Science.gov

Sample records for radio astronomy project

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. The IAU Early French Radio Astronomy Project

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Boischot, A.; Delannoy, J.; Kundu, M.; Lequeux, J.; Pick, M.; Steinberg, J.

    2011-01-01

    In 2006 an ambitious project was launched under the auspices of the IAU Working Group on Historic Radio Astronomy to document important developments in French radio astronomy from 1901 through to the 1960s, in a series of papers published, in English, in the Journal of Astronomical History and Heritage. This successful project has now come to an end with the sixth and final paper in the series about to be published (and a new WG project, on the history of early Japanese radio astronomy, has just been launched). In this paper we discuss Nordmann's abortive attempt to detect solar radio emission in 1901, and the important roles played by staff from the École Normale Supérieure and the Institut d'Astrophysique in Paris during the 1940s through 60s in developing new radio astronomy instrumentation and pursuing a range of solar and non-solar research projects in Paris itself and at field stations established at Marcoussis, Nançay and the Haute Provence Observatory.

  3. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  4. Radio Astronomy Software Defined Receiver Project

    SciTech Connect

    Vacaliuc, Bogdan; Leech, Marcus; Oxley, Paul; Flagg, Richard; Fields, David

    2011-01-01

    The paper describes a Radio Astronomy Software Defined Receiver (RASDR) that is currently under development. RASDR is targeted for use by amateurs and small institutions where cost is a primary consideration. The receiver will operate from HF thru 2.8 GHz. Front-end components such as preamps, block down-converters and pre-select bandpass filters are outside the scope of this development and will be provided by the user. The receiver includes RF amplifiers and attenuators, synthesized LOs, quadrature down converters, dual 8 bit ADCs and a Signal Processor that provides firmware processing of the digital bit stream. RASDR will interface to a user s PC via a USB or higher speed Ethernet LAN connection. The PC will run software that provides processing of the bit stream, a graphical user interface, as well as data analysis and storage. Software should support MAC OS, Windows and Linux platforms and will focus on such radio astronomy applications as total power measurements, pulsar detection, and spectral line studies.

  5. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  6. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  7. High-School Solar Radio Astronomy Project in Mexico Based on Radio Jove

    NASA Astrophysics Data System (ADS)

    Garcia Cole, A.; Gonzalez-Esparza, J. A.; Andrade, E.; Carrillo, A.

    2007-05-01

    Inspired by the RADIO JOVE project (http:radiojove.gsfc.nasa.gov) we propose a curse in solar radio astronomy for the high school system (CCH) at UNAM. The aim of this curse is to introduce solar radio astronomy to students and teachers, building their own radio telescope, and participating in radio astronomical measurements becoming familiar with the emissions of the Sun and Jupiter. The project is also based on the observations from the Mexican Array Radio Telescope(www.mexart.unam.mx) and the real time data from the Virtual Earth Sun Observatory (www.veso.unam.mx) at the Instituto de Geofisica-UNAM. The aim of this Project is to adapt the materials to the high school system in Mexico.

  8. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  9. Torun Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Torun Center for Astronomy is located at Piwnice, 15 km north of Torun, Poland. A part of the Faculty of Physics and Astronomy of the Nicolaus Copernicus University, it was created by the union of Torun Radio Astronomy Observatory (TRAO) and the Institute of Astronomy on 1 January 1997....

  10. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  11. Radio astronomy with microspacecraft

    NASA Technical Reports Server (NTRS)

    Collins, D.

    2001-01-01

    A dynamic constellation of microspacecraft in lunar orbit can carry out valuable radio astronomy investigations in the frequency range of 30kHz--30MHz, a range that is difficult to explore from Earth. In contrast to the radio astronomy ivestigations that have flown on individual spacecraft, the four microspacecraft together with a carrier spacecraft, which transported them to lunar orbit, form an interferometer with far superior angular resolution. Use of microspacecraft allows the entire constellation to be launched with a Taurus-class vehicle. Also distinguishing this approach is that the Moon is used as needed to shield the constellation from RF interference from the Earth and Sun.

  12. Pulsars in a Box: A Radio Astronomy Exercise for Windows from PROJECT CLEA

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.; Good, R. F.; Hayden, M. B.; Cooper, P. R.

    1996-12-01

    The latest astronomy laboratory exercise from PROJECT CLEA, "Radio Astronomy of Pulsars", is designed for use in introductory astronomy classes, but contains options and features that make it usable by upperclass astronomy students as well. The heart of the exercise is a simulated radio telescope, whose aperture, location, and beamwidth can be set by the instructor. It is steered by pushing buttons, but instead of seeing a star field on the field monitor,students see a projection of the sky showing, with a colored dot,where the beam is pointing. Large LED-like readouts display time and telescope coordinates. The telescope can be operated in either a tracking or transit mode. Using the telescope, students point to several pulsars suggested by the write-up (from an on-line catalog of over 500). Students can then use a multi-channel tunable receiver, with multiple oscilloscope displays, to view the incoming signal vs. time. The signal received is a combination of random receiver and background noise plus the pulsar signal (if it is in the beam) Receivers are tunable from 400 to 1400 MHz, and both the time and frequency behavior of signals can be studied. By measuring the dispersion delay at a number of different frequencies, students can determine the pulsar's distance. Data can be stored, displayed, and printed using a versatile measuring window. Though we provide a manual for a 2-3 hour lab exercise involving dispersion measures, the database and receivers can be used for a wide variety of other exercises, for instance the measurement of pulsar spin-down rates. We welcome suggestions for improvements and applications.

  13. A Radio Astronomy Curriculum for STARLAB

    NASA Astrophysics Data System (ADS)

    Boltuch, D.; Hund, L.; Buck, S.; Fultz, C.; Smith, T.; Harris, R.; Castelaz, M. W.; Moffett, D.; LaFratta, M.; Walsh, L.

    2005-12-01

    We present elements of a curriculum that will accompany the STARLAB module "Sensing the Radio Sky" a portable planetarium program and projection of the radio sky. The curriculum will serve to familiarize high school students to a set of topics in radio astronomy. The curriculum includes lessons and activities addressing several topics related to radio astronomy and the Milky Way that consists of two main resources: a manual and a multimedia website. It is designed to accommodate a wide variety of possible uses and time constraints. The manufacturer of STARLAB, Learning Technologies, Inc. produces a short manual to accompany each presentation for the STARLAB. The "Sensing the Radio Sky" manual we have created includes the mandatory, minimum background information that students need to understand radio astronomy. It briefly discusses waves and electromagnetic radiation, similarities and differences between optical and radio astronomy, probable misconceptions about radio astronomy, how radio images are produced, synchrotron radiation in the Milky Way, and galactic coordinates. It also includes a script that presenters can choose to follow inside the STARLAB, a lesson plan for teachers, and activities for students to complete before and after the STARLAB experience that mirror the scientific method. The multimedia website includes more detailed information about electromagnetic radiation and a more detailed comparison of optical and radio astronomy. It also discusses the life cycles of stars, radiation from a variety of specific sources, and pulsars, as each relates to radio astronomy. The five highly detailed lessons are pulled together in sixth "overview lesson", intended for use by teachers who want to present more than the basic material in the manual, but do not have the classroom time to teach all five of the in-depth lessons. . We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  14. Historic Radio Astronomy Working Group

    NASA Astrophysics Data System (ADS)

    2007-06-01

    This special issue of Astronomische Nachrichten contains the proceedings of a session of the Historic Radio Astronomy Working Group of the International Astronomical Union that took place during the 26th General Assembly of the IAU in Prague on 17th August 2006. In addition to the talks presented in Prague some contributions were solicited to give a more complete overview of `The Early History of European Radio Astronomy'.

  15. Expanding radio astronomy in Africa

    NASA Astrophysics Data System (ADS)

    Gaylard, M. J.

    2013-04-01

    The Square Kilometre Array (SKA) Organisation announced in May 2012 that its members had agreed on a dual site solution for the SKA [1]. South Africa's bid for hosting the SKA has caused a ramp up of radio astronomy in Africa. To develop technology towards the SKA, the South African SKA Project (SKA SA) built a protoype radio telescope in 2007, followed in 2010 the seven antenna Karoo Array Telescope (KAT-7). Next is the 64 antenna MeerKAT, which will merge into SKA Phase 1 in Africa. As SKA Phase 2 is intended to add a high resolution capability with baselines out to 3000 km, the SKA SA brought in partner countries in Africa to host outstations. South Africa has been working with the partners to build capacity to operate the SKA and to benefit from it. The SA Department of Science and Technology (DST) developed a proposal to establish radio telescopes in the partner countries to provide hands-on learning and a capability for Very Long Baseline Interferometry (VLBI) research. Redundant 30 m class satellite antennas are being incorporated in this project.

  16. The future for radio astronomy

    NASA Astrophysics Data System (ADS)

    Breton, Rene P.; Hassall, Tom

    2013-12-01

    THE TRANSIENT UNIVERSE Rene P Breton and Tom Hassall argue that, while radio astronomy has always involved transient phenomena, exploration of this part of the electromagnetic spectrum has been falling behind because of the lack of data. But the advent of a new generation of radio telescopes such as LOFAR, could change that.

  17. The development of radio astronomy

    NASA Astrophysics Data System (ADS)

    Reich, W.; Wielebinski, R.

    2002-07-01

    Following the detection of extraterrestrial radio waves in 1932 by Karl Jansky, radio astronomy developed quickly after World War II. It established itself soon as a new branch of astronomy with today's outstanding record in the detection of new phenomena in space. These have been honoured by a number of Nobel prizes. Radio astronomy largely depends on technical developments in receiver technology, antenna systems, electronics and computing power. Ever shorter wavelengths down to the submm-wavelength range became accessible, resulting in new exciting discoveries. However, now and in future care must be taken, in particular for the lower frequency range, of harmful man-made interferences, which might mask the weak signals from space. New international facilities with orders-of-magnitude higher sensitivity like ALMA and SKA are planned or under construction. Space-borne observatories like PLANCK will detect weak fluctuations of the cosmic microwave background, which will constrain cosmological models with an unprecedented accuracy.

  18. Radio Astronomy for Amateurs

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Murdin, P.

    2003-04-01

    Karl Jansky is considered the father of RADIOASTRONOMY. During the 1930s, Jansky worked for the Bell Telephone Laboratories studying the origin of static noise from thunderstorms. During the course of this work he discovered that some signals had an extraterrestrial origin. However, it was Grote Reber, a professional radio engineer and radio amateur, who carried out further investigations. In 1937...

  19. The Helios radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Kayser, S.; Stone, R.

    1984-01-01

    Radio bursts traveling between the Sun and the Earth were tracked by radio astronomy experiments on Helios 1 and 2. A relatively short dipole antenna with a well-defined toroidal reception pattern was flown. The antenna spins in the ecliptic at 60.3 rpm and 2 frequencies are measured in each revolution. The signal analysis determines the strength of the signal, the direction of the source in the ecliptic, and the degree of modulation, and estimates source size. The experiments provide three-dimensional direction finding in space. They extend the radio frequency window beyond what is observable on Earth, and offer a long triangulation baseline.

  20. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  1. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  2. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  3. The Radio Jove Project

    NASA Technical Reports Server (NTRS)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  4. The Golden Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2016-01-01

    The 1960s were the Golden Years of Radio Astronomy. During this decade a new generation of young scientists discovered quasars, pulsars, the cosmic microwave background, cosmic masers, giant molecular clouds, radio source variability, superluminal motion, radio recombination lines, the rotation of Mercury and Venus, the Venus Greenhouse effect, Jupiter's radiation belts, and opened up the high redshift Universe. On the technical side, the 1960s saw the completion of the NRAO 140-ft and 300-ft radio telescopes, the Haystack, Arecibo and Parkes antennas, the Owens Valley Interferometer, the first practical demonstrations of aperture synthesis, VLBI, and CLEAN, the Cambridge 1-mile radio telescope, the most precise tests of GR light bending, and the introduction of the 4th test of GR. Following sessions at the recent IAU 29th General Assembly on the "Golden Years of Radio Astronomy," we will discuss the circumstances surrounding these transformational discoveries which changed the course of modern astronomy.

  5. Broadcasting Astronomy: The Stars Meet on the Radio

    NASA Astrophysics Data System (ADS)

    Nobili, L.; Masiero, S.

    2010-06-01

    In this paper we describe our project Tutti Dentro — Le Stelle si incontrano in Radio (Come in everybody! — The Stars meet on the Radio), an Italian radio show about astronomy and space. The format involved celebrities, young astronomers and a network of 95 FM and web radio stations during the period July 2007 - January 2009. We will explore its structure, the language and the strategies adopted, along with the technical equipment and the software for recording sessions and editing. Finally we will describe the response from celebrities, radio stations and listeners. Our results could be a useful reference for those wishing to create similar radio programmes to deliver astronomy to a wider audience.

  6. A Teaching Lab in Radio Astronomy

    ERIC Educational Resources Information Center

    Smith, Kirk R.; Cudaback, David D.

    1976-01-01

    Describes a study in which participants in a summer institute for secondary science teachers performed a series of experiments with a radio telescope. Concludes that a radio astronomy teaching facility would encourage students to use their own initiative and strategy in working with the scientific concepts involved. (MLH)

  7. Grote Reber, Radio Astronomy Pioneer, Dies

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  8. Technology Advances for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Russell, Damon Stuart

    The field of radio astronomy continues to provide fundamental contributions to the understanding of the evolution, and inner workings of, our universe. It has done so from its humble beginnings, where single antennas and receivers were used for observation, to today's focal plane arrays and interferometers. The number of receiving elements (pixels) in these instruments is quickly growing, currently approaching one hundred. For the instruments of tomorrow, the number of receiving elements will be in the thousands. Such instruments will enable researchers to peer deeper into the fabric of our universe and do so at faster survey speeds. They will provide enormous capability, both for unraveling today's mysteries as well as for the discovery of new phenomena. Among other challenges, producing the large numbers of low-noise amplifiers required for these instruments will be no easy task. The work described in this thesis advances the state of the art in three critical areas, technological advancements necessary for the future design and manufacturing of thousands of low-noise amplifiers. These areas being: the automated, cryogenic, probing of diameter100 mm indium phosphide wafers; a system for measuring the noise parameters of devices at cryogenic temperatures; and the development of low-noise, silicon germanium amplifiers for terahertz mixer receivers. The four chapters that comprise the body of this work detail the background, design, assembly, and testing involved in these contributions. Also included is a brief survey of noise parameters, the knowledge of which is fundamental to the design of low-noise amplifiers and the optimization of the system noise temperature for large, dense, interferometers.

  9. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  10. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  11. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  12. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  13. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  14. 47 CFR 2.107 - Radio astronomy station notification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radio astronomy station notification. 2.107....107 Radio astronomy station notification. (a) Pursuant to No. 1492 of Article 13 and Section F of Appendix 3 to the international Radio Regulations (Geneva, 1982), operators of radio astronomy...

  15. The Astronomy Genealogy Project

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2014-01-01

    The Astronomy Genealogy Project, to be known as AstroGen, will list as many as possible of the world's astronomers with their academic parents (aka thesis advisors) and enable the reader to trace both academic ancestors and descendants. It will be very similar to the highly successful Mathematics Genealogy Project (MGP), available at http://genealogy.math.ndsu.nodak.edu. The MGP, which has been in operation since 1996, now contains the names of about 170,000 "mathematicians." These include many physicists and astronomers, as well as practitioners of related sciences. Mitchel Keller, the director of the MGP, has generously shared the software used in that project, and the American Astronomical Society (AAS) will host AstroGen, a project of the Historical Astronomy Division, on its website. We expect to start seeking entries soon, depending on the availability of computational assistance from the AAS IT department. We are seeking volunteers to help run the project. If you are interested, please contact me at joe.tenn@sonoma.edu.

  16. Early Radio Astronomy in the USSR

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    2007-12-01

    As in many other countries, radio astronomy in the Soviet Union began as an outgrowth of wartime radar research. The early leaders of Soviet radio astronomy, including Simon Braude, Vladimir Kotelnikov, Vladimir Troitskii, and Viktor Vitkevitch, all began their careers during WWII. Although the theoretical contributions of people like Iosef Shklovsky and Vitaly Ginzburg were well known in the West, the early experimental and observational programs received much less attention, partially the result of cold war military secrecy. When they were noticed, the Soviet observations were largely ignored or declared wrong. We will discuss the controversial Soviet contributions to the detection of polarized cosmic radio emission, the development of very long baseline interferometry, the prediction and verification of radio recombination lines, and the first detection of variability in an extragalactic radio source.

  17. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  18. Iridium and Radio Astronomy in Europe

    NASA Astrophysics Data System (ADS)

    Cohen, R. J.

    2004-06-01

    An account is given of the coordination of the Iridium mobile satellite system with the radio astronomy service in Europe, from the initial exploratory discussions at Jodrell Bank in 1991 to the signing of the so-called ``Interim Agreement'' in Paris in 1999. The technical issue of unwanted emissions from the Iridium downlink into the frequency band 1610.6-1613.8 MHz was not resolved, so the coordination agreement amounts to time sharing, albeit on more favourable terms for radio astronomy than agreements negotiated elsewhere. The European agreement fully recognizes the heavy use of the frequency band in European radio astronomy, and carries the promise that ``from 1 January 2006, European radioastronomers shall be able to collect measurement data consistent with the recommendation ITU-R RA.769-1.'' Some personal observations on the events are offered.

  19. A Radio Astronomy Curriculum for the Middle School Classroom

    NASA Astrophysics Data System (ADS)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  20. Radio quiet, please! - protecting radio astronomy from interference

    NASA Astrophysics Data System (ADS)

    van Driel, W.

    2011-06-01

    The radio spectrum is a finite and increasingly precious resource for astronomical research, as well as for other spectrum users. Keeping the frequency bands used for radio astronomy as free as possible of unwanted Radio Frequency Interference (RFI) is crucial. The aim of spectrum management, one of the tools used towards achieving this goal, includes setting regulatory limits on RFI levels emitted by other spectrum users into the radio astronomy frequency bands. This involves discussions with regulatory bodies and other spectrum users at several levels - national, regional and worldwide. The global framework for spectrum management is set by the Radio Regulations of the International Telecommunication Union, which has defined that interference is detrimental to radio astronomy if it increases the uncertainty of a measurement by 10%. The Radio Regulations are revised every three to four years, a process in which four organisations representing the interests of the radio astronomical community in matters of spectrum management (IUCAF, CORF, CRAF and RAFCAP) participate actively. The current interests and activities of these four organisations range from preserving what has been achieved through regulatory measures, to looking far into the future of high frequency use and giant radio telescope use.

  1. PARTNeR for Teaching and Learning Radio Astronomy Basics

    NASA Astrophysics Data System (ADS)

    Vaquerizo, Juan Ángel

    2010-10-01

    NASA has three satellite tracking stations around the world: CDSCC (Canberra, Australia), GDSCC (Goldstone, USA) and MDSCC (Madrid, Spain). One of the antennas located at MDSCC, DSS-61, is not used for satellite tracking any more and thanks to an agreement between INTA (Instituto Nacional de TA~l'cnica Aeroespacial) and NASA, it has been turned into an educational radio telescope. PARTNeR (Proyecto Académico con el RadioTelescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is a High School and University radio astronomy educational program that allows teachers and students to control this 34-meter radio telescope and conduct radio astronomical observations via the Internet. As radio astronomy is not a popular subject and astronomy has little presence in the High School Curriculum, teachers need specific training in those subjects to implement PARTNeR. Thus, High School teachers joining the project take a course to learn about the science of radio astronomy and how to use the antenna in their classrooms. Also, teachers are provided with some learning activities they can do with their students. These lesson plans are focused on the implementation of the project within an interdisciplinary framework. All educational resources are available on PARTNeR website. PARTNeR is an inquiry based approach to science education. Nowadays, students can join in three different observational programmes: variability studies in quasars, studies of radio-bursts in X-ray binaries (microquasars), and mapping of radio sources in the galactic plane. Nevertheless, any other project can be held after an evaluation by the scientific committee. The operational phase of the project started in the academic year 2003-04. Since then, 85 High Schools, seven Universities and six societies of amateur astronomers have been involved in the project. During the 2004-09 period, 103 High School teachers from Spain and Portugal have attended the training courses, and 105

  2. Solar system radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1987-01-01

    The planetary radio-astronomy observations obtained with the two Voyager spacecraft since their launch in 1977 are briefly characterized and illustrated with graphs, diagrams, and sample spectra. Topics addressed include the spacecraft designs and trajectories, the wavelength coverage of the radio instruments, the Io-controlled LF emission of Jupiter, the solar-wind effect on the Saturn kilometric radiation, the Saturn electrostatic discharges, and the use of the clocklike feature of the Uranus emission to measure the planet's rotation period.

  3. Internet Resources for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  4. The African Cultural Astronomy Project

    NASA Astrophysics Data System (ADS)

    Urama, Johnson O.; Holbrook, Jarita C.

    2011-06-01

    Indigenous, endogenous, traditional, or cultural astronomy focuses on the many ways that people and cultures interact with celestial bodies. In most parts of Africa, there is very little or no awareness about modern astronomy. However, like ancient people everywhere, Africans wondered at the sky and struggled to make sense of it. The African Cultural Astronomy Project aims to unearth the body of traditional knowledge of astronomy possessed by peoples of the different ethnic groups in Africa and to consider scientific interpretations when appropriate for cosmogonies and ancient astronomical practices. Regardless of scientific validity, every scientist can relate to the process of making observations and creating theoretical mechanisms for explaining what is observed. Through linking the traditional and the scientific, it is believed that this would be used to create awareness and interest in astronomy in most parts of Africa. This paper discusses the vision, challenges and prospects of the African Cultural Astronomy Project in her quest to popularize astronomy in Africa.

  5. Radio astronomy - The next decade

    NASA Astrophysics Data System (ADS)

    Kellermann, Kenneth I.

    1991-09-01

    Discoveries made over the past several decades by radio astronomers include radio galaxies, quasars, pulsars, gravitational lenses, energetic bursts from the sun and Jupiter, the greenhouse effect on Venus, the rotation of Mercury, giant molecular clouds, violent activity in galactic nuclei, and cosmic background radiation. This paper discusses the development of ever more powerful radio telescopes, which include the VLA operated by NRAO near Socorro (New Mexico); the new NRAO's 100-m Green Bank Telescope being constructed in Green Bank (West Virginia); and the proposed Millimeter Array, which will consist of 40 antennas, each 8-m across, arranged in any of four different ways depending on the size of the region under study. Consideration is also given to methods for increasing the resolving power and image quality of radio telescopes, with special attention given to very-long-baseline interferometry.

  6. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  7. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous

  8. The first radio astronomy from space - RAE

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  9. The first radio astronomy from space - RAE

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  10. On post-SKA radio astronomy

    NASA Astrophysics Data System (ADS)

    Parijskij, Yuri; Chernenkov, Vladimir

    It is suggested that the development of the SKA will drastically change the face of radio astronomy in the 21st Century. A FAST-style SKA would admit observations of low contrast features, and would be the best design for studying the `dark ages' of the Universe (x>> 1) where sub-arcmin total power instruments can usefully be employed. To date there have been no proposals for post-SKA, billion square-metra instruments; we speculate that mobile communication systems can be used. In the very distant future, SKA multi-beam systems could be used to collect signals reflected by Solar system bodies such as the asteroid belt.

  11. The Importance of Site Selection for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Zainal Abidin, Zamri; Abidin Ibrahim, Zainol

    2014-10-01

    Radio sources are very weak since this object travel very far from outer space. Radio astronomy studies are limited due to radio frequency interference (RFI) that is made by man. If the harassment is not stopped, it will provide critical problems in their radio astronomy scientists research. The purpose of this study is to provide RFI map Peninsular Malaysia with a minimum mapping techniques RFI interference. RFI mapping technique using GIS is proposed as a tool in mapping techniques. Decision-making process for the selection requires gathering information from a variety of parameters. These factors affecting the selection process are also taken account. In this study, various factors or parameters involved such as availability of telecommunications transmission (including radio and television), rainfall, water line and human activity. This study will benefit radio astronomy research especially in the RFI profile in Malaysia. Keywords: Radio Astronomy, Radio Frequency Interference (RFI), RFI mapping technique : GIS.

  12. Radio Astronomy: A Strong Link between Undergraduate Education and Research.

    ERIC Educational Resources Information Center

    Pratap, Preethi; Salah, Joseph E.

    2001-01-01

    Describes a successful pilot program to develop and test a program that facilitates the linking of undergraduate research and education through radio astronomy. Based on the pilot experiences, students everywhere should be able to exploit the opportunity to strengthen their education through practical research using radio astronomy. (Author/SAH)

  13. Highlighting the History of Japanese Radio Astronomy: 1: An Introduction

    NASA Astrophysics Data System (ADS)

    Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Kaifu, Norio; Hayashi, Masa; Nakamura, Tsuko; Stewart, Ronald; Yokoo, Hiromitsu

    2012-11-01

    Japan was one of a number of nations that made important contributions in the fledgling field of radio astronomy in the years immediately following WWII. In this paper we discuss the invention of the Yagi-Uda antenna and the detection of solar radio emission in 1938, before reviewing radio astronomical developments that occurred between 1948 and 1961 in Osaka, Nagoya, Tokyo and Hiraiso. In order to place these early Japanese experiments in a national and international context we briefly review the world-wide development of radio astronomy in the immediate post-War years before discussing the growth of optical astronomy in Japan at this time.

  14. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  15. Wide field imaging problems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  16. Observing Projects in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  17. Astronomy research at the Aerospace Corporation. [research projects - NASA programs

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.

    1974-01-01

    This report reviews the astronomy research carried out at The Aerospace Corporation during 1974. The report describes the activities of the San Fernando Observatory, the research in millimeter wave radio astronomy as well as the space astronomy research.

  18. Communicating radio astronomy with the public: Another point of view

    NASA Astrophysics Data System (ADS)

    Varano, S.

    2008-06-01

    Radio waves cannot be sensed directly, but they are used in daily life by almost everybody. Even so, the majority of the general public do not even know that celestial bodies emit radio waves. Presenting invisible radiation to a general audience with little or no background knowledge in physics is a difficult task. In addition, much important technology now commonplace in many other scientific fields was pioneered by radio observatories in their efforts to detect and process radio signals from the Universe. Radio astronomy outreach does not have such a well-established background as optical astronomy outreach. In order to make radio astronomy accessible to the public, it is necessary either to add more scientific detail or to find a different way of communicating. In this paper we present examples from our work at the Visitor Centre "Marcello Ceccarelli", which is part of the Medicina Radio Observatory, operated by the Institute of Radio Astronomy (IRA) in Bologna, which in turn is part of the National Institute for Astrophysics (INAF).

  19. World War II Radar and Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, G.

    2005-08-01

    The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.

  20. Radio astronomy aspects of the NASA SETI Sky Survey

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.

    1986-01-01

    The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.

  1. Planetary radio astronomy observations from Voyager 1 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Evans, D. R.; Carr, T. D.; Schauble, J. J.; Alexander, J. K.; Kaiser, M. L.; Desch, M. D.; Pedersen, M.; Lecacheux, A.

    1981-01-01

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  2. Statistical radio astronomy of the 21st century

    NASA Astrophysics Data System (ADS)

    Pariiskii, Yu. N.; Berlin, A. B.; Bursov, N. N.; Nizhel'skii, N. A.; Semenova, T. A.; Temirova, A. V.; Tsybulev, P. G.

    2015-06-01

    The exponential development of radio-astronomy methods (sensitivity, resolution, depth of surveys, etc) has led to the need for new methods aimed at distinguishing weak signals in the midst of numerous background signals, as has long been the case for radio astronomy at meter wavelengths. Centimeter-wavelength data accumulated with existing radio telescopes (such as the RATAN-600 reflector—the largest radio telescope in Russia) are presented, and expected problems for major new radio telescopes of the 21st century, such as the Square Kilometer Array, are discussed. The effectiveness of using certain tested methods to derive astrophysically important results through reasonable statistical processing of large datasets is shown. In experiments conducted with RATAN-600, these methods lead to an enhancement in sensitivity by an order of magnitude compared with the sensitivity of a resolving element.

  3. The Student as Scientist: Secondary Student Research Projects in Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, R. P.

    2000-08-01

    Student research projects are becoming either integral or optional components of Science curricula in several countries. They provide a valuable opportunity for high school students to experience many of the joys and frustrations that make up the intellectual challenge of Science. Astronomy is one branch of Science that lends itself to student projects. Student Research Projects (SRPs) can be individual, group or collaborative between groups in other schools or countries and may involve professional mentors. Use of the Internet and remote access telescopes allow students to undertake challenging research and make worthwhile contributions to professional programs. This paper presents case studies of student projects in optical and radio astronomy from Australian and overseas schools and details both the benefits and problems faced in conducting such projects. Student responses to involvement in projects are discussed. Potential areas for future collaboration and development are highlighted together with the need for more research as to the most effective ways to implement projects and develop student skills.

  4. The School of Galactic Radio Astronomy: An Internet Classroom

    NASA Astrophysics Data System (ADS)

    Castelaz, M. W.; Cline, J. D.; Osborne, C. S.; Moffett, D. A.; Case, J.

    2001-12-01

    The School of Galactic Radio Astronomy (SGRA) takes its name from the source SGR-A, the center of the Milky Way Galaxy. SGRA is based at the Pisgah Astronomical Research Institute (PARI) as an experience-based school room for use by middle and high school teachers and their students. Their scientific educational experience at SGRA relies on Internet access to PARI's remote-controlled 4.6-m radio telescope which is equipped with a 1420 MHz receiver. The 1420 MHz signal may either be recorded as a spectrum over a 4 MHz bandpass, or mapped over extended regions. Teachers, classes, and Independent Study students access the 4.6-m radio telescope via the SGRA webpage. The SGRA webpage has four components: Radio Astronomy Basics, Observing, Guides, and Logbook. The Radio Astronomy Basics section summarizes the concepts of electromagnetic waves, detection of electromagnetic waves, sources of astronomical radio waves, and how astronomers use radio telescopes. The Observing section is the link to controlling the radio telescope and receiver. The Observing page is designed in the same way a control room at an observatory is designed. Controls include options of source selection, coordinate entry, slew, set, and guide selection, and tracking. Also within the Observing section is the curriculum which presents eight modules based on relevant radio astronomy topics and objects. The Guides webpage contains atlases of the astronomical sky, catalogs, examples of observing sessions, and data reduction software that can be downloaded for analysis offline. The LOGBOOK page is primarily a guestbook, and evaluation form. We acknowledge support from the Space Telescope Science Institute IDEAS Program, and the South Carolina State University PAIR Program.

  5. Current Status of Long Wavelengths Radio Astronomy in Ukraine

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Melnik, V. N.; Falkovich, I. S.; Rashkovskij, S. L.; Brazhenko, A. I.; Koshevoj, V. V.; Lecacheux, A.; Rucker, H. O.

    2006-08-01

    In the given presentation we summarize the more then forty years experience in the field of decametre radio astronomy in Ukraine. Largest existing UTR-2 radio telescope (frequency range is 8-32 MHz, maximum effective area is near 150,000 m^2 , size of T-shape array is about 2×1 km) works in non-stop regime. VLBI system URAN (UTR-2, URAN-1…URAN-4 antennas) gives basis from 40 to 950 km, the maximum angular resolution is about 1s with the total maximum effective area near 200,000 m^2 . During last years the essential upgrade of these systems were carried out with including the installation of the high performance back-ends, new elements of antennas and effective methods of observations. A lot of obtained astrophysical results illustrate high informative and significance of extremely low frequency ground-based radio astronomy. Existing instruments, methodical and scientific results give useful lessons for the future perspective development of the low frequency radio astronomy. Without doubts, the creation of the new generation giant instruments like LOFAR and LWA is very actual and opens the possibility for the considerably improvement of the investigation capabilities. Low frequency radio astronomy in National Academy of Sciences of Ukraine has the high priority. Recently this activity is again supported by the special foundation for the perspective development of corresponding instrumentation, which also includes the construction of the additional large active element antenna array.

  6. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  7. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  8. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the...

  9. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL... Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research installations. In order to...

  10. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Notification to the National Radio Astronomy... SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy Observatory site...

  11. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL... Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research installations. In order to...

  12. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL... Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research installations. In order to...

  13. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL... Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research installations. In order to...

  14. 47 CFR 5.91 - Notification to the National Radio Astronomy Observatory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Notification to the National Radio Astronomy... SERVICE Applications and Licenses § 5.91 Notification to the National Radio Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy Observatory site...

  15. 47 CFR 73.1030 - Notifications concerning interference to radio astronomy, research and receiving installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... astronomy, research and receiving installations. 73.1030 Section 73.1030 Telecommunication FEDERAL... Broadcast Stations § 73.1030 Notifications concerning interference to radio astronomy, research and receiving installations. (a)(1) Radio astronomy and radio research installations. In order to...

  16. Need a Classroom Stimulus? Introduce Radio Astronomy

    ERIC Educational Resources Information Center

    Derman, Samuel

    2010-01-01

    Silently, invisibly, ceaselessly, our planet Earth is showered by radio waves from every direction and from every region of space. This radio energy originates in our solar system, throughout the Milky Way galaxy, and far beyond, out to the remotest reaches of the universe. Detecting and unraveling the origins of these invisible signals is what…

  17. Lunar Farside Radio Astronomy Base Facilitated by Lunar Elevator

    NASA Astrophysics Data System (ADS)

    Eubanks, T. M.; Maccone, C.; Radley, C. F.

    2015-10-01

    Dr. JD-Wörner, DG of ESA intends to align ESA to develop a “Moon Village” on the far side for radio astronomy and other purposes. This would encourage new infrastructure reducing transport costs. A lunar lift greatly facilitates this vision.

  18. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  19. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  20. Enhancing Astronomy Major Learning Through Group Research Projects

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Hardegree-Ullman, K.; Turner, J.; Shirley, Y. L.; Walker-Lafollette, A.; Scott, A.; Guvenen, B.; Raphael, B.; Sanford, B.; Smart, B.; Nguyen, C.; Jones, C.; Smith, C.; Cates, I.; Romine, J.; Cook, K.; Pearson, K.; Biddle, L.; Small, L.; Donnels, M.; Nieberding, M.; Kwon, M.; Thompson, R.; De La Rosa, R.; Hofmann, R.; Tombleson, R.; Smith, T.; Towner, A. P.; Wallace, S.

    2013-01-01

    The University of Arizona Astronomy Club has been using group research projects to enhance the learning experience of undergraduates in astronomy and related fields. Students work on two projects that employ a peer-mentoring system so they can learn crucial skills and concepts necessary in research environments. Students work on a transiting exoplanet project using the 1.55-meter Kuiper Telescope on Mt. Bigelow in Southern Arizona to collect near-UV and optical wavelength data. The goal of the project is to refine planetary parameters and to attempt to detect exoplanet magnetic fields by searching for near-UV light curve asymmetries. The other project is a survey that utilizes the 12-meter Arizona Radio Observatory on Kitt Peak to search for the spectroscopic signature of infall in nearby starless cores. These are unique projects because students are involved throughout the entire research process, including writing proposals for telescope time, observing at the telescopes, data reduction and analysis, writing papers for publication in journals, and presenting research at scientific conferences. Exoplanet project members are able to receive independent study credit for participating in the research, which helps keep the project on track. Both projects allow students to work on professional research and prepare for several astronomy courses early in their academic career. They also encourage teamwork and mentor-style peer teaching, and can help students identify their own research projects as they expand their knowledge.

  1. Solar radio astronomy at low frequencies

    NASA Technical Reports Server (NTRS)

    Dulk, George A.

    1990-01-01

    The characteristics of solar radio emissions at decametric to kilometric wavelengths are reviewed. Special attention is given to the radiation of the quiet sun at several metric and decametric wavelengths and to nonthermal radiation from the active sun, including radio bursts of type III (electron beams), type-III bursts from behind the sun, storms of type III bursts, the flare-associated radio bursts, type II bursts (shock waves), and shock-associated bursts. It is pointed out that almost no observations have been made so far of solar radiation between about 20 MHz and about 2 MHz. Below about 2 MHz, dynamic spectra of flux densities of solar burst have been recorded in space and observations were made of the directions of centroids and characteristic sizes of the emitting sources.

  2. Communicating astronomy in a small island state: The unique role of the Mauritius Radio Telescope

    NASA Astrophysics Data System (ADS)

    Saddul-Hauzaree, S.

    2008-06-01

    The Mauritius Radio Telescope (MRT) is a 2 km x 1 km T-shaped aperture synthesis array that can generate radio images of the southern sky at 151.6 MHz. The sky surveyed can be in the declination range of -70o to -10o. It is located at Bras d'Eau, northeast of Mauritius at latitude 20oS and longitude 60oE. The MRT is a joint project of the University of Mauritius, the Indian Institute of Astrophysics and the Raman Research Institute. One of the main objectives of the MRT is to generate public interest in astronomy. Thus, it is involved in a wide range of onsite outreach activities for young school children. More mature students visiting the telescope learn about sky observation with a radio telescope, get to explore some sets of data, interact with the scientific personnel, get the opportunity to have hands-on experience with image manipulation and can ask a lot of questions on astronomy. This poster gives an overview of the Mauritius Radio Telescope and the attempts of MRT ito communicate astronomy to students as a process and not just as a vast expanse of knowledge. The challenges and dilemmas faced by MRT in conveying astronomy to the general public in a small island state are investigated and presented.

  3. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  4. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations. [69 FR 69331, Nov. 29, 2004]...

  5. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  6. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  7. 47 CFR 73.6027 - Class A TV notifications concerning interference to radio astronomy, research and receiving...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... interference to radio astronomy, research and receiving installations. 73.6027 Section 73.6027... radio astronomy, research and receiving installations. An applicant for digital operation of an existing... astronomy, research and receiving installations....

  8. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    NASA Technical Reports Server (NTRS)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  9. Astronomy: Radio burst caught red-handed

    NASA Astrophysics Data System (ADS)

    Falcke, Heino

    2017-01-01

    For almost a decade, astronomers have observed intense bursts of radio waves from the distant cosmos whose origins were unknown. The source of one such burst has now been identified, but this has only deepened the mystery. See Letter p.58

  10. Probing the field of radio astronomy with the SKA and the Hartebeesthoek Radio observatory: an engineer's perspective

    NASA Astrophysics Data System (ADS)

    Otto, Sunelle

    2011-07-01

    The Square Kilometre Array (SKA) is an international project to build the world's largest and most sensitive radio telescope interferometer. It will consist of thousands of antennas distributed over many kilometers, with the hosting country being either South Africa or Australia. This talk will give some background on the SKA technologies, pathfinders and Key Science Projects and also consider the system design options for the SKA Pulsar science case. The Hartebeesthoek Radio Astronomy Observatory (HartRAO) is the only major radio astronomy observatory in Africa; with KAT-7 in testing and the MeerKAT still in it's design phase. Some of my research work at HartRAO is presented, which includes data analysis of the pointing model for the 26m radio telescope and evaluating the performance of the GPS-disciplined Rubidium and Hydrogen Maser frequency standards. I will also talk about our project to build a 1.4GHz receiver for a commercial satellite TV antenna as well as calibrating data at 22GHz for observing water masers in Orion.

  11. Problems and Projects from Astronomy.

    ERIC Educational Resources Information Center

    Mills, H. R.

    1991-01-01

    Describes activities to stimulate school astronomy programs. Topics include: counting stars; the Earth's centripetal force; defining astronomical time; three types of sundials; perceptions of star brightness; sunspots and solar radiation; stellar spectroscopy; number-crunching and the molecular structure of the atmosphere; the Earth-Moon common…

  12. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  13. The Lunar Observer Radio Astronomy Experiment (LORAE)

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.

    1990-01-01

    The paper proposes to place a simple low-frequency dipole antenna on board the Lunar Observer (LO) satellite. LO will orbit the moon in the mid-1990's, mapping the surface at high resolution and gathering new geophysical data. In its modest concept, LORAE will collect crucial data on the radio interference environment while on the near-side (to aid in planning future arrays) and will monitor bursts of emission from the sun and the Jovian planets. LORAE will also be capable of lunar occultation studies of greater than 100 of the brightest sources, gathering arcminute resolution data on sizes and measuring source fluxes. A low resolution all-sky map below 10 MHz, when combined with data from the Gamma-Ray Observatory, will uniquely determine the density of Galactic cosmic ray electrons and the strength of the Galaxy's magnetic field. LORAE also will be able to measure the density of the moon's ionosphere.

  14. On the Development of Radio Astronomy and Protected Astronomy Reserves in South Africa

    NASA Astrophysics Data System (ADS)

    Tiplady, Adrian John

    2015-08-01

    Recent initiatives to take advantage of various geographic locations in South Africa that exhibit excellent conditions for astronomical observations (optical and radio) has resulted in the establishment of a number of world class astronomical facilities. This includes the 10m class Southern African Large Telescope, the 64 dish MeerKAT radio telescope (under construction), and future Square Kilometre Array.To preserve these areas that exhibit natural astronomical advantage, unique legislation was promulgated to establish 'astronomy reserves'. These reserves are protected through a unique set of regulations that enable protection of astronomical facilities located in declared areas from any current, and future, sources of potential interference. This paper will look at the development and implementation of a protection regime, and review some of practical implications of the construction and operation of a radio telescope in what has become to be known as a 'radio quiet zone'.

  15. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  16. Information Telecommunications of Pushchino Radio Astronomy Observatory, Astro Space Center of Lebedev Physical Institute

    NASA Astrophysics Data System (ADS)

    Dumsky, V.; Isaev, E. A.; Samodurov, V. A.; Likhachev, S. F.; Shatskaya, M. V.; Kitaeva, M. A.; Zaytcev, A. Yu.; Ovchinnikov, I. L.; Kornilov, V. V.

    Buffer data center was created in the territory of the Pushchino Radio Astronomy Observatory three years ago. The necessity of its creation was caused by the high requirements to the speed and quality of the transmission large amounts of scientific and telemetry data received by tracking station RT-22 from the space radio telescope of the international project "Radioastron". The transfer of this data is carried out over a long distance over 100 km from the Pushchino to Moscow center of processing and storage ASC FIAN. And now we use the data center as a center of local network of the Observatory.

  17. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  18. Educational Programs for Graduate Level Learners and Professionals - National Radio Astronomy Observatory National and International Non-Traditional Exchange Program

    NASA Astrophysics Data System (ADS)

    Wingate, Lory Mitchell

    2017-01-01

    The National Radio Astronomy Observatory’s (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering to chosen participants within a nine-week program held at NRAO in New Mexico. Participants are typically graduate level students or professionals. Participation in the NINE Program is through a competitive process. The program includes a hands-on service project designed to increase the participants knowledge of radio astronomy. The approach demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal science results.The NINE teaches participants important sustainable skills associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners are expected to return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  19. Voyager planetary radio astronomy at Neptune

    NASA Technical Reports Server (NTRS)

    Warwick, James W.; Evans, David R.; Peltzer, Gerard R.; Peltzer, Robert G.; Romig, Joseph H.; Sawyer, Constance B.; Riddle, Anthony C.; Schweitzer, Andrea E.; Desch, Michael D.; Kaiser, Michael L.

    1989-01-01

    Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions of the planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 + or - 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.

  20. Millimeter Radio Astronomy and the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Antonov, O. V.; Khodachenko, M. L.

    The global distribution of solar surface activity (active regions) is connected with processes in the convection zone. To extract the information on large-scale motions in the convection zone, we study the solar synoptic charts (Mount Wilson 1998-2004, Fe I, 525.02 nm). The clear indication of large-scale ( ≥ 18 degree) turbulence is found. This may be a manifestations of the deep convection because there is no such global turbulent eddies in the solar photosphere. The preferred scales of longitudinal variations in surface solar activity are revealed. These correspond to about 15 degree to 51 degree (gigantic convection cells), 90 degree, 180 degree and 360 degree. Similar scales (e.g., 40 degree and 90 degree) are found in the millimeter radio-images (Metsahovi Radio Observatory 1994-1998, 37 and 87 GHz). Hence, the millimeter radio astronomy could prove useful for remote sensing of the solar convection zone.

  1. Reflections on the Radio Astronomy Explorer program of the 1960s and 70s

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.

    1990-01-01

    The Radio Astronomy Explorer (RAE) program of the late 1960s and early 1970s is, to date, the only totally dedicated radio astronomy mission to have flown. However, only some of the prelaunch goals were achieved due to the unexpectedly high levels of interference from the earth in the form of both naturally occurring and man-made noise. Some important lessons in receiver design were learned which could and should be applied to any future radio astronomy missions.

  2. A Pilot Astronomy Outreach Project in Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  3. The birthplace of planetary radio astronomy: The Seneca, Maryland observatory 50 years after Burke and Franklin's Jupiter radio emission discovery.

    NASA Astrophysics Data System (ADS)

    Garcia, L. N.; Thieman, J. R.; Higgins, C. A.

    2004-12-01

    Burke and Franklin's discovery of radio emissions from Jupiter in 1955 effectively marked the birth of the field of planetary radio astronomy. The discovery was made near Seneca, Maryland using the Department of Terrestrial Magnetism/Carnegie Institution of Washington's Mills Cross Array. Fifty years later there is very little evidence of this 96-acre X-shaped array of dipoles still in existence, nor evidence of any of the other antennas used at this site. The site, now known as the McKee Besher Wildlife Management Area, is owned by the State of Maryland Department of Natural Resources. Radio Jove, a NASA/GSFC education and public outreach project, will recognize the 50th anniversary of this discovery through an historic reenactment using their receiver and dual-dipole array system. Our search through the DTM/CIW archives, our visit to the site to look for evidence of this array, and other efforts at commemorating this anniversary will be described.

  4. An evolutionary sequence of low frequency radio astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    1990-01-01

    Many concepts for space-based low frequency radio astronomy missions are being developed, ranging from simple single-satellite experiments to large arrays on the far side of the moon. Each concept involves a different tradeoff between the range of scientific questions it can answer and the technical complexity of the experiment. Since complexity largely determines the development time, risk, launch vehicle requirements, cost, and probability of approval, it is important to see where the ability to expand the scientific return justifies a major increase in complexity. An evolutionary series of increasingly capable missions, similar to the series of missions for infrared or X-ray astronomy, is advocated. These would range from inexpensive 'piggy-back' experiments on near-future missions to a dedicated low frequency array in earth orbit (or possibly on the lunar nearside) and eventually to an array on the lunar farside.

  5. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    NASA Astrophysics Data System (ADS)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  6. RASDR: Benchtop Demonstration of SDR for Radio Astronomy

    SciTech Connect

    Vacaliuc, Bogdan; Oxley, Paul; Fields, David; Kurtz, Dr. Stan; Leech, Marcus

    2012-01-01

    The Society of Amateur Radio Astronomers (SARA) members present the benchtop version of RASDR, a Software Defined Radio (SDR) that is optimized for Radio Astronomy. RASDR has the potential to be a common digital receiver interface useful to many SARA members. This document describes the RASDR 0.0 , which provides digitized radio data to a backend computer through a USB 2.0 interface. A primary component of RASDR is the Lime Microsystems Femtocell chip which tunes from a 0.4-4 GHz center frequency with several selectable bandwidths from 0.75 MHz to 14 MHz. A second component is a board with a Complex Programmable Logic Device (CPLD) chip that connects to the Femtocell and provides two USB connections to the backend computer. A third component is an analog balanced mixer up conversion section. Together these three components enable RASDR to tune from 0.015 MHz thru 3.8GHz of the radio frequency (RF) spectrum. We will demonstrate and discuss capabilities of the breadboard system and SARA members will be able to operate the unit hands-on throughout the workshop.

  7. A review of decametric radio astronomy - Instruments and science

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Cane, H. V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources.

  8. Electronic Multi-beam Radio Astronomy Concept: Embrace a Demonstrator for the European SKA Program

    NASA Astrophysics Data System (ADS)

    Ardenne, A.; Wilkinson, P. N.; Patel, P. D.; Vaate, J. G. Bij

    2004-06-01

    ASTRON has demonstrated the capabilities of a 4 m2, dense phased array antenna (Bij de Vaate et al., 2002) for radio astronomy, as part of the Thousand Element Array project (ThEA). Although it proved the principle, a definitive answer related to the viability of the dense phased array approach for the SKA could not be given, due to the limited collecting area of the array considered. A larger demonstrator has therefore been defined, known as “Electronic Multi-Beam Radio Astronomy Concept”, EMBRACE, which will have an area of 625 m2, operate in the band 0.4 1.550 GHz and have at least two independent and steerable beams. With this collecting area EMBRACE can function as a radio astronomy instrument whose sensitivity is comparable to that of a 25-m diameter dish. The collecting area also represents a significant percentage area (˜10%) of an individual SKA “station.” This paper presents the plans for the realisation of the EMBRACE demonstrator.

  9. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the

  10. The Astronomy Genealogy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  11. UniBoard: generic hardware for radio astronomy signal processing

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. E.

    2012-09-01

    UniBoard is a generic high-performance computing platform for radio astronomy, developed as a Joint Research Activity in the RadioNet FP7 Programme. The hardware comprises eight Altera Stratix IV Field Programmable Gate Arrays (FPGAs) interconnected by a high speed transceiver mesh. Each FPGA is connected to two DDR3 memory modules and three external 10Gbps ports. In addition, a total of 128 low voltage differential input lines permit connection to external ADC cards. The DSP capability of the board exceeds 644E9 complex multiply-accumulate operations per second. The first production run of eight boards was distributed to partners in The Netherlands, France, Italy, UK, China and Korea in May 2011, with a further production runs completed in December 2011 and early 2012. The function of the board is determined by the firmware loaded into its FPGAs. Current applications include beamformers, correlators, digital receivers, RFI mitigation for pulsar astronomy, and pulsar gating and search machines The new UniBoard based correlator for the European VLBI network (EVN) uses an FX architecture with half the resources of the board devoted to station based processing: delay and phase correction and channelization, and half to the correlation function. A single UniBoard can process a 64MHz band from 32 stations, 2 polarizations, sampled at 8 bit. Adding more UniBoards can expand the total bandwidth of the correlator. The design is able to process both prerecorded and real time (eVLBI) data.

  12. Beyond Southern Skies: Radio Astronomy and the Parkes Telescope

    NASA Astrophysics Data System (ADS)

    Robertson, Peter

    1992-11-01

    Beyond Southern Skies tells the story of the planning and construction of the Parkes Telescope in rural New South Wales, Australia and surveys its achievements over the past thirty years. Around this central theme Peter Robertson presents a broader history of radio astronomy, describing its rapid rise to become the respected partner of traditional optical astronomy. The opening up of the radio window on the universe has been one of the most exciting developments in modern science. The technical achievements of the telescope outlined in Peter Robertson's very readable book will be accessible to a general audience. Readers will be fascinated by the lively account of the personalities, politics and controversy that lay behind the decision to build the Parkes Telescope. Since its completion in 1961, the telescope has contributed much to our knowledge of quasars, pulsars, masers, supernova remnants and molecular clouds, as well as the other unusual objects discovered in recent years. During the 1990s the telescope will continue to play a part in our quest to understand the origin and nature of the universe, and our place in it.

  13. Improving Astronomy Achievement and Attitude through Astronomy Summer Project: A Design, Implementation and Assessment

    ERIC Educational Resources Information Center

    Türk, Cumhur; Kalkan, Hüseyin; Iskeleli', Nazan Ocak; Kiroglu, Kasim

    2016-01-01

    The purpose of this study is to examine the effects of an astronomy summer project implemented in different learning activities on elementary school students, pre-service elementary teachers and in-service teachers' astronomy achievement and their attitudes to astronomy field. This study is the result of a five-day, three-stage, science school,…

  14. Highlighting the history of Japanese radio astronomy. 3: Early solar radio research at the Tokyo Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Ishiguro, Masato; Orchiston, Wayne; Akabane, Kenji; Enome, Shinzo; Hayashi, Masa; Kaifu, Norio; Nakamura, Tsuko; Tsuchiya, Atsushi

    2014-03-01

    The radio astronomy group at the Tokyo Astronomical Observatory was founded in 1948 immediately after WWII, and decided to put its main research efforts into solar radio astronomy. The first radio telescope was completed in 1949 and started routine observations at 200 MHz. Since then, the group has placed its emphasis on observations at meter and decimeter wavelengths, and has constructed various kinds of radio telescopes and arrays operating at frequencies ranging from 60 to 800 MHz. In addition, radio telescopes operating at 3, 9.5 and 17 GMHz were constructed. In parallel with the observationally-based research, theoretical research on solar radio emission also was pursued. In this paper, we review the instrumental, observational and theoretical developments in solar radio astronomy at the Tokyo Astronomical Observatory in the important period from 1949 through to the 1960s.

  15. The 30-m radio telescope for millimeter astronomy - A new large instrument for German astronomy

    NASA Astrophysics Data System (ADS)

    Baars, J. W. M.; Mezger, P. G.; de Jonge, M. J.; Hooghoudt, B. G.

    1986-08-01

    The instrument considered represents currently the radio telescope with the best performance for astronomical studies involving the wavelength range in the vicinity of 1 mm. For a time of approximately one year, the telescope has been employed in astronomical observational programs. The time period between the planning stage and the beginning of the operational phase is considered. In connection with the opportunities for astronomical studies in the millimeter wavelength range, the new instrument was designed especially for observations involving the range from 0.8 mm to 3 mm. Planning operations for this telescope began already in 1972. Attention is given to discussions with French and British scientists, the selection of a location for the instrument in southern Spain, aspects of European cooperation regarding the instrument, the design of radio telescopes for millimeter astronomy, the characteristic features of the new instrument, data processing and evaluation, and the first results obtained with the telescope.

  16. The beginnings of radio astronomy in the Netherlands

    NASA Astrophysics Data System (ADS)

    van Woerden, Hugo; Strom, Richard G.

    2006-06-01

    The birth of Dutch radio astronomy can be rather precisely dated to 15 April 1944, when H.C. van de Hulst presented the results of his theoretical research into the origin of radio waves from space. We have investigated the events leading up to the momentous suggestion that hydrogen emission at 21 cm ought to be detectable. Both published material and letters from the Oort Archive have been consulted. Not having direct access to either radar technology or trained engineers, as was the case in countries like England and Australia, Jan Oort had to turn to a diversity of organizations: Philips Electronics Company, the Post Office, and academic colleagues in other disciplines. It was the Post Office's head of radio, A.H. de Voogt, who provided a 7.5 m Würzburg radar reflector and technical support at the Kootwijk station, starting in 1948. We trace the events leading up to the 21 cm line's detection in 1951, and discuss the early results. After a year spent rebuilding and thereby improving the receiver, C.A. Muller, together with Oort, Van de Hulst and others, was able to initiate an extensive HI survey of the Galaxy. The results fully justified the year's wait: a map of the Galaxy, spiral arms, the first rotation curve, and a much improved system of Galactic coordinates. We also present a discussion of Würzburg antennas used for research in the Netherlands, and a brief biography of A.H. de Voogt.

  17. Found: The Original 1945 Records of Australian Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Goss, Miller; Ekers, Ron; Sim, Helen

    2015-08-01

    In July 2014, we found the original records of the first published Australian radio astronomy observations. These were obtained by Joseph L. Pawsey and Ruby Payne-Scott in early October 1945. The observations gave strong evidence of a million degree corona as well as frequent radio bursts.These observations followed earlier detections of the radio sun by Stanley Hey, George Southworth, Grote Reber and Elizabeth Alexander. The latter observations (the "Norfolk Island Effect" of March 1945) were the immediate motivation for the campaign carried out by Pawsey and Payne-Scott.These observations formed the basis for a number of pioneering publications: the 9 February 1946 Nature paper of Pawsey, Payne-Scott and McCready which was submitted on the last date on which data was obtained on 23 October 1945, the major publication of the initial Australian radio solar publication in the Proceedings of the Royal Society of London in August 1947 and Pawsey's presentation of the radio properties of the million degree corona in the Nature of 2 November 1946. Contemporaneously with these publications, D. F.Martyn was involved in an independent theoretical study of the properties of the solar corona.(Ginzburg and Shklovsky were also involved in this era in a study of the properties of the corona.) The back-to-back Martyn and Pawsey Nature papers were the first that described the radio properties of the hot corona, due to free-free emission. The division of the observed emission into "bursting" and "quiet" modes was challenging for the novice radio astronomers.These historical records had been recognized by Paul Wild in 1968, who instructed the CSIRO Division of Radiophysics secretary to E.("Taffy") G. Bowen, Ms. Sally Atkinson, to submit these to the Australian Academy of Science. Wild characterized these documents as "of considerable historical interest". Apparently the transmission of the documents was not done; a thorough search of the Australian Academy Library in August 2014

  18. Ultra low noise cryogenic amplifiers for radio astronomy

    NASA Astrophysics Data System (ADS)

    Bryerton, E. W.; Morgan, Matthew Alexander; Pospieszalski, Marian W.

    2013-01-01

    Cryogenic cooling of receivers to reduce their noise temperature is especially important in radio astronomy, as the antenna noise temperature is determined by the cosmic microwave background radiation (2.725 K) modified by the presence of atmosphere. For frequencies up to 120 GHz direct amplification at cryogenic temperatures is typically employed using InP heterostructure field-effect transistors (HFETs) or, more recently, SiGe heterostructure bipolar transistors (HBTs). This article reviews developments in this field and presents the current state-of-the-art. Examples of noise performance of amplifiers using InP HFETs and SiGe HBTs are compared with the model predications. Some gaps in our current understanding of experimental results are emphasized, and some comments on possible future developments are offered.

  19. Planetary radio astronomy observations from Voyager 2 near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively, or less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. The paper reports on quasi-periodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kHz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, the occurrence of decametric emission in homologous arc families is discussed.

  20. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  1. User friendly database for Neptune planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    Planetary Radio Astronomy (PRA) data from the Voyager Neptune encounter were cleaned and reformatted in a variety of formats. Most of these formats are new and have been specifically designed to provide easy access and use of the data without the need to understand esoteric characteristics of the PRA instrument or the Voyager spacecraft. Several data sets were submitted to the Planetary Data System (PDS) and have either appeared already on peer reviewed CDROM's or are in the process of being reviewed for inclusion in forthcoming CD-ROM's. Many of the data sets are also available online electronically through computer networks; it is anticipated that as time permits, the PDS will make all the data sets that were a part of this contract available both online and on CD-ROM's.

  2. Molecules in Space: A Chemistry lab using Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Lekberg, M. J.; Pratap, P.

    2000-12-01

    We present the results of a laboratory exercise developed with the support of the NSF Research Experiences for Teachers program at MIT Haystack Observatory. The exercise takes the students beyond the traditional test tubes of a chemistry laboratory into the interstellar medium, where the same principles that they study about in the classroom are found to hold. It also utilizes the true multi-disciplinary nature of radio astronomy and allows the students to realize how much can be learnt by studying the universe at various wavelengths. The astronomical chemistry laboratory is presented wherein students from Chelmsford High School in Massachusetts operate the 37-m telescope at Haystack Observatory via the internet to observe radio signals from galactic chemicals. The laboratory is designed to be the means by which students witness physical evidence for molecular and orbital shapes by observing the radio emission from rotating dipoles. The laboratory described is a lynch pin activity for an integrated unit that moves from the valance shell electron configurations through molecular and orbital geometry to an understanding that many physical and chemical properties of chemicals are ultimately dependent upon the shape/geometry and consequently, dipole of the molecule. Students are expected to interpret and evaluate the nature of molecular dipoles and account for the diversity of rotational spectra using their conceptual knowledge of bonding orbital theory and their knowledge of the electronic atom. Flexibility in the lab allows students to identify individual chemicals by cross referencing radio emission from the galactic sources they have chosen against a prepared catalogue listing or by choosing to "listen" for specific chemicals at exact frequencies. A teacher resource manual containing information and data on a variety of daytime galactic source and individual chemical flux densities of molecular candidates has been prepared. Collaborative exercises and activities

  3. Tonantzintla's Observatory Astronomy Teaching Laboratory project

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Martínez, L. A.; Sánchez, L.; Hernández, H.; Langarica, R.; Iriarte, A.; Peña, J. H.; Tinoco, S.; Ángeles, F.

    2008-07-01

    In the last two years the National Observatory at Tonantzintla Puebla, México (OAN Tonantzintla), has been undergoing several facilities upgrades in order to bring to the observatory suitable conditions to operate as a modern Observational Astronomy Teaching Laboratory. In this paper, we present the management, requirement definition and project advances. We made a quantitative diagnosis about of the functionality of the Tonantzintla Observatory (mainly based in the 1m f/15 telescope) to take aim to educational objectives. Through this project we are taking the steps to correct, to actualize and to optimize the observatory astronomical instrumentation according to modern techniques of observation. We present the design and the first actions in order to get a better and efficient use of the main astronomical instrumentation, as well as, the telescope itself, for the undergraduate, postgraduate levels Observacional Astronomy students and outreach publics programs for elementary school. The project includes the development of software and hardware components based in as a common framework for the project management. The Observatory is located at 150 km away from the headquarters at the Instituto de Astronomía, Universidad Nacional Autónoma de México (IAUNAM), and one of the goals is use this infrastructure for a Remote Observatory System.

  4. The renaissance of radio astronomy: towards the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2016-09-01

    In this paper, I will give a brief overview of the largest radio telescope in the world, the Square Kilometre Array (SKA). The history of this instrument, its development as a huge international project, as well as its main scientific goals, will be summarised. I will then focus on a particular science case by presenting how the first phase of the SKA (SKA1), whose observations are expected to start in the early 2020's, will change our radio view of the largest gravitationally bound structures of the Universe: galaxy clusters.

  5. SwaMURAy - Swapping Memory Unit for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Winberg, Simon

    2016-03-01

    This paper concerns design and performance testing of an HDL module called SwaMURAy that is a configurable, high-speed data sequencing and flow control module serving as an intermediary between data acquisition and subsequent processing stages. While a FIFO suffices for many applications, our case needed a more elaborate solution to overcome legacy design limitations. The SwaMURAy is designed around a system where a block of sampled data is acquired at a fast rate and is then distributed among multiple processing paths to achieve a desired overall processing rate. This architecture provides an effective design pattern around which various software defined radio (SDR) and radio astronomy applications can be built. This solution was partly in response to legacy design restrictions of the SDR platform we used, a difficulty likely experienced by many developers whereby new sampling peripherals are inhibited by legacy characteristics of an underlying reconfigurable platform. Our SDR platform had a planned lifetime of at least five years as a complete redesign and refabrication would be too costly. While the SwaMURAy overcame some performance problems, other problems arose. This paper overviews the SwaMURAy design, performance improvements achieved in an SDR case study, and discusses remaining limitations and workarounds we expect will achieve further improvements.

  6. An Overview of W.N. Christiansen's Contribution to Australian Radio Astronomy, 1948-1960

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Slee, Bruce

    In 1948, an accomplished industrial physicist who had harboured a long-term ambition to become an astronomer joined the newly-formed Radio Astronomy Group in the CSIR's Division of Radiophysics in Sydney, Australia. Thus, W.N. (`Chris') Christiansen (1913-2007) began a new career in the fledgling field of radio astronomy. This paper reviews Christiansen's contribution to both instrumentation development and scientific research during the first phase of his career in radio astronomy, covering his work at the Potts Hill and Fleurs field stations prior to his resignation from the Division of Radiophysics in 1960.

  7. Jansky and Reber: Two Remarkable Stories in Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T., III

    1996-05-01

    Extraterrestrial radio waves were first detected in 1931-32 by Karl Jansky at the Bell Telephone Labs in New Jersey while he was investigating sources of interference to recently opened, trans-Atlantic shortwave (20 MHz) radiotelephone circuits. At this time Jansky was only a few years beyond his physics degree from the University of Wisconsin, where his father was a professor of engineering. Jansky studied this "star noise" off and on until 1935, establishing that the emission came from the direction of the Milky Way and the galactic center, but did not pursue it in any further detail. The only other person to make a significant contribution to the nascent subject before World War II was Grote Reber, an electrical engineer who worked for several different radio firms in Chicago. After reading Jansky's articles, in 1937 Reber decided to build a 30-ft diameter dish antenna in the backyard of his suburban home in Wheaton, Illinois. By 1939 he had detected the Jansky radiation, which he called "cosmic noise", at 160 MHz and he comenced a long term program of mapping it in detail (with a 12 degree beam). Reber became a well-known figure to the astronomers at the University of Chicago and Yerkes Observatory (Struve, Greenstein, Kuiper, Henyey, Keenan) as he sought to learn astronomy and convince the staff that this cosmic noise was of importance. Struve, editor of the "Astrophysical Journal", was finally persuaded to publish Reber's articles. During and just after the war Reber extended his work to 480 MHz. He then sought funds to move his dish to a quieter locale and to build a second, much larger dish, but neither of these plans came to fruition. It is ironic that the remarkable contributions of these two pioneers to the field that would eventually become known as "radio astronomy" (a term only introduced in the late 1940s) had little influence on the spectacular growth of the field in the decade after World War II. The great bulk of the important work was done in

  8. Trans-Pacific Astronomy Experiment Project Status

    NASA Technical Reports Server (NTRS)

    Hsu, Eddie

    2000-01-01

    The Trans-Pacific Astronomy Experiment is Phase 2 of the Trans-Pacific High Data Rate Satcom Experiments following the Trans-Pacific High Definition Video Experiment. It is a part of the Global Information Infrastructure-Global Interoperability for Broadband Networks Project (GII-GIBN). Provides global information infrastructure involving broadband satellites and terrestrial networks and access to information by anyone, anywhere, at any time. Collaboration of government, industry, and academic organizations demonstrate the use of broadband satellite links in a global information infrastructure with emphasis on astronomical observations, collaborative discussions and distance learning.

  9. Astronomy Education in Morocco - New Project for Implementing Astronomy in High Schools

    NASA Astrophysics Data System (ADS)

    Darhmaoui, H.; Loudiyi, K.

    2006-08-01

    Astronomy education in Morocco, like in many developing countries, is not well developed and lacks the very basics in terms of resources, facilities and research. In 2004, the International Astronomical Union (IAU) signed an agreement of collaboration with Al Akhawayn University in Ifrane to support the continued, long-term development of astronomy and astrophysics in Morocco. This is within the IAU program "Teaching for Astronomy Development" (TAD). The initial focus of the program concentrated exclusively on the University's Bachelor of Science degree program. Within this program, and during two years, we were successful in providing adequate astronomy training to our physics faculty and few of our engineering students. We also offered our students and community general astronomy background through courses, invited talks and extra curricular activities. The project is now evolving towards a wider scope and seeks promoting astronomy education at the high school level. It is based on modules from the Hands on Universe (HOU) interactive astronomy program. Moroccan students will engage in doing observational astronomy from their PCs. They will have access to a world wide network of telescopes and will interact with their peers abroad. Through implementing astronomy education at this lower age, we foresee an increasing interest among our youth not only in astronomy but also in physics, mathematics, and technology. The limited astronomy resources, the lack of teachers experience in the field and the language barrier are amongst the difficulties that we'll be facing in achieving the objectives of this new program.

  10. Packet Radio Communications Project

    DTIC Science & Technology

    1974-12-01

    init.ate any pending DMA channel I/O now possible as a result of the completed DMA I/O operation. For example, if the packet transmision has been...keyboard and printer b. Binary data record I/O fo/from the tape media c. Scan for unsolicited keyboard input 2-12 Software description of experimental...the station and transmit to the station packets input on the radio receivers. The goal is to provide a transparent packet transfer media to

  11. Thunderstorms and ground-based radio noise as observed by radio astronomy Explorer 1

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1973-01-01

    Radio Astronomy Explorer (RAE) data were analyzed to determine the frequency dependence of HF terrestrial radio noise power. RAE observations of individual thunderstorms, mid-ocean areas, and specific geographic regions for which concommitant ground based measurements are available indicate that noise power is a monotonically decreasing function of frequency which conforms to expectations over the geographic locations and time periods investigated. In all cases investigated, active thunderstorm regions emit slightly higher power as contrasted to RAE observations of the region during meteorologically quiet periods. Noise levels are some 15 db higher than predicted values over mid-ocean, while in locations where ground based measurements are available a maximum deviation of 5 db occurs. Worldwide contour mapping of the noise power at 6000 km for five individual months and four observing frequencies, examples of which are given, indicate high noise levels over continental land masses with corresponding lower levels over ocean regions.

  12. Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1980-01-01

    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized.

  13. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    NASA Astrophysics Data System (ADS)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  14. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  15. Research on Haystack radiometer, 20-24 GHz maser, and radio astronomy programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    During the first half of 1973, the Haystack antenna was utilized 76% of the time. Of this useful time, 72% was devoted to radio astronomy observing, 5% was spent on radar-related research and 23% went into maintenance and system improvements. Twenty-eight new radio astronomy programs were accepted, eight of which were completed during the period. One new radar program, topographic observations of Mars, was started in June and will be completed early in 1974. Fourteen programs continued from the previous period were also defined as complete. As of 1 July, 28 ratio observing programs were in a continuing status on the Haystack books. Four radar projects were also continuing. The 20-24 GHz maser development described in the preceding report progressed very well during an on-antenna test phase which began early in the year, but which terminated unfortunately in June with the complete loss of gain in the maser. Investigation of this problem is in progress. During this on-antenna test phase, the most sensitive water vapor observing capability which has yet become available was demonstrated.

  16. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    NASA Astrophysics Data System (ADS)

    2007-07-01

    interested in astronomical discovery will find fascinating and highly personal accounts by Peter Mezger on observations of radio recombination lines, by Lewis Snyder and Barry Turner on the early days of astrochemistry, by Don Backer and David Nice on observations of pulsars, and by David Shaffer, James Moran, Ken Kellermann and Barry Clark on aspects of the development of long baseline interferometric techniques. Today's generation of scientists will find interesting reminiscences by Patrick Palmer, Thomas Wilson, and Nobel Laureate Joseph Taylor on their experiences as graduate students doing thesis research at Green Bank, and from Sebastian von Hoerner and Jaap Baars on their work in telescope development. The volume also relates the entry of computers into radio astronomy, and reprints the one-page memo from 1960 which laid out the protocol for use of the new "single roll of magnetic tape" just acquired by the Observatory. A major portion of the book describes some singular events associated with this singular place: the first search for radio signals from extraterrestrial civilizations -- Project Ozma -- conducted by Dr. Frank Drake in 1960. But it was Fun... documents how this routine project thrust the NRAO into the national spotlight to the discomfort of its director, a distinguished astronomer of the old school. The book also recounts a few episodes in the amazing life of Grote Reber, the engineer who built the first-ever radio dish in his backyard and was a regular visitor to Green Bank. The NRAO Green Bank Observatory is an international center for research, and in two unique and frequently hilarious articles, Ken Kellermann and Barry Clark tell their stories of the first cooperative radio astronomical projects between the Soviet Union and the U.S., which involved transporting an atomic clock from Green Bank to a Soviet Observatory on the Black Sea at a time when international tensions were high, and it was impossible to make a phone call from the USSR to Green

  17. Genome Radio Project: Quarterly report

    SciTech Connect

    1997-08-01

    The process of conducting background research for the programs of the Genome Radio Project is continuing. The most developed of the program ``backgrounders`` have been reviewed by series and program advisors from various fields. Preliminary and background interviews have been conducted with dozens of potential program participants and advisors. Structurally, efforts are being directed toward developing and formalizing the project and series advisor relationships so that the best use can be made of those experts who have offered to assist the project in its presentation of program content. The library of research materials has been expanded considerably, creating a useful resource library for the producers.

  18. Infrared Submillimeter and Radio Astronomy Research and Analysis Program

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2000-01-01

    This program entitled "Infrared Submillimeter and Radio Astronomy Research and Analysis Program" with NASA-Ames Research Center (ARC) was proposed by the Smithsonian Astrophysical Observatory (SAO) to cover three years. Due to funding constraints only the first year installment of $18,436 was funded, but this funding was spread out over two years to try to maximize the benefit to the program. During the tenure of this contact, the investigators at the SAO, Drs. Wesley A. Traub and Nathaniel P. Carleton, worked with the investigators at ARC, Drs. Jesse Bregman and Fred Wittebom, on the following three main areas: 1. Rapid scanning SAO and ARC collaborated on purchasing and constructing a Rapid Scan Platform for the delay arm of the Infrared-Optical Telescope Array (IOTA) interferometer on Mt. Hopkins, Arizona. The Rapid Scan Platform was tested and improved by the addition of stiffening plates which eliminated a very small but noticeable bending of the metal platform at the micro-meter level. 2. Star tracking Bregman and Wittebom conducted a study of the IOTA CCD-based star tracker system, by constructing a device to simulate star motion having a specified frequency and amplitude of motion, and by examining the response of the tracker to this simulated star input. 3. Fringe tracking. ARC, and in particular Dr. Robert Mah, developed a fringe-packet tracking algorithm, based on data that Bregman and Witteborn obtained on IOTA. The algorithm was tested in the laboratory at ARC, and found to work well for both strong and weak fringes.

  19. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  20. Cosmic Noise: The Pioneers of Early Radio Astronomy and Their Discoveries

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III

    2012-01-01

    Extraterrestrial radio waves (the galactic background), often referred to as "cosmic noise", were first detected accidentally by Karl Jansky at a frequency of 20 MHz in 1932, with significant followup by Grote Reber. Yet after World War II it was England and Australia that dominated the field. An entirely different sky from that of visual astronomy was revealed by the discoveries of solar noise, "radio stars” (discrete sources such as Cas A, Tau A, Cyg A, Cen A and Vir A), galactic noise, lunar and meteor radar experiments, the detection of the 21 cm hydrogen line, and eventually optical identifications such as the Crab Nebula and M87. Key players included wartime radar experts such as Stanley Hey (the British Army's Operational Research Group), Martin Ryle (Cambridge University), Bernard Lovell (Jodrell Bank) and Joe Pawsey (Radiophysics Lab, Sydney). Younger leaders also emerged such as Graham Smith, Tony Hewish, John Davies, "Chris" Christiansen, Bernie Mills, Paul Wild, and John Bolton. Some optical astronomers (Jan Oort, Henk van de Hulst, Jesse Greenstein, Rudolph Minkowski, and Walter Baade) were also extremely supportive. By the end of the postwar decade, radio astronomy was firmly established within the gamut of astronomy, although very few of its practitioners had been trained as astronomers. I will also trace the technical and social aspects of this wholly new type of astronomy, with special attention on military and national influences. I argue that radio astronomy represents one of the key developments in twentieth century astronomy not only because of its own discoveries, but also its pathfinding for the further opening the electromagnetic spectrum. This study is based on exhaustive archival research and over one hundred interviews with pioneering radio astronomers. Full details are available in the book "Cosmic Noise: A History of Early Radio Astronomy" (Cambridge Univ. Pr.).

  1. School Astronomy Club: from Project to Knowledge

    NASA Astrophysics Data System (ADS)

    Folhas, Alvaro

    2016-04-01

    Prepare a generation of young people for the challenges of the future is a task which forces us to rethink the school, not just for being difficult, but also because students feel that the school has very little to offer, especially something that interests them. Thus, the school is dysfunctional, is ill, and needs prompt treatment. School have to adjust to the new times, and this does not mean changing the old blackboards by advanced interactive whiteboards. The school has to find the way to the students with something that seduce them: the Challenge. The Astronomy Club that I lead in my school is essentially a Project space. Students who voluntarily joined the club, organize themselves according to their interests around projects whose outcome is not defined from the beginning, which requires them to do, undo and redo. Which obliges them to feel the need to ask for help to mathematics or physics to achieve answers, to feel the passion to study with a genuine purpose of learning. Some examples of the work: The younger students are challenged to reproduce the historical astronomical experiments that have opened the doors of knowledge such as the Eratosthenes experiment to determine the perimeter of the Earth (on equinox), or by using congruent triangles, determine the diameter the sun. These students are driven to establish distance scales in the solar system, which, to their astonishment, allows them to clear misconceptions that arise from some pictures of books and allows them to have a scientifically correct idea of the planetary orbit and distance separating the planets of the Solar System. For students from 15 to 18 years, I have to raise the level of the challenges and use the natural tendency of this age bracket to assert making new and exciting things. To this purpose, I am fortunate to have the support of large organizations like NUCLIO, ESA, CERN, and Go-Lab Project, Inspiring Science Education, Open Discovery Space and Global Hands on Universe. Through

  2. Early Dutch radio astronomy (1940-1970) : the people and the politics

    NASA Astrophysics Data System (ADS)

    Elbers, Astrid

    2015-12-01

    Radio astronomy was born during the Second World War. The early post-war radio astronomy group in the Netherlands was one of the most important radio astronomy groups in the world. There are several reasons for this. Firstly: Dutch radio astronomers were trained as (optical) astronomers, while in most countries engineers and physicists with a background in wartime radar research were the first radio 'astronomers'. This was because radio telescopes shared the technology of wartime radar installations. Because Dutch astronomers were not familiar with the new kind of instrumentation, they had to conclude strategic alliances with industrial partners such as Philips, the PTT and the KNMI. These alliances would offer much more than merely technical know-how, which means that the disadvantage would prove to be an advantage in the end. Secondly: astronomy was still a very small-scale undertaking in the early post-war period. Even so, ZWO was still a very small organisation. The fact that so few people were involved meant that the impact of a personal network could be enormous. Thirdly: the Dutch post-war context was remarkably favourable to science: it was considered to be a key factor in the rebuilding of the country.

  3. Introducing AstroGen: the Astronomy Genealogy Project

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-12-01

    The Astronomy Genealogy Project (AstroGen), a project of the Historical Astronomy Division of the American Astronomical Society (AAS), will soon appear on the AAS website. Ultimately, it will list the world's astronomers with their highest degrees, theses for those who wrote them, academic advisors (supervisors), universities, and links to the astronomers or their obituaries, their theses when online, and more. At present the AstroGen team is working on those who earned doctorates with astronomy-related theses. We show what can be learned already, with just ten countries essentially completed.

  4. Investigation on the Frequency Allocation for Radio Astronomy at the L Band

    NASA Astrophysics Data System (ADS)

    Abidin, Z. Z.; Umar, R.; Ibrahim, Z. A.; Rosli, Z.; Asanok, K.; Gasiprong, N.

    2013-09-01

    In this paper, the frequency allocation reserved for radio astronomy in the L band set by the International Telecommunication Union (ITU), which is between 1400 and 1427 MHz, is reviewed. We argue that the nearby frequencies are still very important for radio astronomers on the ground by investigating radio objects (H i sources) around 1300-1500 MHz. The L-band window is separated into a group of four windows, namely 1400-1427 MHz (window A), 1380-1400 MHz (window B), 1350-1380 MHz (window C), and 1300-1350 MHz (window D). These windows are selected according to their redshifts from a rest frequency for hydrogen spectral line at 1420.4057 MHz. Radio objects up to z ≈ 0.1 or frequency down to 1300 MHz are examined. We argue that since window B has important radio objects within the four windows, this window should also be given to radio astronomy. They are galaxies, spiral galaxies, and galaxy clusters. This underlines the significance of window B for radio astronomers on the ground. By investigating the severeness of radio frequency interference (RFI) within these windows, we have determined that window B still has significant, consistent RFI. The main RFI sources in the four windows have also been identified. We also found that the Department of Civil Aviation of Malaysia is assigned a frequency range of 1215-1427 MHz, which is transmitted within the four windows and inside the protected frequency for radio astronomy. We also investigated the RFI in the four windows on proposed sites of future radio astronomy observatories in Malaysia and Thailand and found the two best sites as Universiti Pendidikan Sultan Idris (UPSI) and Ubon Ratchathani, respectively. It has also been determined that RFI in window B increases with population density.

  5. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  6. Improvements to Host Country Radio Astronomy at Robledo: Another antenna, a new receiver, a new backend

    NASA Astrophysics Data System (ADS)

    Rizzo, J. R.; García-Miró, G.

    2013-05-01

    NASA hosts three complexes worldwide built for spacecraft tracking, whose sensitive antennas are suitable for radio astronomy. Since more than a decade, INTA has managed guaranteed Spanish time at the complex located in Robledo de Chavela, in the frame of the Host Country Radio Astronomy (HCRA) program. Until now, the vast majority of the scientific results were achieved using a K-band (18 to 26 GHz) receiver, attached to the 70m antenna, and a narrow-band autocorrelator. In the recent years, we have undertaken two large instrumental projects: (1) the incorporation of a second antenna (34m in diameter), working in Q-band (38 to 50 GHz); and (2) the design and construction of a wideband backend, which may operate with both the Q- and K-band receivers, providing instantaneous bandwidths from 100 MHz to 6 GHz, and resolutions from 6 to 200 kHz. The new wideband backend is expanding the HCRA possibilities due its bandwidth, versatility, spectral resolution and stability of the baselines. Its IF processor splits each of the two circular-polarization signals, and downconverts them to four base-band channels, 1.5 GHz width. Two different frequencies may be tuned independently. Digitalisation is done through FPGA-based FFT spectrometers, which may be independently configured. Once end-to-end assembled, the commissioning of the new backend was done using the 34m antenna in Q-band. We report the main characteristics of both the antenna recently incorporated to HCRA, and the wideband backend.

  7. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  8. Spectrum Management for Radio Astronomy, Proceedings of the IUCAF summer school

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.; Emerson, D. T.

    2004-06-01

    Radio astronomers must use the radio spectrum, a resource that is also in demand for the radiocommunication and radio-location needs of our civilization. So use of the radio spectrum must be coordinated on the local, national, and international scenes. These proceedings cover much of the material that a spectrum manager for radio astronomy needs. These proceedings include an overview of the technical background, as well as of the organization of spectrum management in the US, Europe, the Asia-Pacific region, and at the ITU. There are in addition some case studies of situations radio astronomers face in coping with the problems posed by transmitters on earth satellites. These challenges have led to several approaches to quantifying and mitigating radio frequency interference.

  9. New Mexico Fiber-Optic Link Marks Giant Leap Toward Future of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    1998-12-01

    SOCORRO, NM -- Scientists and engineers at the National Radio Astronomy Observatory (NRAO) have made a giant leap toward the future of radio astronomy by successfully utilizing the Very Large Array (VLA) radio telescope in conjunction with an antenna of the continent-wide Very Long Baseline Array (VLBA) using the longest fiber-optic data link ever demonstrated in radio astronomy. The 65-mile fiber link will allow scientists to use the two National Science Foundation (NSF) facilities together in real time, and is the first step toward expanding the VLA to include eight proposed new radio-telescope antennas throughout New Mexico. LEFT: Miller Goss, NRAO's director of VLA/VLBA Operations, unveils graphic showing success of the Pie Town-VLA fiber link. The project, funded by the NSF and Associated Universities, Inc. (AUI), which operates NRAO for the NSF, links the VLA and the VLBA antenna in Pie Town, NM, using a Western New Mexico Telephone Co. fiber-optic cable. The successful hookup was announced at a ceremony that also marked the 10th anniversary of NRAO's Operations Center in Socorro. "Linking the Pie Town antenna to the VLA quadruples the VLA's ability to make detailed images of astronomical objects," said Paul Vanden Bout, NRAO's Director. "This alone makes the link an advance for science, but its greater importance is that it clearly demonstrates the technology for improving the VLA's capabilities even more in the future." "Clearly, the big skies and wide open spaces in New Mexico create near perfect conditions for the incredible astronomical assets located in our state. This new fiber-optic link paves the way for multiplying the already breathtaking scientific capabilities of the VLA," Senator Pete Domenici (R-NM) said. The VLA is a system of 27 radio-telescope antennas distributed over the high desert west of Socorro, NM, in the shape of a giant "Y." Made famous in movies, commercials and numerous published photos, the VLA has been one of the most productive

  10. Outer planets grand tours: Planetary radio astronomy team report

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1972-01-01

    Requirements related to scientific observations of planetary radio emissions during outer planets grand tours are discussed. Observations at low frequencies where non-thermal cooperative plasma phenomena play a major role are considered for determining dynamical processes and magnetic fields near a planet. Magnetic field measurements by spacecraft magnetometers, and by radio receivers in their harmonic modes are proposed for interpretation of planetary radio emission.

  11. ITEMS Project: An online sequence for teaching mathematics and astronomy

    NASA Astrophysics Data System (ADS)

    Martínez, Bernat; Pérez, Josep

    2010-10-01

    This work describes an elearning sequence for teaching geometry and astronomy in lower secondary school created inside the ITEMS (Improving Teacher Education in Mathematics and Science) project. It is based on results from the astronomy education research about studentsŠ difficulties in understanding elementary astronomical observations and models. The sequence consists of a set of computer animations embedded in an elearning environment aimed at supporting students in learning about astronomy ideas that require the use of geometrical concepts and visual-spatial reasoning.

  12. The Radio Language Arts Project: adapting the radio mathematics model.

    PubMed

    Christensen, P R

    1985-01-01

    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.

  13. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long

  14. Cyclostationary approaches for spatial RFI mitigation in radio astronomy

    NASA Astrophysics Data System (ADS)

    Hellbourg, Grégory; Weber, Rodolphe; Capdessus, Cécile; Boonstra, Albert-Jan

    2012-01-01

    Radio astronomical observations are increasingly corrupted by radio frequency interferences (RFIs), and real time filtering algorithms are becoming essential. In this article, it is shown how spatial processing techniques can limit the impact of the incoming RFIs for phased array radio telescopes. The proposed approaches are based on estimation of the RFI spatial signature. It requires the diagonalization of either the classic correlation matrix or the cyclic correlation matrix of the array. Different diagonalization techniques are compared. Then, RFI detection and RFI filtering techniques are illustrated through simulations on data acquired with the Low Frequency Array Radio telescope, LOFAR. The originality of the study is the use of the cyclostationarity property, in order to improve the spatial separation between cosmic sources and RFIs.

  15. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  16. Voyager 1 planetary radio astronomy observations near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere are reported. Dramatic new information was obtained, both because Voyager was near or in Jupiter's radio emission sources and because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are outlined briefly.

  17. The Astropy Project: A community Python library for astronomy

    NASA Astrophysics Data System (ADS)

    Sipocz, Brigitta; Robitaille, Thomas; Tollerud, Erik

    2016-03-01

    The Astropy Project is a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python Astronomy packages, and is one of the largest open-source collaborations in Astronomy. In this talk I present an overview of the project, provide an update on the latest status of the core package, which saw the v1.1 release late last year, and discuss our plans for the coming year. In addition, I describe the "affiliated packages": Python packages that use Astropy and are associated with the project, but are not actually a part of the core library itself. I also briefly talk about the infrastructural tools we provide for these packages.

  18. Sardinia Radio Telescope: the new Italian project

    NASA Astrophysics Data System (ADS)

    Grueff, Gavril; Alvito, Giovanni; Ambrosini, Roberto; Bolli, Pietro; Maccaferri, Andrea; Maccaferri, Giuseppe; Morsiani, Marco; Mureddu, Leonardo; Natale, Vincenzo; Olmi, Luca; Orfei, Alessandro; Pernechele, Claudio; Poma, Angelo; Porceddu, Ignazio; Rossi, Lucio; Zacchiroli, Gianpaolo

    2004-10-01

    This contribution gives a description of the Sardinia Radio Telescope (SRT), a new general purpose, fully steerable antenna proposed by the Institute of Radio Astronomy (IRA) of the National Institute for Astrophysics. The radio telescope is under construction near Cagliari (Sardinia) and it will join the two existing antennas of Medicina (Bologna) and Noto (Siracusa) both operated by the IRA. With its large antenna size (64m diameter) and its active surface, SRT, capable of operations up to about 100GHz, will contribute significantly to VLBI networks and will represent a powerful single-dish radio telescope for many science fields. The radio telescope has a Gregorian optical configuration with a supplementary beam-waveguide (BWG), which provides additional focal points. The Gregorian surfaces are shaped to minimize the spill-over and the standing wave between secondary mirror and feed. After the start of the contract for the radio telescope structural and mechanical fabrication in 2003, in the present year the foundation construction will be completed. The schedule foresees the radio telescope inauguration in late 2006.

  19. A Decade of Developing Radio-Astronomy Instrumentation using CASPER Open-Source Technology

    NASA Astrophysics Data System (ADS)

    Hickish, Jack; Abdurashidova, Zuhra; Ali, Zaki; Buch, Kaushal D.; Chaudhari, Sandeep C.; Chen, Hong; Dexter, Matthew; Domagalski, Rachel Simone; Ford, John; Foster, Griffin; George, David; Greenberg, Joe; Greenhill, Lincoln; Isaacson, Adam; Jiang, Homin; Jones, Glenn; Kapp, Francois; Kriel, Henno; Lacasse, Rich; Lutomirski, Andrew; MacMahon, David; Manley, Jason; Martens, Andrew; McCullough, Randy; Muley, Mekhala V.; New, Wesley; Parsons, Aaron; Price, Daniel C.; Primiani, Rurik A.; Ray, Jason; Siemion, Andrew; van Tonder, Vereesé; Vertatschitsch, Laura; Wagner, Mark; Weintroub, Jonathan; Werthimer, Dan

    The Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) has been working for a decade to reduce the time and cost of designing, building and deploying new digital radio-astronomy instruments. Today, CASPER open-source technology powers over 45 scientific instruments worldwide, and is used by scientists and engineers at dozens of academic institutions. In this paper, we catalog the current offerings of the CASPER collaboration, and instruments past and present built by CASPER users and developers. We describe the ongoing state of software development, as CASPER looks to support a broader range of programming environments and hardware and ensure compatibility with the latest vendor tools.

  20. The time resolution domain of stellar radio astronomy

    NASA Astrophysics Data System (ADS)

    Bookbinder, J.

    1985-07-01

    High time resolution (HTR) radio observations of stellar sources is a very young technique. One of the main limitations on HTR observations is the refusal of stars to cooperate with the observer - i.e. low flare rates. Instrumental problems, obtaining the necessary sensitivity (i.e. low noise) on short integration times is also a major problem. Few instruments are likely to excel Arecibo or the VLA for this mode of observing. High time resolution observations are necessary to determine the nature of both the acceleration and emission mechanisms responsible for the short-lived radio phenomena that have already been observed.

  1. The radio astronomy explorer satellite, a low-frequency observatory.

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Alexander, J. K.; Stone, R. G.

    1971-01-01

    The RAE-1 is the first spacecraft designed exclusively for radio astronomical studies. It is a small, but relatively complex, observatory including two 229-meter antennas, several radiometer systems covering a frequency range of 0.2 to 9.2 MHz, and a variety of supporting experiments such as antenna impedance probes and TV cameras to monitor antenna shape. Since its launch in July, 1968, RAE-1 has sent back some 10 billion data bits per year on measurements of long-wavelength radio phenomena in the magnetosphere, the solar corona, and the Galaxy. In this paper we describe the design, calibration, and performance of the RAE-1 experiments in detail.

  2. Enriching Cross Cirriculum Projects with Astronomy for Gifted Students

    NASA Astrophysics Data System (ADS)

    Burris, Debra L.

    2016-01-01

    The aim of many GT (Gifted and Talented) teachers is to provide comprehesive and long term projects to enrich cirriculum for their students rather than shorter "worksheet based" activities. Atkins Middle School has collaborated with faculty from the University of Central Arkansas over the past 9 years to create projects which span the academic year and enrich learning while emphasizing the goals of the science standards. An overview of those projects and Astronomy's role within them will be presented.

  3. Space-based aperture array for ultra-long wavelength radio astronomy

    NASA Astrophysics Data System (ADS)

    Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2016-02-01

    The past decade has seen the advent of various radio astronomy arrays, particularly for low-frequency observations below 100 MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21 cm line emission. However, Earth-based radio astronomy observations at frequencies below 30 MHz are severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10 MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. In the past, such space-based radio astronomy studies were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. Furthermore, successful space-based missions which mapped the sky in this frequency regime, such as the lunar orbiter RAE-2, were restricted by very poor spatial resolution. Recently concluded studies, such as DARIS (Disturbuted Aperture Array for Radio Astronomy In Space) have shown the ready feasibility of a 9 satellite constellation using off the shelf components. The aim of this article is to discuss the current trends and technologies towards the feasibility of a space-based aperture array for astronomical observations in the Ultra-Long Wavelength (ULW) regime of greater than 10 m i.e., below 30 MHz. We briefly present the achievable science cases, and discuss the system design for selected scenarios such as extra-galactic surveys. An extensive discussion is presented on various sub-systems of the potential satellite array, such as radio astronomical antenna design, the on-board signal processing, communication architectures and joint space-time estimation of the

  4. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  5. SOFIA Project: SOFIA-Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Tseng, Ting

    2007-01-01

    A viewgraph presentation on the SOFIA project is shown. The topics include: 1) Aircraft Information; 2) Major Components of SOFIA; 3) Aircraft External View; 4) Airborne Observatory Layout; 5) Telescope Assembly; 6) Uncoated Primary Mirror; 7) Airborne Astronomy; 8) Requirements & Specifications; 9) Technical Challenges; 10) Observatory Operation; and 11) SOFIA Flight Test.

  6. Supporting the Outdoor Classroom: An Archaeo-Astronomy Project

    ERIC Educational Resources Information Center

    Brown, Daniel; Francis, Robert; Alder, Andy

    2013-01-01

    Field trips and the outdoor classroom are a vital part of many areas of education. Ideally, the content should be taught within a realistic environment rather than just by providing a single field trip at the end of a course. The archaeo-astronomy project located at Nottingham Trent University envisages the development of a virtual environment…

  7. A very low frequency radio astronomy observatory on the Moon

    NASA Technical Reports Server (NTRS)

    Douglas, James N.; Smith, Harlan J.

    1988-01-01

    Because of terrestrial ionospheric absorption, very little is known of the radio sky beyond 10 m wavelength. An extremely simple, low cost very low frequency radio telescope is proposed, consisting of a large array of short wires laid on the lunar surface, each wire equipped with an amplifier and a digitizer, and connected to a common computer. The telescope could do simultaneous multifrequency observations of much of the visible sky with high resolution in the 10 to 100 m wavelength range, and with lower resolution in the 100 to 1000 m range. It would explore structure and spectra of galactic and extragalactic point sources, objects, and clouds, and would produce detailed quasi-three-dimensional mapping of interstellar matter within several thousand parsecs of the Sun.

  8. The time resolution domain of stellar radio astronomy

    NASA Technical Reports Server (NTRS)

    Bookbinder, J.

    1985-01-01

    The high time resolution (HTR) radio observation of late-type stars and RS CVn systems is discussed. Some examples of these sources are addressed, identifying what information HTR observations can provide. HTR can provide important information on flares in late-type stars, and can be used to study coronal structure and the particle acceleration mechanism in these stars. The possible use of HTR to establish the nature of quiescent emission form RS CVn systems is discussed.

  9. Multiphase Turbulent Interstellar Medium: Some Recent Results from Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Roy, Nirupam

    2015-06-01

    The radio frequency 1.4 GHz transition of the atomic hydrogen is one of the important tracers of the diffuse neutral interstellar medium. Radio astronomical observations of this transition, using either a single dish telescope or an array interferometer, reveal different properties of the interstellar medium. Such observations are particularly useful to study the multiphase nature and turbulence in the interstellar gas. Observations with multiple radio telescopes have recently been used to study these two closely related aspects in greater detail. This review article presents a brief outline of some of the basic ideas of radio astronomical observations and data analysis, summarizes the results from these recent observations, and discusses possible implications of the results. Using various observational techniques, the density and the velocity fluctuations in the Galactic interstellar medium was found to have a Kolmogorov-like power law power spectra. The observed power law scaling of the turbulent velocity dispersion with the length scale can be used to derive the true temperature distribution of the medium. Observations from a large ongoing atomic hydrogen absorption line survey have also been used to study the distribution of gas at different temperature. The thermal steady state model predicts that the multiphase neutral gas will exist in cold and warm phase with temperature below 200 K and above 5000 K respectively. However, these observations clearly show the presence of a large fraction of gas in the intermediate unstable phase. These results raise serious doubt about the validity of the standard model, and highlight the necessity of alternative theoretical models. Interestingly, numerical simulations suggest that some of the observational results can be explained consistently by including the effects of turbulence in the models of the multiphase medium.

  10. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have

  11. The history of early low frequency radio astronomy in Australia. 2: Tasmania

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    Significant contributions to low frequency radio astronomy were made in the Australian state of Tasmania after the arrival of Grote Reber in 1954. Initially, Reber teamed with Graeme Ellis, who was then working with the Ionospheric Prediction Service, and they carried out observations as low as 0.52 MHz during the 1955 period of exceptionally low sunspot activity. In the early 1960s, Reber established a 2.085 MHz array in the southern central region of the State and used this to make the first map of the southern sky at this frequency. In addition, in the 1960s the University of Tasmania constructed several low frequency arrays near Hobart, including a 609m × 609m array designed for operation between about 2 MHz and 20 MHz. In this paper we present an overview of the history of low frequency radio astronomy in Tasmania.

  12. The Inwood Astronomy Project: Ready for IYA 2009

    NASA Astrophysics Data System (ADS)

    Shilling Kendall, Jason

    2009-01-01

    The Inwood Astronomy Project begins its mission of "100 Nights of Astronomy", an outreach program for the IYA 2009 in New York City. While the city lights may at first glance be a major deterrent to amateur and educational night-sky viewing, the author describes numerous community-based initiatives designed to fit into a racially and ethnically diverse neighborhood of Northern Manhattan and the Bronx, which all give a deeper understanding and appreciation of and for the night sky. The author presents ways for professional astronomers to use their light-polluted cities and towns for the same purpose.

  13. The history of early low frequency radio astronomy in Australia. 1: The CSIRO Division of Radiophysics

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; George, Martin; Slee, Bruce; Wielebinski, Richard

    2015-03-01

    During the 1950s and 1960s Australia was a world leader in the specialised field of low frequency radio astronomy, with two geographically-distinct areas of activity. One was in the Sydney region and the other in the island of Tasmania to the south of the Australian mainland. Research in the Sydney region began in 1949 through the CSIRO's Division of Radiophysics, and initially was carried out at the Hornsby Valley field station before later transferring to the Fleurs field station. In this paper we summarise the low frequency radio telescopes and research programs associated with the historic Hornsby Valley and Fleurs sites.

  14. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    SciTech Connect

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  15. Fundamental experiments of radio astronomy by the paraboloidal antenna of 3.3 m diameter.

    NASA Astrophysics Data System (ADS)

    Sato, K.; Kuji, S.; Hara, T.; Fujishita, M.; Horiai, K.; Iwadate, K.; Sato, K.; Tsubokawa, T.; Tamura, Y.; Takano, S.; Tsuruta, S.; Asari, K.

    The 3.3 m diameter paraboloidal antenna was moved at early 1985 for fundamental experiments of radio astronomy at the International Latitude Observatory of Mizusawa. The antenna was originally manufactured for the telecomunication experiments at 4 GHz. The authors fitted up a new feed horn of 8 GHz-band for their experiments. The driving system was renewed as suitable for astronomical use by using DC servomotors, optical encoders and a micro-computer.

  16. Scalable desktop visualisation of very large radio astronomy data cubes

    NASA Astrophysics Data System (ADS)

    Perkins, Simon; Questiaux, Jacques; Finniss, Stephen; Tyler, Robin; Blyth, Sarah; Kuttel, Michelle M.

    2014-07-01

    Observation data from radio telescopes is typically stored in three (or higher) dimensional data cubes, the resolution, coverage and size of which continues to grow as ever larger radio telescopes come online. The Square Kilometre Array, tabled to be the largest radio telescope in the world, will generate multi-terabyte data cubes - several orders of magnitude larger than the current norm. Despite this imminent data deluge, scalable approaches to file access in Astronomical visualisation software are rare: most current software packages cannot read astronomical data cubes that do not fit into computer system memory, or else provide access only at a serious performance cost. In addition, there is little support for interactive exploration of 3D data. We describe a scalable, hierarchical approach to 3D visualisation of very large spectral data cubes to enable rapid visualisation of large data files on standard desktop hardware. Our hierarchical approach, embodied in the AstroVis prototype, aims to provide a means of viewing large datasets that do not fit into system memory. The focus is on rapid initial response: our system initially rapidly presents a reduced, coarse-grained 3D view of the data cube selected, which is gradually refined. The user may select sub-regions of the cube to be explored in more detail, or extracted for use in applications that do not support large files. We thus shift the focus from data analysis informed by narrow slices of detailed information, to analysis informed by overview information, with details on demand. Our hierarchical solution to the rendering of large data cubes reduces the overall time to complete file reading, provides user feedback during file processing and is memory efficient. This solution does not require high performance computing hardware and can be implemented on any platform supporting the OpenGL rendering library.

  17. Double plasma resonance and its manifestations in radio astronomy

    NASA Astrophysics Data System (ADS)

    Zheleznyakov, V. V.; Zlotnik, E. Ya; Zaitsev, V. V.; Shaposhnikov, V. E.

    2016-10-01

    The double plasma resonance (DPR) effect is the phenomenon of a sharply increased instability of plasma waves in a magnetized plasma when the upper hybrid frequency coincides with the cyclotron harmonic frequency. A radiation mechanism associated with this effect provides an explanation for the origin of the ‘zebra pattern’ in radio spectra of the Sun, Jupiter, and the Crab pulsar. The diversity of these astronomical objects and the successful interpretation of their spectra in terms of the DPR effect point to the universal nature of this phenomenon and suggest that the same radiation mechanism can operate under a variety of astronomical conditions.

  18. Low-Power Architectures for Large Radio Astronomy Correlators

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.

    2011-01-01

    The architecture of a cross-correlator for a synthesis radio telescope with N greater than 1000 antennas is studied with the objective of minimizing power consumption. It is found that the optimum architecture minimizes memory operations, and this implies preference for a matrix structure over a pipeline structure and avoiding the use of memory banks as accumulation registers when sharing multiply-accumulators among baselines. A straw-man design for N = 2000 and bandwidth of 1 GHz, based on ASICs fabricated in a 90 nm CMOS process, is presented. The cross-correlator proper (excluding per-antenna processing) is estimated to consume less than 35 kW.

  19. Global projects and Astronomy awareness activities in Nepal

    NASA Astrophysics Data System (ADS)

    Gautam, Suman

    2015-08-01

    Modern astronomy is a crowning achievement of human civilization which inspires teenagers to choose career in science and technology and is a stable of adult education. It is a unique and cost effective tool for furthering sustainable global development because of its technological, scientific and cultural dimensions which allow us to reach with the large portion of the community interact with children and inspire with our wonderful cosmos.Using astronomy to stimulate quality and inspiring education for disadvantaged children is an important goal of Nepal Astronomical Society (NASO) since its inception. NASO is carrying out various awareness activities on its own and in collaboration with national and international organizations like Central Department of Physics Tribhuvan University (TU), International astronomical Union (IAU), Department of Physics Prithvi Narayan Campus Pokhara, Nepal academy of science and technology (NAST), Global Hands on Universe (GHOU), EU- UNAWE and Pokhara Astronomical Society (PAS) to disseminate those activities for the school children and teachers in Nepal. Our experiences working with kids, students, teachers and public in the field of universe Awareness Activities for the school children to minimize the abstruse concept of astronomy through some practical approach and the project like Astronomy for the visually impaired students, Galileo Teacher Training program and International School for young astronomers (ISYA) outskirts will be explained which is believed to play vital role in promoting astronomy and space science activities in Nepal.

  20. Instrumentation for Kinetic-Inductance-Detector-Based Submillimeter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Duan, Ran

    A substantial amount of important scientific information is contained within astronomical data at the submillimeter and far-infrared (FIR) wavelengths, including information regarding dusty galaxies, galaxy clusters, and star-forming regions; however, these wavelengths are among the least-explored fields in astronomy because of the technological difficulties involved in such research. Over the past 20 years, considerable efforts have been devoted to developing submillimeter- and millimeter-wavelength astronomical instruments and telescopes. The number of detectors is an important property of such instruments and is the subject of the current study. Future telescopes will require as many as hundreds of thousands of detectors to meet the necessary requirements in terms of the field of view, scan speed, and resolution. A large pixel count is one benefit of the development of multiplexable detectors that use kinetic inductance detector (KID) technology. This dissertation presents the development of a KID-based instrument including a portion of the millimeter-wave bandpass filters and all aspects of the readout electronics, which together enabled one of the largest detector counts achieved to date in submillimeter-/millimeter-wavelength imaging arrays: a total of 2304 detectors. The work presented in this dissertation has been implemented in the MUltiwavelength Submillimeter Inductance Camera (MUSIC), a new instrument for the Caltech Submillimeter Observatory (CSO).

  1. New results and techniques in space radio astronomy.

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  2. Characterising the Venezuelan Troposphere for Radio-Astronomy Studies

    NASA Astrophysics Data System (ADS)

    Pacheco, R.; Muñoz, A. G.; Brito, A.; Cubillán, N.

    2009-05-01

    Venezuela possesses a very useful geographical location for doing Radioastronomy. Recently, the Venezuelan Government (via FIDETEL-Ministerio de Ciencia y Tecnología) has aproved to the Laboratorio de Astronomía y Física Teórica (LAFT) of La Universidad del Zulia (Venezuela) the adquisition of four 3 meter diameter parabolic dishes that will be set as a radio-interferometer receiver and that can be used for certain Radioastronomy purposes. The specifications of the instrument will be treated elsewhere (Muñoz and Hernández 2007). To this aim, as ussually, the first step is to characterize the losses due to the atmosphere, and their evolution over time. In previous works (Muñoz et al. 2004, Memoires of V RIAO/VIII OPTILAS, M10-5 Modelling Tropospheric Radio-Attenuation Parameters for Venezuela, 359; Muñoz et al. 2006, CIENCIA, Vol. 14, 4, 428) we have studied some relevant electromagnetic (e-m) attenuation parameters dueto hydrometeors and absortion gases in the lower atmosphere, focused in local telecommunication applications (surface e-m trajectories). In this work we extend our results to include the cenital and quasi-cenital e-m trajectories, characterizing thus the medium losses in the 0.4-4.0 GHz spectral window for several Venezuelan locations. We report refractivity values and their gradients, tropospheric indexes, extinction coefficients and the total rain attenuation for the whole territory under study.

  3. PARTNeR: Radio astromony for students

    NASA Astrophysics Data System (ADS)

    Blasco, C.; Vaquerizo, J. A.

    2008-06-01

    PARTNeR stands for Proyecto Academico con el Radiotelescopio de NASA en Robledo (the Academic Project with NASA's radio telescope at Robledo), and allows students to perform radio astronomy observations. High school and university students can access the PARTNeR radio telescope via the internet. The students can operate the antenna from their own school or university and perform radio astronomy observations.

  4. Scientific Visualization of Radio Astronomy Data using Gesture Interaction

    NASA Astrophysics Data System (ADS)

    Mulumba, P.; Gain, J.; Marais, P.; Woudt, P.

    2015-09-01

    MeerKAT in South Africa (Meer = More Karoo Array Telescope) will require software to help visualize, interpret and interact with multidimensional data. While visualization of multi-dimensional data is a well explored topic, little work has been published on the design of intuitive interfaces to such systems. More specifically, the use of non-traditional interfaces (such as motion tracking and multi-touch) has not been widely investigated within the context of visualizing astronomy data. We hypothesize that a natural user interface would allow for easier data exploration which would in turn lead to certain kinds of visualizations (volumetric, multidimensional). To this end, we have developed a multi-platform scientific visualization system for FITS spectral data cubes using VTK (Visualization Toolkit) and a natural user interface to explore the interaction between a gesture input device and multidimensional data space. Our system supports visual transformations (translation, rotation and scaling) as well as sub-volume extraction and arbitrary slicing of 3D volumetric data. These tasks were implemented across three prototypes aimed at exploring different interaction strategies: standard (mouse/keyboard) interaction, volumetric gesture tracking (Leap Motion controller) and multi-touch interaction (multi-touch monitor). A Heuristic Evaluation revealed that the volumetric gesture tracking prototype shows great promise for interfacing with the depth component (z-axis) of 3D volumetric space across multiple transformations. However, this is limited by users needing to remember the required gestures. In comparison, the touch-based gesture navigation is typically more familiar to users as these gestures were engineered from standard multi-touch actions. Future work will address a complete usability test to evaluate and compare the different interaction modalities against the different visualization tasks.

  5. PARAS program: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.

  6. Accelerating radio astronomy cross-correlation with graphics processing units

    NASA Astrophysics Data System (ADS)

    Clark, M. A.; LaPlante, P. C.; Greenhill, L. J.

    2013-05-01

    We present a highly parallel implementation of the cross-correlation of time-series data using graphics processing units (GPUs), which is scalable to hundreds of independent inputs and suitable for the processing of signals from 'large-Formula' arrays of many radio antennas. The computational part of the algorithm, the X-engine, is implemented efficiently on NVIDIA's Fermi architecture, sustaining up to 79% of the peak single-precision floating-point throughput. We compare performance obtained for hardware- and software-managed caches, observing significantly better performance for the latter. The high performance reported involves use of a multi-level data tiling strategy in memory and use of a pipelined algorithm with simultaneous computation and transfer of data from host to device memory. The speed of code development, flexibility, and low cost of the GPU implementations compared with application-specific integrated circuit (ASIC) and field programmable gate array (FPGA) implementations have the potential to greatly shorten the cycle of correlator development and deployment, for cases where some power-consumption penalty can be tolerated.

  7. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where

  8. The Contribution of an Experimental WWII Radar Antenna to Australian Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Wendt, H.

    2011-01-01

    During the late 1940s and throughout the1950s Australia was one of the world's foremost astronomical nations owing primarily to the dynamic Radio Astronomy Group within the Commonwealth Scientific and Industrial Organisation's Division of Radiophysics. The earliest celestial observations were made with former WWII radar antennas and simple Yagi aerials, before more sophisticated purpose-built radio telescopes of various types were designed and developed. One of the recycled WWII antennas that was used extensively for pioneering radio astronomical research was an experimental radar antenna that initially was located at the Division's short-lived Georges Heights field station but in 1948 was relocated to the new Potts Hill field station in suburban Sydney. In this paper we describe this unique antenna, and discuss the wide-ranging solar, Galactic and extragalactic research programs that it was used for.

  9. Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  10. Language Arts Project: Radio Program Production.

    ERIC Educational Resources Information Center

    Staskal, Doreen

    A project in which student groups create a 10-minute radio broadcast consisting of a song, commercials, a news report, and a commentary is presented. The purpose of the project is to teach students to be selective media users while also teaching reading, writing, listening, and speaking skills. The teacher introduction offers suggestions for…

  11. PROJECT CLEA: Two Decades of Astrophysics Research Simulations for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Marschall, Laurence A.; Snyder, G.; Cooper, P.

    2013-01-01

    Since 1992, Project CLEA (Contemporary Laboratory Experiences in Astronomy) has been developing simulations for the astronomy laboratory that engage students in the experience of modern astrophysical research. Though designed for introductory undergraduate courses, CLEA software can be flexibly configured for use in high-school classes and in upper-level observational astronomy classes, and has found usage in a wide spectrum of classrooms and on-line courses throughout the world. Now at the two-decade mark, CLEA has produced 16 exercises covering a variety of planetary, stellar, and extragalactic research topics at wavelengths from radio to X-ray. Project CLEA’s most recent product, VIREO, the Virtual Educational Observatory, is a flexible all-sky environment for developing a variety of further exercises. We review the current CLEA offerings and look to the future, especially describing further challenges in developing and maintaining the functionality of CLEA and similar activities as the current investigators wind down the funded development process. This research was sponsored throughout the world. by the National Science Foundation, Gettysburg College, and NASA's XMM-Newton mission.

  12. Introduction to the Special Issue on Digital Signal Processing in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Price, D. C.; Kocz, J.; Bailes, M.; Greenhill, L. J.

    Advances in astronomy are intimately linked to advances in digital signal processing (DSP). This special issue is focused upon advances in DSP within radio astronomy. The trend within that community is to use off-the-shelf digital hardware where possible and leverage advances in high performance computing. In particular, graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are being used in place of application-specific circuits (ASICs); high-speed Ethernet and Infiniband are being used for interconnect in place of custom backplanes. Further, to lower hurdles in digital engineering, communities have designed and released general-purpose FPGA-based DSP systems, such as the CASPER ROACH board, ASTRON Uniboard, and CSIRO Redback board. In this introductory paper, we give a brief historical overview, a summary of recent trends, and provide an outlook on future directions.

  13. Building information models for astronomy projects

    NASA Astrophysics Data System (ADS)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  14. DSN radio science system description and requirements. [for satellite radio astronomy experiments

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1977-01-01

    The data system created to collect the functions performed by the Deep Space Network in support of spacecraft radio science experiments is described. Some of the major functional requirements presently being considered for the system are delineated.

  15. NASA IDEAS EPO Support of the School of Galactic Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Castelaz, M.; Daugherty, J.; Moffett, D.; Case, J.

    2005-05-01

    The Pisgah Astronomical Research Institute (PARI) was awarded a STScI IDEAS Program grant to develop the School of Galactic Radio Astronomy (SGRA). SGRA enhances education of science, mathematics, and technology of students in grades 8-12. The purpose of SGRA is to teach the basics of scientific inquiry, which includes methodology, critical thinking, and communication of the results. To facilitate the excitement of science and discovery, teachers and students use the PARI 4.6m ``Smiley" radio telescope via the Internet. The IDEAS grant supported the development of the science curriculum and labs that use the 4.6m radio telescope, teacher workshops, and high speed internet service necessary for remote access to the radio telescope. Partnerships with Brevard High School , Furman University, and the University of North Carolina-Asheville have proven important to the success of the program. In addition, the IDEAS grant was important in our success in acquiring grants from the foundations at Z. Smith Reynolds and Progress Energy, a AAS Small Grant, and a STScI HST/EPO award to further enhance and continue the SGRA Program. More than 100 teachers are now involved in SGRA. To increase awareness of SGRA, we have presented the program at meetings of the AAS, North Carolina Science Teachers Association, the North Carolina Science Museum, and Pisgah Forest Institute summer workshops. Our experience in writing and carrying out the program, along with the NASA components in the program, teachers' comments, and lessons learned, will be presented. We are extremely grateful to the IDEAS Grant Program for helping PARI initiate and develop an exciting program of hands-on Internet radio astronomy from high school classrooms.

  16. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature

  17. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  18. Mogadoc - a Personal Computer Database for Atmospheric and Interstellar Molecules in Microwave Spectroscopy and Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Vogt, J.

    1992-03-01

    MOGADOC is a comprehensive database for gas-phase molecules, investigated by microwave spectroscopy, radio astronomy and electron diffraction. It contains data on electrical, magnetic, dynamical and spectroscopic properties of inorganic, organic and organometallic compounds in the gas phase. As a special feature the in-house database, which can be run on a personal computer by means of the well known Messenger retrieval language, contains numerical data sets for structural parameters such as internuclear distances and bond angles. Key words: INTERSTELLAR MOLECULES - MOLECULAR PROCESSES - RADIOSOURCES: SPECTRA

  19. Radio astronomy Explorer-B in-flight mission control system development effort

    NASA Technical Reports Server (NTRS)

    Lutsky, D. A.; Bjorkman, W. S.; Uphoff, C.

    1973-01-01

    A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing.

  20. Population density effect on radio frequencies interference (RFI) in radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  1. Thinking Big for 25 Years: Astronomy Camp Research Projects

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; McCarthy, D. W.; Benecchi, S. D.; Henry, T. J.; Kirkpatrick, J. D.; Kulesa, C.; Oey, M. S.; Regester, J.; Schlingman, W. M.; Camp Staff, Astronomy

    2013-01-01

    Astronomy Camp is a deep immersion educational adventure for teenagers and adults in southern Arizona that is entering its 25th year of existence. The Camp Director (McCarthy) is the winner of the 2012 AAS Education Prize. A general overview of the program is given in an accompanying contribution (McCarthy et al.). In this presentation we describe some of the research projects conducted by Astronomy Camp participants over the years. Many of the Camps contain a strong project-oriented emphasis, which reaches its pinnacle in the Advanced Camps for teenagers. High school students from around the world participate in a microcosm of the full arc of astronomy research. They plan their own projects before the start of Camp, and the staff provide a series of "key projects." Early in the Camp the students submit observing proposals to utilize time on telescopes. (The block of observing time is secured in advance by the staff.) The participants collect, reduce and analyze astronomical data with the help of staff, and they present the results to their peers on the last night of Camp, all in a span of eight days. The Camps provide research grade telescopes and instruments, in addition to amateur telescopes. Some of the Camps occur on Kitt Peak, where we use an ensemble of telescopes: the 2.3-meter (University of Arizona) with a spectrograph; the WIYN 0.9-meter; the McMath-Pierce Solar Telescope; and the 12-meter millimeter wave telescope. Additionally the Camp has one night on the 10-meter Submillimeter Telescope on Mt. Graham. Campers use these resources to study stars, galaxies, AGN, transiting planets, molecular clouds, etc. Some of the camper-initiated projects have led to very high level performances in prestigious international competitions, such as the Intel International Science and Engineering Fair. The key projects often contribute to published astronomical research (e.g., Benecchi et al. 2010, Icarus, 207, 978). Many former Campers have received Ph.D. degrees in

  2. The impact of JPEG2000 lossy compression on the scientific quality of radio astronomy imagery

    NASA Astrophysics Data System (ADS)

    Peters, S. M.; Kitaeff, V. V.

    2014-10-01

    The sheer volume of data anticipated to be captured by future radio telescopes, such as, the Square Kilometer Array (SKA) and its precursors present new data challenges, including the cost and technical feasibility of data transport and storage. Image and data compression are going to be important techniques to reduce the data size. We provide a quantitative analysis of the effects of JPEG2000's lossy wavelet image compression algorithm on the quality of the radio astronomy imagery data. This analysis is completed by evaluating the completeness, soundness and source parameterisation of the Duchamp source finder using compressed data. Here we found the JPEG2000 image compression has the potential to denoise image cubes, however this effect is only significant at high compression rates where the accuracy of source parameterisation is decreased.

  3. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hicks, Brian C.; Paravastu-Dalal, Nagini; Stewart, Kenneth P.; Erickson, William C.; Ray, Paul S.; Kassim, Namir E.; Burns, Steve; Clarke, Tracy; Schmitt, Henrique; Craig, Joe; Hartman, Jake; Weiler, Kurt W.

    2012-10-01

    We describe an “active” antenna system for HF/VHF (long wavelength) radio astronomy that has been successfully deployed 256-fold as the first station (LWA1) of the planned Long Wavelength Array. The antenna system, consisting of crossed dipoles, an active balun/preamp, a support structure, and a ground screen has been shown to successfully operate over at least the band from 20 MHz (15 m wavelength) to 80 MHz (3.75 m wavelength) with a noise figure that is at least 6 dB better than the Galactic background emission-noise temperature over that band. Thus, we met the goal to design and construct a compact, inexpensive, rugged, and easily assembled antenna system that can be deployed many-fold to form numerous large individual “stations” for the purpose of building a large, long wavelength synthesis array telescope for radio astronomical and ionospheric observations.

  4. Radio frequency overview of the high explosive radio telemetry project

    SciTech Connect

    Bracht, R.; Dimsdle, J.; Rich, D.; Smith, F.

    1998-12-31

    High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal Federal Manufacturing and Technologies. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data with the limited time interval available.

  5. A New Geodetic Research Data Management System at the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, G. L.; Botha, R. C.; Combrinck, L.; Fourie, S. C.

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) hosts two research programmes: radio astronomy and space geodesy. The Space Geodesy programme has four main co-located space geodetic techniques, making HartRAO a true fiducial site. The HartRAO Space Geodesy Programme is expanding its geodetic techniques to include Lunar Laser Ranging (LLR) as well as a network of seismometers, accelerometers, tide gauges, and gravimeters. These instruments will be installed across the southern African region and will generate large volumes of data that will be streamed to and stored at HartRAO. Our objective is to implement a complete Geodetic Research Data Management System (GRDMS) to handle all HartRAO's geodetic data on-site in terms of archiving, indexing, processing, and extraction. These datasets and subsequent data products will be accessible to both the scientific community and general public through an intuitive and easy to use web-based front-end. As the first step in this process, we are currently working on establishing a new data centre. This opens up the possibility for the librarian to provide data services and support by working together with researchers and information technology staff. We discuss the rationale, role players and top-level system design of this GRDMS, as well as the current status and planned products thereof.

  6. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    NASA Astrophysics Data System (ADS)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  7. ASTRONOMY.

    ERIC Educational Resources Information Center

    Louisiana Arts and Science Center, Baton Rouge.

    THIS TEACHER'S GUIDE FOR A UNIT ON ASTRONOMY ESTABLISHES (1) UNDERSTANDINGS AND ATTITUDES, (2) SKILLS, AND (3) CONCEPTS TO BE GAINED IN THE STUDY. THE OVERVIEW EXPLAINS THE ORGANIZATION AND OBJECTIVES OF THE UNIT. TOPICAL DIVISIONS ARE (1) THE EARTH, (2) THE MOON, (3) THE SUN, (4) THE SOLAR SYSTEM, (5) THE STARS, (6) THE UNIVERSE, AND (7) SPACE…

  8. Indexing data cubes for content-based searches in radio astronomy

    NASA Astrophysics Data System (ADS)

    Araya, M.; Candia, G.; Gregorio, R.; Mendoza, M.; Solar, M.

    2016-01-01

    Methods for observing space have changed profoundly in the past few decades. The methods needed to detect and record astronomical objects have shifted from conventional observations in the optical range to more sophisticated methods which permit the detection of not only the shape of an object but also the velocity and frequency of emissions in the millimeter-scale wavelength range and the chemical substances from which they originate. The consolidation of radio astronomy through a range of global-scale projects such as the Very Long Baseline Array (VLBA) and the Atacama Large Millimeter/submillimeter Array (ALMA) reinforces the need to develop better methods of data processing that can automatically detect regions of interest (ROIs) within data cubes (position-position-velocity), index them and facilitate subsequent searches via methods based on queries using spatial coordinates and/or velocity ranges. In this article, we present the development of an automatic system for indexing ROIs in data cubes that is capable of automatically detecting and recording ROIs while reducing the necessary storage space. The system is able to process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. We conducted a set of comprehensive experiments to illustrate how our system works. As a result, an index of 3% of the input size was stored in a spatial database, representing a compression ratio equal to 33:1 over an input of 20.875 GB, achieving an index of 773 MB approximately. On the other hand, a single query can be evaluated over our system in a fraction of second, showing that the indexing step works as a shock-absorber of the computational time involved in data cube processing. The system forms part of the Chilean Virtual Observatory (ChiVO), an initiative which belongs to the International Virtual Observatory Alliance (IVOA) that

  9. Estimating the size of a radio quiet zone for the radio astronomy service

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Han, Wenjun

    2009-12-01

    The size of a radio quiet zone (RQZ) is largely determined by transmission losses of interfering signals, which can be divided into free space loss and diffraction loss. The free space loss is dominant. The diffraction loss presented in this paper is described as unified smooth spherical and knife edge diffractions, which is a function of minimum path clearance. We present a complete method to calculate the minimum path clearance. The cumulative distribution of the lapse rate of refractivity ( g n ), between the earth surface and 1 km above, is studied by using Chinese radio climate data. Because the size of an RQZ is proportional to g n , the cumulative distribution of g n can be used as an approximation for the size of the RQZ. When interference originates from mobile communication or television transmissions at a frequency of 408 MHz, and overline {g_n } is 40 N/km, where the refractivity N=left( {n-1} right) × 10^6, the size of the RQZ would be 180 km for a mobile source or 210 km for a television source, with a probability in the range of 15-100% in different months and for different stations. When speaking of the size of an RQZ, the radius in the case of a circular zone is implied. It results that a size of an RQZ is mainly influenced by transmission loss rather than effective radiated power. In the case where the distance between an interfering source and a radio astronomical observatory is about 100 km, at a frequency of 408 MHz, the allowable effective radiated power of the interfering source should be less than -30 dBW with a probability of about 85% for overline {g_n } equals 40 N/km, or -42 dBW with a probability less than 1 % for overline {g_n } equals 80 N/km.

  10. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors

    NASA Astrophysics Data System (ADS)

    Chandra, Poonam; Anupama, G. C.; Arun, K. G.; Iyyani, Shabnam; Misra, Kuntal; Narasimha, D.; Ray, Alak; Resmi, L.; Roy, Subhashis; Sutaria, Firoza

    2016-12-01

    With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well-suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of Gamma Ray Bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity-limited population versus intrinsically dim GRBs, they will also unravel the enigmatic population of orphan afterglows. The supernova rate problem caused by dust extinction in optical bands is expected to be lifted in the SKA era. In addition, the debate of single degenerate scenario versus double degenerate scenario will be put to rest for the progenitors of thermonuclear supernovae, since highly sensitive measurements will lead to very accurate mass loss estimation in these supernovae. One also expects to detect gravitationally lensed supernovae in far away Universe in the SKA bands. Radio counterparts of the gravitational waves are likely to become a reality once SKA comes online. In addition, SKA is likely to discover various new kinds of transients.

  11. Albrecht Unsöld: his role in the interpretation of the origin of cosmic radio emission and in the beginning of radio astronomy in Germany

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard

    2013-03-01

    Albrecht Unsöld's career spanned over 50 years at the beginning of the 20th century. In this period atomic physics made great advances and Unsöld applied this to astrophysical questions. He came in contact with the early radio astronomy observations and devoted part of his career to the interpretation of the origin of cosmic radio waves. Although hampered by the post-war situation, Unsöld's contributions to the interpretation of cosmic radio waves were important.

  12. Calibration of a cylindrical RF capacitance probe. [for ionospheric plasma effects on Radio Astronomy Explorer 1 antenna

    NASA Technical Reports Server (NTRS)

    Mosier, S. R.; Kaiser, M. L.

    1975-01-01

    Ambient electron concentrations derived from observations with the Radio Astronomy Explorer 1 antenna capacitance probe have been compared with upper hybrid resonance measurements from the same spacecraft. From this comparison an empirical correction factor for the capacitance probe measurements has been derived. The differences between the two types of measurements is attributed to sheath effects.

  13. Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    NASA Technical Reports Server (NTRS)

    Caruso, J. A.; Herman, J. R.

    1974-01-01

    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite.

  14. Design of a wideband low noise amplifier for radio-astronomy applications

    NASA Astrophysics Data System (ADS)

    Hamaizia, Z.; Sengouga, N.; Missous, M.; Yagoub, M. C. E.

    2010-04-01

    In this work, we discuss the design of two low noise amplifiers (LNA) based on 1μm gate-length pHEMT InP transistors using two topologies. Designed for radio-astronomy applications, the first is a cascode circuit with a maximum gain of 15dB and noise figure of 0.6dB, while the second is a 2-stage cascaded amplifier with 27 dB gain and 0.63dB noise figure. The two amplifiers exhibit an input 1-dB compression point of -22dBm and -26dBm respectively, and a third order input intercept point of -10dBm and -5dBm, respectively.

  15. Kothmale Community Radio Interorg Project: True Community Radio or Feel-Good Propaganda?

    ERIC Educational Resources Information Center

    Harvey-Carter, Liz

    2009-01-01

    The Kothmale Community Radio and Interorg project in Sri Lanka has been hailed as an example of how a community radio initiative should function in a developing nation. However, there is some question about whether the Kothmale Community Interorg Project is a true community radio initiative that empowers local communities to access ICT services…

  16. Next Generation Very Large Array: Centimeter Radio Astronomy in the 2020s

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Beasley, Anthony; Carilli, Christopher

    2015-08-01

    We discuss the future scientific discovery and technical challenges for cm radio studies, presenting calculations and simulations of the science of a next generation VLA (ngVLA), an array with vastly improved resolution and sensitivity relative to ALMA and JVLA, operating from ~1 GHz to 115 GHz, with an enhanced ability to image thermal objects on milliarcsecond scales, spanning thermal and non-thermal radio astronomy and bridging SKA and ALMA capabilities.Key areas of astrophysics where ngVLA can make new contributions include:- Probing deep into dusty protoplanetary disks, revealing terrestrial planet formation on AU-scales — regions that are opaque at shorter wavelengths. Observations in this wavelength range are critically required to study the poorly understood growth of dust into rocks.- Providing a census and imaging at kpc-scale resolution, of the cool molecular gas in distant galaxies. The ngVLA will be able to observe the lower order molecular transitions in high redshift, normal star forming galaxies, a key diagnostic for understanding the fuel driving the star formation history of the Universe.- Enabling an unprecedented, wide field imaging capability for nearby galaxies, over the cm frequency range covering key astrochemical tracers, including both thermal/non-thermal radio continuum emission.- Exploring the otherwise-unobservable deep atmospheres of the giant planets. In addition, the subsurfaces of other solar system bodies (e.g. icy satellites, TNOs, comets, asteroids) can be probed via thermal emission and radar remote sensing.- Allowing major improvements in synoptic, astrometric and transient/time-domain measurements at cm wavelengths of a wide variety of active sources, including Fast Radio Bursts, AGNs, pulsars and x-ray binaries.Led by NRAO, work to address the technical challenges for the ngVLA is underway. Areas currently under investigation include: low cost antennas, ultra-wide band feeds and receivers, broad band data transmission, and

  17. PULSE@Parkes, Engaging Students through Hands-On Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hollow, Robert; Hobbs, George; Shannon, Ryan M.; Kerr, Matthew

    2015-08-01

    PULSE@Parkes is an innovative, free educational program run by CSIRO Astronomy and Space Science (CASS) in which high school students use the 64m Parkes radio telescope remotely in real time to observe pulsars then analyse their data. The program caters for a range of student ability and introduces students to hands-on observing and radio astronomy. Students are guided by professional astronomers, educators and PhD students during an observing session. They have ample time to interact with the scientists and discuss astronomy, careers and general scientific questions. Students use a web-based module to analyse pulsar properties. All data from the program are streamed via a web browser and are freely available from the online archive and may be used for open-ended student investigations. The data are also used by the team for ongoing pulsar studies with two scientific papers published to date.Over 100 sessions have been held so far. Most sessions are held at CASS headquarters in Sydney, Australia but other sessions are regularly held in other states with partner institutions. The flexibility of the program means that it is also possible to run sessions in other countries. This aspect of the program is useful for demonstrating capability, engaging students in diverse settings and fostering collaborations. The use of Twitter (@pulseatparkes) during allows followers worldwide to participate and ask questions.Two tours of Japan plus sessions in the UK, Netherlands and Canada have reached a wide audience. Plans for collaborations in China are well underway with the possibility of use with other countries also being explored. The program has also been successfully used in helping to train international graduate students via the International Pulsar Timing Array Schools. We have identified strong demand and need for programs such as this for training undergraduate students in Asia and the North America in observing and data analysis techniques so one area of planned

  18. The PACA Project : Pro-Am Collaborative Astronomy

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The Pro-Am Collaborative Astronomy (PACA) project is the next stage of evolution of the paradigm developed for the observational campaign of C/2012 S1 or C/ISON. Four different phases of collaboration are identified, and illustrate the integration of scientific investigations with amateur astronomer community via observations, and models; and the rapid dissemination of the results via a multitude of social media for rapid global access. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. Both communities (scientific and amateur astronomers) benefit from these collective, collaborative partnerships; while outreach is the instantaneous deliverable that provides both a framework for future data analyses and the dissemination of the results. While PACA identifies a collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed.

  19. 100 Hours of Astronomy Cornerstone Project of IYA2009

    NASA Astrophysics Data System (ADS)

    Simmons, M.

    2008-11-01

    The 100 Hours of Astronomy cornerstone project (100HA) is a round-the-clock, worldwide event with 100 continuous hours of a wide range of public outreach activities taking place from 2--5 April. A high-profile opening event will include presentation of Galileo's original telescope. Webcasts of international science center discussions and 24 hours of webcasts from professional research observatories will follow. A 24-hour global star party will occur on the last day. The Moon's phase will range from first quarter to gibbous, good phases for early evening observing, and Saturn will also be well placed for early evening observing events. Amateur astronomers will be encouraged to present educational events in schools as well as non-traditional venues. Online resources will include advertising, educational and how-to materials.

  20. Estimate of Interference from the Aeronautical Mobile Services of the Cities of Glendale and Pasadena to Goldstone Radio Astronomy Stations at 4.9 Gigahertz

    NASA Astrophysics Data System (ADS)

    Ho, C.; Sue, M.; Manshadi, F.

    2006-05-01

    The Federal Communications Commission (FCC) recently allocated the 4.9-GHz band to public safety telecommunications services. Radio Astronomy Services (RAS) also has been using this frequency. NASA will primarily use Deep Space Station 28 (DSS 28) at Goldstone, California, for radio astronomy services that are sensitive to radio-frequency interference (RFI). This study is to determine the RFI potential of airborne transmission from two cities to radio astronomy sites in Goldstone. Propagation losses over the terrain between both cities and Goldstone are estimated using the Trans-Horizon Interference Propagation Loss (THIPL) software recently developed at JPL and high-resolution terrain data. The necessary coordination area for protecting the Goldstone radio astronomy station has been defined based on the minimum propagation loss required. Study results and suggestions for modification to the airborne areas proposed by both cities' police departments are presented.

  1. Designing a new Geodetic Research Data Management System for the Hartebeesthoek Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Coetzer, Glend Lorraine

    2015-08-01

    The Hartebeesthoek Radio Astronomy Observatory (HartRAO) participates in astronomic, astrometric and geodetic Very Long Baseline Interferometry (VLBI) observations using both 26- and 15-m diameter radio telescopes. Geodetic data from a Satellite Laser Ranger (SLR), Global Navigation Satellite System (GNSS), Met4 weather stations and a new seismic vault network must be stored at HartRAO and made available to the scientific community. Some data are e-transferred to correlators, analysis centres and space geodesy data providers, while some data are processed locally to produce basic data products. The new South African co-located seismology network of seismic and GNSS instrumentation will generate large volumes of raw data to be stored and archived at HartRAO. The current data storage systems are distributed and outdated, and management systems currently being used will also not be able to handle the additional large volumes of data. This necessitates the design and implementation of a new, modern research data management system which combines all the datasets into one database, as well as cater for current and future data volume requirements. The librarian’s expertise and knowledge will be used in the design and implementation of the new HartRAO Geodetic Research Data Management System (GRDMS). The librarian’s role and involvement in the design and implementation of the new GRDMS are presented here. Progress to date will also be discussed.

  2. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    NASA Astrophysics Data System (ADS)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  3. Prototyping scalable digital signal processing systems for radio astronomy using dataflow models

    NASA Astrophysics Data System (ADS)

    Sane, N.; Ford, J.; Harris, A. I.; Bhattacharyya, S. S.

    2012-05-01

    There is a growing trend toward using high-level tools for design and implementation of radio astronomy digital signal processing (DSP) systems. Such tools, for example, those from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER), are usually platform-specific, and lack high-level, platform-independent, portable, scalable application specifications. This limits the designer's ability to experiment with designs at a high-level of abstraction and early in the development cycle. We address some of these issues using a model-based design approach employing dataflow models. We demonstrate this approach by applying it to the design of a tunable digital downconverter (TDD) used for narrow-bandwidth spectroscopy. Our design is targeted toward an FPGA platform, called the Interconnect Break-out Board (IBOB), that is available from the CASPER. We use the term TDD to refer to a digital downconverter for which the decimation factor and center frequency can be reconfigured without the need for regenerating the hardware code. Such a design is currently not available in the CASPER DSP library. The work presented in this paper focuses on two aspects. First, we introduce and demonstrate a dataflow-based design approach using the dataflow interchange format (DIF) tool for high-level application specification, and we integrate this approach with the CASPER tool flow. Secondly, we explore the trade-off between the flexibility of TDD designs and the low hardware cost of fixed-configuration digital downconverter (FDD) designs that use the available CASPER DSP library. We further explore this trade-off in the context of a two-stage downconversion scheme employing a combination of TDD or FDD designs.

  4. Engaging students in astronomy and spectroscopy through Project SPECTRA!

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2011-12-01

    Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.

  5. Applicability of radio astronomy techniques to the processing and interpretation of aperture synthesis passive millimetre-wave applications

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Wilkinson, Peter N.; Salmon, Neil A.; Cameron, Colin D.

    2012-06-01

    This PhD programme is contributing to the development of Passive Millimetre-Wave Imagers (PMMWI) using the principles of interferometric aperture synthesis and digital signal processing. The principal applications are security screening, all-weather flight aids and earth observation. To enhance the cost-effectiveness of PMMWI systems the number of collecting elements must be minimised whilst maintaining adequate image fidelity. A wide range of techniques have been developed by the radio astronomy community for improving the fidelity of sparse interferometric array imagery. This paper brings to the attention of readers these techniques and discusses how they may be applied to imaging using software packages publicly available from the radio astronomy community. The intention of future work is to adapt these algorithms to process experimental data from a range of realistic simulations and real-world targets.

  6. Seeing the Sky: 100 Projects, Activities, and Explorations in Astronomy.

    ERIC Educational Resources Information Center

    Schaaf, Fred

    1990-01-01

    Fourteen astronomy activities are presented including classroom procedures and questions. Topics include different investigations of the moon, planets, stars, sunsets, light pollution, and rainbows and halos. Additional information on measurements used for observations in astronomy, and rainbow characteristics is included. (CW)

  7. Making an International Impact: A Joint International Astronomy Project

    ERIC Educational Resources Information Center

    Scott, Robert; Shen, Xinrong; Mulley, Ian

    2012-01-01

    Early in 2010, a group of year 11 students (age 15-16) studying GCSE (General Certificate of Secondary Education) Astronomy at The Radclyffe School, Oldham, in the UK, teamed up with a similar age group from Tianyi High School, Wuxi City, in China, to undertake a joint astronomy investigation. This article outlines the outcome of the first stage…

  8. The beginnings of decameter radio astronomy: pioneering works of Semen Ya. Braude and his followers in Ukraine

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Konovalenko, A. A.; Megn, A. V.

    2007-06-01

    S.Ya. Braude (1911-2003) was the well-known radio astronomer, one of the founders of low-frequency astronomical research in the world, in particular in the former Soviet Union. He began to work in this field of science in 1957, in Kharkiv city (Ukraine), from the design and manufacturing small decameter interferometer ID-1 and ID-2. Since that time Braude and his team have developed more sophisticated radio decameter telescopes as UTR-1 and UTR-2 (the largest in the world till now) as well as the first decameter VLBI network URAN. They have obtained some important pioneering results about low-frequency radio emission of objects in our Solar system, Galaxy and Metagalaxy by means of these telescopes. In this paper the key events of early history of decameter radio astronomy research in the former USSR are mentioned with emphasizing the role of S. Braude. For the period of 1957-1962, the quotations of Braude's Personal Diary (2003) are first laying open to the public. The most important results obtained by S.Ya. Braude and his followers as well as perspectives of decameter radio astronomy in Ukraine and in the world are highlighted briefly.

  9. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT

    NASA Astrophysics Data System (ADS)

    Konovalenko, A.; Sodin, L.; Zakharenko, V.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Tokarsky, P.; Melnik, V.; Kalinichenko, N.; Stanislavsky, A.; Koliadin, V.; Shepelev, V.; Dorovskyy, V.; Ryabov, V.; Koval, A.; Bubnov, I.; Yerin, S.; Gridin, A.; Kulishenko, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Reznik, A.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Khristenko, A.; Shevchenko, V. V.; Shevchenko, V. A.; Belov, A.; Rudavin, E.; Vasylieva, I.; Miroshnichenko, A.; Vasilenko, N.; Olyak, M.; Mylostna, K.; Skoryk, A.; Shevtsova, A.; Plakhov, M.; Kravtsov, I.; Volvach, Y.; Lytvinenko, O.; Shevchuk, N.; Zhouk, I.; Bovkun, V.; Antonov, A.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshin, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.; Tagger, M.; Girard, J.; Charrier, D.; Briand, C.; Mann, G.

    2016-08-01

    The current status of the large decameter radio telescope UTR-2 (Ukrainian T-shaped Radio telescope) together with its VLBI system called URAN is described in detail. By modernization of these instruments through implementation of novel versatile analog and digital devices as well as new observation techniques, the observational capabilities of UTR-2 have been substantially enhanced. The total effective area of UTR-2 and URAN arrays reaches 200 000 m2, with 24 MHz observational bandwidth (within the 8-32 MHz frequency range), spectral and temporal resolutions down to 4 kHz and 0.5 msec in dynamic spectrum mode or virtually unlimited in waveform mode. Depending on the spectral and temporal resolutions and confusion effects, the sensitivity of UTR-2 varies from a few Jy to a few mJy, and the angular resolution ranges from ~ 30 arcminutes (with a single antenna array) to a few arcseconds (in VLBI mode). In the framework of national and international research projects conducted in recent years, many new results on Solar system objects, the Galaxy and Metagalaxy have been obtained. In order to extend the observation frequency range to 8-80 MHz and enlarge the dimensions of the UTR-2 array, a new instrument - GURT (Giant Ukrainian Radio Telescope) - is now under construction. The radio telescope systems described herein can be used in synergy with other existing low-frequency arrays such as LOFAR, LWA, NenuFAR, as well as provide ground-based support for space-based instruments.

  10. Astronomy Against Terrorism: an Educational Astronomical Observatory Project in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, M.; Montes, H.; Kuroda, T.; Morimoto, M.; Ishitsuka, J.

    2003-05-01

    The Cosmos Coronagraphic Observatory was completely destroyed by terrorists in 1988. In 1995, in coordination with the Minister of Education of Peru, a project to construct a new Educational Astronomical Observatory has been executed. The main purpose of the observatory is to promote an interest in basic space sciences in young students from school to university levels, through basic astronomical studies and observations. The planned observatory will be able to lodge 25 visitors; furthermore an auditorium, a library and a computer room will be constructed to improve the interest of people in astronomy. Two 15-cm refractor telescopes, equipped with a CCD camera and a photometer, will be available for observations. Also a 6-m dome will house a 60-cm class reflector telescope, which will be donated soon, thanks to a fund collected and organized by the Nishi-Harima Astronomical Observatory in Japan. In addition a new modern planetarium donated by the Government of Japan will be installed in Lima, the capital of Peru. These installations will be widely open to serve the requirements of people interested in science.

  11. The Evolution of the National Radio Astronomy Observatory into a User Based Observatory

    NASA Astrophysics Data System (ADS)

    Kellerman, Kenneth I.; Bouton, E.

    2006-12-01

    The NRAO was conceived in the mid 1950s as a state-of-the-art facility to allow the United States to compete in the exciting radio astronomy discoveries then taking place in the U.K., the Netherlands and Australia. Otto Struve, the first NRAO director in Green Bank, was chosen to lead the Observatory research program. During Struve's tenure as director, nearly all of the research was carried out by NRAO staff members resident at the Green Bank Observatory. However, under Dave Heeschen, who served as NRAO Director from 1961 to 1978, the number of visitor programs gradually increased; the NRAO scientific staff become more involved in visitor support than in doing their own research, and users became more dependent on instruments and techniques developed by NRAO, often not even coming to the Observatory for their observations. Currently, about half of the observing time on NRAO facilities is allocated to observers from foreign institutions -institutions with which NRAO was built to compete.

  12. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  13. Low input reflection cryogenic low noise amplifier for Radio Astronomy multipixel receivers

    NASA Astrophysics Data System (ADS)

    Amils, R. I.; Gallego, J. D.; Diez, C.; López Fernández, I.; Barcia, A.; Muñoz, S.; Sebastián, J. L.; Malo, I.

    2016-10-01

    The advancement of Radio Astronomy instruments pushes innovation in several fronts. Sensitivity aside, one way in which cryogenic receivers can be upgraded is by increasing the number of beams in single dish antennas, building what is commonly known as a Focal Plane Array (FPA). In this paper we present a novel reduced input reflection 4-12 GHz cryogenic Low Noise Amplifier (LNA) for the Intermediate Frequency (IF) of millimeter wave superheterodyne multipixel receivers with Superconductor-Insulator-Superconductor (SIS) mixers. The aim of this development is to reduce the input reflection of the amplifier to a level at which the bulky cryogenic isolators traditionally used in this type of receivers are no longer necessary and can be avoided. Ultimately this simplification would allow complying with the tight mass and volume restrictions imposed over FPAs. However, the improvement of the input reflection has a cost in terms of noise and gain performance. This effect is critically evaluated by comparing it with other alternative options built with devices of the same technology. The results show that this approach may have advantages in terms of sensitivity of the complete receiver.

  14. FANATIC: An SIS Radiometer for Radio Astronomy in the 660-690 GHz Band

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Gundlach, K.-H.; Plathner, B.

    1994-05-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 690 GHz (455-435 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 hv/k). The heart of the receiver is a two-junction Nb/AlOx/Nb SIS array fed by a sandwiched V-Antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn~10 ohm, an area of ~2 um^2 , an individual radial stub circuit to resonate the capacitance, and a 1/4-wavelength transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  15. FANATIC: an SIS radiometer for radio astronomy from 660 to 695 GHz

    NASA Astrophysics Data System (ADS)

    Harris, A. I.; Schuster, K.-F.; Genzel, R.; Plathner, B.; Gundlach, K.-H.

    1994-09-01

    FANATIC is a compact radiometer optimized for radio astronomy from about 660 to 695 GHz (lambda 455 - 432 micron). We observed a large number of molecular and atomic spectral lines from galactic and extragalactic sources during FANATIC's first run on the James Clerk Maxwell Telescope in early March 1994. Double sideband receiver temperatures during observations were about 800 K (25 h nu/k). The heart of the receiver is a two-junction Nb/AlO(x)/Nb SIS array fed by a sandwiched V-antenna. The junction array and antenna are fabricated together at IRAM's Grenoble SIS laboratory. Each junction has a normal resistance of Rn approximately 10 Ohm, an area of approximately 2 sq micron, an individual radial stub circuit to resonate the capacitance, and a lambda/4 transformer to match to the antenna. The solid-state local oscillator is a mm-wave Gunn oscillator followed by a doubler and tripler. The LO diplexer is a Martin-Puplett interferometer, which insures that there is always abundant LO power for operation and speedy tuning. The receiver and telescope coupling optics, LO, dewar, and calibration system fit on an 0.6 x 0.8 m optical breadboard.

  16. Radio Telescopes Extend Astronomy's Best "Yardstick," Provide Vital Tool for Unraveling Dark Energy Mystery

    NASA Astrophysics Data System (ADS)

    2009-06-01

    Radio astronomers have directly measured the distance to a faraway galaxy, providing a valuable "yardstick" for calibrating large astronomical distances and demonstrating a vital method that could help determine the elusive nature of the mysterious Dark Energy that pervades the Universe. Galaxy UGC 3789 Visible-light image of UGC 3789 CREDIT: STScI "We measured a direct, geometric distance to the galaxy, independent of the complications and assumptions inherent in other techniques. The measurement highlights a valuable method that can be used to determine the local expansion rate of the Universe, which is essential in our quest to find the nature of Dark Energy," said James Braatz, of the National Radio Astronomy Observatory (NRAO), who presented the work to the American Astronomical Society's meeting in Pasadena, California. Braatz and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) and Robert C. Byrd Green Bank Telescope (GBT), and the Effelsberg Radio Telescope of the Max Planck Institute for Radioastronomy (MPIfR) in Germany to determine that a galaxy dubbed UGC 3789 is 160 million light-years from Earth. To do this, they precisely measured both the linear and angular size of a disk of material orbiting the galaxy's central black hole. Water molecules in the disk act as masers to amplify, or strengthen, radio waves the way lasers amplify light waves. The observation is a key element of a major effort to measure the expansion rate of the Universe, known as the Hubble Constant, with greatly improved precision. That effort, cosmologists say, is the best way to narrow down possible explanations for the nature of Dark Energy. "The new measurement is important because it demonstrates a one-step, geometric technique for measuring distances to galaxies far enough to infer the expansion rate of the Universe," said Braatz. The GBT Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF The VLBA Very Long Baseline Array CREDIT: NRAO

  17. Continuing Development of California State Packet Radio Project.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin

    1992-01-01

    Provides background on the California State Library Packet Radio project, which will use packet radios to deploy a wireless, high-speed, wide-area network of 600 nodes, including 100 libraries, in the San Francisco Bay Area. Project goals and objectives, plan of operation, equipment, and evaluation plans are summarized. (MES)

  18. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  19. Finding the Forest Amid the Trees: Tools for Evaluating Astronomy Education and Public Outreach Projects

    ERIC Educational Resources Information Center

    Bailey, Janelle M.; Slater, Timothy F.

    2004-01-01

    The effective evaluation of educational projects is becoming increasingly important to funding agencies and to the individuals and organizations involved in the projects. This brief "how-to" guide provides an introductory description of the purpose and basic ideas of project evaluation, and uses authentic examples from four different astronomy and…

  20. MULTI-MESSENGER ASTRONOMY OF GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA RADIO TRANSIENT SURVEYS

    SciTech Connect

    Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.; Akukwe, Bernadine; Simonetti, John H.; Tsai, Jr-Wei; Chen, Kevin; Dowell, Jayce; Obenberger, Kenneth; Taylor, Gregory B.; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael

    2015-10-20

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.

  1. The Contribution of the Division of Radiophysics Murraybank Field Station to International Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Wendt, Harry; Orchiston, Wayne; Slee, Bruce

    During the 1950s Australia was one of the world's foremost astronomical nations owing primarily to the work of the dynamic radio astronomy group within the Commonwealth Scientific and Industrial Research Organisation's Division of Radiophysics. Most of the observations were made at the network of field stations maintained by the Division in or near Sydney, and one of these field stations was Murraybank in the north-western suburbs of Sydney. GVaucouleursDe1954The Magellanic Clouds and the GalaxyThe Observatory7423311954Obs....74...23DDe Vaucouleurs, G., 1954a. The Magellanic Clouds and the Galaxy. The Observatory, 74, 23-31. GVaucouleursDe1954The Magellanic Clouds and the Galaxy, IIThe Observatory741581641954Obs....74..158DDe Vaucouleurs, G., 1954b. The Magellanic Clouds and the Galaxy, II. The Observatory, 74, 158-164. GVaucouleursDe1961Classification and radial velocities of bright southern galaxiesMemoirs of the Royal Astronomical Society68

  2. Research Experience for Teachers at NRAO-Green Bank: Calibration of Data from the Green Bank Telescope and Classroom Activities in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Johnson, C. H.; Maddalena, R. J.

    2002-12-01

    The NSF-funded "Research Experience for Teachers" project provides teachers an opportunity to work on a current scientific or engineering research project. This paper will present the results of research conducted with the Robert C. Byrd Green Bank Telescope (GBT) as well as classroom activities that will use GBT data. In order to determine the accuracy of the calibration of receivers on cm-wave radio telescopes, engineers must periodically determine the equivalent temperature of a receiver's calibration noise diode. The traditional methods utilize hot-cold loads and usually achieve an accuracy of no better than 5%, have a very coarse frequency resolution, and require days of labor. Using observations with the GBT of standard astronomical flux calibrators, we measured the noise diode temperatures for four receivers that cover 1 to 10 GHz. By comparing the detected power from the calibrators to that generated by the noise diodes we were able to determine the temperature of the noise diodes to an accuracy of 1% with very good frequency resolution (1 MHz). The astronomically determined values agree, with few exceptions, to the less accurate values generated by the receiver engineer. In contrast to the methods employed by engineers, the astronomical determinations took only a few hours. Using data collected from the GBT and the NRAO 140-foot telescope, high-school students at Breck School in Golden Valley, MN will use the Hands-On Universe (HOU) software to analyze fits files containing data from a 100 square-degree region of the Orion Nebula. Instead of always relying on optical images from personal observations or the HOU groups at Lawrence Hall of Science or Yerkes, students can now use radio images. Comparing radio images with those derived at optical wavelengths should prove enlightening for students, many of whom have misconceptions concerning radio astronomy.

  3. The history of early low frequency radio astronomy in Australia. 3: Ellis, Reber and the Cambridge field station near Hobart

    NASA Astrophysics Data System (ADS)

    George, Martin; Orchiston, Wayne; Slee, Bruce; Wielebinski, Richard

    2015-07-01

    Low frequency radio astronomy in Tasmania began with the arrival of Grote Reber to the State in 1954. After analysing ionospheric data from around the world, he concluded that Tasmania would be a very suitable place to carry out low frequency observations. Communications with Graeme Ellis in Tasmania, who had spent several years studying the ionosphere, led to a collaboration between the two in 1955 during which year they made observations at Cambridge, near Hobart. Their observations took place at four frequencies between 2.13 MHz and 0.52 MHz inclusive, with the results at the higher frequencies revealing a clear celestial component

  4. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    ERIC Educational Resources Information Center

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-01-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials…

  5. The General Education Astronomy Source (GEAS) Project: Extending the Reach of Astronomy Education

    NASA Astrophysics Data System (ADS)

    Vogt, N. P.; Muise, A. S.

    2014-07-01

    We present a set of NASA and NSF sponsored resources to aid in teaching astronomy remotely and in the classroom at the college level, with usage results for pilot groups of students. Our goal is to increase the accessibility of general education science coursework to underserved populations nationwide. Our materials are available for use without charge, and we are actively looking for pilot instructors. Primary components of our program include an interactive online tutorial program with over 12,000 questions, an instructor review interface, a set of hands-on and imaging- and spectra-driven laboratory exercises, including video tutorials, and interviews with diverse individuals working in STEM fields to help combat stereotypes. We discuss learning strategies often employed by students without substantial scientific training and suggest ways to incorporate them into a framework based on the scientific method and techniques for data analysis, and we compare cohorts of in-class and distance-education students.

  6. The Radio Meteor Zoo: a citizen science project

    NASA Astrophysics Data System (ADS)

    Calders, S.; Verbeeck, C.; Lamy, H.; Martínez Picar, A.

    2016-01-01

    Scientists from the BRAMS radio meteor network have started a citizen science project called Radio Meteor Zoo in collaboration with Zooniverse in order to identify meteor reflections in BRAMS spectrograms. First, a small-scale version of the Radio Meteor Zoo was carried out with a sample of meteor identifications in 12 spectrograms by 35 volunteers. Results are presented here and allowed us to define a method that reliably detects meteor reflections based on the identifications by the volunteers. It turns out that, if each spectrogram is inspected by 10 volunteers, hit and false detection percentages of 95% respectively 6% are expected. The Radio Meteor Zoo is online at https://www.zooniverse.org/projects/zooniverse/radio-meteor-zoo. Citizen scientists are kindly invited to inspect spectrograms.

  7. Multiverso: Rock'n'Astronomy

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.

    2012-05-01

    In the last few years, there have been several projects involving astronomy and classical music. But have a rock band ever appeared at a science conference or an astronomer at a rock concert? We present a project, Multiverso, in which we mix rock and astronomy, together with poetry and video art (Caballero, 2010). The project started in late 2009 and has already reached tens of thousands people in Spain through the release of an album, several concert-talks, television, radio, newspapers and the internet.

  8. An antenna, a radio and a microprocessor: which kinds of observation are possible in meteor radio astronomy?

    NASA Astrophysics Data System (ADS)

    Barbieri, L.

    2016-01-01

    Radio meteors are usually investigated by professional radars. Amateur astronomers cannot have transmitters, so usually they can only listen to sounds generated by a radio tuned to a TV or military transmitter. Until recently, this kind of observation has not produced good data. The experience of "RAMBo" (Radar Astrofilo Meteorico Bolognese) shows which data can be extracted from an amateur meteor scatter observatory and the results which can be achieved.

  9. The CHIME Fast Radio Burst Project

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria M.; CHIME/FRB Collaboration

    2017-01-01

    Fast Radio Bursts are a recently discovered phenomenon consisting of short (few ms) bursts of radio waves that have dispersion measures that strongly suggest an extragalactic and possibly cosmological, but yetunknown, origin. The Canadian Hydrogen Intensity Mapping Experiment was designed to study Baryon Acoustic Oscillations through mapping of redshifted hydrogen, in order to constrain the nature of Dark Energy. CHIME, currently under construction in Penticton, BC in Canada, consists of 4 cylindrical paraboloid reflectors having total collecting area 80 m x 100 m, and will be sensitive in the 400-800 MHz band. With 2048 independent feeds hung along the cylinder axes, CHIME is a transit telescope with no moving parts, but is sensitive to the full ~200 sq. degrees overhead in 1024 formed beams, thanks to the largest correlator ever built. Given CHIME's enormous sensitivity, bandwidth and unprecedented field of view for the radio regime, CHIME will be a superb instrument for studying Fast Radio Bursts, with expected detected event rates of several to several dozen per day, hence promising major progress on the origin and nature of FRBs.

  10. Small Explorer project: Submillimeter Wave Astronomy Satellite (SWAS). Mission operations and data analysis plan

    NASA Technical Reports Server (NTRS)

    Melnick, Gary J.

    1990-01-01

    The Mission Operations and Data Analysis Plan is presented for the Submillimeter Wave Astronomy Satellite (SWAS) Project. It defines organizational responsibilities, discusses target selection and navigation, specifies instrument command and data requirements, defines data reduction and analysis hardware and software requirements, and discusses mission operations center staffing requirements.

  11. Learning Approaches, Course Experience, and Astronomy Understanding in The Oklahoma Project.

    ERIC Educational Resources Information Center

    Mann, Jennifer; Williams, Karen; Rutledge, Carl

    1998-01-01

    Details a project designed to bolster the quality of astronomy education through teacher workshops. Workshop topics include the solar system, stars, stellar evolution, galaxies, and cosmology. The Learning Approach Questionnaire (LAQ) is used to determine the effects of the workshops. (DDR)

  12. Managing Astronomy Research Data: Case Studies of Big and Small Research Projects

    NASA Astrophysics Data System (ADS)

    Sands, Ashley E.

    2015-01-01

    Astronomy data management refers to all actions taken upon data over the course of the entire research process. It includes activities involving the collection, organization, analysis, release, storage, archiving, preservation, and curation of research data. Astronomers have cultivated data management tools, infrastructures, and local practices to ensure the use and future reuse of their data. However, new sky surveys will soon amass petabytes of data requiring new data management strategies.The goal of this dissertation, to be completed in 2015, is to identify and understand data management practices and the infrastructure and expertise required to support best practices. This will benefit the astronomy community in efforts toward an integrated scholarly communication framework.This dissertation employs qualitative, social science research methods (including interviews, observations, and document analysis) to conduct case studies of data management practices, covering the entire data lifecycle, amongst three populations: Sloan Digital Sky Survey (SDSS) collaboration team members; Individual and small-group users of SDSS data; and Large Synoptic Survey Telescope (LSST) collaboration team members. I have been observing the collection, release, and archiving of data by the SDSS collaboration, the data practices of individuals and small groups using SDSS data in journal articles, and the LSST collaboration's planning and building of infrastructure to produce data.Preliminary results demonstrate that current data management practices in astronomy are complex, situational, and heterogeneous. Astronomers often have different management repertoires for working on sky surveys and for their own data collections, varying their data practices as they move between projects. The multitude of practices complicates coordinated efforts to maintain data.While astronomy expertise proves critical to managing astronomy data in the short, medium, and long term, the larger astronomy

  13. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    2016-07-01

    This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of

  14. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  15. System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications.

    PubMed

    Burla, Maurizio; Roeloffzen, Chris G H; Zhuang, Leimeng; Marpaung, David; Khan, Muhammad Rezaul; Maat, Peter; Dijkstra, Klaas; Leinse, Arne; Hoekman, Marcel; Heideman, René

    2012-03-01

    In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology. The measurements show a wideband, continuous beamsteering operation over a steering angle of 23.5 degrees and an instantaneous bandwidth of 500 MHz limited only by the measurement setup.

  16. Discovering the invisible universe. [Historical survey of electromagnetic (IR, UV, radio and x-ray) astronomy

    SciTech Connect

    Friedman, H. )

    1991-02-01

    The history of astronomical observations outside the visible range is surveyed in a review for general readers. Consideration is given to Jansky's discovery of cosmic radio emission, the pioneering radio observers of the 1940s, the larger radio telescopes built since 1950, aperture synthesis and the Very Large Array, terrestrial and space VLBI networks, ground-based and satellite observations in the IR band, the discovery and early laboratory characterization of X-rays, and X-ray observations from sounding rockets and satellites. Extensive photographs, drawings, diagrams, and sample images are provided.

  17. Discovering astronomy

    NASA Technical Reports Server (NTRS)

    Chapman, R. D.

    1978-01-01

    An overview of basic astronomical knowledge is presented with attention to the structure and dynamics of the stars and planets. Also dealt with are techniques of astronomical measurement, e.g., stellar spectrometry, radio astronomy, star catalogs, etc. Basic physical principles as they pertain to astronomy are reviewed, including the nature of light, gravitation, and electromagnetism. Finally, stellar evolution and cosmology are discussed with reference to the possibility of life elsewhere in the universe.

  18. Development of Astronomy at the Planetarium of Havana. Project

    NASA Astrophysics Data System (ADS)

    Alvarez, Oscar

    2015-08-01

    In December 2009 to celebrate the International Year of Astronomy was inaugurated in Havana with a great constructive effort the only Planetarium in regular public service, currently serving in Cuba.After 5 years of operation open to the public is time to propose a series of activities that raise its level of activity as a Cultural Center of Science and Technology.The establishment of a cathedra of Astronomy and Astrophysics attached to a center of Higher Education once the staff acquire sufficient capacity and experience to conduct research programs is proposed, and also, to provide scientific expertise to educators in supporting the national system of education and outreach of the Cultural Center.In addition to becoming a member of the International Association of Planetariums, its active members will participate to international and national events, will increase our national membership in the International Astronomical Union and its commissions, an also to the Red Pop UNESCO and other related groups of IberoamericaIn order to ensure the scientific life of its main technical staff, efforts will be made to establish agreements with Higher Education related centers such as the Faculty of Physics at the University of Havana, the Higher Institute of Applied Science and Technology and other schools allowing professional activities of staff in these institutions to the Cultural Centre as university extension. This includes the maintenance of university students of all specialties covering fixed shifts as guides / aids in attention to visitors.The Cultural Center is designed as a modern concept embedded in a Colonial architecture and traditional external environment. Exhibitions, shows the space and other facilities - will provide visitors a set of tools to bring back home, concepts and information about the universe before it was too remote and too complex for the average citizen. It is undoubtedly a unique educational opportunity in the country to demystify the

  19. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; Kaiser, M.; Kassim, N.; Kuiper, T.; MacDowall, R.; Mahoney, M.; Perley, R.; Preston, R.; Reiner, M.; Rodriguez, P.; Stone, R.; Unwin, S.; Weiler, K.; Woan, G.; Woo, R.

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  20. Source counts at 5 gigahertz from the MG survey. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Lawrence, C. R.; Burke, B. F.

    1985-01-01

    The MIT-Green Bank (MG) radio survey (reported by Bennett and colleagues in 1984 and 1985) is the largest 5 GHz survey to date. In this paper the source counts from the MG survey are examined. They are consistent with past measurements, but due to the large size of the MG survey the Poisson errors have been reduced. Radio source evolution models (such as that reported by Condon in 1984) are consistent with these new measurements.

  1. Very Long Baseline Interferometry (VLBI) earth physics. [application to radio astronomy and interferometric earth surveys

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1972-01-01

    The characteristics of the Michelson/Pease stellar interferometer are discussed. An analog of the interferometer using radio waves is described. The use of a conventional hard-wired interferometer with very long base line interferometry (VLBI) is analyzed. Mathematical models are developed to analyze the VLBI techniques. A summary of VLBI geodetic experiments is tabulated. The concept and application of the astronomical radio interferometric earth surveys (ARIES) are reported. A schematic diagram of ARIES implementation is provided.

  2. Project Explorer GAS #007: Marshall Amateur Radio Club Experiment (MARCE)

    NASA Technical Reports Server (NTRS)

    Stluka, E. F.

    1986-01-01

    Polls were taken at the Project Explorer meetings regarding flying without the radio experiment transmitting. The radio downlinks require extra coordination and are sensitive to certain payloads. The poll results were unanimous. The radio downlinks are vital in providing data on the health and status of the total experiments package, in real time, during the flight. The amateur radio operators, prepared to receive the downlinks and OSCAR-10 relays, revealed that there was enormous interest throughout the world, to participate. This sets the stage for the reflight opportunities which the GAS program has provided. Major activities, pertinent to the STS-41G flight preparations by the GAS #007 team and support group, are listed.

  3. Science operations management. [with Infrared Astronomy Satellite project

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  4. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    NASA Technical Reports Server (NTRS)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (< 1 ms) across a broad range of frequencies, and can be confused with signals from sources of interest such as pulsars. With ever-increasing volumes of data being produced by observatories, automated strategies are required to detect, classify, and characterize these short "transient" RFI events. We investigate an active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  5. Solar system and related topics study by the methods of the low-frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Rucker, H. O.; Melnik, V. N.; Falkovich, I. S.; Litvinenko, G. V.; Kolyadin, V. L.; Zakharenko, V. V.; Lecacheux, A.; Zarka, Ph.; Reznik, A. P.

    2010-05-01

    In the present report the possibilities and some results of the high sensitive investigations of the Solar system objects at lowest frequencies have been reviewed. The Sun, Jupiter, Saturn, interplanetary medium, and other objects have been considered. Special attention has been paid to the space weather problem. The stellar-planetary relations have been also investigated, particularly a search of active stars and exo-planets radio emission. During the last years many observations have been performed with the largest decameter arrays UTR-2 (Kharkov, Ukraine) and URAN system (Ukraine) and new receiving equipment. These investigations provided the possibility to get the important information about the fine time-frequency structures of the weak sporadic radio emission. Very good perspectives come into existence in connection to the creation and implementation of the new generation of low-frequency radio telescopes, i.e. LOFAR (the Netherlands), E-LOFAR (European countries), LWA (USA), LSS (France), GURT (Ukraine), etc.

  6. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  7. Strategies for Creating Cornerstone Education Projects for the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Isbell, D.

    2008-12-01

    The General Assembly of the United Nations has designated 2009 as the International Year of Astronomy (IYA2009), a year-long global education program to commemorates the 400th anniversary of Galileo's first astronomical observations through a telescope. IYA2009 has an importance well beyond what can be accomplished in just one year. The main goal is to use this year to build sustainable, long-term education programs for measurable changes in science literacy in school children and in the public at large. The National Optical Astronomy Observatory (NOAO) with headquarters in Tucson and the American Astronomical Society (AAS) with headquarters in Washington D.C. are leading the coordination of IYA2009 activities in the United States under a grant from the National Science Foundation. NASA is also playing a large role. NOAO and AAS are working closely with United Nations Educational, Scientific and Cultural Organization (UNESCO), the International Astronomical Union (IAU), Astronomical Society of the Pacific (ASP), American Association of Variable Star Observers (AAVSO), The International Dark-Sky Association (IDA), and other trusted astronomy partners worldwide. Through collaboration and coordination, the participating partners will convey the excitement of personal discovery, the merits of the scientific process, and the pleasure of sharing new and fundamental knowledge about the Universe. This talk will describe the goals of the major cornerstone projects led by the United States including the Galileoscope education kit, dark skies education, image exhibition, and Galileo teacher training project. This work was supported by a grant from the National Science Foundation Astronomy Division. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  8. De-mystifying earned value management for ground based astronomy projects, large and small

    NASA Astrophysics Data System (ADS)

    Norton, Timothy; Brennan, Patricia; Mueller, Mark

    2014-08-01

    The scale and complexity of today's ground based astronomy projects have justifiably required Principal Investigator's and their project teams to adopt more disciplined management processes and tools in order to achieve timely and accurate quantification of the progress and relative health of their projects. Earned Value Management (EVM) is one such tool. Developed decades ago and used extensively in the defense and construction industries, and now a requirement of NASA projects greater than $20M; EVM has gained a foothold in ground-based astronomy projects. The intent of this paper is to de-mystify EVM by discussing the fundamentals of project management, explaining how EVM fits with existing principles, and describing key concepts every project can use to implement their own EVM system. This paper also discusses pitfalls to avoid during implementation and obstacles to its success. The authors report on their organization's most recent experience implementing EVM for the GMT-Consortium Large Earth Finder (G-CLEF) project. G-CLEF is a fiber-fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT), planned for construction at the Las Campanas Observatory in Chile's Atacama Desert region.

  9. Astronomy Looks Different When You Listen to It.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1994-01-01

    Describes the use of a radio telescope to arouse new interest among students. The article partitions into the following sections: (1) Radio Astronomy--Which Level; (2) First Steps: The Site--The Antenna; (3) The Electronics: Do It Yourself, or Store Bought; (4) Field Test: Music of the Spheres; (5) Getting Started: Entry Level Projects; and (6)…

  10. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  11. The Pro-Am Collaborative Astronomy (PACA) Project

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2016-10-01

    The PACA Project is an ecosystem of several social media platforms (Facebook, Pinterest, Twitter, Flickr, Vimeo) that takes connects professional and amateur astronomers in a common observing campaign. It takes advantage of immediate connectivity amongst amateur astronomers worldwide, that can be galvanized to participate in a given observing campaign and provide observations/data that helps provide a long temporal backdrop for professional data. To date, The PACA Project has participated in organized campaigns such as NASA Comet ISON Observing Campaign in 2013; NASA Comet Integrated Observations Campaign to observe Comet Siding Spring flyby of Mars on 19 October 2014, and currently is participating in the ESA/Rosetta mission's ground-based amateur observing campaign, soon to finish. With several bright comets well placed in the sky, the PACA Project has focused groups for each comet of interest to its members. The PACA Project is now extending its observing campaigns to include planets, namely, Jupiter, Saturn and Mars. The 2014 observing campaign of comet Siding Spring included both comet and Mars amateur astronomers. With Mars, just past its recent opposition and heading towards its perihelic opposition, when it will be its largest size as viewed from Earth, in 2018; with NASA's JUNO spacecraft arrival at Jupiter on 4 July 2016 and NASA/ESA Cassini mission ending its mission to Saturn in 2017, all three planets are targets of amateur observers. The synergy between The PACA Project goals, amateur and professional astronomers translates well into a cohesive paradigm to monitor and observe comets and planets to increase the data on these targets for crowdsourcing. I shall highlight the results from the various campaigns, including various comets, Jupiter, Saturn and Mars and propose various science observing campaigns, resulting in both scientific research and citizen science.

  12. The MARIACHI Project: Mixed Apparatus for Radio Investigation of Atmospheric Cosmic Rays of High Ionization

    NASA Astrophysics Data System (ADS)

    Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.

    2005-12-01

    Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.

  13. Astronomy and development: a multidisciplinary project in the Mexican countryside

    NASA Astrophysics Data System (ADS)

    Bravo Alfaro, Hector; Caretta, César; Brito, Elcia M. S.

    2015-08-01

    We outline a long term project focused on children and young students living in rural places of the Mexican State of Guanajuato. This multidisciplinary project includes astronomers, environment engineers, biologists and sociologists of Universidad de Guanajuato. One part of the activities are done in situ, at the villages, and other is currently proposed to be held at the Public Astronomical Observatory of Universidad de Guanajuato. Organizing the trips and the activities for scholar groups at the observatory (where telescopes, computers and microscopes are available) would fit very well within several of the IAU-OAD strategies. We expect that, attending the FM20 of the IAU and presenting our results there will help us to develop regionalcollaborations and showing the many opportunities for new possible volunteers.

  14. Exploring Systems Engineering (and the Universe) Through the RadioJOVE telescope

    NASA Astrophysics Data System (ADS)

    Aditi Raj, Anya

    2017-01-01

    Amateur projects in radio astronomy are popular methods to engage in what often seems to be an inaccessible field, and pre-made kits are becoming increasingly available to hobbyists and educators. One such kit is the RadioJOVE, which is attractive due to its simplicity, accessibility and its extensive support network and community of users. When coupled with an education in project management, building the RadioJOVE provides a perfect framework to learn about best practices in completing a project. We will primarily discuss the use of the RadioJOVE project to enhance study in project management and systems engineering. We also intend to discuss the importance of amateur projects such as the RadioJOVE in gaining a holistic understanding of radio astronomy and the project’s potential to spark interest in radio astronomy in students of various disciplines.

  15. The Hitachi and Takahagi 32 m radio telescopes: Upgrade of the antennas from satellite communication to radio astronomy

    NASA Astrophysics Data System (ADS)

    Yonekura, Yoshinori; Saito, Yu; Sugiyama, Koichiro; Soon, Kang Lou; Momose, Munetake; Yokosawa, Masayoshi; Ogawa, Hideo; Kimura, Kimihiro; Abe, Yasuhiro; Nishimura, Atsushi; Hasegawa, Yutaka; Fujisawa, Kenta; Ohyama, Tomoaki; Kono, Yusuke; Miyamoto, Yusuke; Sawada-Satoh, Satoko; Kobayashi, Hideyuki; Kawaguchi, Noriyuki; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Ueno, Yuji; Jike, Takaaki; Tamura, Yoshiaki; Hirota, Tomoya; Miyazaki, Atsushi; Niinuma, Kotaro; Sorai, Kazuo; Takaba, Hiroshi; Hachisuka, Kazuya; Kondo, Tetsuro; Sekido, Mamoru; Murata, Yasuhiro; Nakai, Naomasa; Omodaka, Toshihiro

    2016-10-01

    The Hitachi and Takahagi 32 m radio telescopes (former satellite communication antennas) were so upgraded as to work at 6, 8, and 22 GHz. We developed the receiver systems, IF systems, back-end systems (including samplers and recorders), and reference systems. We measured the performance of the antennas. The system temperature including the atmosphere toward the zenith, T_sys^{ast }, is measured to be ˜30-40 K for 6 GHz and ˜25-35 K for 8 GHz. T_sys^{ast } for 22 GHz is measured to be ˜40-100 K in winter and ˜150-500 K in summer seasons, respectively. The aperture efficiency is 55%-75% for Hitachi at 6 GHz and 8 GHz, and 55%-65% for Takahagi at 8 GHz. The beam sizes at 6 GHz and 8 GHz are ˜4.6° and ˜3.8°, respectively. The side-lobe level is less than 3%-4% at 6 and 8 GHz. Pointing accuracy was measured to be better than ˜0.3° for Hitachi and ˜0.6° for Takahagi. We succeeded in VLBI observations in 2010 August, indicating good performance of the antenna. We started single-dish monitoring observations of 6.7 GHz methanol maser sources in 2012 December, and found several new sources showing short-term periodic variation of the flux density.

  16. Radio Science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Radio science experiments use electromagnetic waves to probe or study the solar system. Three major research areas were identified within this discipline: radio astronomy, radar astronomy, and celestial mechanics. Radio astronomy (or radiometry) is the detection and measurement of naturally produced radio frequency emissions. Sources include surfaces, atmospheres, rings, and plasmas. Radar astronomy is the observation of man-made signals after their interaction with a target. Both imaging and non-imaging results. Celestial mechanics includes all studies related to the motions of (and gravity fields of) bodies within the solar system. These should not be considered rigid separations, but aid in the discussion of the data sets.

  17. The Astronomy Collections: From the Project to the Laboratory

    NASA Astrophysics Data System (ADS)

    Bobis, L.

    2015-04-01

    Within some astronomical libraries, just as it is with other libraries, there are collections we might refer to as being in "the border zone." The materials most representative of this are those that relate to an institution's heritage and history. The challenges of these patrimonial collections are scientific, legal, economic, and political. These collections establish the scientific status of their respective libraries because they extend beyond meeting the needs of astronomers: the material is important in defining the history of the field. The influence of these libraries derives from these heritage materials. From this point of view, the library is a worksite and a laboratory for librarians, project managers, and researchers.

  18. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  19. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  20. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy

    NASA Astrophysics Data System (ADS)

    Gawande, R.; Bradley, R.; Langston, G.

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  1. The Astronomy Genealogy Project: It's more than just tracing your ancestry

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.; AstroGen Team

    2017-01-01

    The Astronomy Genealogy Project ("AstroGen"), a project of the Historical Astronomy Division (HAD), will soon appear on the AAS website (https://astrogen.aas.org/). Ultimately, it will list the world's astronomers with their highest degrees, titles of theses for those who wrote them, academic advisors, universities, and links to the astronomers or their obituaries, their theses when online, and more. At present the AstroGen team is working on those who earned doctorates with astronomy-related theses. We show what can be learned already, with twelve countries essentially complete and about 19,000 theses recorded. For the twelve countries—Australia, Canada, Chile, Ireland, the Netherlands, New Zealand, Norway, South Africa, Spain, Sweden, the United Kingdom, and the United States—half of the theses have been submitted since 1999, and more than 60% are online. We will present information comparing countries, universities, and eras. Nearly all information has been gathered online, and there is much more available. We are seeking people with knowledge of the languages and academic cultures of other countries to join us.

  2. The GalileoMobile Project: sharing astronomy with students and teachers around the world

    NASA Astrophysics Data System (ADS)

    Benitez Herrera, Sandra; Del Sordo, Fabio; Spinelli, Patricia; Ntormousi, Eva

    2015-08-01

    Astronomy is an inspiring tool that can be used to motivate children to learn more about the world, to encourage critical thinking, and engage them in different scientific disciplines. Although many outreach programs bring astronomy to the classroom, most of them act in developed countries and rely heavily on internet connection. This leaves pupils and teachers in remote areas with little access to the latest space missions and the modern astronomical advances. GalileoMobile is an itinerant astronomy education initiative aiming to bridge this gap by donating educational material and organizing activities, experiments and teacher workshops at schools in rural areas. The initiative is run on a voluntary basis by an international team of astronomers, educators, and science communicators, working together to stimulate curiosity and interest in learning, to exchange different visions of the cosmos and to inspire a feeling of unity "under the same sky" between people from different cultures. Since the creation of the project in 2008, we have travelled to Chile, Bolivia, Peru, India, Uganda, Brazil and Colombia, and worked with about 70 schools. From our experiences, we learnt that 1) bringing experts from other countries is very stimulating for children and encourages a collaboration beyond borders; 2) inquiry-based methods are important for making the learning process more effective; 3) involving local educators in our activities helps the longstanding continuation of the project. We are incorporating these lessons learned into a new concept of the project. Constellation 2015, aims to establish a South American network of schools committed to the long-term organisation of astronomical outreach activities amongst their pupils and local communities. Constellation was declared Cosmic Light Project by the International Year of Light 2015 and awarded funding by the OAD. At this Focus Meeting, we will present the outcomes from our latest expeditions in Brazil and Colombia in

  3. Revisiting software specification and design for large astronomy projects

    NASA Astrophysics Data System (ADS)

    Wiant, Scott; Berukoff, Steven

    2016-07-01

    The separation of science and engineering in the delivery of software systems overlooks the true nature of the problem being solved and the organization that will solve it. Use of a systems engineering approach to managing the requirements flow between these two groups as between a customer and contractor has been used with varying degrees of success by well-known entities such as the U.S. Department of Defense. However, treating science as the customer and engineering as the contractor fosters unfavorable consequences that can be avoided and opportunities that are missed. For example, the "problem" being solved is only partially specified through the requirements generation process since it focuses on detailed specification guiding the parties to a technical solution. Equally important is the portion of the problem that will be solved through the definition of processes and staff interacting through them. This interchange between people and processes is often underrepresented and under appreciated. By concentrating on the full problem and collaborating on a strategy for its solution a science-implementing organization can realize the benefits of driving towards common goals (not just requirements) and a cohesive solution to the entire problem. The initial phase of any project when well executed is often the most difficult yet most critical and thus it is essential to employ a methodology that reinforces collaboration and leverages the full suite of capabilities within the team. This paper describes an integrated approach to specifying the needs induced by a problem and the design of its solution.

  4. Project CLEA - The Moons of Jupiter: Understanding the Kepler's Laws in Astronomy 101

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, Lanika; Speck, A.

    2008-05-01

    We report results on a study of impact of Project CLEA - Contemporary Laboratory Experiences in Astronomy software on students’ understanding of the Kepler's Third Law. The study was conducted at the University of Missouri among 26 non-science major students enrolled in an introductory astronomy course. There were 16 female and 15 male students participants between age of 18 and 24. The study was designed to find out whether students had different attitudes toward the simulation: its visual design and its intuitiveness and easiness to use. The study tested whether these attitudes reflected on the students’ learning outcomes of the discussed astronomy topic. To measure students’ computer proficiency and how comfortable they were using computers they were given a computer attitude inventory. The participants took a pretest and a posttest designed by the Project CLEA developers for the Moons of Jupiter module. The students also filled out a questionnaire where they reflected on their experience of using the software. Two weeks later the research participants took a final astronomy course examination which included a question on the Kepler's Third Law. Our research shows that students who indicated that they liked the simulation performed better on the posttest.. At the same time, we found that there was no relationship between the students’ attitude towards the simulation and their performance on the final exam. Students, who used CLEA simulation regardless of their attitudes towards it, significantly outperformed their classmates during the final exam on the Kepler's third law question. It is also interesting to note that students performed better on five out of six posttest questions - there was no change on a question involved mathematical application of the Kepler's Third Law formula.

  5. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    NASA Technical Reports Server (NTRS)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  6. Controller-area-network bus control and monitor system for a radio astronomy interferometer

    NASA Astrophysics Data System (ADS)

    Woody, David P.; Wiitala, Bradley; Scott, Stephen L.; Lamb, James W.; Lawrence, Ronald P.; Giovanine, Curt; Fredsti, Sancar J.; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H.; Cartwright, John K.; Gutierrez-Kraybill, Colby; Bolatto, Alberto D.; Muchovej, Stephen J. C.

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data.

  7. Controller-area-network bus control and monitor system for a radio astronomy interferometer.

    PubMed

    Woody, David P; Wiitala, Bradley; Scott, Stephen L; Lamb, James W; Lawrence, Ronald P; Giovanine, Curt; Fredsti, Sancar J; Beard, Andrew; Pryke, Clem; Loh, Michael; Greer, Christopher H; Cartwright, John K; Gutierrez-Kraybill, Colby; Bolatto, Alberto D; Muchovej, Stephen J C

    2007-09-01

    We describe the design and implementation of a controller-area-network bus (CANbus) monitor and control system for a millimeter wave interferometer. The Combined Array for Research in Millimeter-wave Astronomy (CARMA) is a 15-antenna connected-element interferometer for astronomical imaging, created by the merger of two university observatories. Its new control system relies on a central computer supervising a variety of subsystem computers, many of which control distributed intelligent nodes over CANbus. Subsystems are located in the control building and in individual antennas and communicate with the central computer via Ethernet. Each of the CAN modules has a very specific function, such as reading an antenna encoder or tuning an oscillator. Hardware for the modules was based on a core design including a commercial CANbus-enabled single-board computer and some standard circuitry for interfacing to peripherals. Hardware elements were added or changed as necessary for the specific module types. Similarly, a base set of embedded code was implemented for essential common functions such as CAN message handling and time keeping and extended to implement the required functionality for the different hardware. Using a standard CAN messaging protocol designed to fit the requirements of CARMA and a well-defined interface to the high-level software allowed separate development of high-level code and embedded code with minimal integration problems. Over 30 module types have been implemented and successfully deployed in CARMA, which is now delivering excellent new science data.

  8. Solar maximum mission: Ground support programs at the Harvard Radio Astronomy Station

    NASA Technical Reports Server (NTRS)

    Maxwell, A.

    1983-01-01

    Observations of the spectral characteristics of solar radio bursts were made with new dynamic spectrum analyzers of high sensitivity and high reliability, over the frequency range 25-580 MHz. The observations also covered the maximum period of the current solar cycle and the period of international cooperative programs designated as the Solar Maximum Year. Radio data on shock waves generated by solar flares were combined with optical data on coronal transients, taken with equipment on the SMM and other satellites, and then incorporated into computer models for the outward passage of fast-mode MHD shocks through the solar corona. The MHD models are non-linear, time-dependent and for the most recent models, quasi-three-dimensional. They examine the global response of the corona for different types of input pulses (thermal, magnetic, etc.) and for different magnetic topologies (for example, open and closed fields). Data on coronal shocks and high-velocity material ejected from solar flares have been interpreted in terms of a model consisting of three main velocity regimes.

  9. Observations of electron gyroharmonic waves and the structure of the Io torus. [jupiter 1 spacecraft radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.

    1980-01-01

    Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.

  10. MOLECULAR CLOUDS AND CLUMPS IN THE BOSTON UNIVERSITY-FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY GALACTIC RING SURVEY

    SciTech Connect

    Rathborne, J. M.; Johnson, A. M.; Jackson, J. M.; Shah, R. Y.; Simon, R. E-mail: alexj@bu.edu E-mail: ronak@bu.edu

    2009-05-15

    The Boston University-Five College Radio Astronomy Observatory (BU-FCRAO) Galactic Ring Survey (GRS) of {sup 13}CO J = 1 {yields} 0 emission covers Galactic longitudes 18{sup 0} < l < 55.{sup 0}7 and Galactic latitudes |b| {<=} 1{sup 0}. Using the SEQUOIA array on the FCRAO 14 m telescope, the GRS fully sampled the {sup 13}CO Galactic emission (46'' angular resolution on a 22'' grid) and achieved a spectral resolution of 0.21 km s{sup -1}. Because the GRS uses {sup 13}CO, an optically thin tracer, rather than {sup 12}CO, an optically thick tracer, the GRS allows a much better determination of column density and also a cleaner separation of velocity components along a line of sight. With this homogeneous, fully sampled survey of {sup 13}CO emission, we have identified 829 molecular clouds and 6124 clumps throughout the inner Galaxy using the CLUMPFIND algorithm. Here we present details of the catalog and a preliminary analysis of the properties of the molecular clouds and their clumps. Moreover, we compare clouds inside and outside of the 5 kpc ring and find that clouds within the ring typically have warmer temperatures, higher column densities, larger areas, and more clumps compared with clouds located outside the ring. This is expected if these clouds are actively forming stars. This catalog provides a useful tool for the study of molecular clouds and their embedded young stellar objects.

  11. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  12. The Five-hundred-meter Aperture Spherical Radio Telescope Project

    NASA Astrophysics Data System (ADS)

    Li, Di; Pan, Zhichen

    2016-07-01

    The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) is a Chinese megascience project funded by the National Development and Reform Commission (NDRC) of the People's Republic of China. The National Astronomical Observatories of China (NAOC) is in charge of its construction and subsequent operation. Upon its expected completion in September 2016, FAST will surpass the 305 m Arecibo Telescope and the 100 m Green Bank Telescope in terms of absolute sensitivity in the 70 MHz to 3 GHz bands. In this paper, we report on the project, its current status, the key science goals, and plans for early science.

  13. Highlighting the history of Japanese radio astronomy. 4: early solar research in Osaka

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne; Nakamura, Tsuko; Ishiguro, Masato

    2016-12-01

    For about two years, from late 1949, Minoru Oda and Tatsuo Takakura carried out solar observations from Osaka, initially with a hand-made horn and later with a small parabolic antenna connected to a 3.3 GHz receiver, but they only published one short paper on this work. At about the same time, Ojio and others at Osaka City University presented the concept of a solar grating array at a meeting of the Japan Physical Society, but this was never built. In this paper, we provide brief biographical accounts of Oda and Takakura before examining their radio telescopes and the observations that they made. We also briefly discuss the proposed Japanese solar grating array.

  14. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  15. Digital Signal Processing Using Stream High Performance Computing: A 512-Input Broadband Correlator for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Kocz, J.; Greenhill, L. J.; Barsdell, B. R.; Price, D.; Bernardi, G.; Bourke, S.; Clark, M. A.; Craig, J.; Dexter, M.; Dowell, J.; Eftekhari, T.; Ellingson, S.; Hallinan, G.; Hartman, J.; Jameson, A.; MacMahon, D.; Taylor, G.; Schinzel, F.; Werthimer, D.

    2015-03-01

    A "large-N" correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a ˜ 100 MHz baseband and processes signals from 512 antennas (256 dual polarization) over a ˜ 58 MHz instantaneous sub-band, achieving 16.8 Tops s-1 and 0.236 Tbit s-1 throughput in a 9 kW envelope and single rack footprint. The output data rate is 260 MB s-1 for 9-s time averaging of cross-power and 1 s averaging of total power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlator's comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneous, computing architecture.

  16. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  17. Peta-Flop Real Time Radio Astronomy Signal Processing Instrumentation and the CASPER Collaboration

    NASA Astrophysics Data System (ADS)

    Werthimer, Dan

    2014-04-01

    I will briefly describe next generation radio telescopes, such as HERA and the Square Kilometer Array (SKA), which will require 1E15 to 1E17 operations per second of real time processing. I'll present some of the new architectures we've used to develop a variety of heterogeneous FPGA-GPU-CPU based signal processing systems for such telescopes, including spectrometers, correlators, and beam formers. I will also describe the CASPER collaboration, which has developed architectures, open source programming tools, libraries and reference designs that make it relatively easy to develop a variety of scalable, upgradeable, fault tolerant, low power, real time digital signal processing instrumentation. CASPER utilizes commercial 10Gbit and 40 Gbit ethernet switches to interconnect open source general purpose field programmable gate array (FPGA) boards with GPUs and software modules. CASPER collaborators at hundreds of universities, government labs and observatories have used these techniques to rapidly develop and deploy a variety of correlators, beamformers, spectrometers, pulsar/transient machines, and VLBI instrumentation. CASPER instrumentation is also utilized in physics, medicine, genomics and engineering. Open source source hardware, software, libraries, tools, tutorials, reference designs, information about workshops, and how to join the collaboration are available at http://casper.berkeley.edu

  18. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project

    NASA Astrophysics Data System (ADS)

    Nan, Rendong; Li, Di; Jin, Chengjin; Wang, Qiming; Zhu, Lichun; Zhu, Wenbai; Zhang, Haiyan; Yue, Youling; Qian, Lei

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. Its innovative engineering concept and design pave a new road to realize a huge single dish in the most effective way. FAST also represents Chinese contribution in the international efforts to build the square kilometer array (SKA). Being the most sensitive single dish radio telescope, FAST will enable astronomers to jump-start many science goals, such as surveying the neutral hydrogen in the Milky Way and other galaxies, detecting faint pulsars, looking for the first shining stars, hearing the possible signals from other civilizations, etc. The idea of sitting a large spherical dish in a karst depression is rooted in Arecibo telescope. FAST is an Arecibo-type antenna with three outstanding aspects: the karst depression used as the site, which is large to host the 500-meter telescope and deep to allow a zenith angle of 40 degrees; the active main reflector correcting for spherical aberration on the ground to achieve a full polarization and a wide band without involving complex feed systems; and the light-weight feed cabin driven by cables and servomechanism plus a parallel robot as a secondary adjustable system to move with high precision. The feasibility studies for FAST have been carried out for 14 years, supported by Chinese and world astronomical communities. Funding for FAST has been approved by the National Development and Reform Commission in July of 2007 with a capital budget ~ 700 million RMB. The project time is 5.5 years from the commencement of work in March of 2011 and the first light is expected to be in 2016. This review intends to introduce the project of FAST with emphasis on the recent progress since 2006. In this paper, the subsystems of FAST are described in modest details followed by discussions of the fundamental science goals and examples of early science projects.

  19. Millimetre-Wave Spectrum of Isotopologues of Ethanol for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Walters, Adam; Schäfer, Mirko; Ordu, Matthias H.; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.

    2015-06-01

    Complex molecules have been identified in star-forming regions and their formation is linked to the specific physical and chemical conditions there. They are suspected to form a role in the origins of life. Amongst these, ethanol is a fairly abundant molecule in warmer regions. For this reason, we have recently carried out laboratory measurements and analyses of the rotational spectra of the three mono-substituted deuterium isotopologues of ethanol (one of which, CH_2DCH_2OH, exists as two distinct conformers according to the position of the deuterium atom with respect to the molecular skeleton). Measurements were taken between 35-500 GHz, allowing accurate predictions in the range of radio telescopes. We have concentrated on the lowest energy anti conformers. The dataset was constrained for fitting with a standard Watson-S reduction Hamiltonian by rejecting transitions from high-lying states, which appear to be perturbed by the gauche states, and by averaging some small methyl torsional splits. This treatment is compatible with the needs for a first search in the interstellar medium, in particular in spectra taken by ALMA. For this purpose an appropriate set of predictions will be included on the Cologne Database for Molecular Spectroscopy. Previous results on the two mono-substituted 13C isotopologues which led to a tentative detection in Sgr B2(N) will be briefly summarized and compared with the latest measurements. The usefulness of studying different isotopologues in the interstellar medium will also be rapidly addressed. Bouchez et al, JQSRT 113 (11), pp. 1148-1154, 2012. Belloche et al. A&A 559, id.A47, 187pp., 2013.

  20. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    NASA Astrophysics Data System (ADS)

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  1. Astronomy, technology development and industry

    NASA Astrophysics Data System (ADS)

    Vigroux, Laurent

    2011-06-01

    Astronomy is perhaps the best example of fundamental research aiming to increase our knowledge well beyond our human neighborhood. But astronomy is also a Big Science, which is partly technology-driven. Progress in observational capabilities is due to progress in detectors, telescopes, satellites, etc. I use three examples -radio astronomy, adaptive optics and detectors- to describe the complex interactions between astronomy, technology development and industry. I conclude by a short description of the global economic impact of astronomy.

  2. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry R.; Wang, Douglas

    2016-01-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlationare proportional to N2 and dominate at sufficiently large N. Here we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope's bandwidth (the so-called "FX" structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with 2 opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chipmemory and the CMACs are re-used as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the IC's size and power consumption. It isintended for fabrication in a 32 nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76 to 3.3 pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N = 4096. The system-level energy efficiency, including board-levelI/O, power supplies, and controls, is expected to be 5 to 7 pJ per CMAC operation. Existing correlators for the JVLA (N = 32) and ALMA (N = 64) telescopes achieve about 5000 pJ and 1000 pJ respectively usingapplication-specific ICs in older technologies. To our knowledge, the largest-N existing correlator is LEDA atN = 256; it

  3. An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    NASA Astrophysics Data System (ADS)

    D'Addario, Larry R.; Wang, Douglas

    2016-03-01

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlation are proportional to N2 and dominate at sufficiently large N. Here, we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope’s bandwidth (the so-called “FX” structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with two opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chip memory and the CMACs are reused as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the ICs size and power consumption. It is intended for fabrication in a 32nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76-3.3pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N=4096. The system-level energy efficiency, including board-level I/O, power supplies, and controls, is expected to be 5-7pJ per CMAC operation. Existing correlators for the JVLA (N=32) and ALMA (N=64) telescopes achieve about 5000pJ and 1000pJ, respectively using application-specific ICs (ASICs) in older technologies. To our knowledge, the largest-N existing correlator is LEDA at N=256; it

  4. Education and Public Outreach activities in Radio astronomy with the SKA South Africa

    NASA Astrophysics Data System (ADS)

    Oozeer, N.; Bassett, B. A.; de Boer, K.

    2014-10-01

    A Human Capital Development (HCD) program is a crucial part of any large organisation, and especially for large new research facilities such as the Square Kilometre Array (SKA) Africa. HCD provides a way of developing and channeling new minds into a very demanding field that ensures sustainability of the project and a multitude of spin-off benefits. Apart from educating learners at various levels, the HCD program must also inspire and educate the general public about the projects via an active outreach program. We highlight the various types of outreach activities that have been carried out in South Africa and the other SKA Africa partner countries. While there exist many teaching models we introduce and explore a novel concept of peer teaching for research known as the Joint Exchange Development Initiative (JEDI) and present some of its results. The JEDI workshops have resulted in a considerable number of learners embarking on advanced careers in science and research, and the demand is still growing.

  5. Astronomy CATS

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Prather, Edward E.; Impey, Chris

    2012-08-01

    The Center for Astronomy Education's (CAE's) NSF-funded Collaboration of Astronomy Teaching Scholars (CATS) Program is a grassroots multi-institutional effort to increase the capacity for astronomy education research and improve science literacy in the United States.Our primary target population is the 500,000 college students who each year enroll in an introductory general education (a breadth requirement for non-science majors) Earth, Astronomy, and Space Science (EASS) course (Fraknoi 2001, AGI 2006).An equally important population for our efforts is the individuals who are, or will be, teaching these students. In this chapter, we will briefly discuss the goals of CAE and CATS, the varied personnel that make up the CATS collective, the diverse projects we've undertaken, and the many challenges we have had to work through to make CATS a success.

  6. Society News: Monica Grady awarded CBE; Grubb Parsons Lecture 2012; Join the RAS; Astronomy on radio for kids; New Fellows; Peter D Hingley

    NASA Astrophysics Data System (ADS)

    2012-08-01

    RAS Fellow Prof. Monica Grady has been made a Commander of the Most Excellent Order of the British Empire (CBE), in recognition of her services to space science. The RAS sponsors the annual Grubb Parsons Lecture, which this year took place on 6 June at the University of Durham. If you are a professional astronomer, geophysicist, or similar, a student studying these disciplines, or simply someone with a serious interest in them, we urge you to apply for membership of the RAS. Outreach is an important activity for the RAS. We recently supported an astronomy series called Deep Space High on the digital radio channel Fun Kids.

  7. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    NASA Astrophysics Data System (ADS)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry

  8. Astronomy for teachers: A South African Perspective

    NASA Astrophysics Data System (ADS)

    de Witt, Aletha; West, Marion; Leeuw, Lerothodi; Gouws, Eldrie

    2015-08-01

    South Africa has nominated Astronomy as a “flagship science” and aims to be an international Astronomy hub through projects such as the Square Kilometre Array (SKA) and the South African Large Telescope (SALT). These projects open up career opportunities in maths, science and engineering and therefore offers a very real door for learners to enter into careers in science and technology through Astronomy. However, the Trends in International Mathematics and Science Survey (TIMSS), the Global Competitiveness Report (GCR) and Annual National Assessment (ANA) have highlighted that South Africa’s Science and Mathematics education is in a critical condition and that South African learners score amongst the worst in the world in both these subjects. In South Africa Astronomy is generally regarded as the worst taught and most avoided Natural Science knowledge strand, and most teachers that specialised in Natural Sciences, never covered Astronomy in their training.In order to address these issues a collaborative project between the University of South Africa (UNISA) and the Hartebeesthoek Radio Astronomy Observatory (HartRAO) was initiated, which aims to assist teachers to gain more knowledge and skills so that they can teach Astronomy with confidence. By collaborating we aim to ensure that the level of astronomy development will be raised in both South Africa and the rest of Africa.With the focus on Teaching and Learning, the research was conducted within a quantitative paradigm and 600 structured questionnaires were administered to Natural Science teachers in Public primary schools in Gauteng, South Africa. This paper reports the findings of this research and makes recommendations on how to assist teachers to teach Astronomy with confidence.

  9. Transforming African astronomy

    NASA Astrophysics Data System (ADS)

    Lalloo, Manisha

    2016-10-01

    As South Africa's MeerKAT radio telescope begins producing its first results, Manisha Lalloo meets physicist Nithaya Chetty, deputy chief executive officer of astronomy for the country's National Research Foundation, about how it can boost research in the region

  10. Europe and US to Collaborate on the Design and Development of a Giant Radio Telescope Project in Chile

    NASA Astrophysics Data System (ADS)

    1999-06-01

    High Goals for the Atacama Large Millimeter Array (ALMA) Representatives from the U.S. and Europe signed an agreement today in Washington to continue collaboration on the first phase of a giant new telescope project. The telescope will image the Universe with unprecedented sensitivity and sharpness at millimeter wavelengths (between the radio and infrared spectral regions). It will be a major step for astronomy, making it possible to study the origins of galaxies, stars and planets. This project is a prime example of a truly global project, an essential development in view of the ever-increasing complexity and cost of front-line astronomical facilities. The U.S. side of the project is run by the National Radio Astronomy Observatory (NRAO) , operated by Associated Universities, Inc. (AUI) under a cooperative agreement with the National Science Foundation (NSF). The European side of the project is a collaboration between the European Southern Observatory (ESO) , the Centre National de la Recherche Scientifique (CNRS) , the Max-Planck-Gesellschaft (MPG) , the Netherlands Foundation for Research in Astronomy (NFRA) and Nederlandse Onderzoekschool Voor Astronomie (NOVA) , and the United Kingdom Particle Physics and Astronomy Research Council (PPARC). The Europe-U.S. agreement signed today may be formally extended in the very near future to include Japan, following an already existing tripartite declaration of intent. Dr. Robert Eisenstein, NSF's Assistant Director Mathematical and Physical Sciences, called the project "a path-breaking international partnership that will open far-reaching opportunities for astronomical observations. This array would enable astronomers to explore the detailed processes through which the stars and planets form and give us a vastly improved understanding of the formation of the first galaxies in the very early universe." Eisenstein welcomed the collaboration with Europe and Japan's interest in becoming a major partner. Speaking on behalf of

  11. Two Eyes, 3D: A New Project to Study Stereoscopy in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Price, Aaron; SubbaRao, M.; Wyatt, R.

    2012-01-01

    "Two Eyes, 3D" is a 3-year NSF funded research project to study the educational impacts of using stereoscopic representations in informal settings. The project funds two experimental studies. The first is focused on how children perceive various spatial qualities of scientific objects displayed in static 2D and 3D formats. The second is focused on how adults perceive various spatial qualities of scientific objects and processes displayed in 2D and 3D movie formats. As part of the project, two brief high-definition films about variable stars will be developed. Both studies will be mixed-method and look at prior spatial ability and other demographic variables as covariates. The project is run by the American Association of Variable Star Observers, Boston Museum of Science and the Adler Planetarium and Astronomy Museum with consulting from the California Academy of Sciences. Early pilot results will be presented. All films will be released into the public domain, as will the assessment software designed to run on tablet computers (iOS or Android).

  12. Recycling for radio astronomy

    NASA Astrophysics Data System (ADS)

    Hoare, Melvin

    2012-02-01

    Melvin Hoare, Steve Rawlings and the CUGA consortium look forward to the potential offered by recycling the ˜30 m class antennas at Goonhilly Earth Station in Cornwall, including a new deep-space tracking facility, research and training, and the possibility of enhancing the e-MERLIN array.

  13. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  14. Astronomy Communication

    NASA Astrophysics Data System (ADS)

    Heck, A.; Madsen, C.

    2003-07-01

    Astronomers communicate all the time, with colleagues of course, but also with managers and administrators, with decision makers and takers, with social representatives, with the news media, and with the society at large. Education is naturally part of the process. Astronomy communication must take into account several specificities: the astronomy community is rather compact and well organized world-wide; astronomy has penetrated the general public remarkably well with an extensive network of associations and organizations of aficionados all over the world. Also, as a result of the huge amount of data accumulated and by necessity for their extensive international collaborations, astronomers have pioneered the development of distributed resources, electronic communications and networks coupled to advanced methodologies and technologies, often much before they become of common world-wide usage. This book is filling up a gap in the astronomy-related literature by providing a set of chapters not only of direct interest to astronomy communication, but also well beyond it. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in communication techniques while providing specific detailed information, as well as plenty of pointers and bibliographic elements. This book will be very useful for researchers, teachers, editors, publishers, librarians, computer scientists, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as for students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1345-0

  15. Dark Skies Awareness Cornerstone Project for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Iya Dark Skies Awareness Working Group

    2010-12-01

    Programs that were part of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness (DSA) Cornerstone Project have been successfully implemented around the world to promote social awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, nightscape aesthetics and especially astronomy. In developing the programs, DSA Cornerstone Project found that to influence cultural change effectively — to make people literally look up and see the light — we must make children a main focus, use approaches that offer involvement on many levels, from cursory to committed, and offer involvement via many venues. We must make the programs and resources as turn-key as possible, especially for educators — and provide ways to visualize the problem with simple, easily grasped demonstrations. The programs spanned a wide range; from new media technology for the younger generation, to an event in the arts, to various types of educational materials, to the promotion of dark skies communities, to national and international events and to global citizen science programs. The DSA Cornerstone Project is continuing most all of these programs beyond IYA2009. The International Dark-Sky Association as well as the Starlight Initiative is endorsing and helping to continue with some of the most successful programs from the DSA. The GLOBE at Night campaign is adding a research component that examines light pollution’s affects on wildlife. Dark Skies Rangers activities are being implemented in Europe through the Galileo Teacher Training Program. The new “One Star at a Time” will engage people to protect the night sky through personal pledges and registration of public stargazing areas or StarParks, like the newest one in Italy. The Starlight Initiative’s World Night in Defence of the Starlight will take place on the Vernal Equinox. DSA will again oversee the Dark Skies portion of Global

  16. Student Educational Radio: Village Extension. Project S.E.R.V.E.

    ERIC Educational Resources Information Center

    Dillingham City School District, AK.

    Dillingham High School, through Project SERVE (Student Education Radio: Village Extension), intends to bring 25 rural schools and villages in the Bristol Bay area of Alaska together utilizing educational radio. The objectives of the three-year project are to: (1) increase the number of graduating students choosing broadcasting as a vocation by…

  17. Orientatio ad Sidera (OAS): a comprehensive project for cultural astronomy research in ancient Mediterranean cultures

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio; César González-García, A.; Rodríguez-Antón, Andrea

    2015-08-01

    During the last decade (starting in 2005), the OAS Project has been run, with the support of the Spanish research agencies. Within its framework, research on cultural astronomy has been developed for a series of ancient cultures from the Atlantic Islands to the Arabian Peninsula with the Meditterranean Sea as the pricipal axis of the project. A catalogue of studies has been performed in a set of cultures such as the Megalithic Phenomenon, ancient Egypt, Middle East Bronze and Iron Age civilizations and the Roman World, among many others. In this essay a general scope of the project and a series of most interesting outcomes will be presented. The evolutionary ties of the megalithic monuments of the Iberian Peninsula and elsewhere, the pattern of orientation of Egyptian temples and skyscaping practices within the Hittite, Commagenian or Nabataean cultures, among others, will be shown; finishing in a comprehensive, statistical and comparative study of the orientation patterns of thousands of ancient monuments of the Mediterranean region. Finally, a sketch of our most recent, still ongoing, research on the astronomical and non-astronomical practices used in the planning of cities in the Roman World will be a compelling and promising closing remark of our analysis.

  18. The Sky on Earth project: a synergy between formal and informal astronomy education

    NASA Astrophysics Data System (ADS)

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2016-09-01

    In this paper we present the Sky on Earth project funded in 2008 by the Italian Ministry of Instruction, Research and University, inside its annual public outreach education program. The project’s goal was to realise a stable and open-access astronomical garden, where children, teachers and citizens could be engaged in investigations about day and night sky phenomena. The project was designed taking into account our prior researches in formal and informal astronomy education. It was realised in the garden of GiocheriaLaboratori, an out-of-school K-6 educational structure of Sesto San Giovanni municipality (near Milan, Italy). Setting and tools were designed with the help of some students of the ‘Altiero Spinelli’ vocational school and their science and technology teachers. Since its installation, the astronomical garden has been used in workshops and open-days, teachers’ preparation courses and research experiences. We might conclude that the Sky on Earth project represents an example of a positive and constructive collaboration between researchers, educators, high school students and teachers. It may also be considered as a potential attempt to face on the well-known gap between research in science education and school practices.

  19. The TANGO Project: Thorough ANalysis of radio-Galaxies Observations

    NASA Astrophysics Data System (ADS)

    Ocaña Flaquer, Breezy; Leon Tanne, Stephane; Combes, Francoise; Lim, Jeremy

    2010-05-01

    We present a sample of radio galaxies selected only on the basis of radio continuum emission and we confirm that these galaxies have lower molecular gas mass than other elliptical galaxies with different selection criteria.

  20. INSPIRE: A VLF Radio Project for High School Students

    ERIC Educational Resources Information Center

    Marshall, Jill A.; Pine, Bill; Taylor, William W. L.

    2007-01-01

    Since 1988 the Interactive NASA Space Physics Ionospheric Radio Experiment, or INSPIRE, has given students the opportunity to build research-quality VLF radio receivers and make observations of both natural and stimulated radio waves in the atmosphere. Any high school science class is eligible to join the INSPIRE volunteer observing network and…

  1. Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development

    NASA Astrophysics Data System (ADS)

    Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.

    2015-08-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and

  2. The Pre-Major in Astronomy Program (Pre-MAP): What Makes a Great First Research Project?

    NASA Astrophysics Data System (ADS)

    Binder, Breanna A.; Schwieterman, Edward; Pre-Major in Astronomy Program

    2016-01-01

    The Pre-Major in Astronomy Program (Pre-MAP) at the University of Washington has been providing incoming students with the opportunity to work on research projects in astronomy and astrobiology almost as soon as they step on campus. These projects, which are developed by graduate students, post-docs, and faculty members, must be accessible to students with limited formal education in astronomy and physics and only ~5 weeks of instruction in computer programming. Projects must be simple enough to be completed within ~6 weeks, but challenging enough to yield interesting outcomes that will encourage students to continue working on research even after the first quarter seminar is over. In this talk, I will identify the challenges and goals associated with designing a 6-week, introductory research project for new undergraduates. I will then discuss some of the most successful outcomes of recent Pre-MAP projects, which have included publications, presentations by Pre-MAP students at conferences, press releases, and observing proposals.

  3. Inquiry-Based Educational Design for Large-Scale High School Astronomy Projects Using Real Telescopes

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; McKinnon, David H.; Danaia, Lena

    2015-12-01

    In this paper, we outline the theory behind the educational design used to implement a large-scale high school astronomy education project. This design was created in response to the realization of ineffective educational design in the initial early stages of the project. The new design follows an iterative improvement model where the materials and general approach can evolve in response to solicited feedback. The improvement cycle concentrates on avoiding overly positive self-evaluation while addressing relevant external school and community factors while concentrating on backward mapping from clearly set goals. Limiting factors, including time, resources, support and the potential for failure in the classroom, are dealt with as much as possible in the large-scale design allowing teachers the best chance of successful implementation in their real-world classroom. The actual approach adopted following the principles of this design is also outlined, which has seen success in bringing real astronomical data and access to telescopes into the high school classroom.

  4. Monitoring Radio Frequency Interference in Southwest Virginia

    NASA Astrophysics Data System (ADS)

    Rapp, Steve

    2010-01-01

    The radio signals received from astronomical objects are extremely weak. Because of this, radio sources are easily shrouded by interference from devices such as satellites and cell phone towers. Radio astronomy is very susceptible to this radio frequency interference (RFI). Possibly even worse than complete veiling, weaker interfering signals can contaminate the data collected by radio telescopes, possibly leading astronomers to mistaken interpretations. To help promote student awareness of the connection between radio astronomy and RFI, an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project_the result of a collaboration between the National Aeronautics and Space Administration (NASA), the National Science Foundation (NSF), and the National Radio Astronomy Observatory (NRAO)_encourages students to collect and analyze RFI data and develop conclusions as a team. Because the project focuses on electromagnetic radiation, it is appropriate for physics, physical science, chemistry, or general science classes. My class-about 50 students from 15 southwest Virginia high schools-participated in the Quiet Skies Project and were pioneers in the use of the beta version of the Quiet Skies Detector (QSD), which is used to detect RFI. Students have been involved with the project since 2005 and have collected and shared data with NRAO. In analyzing the data they have noted some trends in RFI in Southwest Virginia.

  5. The Quiet Skies Project

    ERIC Educational Resources Information Center

    Rapp, Steve

    2008-01-01

    To help promote student awareness of the connection between radio astronomy and radio frequency interference (RFI), an inquiry-based science curriculum was developed to allow high school students to determine RFI levels in their communities. The Quiet Skies Project--the result of a collaboration between the National Aeronautics and Space…

  6. The Life Story of a Star, Book 5. Guidebook. The University of Illinois Astronomy Project.

    ERIC Educational Resources Information Center

    Atkin, J. Myron; Wyatt, Stanley P., Jr.

    Presented is book five in a series of six books in the University of Illinois Astronomy Program which introduces astronomy to upper elementary and junior high school students. This guidebook discusses the interior of stars, their source of energy, and their evolution. Topics presented include: the physical properties of the sun; model of the solar…

  7. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2008-07-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  8. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  9. Characterization of fluoride fibers for the Optical Hawaiian Array for Nanoradian Astronomy project.

    PubMed

    Kotani, Takayuki; Perrin, Guy; Vergnole, Sébastien; Woillez, Julien; Guerin, Jean

    2005-08-20

    We report on the interferometric characterization of a pair of 300 m long single-mode non-polarization-maintaining fibers designed for the Optical Hawaiian Array for Nanoradian Astronomy ('OHANA) project whose goal is to realize a kilometric near-infrared astronomical array by connecting the large telescopes of the Mauna Kea observatory with single-mode fibers. The fluoride glass fibers are operated in the astronomical K band (2.0-2.4 microm) in which their attenuation is low. We have measured very low differential chromatic dispersion, and the wideband fringe visibility is 0.9 if the two fiber arms have the same temperature. The thermal sensitivity of fibers with respect to their interferometric properties has been studied. The differential chromatic dispersion of the fibers is highly sensitive to the temperature difference. On the contrary, the coherent loss due to mismatch of polarization states is not significantly dependent on the temperature difference. Compensation of thermally induced differential dispersion by use of CaF2 glass plates is demonstrated.

  10. FM Radio; An Oral Communication Project for Migrants in Palm Beach County.

    ERIC Educational Resources Information Center

    Early, L. F.

    This report gives a full description of the broadcasting and operation of WHRS-FM, a FM radio station established by federal grant to serve migrant workers and their children in Palm Beach County, Florida. The goal of the project was to evaluate FM radio as a solution to the serious economic and educational problem of communicating with the…

  11. African Astronomy and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    MacLeod, Gordon

    2010-02-01

    We highlight the growth of astronomy across Africa and the effect of hosting the Square Kilometer Array (SKA) will have on this growth. From the construction of a new 25m radio telescope in Nigeria, to new university astronomy programmes in Kenya, the HESS in Namibia and the Mauritian Radio Telescope, to the world class projects being developed in South Africa (Southern African Large Telescope and Karoo Array Telescope) astronomy is re-emerging across the continent. The SKA will represent the pinnacle of technological advancement in astronomy when constructed; requiring ultra high speed data transmission lines over 3000 km baselines and the World's fastest computer for correlation purposes. The investment alone to build the SKA on African soil will be of great economic benefit to its people, but the required network connectivity will significantly drive commercial expansion far beyond the initial value of the SKA investment. The most important consequence of hosting the SKA in Africa would be the impact on Human Capital Development (HCD) on the continent. Major HCD projects already underway producing excellent results will be presented. )

  12. Plasma and radio waves from Neptune: Source mechamisms and propagation

    NASA Technical Reports Server (NTRS)

    Menietti, J. Douglas

    1994-01-01

    The purpose of this project was to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as it flew by Neptune. The study has included data analysis, theoretical and numerical calculations, and ray tracing to determine the possible source mechanisms and locations of the radiation, including the narrowband bursty and smooth components of the Neptune radio emission.

  13. OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM.

    DTIC Science & Technology

    EXTRATERRESTRIAL RADIO WAVES), (* PLANETS , STARS, VENUS( PLANET ), MARS( PLANET ), MERCURY ( PLANET ), PLANETARY ATMOSPHERES, GALAXIES, ASTROPHYSICS, TEMPERATURE, MEASUREMENT, MICROWAVE FREQUENCY, ASTRONOMY, RADIO ASTRONOMY.

  14. TOPS and Beyond: Training Master Teachers to Mentor Student Astronomy Projects Using the Faulkes Telescope-North

    NASA Astrophysics Data System (ADS)

    Bedient, J.; Meech, K. J.; Kadooka, M. A.; Mattei, J. A.; Hamai, J.; Hemphill, R.; Hu, S.

    2003-05-01

    2003 was the fifth and final year of the NSF-funded ``Towards Other Planetary Systems'' (TOPS) secondary school teacher training program conducted by the Institute for Astronomy in Hawai'i. While previous years concentrated on basic astronomy skills, cultural astronomy and astrobiology, TOPS 2003 focused on training master teachers and prior TOPS participants in the requisite skills to mentor student projects using the Faulkes Telescope-North (FTN), a 2-meter telescope under construction at the Haleakala High Altitude Observatory. The FTN and a twin in Australia will be the world's largest telescopes dedicated solely to education. This poster presentation describes the teacher's experiences with several prototype astrobiology projects suitable for a 2-meter-class telescope, including monitoring variable stars in star-forming regions, detecting extrasolar planet transits, and observing objects in the Kuiper Belt. Plans for partnering teachers with amateur astronomers proficient in observational techniques are also discussed; the American Association of Variable Star Observers (AAVSO) is a likely reservoir of such individuals. The recent selection of a University of Hawai'i group led by the TOPS Director as a NASA Astrobiology Institute Lead Team will provide a framework for development of teacher-student-amateur astronomer teams advised by professional astronomers and conducting astrobiology research. This work was supported by a grant from the National Science Foundation, ESI-9731083, and through University of Maryland and University of Hawaii subcontract Z667702, which was awarded under prime contract NASW-00004 from NASA.

  15. Deconvolution of images in centimeter-band radio astronomy for the exploitation of new radio interferometers: characterization of non thermal components in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dabbech, A.

    2015-04-01

    Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.

  16. NSF Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Hund, L.; Boltuch, D.; Fultz, C.; Buck, S.; Smith, T.; Harris, R.; Moffett, D.; LaFratta, M.; Walsh, L.; Castelaz, M. W.

    2005-12-01

    The intent of the "Sensing the Radio Sky" project is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year project began in the summer of 2004. A total of twelve interns and four faculty mentors from Furman University and UNCA have participated at the Pisgah Astronomical Research Institute to develop the Radio Sky project. The project united physics and multimedia majors and allowed these students to apply their knowledge of different disciplines to a common goal. One component of the project is the development and production of a cylinder to be displayed in portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The project is near completion and the final draft will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. The development of the Radio Sky project has also provided a template for potential similar projects that examine our universe in different wavelengths, such as gamma ray, x-ray, and infrared. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  17. A New Approach to Suppress the Effect of Machining Error for Waveguide Septum Circular Polarizer at 230 GHz Band in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yutaka; Harada, Ryohei; Tokuda, Kazuki; Kimura, Kimihiro; Ogawa, Hideo; Onishi, Toshikazu; Nishimura, Atsushi; Han, Johnson; Inoue, Makoto

    2017-02-01

    A new stepped septum-type waveguide circular polarizer (SST-CP) was developed to operate in the 230 GHz band for radio astronomy, especially submillimeter-band VLBI observations. For previously reported SST-CP models, the 230 GHz band is too high to achieve the design characteristics in manufactured devices because of unexpected machining errors. To realize a functional SST-CP that can operate in the submillimeter band, a new method was developed, in which the division surface is shifted from the top step of the septum to the second step from the top, and we simulated the expected machining error. The SST-CP using this method can compensate for specified machining errors and suppress serious deterioration. To verify the proposed method, several test pieces were manufactured, and their characteristics were measured using a VNA. These results indicated that the insertion losses were approximately 0.75 dB, and the input return losses and the crosstalk of the left- and right-hand circular polarization were greater than 20 dB at 220-245 GHz on 300 K. Moreover, a 230 GHz SST-CP was developed by the proposed method and installed in a 1.85-m radio telescope receiver systems, and then had used for scientific observations during one observation season without any problems. These achievements demonstrate the successful development of a 230 GHz SST-CP for radio astronomical observations. Furthermore, the proposed method can be applicable for observations in higher frequency bands, such as 345 GHz.

  18. The Network for Astronomy in Education in Southwest New Mexico

    NASA Astrophysics Data System (ADS)

    Neely, B.

    1998-12-01

    The Network for Astronomy in Education was organized to use astronomy as a motivational tool to teach science methods and principles in the public schools. NFO is a small private research observatory, associated with the local University, Western New Mexico. We started our program in 1996 with an IDEA grant by introducing local teachers to the Internet, funding a portable planetarium (Starlab) for the students, and upgrading our local radio linked computer network. Grant County is a rural mining and ranching county in Southwest New Mexico. It is ethnically diverse and has a large portion of the population below the poverty line. It's dryness and 6000' foot elevation, along with dark skies, suite it to the appreciation of astronomy. We now have 8 local schools involved in astronomy at some level. Our main programs are the Starlab and Project Astro, and we will soon install a Sidewalk Solar System in the center of Silver City.

  19. Astronomy at the University of South Africa

    NASA Astrophysics Data System (ADS)

    Smits, D. P.

    2000-12-01

    Unisa is the largest correspondence university in Africa and the only South African university currently offering a BSc in Astronomy. The astronomy modules can be included in any standard BSc Physics programme. Besides using the radio and optical telescopes at HartRAO and SAAO, Unisa also has its own Observatory on the main campus equipped with modern instrumentation for training students and doing niche research projects. Unisa est la plus importante université d'enseignement par correspondance en Afrique et la seule université d'Afrique du Sud qui forme des licenciés ès sciences (BSc) en Astronomie. Les modules d'astronomie peuvent être inclus dans tout programme standard de Physique pour BSc. En plus d'utiliser les télescopes radio et optiques à HartRAO et SAAO, Unisa a aussi sur le campus principal son propre Observatoire équipé d'une instrumentation moderne pour la formation des étudiants et pour mener à bien des projets de recherche dans des niches scientifiques modernes.

  20. A Voyage through the Radio Universe

    ERIC Educational Resources Information Center

    Spuck, Timothy

    2004-01-01

    Each year, professionals and amateurs alike make significant contributions to the field of astronomy. High school students can also conduct astronomy research. Since 1992, the Radio Astronomy Research Team from Oil City Area Senior High School (OCHS) in Oil City, Pennsylvania, has traveled each year to the National Radio Astronomy Observatory…

  1. A Multi-Feed Receiver in the 18 to 26.5 GHz Band for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Orfei, A.; Carbonaro, L.; Cattani, A.; Cremonini, A.; Cresci, L.; Fiocchi, F.; Maccaferri, A.; Maccaferri, G.; Mariotti, S.; Monari, J.; Morsiani, M.; Natale, V.; Nesti, R.; Panella, D.; Poloni, M.; Roda, J.; Scalambra, A.; Tofani, G.

    2010-08-01

    A large-bandwidth, state-of-the-art multi-feed receiver has been constructed to be used on the new 64 m Sardinia Radio Telescope (SRT) (http://www.srt.inaf.itl), an antenna aiming to work from 300 MHz to 100 GHz with an almost continuous frequency coverage. The goal of this new receiver is to speed up the survey of the sky with high sensitivity in a frequency band that is very interesting to radio astronomers. In the meantime, the antenna erection has been finalized, and the receiver has been mounted on the Medicina 32 m antenna to be tested (http://www.med.ira.inaf.itl). We present a complete description of the system, including a dedicated backend, and the results of the tests.

  2. Lowell Area Council on Interlibrary Network Radio Project.

    ERIC Educational Resources Information Center

    Panciers, David J.

    In the fall of 1973, public, school, and college librarians in the Lowell, Massachusetts, area formed the Lowell Area Council on Interlibrary Networks (LACOIN). With a grant from the Library Services and Construction Act, Title III, LACOIN initiated library-sponsored public affairs radio broadcasting for its community. Utilizing the Lowell…

  3. Summary Report on the Radio Farm Forum Pilot Project.

    ERIC Educational Resources Information Center

    Purnasiri, Supalak; Griffin, Robert S.

    The main objective of the program was to obtain qualitative data on the value of Radio Farm Forums (RFF), to both the farmers and the extension service, in terms of facilitating two-way communication between the two parties. The concept of RFF is to provide agricultural information through integrated use of mass media and interpersonal…

  4. Astronomy in School

    ERIC Educational Resources Information Center

    Beet, E. A.

    1973-01-01

    Summarizes practical projects, science activities, and teaching aids usable in teaching of the astronomy section of physics courses at the pre-O, O and A-level stages. Indicates that the teacher interest is the decisive factor influencing introduction of astronomy into schools. (CC)

  5. Elementary astronomy

    NASA Astrophysics Data System (ADS)

    Fierro, J.

    2006-08-01

    In developing nations such as Mexico, basic science education has scarcely improved. There are multiple reasons for this problem; they include poor teacher training and curricula that are not challenging for students. I shall suggest ways in which astronomy can be used to improve basic education, it is so attractive that it can be employed to teach how to read and write, learn a second language, mathematics, physics, as well as geography. If third world nations do not teach science in an adequate way, they will be in serious problems when they will try to achieve a better standard of living for their population. I shall also address informal education, it is by this means that most adults learn and keep up to date with subjects that are not their specialty. If we provide good outreach programs in developing nations we can aid adult training; astronomy is ideal since it is particularly multidisciplinary. In particular radio and television programs are useful for popularization since they reach such wide audiences.

  6. Detecting Forward-Scattered Radio Signals from Atmospheric Meteors Using Low-Cost Software Defined Radio

    NASA Astrophysics Data System (ADS)

    Snjegota, Ana; Rattenbury, Nicholas James

    2017-02-01

    The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be replicated in any part of the world and is a suitable, low-cost project designed for students who are interested in astronomy.

  7. Impact of agile methodologies on team capacity in automotive radio-navigation projects

    NASA Astrophysics Data System (ADS)

    Prostean, G.; Hutanu, A.; Volker, S.

    2017-01-01

    The development processes used in automotive radio-navigation projects are constantly under adaption pressure. While the software development models are based on automotive production processes, the integration of peripheral components into an automotive system will trigger a high number of requirement modifications. The use of traditional development models in automotive industry will bring team’s development capacity to its boundaries. The root cause lays in the inflexibility of actual processes and their adaption limits. This paper addresses a new project management approach for the development of radio-navigation projects. The understanding of weaknesses of current used models helped us in development and integration of agile methodologies in traditional development model structure. In the first part we focus on the change management methods to reduce request for change inflow. Established change management risk analysis processes enables the project management to judge the impact of a requirement change and also gives time to the project to implement some changes. However, in big automotive radio-navigation projects the saved time is not enough to implement the large amount of changes, which are submitted to the project. In the second phase of this paper we focus on increasing team capacity by integrating at critical project phases agile methodologies into the used traditional model. The overall objective of this paper is to prove the need of process adaption in order to solve project team capacity bottlenecks.

  8. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  9. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  10. Stereoscopic 3D Projections with MITAKA An Important Tool to Get People Interested in Astronomy and Space Science in Peru

    NASA Astrophysics Data System (ADS)

    Shiomi, Nemoto; Shoichi, Itoh; Hidehiko, Agata; Mario, Zegarra; Jose, Ishitsuka; Edwin, Choque; Adita, Quispe; Tsunehiko, Kato

    2014-02-01

    National Astronomical Observatory of Japan has developed space simulation software "Mitaka". By using Mitaka on two PCs and two projectors with polarizing filter, and look through polarized glasses, we can enjoy space travel in three dimensions. Any one can download Mitaka from anywhere in the world by Internet. But, it has been prepared only Japanese and English versions now. We improved a Mitaka Spanish version, and now we are making projections for local people. The experience of the universe in three dimensions is a very memorable for people, and it has become an opportunity to get interested in astronomy and space sciences. A 40 people capacity room, next o to our Planetarium, has been conditioned for 3D projections; also a portable system is available. Due to success of this new outreach system more 3D show rooms will be implemented within the country.

  11. MPS Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Blake, Melvin; Castelaz, M. W.; Moffett, D.; Walsh, L.; LaFratta, M.

    2006-12-01

    The intent of the “Sensing the Radio Sky” program is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year program began in the summer of 2004 and was completed in December 2006. The program involved a team of 12 undergraduate physics and multimedia majors and four faculty mentors from Furman University, University of North Carolina-Asheville and Pisgah Astronomical Research Institute (PARI). One component of the program is the development and production of a projection cylinder for the portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The final draft is complete and will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  12. Session 21.3 - Radio and Optical Site Protection

    NASA Astrophysics Data System (ADS)

    Sefako, Ramotholo

    2016-10-01

    Advancement in radio technology means that radio astronomy has to share the radio spectrum with many other non-astronomical activities, majority of which increase radio frequency interference (RFI), and therefore detrimentally affecting the radio observations at the observatory sites. Major radio facilities such as the SKA, in both South Africa and Australia, and the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China will be very sensitive, and therefore require protection against RFI. In the case of optical astronomy, the growing urbanisation and industrialisation led to optical astronomy becoming impossible near major cities due to light and dust pollution. Major optical and IR observatories are forced to be far away in remote areas, where light pollution is not yet extreme. The same is true for radio observatories, which have to be sited away from highly RFI affected areas near populated regions and major cities. In this review, based on the Focus Meeting 21 (FM21) oral presentations at the IAU General Assembly on 11 August 2015, we give an overview of the mechanisms that have evolved to provide statutory protection for radio astronomy observing, successes (e.g at 21 cm HI line), defeats and challenges at other parts of the spectrum. We discuss the available legislative initiatives to protect the radio astronomy sites for large projects like SKA (in Australia and South Africa), and FAST against the RFI. For optical protection, we look at light pollution with examples of its effect at Xinglong observing station of the National Astronomical Observatories of China (NAOC), Ali Observatory in Tibet, and Asiago Observatory in Italy, as well as the effect of conversion from low pressure sodium lighting to LEDs in the County of Hawaii.

  13. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  14. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  15. Dr Elizabeth Alexander: First Female Radio Astronomer

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    2005-01-01

    During March-April 1945, solar radio emission was detected at 200 MHz by operators of a Royal New Zealand Air Force radar unit located on Norfolk Island. Initially dubbed the `Norfolk Island Effect', this anomalous radiation was investigated throughout 1945 by British-born Elizabeth Alexander, head of the Operational Research Section of the Radio Development Laboratory in New Zealand. Alexander prepared a number of reports on this work, and in early 1946 she published a short paper in the newly-launched journal, Radio & Electronics. A geologist by training, Elizabeth Alexander happened to be in the right place at the right time, and unwittingly became the first woman in the world to work in the field that would later become known as radio astronomy. Her research also led to further solar radio astronomy projects in New Zealand in the immediate post-war year, and in part was responsible for the launch of the radio astronomy program at the Division of Radiophysics, CSIRO, in Sydney.

  16. The U.S. Program for the International Year of Astronomy 2009 (IYA2009): Outcomes, Lessons Learned, and Legacy Projects (Invited)

    NASA Astrophysics Data System (ADS)

    Isbell, D.

    2009-12-01

    The United States conducted an active and wide-ranging program for IYA2009, thanks largely to support from the American Astronomical Society, the National Science Foundation, and NASA. The U.S. effort included leadership of several international “cornerstone” projects, including the Galileoscope telescope kit, the “From Earth to the Universe” image exhibition, Dark-Skies Awareness, and a variety of creative New Media activities, such as a daily podcast (“365 Days of Astronomy”) and a virtual island in Second Life. In addition, U.S. astronomy educators and outreach professionals played major roles in IYA2009 cornerstone projects designed to promote greater gender equity in astronomy (“She is An Astronomer”); to provide the best astronomy resources for formal education (the Galileo Teacher Training Program); and to conduct global weekend-long celebrations of astronomy involving star parties, several live Webcasts, and special events (“100 Hours of Astronomy” and “Galilean Nights”). NASA led special projects to provide large astronomy images to science centers across the nation, and sent comprehensive exhibits on the major themes of modern astronomy to dozens of libraries in small and medium-sized cities, based on competitive proposals for community impact (“Visions of the Universe”). Underpinning all of these efforts was a variety of methods for informing and engaging the large community of U.S. amateur astronomers, and active communication with our colleagues in Canada, Puerto Rico and Mexico. This talk will review the outcomes and major success stories from the year, discuss several lessons learned that could be useful for pending efforts such as the 2011 International Year of Chemistry, and provide a look ahead for IYA2009 projects and resources that are expected to continue to be active in 2010 and beyond.

  17. FPGA-based digital signal processing for the next generation radio astronomy instruments: ultra-pure sideband separation and polarization detection

    NASA Astrophysics Data System (ADS)

    Alvear, Andrés.; Finger, Ricardo; Fuentes, Roberto; Sapunar, Raúl; Geelen, Tom; Curotto, Franco; Rodríguez, Rafael; Monasterio, David; Reyes, Nicolás.; Mena, Patricio; Bronfman, Leonardo

    2016-07-01

    Field Programmable Gate Arrays (FPGAs) capacity and Analog to Digital Converters (ADCs) speed have largely increased in the last decade. Nowadays we can find one million or more logic blocks (slices) as well as several thousand arithmetic units (ALUs/DSP) available on a single FPGA chip. We can also commercially procure ADC chips reaching 10 GSPS, with 8 bits resolution or more. This unprecedented power of computing hardware has allowed the digitalization of signal processes traditionally performed by analog components. In radio astronomy, the clearest example has been the development of digital sideband separating receivers which, by replacing the IF hybrid and calibrating the system imbalances, have exhibited a sideband rejection above 40dB; this is 20 to 30dB higher than traditional analog sideband separating (2SB) receivers. In Rodriguez et al.,1 and Finger et al.,2 we have demonstrated very high digital sideband separation at 3mm and 1mm wavelengths, using laboratory setups. We here show the first implementation of such technique with a 3mm receiver integrated into a telescope, where the calibration was performed by quasi-optical injection of the test tone in front of the Cassegrain antenna. We also reported progress in digital polarization synthesis, particularly in the implementation of a calibrated Digital Ortho-Mode Transducer (DOMT) based on the Morgan et al. proof of concept.3 They showed off- line synthesis of polarization with isolation higher than 40dB. We plan to implement a digital polarimeter in a real-time FPGA-based (ROACH-2) platform, to show ultra-pure polarization isolation in a non-stop integrating spectrometer.

  18. Putting The "Yee-Hah!" In Astronomy Outreach: Professional Development Through The ASP "Sky Rangers" Project

    NASA Astrophysics Data System (ADS)

    Manning, Jim; Gurton, S.; Hurst, A.

    2010-05-01

    The Astronomical Society of the Pacific is conducting a NASA-funded professional development program to help increase astronomy education and outreach capacity at national parks, nature centers, and other outdoor and environmental centers--venues that still have a dark night sky as a natural resource and a yen to interpret it for their visitors. Through online workshops and on-site workshops at national parks, the ASP staff, working in conjunction with partners from the National Park Service, National Association for Interpretation, and the Association of Science and Technology Centers, provides materials and training focusing on the sky. Participants become part of ASP's "Astronomy from the Ground Up" informational education community of practice, with ongoing options to hone their new skills. The presenter will report on early progress and lessons learned, as well as future plans, as the ASP and its partners work to help wilderness and nature interpreters put a little more "yee-hah!" in their visitor presentations aimed at the sky.

  19. FURTHER OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM.

    DTIC Science & Technology

    EXTRATERRESTRIAL RADIO WAVES), (* MERCURY ( PLANET ), (*RADIO ASTRONOMY, EXTRATERRESTRIAL RADIO WAVES), PLANETARY ATMOSPHERES, SKY BRIGHTNESS, ANTENNAS...EPHEMERIDES, ASTROPHYSICS, JUPITER( PLANET ), VENUS( PLANET ), BRIGHTNESS, ATMOSPHERIC TEMPERATURE, INTENSITY, MEASUREMENT.

  20. Astronomy in Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, Valério A. R. M.; Paulo, Cláudio M.

    2015-03-01

    We present the state of Astronomy in Mozambique and how it has evolved since 2009 following the International Year of Astronomy. Activities have been lead by staff at University Eduardo Mondlane and several outreach activities have also flourished. In 2010 the University introduced its first astronomy module, Introduction to Astronomy and Astrophysics, for the second year students in the Department of Physics. The course has now produced the first students who will be graduating in late 2012 with some astronomy content. Some of these students will now be looking for further studies and those who have been keen in astronomy have been recommended to pursue this as a career. At the university level we have also discussed on the possibility to introduce a whole astronomy course by 2016 which falls well within the HCD that the university is now investing in. With the announcement that the SKA will be split between South Africa with its partner countries (including Mozambique), and Australia we have been working closely with the Ministry of Science and Technology to make astronomy a priority on its agenda. In this respect, an old telecommunications antenna is being converted by the South Africa SKA Project Office, and donated to Mozambique for educational purposes. It will be situated in Maluana, Mozambique.

  1. Astronomy Across Africa

    NASA Astrophysics Data System (ADS)

    Williams, Ted

    2014-01-01

    African astronomy is growing rapidly. The Southern African Large Telescope is the largest optical telescope in the southern hemisphere, MeerKat and the Square Kilometer Array will revolutionize radio astronomy in the coming decade, and Namibia hosts HESS II, the world’s largest gamma-ray telescope. A growing community of observational and theoretical astronomers utilizes these multi-wavelength observational facilities. The largest concentrations of researchers are in southern Africa, but the community is now expanding across the continent. Substantial resources are being invested in developing the next generation of African astronomers. The African Astronomical Society was formed in 2011 to foster and coordinate the growth of the science in Africa. The IAU has located its global Office of Astronomy for Development in South Africa, with the mandate to find innovative ways of using astronomy to promote social and educational development around the world. African astronomy offers abundant opportunities for collaborative research with colleagues from across the globe. This special session will introduce many of the aspects of African astronomy to the US community, with the aim of engendering new partnerships and strengthening existing ones.

  2. Skynet Junior Scholars: Bringing Astronomy to Deaf and Hard of Hearing Youth

    NASA Astrophysics Data System (ADS)

    Meredith, Kate; Williamson, Kathryn; Gartner, Constance; Hoette, Vivian L.; Heatherly, Sue Ann

    2016-01-01

    Skynet Junior Scholars (SJS), funded by the National Science Foundation, aims to engage middle school youth from diverse audiences in investigating the universe with research quality robotic telescopes. SJS project development goals include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project by all youth including those with blindness or low vision and those who are Deaf or Hard of Hearing.Deaf and Hard of Hearing (DHH) students have long been an underserved population within STEM fields, including astronomy. Two main barriers include: (1) insufficient corpus of American Sign Language (ASL) for astronomy terminology, and (2) DHH education professionals who lack astronomy background. A suite of vocabulary, accessible hands-on activities, and interaction with trained professionals, are critical for enhancing the background experiences of DHH youth, as they may come to an astronomy lesson lacking the basic "incidental learning" that is often taken for granted with hearing peers (for example, from astronomy in the media).A collaboration between the Skynet Junior Scholars (SJS) project and the Wisconsin School for the Deaf is bringing astronomy to the DHH community in an accessible way for the first time. We follow a group of seven DHH youth over one semester as they interact with the SJS tools and curriculum to understand how they assimilate astronomy experiences and benefit from access to telescopes both directly (on school campus and at Yerkes Observatory) and through Skynet's robotic telescope network (optical and radio telescopes, inquiry-based modules, data analysis tools, and professional astronomers). We report on our first findings of resources and

  3. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  4. Resources for College Libraries: Astronomy

    NASA Astrophysics Data System (ADS)

    Holmquist, J. E.

    2007-10-01

    Most of us have built library collections of books to serve researchers -- graduate students and post-doctoral researchers in astronomy and astrophysics, and the Core List of Astronomy Books project, coordinated by Liz Bryson, exemplifies our collaborative efforts to identify the best books available at the research level. As the editor of the astronomy section of the Resources for College Libraries: A Core List for the Undergraduate Curriculum project, I have tried to ascertain what books college-age students of astronomy are actually reading (or should be reading!). To aid in this endeavor, I have obtained astronomy course reserve lists from colleagues at several U.S. colleges and universities, and regularly obtain lists of the astronomy books currently charged out to undergraduates at Princeton. I shall describe the RCL project, some of the book usage data I collected, and finally, give a brief update on the status of the Astrophysics Library at Princeton.

  5. 100 Hours of Astronomy

    NASA Astrophysics Data System (ADS)

    Simmons, Michael

    2009-05-01

    The 100 Hours of Astronomy Cornerstone Project is a worldwide event consisting of a wide range of public outreach activities, live science center, research observatory webcasts and sidewalk astronomy events. One of the key goals of 100 Hours of Astronomy is to have as many people as possible look through a telescope as Galileo did for the first time 400 years ago. 100 Hours of Astronomy will take place from 2-5 April when the Moon goes from first quarter to gibbous, good phases for early evening observing. Saturn will be the other highlight of early evening observing events. This presentation will report on this worldwide public outreach event, its successes and lessons learned, participation and possible follow-up projects and activities.

  6. Undergraduate Research in the University of Arizona Astronomy Club

    NASA Astrophysics Data System (ADS)

    Cates, Ian; Towner, A. P.; Walker-LaFollette, A.; Turner, J.; Hardegree-Ullman, K.; Pearson, K.

    2014-01-01

    Participation in research as an undergraduate is an invaluable learning experience that leads to successful post-undergrad studies. Because of this, the University of Arizona Astronomy Club strives to provide multiple opportunities for its members to get involved in research as early as possible. Areas of research covered by our projects include exoplanet research, stellar cycles, and radio observations. These projects cover exoplanet parameterization, the utilization of Kepler data, and various star-formation studies, respectively. Participation in our projects builds stronger data-collecting and reduction skills, while also leading to tangible achievements such poster presentations at AAS, ASP, and DPS, and published papers in astronomical journals.

  7. Rethinking the Astronomy Major

    NASA Astrophysics Data System (ADS)

    Edwards, S.

    2001-12-01

    The Five College Astronomy Department has designed several curricular offerings that use the discipline of Astronomy to provide project-based classes that enhance critical thinking and quantitative reasoning and emphasize development of both oral and written communication skills. We incorporate these classes with more traditional lecture-format astrophysics courses to offer a science major that will provide a firm foundation in a quantitative discipline that could lead to many career paths.

  8. Astronomy in Mexico

    NASA Astrophysics Data System (ADS)

    Lee, William H.

    2013-01-01

    Mexican astronomy has a long standing tradition of excellence in research. After a brief review of its history, I outline the current profile of the community, the available infrastructure and participating institutions, and give a glimpse into the future through current projects. The development of astronomy can serve as a powerful lever for science, technological development, education and outreach, as well as for improving the much needed link between basic research and industry development.

  9. Developing Astronomy in Cuba

    NASA Astrophysics Data System (ADS)

    Rodriguez Taboada, R. E.

    2006-08-01

    Introduction Beginning from a brief historical introduction the up to day situation is presented and the topics relevant to Astronomy development analyzed from the view point of a person actually working in Astrophysics. Arising from national needs, Astronomical Calculations is the only "native-born" branch of astronomy in Cuba. Cuba was an observational platform capable to provide the Soviet Union with the 24 hours solar patrol needed by its Space Agency System to protect the men in orbit. This was the beginning of a very fruitful development of solar research in Cuba. Russia installed the instruments, trained the people to operate them, and gives the academic environment to develop the scientific work in solar physics, space weather, and related topics. What about Stellar Astronomy? The Cuban astro-climate is not good to develop an observational base. We are trying to develop stellar astronomy in collaboration with institutions capable to provide both, the academic and technical environment; but to continue developing Stellar Astronomy we need to influence the public opinion and convince people they need groups working in Astronomy. How to do that? Publishing. Giving conferences talking about OUR work, not only like spectators of the science. Showing science is culture in modern times. Showing projects in Astronomy can be cheap. ¡This is very important! Astronomy is not a luxury. Real possibilities I consider the Virtual Observatory concept the more appropriate in the near future, but it is necessary to have a connectivity level that is not commonly provided in Cuba, and to train the people. Concluding remarks From my experience "engagement" is the key word for Astronomy development in developing countries. Astronomy can not be developed without an appropriate academic environment, and we have not it. It is not "only" about financial resources, it is about "real collaboration" with a mature partner and common research goals.

  10. PARTNeR: A Tool for Outreach and Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Gallego, Juan Ángel Vaquerizo; Fuertes, Carmen Blasco

    PARTNeR is an acronym for Proyecto Académico con el Radio Telescopio de NASA en Robledo (Academic Project with the NASA Radio Telescope at Robledo). It is intended for general Astronomy outreach and, in particular, radioastronomy, throughout Spanish educational centres. To satisfy this target, a new educational material has been developed in 2007 to help not only teachers but also students. This material supports cross curricular programs and provides with the possibility of including Astronomy in related subjects like Physics, Chemistry, Technology, Mathematics or even English language. In this paper, the material that has been developed will be shown in detail and how it can be adapted to the disciplines from 4th year ESO (Enseñanza Secundaria Obligatoria-Compulsory Secondary Education) to High School. The pedagogic results obtained for the first year it has been implemented with students in classrooms will also be presented.

  11. Research Projects and Undergraduate Retention at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Walker-LaFollette, Amanda; Hardegree-Ullman, K.; Towner, A. P.; McGraw, A. M.; Biddle, L. I.; Robertson, A.; Turner, J.; Smith, C.

    2013-06-01

    The University of Arizona’s Astronomy Club utilizes its access to the many telescopes in and around Tucson, Arizona, to allow students to fully participate in a variety of research projects. Three current projects - the exoplanet project, the radio astronomy project, and the Kepler project - all work to give undergraduates who are interested in astronomy the opportunity to explore practical astronomy outside the classroom and in a peer-supported environment. The exoplanet project strives to teach students about the research process, including observing exoplanet transits on the Steward Observatory 61” Kuiper telescope on Mt. Bigelow in Tucson, AZ, reducing the data into lightcurves with the Image Reduction and Analysis Facility (IRAF), modeling the lightcurves using the Interactive Data Language (IDL), and writing and publishing a professional paper, and does it all with no faculty involvement. The radio astronomy project is designed to provide students with an opportunity to work with a professor on a radio astronomy research project, and to learn about the research process, including observing molecules in molecular clouds using the Arizona Radio Observatory 12-meter radio telescope on Kitt Peak in Arizona. The Kepler project is a new project designed in part to facilitate graduate-undergraduate interaction in the Astronomy Department, and in part to allow students (both graduate and undergraduate) to participate in star-spot cycle research using data from the Kepler Mission. All of these research projects and structures provide students with unique access to telescopes, peer mentoring, networking, and understanding the entire process of astronomical research.

  12. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Gen-4 and Gen-5 Radio Plans

    NASA Technical Reports Server (NTRS)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current plans for the prototype radio development.

  13. Early Astronomy

    NASA Astrophysics Data System (ADS)

    Thurston, Hugh

    The earliest investigations that can be called scientific are concerned with the sky: they are the beginnings of astronomy. Many early civilizations produced astronomical texts, and several cultures that left no written records left monuments and artifacts-ranging from rock paintings to Stonehenge-that show a clear interest in astronomy. Civilizations in China, Mesopotamia, India and Greece had highly developed astronomies, and the astronomy of the Mayas was by no means negligible. Greek astronomy, as developed by the medieval Arab philosophers, evolved into the astronomy of Copernicus. This displaced the earth from the central stationary position that almost all earlier astronomies had assumed. Soon thereafter, in the first decades of the seventeenth century, Kepler found the true shape of the planetary orbits and Galileo introduced the telescope for astronomical observations.

  14. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  15. The Radio Communication Project in Nepal: a culture-centered approach to participation.

    PubMed

    Dutta, Mohan Jyoti; Basnyat, Iccha

    2008-08-01

    Considerable research has been conducted on the topic of entertainment-education (DD), the method of using entertainment platforms such as popular music, radio, and television programming to diffuse information, attitudes, and behaviors via role modeling. A significant portion of the recently published EE literature has used the example of the Radio Communication Project (RCP) in Nepal to demonstrate the effectiveness of EE and to argue that EE campaigns can indeed be participatory in nature. In this project, we apply the culture-centered approach to examine the discursive space created by the RCP and its claim of being participatory, A critical examination of RCP discourse brings forth an alternative lens for approaching RCP and its participatory claim.

  16. A Regression of the Moon's Nodes: A Major Project in Introductory Astronomy.

    ERIC Educational Resources Information Center

    Hickman, Jennifer, Ed.

    1991-01-01

    An extensive observational project of the movement of the moon is described. Directions for building a cross-staff used to measure the angle between specific stars and the moon and a copy of a stereographic projection of the celestial sphere used in data reduction are provided. (KR)

  17. The "Sky on Earth" Project: A Synergy between Formal and Informal Astronomy Education

    ERIC Educational Resources Information Center

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2016-01-01

    In this paper we present the "Sky on Earth" project funded in 2008 by the Italian Ministry of Instruction, Research and University, inside its annual public outreach education program. The project's goal was to realise a stable and open-access astronomical garden, where children, teachers and citizens could be engaged in investigations…

  18. The Role of the Goldstone Apple Valley Radio Telescope Project in Promoting Scientific Efficacy among Middle and High School Students.

    ERIC Educational Resources Information Center

    Ibe, Mary; Deutscher, Rebecca

    This study investigated the effects on student scientific efficacy after participation in the Goldstone Apple Valley Radio Telescope (GAVRT) project. In the GAVRT program, students use computers to record extremely faint radio waves collected by the telescope and analyze real data. Scientific efficacy is a type of self-knowledge a person uses to…

  19. Big Computing in Astronomy: Perspectives and Challenges

    NASA Astrophysics Data System (ADS)

    Pankratius, Victor

    2014-06-01

    Hardware progress in recent years has led to astronomical instruments gathering large volumes of data. In radio astronomy for instance, the current generation of antenna arrays produces data at Tbits per second, and forthcoming instruments will expand these rates much further. As instruments are increasingly becoming software-based, astronomers will get more exposed to computer science. This talk therefore outlines key challenges that arise at the intersection of computer science and astronomy and presents perspectives on how both communities can collaborate to overcome these challenges.Major problems are emerging due to increases in data rates that are much larger than in storage and transmission capacity, as well as humans being cognitively overwhelmed when attempting to opportunistically scan through Big Data. As a consequence, the generation of scientific insight will become more dependent on automation and algorithmic instrument control. Intelligent data reduction will have to be considered across the entire acquisition pipeline. In this context, the presentation will outline the enabling role of machine learning and parallel computing.BioVictor Pankratius is a computer scientist who joined MIT Haystack Observatory following his passion for astronomy. He is currently leading efforts to advance astronomy through cutting-edge computer science and parallel computing. Victor is also involved in projects such as ALMA Phasing to enhance the ALMA Observatory with Very-Long Baseline Interferometry capabilities, the Event Horizon Telescope, as well as in the Radio Array of Portable Interferometric Detectors (RAPID) to create an analysis environment using parallel computing in the cloud. He has an extensive track record of research in parallel multicore systems and software engineering, with contributions to auto-tuning, debugging, and empirical experiments studying programmers. Victor has worked with major industry partners such as Intel, Sun Labs, and Oracle. He holds

  20. South African Student Constructed Indlebe Radio Telescope

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable

  1. Infrared Astronomy in the Past Half Century

    NASA Astrophysics Data System (ADS)

    Harwit, M.

    Infrared astronomy has greatly changed in the past four decades. From a small extension to optical astronomy that stretched out to slightly longer wavelengths, infrared astronomy gradually reached out to cover the entire wavelength range to the radio regime, and established itself as a field of importance in its own right. These efforts required the development of new detection techniques that permitted access to ever larger portions of the near-,mid and far-infrared regime and extended out into the submillimeter domain. Infrared and submillimeter techniques became essential for the investigations of star formation processes that took place at such low temperatures that no optical emission could be expected. The new observations pierced the dark dust clouds populating the Milky Way to provide a clear view of the Galaxy's center. In the distant Universe startlingly luminous merging galaxies came into view. We were beginning to look far back in time to perceive the gradual evolution of galaxies over the aeons. A serious drawback, however, persisted. At progressively longer wavelengths the view of the Universe became increasingly blurred. Ordinary telescopes no longer provided sharp views. Interferometers would have to be pioneered and constructed at great cost. Major investments led to the construction of dedicated facilities, on the ground, in the air and in space. The increased funding, however, also dictated that infrared astronomers reorganize themselves.Initially started by a few individuals working with their students and a few technicians, infrared astronomy had to change as increasing numbers of scientists entered the field and began to erect facilities that required the dedicated efforts of hundreds of astronomers on a single project. Infrared astronomy has evolved into Big Science, a limit at which increasing budgets threaten to become an unacceptable burden on society. Members of our discipline will need to think carefully how we may continue to pursue

  2. Crowdfunding Astronomy Outreach Projects: Lessons learned from the UNAWE crowdfunding campaign

    NASA Astrophysics Data System (ADS)

    Ashton, A. J., Heenatigala, T.; Russo, P.

    2014-12-01

    In recent years, crowdfunding has become a popular method of funding new technology or entertainment products, or artistic projects. The idea is that people or projects ask for many small donations from individuals who support the proposed work, rather than a large amount from a single source. Crowdfunding is usually done via an online portal or platform which handles the financial transactions involved. The Universe Awareness (UNAWE) programme decided to undertake a Kickstarter1 crowdfunding campaign centring on the resource Universe in a Box. In this article we present the lessons learned and best practices from that campaign.

  3. Seeing the Deep Sky: Telescopic Astronomy Projects Beyond the Solar System

    NASA Astrophysics Data System (ADS)

    Schaaf, Fred

    1992-03-01

    Packed with a vast array of telescopic projects involving different kind of stars, star clusters, nebulae and galaxies which lie beyond our solar system. Takes a look at stars of diverse chemical or atomic ``brew'', old and new, tiny or vast, dense or tenuous; the ways in which they behave and much more.

  4. Building a pipeline of talent for operating radio observatories

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  5. Radio frequency interference protection of communications between the Deep Space Network and deep space flight projects

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1981-01-01

    The increasing density of electrical and electronic circuits in Deep Space Station systems for computation, control, and numerous related functions has combined with the extension of system performance requirements calling for higher speed circuitry along with broader bandwidths. This has progressively increased the number of potential sources of radio frequency interference inside the stations. Also, the extension of spectrum usage both in power and frequency as well as the greater density of usage at all frequencies for national and international satellite communications, space research, Earth resource operations and defense, and particularly the huge expansion of airborne electronic warfare and electronic countermeasures operations in the Mojave area have greatly increased the potential number and severity of radio frequency interference incidents. The various facets of this problem and the efforts to eliminate or minimize the impact of interference on Deep Space Network support of deep space flight projects are described.

  6. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  7. Intermediate Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  8. Primary Astronomy.

    ERIC Educational Resources Information Center

    Greenstone, Sid; Smith, Murray

    Selected materials needed to teach an astronomy unit as well as suggested procedures, activities, ideas, and astronomy fact sheets published by the Manitoba Planetarium are provided. Subjects of the fact sheets include: publications and classroom picture sets available from the National Aeronautics and Space Administration and facts and statistics…

  9. A new Main Injector radio frequency system for 2.3 MW Project X operations

    SciTech Connect

    Dey, J.; Kourbanis, I.; /Fermilab

    2011-03-01

    For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

  10. System definition phase and acquisition phase project plan for Small Astronomy Satellite SAS-D

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the SAS-D project is to conduct spectral distribution studies of celestial ultraviolet sources using an Explorer-class spacecraft launched by a Delta vehicle into a geosynchronous orbit in the last half of 1975. The telescope system is intended for use by guest astronomers for a major portion of the total observing time. The concept of the overall system, designed to resemble functionally the operation of a ground-based observatory, should maximize the usefulness of the instrument to the astronomical community by limiting the amount of special instruction needed to use the spaceborne telescope. The SAS-D mission will obtain information on what stars, nebulae, and galaxies are and how they develop.

  11. Radio relics tracing the projected mass distribution in CIZA J2242.8+5301*

    NASA Astrophysics Data System (ADS)

    Okabe, Nobuhiro; Akamatsu, Hiroki; Kakuwa, Jun; Fujita, Yutaka; Zhang, Yuying; Tanaka, Masayuki; Umetsu, Keiichi

    2015-12-01

    We present a weak-lensing analysis for a merging galaxy cluster, CIZA J2242.8+5301, which hosts double radio relics, using three-band Subaru/Suprime-Cam imaging (Br'z'). Since the lifetime of dark matter halos colliding into clusters is longer than that of X-ray emitting gas halos, weak-lensing analysis is a powerful method to constrain merger dynamics. Two-dimensional shear fitting using a clean background catalog suggests that the cluster undergoes a merger with a mass ratio of about 2 : 1. The main halo is located around the gas core in the southern region, while no concentrated gas core is associated with the northern sub-halo. We find that the projected cluster mass distribution resulting from an unequal-mass merger is in excellent agreement with the curved shapes of the two radio relics and the overall X-ray morphology, except for the lack of the northern gas core. The lack of a prominent radio halo enables us to constrain an upper limit of the fractional energy of magnetohydrodynamic turbulence of (δ B/B)^2<{O}(10^{-6}) at a resonant wavenumber, by finding a balance between the acceleration time and the time after the core passage or the cooling time, with an assumption of resonant acceleration by a second-order Fermi process.

  12. Vision for Astronomy in South Africa and partnership with the US

    NASA Astrophysics Data System (ADS)

    Nemaungani, Takalani

    2014-01-01

    The 2002 National Research and Development Strategy identified astronomy as a national geographic advantage. This identification was based on the historical investments in optical and, to a lesser extent, radio astronomy up to that point and the realisation that the conditions prevailing in Sutherland were among the best in the world. Since then a number of astronomy initiatives have burgeoned in the Southern African region and these include the HESS, SKA and the AVN. Currently, investments in astronomy are by far the biggest investments being made by the Department of Science and Technology (DST). South Africa’s involvement in modern astronomy dates back to 1685 when a French Astronomer, Guy Tachard, setup an observatory at the southern tip of Africa to decipher the star charts of the extreme southern sky. In 1820, a permanent observatory - the Royal Observatory - was established outside of Cape Town and astronomy has been practised continuously since then. By the late 1980s, it became clear that for South African astronomers and astrophysicists to continue conducting first class research, the acquisition of a much larger, powerful and sophisticated telescope would be necessary. This provided the impetus for a new vision to construct the largest single optical telescope in the Southern Hemisphere, eventually known as the Southern African Large Telescope (SALT). Within the last decade, the African appetite for radio astronomy initiatives has increased exponentially. This has largely been spurred by the African bid to host the SKA project and the need for African countries to work in close partnership that consequently resulted in a successful bid to co-host the SKA project and the subsequent need to ensure its effective implementation. This partnership, and the interactions related thereto, has effectively enhanced awareness around the requirements for hosting radio astronomy instrumentation and the associated benefits that could be derived in making such

  13. The New Astronomy

    NASA Astrophysics Data System (ADS)

    Henbest, Nigel; Marten, Michael

    1996-08-01

    There's more to the Universe than meets the eye. In a marvelous review of multi-wavelength astronomy, The New Astronomy compares traditional optical images to infrared, ultraviolet, radio, and X-ray astronomical observations of a staggering variety of cosmic objects. With over 300 photographs and images obtained by telescopes and detectors operating at different wavelengths, the authors present startlingly different views of the solar system, stars, galaxies and, in this new edition, Halley's Comet and Supernova 1987A. Specially processed by astronomers worldwide, these images reveal in spectacular detail otherwise invisible events such as starbirth, stardeath, and distant quasar eruptions. Emphasizing the physical processes that produce astronomical radiation, they explain how the observations have expanded our existing knowledge and provided new discoveries. They also describe the new techniques in nontechnical language. By giving equal weight to observations at all wavelengths, this book corrects the bias toward optical astronomy and objectively presents all views of the Universe. It will appeal to everyone interested in the mysteries of astronomy. Nigel Henbest and Michael Marten previously collaborated (along with Heather Couper) on The Guide to the Galaxy (CUP, 1994).

  14. Astronomy Week in Madeira, Portugal

    NASA Astrophysics Data System (ADS)

    Augusto, P.; Sobrinho, J. L.

    2012-05-01

    The outreach programme Semanas da Astronomia (Astronomy Weeks) is held in late spring or summer on the island of Madeira, Portugal. This programme has been attracting enough interest to be mentioned in the regional press/TV/radio every year and is now, without doubt, the astronomical highlight of the year on Madeira. We believe that this programme is a good case study for showing how to attract the general public to astronomy in a small (population 250 000, area 900 km2) and fairly isolated place such as Madeira. Our Astronomy Weeks have been different each year and have so far included exhibitions, courses, talks, a forum, documentaries, observing sessions (some with blackouts), music and an astro party. These efforts may contribute towards putting Madeira on the map with respect to observational astronomy, and have also contributed to the planned installation of two observatories in the island.

  15. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Smith, Harlan J.

    1991-01-01

    Lunar-based astronomy offers major prospects for solar system research in the coming century. In addition to active advocacy of both ground-based and Lunar-based astronomy, a workshop on the value of asteroids as a resource for man is being organized. The following subject areas are also covered: (1) astrophysics from the Moon (composition and structure of planetary atmospheres); (2) a decade of cost-reduction in Very Large Telescopes (the SST as prototype of special-purpose telescopes); and (3) a plan for development of lunar astronomy.

  16. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  17. Astronomy Development in Nigeria: Challenges and Advances

    NASA Astrophysics Data System (ADS)

    Okwe Chibueze, James

    2015-01-01

    Nigeria evidently has huge potentials to develop a strong astronomy community. Much of the strength lies in the great number of intelligent students with the potential of becoming good astronomers. Sadly, astronomy development in Nigeria has stagnated in the past decades owing to poor funding and/or indifferent attitude of the funding bodies, research-unfriendly environment, and non-existence of facilities. Currently, efforts toward fuelling advancement in astronomy are focused on building 'critical mass', establishing collaborations with universities/astronomy institutes outside Nigeria, converting out-of-use communication antennas into radio telescopes, and acquiring out-of-use telescopes for educational and low-level research purposes.

  18. Astronomy Program for Young Children.

    ERIC Educational Resources Information Center

    Levy, David H.

    1979-01-01

    An account of a teacher's experience in presenting astronomy to 12 to 15 year olds in a summer science program is presented. Observations of planets, meteors, and the sun are the major projects which are discussed. (SA)

  19. Astronomy in Iraq

    NASA Astrophysics Data System (ADS)

    Alsabti, A. W.

    2006-08-01

    The history of modern Iraqi astronomy is reviewed. During the early 1970's Iraqi astronomy witnessed significant growth through the introduction of the subject at university level and extensively within the school curriculum. In addition, astronomy was popularised in the media, a large planetarium was built in Baghdad, plus a smaller one in Basra. Late 1970 witnessed the construction of the Iraqi National Observatory at Mount Korek in Iraqi Kurdistan. The core facilities of the Observatory included 3.5-meter and 1.25-meter optical telescopes, and a 30-meter radio telescope for millimetre wavelength astronomy. The Iraqi Astronomical Society was founded and Iraq joined the IAU in 1976. During the regime of Saddam Hussain in the 1980's, the Observatory was attacked by Iranian artillery during the Iraq-Iran war, and then again during the second Gulf war by the US air force. Years of sanctions during the 1990's left Iraq cut off from the rest of the international scientific community. Subscriptions to astronomical journals were halted and travel to conferences abroad was virtually non-existent. Most senior astronomers left the country for one reason or another. Support from expatriate Iraqi astronomers existed (and still exists) however, this is not sufficient. Recent changes in Iraq, and the fall of Saddam's regime, has meant that scientific communication with the outside world has resumed to a limited degree. The Ministry of Higher Education in Baghdad, Baghdad University and the Iraqi National Academy of Science, have all played active roles in re-establishing Iraqi astronomy and re-building the damaged Observatory at Mount Korek. More importantly the University of Sallahudin in Erbil, capital of Iraqi Kurdistan, has taken particular interest in astronomy and the Observatory. Organized visits to the universities, and also to the Observatory, have given us a first-hand assessment of the scale of the damage to the Observatory, as well as the needs of astronomy teaching

  20. Modern astronomy.

    NASA Astrophysics Data System (ADS)

    Klimishin, I. A.

    This introductory textbook is an English translation, by E. Yankovsky, of the third, revised and extended Russian edition "Astronomiya nashikh dnej", published in 1986 (see 42.003.118). Contents: 1. Introduction. 2. The elements of classical astronomy. 3. The basics of astrophysics. 4. The instruments and methods of optical astronomy. 5. To see the invisible. 6. The solar system. 7. The physics of stars. 8. Our Galaxy. 9. In the expanses of the universe. 10. Everything under the Sun.

  1. Fractal astronomy.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1989-02-01

    The author discusses some of the more recent research on fractal astronomy and results presented in several astronomical studies. First, the large-scale structure of the universe is considered, while in another section one drops in scale to examine some of the smallest bodies in our solar system; the comets and meteoroids. The final section presents some thoughts on what influence the fractal ideology might have on astronomy, focusing particularly on the question recently raised by Kadanoff, "Fractals: where's the physics?"

  2. New Technology Lunar Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Chen, P. C.; Oliversen, R. J.; Barry, R. K.; Romeo, R.; Pitts, R.; Ma, K. B.

    1995-12-01

    A scientifically productive Moon-based observatory can be established in the near term (3-5 years) by robotic spacecraft. Such a project is affordable even taking into account NASA's currently very tight budget. In fact the estimated cost of a lunar telescope is sufficiently low that it can be financed by private industry, foundations, or wealthy individuals. The key factor is imaginative use of new technologies and new materials. Since the Apollo era, many new areas of space technology have been developed in the US by NASA, the military, academic and industry sectors, ESA, Japan, and others. These include ultralite optics, radiation tolerant detectors, precision telescope drives incorporating high temperature superconductors, smart materials, active optics, dust and thermal control structures, subminiature spectrometers, tiny radio transmitters and receivers, small rockets, innovative fuel saving trajectories, and small precision landers. The combination of these elements makes possible a lunar observatory capable of front line astrophysical research in UV-Vis-IR imaging, spectrometry, and optical interferometry, at a per unit cost comparable to that of Small Explorer (SMEX) class missions. We describe work in progress at NASA GSFC and elsewhere, applications to other space projects, and spinoff benefits to ground-based astronomy, industry, and education.

  3. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education!Lessons learned: plan early; create partnerships with parks, concert organizers, and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to

  4. Astronomy: Project Earth Science.

    ERIC Educational Resources Information Center

    Smith, P. Sean

    This book presents classroom activities and reading materials. The activities use a hands-on approach and address the standards. Each features both a student section and a teacher guide. Eleven activities include: (1) "It's Only a Paper Moon"; (2) "Time Traveler"; (3) "Solar System Scale"; (4) "Hello Out…

  5. ADDITIONAL OBSERVATIONS OF PLANETS AND QUASI-STELLAR RADIO SOURCES AT 3 MM,

    DTIC Science & Technology

    MERCURY ( PLANET ), VENUS( PLANET ), PERIODIC VARIATIONS, RADIO ASTRONOMY, SPECTRUM SIGNATURES...EXTRATERRESTRIAL RADIO WAVES, SOURCES), GALAXIES, BLACKBODY RADIATION, BRIGHTNESS, TEMPERATURE, MARS( PLANET ), JUPITER( PLANET ), SATURN( PLANET

  6. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment

    PubMed Central

    Rashydov, Namik M.; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk. PMID:26217350

  7. Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

    PubMed

    Rashydov, Namik M; Hajduch, Martin

    2015-01-01

    Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

  8. The Space Geodesy Project and Radio Frequency Interference Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Lawrence, Hilliard M.; Beaudoin, C.; Corey, B. E.; Tourain, C. L.; Petrachenko, B.; Dickey, John

    2013-01-01

    The Space Geodesy Project (SGP) development by NASA is an effort to co-locate the four international geodetic techniques Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR), Very Long Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS), and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) into one tightly referenced campus and coordinated reference frame analysis. The SGP requirement locates these stations within a small area to maintain line-of-sight and frequent automated survey known as the vector tie system. This causes a direct conflict with the new broadband VLBI technique. Broadband means 2-14 GHz, and RFI susceptibility at -80 dBW or higher due to sensitive RF components in the front end of the radio receiver.

  9. Some requirements for the future giant low frequency ground based radio telescopes

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Gridin, A. A.; Lecheux, A.; Rosolen, C.; Rucker, H.

    2003-04-01

    During last years the interest to the low frequency radio astronomy is growing considerably. The projects of space-borne and ground-based new generation giant radio telescope (i.e. LOFAR) are discussed actively. The largest existing low frequency systems, at first, UTR-2 and URAN Ukraine) and NDA (France) are useful for the probing of new astrophysical ideas as well as of new technical approaches and requirements including future giant radio telescopes and solar system radio astronomy purposes. The 30 elements array with active dipoles was created on UTR-2 observatory for the test of some principal requirements. The investigations of the array confirmed the sensitivity, frequency range, interference immunity and low cost what need for the future instruments.

  10. The Jailbreak Health Project--incorporating a unique radio programme for prisoners.

    PubMed

    Minc, Ariane; Butler, Tony; Gahan, Gary

    2007-10-01

    Several studies in NSW have identified prisoners to be at high risk for blood borne viruses. The prevalence of hepatitis C among men in NSW correctional centres is 40% and over 60% among women. It is even higher among those with histories of injecting drug use. As part of the state's strategy to minimise the spread of blood borne viruses and promote healthy lifestyles among prisoners, the Community Restorative Centre broadcasts a weekly half hour radio programme to prisoners and the community. The project is funded through the NSW Health Department and aims to provide support to prisoners, ex-prisoners and their families. Jailbreak's success hinges on the participation of the very people [prisoners] the show wishes to target. The radio show is aimed specifically at broadcasting health promotion and harm-minimisation messages to prisoners and their supporters although this is not obvious. When you tune in to Jailbreak you will hear a diverse range of opinion, music and poetry from people caught up in the criminal justice system. Nevertheless at the heart of this exciting and challenging project is the delivery of engaging, relevant and clear health messages to prison inmates, ex-inmates and families in relation to HIV, hepatitis and sexual health. Since 2002, valuable health information, often in the form of personal stories, vignettes and quiz questions, can be heard in and around Sydney on 2SER 107.3 FM or online at http://www.2ser.com. Jailbreak has not been without controversy and has to balance the security focus of correctional authorities and the illegality of substance use in correctional centres with the need to convey messages to prisoners in relation to harm-minimisation.

  11. "Astronomy from the Chair" - A New Way of Doing Astronomy over Internet

    NASA Astrophysics Data System (ADS)

    Tomic, Z.; Aleksic, J.

    2012-12-01

    This paper describes how the emergence of the Internet enabled astronomy to become more prevalent as a hobby and contribute to the further development of the new concept of amateur astronomy, "Astronomy from the Chair" (example: Astronomy Live and Virtual Astronomy Telescope Project Group). In this paper we also present the observatories that make it possible to take direct control over their equipment and to conduct observation and photography (example: MyTelescope and Virtual Telescope Project Group), and virtual observatories which can be accessed huge databases and carry out its processing directly through the Internet (example: Galaxy Zoo, Planet Hunters and citizensky).

  12. Astronomy Explained

    NASA Astrophysics Data System (ADS)

    North, Gerald

    Every year large numbers of people take up the study of astronomy, mostly at amateur level. There are plenty of elementary books on the market, full of colourful photographs, but lacking in proper explanations of how and why things are as they are. Many people eventually wish to go beyond the 'coffee-table book' stage and study this fascinating subject in greater depth. This book is written for them. In addition, many people sit for public examinations in this subject each year and this book is also intended to be of use to them. All the topics from the GCSE syllabus are covered here, with sample questions at the end of each chapter. Astronomy Explained provides a comprehensive treatment of the subject in more depth than is usually found in elementary works, and will be of interest to both amateur astronomers and students of astronomy.

  13. Minoan Astronomy

    NASA Astrophysics Data System (ADS)

    Blomberg, Mary; Henriksson, Göran

    Of the three great cultures of the ancient eastern Mediterranean — the Babylonian, Egyptian, and Minoan — we have considerable knowledge of the astronomy of the first two through their documents (see relevant sections of this Handbook). Very little written material, however, has survived from Minoan Crete, but the evidence of other impressive archaeological discoveries implies that the inhabitants were on a par with their neighbors and had made similar advances in astronomy. In lieu of written sources, we have used the methods of archaeoastronomy to recover as much as possible about Minoan astronomy. In short, these are measuring the orientations of walls and their opposite horizons at a representative selection of monuments, analyzing the measurements statistically, and comparing the results with digital reconstruction of the positions of significant celestial bodies for the time when the walls were built.

  14. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2017-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  15. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine

    2015-08-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  16. Astronomy Allies

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Alatalo, Katherine A.

    2016-01-01

    Imagine you are a grad student, at your first conference, and a prominent senior scientist shows interest in your work, and he makes things get way too personal? What would you do? Would you report it? Or would you decide, after a few other instances of harassment, that maybe you shouldn't pursue astronomy? Harassment is under-reported, the policies can be difficult to understand or hard to find, and it can be very intimidating as a young scientist to report it to the proper individuals. The Astronomy Allies Program is designed to help you with these sorts of problems. We are a group of volunteers that will help by doing the following: provide safe walks home during the conference, someone to talk to confidentially, as an intervener, as a resource to report harassment. The Allies are a diverse group of scientists committed to acting as mentors, advocates, and liaisons. The Winter 2015 AAS meeting was the first meeting that had Astronomy Allies, and Astronomy Allies provided a website for information, as well as a twitter, email, and phone number for anyone who needs our help or would like more information. We posted about the Astronomy Allies on the Women In Astronomy blog, and this program resonates with many people: either they want to help, or they have experienced harassment in the past and don't want to see it in the future. Harassment may not happen to most conference participants, but it's wrong, it's against the AAS anti-harassment policy ( http://aas.org/policies/anti-harassment-policy ), it can be very damaging, and if it happens to even one person, that is unacceptable. We intend to improve the culture at conferences to make it so that harassers feel they can't get away with their unprofessional behavior.

  17. 100 Hours of Astronomy

    NASA Astrophysics Data System (ADS)

    Simmons, Mike

    2009-01-01

    The 100 Hours of Astronomy cornerstone project (100HA) is a round-the-clock, worldwide event with 100 continuous hours of a wide range of public outreach activities including live webcasts, observing events and more. One of the key goals of 100HA is to have as many people as possible look through a telescope as Galileo did for the first time 400 years ago. 100HA will take place from 2-5 April when the Moon goes from first quarter to gibbous, good phases for early evening observing. Saturn will be the other highlight of early evening observing events. 100 Hours of Astronomy consists of five main events: 1. An opening event featuring the telescope that Galileo used to make his groundbreaking observations. 2. Activities at science centres, planetariums and science museums including live webcasts, live observations by visitors using remotely-operated telescopes, and enhanced outreach programs including public observing sessions held by amateur astronomy groups. 3. Observing sessions and other educational activities in schools groups held by astronomy clubs and others. 4. 24 hours of live webcasts from research observatories around the world, along with observing events and other outreach activities at participating observatories. 5. 24 hours of sidewalk astronomy - public observing sessions in population centres to bring the opportunity to view the Moon, Saturn and other objects to as many people as possible. The annual International Sidewalk Astronomy Night will be held during this event. These primary activities will be scheduled so that each supports the other, leading in order from one to the next and culminating in the world's greatest public observing event. A wrap-up will be held at the IAU General Assembly in 2009 to recognize all participants’ contributions to this unique global event.

  18. Astronomy Outreach for Large, Unique, and Unusual Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they

  19. Fabrication of Optical Fiber Mechanical Shock Sensors for the Los Alamos HERT (High Explosive Radio Telemetry) Project

    SciTech Connect

    P. E. Klingsporn

    2005-11-14

    This document lists the requirements for the fiber optic mechanical shock sensor for the Los Alamos HERT (High Explosive Radio Telemetry) project and provides detailed process steps for fabricating, testing, and assembling the fiber shock sensors for delivery to Los Alamos.

  20. Radio observations of solar eclipse.

    NASA Astrophysics Data System (ADS)

    Liu, Yuying; Fu, Qijun

    1998-09-01

    For radio astronomy, a solar eclipse provides an opportunity for making solar radio observations with high one-dimension spatial resolution. The radio observation of a solar eclipse has played an important role in solar radio physics. Some important factors for radio observation of a solar eclipse are introduced and analysed. Solar eclipse radio observation has also played an important role in the progress of solar radio atronomy in China. The solar eclipses of 1958, 1968, 1980 and 1987, which were observed in China, are introduced, and the main results of these observations are briefly shown.

  1. Astronomy Camp = IYA x 22: 22 Years of International Astronomy Education

    NASA Astrophysics Data System (ADS)

    Hooper, Eric Jon; McCarthy, D. W.; Camp Staff, Astronomy

    2010-01-01

    Do you remember childhood dreams of being an astronomer, or the ravenous desire for ever larger glass and better equipment as an amateur astronomer? What if your child or the person down the street could live that dream for a weekend or a week? The University of Arizona Astronomy Camp continues to substantiate those dreams after more than two decades in existence. Astronomy Camp is an immersion hands-on field experience in astronomy, ranging from two to eight nights, occurring a few times per year. Participants span an age range from elementary students to octogenarians. The three basic offerings include adult camps, a beginning Camp for teenagers, and an advanced teen Camp. Several variants of the basic Camp model have evolved, including an ongoing decade long series of specialized Camps for Girl Scout leaders from across the country, funded by the NIRCam instrument development program for the James Webb Space Telescope. The advanced teen Camp is a microcosm of the entire research arc: the participants propose projects, spend the week collecting and analyzing data using research grade CCDs, infrared arrays, and radio/sub-millimeter telescopes, and finish with a presentation of the results. This past summer the Camps moved to Kitt Peak National Observatory for the first time, providing access to a vast and diverse collection of research instruments, including the 0.9-meter WIYN and 2.3-meter Bok telescopes, the McMath-Pierce Solar Telescope, and the 12-meter ARO radio telescope. Education research into the Camp's impact indicates that reasons for its appeal to youth include a learner-centered and personal approach with a fun attitude toward learning, authentic scientific inquiry led by mentors who are real scientists, a peer group with common interests in science and engineering, and the emotional appeal of spending time on a dark "sky island" devoted to the exploration of nature.

  2. Civic Astronomy

    NASA Astrophysics Data System (ADS)

    Wise, George

    2004-10-01

    The founding of the Dudley Observatory at Albany, N.Y., in 1852 was a milestone in humanity's age-old quest to understand the heavens. As the best equipped astronomical observatory in the U.S. led by the first American to hold a Ph.D. in astronomy, Benjamin Apthorp Gould Jr., the observatory helped pioneer world-class astronomy in America. It also proclaimed Albany's status as a major national center of culture, knowledge and affluence. This book explores the story of the Dudley Observatory as a 150 year long episode in civic astronomy. The story ranges from a bitter civic controversy to a venture into space, from the banks of the Hudson River to the highlands of Argentina. It is a unique glimpse at a path not taken, a way of doing science once promising, now vanished. As discoveries by the Dudley Observatory's astronomers, especially its second director Lewis Boss, made significant contributions to the modern vision of our Milky Way galaxy as a rotating spiral of more than a million stars, the advance of astronomy left that little observatory behind.

  3. Astronomy Adventures.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Astronomy Adventures." Contents are organized into the following…

  4. Lithuanian Astronomy

    NASA Astrophysics Data System (ADS)

    Sudzius, J.; Murdin, P.

    2002-01-01

    Lithuanian folklore, archaic calendars and terminology show that Lithuanians were interested in astronomy from ancient times. A lot of celestial bodies have names of Lithuanian origin that are not related to widely accepted ancient Greek mythology. For example, the Milky Way is named `Pauksciu Takas' (literally the way of birds), the constellation of the Great Bear `Didieji Grizulo Ratai' (literal...

  5. Astronomy Activities.

    ERIC Educational Resources Information Center

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  6. NASE Training Courses in Astronomy for Teachers throughout the World

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2012-01-01

    Network for Astronomy School Education, NASE, is a project that is organizing courses for teachers throughout the entire world. The main objective of the project is to prepare secondary and primary school teachers in astronomy. Students love to know more about astronomy and teachers have the opportunity to observe the sky that every school has…

  7. The Red Radio Ring: a gravitationally lensed hyperluminous infrared radio galaxy at z = 2.553 discovered through the citizen science project SPACE WARPS

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; O'Briain, D.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, Cristian E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.

    2015-09-01

    We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.

  8. The National Astronomy Consortium (NAC)

    NASA Astrophysics Data System (ADS)

    Von Schill, Lyndele; Ivory, Joyce

    2017-01-01

    The National Astronomy Consortium (NAC) program is designed to increase the number of underrepresented minority students into STEM and STEM careers by providing unique summer research experiences followed by long-term mentoring and cohort support. Hallmarks of the NAC program include: research or internship opportunities at one of the NAC partner sites, a framework to continue research over the academic year, peer and faculty mentoring, monthly virtual hangouts, and much more. NAC students also participate in two professional travel opportunities each year: the annual NAC conference at Howard University and poster presentation at the annual AAS winter meeting following their summer internship.The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Consortium (NRAO) and Associated Universities, Inc. (AUI), in partnership with the National Society of Black Physicist (NSBP), along with a number of minority and majority universities.

  9. Astronomy in Venezuela

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Patricia

    Since the installation of the Observatorio Cagigal in Caracas, astronomy in Venezuela has developed steadily, and, in the last few decades, has been strong. Both theoretical and observational astronomy now flourish in Venezuela. A research group, Grupo de Astrofísica (GA) at the Universidad de Los Andes (ULA) in Mérida, started with few members but now has increased its numbers and undergone many transformations, promoting the creation of the Grupo de Astrofísica Teórica (CAT), and with other collaborators initiated the creation of a graduate study program (that offers master's and doctor's degrees) in the Postgrado de Física Fundamental of ULA. With the financial support of domestic Science Foundations such as CONICIT, CDCHT, Fundacite, and individual and collective grants, many research projects have been started and many others are planned. Venezuelan astronomy has benefitted from the interest of researchers in other countries, who have helped to improve our scientific output and instrumentation. With the important collaboration of national and foreign institutions, astronomy is becoming one of the strongest disciplines of the next decade in Venezuela.

  10. Astronomy Video Contest

    NASA Astrophysics Data System (ADS)

    McFarland, John

    2008-05-01

    One of Galileo's staunchest supporters during his lifetime was Johannes Kepler, Imperial Mathematician to the Holy Roman Emperor. Johannes Kepler will be in St. Louis to personally offer a tribute to Galileo. Set Galileo's astronomy discoveries to music and you get the newest song by the well known acappella group, THE CHROMATICS. The song, entitled "Shoulders of Giants” was written specifically for IYA-2009 and will be debuted at this conference. The song will also be used as a base to create a music video by synchronizing a person's own images to the song's lyrics and tempo. Thousands of people already do this for fun and post their videos on YOU TUBE and other sites. The ASTRONOMY VIDEO CONTEST will be launched as a vehicle to excite, enthuse and educate people about astronomy and science. It will be an annual event administered by the Johannes Kepler Project and will continue to foster the goals of IYA-2009 for years to come. The Astronomy Video poster will contain all the basic information about the contest including: categories, rules, prizes, web address for more info and how to download the new song, "Shoulders of Giants.”

  11. Astronomy Video Contest

    NASA Astrophysics Data System (ADS)

    McFarland, John

    2008-05-01

    During Galileo's lifetime his staunchest supporter was Johannes Kepler, Imperial Mathematician to the Holy Roman Emperor. Johannes Kepler will be in St. Louis to personally offer a tribute to Galileo. Set Galileo's astronomy discoveries to music and you get the newest song by the well known acappella group, THE CHROMATICS. The song, entitled "Shoulders of Giants” was written specifically for IYA-2009 and will be debuted at this conference. The song will also be used as a base to create a music video by synchronizing a person's own images to the song's lyrics and tempo. Thousands of people already do this for fun and post their videos on YOU TUBE and other sites. The ASTRONOMY VIDEO CONTEST will be launched as a vehicle to excite, enthuse and educate people about astronomy and science. It will be an annual event administered by the Johannes Kepler Project and will continue to foster the goals of IYA-2009 for years to come. During this presentation the basic categories, rules, and prizes for the Astronomy Video Contest will be covered and finally the new song "Shoulders of Giants” by THE CHROMATICS will be unveiled

  12. Policy: Australian astronomy looks forward

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2005-12-01

    Over the next decade, a new generation of instruments will come into being for the benefit of astronomers across the world. Australian astronomers hope to build on their strong astronomical heritage and continue to take part in astronomy at the highest international level. To this end, they have prepared a Decadal Plan that envisages building, with international partners, a world-class radio telescope, greater invovlement with 8 metre telescopes, as well as making the most of the Antarctic opportunities that Australia offers.

  13. Reports of planetary astronomy - 1991

    NASA Technical Reports Server (NTRS)

    Rahe, Jurgen (Editor)

    1993-01-01

    This publication provides information about currently funded scientific research projects conducted in the Planetary Astronomy Program during 1991, and consists of two main sections. The first section gives a summary of research objectives, past accomplishments, and projected future investigations, as submitted by each principal investigator. In the second section, recent scientifically significant accomplishments within the Program are highlighted.

  14. Introducing Astronomy Related Research into Non-Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Walker, Douglas

    The concern over the insufficient number of students choosing to enter the science and engineering fields has been discussed and documented for years. While historically addressed at the national level, many states are now recognizing that the lack of a highly-skilled technical workforce within their states' borders has a significant effect on their economic health. Astronomy, as a science field, is no exception. Articles appear periodically in the most popular astronomy magazines asking the question, "Where are the young astronomers?" Astronomy courses at the community college level are normally restricted to introductory astronomy I and II level classes that introduce the student to the basics of the night sky and astronomy. The vast majority of these courses is geared toward the non-science major and is considered by many students to be easy and watered down courses in comparison to typical physics and related science courses. A majority of students who enroll in these classes are not considering majors in science or astronomy since they believe that science is "boring and won't produce any type of career for them." Is there any way to attract students? This paper discusses an approach being undertaken at the Estrella Mountain Community College to introduce students in selected mathematics courses to aspects of astronomy related research to demonstrate that science is anything but boring. Basic statistical techniques and understanding of geometry are applied to a large virgin data set containing the magnitudes and phase characteristics of sets of variable stars. The students' work consisted of developing and presenting a project that explored analyzing selected aspects of the variable star data set. The description of the data set, the approach the students took for research projects, and results from a survey conducted at semester's end to determine if student's interest and appreciation of astronomy was affected are presented. Using the data set provided, the

  15. Inuit Astronomy

    NASA Astrophysics Data System (ADS)

    MacDonald, John

    Inuit live mainly in the treeless Arctic regions of North America, Greenland, and parts of northeastern Siberia. Their cosmology, based on shamanistic belief, constructed a view of the sky and its contents distinctively suited to their spiritual and pragmatic needs. Their astronomy, particularly for those groups living far above the Arctic Circle, reflects the unique appearance of the celestial sphere at high northerly latitudes, demonstrated most noticeably in the annual disappearance of the sun during midwinter months.

  16. Chaco astronomies

    NASA Astrophysics Data System (ADS)

    Martín López, Alejandro

    2015-08-01

    This presentation discusses the result of 18 years of ethnographic and ethnohistorical studies on Chaco astronomies. The main features of the systems of astronomical knowledge of the Chaco Aboriginal groups will be discussed. In particular we will discuss the relevance of the Milky Way, the role of the visibility of the Pleiades, the ways in which the celestial space is represented, the constitution of astronomical orientations in geographic space, etc. We also address a key feature of their vision of the cosmos: the universe is seen by these groups as a socio-cosmos, where humans and non-humans are related. These are therefore actually socio-cosmologies. We will link this to the theories of Chaco Aboriginal groups about power and political relations.We will discuss how the study of Aboriginal astronomies must be performed along with the studies about astronomies of Creole people and European migrants, as well as anthropological studies about the science teaching in the formal education system and by the mass media. In this form we will discuss the relevance of a very complex system of interethnic relations for the conformation of these astronomical representations and practices.We will also discuss the general methodological implications of this case for the ethnoastronomy studies. In particular we will talk about the advantages of a study of regional scope and about the key importance of put in contact the ethnoastronomy with contemporary issues in social sciences.We also analyze the importance of ethnoastronomy studies in relation to studies of sociology of science, especially astronomy. We also study the potential impact on improving formal and informal science curricula and in shaping effective policies to protect the tangible and intangible astronomical heritage in a context of respect for the rights of Aboriginal groups.

  17. Humanising Astronomy

    NASA Astrophysics Data System (ADS)

    Levin, S.

    2008-06-01

    Universe Awareness (UNAWE) is an international programme that aims to expose underprivileged children (in the age group 4-10) to the inspirational aspects of astronomy. We are currently at the stage of developing materials that will be utilised in a diverse range of environments. This paper explores UNAWE's particular approach to developing tools which includes not only indigenous and folkloric astronomical knowledge, but also the culture of transmission of such knowledge. A specific understanding and explanation of the Universe, the Sun, Moon and stars is present in every culture and can be found contained in its history, legends and belief systems. By consciously embracing different ways of knowing the Universe and not uniquely the rational model, UNAWE places the humanising potential of astronomy at the centre of its purpose. Whilst inspiring curiosity, pride and a sense of ownership in one's own cultural identity, such an approach also exposes children to the diversity of other peoples and their cultures as well as the unifying aspects of our common scientific heritage. The means of creating and delivering the astronomy programme are as relevant to the desired educational outcomes as the content. The challenge in the design of materials is to communicate this stimulating message to the very young. Respect for alternative values systems, the need for dialogue and community participation, and where possible the production of materials using local resources is emphasised. This paper touches recent experiences liaising with communities in India, South Africa, Tunisia, Venezuela and Colombia.

  18. The Astronomy Olympiad italian experience

    NASA Astrophysics Data System (ADS)

    Sandrelli, S.; Giacomini, L.

    2011-10-01

    The International Astronomy Olympiad (IAO) is an internationally annual astronomy scientific-educating event, born in 1996, which includes an intellectual competition between students aged between 14 and 17. In Italy, the Olympiad is coorganized since 2007 by INAF (Istituto Nazionale di Astrofisica) and SAiT (Società Astronomica Italiana) becoming every year a more visible and global event in the italian scenario (in 2011, INAF institutes participating to the local activities were 13). Unluckily, the Italian Committee of the Olympiads cannot involve directly nor rely on schools, since astronomy is no longer part of the scholastic programs. For this reason, the Committee needed to develop in the last years a non traditional mediatic approach that allowed in 2011 to reach a participation of more than 500 teenagers to the Olympics. We will give an overview of the Astronomy Olympics project in Italy and of this non conventional mediatic approach.

  19. Current state of Czech astronomy popularization and its potential for enhancing science career interest

    NASA Astrophysics Data System (ADS)

    Kříček, Radek

    2015-08-01

    The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more

  20. Astronomy Education and Popularization in Serbia

    NASA Astrophysics Data System (ADS)

    Atanackovic, O.

    2013-05-01

    Astronomy education at all levels (elementary and secondary schools, universities) in Serbia is reviewed. The attempts to introduce astronomy as an elective course in elementary schools and to reintroduce astronomy as a separate subject in secondary schools are discussed. The role of the Petnica Science Center is briefly described, as well as the participation of the Serbian team in the International Astronomy Olympiads. A special emphasis is put on recent changes introduced in the accredited study programs at all five Serbian state universities. The research projects performed in two main astronomical institutions in Serbia are outlined. The numerous amateur astronomical societies in Serbia are presented and their growing activities summarized.

  1. The Astronomy Spacelab Payloads Study: Executive volume

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The progress of the Astronomy Spacelab Payloads Project at the Goddard Space Flight Center is reported. Astronomical research in space, using the Spacelab in conjunction with the Space Shuttle, is described. The various fields of solar astronomy or solar physics, ultraviolet and optical astronomy, and high energy astrophysics are among the topics discussed. These fields include scientific studies of the sun and its dynamical processes, of the stars in wavelength regions not accessible to ground based observations, and the exciting new fields of X-ray, gamma ray, and particle astronomy.

  2. Astronomy and Astrophysics for the 1980s.

    ERIC Educational Resources Information Center

    Field, George B.

    1982-01-01

    Following a discussion of scientific opportunities for astronomy (galaxies and the universe, stars, and planets/life/intelligence), four programs recommended by the National Academy of Sciences' Astronomy Survey Committee are described, indicating areas that must be strengthened before undertaking the programs. Ongoing projects are also…

  3. The Undergraduate ALFALFA Team: A Model for Involving Undergraduates in Large Astronomy Collaborations

    NASA Astrophysics Data System (ADS)

    Craig, David W.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. This effort has been made possible through the collaboration of the ALFALFA PIs and graduate students, Arecibo Observatory staff, and the faculty at 19 undergraduate-focussed institutions. In this talk, we will discuss how the UAT model works for the ALFALFA project and lessons learned from our efforts over the 8 years of grant funding. We will provide suggestions on how the model could be applied to other legacy projects, particularly in such areas as online collaboration and software usage by undergraduates. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.

  4. Passage and behavior of radio-tagged adult Pacific lampreys (Entosphenus tridentatus) at the Willamette Falls Project, Oregon.

    USGS Publications Warehouse

    Mesa, Matthew G.; Magie, Robert J.; Copeland, Elizabeth S.

    2010-01-01

    Populations of Pacific lamprey (Entosphenus tridentatus) in the Columbia River basin have declined and passage problems at dams are a contributing factor. We used radio telemetry to monitor the passage of adult Pacific lampreys at the Willamette Falls Project (a hydroelectric dam integrated into a natural falls) on the Willamette River near Portland, Oregon. In 2005 and 2006, fish were captured at the Project, implanted with a radio tag, and released downstream. We tagged 136 lampreys in 2005 and 107 in 2006. Over 90% of the fish returned to the Project in 7 – 9 h and most were detected from 2000 – 2300 h. In 2005, 43 fish (34%) passed the dam via the fishway, with peak passage in August. No fish passed over the falls, but 13% ascended at least partway up the falls. In 2006, 24 fish (23%) passed the Project using the fishway, with most prior to 9 June when the powerhouse was off. Although 19 lampreys ascended the falls, only two passed via this route. The time for fish to pass through the fishway ranged from 4 – 74 h, depending on route. Many fish stayed in the tailrace for hours to almost a year and eventually moved downstream. Our results indicate that passage of lampreys at the Project is lower than that for lampreys at dams on the Columbia River. Low passage success may result from low river flows, impediments in fishways, delayed tagging effects, changing environmental conditions, or performance or behavioral constraints.

  5. Astronomy. Inspiration. Art

    NASA Astrophysics Data System (ADS)

    Stanic, N.

    2008-10-01

    This paper speculates how poetry and other kind of arts are tightly related to astronomy. Hence the connection between art and natural sciences in general will be discussed in the frame of ongoing multidisciplinary project `Astronomy. Inspiration. Art' at Public Observatory in Belgrade (started in 2004). This project tends to inspire (better to say `infect') artist with a cosmic themes and fantastic sceneries of the Universe. At the very beginning of the project, Serbian poet and philosopher Laza Lazić (who published 49 books of poetry, stories and novels), as well as writer Gordana Maletić (with 25 published novels for children) were interested to work on The Inspiration by Astronomical Phenomena in Serbian Literature. Five young artists and scientists include their new ideas and new approach to multidisciplinary studies too (Srdjan Djukić, Nenad Jeremić, Olivera Obradović, Romana Vujasinović, Elena Dimoski). Two books that will be presented in details in the frame of this Project, "STARRY CITIES" (http://zavod.co.yu) and "ASTROLIES", don't offer only interesting illustrations, images from the latest astronomical observations and currently accepted cosmological theories -- those books induces, provoking curiosity in a specific and witty way, an adventure and challenge to explore and create.

  6. INSA Scientific Activities in the Space Astronomy Area

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Ricardo; Sánchez Portal, Miguel

    Support to astronomy operations is an important and long-lived activity within INSA. Probably the best known (and traditional) INSA activities are those related with real-time spacecraft operations: ground station maintenance and operation (ground station engineers and operators); spacecraft and payload real-time operation (spacecraft and instruments controllers); computing infrastructure maintenance (operators, analysts), and general site services. In this paper, we’ll show a different perspective, probably not so well-known, presenting some INSA recent activities at the European Space Astronomy Centre (ESAC) and NASA Madrid Deep Space Communication Complex (MDSCC) directly related to scientific operations. Basic lines of activity involved include: operations support for science operations; system and software support for real time systems; technical administration and IT support; R&D activities, radioastronomy (at MDSCC and ESAC), and scientific research projects. This paper is structured as follows: first, INSA activities in two ESA cornerstone astrophysics missions, XMM-Newton and Herschel, will be outlined. Then, our activities related to scientific infrastructure services, represented by the Virtual Observatory (VO) framework and the Science Archives development facilities, are briefly shown. Radio astronomy activities will be described afterwards, and, finally, a few research topics in which INSA scientists are involved will also be described.

  7. Scientific literacy: astronomy at school

    NASA Astrophysics Data System (ADS)

    Gangui, A.; Iglesias, M.; Quinteros, C.

    Models constructed by scientists to explain the world often incorporate their actual individual conceptions about different physical phenomena. Likewise, prospective teachers reach general science courses with preconstructed and consistent models of the universe surrounding them. In this project we present a series of basic questionings that make us reflect on the present situation of the teaching-learning relationship in astronomy within the framework of formal education for elementary school teachers. Our project main aims are: 1) to contribute to finding out the real learning situation of preservice elementary teachers, and 2) from these studies, to try and develop didactic tools that can contribute to improve their formal education in topics of astronomy. In spite of being of chief importance within the science teaching topics, mainly due to its interdisciplinarity and cultural relevance, researches in didactics of astronomy are not well represented in our research institutes. FULL TEXT IN SPANISH

  8. Astronomy in the streets

    NASA Astrophysics Data System (ADS)

    Kebe, Fatoumata

    2015-08-01

    The Ephemerides Association was founded last year by a PhD student in Astronomy. The association is devoted to the promotion and advancement of knowledge of the universe through research and education.The main activities of the association are scientific meetings, the planning and realization of scientific projects, the support of the scientific activities of its members, and the dissemination of related information among members and other interested persons.The association targets the disadvantaged zones of the Paris suburbs.The main issue was how to bring astronomy in those places. In the suburbs, since most of the youth are poor, most leisure activities like cinema are out of your reach. Thus, mostly of them will play football or basketball outside.We decided to go to meet young people who find themselves together in the evening. We prepare the telescope as well as the fasicules to start the observation of the planets. The discussion finally lead to their career plans and aspirations. Astronomy has become a tool to address societal issues. We present our results after one year of activity.

  9. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  10. News Note: Administration of astronomy in South Africa

    NASA Astrophysics Data System (ADS)

    2015-12-01

    The National Research Foundation announced on 31 July that Prof Nithaya Chetty has been appointed as Deputy Chief Executive of the National Research Foundation for Astronomy with effect from 1 October 2014. As such, he will be responsible for coordinating the national strategy for astronomy. This will include supervision of the astronomy national facilities and the SKA-SA Project, developing synergies between the various astronomy departments, the astronomical facilities and the community at large, promoting public awareness and liaising with international partners,

  11. Astronomy sortie missions definition study. Volume 2, book 1: Astronomy sortie program technical report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The work performed to arrive at a baseline astronomy sortie mission concept is summarized. The material includes: (1) definition of the telescopes and arrays; (2) preliminary definition of mission and systems; (3) identification, definition, and evaluation of alternative sortie programs; (4) the recommended astronomy sortie program; and (5) the astronomy sortie program concept that was approved as a baseline for the remainder of the project.

  12. Radio and Optical Telescopes for School Students and Professional Astronomers

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Langston, G.; Heatherly, S.; Towner, A. P.; Ford, J.; Simon, R. S.; White, S.; O'Neil, K. L.; Haipslip, J.; Reichart, D.

    2013-01-01

    The NRAO 20m telescope is now on-line as a part of UNC's Skynet worldwide telescope network. The NRAO is completing integration of radio astronomy tools with the Skynet web interface. We present the web interface and astronomy projects that allow students and astronomers from all over the country to become Radio Astronomers. The 20 meter radio telescope at NRAO in Green Bank, WV is dedicated to public education and also is part of an experiment in public funding for astronomy. The telescope has a fantastic new web-based interface, with priority queuing, accommodating priority for paying customers and enabling free use of otherwise unused time. This revival included many software and hardware improvements including automatic calibration and improved time integration resulting in improved data processing, and a new ultra high resolution spectrometer. This new spectrometer is optimized for very narrow spectral lines, which will allow astronomers to study complex molecules and very cold regions of space in remarkable detail. In accordance with focusing on broader impacts, many public outreach and high school education activities have been completed with many confirmed future activities. The 20 meter is now a fully automated, powerful tool capable of professional grade results available to anyone in the world. Drop by our poster and try out real-time telescope control!

  13. The General History of Astronomy

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2010-04-01

    Foreword; Preface; Acknowledgements; Part I. The Birth of Astrophysics and Other Late Nineteenth-Century Trends (c.1850-c.1920); 1. The origins of astrophysics A. J. Meadows; 2. The impact of photography on astronomy John Lankford; 3. Telescope building, 1850-1900 Albert Van Helden; 4. The new astronomy A. J. Meadows; 5. Variable stars Helen Sawyer Hogg; 6. Stellar evolution and the origin of the Hertzsprung-Russell diagram David DeVorkin; Part II. Observatories and Instrumentation: 7. Astronomical institutions. Introduction Owen Gingerich, Greenwich Observatory Philip S. Laurie, Paris Observatory Jacques Lévy, Pulkovo Observatory Aleksandr A. Mikhailov, Harvard College Observatory Howard Plotkin, United States Naval Observatory Deborah Warner, Lick Observatory Trudy E. Bell, Potsdam Astrophysical Observatory Dieter B. Herrmann; 8. Building large telescopes, 1900-1950 Albert Van Helden; 9. Astronomical institutions in the southern hemisphere, 1850-1950 David S. Evans; 10. Twentieth-century instrumentation Charles Fehrenbach, with a section on 'Early rockets in astronomy' Herbert Friedman; 11. Early radio astronomy Woodruff T. Sullivan III; Appendix: The world's largest telescopes, 1850-1950 Barbara L. Welther; Illustrations: acknowledgements and sources; Index.

  14. Astronomy Education Challenges in Egypt

    NASA Astrophysics Data System (ADS)

    El Fady Beshara Morcos, Abd

    2015-08-01

    One of the major challenges in Egypt is the quality of education. Egypt has made significant progress towards achieving the Education for All and the Millennium Development Goals (MDGs). Many associations and committees as education reform program and education support programs did high efforts in supporting scientific thinking through the scientific clubs. The current state of astronomical education in Egypt has been developed. Astronomy became a part in both science and geography courses of primary, preparatory and secondary stages. Nowadays the Egyptian National Committee for Astronomy, put on its shoulders the responsibility of revising of astronomy parts in the education courses, beside preparation of some training programs for teachers of different stages of educations, in collaboration with ministry of education. General lectures program has been prepared and started in public places , schools and universities. Many TV and Radio programs aiming to spread astronomical culture were presented. In the university stage new astronomy departments are established and astrophysics courses are imbedded in physics courses even in some private universities.

  15. A database of phase calibration sources and their radio spectra for the Giant Metrewave Radio Telescope

    NASA Astrophysics Data System (ADS)

    Lal, Dharam V.; Dubal, Shilpa S.; Sherkar, Sachin S.

    2016-12-01

    We are pursuing a project to build a database of phase calibration sources suitable for Giant Metrewave Radio Telescope (GMRT). Here we present the first release of 45 low frequency calibration sources at 235 MHz and 610 MHz. These calibration sources are broadly divided into quasars, radio galaxies and unidentified sources. We provide their flux densities, models for calibration sources, ( u, v) plots, final deconvolved restored maps and clean-component lists/files for use in the Astronomical Image Processing System ( aips) and the Common Astronomy Software Applications ( casa). We also assign a quality factor to each of the calibration sources. These data products are made available online through the GMRT observatory website. In addition we find that (i) these 45 low frequency calibration sources are uniformly distributed in the sky and future efforts to increase the size of the database should populate the sky further, (ii) spectra of these calibration sources are about equally divided between straight, curved and complex shapes, (iii) quasars tend to exhibit flatter radio spectra as compared to the radio galaxies or the unidentified sources, (iv) quasars are also known to be radio variable and hence possibly show complex spectra more frequently, and (v) radio galaxies tend to have steeper spectra, which are possibly due to the large redshifts of distant galaxies causing the shift of spectrum to lower frequencies.

  16. Astronomy in Syria

    NASA Astrophysics Data System (ADS)

    Al-Mousli, A. T.

    2006-11-01

    Syria has been involved in the field of astronomy since 1997, when Prof. F.R. QUERCI, France, visited Syria and made a presentation on the International NORT project; (NORT: the Network of Oriental Robotic Telescope), which was a selected project of the sixth United Nations/ European Space Agency Workshop on Basic Space Science (document no. A/AC.105/657 dated 13/12/1996). NORT aims to establish a robotic telescope network on high mountain peaks around the Tropic of Cancer, from Morocco in the west to the desert of China in the east. The purposes for establishing this network are technical and educational. The General Organization of Remote Sensing (GORS) has carried out a pilot study using remote sensing techniques and has selected four sites in order to determine the best location for the astronomical observatory the within NORT programme. Following this project, GORS decided to establish an office for astronomical studies, one of the earliest works of GORS in astronomy was an initiative to establish a planetarium within the GORS campus, to accommodate approximately 120 observers. A contest to choose the best planetarium design, for the Arab World, took place at GORS.

  17. Astronomy Books of 1985.

    ERIC Educational Resources Information Center

    Mercury, 1986

    1986-01-01

    Provides annotated listing of books in 16 areas: (1) amateur astromony; (2) children's books; (3) comets; (4) cosmology; (5) education in astronomy; (6) general astronomy; (7) history of astronomy; (8) life in the universe; (9) miscellaneous; (10) physics and astronomy; (11) pseudo-science; (12) space exploration; (13) stars and stellar evolution;…

  18. TeachAstronomy.com - Digitizing Astronomy Resources

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  19. Service Learning in Introductory Astronomy

    ERIC Educational Resources Information Center

    Orleski, Michael

    2013-01-01

    Service learning is a method of instruction where the students in a course use the course's content in a service project. The service is included as a portion of the students' course grades. During the fall semester 2010, service learning was incorporated into the Introduction to Astronomy course at Misericordia University. The class had eight…

  20. Laboratory Activities for Introductory Astronomy

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1973-01-01

    Presents sample laboratory activities designed for use in astronomy teaching, including naked eye observations, instrument construction, student projects, and cloudy weather activities. Appended are bibliographies of journal articles and reference books and lists of films, laboratory manuals, and distributors of apparatus and teaching aids. (CC)

  1. In Brief: Launch of astronomy year 2009

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-01-01

    The International Year of Astronomy (IYA2009) will involve 135 nations and thousands of events around the world. In addition to opening ceremonies in Paris on 15-16 January and in many other countries during January and February, other planned events include the Cosmic Diary project about the daily lives of full-time astronomers; the 365 Days of Astronomy project to publish one podcast per day during the entire year; and the 100 Hours of Astronomy project on 2-5 April, which includes the goal of having as many people as possible look through a telescope. Also, the Dark Skies Awareness project will help to raise awareness of light pollution. The International Astronomical Union and the United Nations Educational, Scientific, and Cultural Organization launched IYA2009 under the theme, ``The universe, yours to discover.'' For more information, visit http://www.astronomy2009.org.

  2. Final report for the Chautauqua Radio Workshop Project. July 1, 1980-October 30, 1981

    SciTech Connect

    Renz, B.

    1982-01-25

    Energy conservation education must reach millions of Americans in order to see any real and immediate decrease in energy consumption. Since our society gets much of its information from the media, this seems like a most effective vehicle for disseminating energy conservation information to the American Public. Radio is listened to by the vast majority of Americans each day of their lives. Radio as a communications medium is an extremely cost effective method of mass communication and education, and is perceived as a personal medium which has great potential to affect a change in the daily energy consumption habits of the public. Call-in radio programs centering around energy conservation are an effective method of presenting informative, energy education programming that provide instantaneous access for listener/consumer participation. The linking of available telephone and radio technology (via call-in radio shows) allows people all over the US, including remote rural areas, access to the latest energy conservation information and renewable energy technolgy.

  3. Community Participation, Cultural Discourse, and Health Education Projects in Developing Areas: The Case of the Radio Communication Project in Nepal

    ERIC Educational Resources Information Center

    Linn, J. Gary

    2008-01-01

    In this article, the author comments on the article by Dutta and Basnyat (see EJ802883) that provides an insightful and comprehensive critique of a United States Agency for International Development (USAID) entertainment-education program, The Radio Communication Program (RCP) in Nepal, which has been reported to be highly participatory. Despite…

  4. Multiwavelength astronomy and big data

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    Two major characteristics of modern astronomy are multiwavelength (MW) studies (fromγ-ray to radio) and big data (data acquisition, storage and analysis). Present astronomical databases and archives contain billions of objects observed at various wavelengths, both galactic and extragalactic, and the vast amount of data on them allows new studies and discoveries. Astronomers deal with big numbers. Surveys are the main source for discovery of astronomical objects and accumulation of observational data for further analysis, interpretation, and achieving scientific results. We review the main characteristics of astronomical surveys, compare photographic and digital eras of astronomical studies (including the development of wide-field observations), describe the present state of MW surveys, and discuss the Big Data in astronomy and related topics of Virtual Observatories and Computational Astrophysics. The review includes many numbers and data that can be compared to have a possibly overall understanding on the Universe, cosmic numbers and their relationship to modern computational facilities.

  5. Apollo-Soyuz test project. Volume 1: Astronomy, earth atmosphere and gravity field, life sciences, and materials processing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The joint U.S.-USSR experiments and the U.S. conducted unilateral experiments performed during the Apollo Soyuz Test Project are described. Scientific concepts and experiment design and operation are discussed along with scientific results of postflight analysis.

  6. Amateur Astronomy in Armenia: Current Situation

    NASA Astrophysics Data System (ADS)

    Buniatyan, Rouben; Melikyan, Gagik

    2015-07-01

    This report describes the current situation about the amateur astronomy in Armenia and briefly outlines the activities of "Goodricke John" amateur astronomers NGO in 2013 and 2014. Particular attention is paid to the project supported by Ministry of Education for organization of open classes on astronomy and practical stargazing exercises in schools. Similarly, the report highlights the projects developed with and funded by the RA Ministry of Defense, which enabled organization of stargazing exercises in several military units in Armenia in August 2014.

  7. Astronomy all the time for everybody

    NASA Astrophysics Data System (ADS)

    Grigore, Valentin

    2015-08-01

    General contextCommunicating astronomy with the public must be done all year and with all community members using all the available methods to promote the all aspects of astronomy: education, science, research, new technologies, dark-sky protection, astrophotography, mythology, astropoetry, astro arts and music.An annual calendarTwo aspect must be taken in consideration when create a calendar of activity:- astronomical events (eclipses, meteor showers, comets, etc.)- international and local astronomical events: Global Astronomy Months, Astronomy Day, Globe at Night, ISAN, public activitiesCommunicating astronomy with the whole communityA description of the experience of the author organizing over 500 events in 30 years of activity including all the community members: general public, students, teachers, artists, authorities, people with disabilities, minor and adult prisoners, etc.An experience of seven years as TV producer of the astronomy TV show “Ùs and the Sky” is presented.Promotion of the activityThe relation with the mass-media is an important aspect communicating astronomy with the public.Mass-media between rating and correct information of the public.The role of the cooperation with the community in astronomy projectsA successful model: EURONEAR project

  8. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    DTIC Science & Technology

    2015-09-02

    Emission (STARGATE) project, a public-private partnership between UTB’s Center for Advanced Radio Astronomy and SpaceX , focused on RF technology...Corporation ( SpaceX ) to build a commercial orbital launch facility in South Texas. As a result of interactions between SpaceX engineers and LoFASM students...and faculty, SpaceX and CARA have joined forces to create the Spacecraft Tracking and Astronomical Research into Gigahertz Astrophysical

  9. Radio JOVE: Science Education Partnering Universities with Middle and High Schools

    NASA Astrophysics Data System (ADS)

    Villarreal, M.; Higgins, C.; Cockerham, C.; Thieman, J.

    2005-05-01

    The Radio JOVE project (radiojove.gsfc.nasa.gov) began over six years ago as an NASA education-centered program to inspire school students' interest in space science through hands-on radio astronomy. Students build a radio receiver and antenna kit capable of receiving Jovian, solar, and galactic emissions at a frequency of 20.1 MHz. The Radio JOVE project has made it possible to monitor real-time, research quality, spectrograph data and audio from professional radio telescopes in Florida (ufro1.astro.ufl.edu) and Hawaii (jupiter.wcc.hawaii.edu) using standard web browsers and/or freely downloadable software (Radio-Skypipe software, radiosky.com). Middle Tennessee State University (MTSU) has created a Radio JOVE telescope online (physics.mtsu.edu/~mtro) in order to improve school participation and add to the geographical coverage for observations. We are currently working with West End Middle School in Nashville to have students learn the process of science through observations, testing, analyzing, and archiving data. Using the Radio JOVE project we will attempt to improve students' interest and literacy in science; we will highlight quantitative data on students and learning outcomes. We hope this can lead to a long-term partnership in education between MTSU and local middle and secondary schools.

  10. UAS in the NAS Project: Large-Scale Communication Architecture Simulations with NASA GRC Gen5 Radio Model

    NASA Technical Reports Server (NTRS)

    Kubat, Gregory

    2016-01-01

    This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.

  11. NAOJ's activities on Astronomy for Development: Aiding Astronomy Education in Developing Nations

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Yoshida, F.

    2015-03-01

    We summarize NAOJ's efforts to promote astronomy in developing nations. The Office of International Relations, collaborations with the Office of Public Outreach at NAOJ and with the East Asia Core Observatories Association (EACOA), has engaged children, students and educators about astronomy development in the Asia-Pacific region. In particular, we introduce ``You are Galileo!`` project, which is a very well received astronomy education program for children. We also report on a continuing effort by the Japanese Government in support of astronomy programs in the developing nations.

  12. THE COMPACT, TIME-VARIABLE RADIO SOURCE PROJECTED INSIDE W3(OH): EVIDENCE FOR A PHOTOEVAPORATED DISK?

    SciTech Connect

    Dzib, Sergio A.; Rodriguez-Garza, Carolina B.; Rodriguez, Luis F.; Kurtz, Stan E.; Loinard, Laurent; Zapata, Luis A.; Lizano, Susana

    2013-08-01

    We present new Karl G. Jansky Very Large Array (VLA) observations of the compact ({approx}0.''05), time-variable radio source projected near the center of the ultracompact H II region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of {alpha} = 1.3 {+-} 0.3 (S{sub {nu}}{proportional_to}{nu}{sup {alpha}}). This spectral index and the brightness temperature of the source ({approx}6500 K) suggest that we are most likely detecting partially optically thick free-free radiation. The radio source is probably associated with the ionizing star of W3(OH), but an interpretation in terms of an ionized stellar wind fails because the detected flux densities are orders of magnitude larger than expected. We discuss several scenarios and tentatively propose that the radio emission could arise in a static ionized atmosphere around a fossil photoevaporated disk.

  13. Astronomy Education Under Dark Skies

    NASA Astrophysics Data System (ADS)

    Cecylia Molenda-Zakowicz, Joanna

    2015-08-01

    We have been providing professional support for the high school students and the astronomy teachers since 2007. Our efforts include organizing astronomy events that take from several hours, like, e.g., watching the transit of Venus, to several days, like the workshops organized in the framework of the projects 'School Workshops on Astronomy' (SWA) and 'Wygasz'.The SWA and Wygasz workshops include presentations by experts in astronomy and space science research, presentations prepared by students being supervised by those experts, hands-on interactive experience in the amateur astrophotography, various pencil-and-paper exercises, and other practical activities. We pay particular attention to familiarize the teachers and students with the idea and the necessity of protecting the dark sky. The format of these events allows also for some time for teachers to share ideas and best practices in teaching astronomy.All those activities are organized either in the Izera Dark-Sky Park in Poland or in other carefuly selected locations in which the beauty of the dark night sky can be appreciated.

  14. RadioSource.NET: Case-Study of a Collaborative Land-Grant Internet Audio Project.

    ERIC Educational Resources Information Center

    Sohar, Kathleen; Wood, Ashley M.; Ramirez, Roberto

    2002-01-01

    Provides a case study of RadioSource.NET, an Internet broadcasting venture developed collaboratively by land-grant university communication departments to share resources, increase online distribution, and promote access to agricultural and natural and life science research. Describes planning, marketing, and implementation processes. (Contains 18…

  15. Health Education through Interactive Radio: A Child-to-Child Project in Bolivia.

    ERIC Educational Resources Information Center

    Fryer, Michelle L.

    1991-01-01

    Because older children in developing countries often assume responsibility for the care of their younger siblings, health education programs are aimed to these older children. An interactive radio health curriculum was developed in Bolivia that includes lessons on personal hygiene, rehydration, home sanitation, and nutrition. (JOW)

  16. The Radio Communication Project in Nepal: A Culture-Centered Approach to Participation

    ERIC Educational Resources Information Center

    Dutta, Mohan Jyoti; Basnyat, Iccha

    2008-01-01

    Considerable research has been conducted on the topic of entertainment-education (EE), the method of using entertainment platforms such as popular music, radio, and television programming to diffuse information, attitudes, and behaviors via role modeling. A significant portion of the recently published EE literature has used the case of the Radio…

  17. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  18. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  19. Highschool astronomy research workshop in Thailand and how it transforms Thai astronomy education

    NASA Astrophysics Data System (ADS)

    Tangmatitham, Matipon

    2017-01-01

    The National Astronomical Research Institute of Thailand (NARIT) have launched the program "Advance Teacher Training Workshop" that aims to introduce both the students and astronomy teacher alike to the nature of critical thinking in science via hands on experience in astronomy projects. Students and accompanying teachers are participated in 5 days workshop in which each of them must select an individual astronomy research project. The project is then carried out on their own for the next 6 months, after which their works are presented in a conference. Progress is monitored and extra aid is delivered as needed via the use of social media. Over a hundred projects have been completed under this program. Follow up study have suggests that this workshop has shown to be quite successful at improving critical thinking skills in participants. As the program became more popular, other schools began to follow. To support the growing interest, we have also launched the "Thai Astronomical Society: student session", a highschool astronomy conference for anyone who participated or interested in astronomy related projects. Via these stages we are able to secure a permanent foothold in Thai astronomy education and inspire new generations to participate in astronomy projects.

  20. Successful Innovative Methods in Introducing Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Chattejee, T. K. C.

    2006-08-01

    Innovating new informative methods to induce interest in students has permitted us to introduce astronomy in several universities and institutes in Mexico. As a prelude, we gave a popular course in the history of astronomy. This was very easy as astronomy seems to be the most ancient of sciences and relating the achievements of the ancient philosophers/scientists was very enlightening. Then we put up an amateur show of the sky every week (subject to climatic conditions for observability). We showed how to take photographs and make telescopic observations. We enlightened the students of the special missions of NASA and took them to museums for space exploration. We gave a popular seminar on "Astrodynamics," highlighting its importance. We gave a series of introductory talks in radio and T.V. Finally we exposed them to electronic circulars, like "Universe Today" and "World Science." The last mentioned strategy had the most electrifying effect. We may not have been successful without it, as the students began to take the matter seriously only after reading numerous electronic circulars. In this respect, these circulars are not only informative about the latest news in astronomy, but highlight the role of astronomy in the modern world. Without it, students seem to relate astronomy to astrology; it is due to this misconception that they are not attracted to astronomy. Students were hardly convinced of the need for an astronomy course, as they did not know about the scope and development of the subject. This awakened the interests of students and they themselves proposed the initiation of an elementary course in astronomy to have a feel of the subject. Later on they proposed a course on "Rocket Dynamics." We will discuss our methods and their impact in detail.

  1. Astronomy in the City for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Garc, Beatriz

    2016-10-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. ``Astronomy in the city'' is an important part of NASE (Network for Astronomy School Education) (Ros & Hemenway 2012). In each NASE course we introduce a ``working group session'' chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair. After more than 5 years using this method we visited and discovered several examples of astronomy in the city: •Astronomy in ancient typical clothes. •Archaeological temples oriented according to the sunrise or set. •Petroglyphs with astronomical meaning. •Astronomy in monuments. •Sundials. •Oriented Colonial churches. •Astronomy in Souvenirs. In any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus ``what is the best part in order to be seat in the shadow during the journey?'' The result is motivation to go with ``open eyes'' when they are in the street and they try to get more and more information about their surroundings. In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.

  2. Social Astronomy: Cooperating with Local Community Networks

    NASA Astrophysics Data System (ADS)

    Bará, S.

    2009-11-01

    When the IYA2009 Canada Committee, chaired by Jim Hesser, first came together, it established a vision: "to offer an engaging astronomy experience to every person in Canada, and to cultivate partnerships that sustain public interest in astronomy". We called the engaging astronomy experience a "Galileo Moment". We knew that a Galileo Moment could be a first look through a telescope at the Moon, Jupiter or Saturn. But we especially wanted to connect with new audiences, not just the same people who always came to astronomy events. So we knew that a Galileo Moment could equally well be the intellectual or emotional effect of an astronomy-inspired piece of art or music. So far in 2009, over 10 000 Canadians have experienced a Galileo Moment of the latter kind, thanks to the Tafelmusik Baroque Orchestra's The Galileo Project.

  3. Encyclopedia of the History of Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2013-06-01

    Preface; Part I. General Astronomy: 1. Ancient (pre-telescopy) astronomy; 2. Period overviews; 3. International Astronomical Union; Part II. The Solar System: 4. Overview - the Solar System; 5. Sun, Earth, and Moon; 6. Inner Solar System; 7. Giant planets; 8. Smaller objects; 9. Exoplanets; Part III. Stars: 10. Stars considered individually; 11. Stars considered as a group; 12. Types of stars; Part IV. Galaxies and Cosmology: 13. Milky Way; 14. Other galaxies and cosmology; Part V. General Astronomical Tools and Techniques (After 1600); Part VI. Optical Telescopes and Observatories: 15. Overview - optical telescopes and observatories; 16. Optical observatories; Part VII. Radio Telescopes, Observatories and Radar: 17. Overview - radio telescopes and observatories; 18. Early radio astronomy and observatories; 19. Later radio observatories; Part VIII. Other Ground-Based Observatories; Part IX. Solar System Exploration Spacecraft: 20. Overview - Solar System exploration spacecraft; 21. Individual Solar System spacecraft; Part X. Selected Observatory Spacecraft: 22. Overview - spacecraft observatories; 23. Individual spacecraft observatories; Name index; Subject index.

  4. Music and Astronomy Under the Stars 2009

    NASA Astrophysics Data System (ADS)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  5. Promoting undergraduate involvement through the University of Arizona Astronomy Club

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Austin, Carmen; Noyes, Matthew; Calahan, Jenny; Lautenbach, Jennifer; Henrici, Andrew; Ryleigh Fitzpatrick, M.; Shirley, Yancy L.

    2016-01-01

    The University of Arizona Astronomy Club is devoted to undergraduate success in astronomy, physics, planetary sciences and many other related fields. The club promotes many undergraduate opportunities; research projects, participating in telescope observational runs, sponsoring conference attendance as well as several public outreach opportunities. Research projects involving exoplanet transit observations and radio observations of cold molecular clouds allow undergraduates to experience data collection, telescope operations, data reduction and research presentation. The club hosts many star parties and various other public outreach events for the Tucson, Arizona location. The club often constructs their own outreach materials and structures. The club is currently working on creating a portable planetarium to teach about the night sky on the go even on the cloudiest of nights. The club is also working on creating a binocular telescope with two 10" mirrors as a recreation of the local Large Binocular Telescope for outreach purposes as well. This is a club that strives for undergraduate activity and involvement in a range of academic and extracurricular activates, and is welcoming to all majors of all levels in hopes to spark astronomical interest.

  6. The Moon as a calibrator of linearly polarized radio emission for the SPOrt project

    NASA Astrophysics Data System (ADS)

    Poppi, S.; Carretti, E.; Cortiglioni, S.; Krotikov, V. D.; Vinyajkin, E. N.

    2002-03-01

    The Moon could be the best external calibrator for the Sky Polarization Observatory (SPOrt) experiment, providing the highest polarized signal at large angular scales (>=7 °) in the 22-90 GHz range. Maps of linearly polarized lunar radio emission have been realized at 8.3 GHz with the 32-m radiotelescope of IRA-CNR (Medicina-Italy) at full Moon, new Moon, first and last quarter. We derived estimates of spectral and time properties of both the intensity and the linear polarization of the Moon radio emission, taking into account the radiative transfer of heat in lunar soil and the surface roughness. A comparison between predictions of the theory and observations is presented. .

  7. The National Astronomy Consortium Summer Student Research Program at NRAO-Socorro: Year 2 structure

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth A.; Sheth, Kartik; Giles, Faye; Perez, Laura M.; Arancibia, Demian; Burke-Spolaor, Sarah

    2016-01-01

    I will present a summary of the program structure used for the second year of hosting a summer student research cohort of the National Astronomy Consortium (NAC) at the National Radio Astronomy Observatory in Socorro, NM. The NAC is a program partnering physics and astronomy departments in majority and minority-serving institutions across the country. The primary aim of this program is to support traditionally underrepresented students interested in pursuing a career in STEM through a 9-10 week summer astronomy research project and a year of additional mentoring after they return to their home institution. I will describe the research, professional development, and inclusivity goals of the program, and show how these were used to create a weekly syllabus for the summer. I will also highlight several unique aspects of this program, including the recruitment of remote mentors for students to better balance the gender and racial diversity of available role models for the students, as well as the hosting of a contemporaneous series of visiting diversity speakers. Finally, I will discuss structures for continuing to engage, interact with, and mentor students in the academic year following the summer program. A goal of this work going forward is to be able to make instructional and organizational materials from this program available to other sites interested in joining the NAC or hosting similar programs at their own institution.

  8. Organizations and Strategies in Astronomy Vol. 7

    NASA Astrophysics Data System (ADS)

    Heck, Andre

    2006-12-01

    This book is the seventh volume under the title Organizations and Strategies in Astronomy (OSA). The OSA series covers a large range of fields and themes: in practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. The chapters of this book are dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, strategies for development, operational techniques, observing practicalities, journal and magazine profiles, public outreach, publication studies, relationships with the media, research communication, series of conferences, evaluation and selection procedures, research indicators, national specificities, contemporary history, and so on. The experts contributing to this volume have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and sometimes enlightening 'lessons learned' sections. The book concludes with an updated bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with the society at large. This volume will be most usefully read by researchers, editors, publishers, librarians, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space sciences.

  9. Organizations and Strategies in Astronomy, volume 4

    NASA Astrophysics Data System (ADS)

    Heck, A.

    2003-10-01

    This book is the fourth volume under the title Organizations and Strategies in Astronomy (OSA). These OSA Books are intended to cover a large range of fields and themes. In practice, one could say that all aspects of astronomy-related life and environment are considered in the spirit of sharing specific expertise and lessons learned. This book offers a unique collection of chapters dealing with socio-dynamical aspects of the astronomy (and related space sciences) community: characteristics of organizations, society activities, strategies for development, operational techniques, observing practicalities, environmental constraints, educational policies, public outreach, journal and magazine profiles, publication studies, electronic-media problematics, research communication, evaluation and selection procedures, research indicators, national policies and specificities, expertise sharing, contemporary history, and so on. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information and sometimes enlightening 'lessons learned' sections. The book concludes with an updated bibliography of publications related to socio-astronomy and to the interactions of the astronomy community with the society at large. This book will be most usefully read by researchers, teachers, editors, publishers, librarians, sociologists of science, research planners and strategists, project managers, public-relations officers, plus those in charge of astronomy-related organizations, as well as by students aiming at a career in astronomy or related space science. Link: http://www.wkap.nl/prod/b/1-4020-1526-7

  10. Europe Unveils 20-Year Plan for Brilliant Future in Astronomy

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute

  11. Development and Use of Astronomy-Like Devices for UFO Monitoring: A Research Project for the Study of UFO Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    A research project aimed at studying unidentified atmospheric `nocturnal lights' in world areas of recurrence is presented. In such a context targets are considered and treated on a par with celestial and/or atmospheric objects having no fixed coordinates. Such a project involves the use of a battery of 20 mini-telescopes which can be interchangeable with wide-field lenses. Both types of light collectors, which are intended to work in the near-IR, optical and near-UV ranges, are planned to be connected to detectors for CCD imaging and fast photon-counting photometry, to objective-prisms for low-resolution spectroscopy and to grism-slit spectrographs for high-resolution spectroscopy. The overall measurement instrumental platform is intended to be guided simultaneously by a radar, by an IR alarm sensor and by a laser telemetric device in order to allow physical scientists to search, point and track a given bright flying object which is characterized supposedly by random motions. Finally, physical informations which are expected to come out from data analysis are presented and discussed in detail.

  12. Nontechnical Astronomy Books of 1989.

    ERIC Educational Resources Information Center

    Mercury, 1990

    1990-01-01

    Presented are 126 reviews. Categories include amateur astronomy, children's books, computers and astronomy, cosmic rays, cosmology, education in astronomy, galaxies, general astronomy, history of astronomy, life in the universe, physics and astronomy, pseudoscience, quasars and active galaxies, reference, solar system, space exploration, stars and…

  13. The new 64m Sardinia Radio Telescope and VLBI facilities in Italy

    NASA Astrophysics Data System (ADS)

    Giovannini, Gabriele; Feretti, Luigina; Prandoni, Isabella; Giroletti, Marcello

    2015-08-01

    The Sardinia Radio Telescope (SRT) is a new major radio astronomical facility available in Italy for single dish and interferometric observations. It represents a flexible instrument for Radio Astronomy, Geodynamical studies and Space Science, either in single dish or VLBI mode. The SRT combines a 64m steerable collecting area, one of the largest all over the World with state-of-the-art technology (including an active surface) to enable high efficiency observations up to the 3-mm band.This new radio telescope together with the two 32m antennas in Noto and Medicina can be used for VLBI observations on a national basis (VLBIT). Data can be correlated in a short time (in real time soon) thanks to fiber-optics connection among the radio telescopes and the software correlator installed at the Radio Astronomy Institute in Bologna (IRA/INAF). In the poster I will present capabilities of the SRT telescope as well as the VLBIT project and I will shortly discuss the scientific prospects of the VLBIT.

  14. Astronomy in Iran

    NASA Astrophysics Data System (ADS)

    Sobouti, Y.

    2006-08-01

    Institute for Advanced Studies in Basic Sciences, Zanjan, Iran In spite of her renowned pivotal role in the advancement of astronomy on the world scale during 9th to 15th centuries, Iran's rekindled interest in modern astronomy is a recent happening. Serious attempts to introduce astronomy into university curricula and to develop it into a respectable and worthwhile field of research began in the mid 60's. The pioneer was Shiraz University. It should be credited for the first few dozens of astronomy- and astrophysics- related research papers in international journals, for training the first half a dozen of professional astronomers and for creating the Biruni Observatory. Here, I take this opportunity to acknowledge the valuable advice of Bob Koch and Ed Guinan, then of the University of Pennsylvania, in the course of the establishment of this observatory. At present the astronomical community of Iran consists of about 65 professionals, half university faculty members and half MS and PhD students. The yearly scientific contribution of its members has, in the past three years, averaged to about 15 papers in reputable international journals, and presently has a healthy growth rate. Among the existing observational facilities, Biruni Observatory with its 51 cm Cassegrain, CCD cameras, photometers and other smaller educational telescopes, is by far the most active place. Tusi Observatory of Tabriz University has 60 and 40 cm Cassegrains, and a small solar telescope. A number of smaller observing facilities exist in Meshed, Zanjan, Tehran, Babol and other places. The Astronomical Society of Iran (ASI), though some 30 years old, has expanded and institutionalized its activities since early 1990's. ASI sets up seasonal schools for novices, organizes annual colloquia and seminars for professionals and supports a huge body of amateur astronomers from among high school and university students. Over twenty of ASI members are also members of IAU and take active part in its

  15. Astronomy Education in Greece

    NASA Astrophysics Data System (ADS)

    Metaxa, M.

    Basic education is fundamental to higher education and scientific and technological literacy. We can confront the widespread adult ignorance and apathy about science and technology. Astronomy, an interdisciplinary science, enhances students' interest and overcomes educational problems. Three years ago, we developed astronomy education in these ways: 1. Summer School for School Students. (50 students from Athens came to the first Summer School in Astrophysics at the National Observatory, September 2-5, 1996, for lectures by professional astronomers and to be familiarized with observatory instruments. 2. Introducing Students to Research. (This teaches students more about science so they are more confident about it. Our students have won top prizes in European research contests for their studies of objects on Schmidt plates and computations on PCs.) 3. Hands-on Activities. (Very important because they bring students close to their natural environment. Activities are: variable-star observations (AAVSO), Eratosthenes project, solar-eclipse, sunspot and comet studies. 4. Contact with Professional Astronomers and Institutes. (These help students reach their social environment and motivate them as "science carriers". We try to make contacts at astronomical events, and through visits to appropriate institutions.) 5. Internet Programs. (Students learn about and familiarize themselves with their technological environment.) 6. Laboratory exercises. (Students should do science, not just learn about it We introduced the following lab. exercises: supernova remnants, galaxy classification, both from Schmidt plates, celestial sphere.

  16. Active Astronomy Roadshow Haiti

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Oram, Kathleen; Alabre, Dayana; Douyon, Ralph; UMass Lowell Haiti Development Studies Center

    2016-01-01

    College-age Haitian students working with advisors and volunteers from UMass Lowell in 2015 developed and tested an activity-based K-8 curriculum in astronomy, space, and earth science. Our partner school is located in Les Cayes, Haiti a city where only 65% of children attend school, and only half of those will complete 6th grade. Astronomy provides an accessible and non-intimidating entry into science, and activity-based learning contrasts with the predominant traditional teaching techniques in use in Haiti, to reach and inspire a different cohort of learners. Teachers are predominantly women in Haiti, so part of the effort involves connecting them with scientists, engineers and teacher peers in the US. As a developing nation, it is vital for Haitian (as for all) children to grow up viewing women as leaders in science. Meanwhile in the US, few are aware of the reality of getting an education in a 3rd world nation (i.e. most of the world), so we also joined with teachers in Massachusetts to give US school children a peek at what daily life is like for their peers living in our vibrant but impoverished neighbor. Our Haitian partners are committed to helping their sister-schools with curriculum and educator workshops, so that the overall quality of education can rise, and not be limited to the very few schools with access to resources. We will describe the activites, motivation, and and the lessons learned from our first year of the project.

  17. Acousto-optic spectrometer for radio astronomy

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1980-01-01

    A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

  18. Tools of Radio Astronomy, 5th edition

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas L.; Rohlfs, Kristian; Huttemeister, Susanne

    2012-12-01

    New 5th corrected edition of the book http://adsabs.harvard.edu/abs/2009tra..book.....W in Russian, translated by O. Verkhodanov and S. Trushkin, editing S.A. Trushkin from Special astrophysical observatory RAS. This edition contains the translation of the 5th Springer edition of 2009 and new additional chapter (wrote by authors) of Solutions of the problems.

  19. The Early Years of Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Sullivan, W. T.

    2005-09-01

    Frontispiece; Preface; 1. The earliest years W. T. Sullivan, III, G. Reber and J. L. Greenstein; 2. Australia E. G. Bowen, W. N. Christiansen, F. J. Kerr, B. Y. Mills and R. N. Bracewell; 3. England A. C. B. Lovell, R. Hanbury Brown, F. G. Smith and P. A. G. Scheuer; 4. The rest of the world A. E. Salomonovich, V. L. Ginzburg, J. F. Denisse, A. E. Covington and H. Tanaka; 5. Broader reflections D. O. Edge, W. H. McCrea, H. C. van de Hulst and O. Gingerich; Bibliographical notes; Name index; Subject index.

  20. Radio Astronomy Antennas by the Thousands

    NASA Astrophysics Data System (ADS)

    Schultz, Roger

    2004-06-01

    Large number of microwave antennas of size and surface accuracy appropriate for the Square Kilometre Array (SKA) have not been manufactured previously. To minimize total cost, the design needs to be much more carefully considered and optimized than would be affordable for a small number of antennas. The required surface area requires new methods of manufacture and production-line type assembly to be considered. A blend of past antenna construction technology, creativity, and new technology is needed to provide the best possible telescope for the proposed SKA science goals. The following key concepts will be discussed with respect to reflector antennas and many supporting photographs, figures and drawings will be included. Surface and supporting structure comparison of panels with a one-piece shell as produced by hydroforming.