative proximity, the burst was bright, with visible light from its explosion reaching a level that could be seen in amateur telescopes. As the burst faded, astronomers noted an underlying distinctive signature of a supernova explosion, confirming that the event was associated with the death of a massive star. Since 1999, astronomers have known that the strong outbursts of gamma rays, X-rays, visible light and radio waves from these bursts form beams, like those from a flashlight, rather than spreading in all directions, like light from a bare bulb. The surprising result from the VLA studies of GRB 030329 is that there are two beams, not one. The scientists found that the gamma rays and the early visible-light and X-ray emission were coming from a narrow beam, while the radio waves and later visible-light emission came from another, wider beam. "The strange thing is that some explosions seem to put most of their energy into the narrow beam, while others put most or nearly all their energy into the wider beam," Frail said. "This is telling us something very fundamental about the inner workings that drive these explosions," Frail added. The mechanism producing these explosions is what scientists call a collapsar, which occurs when a giant star collapses of its own weight at the end of its normal, nuclear fusion-powered lifetime. In an ordinary supernova, such a collapse produces a neutron star. A collapsar, however, marks the death of a more-massive star and results in a black hole, a concentration of mass so dense that not even light can escape it. After the black hole forms, its powerful gravitational pull sucks the star's remaining material toward it. This material forms a spinning disk around the black hole that lasts only a few seconds. During that time, the disk ejects material outward from its poles. A jet of material moving at nearly the speed of light emits gamma rays; slower material emits radio waves and visible light. "Despite the differences in how much energy comes out in gamma rays, all these things seem to be caused by the same basic mechanism," said Edo Berger, a graduate student at Caltech and lead author of the Nature paper. "Our observations now give the data that will help us understand what causes the differences," he added. "It was astounding to suddenly realize that these apparently very different cosmic beasts all are really the same thing," said Berger. The next job, Frail said, is to learn if there are, in fact, two jets, or a single jet in which the central part encounters less resistance and thus can move outward at greater speeds. Frail pointed out that the radio observations alone had the ability to show the total energy output of the burst, thus providing the breakthrough in understanding the common thread among the different types of explosions. "The key fact is that the optical, X-Ray and gamma-ray telescopes missed 90 percent of the energy put out by this burst," Frail added. "As the VLA Expansion Project progresses and the sensitivity of the VLA improves in the coming years, it will become an even more important tool in unravelling this mystery," Frail said. "The exciting part of this new discovery is that explosions that we once thought were quite different now appear to all have a common origin," Frail concluded. "That insight, of course, gives us the new challenge of explaining how a single mechanism can make itself look so different," he added. In addition to Berger and Frail, the other authors of the paper are Professor Shri Kulkarni of Caltech; Guy Pooley of Cambridge University's Mullard Radio Astronomy Observatory; Vince McIntyre and Robin Wark, both of the Australia Telescope National Facility; Re'em Sari, associate professor of astrophysics and planetary science at Caltech; Derek Fox, a postdoctoral scholar in astronomy at Caltech; Alicia Soderberg, a graduate student in astrophysics at Caltech; Sarah Yost, a graduate student in physics at Caltech; and Paul Price, a postdoctoral scholar at the University of Hawaii's Institute for Astronomy. Berger and Soderberg earlier worked on gamma-ray-burst studies as summer students at NRAO. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
A New Method to Cancel RFI---The Adaptive Filter
NASA Astrophysics Data System (ADS)
Bradley, R.; Barnbaum, C.
1996-12-01
An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation effectiveness of the system on the 140 ft telescope at Green Bank Observatory.
Overview of the Chandra X-Ray Observatory Facility
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Six, N. Frank (Technical Monitor)
2002-01-01
The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems (hundreds of degrees below zero Celsius) produce low energy radio and microwave photons, whereas cool bodies like our own (about 30 degrees Celsius) produce infrared radiation. Very high temperatures (millions of degrees Celsius) are one way of producing X-rays.
Heliophysics Radio Observations Enabled by the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Kasper, J. C.
2018-02-01
This presentation reviews the scientific potential of low frequency radio imaging from space, the SunRISE radio interferometer, and the scientific value of larger future arrays in deep space and how they would benefit from the Deep Space Gateway.
Radio Frequency Interference Detection using Machine Learning.
NASA Astrophysics Data System (ADS)
Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.
2017-05-01
Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.
High event rate ROICs (HEROICs) for astronomical UV photon counting detectors
NASA Astrophysics Data System (ADS)
Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis
2014-07-01
The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.
The High Time Resolution Radio Sky
NASA Astrophysics Data System (ADS)
Thornton, D.
2013-11-01
Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with each orbit, PSR J1729-2117 which is an unusual isolated recycled pulsar, and PSR J2322-2650 which has a companion of very low mass - just 7 × 10^{-4} {M}_{⊙}, amongst others. I begin this thesis with the study of these pulsars and discuss their histories. In addition, I demonstrate that optical observations of the companions to some of the newly discovered pulsars in the High Time Resolution Universe survey may result in a measurement of their age and that of the pulsar. I have discovered five new extragalactic single radio bursts, confirming them as an astronomical population. These appear to occur frequently, with a rate of 1.0^{+0.6}_{-0.5} × 10^4 sky^{-1} day^{-1}. The sources are likely at cosmological distances - with redshifts between 0.45 and 1.45, making them more than half way to the Big Bang in the most distant case. This implies their luminosities must be enormous, 10^{31} to 10^{33} J emitted in just a few milliseconds. Their source is unknown but I present an analysis of the options. I also perform a population simulation of the bursts which demonstrates how their intrinsic spectrum could be measured, even for unlocalised FRBs: early indications are that the spectral index of FRBs < 0.
Utilization of a Curved Local Surface Array in a 3.5m Wide field of View Telescope
2013-09-01
ABSTRACT Wide field of view optical telescopes have a range of uses for both astronomical and space -surveillance purposes. In designing these...Agency (DARPA) 3.5-m Space Surveillance Telescope (SST)), the choice was made to curve the array to best satisfy the stressing telescope performance...dramatically improves the nation’s space surveillance capabilities. This paper will discuss the implementation of the curved focal-surface array, the
Reminiscences regarding Professor R.N. Christiansen
NASA Astrophysics Data System (ADS)
Swarup, Govind
2008-11-01
In this short paper I describe my initiation into the field of radio astronomy fifty years ago, under the guidance of Professor W.N. ('Chris') Christiansen, soon after I joined the C.S.I.R.O.'s Division of Radiophysics (RP) in Sydney, Australia, in 1953 under a 2-year Colombo Plan Fellowship. During the early 1950s Christiansen had developed a remarkable 21 cm interferometric grating array of 32 east-west aligned parabolic dishes and another array of 16 dishes in a north-south direction at Potts Hill. Christiansen and Warburton used these two arrays to scan the Sun strip-wise yielding radio brightness distribution at various position angles. During a three month period I assisted them in making a 2-dimensional map of the Sun by a complex Fourier transform process. In the second year of my Fellowship, Parthasarathy and I converted the 32-antenna east-west grating array to study solar radio emission at 60cm. During this work, I noticed that the procedure adopted by Christiansen for phase adjustment of the grating array was time consuming. Based on this experience, I later developed an innovative technique at Stanford in 1959 for phase adjustment of long transmission lines and paths in space. In a bid to improve on the method used by Christiansen to make a 2-dimensional map of the Sun from strip scans, I suggested to R.N. Bracewell in 1962 a revolutionary method for direct 2-dimensional imaging without Fourier transforms. Bracewell and Riddle developed the method for making a 2-dimensional map of the Moon using strip scans obtained with the 32 element interferometer at Stanford. The method has since revolutionized medical tomography. I describe these developments here to highlight my initial work with Christiansen and to show how new ideas often are developed by necessity and have their origin in prior experience! The 32 Potts Hill solar grating array dishes were eventually donated by the C.S.I.R.0. to India and were set up by me at Kalyan near Mumbai, forming the core of the first radio astronomy group in India. This group went on to construct two of the world's largest radio telescopes, the Ooty Radio Telescope and the Giant Metrewave Radio Telescope. Chris Christiansen was not only my guru but also a mentor and a friend for more than fifty years. I fondly remember his very warm personality.
A New Wideband, Fully Steerable, Decametric Array at Clark Lake
NASA Technical Reports Server (NTRS)
Erickson, W. C.; Fisher, J. R.
1974-01-01
A fully steerable, decametric array for radio astronomy is under construction at the Clark Lake Radio Observatory near Borrego Springs, California. This array will be a T of 720 conical spiral antennas (teepee-shaped antennas, hence the array is called the TPT), 3.0 km by 1.8 km capable of operating between 15 and 125 MHz. Both its operating frequency and beam position will be adjustable in less than one millisecond, and the TPT will provide a 49-element picture around the central beam position for extended source observations. Considerable experience was gained in the operation of completed portions of the array, and successful operation of the final array is assured. The results are described of the tests which were conducted with the conical spirals, and the planned electronics and data processing systems are described.
The importance of Radio Quiet Zone (RQZ) for radio astronomy
NASA Astrophysics Data System (ADS)
Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin
2013-05-01
Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.
Progress on the Low Frequency All Sky Monitor
NASA Astrophysics Data System (ADS)
Ford, Anthony; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Murray, J.; Ray, P. S.; Rivera, J.; Taylor, G. B.
2013-01-01
The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 5-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the last year, undergraduate students from the University of Texas at Brownsville’s Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these sites was the development of the analog hardware, which consists of commercial off-the-shelf RF splitter/combiners and a custom amplifier and filter chain designed by colleagues at the University of New Mexico. This poster will expound on progress in site installation and development of the analog signal chain.
IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING
In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...
High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface
NASA Technical Reports Server (NTRS)
MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt
2012-01-01
Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP. Operations would consist of data acquisition during the lunar day, with data downlinks to Earth one or more times every 24 hours.
Characteristics of coronal shock waves and solar type 2 radio bursts
NASA Technical Reports Server (NTRS)
Mann, G.; Classen, H.-T.
1995-01-01
In the solar corona shock waves generated by flares and/or coronal mass ejections can be observed by radio astronomical methods in terms of solar type 2 radio bursts. In dynamic radio spectra they appear as emission stripes slowly drifting from high to low frequencies. A sample of 25 solar type 2 radio bursts observed in the range of 40 - 170 MHz with a time resolution of 0.1 s by the new radiospectrograph of the Astrophvsikalisches Institut Potsdam in Tremsdorf is statistically investigated concerning their spectral features, i.e, drift rate, instantaneous bandwidth, and fundamental harmonic ratio. In-situ plasma wave measurements at interplanetary shocks provide the assumption that type 2 radio radiation is emitted in the vicinity of the transition region of shock waves. Thus, the instantaneous bandwidth of a solar type 2 radio burst would reflect the density jump across the associated shock wave. Comparing the inspection of the Rankine-Hugoniot relations of shock waves under coronal circumstances with those obtained from the observational study, solar type 2 radio bursts should be regarded to be generated by weak supercritical, quasi-parallel, fast magnetosonic shock waves in the corona.
Sub-millimeter science with the Heinrich-Hertz-Telescope
NASA Astrophysics Data System (ADS)
Dumke, Michael
The Heinrich-Hertz-Telescope on Mt. Graham, Arizona, is a state-of-the-art single-dish radio telescope for observations in the sub-millimeter wavelength range. It is operated by the Sub-Millimeter Telescope Observatory (SMTO), which is a collaboration between the University of Arizona, Tucson, and the Max-Planck-Institut für Radioastronomie, Bonn. In this talk I give an overview over the telescope and its instrumentation, and show some examples of forefront research performed by astronomers from both the U.S. and Europe using this instrument. The telescope is located on Mt. Graham, Arizona, at an altitude of 3178 m, which ensures sub-mm weather conditions during a significant amount of available observing time. It has a primary reflector of 10 m diameter, mounted on a carbon fiber backup structure, and is equipped with a corotating enclosure. The surface accuracy of the primary reflector is 12 microns rms, what makes the HHT the most accurate radio telescope ever built. For spectral line observations, SIS receivers covering the frequency range from 200 to 500 GHz are available. Furthermore, a Hot-Electron-Bolometer, developed at the CfA, can be used for spectral line observations above 800 GHz. The continuum receivers are a 4-color bolometer, observing at 1300, 870, 450, and 350 microns, and a 19-channel bolometer array, developed at the MPIfR, which is sensitive around 850 microns. In the last few years, the HHT has been used by several groups to perform astronomical research. The most notable result was the measurement of the CO(9--8) line in Orion at 1.037 THz with the Hot-Electron Bolometer -- the first radioastronomical observation above 1 THz from a ground-based telescope. Several galactic molecular line sources have been mapped in the CO(7--6) line at 806 GHz, and in two fine-structure lines of atomic carbon. A continuum map of the galactic center at 850 microns could be produced using the new 19-channel bolometer array. Even external galaxies, where molecular line emission can be observed at much smaller brightness temperatures, could be mapped in the higher CO transitions. While CO(7--6) studies have been restricted to starburst galaxies like M 82 in the past, the CO(4--3) and especially the CO(3--2) line could be mapped also in fairly normal galaxies, showing that the warmer and denser gas is distributed throughout the galactic disks. Recently several nearby galaxies of different types could be mapped also in the continuum emission at 850 microns, allowing the determination of dust properties in various environments. Some interesting results following from observations with the Heinrich-Hertz-Telescope will be shown in this talk, with some emphasis on extragalactic astronomy.
Time-dependent gravity in southern California, May 1974 - Apr 1979
NASA Technical Reports Server (NTRS)
Whitcomb, J. H.; Franzen, W. O.; Given, J. W.; Pechman, J. C.; Ruff, L. J.
1979-01-01
Gravity measurements were coordinated with the long baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project which used radio interferometry with extra-galactic radio sources. Gravity data from 28 of the stations had a single reading standard deviation of 11 microgal which gives a relative single determination between stations a standard deviation of 16 microgal. The largest gravity variation observed, 80 microgal, correlated with nearby waterwell variations and with smoothed rainfall. Smoothed rainfall data appeared to be a good indicator of the qualitative response of gravity to changing groundwater levels at other suprasediment stations, but frequent measurement of gravity at a station was essential until the quantitative calibration of the station's response to groundwater variations was accomplished.
NASA Technical Reports Server (NTRS)
Steffes, P. G.
1986-01-01
The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.
The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.
2017-09-01
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
NASA Astrophysics Data System (ADS)
2007-07-01
Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theoretical calculations, will allow us to use them to reveal new information about the physical and chemical processes going on in interstellar space," said Martin Cordiner, of Queen's University in Belfast, Northern Ireland. "The GBT continues to take a leading role in discovering, identifying and mapping the distribution of the largest molecules ever found in astronomical environments and will continue to do so for the next several decades," said Phil Jewell of NRAO. In addition to Hollis, Lovas, Cordiner and Jewell, Remijan worked with Tom Millar of Queen's University in Belfast, Northern Ireland, and Andrew Markwick-Kemper of the University of Manchester in the UK. Bruenken worked with McCarthy, Harshal Gupta, Carl Gottlieb, and Patrick Thaddeus, all of the Harvard-Smithsonian Center for Astrophysics. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Straten, W., E-mail: vanstraten.willem@gmail.com
2013-01-15
A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two timesmore » smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.« less
1968-03-15
Phased array techniques Studies of the ionosphere by means of radar and satellite transmissions Radar measurements of satellites and ballistic missiles...Funding Fiscal Year 1968: $6,100,000 3-13 Radio Division Dr. L. B. Wetzel NA VIGA IOA S YS TE RADIO RESEARCH FACILITY eCOMMUNICATION *RADIO TECHNIQUES
Low-frequency Radio Observatory on the Lunar Surface (LROLS)
NASA Astrophysics Data System (ADS)
MacDowall, Robert; Network for Exploration and Space Science (NESS)
2018-06-01
A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and rolling them out may be a solution for solar radio observations, but it probably does not provide a sufficiently-uniform beam for other science targets.
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...
2016-04-01
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giroletti, M.; Massaro, F.; D’Abrusco, R.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
A Turnover in the Radio Light Curve of GW170817
NASA Astrophysics Data System (ADS)
Dobie, Dougal; Kaplan, David L.; Murphy, Tara; Lenc, Emil; Mooley, Kunal P.; Lynch, Christene; Corsi, Alessandra; Frail, Dale; Kasliwal, Mansi; Hallinan, Gregg
2018-05-01
We present 2–9 GHz radio observations of GW170817 covering the period 125–200 days post-merger, taken with the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). Our observations demonstrate that the radio afterglow peaked at 149 ± 2 days post-merger and is now declining in flux density. We see no evidence for evolution in the radio-only spectral index, which remains consistent with optically thin synchrotron emission connecting the radio, optical, and X-ray regimes. The peak implies a total energy in the synchrotron-emitting component of a few × 1050 erg. The temporal decay rate is most consistent with mildly or non-relativistic material and we do not see evidence for a very energetic off-axis jet, but we cannot distinguish between a lower-energy jet and more isotropic emission.
The End of Days -- Chandra Catches X-ray Glow From Supernova
NASA Astrophysics Data System (ADS)
1999-12-01
Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the behavior of the doomed star in the years before the explosion. "The combination of X-ray detection and radio non-detection is unusual, but may have less to do with the supernova and more to do with the great sensitivity of Chandra," said Roger Chevalier of University of Virginia, Charlottesville. Chevalier explained that the combined observations indicate that SN1999em shed a relatively small amount of matter before it exploded, compared to other supernovas observed in X rays. The Chandra observation is important because it may represent a more common type of supernova. The Chandra observation also provides an inside look at the hectic, exciting world of the international "quick response" network that scientists have set up to track and investigate supernovas. On Friday, October 29, Alex Fillipenko of the University of California, Berkeley notified Bob Kirshner at Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., that his automated supernova search project had a good candidate in a relatively nearby spiral galaxy, NGC 1637. Nearby in this case means about 25 million light years from Earth. Wei Dong Li, who is visiting Fillipenko's group from the Beijing Astronomical Observatory in China, called his colleagues in Beijing, who confirmed the supernova when the Earth rotated into a position to make viewing from China possible. The astronomers also notified the International Astronomical Union's central bureau for astronomical telegrams in Cambridge, Mass., from which the discovery was broadcast worldwide. Radio astronomers Christina Lacey and Kurt Weiler at the Naval Research Laboratory in Washington, D.C., Schuyler van Dyk at the California Institute of Technology, Pasadena and Richard Sramek at the National Radio Astronomy Observatory's Very Large Array, Socorro, N.M. were alerted. Kirshner then got in touch via e-mail with Harvey Tananbaum, director of the Chandra X-ray Center at Harvard-Smithsonian a little before 11 p.m. on Saturday night. The Chandra operations team replanned the telescope's observation activities and by Monday morning, and by Monday morning, Chandra was pointed at the supernova and observed it for about nine hours. Lewin, who had been awarded the rights to Chandra's first observation of a nearby supernova, was ecstatic. "This is a unique chance that we have been hoping for!!!!" he wrote in an e-mail to Tananbaum. "I was impressed by how rapid the Chandra response was, " said Kirshner. "Supernovae expand quickly and cool quickly, so each day we delay observing the supernova it has changed irretrievably," Filippenko said. "We caught this really early, only a day or two after the explosion. We were lucky." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on November 1 and 2, and 11 and 12, 1999 in two separate observations that lasted approximately nine hours each. ACIS was built by Pennsylvania State University, University Park. and MIT. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/sn1999em/ or via links in: http://chandra.harvard.edu
NASA Astrophysics Data System (ADS)
Jones, Jeremy; Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Farrington, Christopher
2018-01-01
We are building a searchable database for the CHARA Array data archive. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. This database is one component of an NSF/MSIP funded program to provide open access to the CHARA Array to the broader astronomical community. This archive goes back to 2004 and covers all the beam combiners on the Array. We discuss the current status of and future plans for the public database, and give directions on how to access it.
Radio-continuum survey of the Coma/A1367 supercluster. IV - 1.4 GHz observations of CGCG galaxies
NASA Astrophysics Data System (ADS)
del Castillo, E.; Gavazzi, G.; Jaffe, W.
1988-05-01
1.4 GHz radio-continuum observations of 148 CGCG galaxies in the Coma supercluster region were obtained with the VLA in C array configuration. Comparison with previous measurements at 0.6 GHz leads to an average spectral index >α< = 0.8. The structures of 29 galaxies in this region determined with high-resolution VLA (A array) observations are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannathan, P.; Bhatnagar, S.; Rau, U.
Next generation radio telescope arrays are being designed and commissioned to accurately measure polarized intensity and rotation measures (RMs) across the entire sky through deep, wide-field radio interferometric surveys. Radio interferometer dish antenna arrays are affected by direction-dependent (DD) gains due to both instrumental and atmospheric effects. In this paper, we demonstrate the effect of DD errors of the parabolic dish antenna array on the measured polarized intensities of radio sources in interferometric images. We characterize the extent of polarimetric image degradation due to the DD gains through wide-band VLA simulations of representative point-source simulations of the radio sky atmore » L band (1–2 GHz). We show that at the 0.5 gain level of the primary beam there is significant flux leakage from Stokes I to Q , U amounting to 10% of the total intensity. We further demonstrate that while the instrumental response averages down for observations over large parallactic angle intervals, full-polarization DD correction is required to remove the effects of DD leakage. We also explore the effect of the DD beam on the RM signals and show that while the instrumental effect is primarily centered around 0 rad-m{sup −2}, the effect is significant over a broad range of RM requiring full polarization DD correction to accurately reconstruct the RM synthesis signal.« less
Newly Commissioned Green Bank Telescope Bags New Pulsars
NASA Astrophysics Data System (ADS)
2002-01-01
Astronomers using the National Science Foundation's newly commissioned Robert C. Byrd Green Bank Telescope (GBT) have discovered a windfall of three previously undetected millisecond pulsars in a dense cluster of stars in the Milky Way Galaxy. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope "This globular cluster, known as Messier 62, has been very well studied, and it would have been an exciting discovery to find just one new pulsar. The fact that we were able to detect three new pulsars at one time is simply remarkable," said Bryan Jacoby, a graduate student at the California Institute of Technology who led the research team. Results of the discovery were recently announced in an International Astronomical Union Circular. Jacoby and his colleague Adam Chandler, also a graduate student at Caltech, used the GBT to search for new pulsars in addition to the three already known in this cluster. Their research was part of the GBT's Early Science Program, which allows scientific investigations during the testing and commissioning of the telescope. The researchers used the Berkeley-Caltech Pulsar Machine, a new instrument whose development was overseen by Donald Backer at the University of California at Berkeley, to process the signals from the GBT and record them for later analysis. After their data were analyzed, the researchers discovered the telltale signatures of three additional pulsars and their white dwarf companion stars. Pulsars are rapidly rotating neutron stars that emit intense beams of radio waves along their misaligned magnetic axes. When these beams intersect the Earth, we see the pulsar flash on and off. Due to their exquisitely steady rotation, pulsars allow astronomers to study the basic laws of physics and the ways in which these dense clusters and exotic stellar systems are formed. Astronomers study globular clusters because they are among the oldest building blocks of our Galaxy. With their very dense stellar populations, these clusters are breeding grounds for unusual binary star systems, like the ones detected by the researchers. All three pulsars are known as "millisecond pulsars" because they make one complete rotation in only a few thousandths of a second. One of these newly discovered pulsars spins at approximately 440 rotations per second, and the other two both spin about 300 times per second. All are orbited by white dwarfs with orbital periods ranging from 4 to 27 hours. "This discovery demonstrates the remarkable sensitivity of the Green Bank Telescope," said Phil Jewell, site director for the National Radio Astronomy Observatory in Green Bank, W.Va. "The fact that these pulsars were never before detected in this highly studied area of the Galaxy shows that the GBT has outstanding capabilities and will be an important tool for astronomers to make very precise, very sensitive observations of the Universe. The GBT is the world's largest fully steerable radio telescope. It was dedicated on August 25, 2000, after nearly 10 years of construction. Since that time, engineers and scientists at the NRAO in Green Bank have been testing the telescope and outfitting it with the sensitive receivers and electronics that will make it one of the world's premier astronomical instruments. "As a graduate student," said Jacoby "this discovery was particularly satisfying, and I feel privileged to be part of the history of the Green Bank Telescope." Shrinivas Kulkarni, the Caltech faculty advisor for this project, remarked, "it is very satisfying to see such discoveries being made by young people. GBT is poised to play a significant role in the education of young astronomers." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Holst, Christoph; Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-08-09
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.
Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-01-01
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes’ main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85∘ to 5∘ elevation angle. Further local deformations of the main reflector are not detected. PMID:28792449
Radio-loud AGN through the eyes of 3XMM, WISE and FIRST/NVSS
NASA Astrophysics Data System (ADS)
Mingo, B.
2014-07-01
We present the results from a new radio-loud AGN sample, obtained through the cross-correlation between the 3XMM, WISE and FIRST/NVSS catalogues. The radio selection allows us to eliminate the restrictions traditionally associated with mid-IR and X-ray sample selections, and to explore the population of lower luminosity AGN, in which the host galaxy contribution is substantial. We investigate the correlations between radio, mid-IR and X-ray emission associated to both stellar and AGN activity, and whether they can be disentangled. This work has been carried out as part of the ARCHES project. ARCHES (Astronomical Resource Cross-matching for High Energy Studies), funded within the EU/FP7-Cooperation Space framework, is a project which aims to produce well-characterised multi-wavelength data for large samples of sources drawn from the 3XMM serendipitous source catalogue.
Integrated Solar-Panel Antenna Array for CubeSats
NASA Technical Reports Server (NTRS)
Baktur, Reyhan
2016-01-01
The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.
NASA Astrophysics Data System (ADS)
Cortes-Medellin, German; Parshley, Stephen; Campbell, Donald B.; Warnick, Karl F.; Jeffs, Brian D.; Ganesh, Rajagopalan
2016-08-01
This paper presents the current concept design for ALPACA (Advanced L-Band Phased Array Camera for Arecibo) an L-Band cryo-phased array instrument proposed for the 305 m radio telescope of Arecibo. It includes the cryogenically cooled front-end with 160 low noise amplifiers, a RF-over-fiber signal transport and a digital beam former with an instantaneous bandwidth of 312.5 MHz per channel. The camera will digitally form 40 simultaneous beams inside the available field of view of the Arecibo telescope optics, with an expected system temperature goal of 30 K.
NASA Technical Reports Server (NTRS)
Edelson, R. E.
1976-01-01
It is argued that a substantial portion of the capability for detecting microwave signals from extraterrestrial civilizations lies not in the application of ever larger antenna collecting areas but rather in the application of millions or billions of simultaneous frequency-channel observations combined with rapid and powerful data processing techniques. The application of these methods to existing facilities is discussed in terms of a program of modest expense and duration which will seek to discover certain classes of extraterrestrial signals of intelligent origin while defining boundaries to the search problem throughout the range of interest. This program will investigate radio-astronomical phenomena of interest and simultaneously define the background of environmental radiation in order to determine physical limitations on both the search strategies and the potential for deep-space communications. Signal parameters that must be determined are examined along with the potential of existing radio-astronomical facilities for detecting narrow-band signals. A seven-year program is described which will carry out a search for extraterrestrial intelligence over 80% of the sky and over the entire frequency range from 1 to 25 GHz with a sensitivity limit varying from 10 to the -21st power W/sq cm at the lowest frequencies to 10 to the -19th power W/sq cm at the higher frequencies.
A Brief Glossary of Commonly Used Astronomical Terms.
ERIC Educational Resources Information Center
Harrington, Sherwood
A glossary of 50 astronimical terms is presented. Among terms included are: Asteroid; Big Bang; Binary Star; Black Hole; Comet; Constellation; Eclipse; Equinox; Galaxy; Globular Cluster; Local Group; Magellanic Clouds; Nebula; Neutron Star; Nova; Parsec; Quasar; Radio Astronomy; Red Giant; Red Shift; S.E.T.I.; Solstice; Supernova; and White Dwarf.…
RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence M.; Rajagopalan, Ganesh; Stevenson, Thomas; Turner, Charles; Bulcha, Berhanu
2017-01-01
Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.
A Millimeter Polarimeter for the 45-m Telescope at Nobeyama
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Tsuboi, Masato; Kasuga, Takashi
1999-04-01
We have designed and constructed a tunable polarimeter to cover frequencies from 35 GHz to 250 GHz (8.6 mm and 1.2 mm in wavelength) for the 45-m telescope at Nobeyama Radio Observatory. Both circular and linear polarizations can be measured by the polarimeter. The insertion loss was measured to be 0.14 +/- 0.05 dB in the 100-GHz band. The overall instrumental polarization of the system in the 100 GHz band is as low as <= 3%. The performance of the polarimeter in astronomical observations was tested by simultaneously measuring the linear polarization of the J = 2--1 transition of SiO in the v = 0 and 1 states at 86 GHz toward VY Canis Majoris. The observation revealed that the J = 2--1 emission in the v = 0 state of the object is highly linear polarized, which suggests that the emission originates through maser action in the circumstellar region. The details of the design, construction, and tests are presented. Nobeyama Radio Observatory is a branch of the National Astronomical Observatory, operated by the Ministry of Education, Science, Sports and Culture.
On the verge of an astronomy CubeSat revolution
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2018-05-01
CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.