Science.gov

Sample records for radio channel measurements

  1. A radio frequency device for measurement of minute dielectric property changes in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Song, Chunrong; Wang, Pingshan

    2009-01-01

    We demonstrate a sensitive radio frequency (rf) device to detect small dielectric property changes in microfluidic channel. The device consists of an on-chip Wilkinson power divider and a rat-race hybrid, which are built with planar microstrip lines and thin film chip resistors. Interference is used to cancel parasitic background signals. As a result, the measurement sensitivity is improved by more than 20 dB compared with conventional transmission lines. Compared with an ultrasensitive slot antenna/cuvette assembly [K. M. Taylor and D. W. van der Weide, IEEE Trans. Microwave Theory Tech. 53, 1576 (2005)], the proposed rf device is two times more sensitive.

  2. Radio Channel Simulator (RCSM)

    2007-01-31

    This is a simulation package for making site specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is intended for use with wireless network simulation packages and to support wireless network deployments.

  3. Laboratory measurements and a theoretical analysis of the TCT fading channel radio system. [Tone Calibrated Technique

    NASA Technical Reports Server (NTRS)

    Rafferty, William; Anderson, John B.; Saulnier, Gary J.; Holm, John R.

    1987-01-01

    This paper documents the laboratory and theoretical performance of a pilot-aided digital radio system. The technique considered transmits a midband pilot tone to improve the receiver data detection performance in a multipath fading channel and is referred to as the tone calibrated technique (TCT). The performance of a 860 MHz prototype system carrying 2.4 kbit/s data under Rician fading conditions is reported. Both experimental and analytical results show that the error floor experienced with nonpilot-aided transmission methods is effectively removed by the TCT scheme, resulting in significant performance gains at high signal-to-noise ratio values. The paper also examines the TCT system performance under typical operating conditions and presents a new analysis of the TCT theoretical error probability.

  4. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  5. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  6. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  7. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  8. 47 CFR 22.757 - Channels for basic exchange telephone radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for basic exchange telephone radio... CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service Basic Exchange Telephone Radio Systems § 22.757 Channels for basic exchange telephone radio systems. The channels listed in § 22.725...

  9. Radio Science Measurements with Suppressed Carrier

    NASA Technical Reports Server (NTRS)

    Asmar, Sami; Divsalar, Dariush; Oudrhiri, Kamal

    2013-01-01

    Radio Science started when it became apparent with early Solar missions that occultations by planetary atmospheres would affect the quality of radio communications. Since then the atmospheric properties and other aspects of planetary science, solar science, and fundamental physics were studied by scientists. Radio Science data was always extracted from a received pure residual carrier (without data modulation). For some missions, it is very desirable to obtain Radio Science data from a suppressed carrier modulation. In this paper we propose a method to extract Radio Science data when a coded suppressed carrier modulation is used in deep space communications. Type of modulation can be BPSK, QPSK, OQPSK, MPSK or even GMSK. However we concentrate mostly on BPSK modulation. The proposed method for suppressed carrier simply tries to wipe out data that acts as an interference for Radio Science measurements. In order to measure the estimation errors in amplitude and phase of the Radio Science data we use Cramer-Rao bound (CRB). The CRB for the suppressed carrier modulation with non-ideal data wiping is then compared with residual carrier modulation under the same noise condition. The method of derivation of CRB for non-ideal data wiping is an innovative method that presented here. Some numerical results are provided for coded system.

  10. Multimedia Transmission Over Cognitive Radio Channels Under Sensing Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, Chuang; Ozcan, Gozde; Gursoy, M. Cenk; Velipasalar, Senem

    2016-02-01

    This paper studies the performance of hierarchical modulation-based multimedia transmission in cognitive radio (CR) systems with imperfect channel sensing results under constraints on both transmit and interference power levels. Unequal error protection (UEP) of data transmission using hierarchical quadrature amplitude modulation (HQAM) is considered in which high priority (HP) data is protected more than low priority (LP) data. In this setting, closed-form bit error rate (BER) expressions for HP data and LP data are derived in Nakagami-$m$ fading channels in the presence of sensing errors. Subsequently, the optimal power control that minimizes weighted sum of average BERs of HP bits and LP bits or its upper bound subject to peak/average transmit power and average interference power constraints is derived and a low-complexity power control algorithm is proposed. Power levels are determined in three different scenarios, depending on the availability of perfect channel side information (CSI) of the transmission and interference links, statistical CSI of both links, or perfect CSI of the transmission link and imperfect CSI of the interference link. The impact of imperfect channel sensing decisions on the error rate performance of cognitive transmissions is also evaluated. In addition, tradeoffs between the number of retransmissions, the severity of fading, and peak signal-to-noise ratio (PSNR) quality are analyzed numerically. Moreover, performance comparisons of multimedia transmission with conventional quadrature amplitude modulation (QAM) and HQAM, and the proposed power control strategies are carried out in terms of the received data quality and number of retransmissions.

  11. Adaptation of the Electra Radio to Support Multiple Receive Channels

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  12. Radio occultation measurements of the lunar ionosphere.

    NASA Astrophysics Data System (ADS)

    Pluchino, S.; Schillirò, F.; Salerno, E.; Pupillo, G.; Maccaferri, G.; Cassaro, P.

    Radio occultation measurements by using interplanetary probes is a well known technique to obtain information on planetary atmospheres. To further understand the morphology of the lunar ionosphere we performed radio occultation experiments by using the radio sounding technique. This method mainly consists in the analisys of the effects produced on the radio wave transmitted from the spacecraft to the Earth when it crosses the atmosphere. The wave amplitude and phase undergo modifications that are correlated to the physical parameters - i.e. electron density - of the crossed medium. The first data set was obtained during the lunar occultations of the European probe SMART-1 shortly before impacting the lunar soil on September 3rd, 2006. During this experiment several radio occultation measurements of the signal transmitted by the spacecraft were performed in S and X band by using the 32 meters radiotelescopes (at Medicina and Noto) of the Istituto di Radioastronomia - Istituto Nazionale di Astrofisica. Further experiments were performed during lunar occultations of Saturn and Venus. On May 22nd and June 18th 2007 the Cassini spacecraft, orbiting Saturn, and the Venus Express spacecraft, orbiting Venus, respectively were occulted by the Moon. The variation of the Total Electron Content (TEC) measured by our instruments (˜ 1013 el/m2) on this occasion is in agreement with values of the electron number density acquired by in situ measuments of the US Apollo missions and the USSR Luna 19 and 22 probes.

  13. Radio plasma imager simulations and measurements

    NASA Astrophysics Data System (ADS)

    Green, J. L.; Benson, R. F.; Fung, S. F.; Taylor, W. W. L.; Boardsen, S. A.; Reinisch, B. W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Bougeret, J.-L.; Manning, R.; Meyer-Vernet, N.; Moncuquet, M.; Carpenter, D. L.; Gallagher, D. L.; Reiff, P. H.

    2000-01-01

    The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N_e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R_E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N_e values from 10^-1 to 10^5 cm^-3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.

  14. Cosmological measurements with forthcoming radio continuum surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Zhao, Gong-Bo; Bacon, David J.; Jarvis, Matt J.; Percival, Will J.; Norris, Ray P.; Röttgering, Huub; Abdalla, Filipe B.; Cress, Catherine M.; Kubwimana, Jean-Claude; Lindsay, Sam; Nichol, Robert C.; Santos, Mario G.; Schwarz, Dominik J.

    2012-08-01

    We present forecasts for constraints on cosmological models that can be obtained using the forthcoming radio continuum surveys: the wide surveys with the Low Frequency Array (LOFAR) for radio astronomy, the Australian Square Kilometre Array Pathfinder (ASKAP) and the Westerbork Observations of the Deep Apertif Northern Sky (WODAN). We use simulated catalogues that are appropriate to the planned surveys in order to predict measurements obtained with the source autocorrelation, the cross-correlation between radio sources and cosmic microwave background (CMB) maps (the integrated Sachs-Wolfe effect), the cross-correlation of radio sources with foreground objects resulting from cosmic magnification, and a joint analysis together with the CMB power spectrum and supernovae (SNe). We show that near-future radio surveys will bring complementary measurements to other experiments, probing different cosmological volumes and having different systematics. Our results show that the unprecedented sky coverage of these surveys combined should provide the most significant measurement yet of the integrated Sachs-Wolfe effect. In addition, we show that the use of the integrated Sachs-Wolfe effect will significantly tighten the constraints on modified gravity parameters, while the best measurements of dark energy models will come from galaxy autocorrelation function analyses. Using a combination of the Evolutionary Map of the Universe (EMU) and WODAN to provide a full-sky survey, it will be possible to measure the dark energy parameters with an uncertainty of {σ(w0) = 0.05, σ(wa) = 0.12} and the modified gravity parameters {σ(η0) = 0.10, σ(μ0) = 0.05}, assuming Planck CMB+SN (current data) priors. Finally, we show that radio surveys would detect a primordial non-Gaussianity of fNL= 8 at 1σ, and we briefly discuss other promising probes.

  15. Channel selection based on trust and multiarmed bandit in multiuser, multichannel cognitive radio networks.

    PubMed

    Zeng, Fanzi; Shen, Xinwang

    2014-01-01

    This paper proposes a channel selection scheme for the multiuser, multichannel cognitive radio networks. This scheme formulates the channel selection as the multiarmed bandit problem, where cognitive radio users are compared to the players and channels to the arms. By simulation negotiation we can achieve the potential reward on each channel after it is selected for transmission; then the channel with the maximum accumulated rewards is formally chosen. To further improve the performance, the trust model is proposed and combined with multi-armed bandit to address the channel selection problem. Simulation results validate the proposed scheme.

  16. New approaches in cellular radio systems using dynamic radio channel management

    NASA Astrophysics Data System (ADS)

    Yilmaz, Nusret; Ergul, F. R.

    2004-09-01

    New approaches are presented to facilitate dynamic radio bandwidth management for mobile communication systems. The aim is achieve an overall high level of QoS for both handoff calls and new calls. At the same time, the utilization of wireless network resources, i.e. the revenues earned by the operator. The simultaneous satisfaction of these two conflicting interests, under varying mobility and network traffic conditions, will be difficult. However, a balanced operation could be obtained by applying two novel approaches in system management. First, apriori information about possible handoffs, in the form of cell transition probabilities could be provided by the mobile, which is based on data collected by the mobile itself. This information is used to make handoff reservation requests in neighboring cells. Second, simultaneously controlling the radio resource reservation and new call admission to the system. This approach controls both the amount of reserved channels and the number of new calls admitted in a dynamic way. A theoretical analysis and a simulation have been used to study these approaches and it has been demonstrated that these approaches perform better then other reported approaches in the literature.

  17. Radio-controlled boat for measuring water velocities and bathymetry

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Bezak, Nejc; Sečnik, Matej

    2016-04-01

    Radio-controlled boat named "Hi3" was designed and developed in order to facilitate water velocity and bathymetry measurements. The boat is equipped with the SonTek RiverSurveyor M9 instrument that is designed for measuring open channel hydraulics (discharge and bathymetry). Usually channel cross sections measurements are performed either from a bridge or from a vessel. However, these approaches have some limitations such as performing bathymetry measurements close to the hydropower plant turbine or downstream from a hydropower plant gate where bathymetry changes are often the most extreme. Therefore, the radio-controlled boat was designed, built and tested in order overcome these limitations. The boat is made from a surf board and two additional small balance support floats. Additional floats are used to improve stability in fast flowing and turbulent parts of rivers. The boat is powered by two electric motors, steering is achieved with changing the power applied to left and right motor. Furthermore, remotely controlled boat "Hi3" can be powered in two ways, either by a gasoline electric generator or by lithium batteries. Lithium batteries are lighter, quieter, but they operation time is shorter compared to an electrical generator. With the radio-controlled boat "Hi3" we can perform measurements in potentially dangerous areas such as under the lock gates at hydroelectric power plant or near the turbine outflow. Until today, the boat "Hi3" has driven more than 200 km in lakes and rivers, performing various water speed and bathymetry measurements. Moreover, in future development the boat "Hi3" will be upgraded in order to be able to perform measurements automatically. The future plans are to develop and implement the autopilot. With this approach the user will define the route that has to be driven by the boat and the boat will drive the pre-defined route automatically. This will be possible because of the very accurate differential GPS from the Sontek River

  18. Design and Implementation of an Underlay Control Channel for Cognitive Radios

    SciTech Connect

    Daryl Wasden; Hussein Moradi; Behrouz Farhang-Boroujeny

    2012-11-01

    Implementation of any cognitive radio network requires an effective control channel that can operate under various modes of activity from the primary users. This paper reports the design and implementation of a filter bank multicarrier spread spectrum (FBMC-SS) system for use as the control channel in cognitive radio networks. The proposed design is based on a filtered multitone (FMT) implementation. Carrier and timing acquisition and tracking methods as well as a blind channel estimation method are developed for the proposed control channel. We also report an implementation of the proposed FBMC-SS system on a hardware platform; a FlexRIO FPGA module from National Instruments.

  19. Radio frequency sensing measurements and methods for location classification in wireless networks

    NASA Astrophysics Data System (ADS)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces

  20. A review of radio channel models for body centric communications

    NASA Astrophysics Data System (ADS)

    Cotton, Simon L.; D'Errico, Raffaele; Oestges, Claude

    2014-06-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing

  1. A review of radio channel models for body centric communications

    PubMed Central

    Cotton, Simon L; D'Errico, Raffaele; Oestges, Claude

    2014-01-01

    The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing

  2. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  3. Numerical characterization and modeling of subject-specific ultrawideband body-centric radio channels and systems for healthcare applications.

    PubMed

    Abbasi, Qammer Hussain; Sani, Andrea; Alomainy, Akram; Hao, Yang

    2012-03-01

    The paper presents a subject-specific radio propagation study and system modeling in wireless body area networks using a simulation tool based on the parallel finite-difference time-domain technique. This technique is well suited to model the radio propagation around complex, inhomogeneous objects such as the human body. The impact of different digital phantoms in on-body radio channel and system performance was studied. Simulations were performed at the frequency of 3-10 GHz considering a typical hospital environment, and were validated by on-site measurements with reasonably good agreement. The analysis demonstrated that the characteristics of the on-body radio channel and system performance are subject-specific and are associated with human genders, height, and body mass index. Maximum variations of almost 18.51% are observed in path loss exponent due to change of subject, which gives variations of above 50% in system bit error rate performance. Therefore, careful consideration of subject-specific parameters are necessary for achieving energy efficient and reliable radio links and system performance for body-centric wireless network.

  4. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  5. Multichannel broadcast based on home channel for cognitive radio sensor networks.

    PubMed

    Zeng, Fanzi; Tang, Yuting; Pu, Jianjie

    2014-01-01

    Considering the limited resources and the dynamic spectrum distribution in the cognitive radio sensor networks (CRSN), a half-duplex Multichannel broadcast protocol for CRSN is presented based on the home channel. This protocol maintains the networks topology only through the home channel, so there is no need for the public channel to transmit the control information and no need for the synchronization. After network initialization, node broadcasts data via home channel in half-duplex transmission way. The simulation results show that, compared with complete broadcast, the proposed protocol effectively reduces broadcast delay and overhead. PMID:25161397

  6. Multichannel broadcast based on home channel for cognitive radio sensor networks.

    PubMed

    Zeng, Fanzi; Tang, Yuting; Pu, Jianjie

    2014-01-01

    Considering the limited resources and the dynamic spectrum distribution in the cognitive radio sensor networks (CRSN), a half-duplex Multichannel broadcast protocol for CRSN is presented based on the home channel. This protocol maintains the networks topology only through the home channel, so there is no need for the public channel to transmit the control information and no need for the synchronization. After network initialization, node broadcasts data via home channel in half-duplex transmission way. The simulation results show that, compared with complete broadcast, the proposed protocol effectively reduces broadcast delay and overhead.

  7. Multichannel Broadcast Based on Home Channel for Cognitive Radio Sensor Networks

    PubMed Central

    Zeng, Fanzi; Tang, Yuting; Pu, Jianjie

    2014-01-01

    Considering the limited resources and the dynamic spectrum distribution in the cognitive radio sensor networks (CRSN), a half-duplex Multichannel broadcast protocol for CRSN is presented based on the home channel. This protocol maintains the networks topology only through the home channel, so there is no need for the public channel to transmit the control information and no need for the synchronization. After network initialization, node broadcasts data via home channel in half-duplex transmission way. The simulation results show that, compared with complete broadcast, the proposed protocol effectively reduces broadcast delay and overhead. PMID:25161397

  8. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network.

    PubMed

    Usman, Muhammad; Khan, Muhammad Sajjad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question "Should we switch the channel?" The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  9. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network

    PubMed Central

    Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  10. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network.

    PubMed

    Usman, Muhammad; Khan, Muhammad Sajjad; Vu-Van, Hiep; Insoo, Koo

    2015-07-23

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question "Should we switch the channel?" The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU.

  11. SINCGARS (Single-Channel Ground/Airborne Radio System) operator performance decay

    NASA Astrophysics Data System (ADS)

    Palmer, Richard L.; Buckalew, Louis W.

    1988-11-01

    The Single-Channel Ground/Airborne Radio System (SINCGARS) is scheduled to replace the Army's VRC-12 and PRC-77 radios. However, SINCGARS is more complex to operate and requires more training. This study examined the decay of operational skills and knowledge in two groups of recently trained operators who went without exposure to SINCGARS for several weeks. Performance levels were measured with the SINCGARS Learning-Retention Test (SLRT), a simulated hands-on performance test emphasizing skills and operational knowledge retention. The results provided tentative indications that operators may lose about 10 percent of their prior performance levels within the first few weeks. This figure is expected to vary considerably, depending on the type of soldier, the length of the nonexposure period, and other conditions. It was also found that performance level was correlated with soldiers' Armed Services Vocational Aptitude Battery (ASVAB) General Technical (GT) scores. Correlations between GT and SLRT scores obtained at two different times were .43 and .50, respectively. However, no relation was observed between performance decay and GT. Further evaluation of operator performance decay needs to be done to determine the effect of longer periods of nonexposure (e.g., 60 and 90 days).

  12. Information capacities of quantum measurement channels

    NASA Astrophysics Data System (ADS)

    Holevo, A. S.

    2013-03-01

    We study the relation between the unassisted and entanglement-assisted classical capacities C and Cea of entanglement-breaking channels. We argue that the gain of entanglement assistance Cea/C > 1 generically for measurement channels with unsharp observables; in particular for the measurements with pure posterior states the information loss in the entanglement-assisted protocol is zero, resulting in an arbitrarily large gain for very noisy or weak signal channels. This is illustrated by examples of continuous observables corresponding to state tomography in finite dimensions and heterodyne measurement. In contrast, state preparations are characterized by the property of having no gain of entanglement assistance, Cea/C = 1.

  13. Entanglement in channel discrimination with restricted measurements

    SciTech Connect

    Matthews, William; Piani, Marco; Watrous, John

    2010-09-15

    We study the power of measurements implementable with local quantum operations and classical communication (LOCC) measurements in the setting of quantum channel discrimination. More precisely, we consider discrimination procedures that attempt to identify an unknown channel, chosen uniformly from two known alternatives, that take the following form: (i) the input to the unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown channel is applied to the input system, and (iii) an LOCC measurement is performed on the output and ancillary systems, resulting in a guess for which of the two channels was given. The restriction of the measurement in such a procedure to be an LOCC measurement is of interest because it isolates the entanglement in the initial input-ancillary systems as a resource in the setting of channel discrimination. We prove that there exist channel discrimination problems for which restricted procedures of this sort can be at either of the two extremes: they may be optimal within the set of all discrimination procedures (and simultaneously outperform all strategies that make no use of entanglement), or they may be no better than unentangled strategies (and simultaneously suboptimal within the set of all discrimination procedures).

  14. Radio frequency interference measurements in Indonesia. A survey to establish a radio astronomy observatory

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Munir, Achmad; Dermawan, Budi; Jaelani, Anton Timur; Léon, Stéphane; Nugroho, Dading Hadi; Suksmono, Andriyan Bayu; Mahasena, Putra; Premadi, Premana Wardayanti; Herdiwijaya, Dhani; Kunjaya, Chatief; Dupe, Zadrach Ledoufij; Brahmantyo, Budi; Mandey, Denny; Yusuf, Muhammad; Tri Wulandari, Hesti Retno; Arief, Falahuddin; Irfan, Muhammad; Puri Jatmiko, Agus Triono; Akbar, Evan Irawan; Sianturi, Hery Leo; Tanesib, Jehunias Leonidas; Warsito, Ali; Utama, Judhistira Aria

    2014-02-01

    We report the first measurements of radio frequency spectrum occupancy performed at sites aimed to host the future radio astronomy observatory in Indonesia. The survey is intended to obtain the radio frequency interference (RFI) environment in a spectral range from low frequency 10 MHz up to 8 GHz. The measurements permit the identification of the spectral occupancy over those selected sites in reference to the allocated radio spectrum in Indonesia. The sites are in close proximity to Australia, the future host of Square Kilometre Array (SKA) at low frequency. Therefore, the survey was deliberately made to approximately adhere the SKA protocol for RFI measurements, but with lower sensitivity. The RFI environment at Bosscha Observatory in Lembang was also measured for comparison. Within the sensitivity limit of the measurement equipment, it is found that a location called Fatumonas in the surrounding of Mount Timau in West Timor has very low level of RFI, with a total spectrum occupancy in this measured frequency range being about 1 %, mostly found at low frequency below 20 MHz. More detailed measurements as well as a strategy for a radio quiet zone must be implemented in the near future.

  15. Comparasion of Energy Detection in Cognitive Radio over different fading channels

    NASA Astrophysics Data System (ADS)

    Buttar, Simar

    2012-07-01

    With the advance of wireless communications, the problem of bandwidth scarcity has become more prominent. Cognitive radio technology has come out as a way to solve this problem by allowing the unlicensed users to use the licensed bands opportunistically. To sense the existence of licensed users, many spectrum sensing techniques have been devised. In this paper, energy detection and cyclic prefix is used for spectrum sensing.The comparison of ROC curves has been done for various wireless fading channels using squaring and cubingoperation,the improvement has gone as high as up to 0.6 times for AWGN channel and 0.4 times for Rayleigh channel as we go from squaring to cubing operation in an energy detector. Closed form expressions for Probability of detection for AWGN and Rayleigh channels are described.Nakagami fading channel shows worst results .

  16. Capacity of Cognitive Radio with Partial Channel Distribution Information in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Li, Q.

    2015-11-01

    This paper investigates the capacity of the secondary user (SU) in a cognitive radio (CR) network in Rayleigh fading environments. Different from existing works where perfect channel state information (CSI) or channel distribution information (CDI) of the interference link from the SU to the primary user (PU) is assumed to be available, this paper assumes that only partial CDI is available. Specifically, we assume the distribution parameter is unknown and estimated from a set of channel gain samples. With such partial CDI, closed-form expressions for the ergodic and outage capacities of the SU are obtained under the transmit power and the interference outage constraints. It is shown that the capacity with partial CDI is not degraded compared to that with perfect CDI if the interference outage constraint is loose. It is also shown that the capacity can be significantly improved by increasing the number of channel gain samples.

  17. The Tunka radio extension (Tunka-Rex): Radio measurements of cosmic rays in Siberia

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Bezyazeekov, P. A.; Budnev, N. M.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E. N.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Wischnewski, R.; Zagorodnikov, A.

    2016-07-01

    The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately 1016 -1018 eV. In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about 3km2, which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary cosmic-ray particles can be determined. Finally, Tunka-Rex can be used for cosmic-ray physics at energies close to 1 EeV, where the standard Tunka-133 analysis is limited by statistics. In contrast to the air-Cherenkov measurements, radio measurements are not limited to dark, clear nights and can provide an order of magnitude larger exposure.

  18. A comparison of type III solar radio burst theories using satellite radio observations and particle measurements.

    NASA Technical Reports Server (NTRS)

    Evans, L. G.; Fainberg, J.; Stone, R. G.

    1971-01-01

    The required electron density to excite a type III solar burst can be predicted from different theories, using the low frequency radio observations of the RAE-1 satellite. Electron flux measurements by satellite in the vicinity of 1 AU then give an independent means of comparing these predicted exciter electron densities to the measured density. On this basis, one theory predicts the electron density in closest agreement with the measured values.

  19. Capabilities and Limitations of Radio Occultation Measurements for Ionosphere Monitoring

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Romans, L. J.; Pi, X.; Wang, Chunming

    1999-01-01

    The paper: (1) describes the range of capabilities of GPS radio occultation missions in ionospheric research: (a) ionospheric profiling; (b) ionospheric imaging; (c) ionospheric data assimilation; and (d) measurement of scintillation. (2) Identify strengths and weaknesses of measurements: (a) coverage; (b) resolution; and (c) uniqueness of solution.

  20. 802.11s based multi-radio multi-channel mesh networking for fractionated spacecraft

    NASA Astrophysics Data System (ADS)

    Michel, Tony; Thapa, Bishal; Taylor, Steve

    802.11s is a new IEEE standard for mesh networking. It defines the protocols needed to build mobile ad hoc networks that operate over 802.11a, b, g and n waveforms running on inexpensive, and high performance commercial WiFi stations. We have developed a new capability to add to the 802.11s that uses multiple directional radio links that can operate simultaneously within a single mesh node. This is the basis of our multi-channel multi-radio mesh network used in the DARPA F6 program called F6Net. We have developed an analysis and emulation facility that lets us model the F6Net and evaluate the performance in a real world experimentation setup. This paper presents an “ Over-the-Air” experimentation testbed that uses standard Commercial Off-The-Shelf (COTS) 2.4GHz WiFi dongles in an indoor environment, and a shared-code simulation testbed that uses hardware simulated drivers within NS3's channel simulation facility to test 80211s network. To the best of our knowledge, this is the first work that provides a comprehensive evaluation platform with a full-fledged COTS hardware/software prototype to evaluate 802.11s network. Furthermore, we explain the design and development of multi-radio mesh extension for 802.11s that yields a robust and scalable mesh network suitable for clusters of LEO satellites.

  1. Optical radio-photonic channel for transmission of a coherent narrowband analog signal

    NASA Astrophysics Data System (ADS)

    Zhuk, D. I.; Denisyuk, I. Yu.; Fokina, M. I.

    2015-10-01

    The channel of an optical transmission line of coherent narrowband analog signal consisting of a continuous-wave laser, an electro-optic modulator, and a vector phase rotator based on electrically controlled fiber-optical 1 × 2 splitter and fixed delay lines is analyzed. The scheme is constructed from commercially available components used in digital optical communication systems. The applicability of components for analog and small-signal circuits is determined. Variation of radio signal phase in the range from 0° to 170° for radio signal frequencies between 1 and 2 GHz is demonstrated experimentally. It is shown that phase variation is a linear function of frequency in this range.

  2. Short channel effects in graphene-based field effect transistors targeting radio-frequency applications

    NASA Astrophysics Data System (ADS)

    Feijoo, Pedro C.; Jiménez, David; Cartoixà, Xavier

    2016-06-01

    Channel length scaling in graphene field effect transistors (GFETs) is key in the pursuit of higher performance in radio frequency electronics for both rigid and flexible substrates. Although two-dimensional (2D) materials provide a superior immunity to short channel effects (SCEs) than bulk materials, they could dominate in scaled GFETs. In this work, we have developed a model that calculates electron and hole transport along the graphene channel in a drift-diffusion basis, while considering the 2D electrostatics. Our model obtains the self-consistent solution of the 2D Poisson’s equation coupled to the current continuity equation, the latter embedding an appropriate model for drift velocity saturation. We have studied the role played by the electrostatics and the velocity saturation in GFETs with short channel lengths L. Severe scaling results in a high degradation of GFET output conductance. The extrinsic cutoff frequency follows a 1/{L}n scaling trend, where the index n fulfills n≤slant 2. The case n=2 corresponds to long-channel GFETs with low source/drain series resistance, that is, devices where the channel resistance is controlling the drain current. For high series resistance, n decreases down to n=1, and it degrades to values of n\\lt 1 because of the SCEs, especially at high drain bias. The model predicts high maximum oscillation frequencies above 1 THz for channel lengths below 100 nm, but, in order to obtain these frequencies, it is very important to minimize the gate series resistance. The model shows very good agreement with experimental current voltage curves obtained from short channel GFETs and also reproduces negative differential resistance, which is due to a reduction of diffusion current.

  3. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  4. Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.

  5. Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology

    NASA Astrophysics Data System (ADS)

    Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.

    2016-08-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950 - 1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.

  6. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  7. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  8. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  9. Energy efficiency in cognitive radio network: Study of cooperative sensing using different channel sensing methods

    NASA Astrophysics Data System (ADS)

    Cui, Chenxuan

    When cognitive radio (CR) operates, it starts by sensing spectrum and looking for idle bandwidth. There are several methods for CR to make a decision on either the channel is occupied or idle, for example, energy detection scheme, cyclostationary detection scheme and matching filtering detection scheme [1]. Among them, the most common method is energy detection scheme because of its algorithm and implementation simplicities [2]. There are two major methods for sensing, the first one is to sense single channel slot with varying bandwidth, whereas the second one is to sense multiple channels and each with same bandwidth. After sensing periods, samples are compared with a preset detection threshold and a decision is made on either the primary user (PU) is transmitting or not. Sometimes the sensing and decision results can be erroneous, for example, false alarm error and misdetection error may occur. In order to better control error probabilities and improve CR network performance (i.e. energy efficiency), we introduce cooperative sensing; in which several CR within a certain range detect and make decisions on channel availability together. The decisions are transmitted to and analyzed by a data fusion center (DFC) to make a final decision on channel availability. After the final decision is been made, DFC sends back the decision to the CRs in order to tell them to stay idle or start to transmit data to secondary receiver (SR) within a preset transmission time. After the transmission, a new cycle starts again with sensing. This thesis report is organized as followed: Chapter II review some of the papers on optimizing CR energy efficiency. In Chapter III, we study how to achieve maximal energy efficiency when CR senses single channel with changing bandwidth and with constrain on misdetection threshold in order to protect PU; furthermore, a case study is given and we calculate the energy efficiency. In Chapter IV, we study how to achieve maximal energy efficiency when CR

  10. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, M.; Seitz, H.; Scott, J.

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies. ?? 1998 John Wiley & Sons, Ltd.

  11. Precise Radio-Telescope Measurements Advance Frontier Gravitational Physics

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Scientists using a continent-wide array of radio telescopes have made an extremely precise measurement of the curvature of space caused by the Sun's gravity, and their technique promises a major contribution to a frontier area of basic physics. "Measuring the curvature of space caused by gravity is one of the most sensitive ways to learn how Einstein's theory of General Relativity relates to quantum physics. Uniting gravity theory with quantum theory is a major goal of 21st-Century physics, and these astronomical measurements are a key to understanding the relationship between the two," said Sergei Kopeikin of the University of Missouri. Kopeikin and his colleagues used the National Science Foundation's Very Long Baseline Array (VLBA) radio-telescope system to measure the bending of light caused by the Sun's gravity to an accuracy of 0.03 percent. With further observations, the scientists say their precision technique can make the most accurate measure ever of this phenomenon. Bending of starlight by gravity was predicted by Albert Einstein when he published his theory of General Relativity in 1916. According to relativity theory, the strong gravity of a massive object such as the Sun produces curvature in the nearby space, which alters the path of light or radio waves passing near the object. The phenomenon was first observed during a solar eclipse in 1919. Though numerous measurements of the effect have been made over the intervening 90 years, the problem of merging General Relativity and quantum theory has required ever more accurate observations. Physicists describe the space curvature and gravitational light-bending as a parameter called "gamma." Einstein's theory holds that gamma should equal exactly 1.0. "Even a value that differs by one part in a million from 1.0 would have major ramifications for the goal of uniting gravity theory and quantum theory, and thus in predicting the phenomena in high-gravity regions near black holes," Kopeikin said. To make

  12. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  13. Stochastic Wireless Channel Modeling, Estimation and Identification from Measurements

    SciTech Connect

    Olama, Mohammed M; Djouadi, Seddik M; Li, Yanyan

    2008-07-01

    This paper is concerned with stochastic modeling of wireless fading channels, parameter estimation, and system identification from measurement data. Wireless channels are represented by stochastic state-space form, whose parameters and state variables are estimated using the expectation maximization algorithm and Kalman filtering, respectively. The latter are carried out solely from received signal measurements. These algorithms estimate the channel inphase and quadrature components and identify the channel parameters recursively. The proposed algorithm is tested using measurement data, and the results are presented.

  14. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  15. SARAS MEASUREMENT OF THE RADIO BACKGROUND AT LONG WAVELENGTHS

    SciTech Connect

    Patra, Nipanjana; Subrahmanyan, Ravi; Sethi, Shiv; Shankar, N. Udaya; Raghunathan, A.

    2015-03-10

    SARAS is a correlation spectrometer connected to a frequency independent antenna that is purpose-designed for precision measurements of the radio background at long wavelengths. The design, calibration, and observing strategies admit solutions for the internal additive contributions to the radiometer response, and hence a separation of these contaminants from the antenna temperature. We present here a wideband measurement of the radio sky spectrum by SARAS that provides an accurate measurement of the absolute brightness and spectral index between 110 and 175 MHz. Accuracy in the measurement of absolute sky brightness is limited by systematic errors of magnitude 1.2%; errors in calibration and in the joint estimation of sky and system model parameters are relatively smaller. We use this wide-angle measurement of the sky brightness using the precision wide-band dipole antenna to provide an improved absolute calibration for the 150 MHz all-sky map of Landecker and Wielebinski: subtracting an offset of 21.4 K and scaling by a factor of 1.05 will reduce the overall offset error to 8 K (from 50 K) and scale error to 0.8% (from 5%). The SARAS measurement of the temperature spectral index is in the range −2.3 to −2.45 in the 110–175 MHz band and indicates that the region toward the Galactic bulge has a relatively flatter index.

  16. Indoor radio channel modeling and mitigation of fading effects using linear and circular polarized antennas in combination for smart home system at 868 MHz

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Welpot, M.; Gaspard, I.

    2014-11-01

    The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.

  17. 4He abundances: Optical versus radio recombination line measurements

    NASA Astrophysics Data System (ADS)

    Balser, Dana S.; Rood, Robert T.; Bania, T. M.

    2010-04-01

    Accurate measurements of the 4He/H abundance ratio are important in constraining Big Bang nucleosynthesis, models of stellar and Galactic evolution, and H ii region physics. We discuss observations of radio recombination lines using the Green Bank Telescope toward a small sample of H ii regions and planetary nebulae. We report 4He/H abundance ratio differences as high as 15-20% between optical and ratio data that are difficult to reconcile. Using the H ii regions S206 and M17 we determine 4He production in the Galaxy to be dY/dZ = 1.71 ± 0.86.

  18. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion

  19. PAD-MAC: primary user activity-aware distributed MAC for multi-channel cognitive radio networks.

    PubMed

    Ali, Amjad; Piran, Md Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  20. PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks

    PubMed Central

    Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-01-01

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084

  1. PAD-MAC: primary user activity-aware distributed MAC for multi-channel cognitive radio networks.

    PubMed

    Ali, Amjad; Piran, Md Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young

    2015-03-30

    Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate.

  2. The Pioneer 11 radio occultation measurements of the Jovian ionosphere

    NASA Technical Reports Server (NTRS)

    Fjeldbo, G.; Kliore, A.; Seidel, B.; Sweetnam, D.; Woiceshyn, P.

    1976-01-01

    Radio occultation data obtained with the Pioneer 11 spacecraft are utilized to study Jupiter's ionosphere. The ingress measurements, which were conducted by using a stable earth-based frequency reference for the tracking link, yielded ionospheric data near the morning terminator at about 79 deg south latitude. Data were also taken during egress on the evening side near 20 deg north latitude. The latter measurements were conducted in the one-way mode; i.e., an on-board crystal oscillator was employed as a frequency reference for the downlink (spacecraft-to-earth) signal. These data confirm previous results obtained with Pioneer 10 and show that Jupiter has a multilayered ionosphere extending over an altitude range of more than 3000 km. The topside scale height near 79 deg south latitude was 540 + or - 60 km. Assuming a topside electron, H(+) distribution controlled by diffusion yields a plasma temperature of 850 + or - 100 K in this region. The radio data indicate that the upper atmosphere is either warmer or more dissociated into atomic hydrogen than previously anticipated.

  3. Generalized formalisms of the radio interferometer measurement equation

    NASA Astrophysics Data System (ADS)

    Price, D. C.; Smirnov, O. M.

    2015-05-01

    The radio interferometer measurement equation (RIME) is a matrix-based mathematical model that describes the response of a radio interferometer. The Jones calculus it employs is not suitable for describing the analogue components of a telescope. This is because it does not consider the effect of impedance mismatches between components. This paper aims to highlight the limitations of Jones calculus, and suggests some alternative methods that are more applicable. We reformulate the RIME with a different basis that includes magnetic and mixed coherency statistics. We present a microwave network inspired 2N-port version of the RIME, and a tensor formalism based upon the electromagnetic tensor from special relativity. We elucidate the limitations of the Jones-matrix-based RIME for describing analogue components. We show how measured scattering parameters of analogue components can be used in a 2N-port version of the RIME. In addition, we show how motion at relativistic speed affects the observed flux. We present reformulations of the RIME that correctly account for magnetic field coherency. These reformulations extend the standard formulation, highlight its limitations, and may have applications in space-based interferometry and precise absolute calibration experiments.

  4. Indoor radio measurement and planning for UMTS/HSDPA with antennas

    NASA Astrophysics Data System (ADS)

    Eheduru, Marcellinus

    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator's point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product's response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation

  5. Measuring Method for Lightning Channel Temperature

    PubMed Central

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  6. Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis

    NASA Astrophysics Data System (ADS)

    Beck, R.; Frick, P.; Stepanov, R.; Sokoloff, D.

    2012-07-01

    Context. Modern radio telescopes allow us to record a large number of spectral channels. The application of a Fourier transform to spectropolarimetric data in radio continuum, Faraday rotation measure (RM) synthesis, yields the “Faraday spectrum”, which hosts valuable information about the magneto-ionic medium along the line of sight. Aims: We investigate whether the method of wavelet-based RM synthesis can help us to identify structures of regular and turbulent magnetic fields in extended magnetized objects, such as galaxies and galaxy clusters. Methods: The analysis of spectropolarimetric radio observations of multi-scale targets calls for a corresponding mathematical technique. Wavelets allow us to reformulate the RM synthesis method in a scale-dependent way and to visualize the data as a function of Faraday depth and scale. Results: We present observational tests to recognize magnetic field structures. A region with a regular magnetic field generates a broad “disk” in Faraday space, with two “horns” when the distribution of cosmic-ray electrons is broader than that of the thermal electrons. Each field reversal generates one asymmetric “horn” on top of the “disk”. A region with a turbulent field can be recognized as a “Faraday forest” of many components. These tests are applied to the spectral ranges of various synthesis radio telescopes. We argue that the ratio of maximum to minimum wavelengths determines the range of scales that can be identified in Faraday space. Conclusions: A reliable recognition of magnetic field structures in spiral galaxies or galaxy clusters requires the analysis of data cubes in position-position-Faraday depth space (“PPF cubes”), observed over a wide and continuous frequency range, allowing the recognition of a wide range of scales as well as high resolution in Faraday space. The planned Square Kilometre Array (SKA) will fulfill this condition and will be close to representing a perfect

  7. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion

  8. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Young, Leslie; Stern, S. Alan; Bird, Mike; Ennico, Kimberly; Gladstone, Randy; Olkin, Catherine B.; Pätzold, Martin; Strobel, Darrell F.; Summers, Michael; Tyler, G. Leonard; Weaver, Harold A.; Woods, Will; New Horizons Science Team

    2016-10-01

    The reconnaissance of the Pluto System by New Horizons in July 2015 included a radio occultation at Pluto. The observation was performed with signals transmitted simultaneously by four antennas of the NASA Deep Space Network, two at the Goldstone complex in California and two at the Canberra complex in Australia. Each antenna radiated 20 kW without modulation at a wavelength of 4.17 cm. New Horizons received the four signals with its 2.1-m high-gain antenna, where the signals were split into pairs and processed independently by two identical REX radio science instruments. Each REX relied on a different ultra-stable oscillator as its frequency reference. The signals were digitized and filtered, and the data samples were stored on the spacecraft for later transmission to Earth. Six months elapsed before all data had arrived on the ground, and the results reported here are the first to utilize the complete set of observations. Pluto's tenuous atmosphere is a significant challenge for radio occultation sounding, which led us to develop a specialized method of analysis. We began by calibrating each signal to remove effects not associated with Pluto's atmosphere, including the diffraction pattern from Pluto's surface. We reduced the noise and increased our sensitivity to the atmosphere by averaging the results from the four signals, while using other combinations of the signals to characterize the noise. We then retrieved profiles of number density, pressure, and temperature from the averaged phase profiles at both occultation entry and exit. Finally, we used a combination of analytical methods and Monte Carlo simulations to determine the accuracy of the measurements. The REX profiles provide the first direct measure of the surface pressure and temperature structure in Pluto's lower atmosphere. There are significant differences between the structure at entry (193.5°E, 17.0°S, sunset) and exit (15.7°E, 15.1°N, sunrise), which arise from spatial variations in surface

  9. Single-Epoch Measurements of Broadband Radio Continuum Spectra

    NASA Astrophysics Data System (ADS)

    Salter, C. J.; Ghosh, T.; Alejandro, A.; Aller, M. C.; Cordero, Y.; Daubar, I.; DeDeo, S.; Kaplan, D. L.; Kocevski, D. D.; Mercado, F. A.; Oppenheimer, B. D.; Salmeron, C.; Eder, J.

    1998-12-01

    The ability of the upgraded Arecibo 305-m telescope to produce "quasi-instantaneous" radio continuum spectra covering over a decade of frequency has been investigated, the study being undertaken as an Arecibo Observatory summer-student observing project. Within the limits of early post-upgrade instrumentation and telescope performance, it was found to be relatively easy for inexperienced observers to obtain the measurements needed to achieve the above objective. Good-quality spectra were produced for three quasars (J1609+266, J2115+295 and J2203+317) which exhibited mutually different spectral shapes. The planetary nebula, G064.7+05.0, was also included in the target list. This is shown to be optically thick at 1.4 GHz, while only an upper limit to its flux density could be determined at 430 MHz.

  10. Outage Capacity of Spectrum Sharing Cognitive Radio with Channel Estimation Errors and Feedback Delay in Rayleigh Fading Environments

    NASA Astrophysics Data System (ADS)

    Xu, D.; Feng, Z.; Zhang, P.

    2013-04-01

    This paper considers a spectrum sharing cognitive radio (CR) network consisting of one secondary user (SU) and one primary user (PU) in Rayleigh fading environments. The channel state information (CSI) between the secondary transmitter (STx) and the primary receiver (PRx) is assumed to be imperfect. Particularly, this CSI is assumed to be not only having channel estimation errors but also outdated due to feedback delay, which is different from existing work. We derive the closed-form expression for the outage capacity of the SU with this imperfect CSI under the average interference power constraint at the PU. Analytical results confirmed by simulations are presented to show the effect of the imperfect CSI. Particularly, it is shown that the outage capacity of the SU is robust to the channel estimation errors and feedback delay for low outage probability and high channel estimation errors and feedback delay.

  11. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  12. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    A team of radio astronomers has used the National Science Foundation's Very Long Baseline Array (VLBA) to make the most accurate measurement ever made of the distance to a faraway galaxy. Their direct measurement calls into question the precision of distance determinations made by other techniques, including those announced last week by a team using the Hubble Space Telescope. The radio astronomers measured a distance of 23.5 million light-years to a galaxy called NGC 4258 in Ursa Major. "Ours is a direct measurement, using geometry, and is independent of all other methods of determining cosmic distances," said Jim Herrnstein, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. The team says their measurement is accurate to within less than a million light-years, or four percent. The galaxy is also known as Messier 106 and is visible with amateur telescopes. Herrnstein, along with James Moran and Lincoln Greenhill of the Harvard- Smithsonian Center for Astrophysics; Phillip Diamond, of the Merlin radio telescope facility at Jodrell Bank and the University of Manchester in England; Makato Inoue and Naomasa Nakai of Japan's Nobeyama Radio Observatory; Mikato Miyoshi of Japan's National Astronomical Observatory; Christian Henkel of Germany's Max Planck Institute for Radio Astronomy; and Adam Riess of the University of California at Berkeley, announced their findings at the American Astronomical Society's meeting in Chicago. "This is an incredible achievement to measure the distance to another galaxy with this precision," said Miller Goss, NRAO's Director of VLA/VLBA Operations. "This is the first time such a great distance has been measured this accurately. It took painstaking work on the part of the observing team, and it took a radio telescope the size of the Earth -- the VLBA -- to make it possible," Goss said. "Astronomers have sought to determine the Hubble Constant, the rate of expansion of the universe, for decades. This will in turn lead to an

  13. Radio Occultation Measurements of Pluto's Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.; Summers, M. E.; Woods, W. W.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.; Gladstone, R.; Greathouse, T.; Kammer, J.; Parker, A. H.; Parker, J. W.; Retherford, K. D.; Schindhelm, E.; Singer, K. N.; Steffl, A.; Tsang, C.; Versteeg, M.

    2015-12-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto's lower atmosphere. Preliminary analysis yields a surface pressure of about 10 microbars, smaller than expected. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters.

  14. A Broadcast Channel Assignment Mechanism based on The Broadcast Tree for Multi-radio Multi-channel Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zeng, Yingzhi

    2016-02-01

    This paper proposed a broadcast Channel Assignment Mechanism on base of optimized Broadcast Tree for wireless Mesh network (WMN), which is created by Branch and Bound Method. The simulations show that our algorithm not only reduces the broadcast redundancy but also avoids the potential channel interferences produced by unnecessary relay nodes.

  15. Walkie-Talkie Measurements for the Speed of Radio Waves in Air

    ERIC Educational Resources Information Center

    Dombi, Andra; Tunyagi, Arthur; Neda, Zoltan

    2013-01-01

    A handheld emitter-receiver device suitable for the direct estimation of the velocity of radio waves in air is presented. The velocity of radio waves is measured using the direct time-of-flight method, without the need for any tedious and precise settings. The results for two measurement series are reported. Both sets of results give an estimate…

  16. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  17. Spectroscopic Measurements of Radio Frequency Plasmas in Supercritical Fluids

    SciTech Connect

    Maehara, Tsunehiro; Iwamae, Atsushi; Kawashima, Ayato

    2010-10-29

    Spectroscopic measurements of radio frequency (rf) plasma were performed under high pressure CO{sub 2} conditions (5 and 7 MPa) and supercritical (sc)CO{sub 2} conditions (8-20 MPa). The temperatures evaluated from C{sub 2} Swan bands increased from 3600 K to 4600 K with increasing pressure. The broadening and shifting of the O I line profile ({approx}777 nm) of rf plasma was observed under scCO{sub 2} conditions. The width of the line profile increased with increasing pressure. The reason for the broadening and shifting is still unclear because the present theory used to explain them is not valid for such high pressure conditions. Further, the broadening of the Ar I line profile ({approx}811.5 nm) in rf plasmas was observed under atmospheric Ar (0.1 MPa), high pressure Ar conditions (1-4 MPa), and scAr condition (5 MPa); the observation of the O I line profile in CO{sub 2} plasmas is difficult in this pressure range owing to its weak intensity therein. Similar to the case of the O I line in CO{sub 2} plasmas, the reason for the broadening of the Ar I line profile at 5 MPa is unclear.

  18. Altitudinal dependence of meteor radio afterglows measured via optical counterparts

    NASA Astrophysics Data System (ADS)

    Obenberger, K. S.; Holmes, J. M.; Dowell, J. D.; Schinzel, F. K.; Stovall, K.; Sutton, E. K.; Taylor, G. B.

    2016-09-01

    Utilizing the all-sky imaging capabilities of the first station of the Long Wavelength Array along with a host of all-sky optical cameras, we have now observed 44 optical meteor counterparts to radio afterglows. Combining these observations, we have determined the geographic positions of all 44 afterglows. Comparing the number of radio detections as a function of altitude above sea level to the number of expected bright meteors, we find a strong altitudinal dependence characterized by a cutoff below ˜90 km, below which no radio emission occurs, despite the fact that many of the observed optical meteors penetrated well below this altitude. This cutoff suggests that wave damping from electron collisions is an important factor for the evolution of radio afterglows. This finding agrees with the hypothesis that the emission is the result of electron plasma wave emission.

  19. Design and Implementation of a DSP-Based MIMO System Prototype for Real-Time Demonstration and Indoor Channel Measurements

    NASA Astrophysics Data System (ADS)

    Mostafa, Raqibul; Gozali, Ran; Palat, Ramesh Chembil; Robert, Max; Newhall, William G.; Woerner, Brian D.; Reed, Jeffrey H.

    2005-12-01

    The design and implementation of the Virginia Tech Space-Time Advanced Radio (VT-STAR), a multiple antenna element space-time (ST) processing prototype testbed, is presented. The testbed is a research tool for comparing practical and theoretical performance metrics (e.g., throughput, link reliability) in different wireless channel conditions. The prototype builds around software-defined radio (SDR) concepts on a DSP platform and provides the flexibility to implement various forms of ST techniques. Different components of the system are described in detail, including the software implementation, I/O schemes with custom hardware, and data transfer mechanisms between the DSP and the host PC. Two different example realizations are presented, a real-time demonstration and an offline measurement tool. Finally, some representative measurement results obtained in indoor environments are presented. These results show VT-STAR to be a promising tool for performing MIMO experiments and generating channel measurements that can complement simulation studies in this area.

  20. Radio Frequency (RF) Attenuation Measurements of the Space Shuttle Vehicle

    NASA Technical Reports Server (NTRS)

    Scully, R. C.; Kent, B. M.; Kempf, D. R.; Johnk, R. T.

    2006-01-01

    Following the loss of Columbia, the Columbia Accident Investigation Board (CAIB) provided recommendations to be addressed prior to Return To Flight (RTF). As a part of CAIB Recommendation 3.4.1 - Ground Based Imagery, new C-band and X-band radars were added to the array of ground-based radars and cameras already in-situ at Kennedy Space Center. Because of higher power density considerations and new operating frequencies, the team of Subject Matter Experts (SMEs) assembled to investigate the technical details of introducing the new radars recommended a series of radio frequency (RF) attenuation tests be performed on the Space Shuttle vehicle to establish the attenuation of the vehicle outer mold line structure with respect to its external RF environment. Because of time and complex logistical constraints, it was decided to split the test into two separate efforts. The first of these would be accomplished with the assistance of the Air Force Research Laboratory (AFRL), performing RF attenuation measurements on the aft section of OV-103 (Discovery) while in-situ in Orbiter Processing Facility (OPF) 3, located at Kennedy Space Center. The second would be accomplished with the assistance of the National Institute of Standards and Technology (NIST) and the electromagnetic interference (EMI) laboratory out of the Naval Air Warfare Center, Patuxent River, Maryland (PAX River), performing RF attenuation measurements on OV-105 (Endeavour) in-situ inside the Space Shuttle Landing Facility (SLF) hangar, also located at Kennedy Space Center. This paper provides a summary description of these efforts and their results.

  1. Residence times and diel passage distributions of radio-tagged juvenile spring chinook salmon and steelhead in a gatewell and fish collection channel of a Columbia River Dam

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2001-01-01

    The amount of time radio-tagged juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead O. mykiss spent within a gatewell and the juvenile collection channel at McNary Dam, Columbia River, USA, was measured to determine the diel passage behavior and residence times within these portions of the juvenile bypass system. The median gatewell residence times were 8.9 h for juvenile chinook salmon and 3.2 h for steelhead. Juvenile spring chinook salmon spent 83% of their time in the 18-m-deep gatewell at depths of 9 m or less, and juvenile steelhead spent 96% of their time in the upper 11 m. Fish released during midday and those released in the evening generally exited the gatewell in the evening, indicating that fish entering the gatewell during daylight will have prolonged residence times. Median collection-channel residence times of juvenile chinook salmon were much shorter (2.3 min) than those of steelhead (28.0 min), most likely because of the greater size of the steelhead and the high water velocities within the channel (2.1 m/s). This and other studies indicate most juvenile salmonids enter gatewells of several Columbia and Snake river dams in the evening and pass into the collection channels quickly. However, this is not consistent with the natural in-river migration patterns of these species and represents a delay in dam passage.

  2. At-sea distribution of radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured on the California Channel Islands

    USGS Publications Warehouse

    Adams, J.; Takekawa, J.Y.

    2008-01-01

    Small, rare and wide-ranging pelagic birds are difficult to locate and observe at sea; little is therefore known regarding individual movements and habitat affinities among many of the world's storm-petrels (Family Hydrobatidae). We re-located 57 of 70 radio-marked Ashy Storm-Petrels Oceanodroma homochroa captured at three colonies in the California Channel Islands: Scorpion Rocks (2004, 2005), Santa Barbara Island (2004) and Prince Island (2005). Between 23 July and 22 September 2004, and 5 July and 4 August 2005, we flew 29 telemetry surveys, covered more than 65 000 km2 (2004) and 43 000 km2 (2005) of open ocean from San Nicolas Island north to the Farallon Islands and obtained 215 locations from 57 storm-petrels at sea. In both years, radio-marked storm-petrels were aggregated over the continental slope from Point Conception to Point Buchon, within the western Santa Barbara Channel, and over the Santa Cruz Basin between Santa Cruz, San Nicolas and Santa Barbara islands. Individuals captured in the Channel Islands ranged more than 600 km and were located as far north as Gulf of the Farallones National Marine Sanctuary. This is the first study to use radiotelemetry to determine the at-sea distribution and movements for any storm-petrel species.

  3. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision.

  4. Optimal throughput for cognitive radio with energy harvesting in fading wireless channel.

    PubMed

    Vu-Van, Hiep; Koo, Insoo

    2014-01-01

    Energy resource management is a crucial problem of a device with a finite capacity battery. In this paper, cognitive radio is considered to be a device with an energy harvester that can harvest energy from a non-RF energy resource while performing other actions of cognitive radio. Harvested energy will be stored in a finite capacity battery. At the start of the time slot of cognitive radio, the radio needs to determine if it should remain silent or carry out spectrum sensing based on the idle probability of the primary user and the remaining energy in order to maximize the throughput of the cognitive radio system. In addition, optimal sensing energy and adaptive transmission power control are also investigated in this paper to effectively utilize the limited energy of cognitive radio. Finding an optimal approach is formulated as a partially observable Markov decision process. The simulation results show that the proposed optimal decision scheme outperforms the myopic scheme in which current throughput is only considered when making a decision. PMID:24574885

  5. Analysis of satellite measurements of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Bakalyar, G.; Caruso, J. A.; Vargas-Vila, R.; Ziemba, E.

    1974-01-01

    Worldwide distributions of terrestrial radio noise as monitored by Radio Astronomy Explorer 1 (RAE 1) generated and compared with CCIR predictions. These contour maps show the global morphology of radio noise at 6.55 and 9.18 MHz for fall, winter, spring and summer during the local time blocks of 00-08 LT and 16-24 LT. These computer produced maps show general agreement with CCIR predictions over large land masses. The RAE and CCIR maps diverge at high latitudes over Asia and frequently over ocean regions. Higher noise levels observed by RAE at high latitudes are attributed to magnetospheric emission while higher noise levels observed by RAE over Asia are attributable to high power transmitters. Analysis of RAE noise observations in conjunction with various geophysical phenomena showed no obvious correlation.

  6. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    PubMed Central

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-01-01

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption. PMID:25664434

  7. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    PubMed

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  8. Measurement of multipath delay profile in land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Arakaki, Yoshiya; Wakana, Hiromitsu; Suzuki, Ryutaro

    1993-01-01

    Mobile satellite communication channel has been evaluated mainly with fading statistics of signal. When bandwidth of transmitting signal becomes wider, frequency selectivity of fading becomes a significant factor of the channel. Channel characteristics, not only signal variation but multipath delay spread should be evaluated. A multipath measurement system is proposed and developed for mobile satellite applications. With this system and ETS-V satellite, multipath delay profiles are measured in various environments including Tokyo metropolis and Sapporo city at 1.5 GHz. Results show that the maximum excess delay is within 1 microsec and the maximum delay spread is 0.2 microsecs at elevation angles of 40 to 47 degrees. In wideband signal transmission of about 1 MHz and more, designers should consider the effect of selective fading due to the multipath of land mobile satellite channel.

  9. The Radio JOVE Project: A New Multi-channel Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Flagg, D.; Sky, J.; Reyes, F.; Thieman, J.; Higgins, C.

    2004-05-01

    A new radio spectrograph is now operational at the University of Florida Radio Observatory (UFRO) via the education and public outreach project called the Radio JOVE project(http://radiojove.gsfc.nasa.gov). The UFRO telescope is a 16-element 10-40 MHz log spiral array which is sensitive to both right-hand and left-hand circular polarization. Another spectrograph is connected to a 17-30 MHz log-periodic antenna located at Windward Community College in Hawaii (http://jupiter.wcc.hawaii.edu). Freely available software from Radio-Sky Publishing (http://www.radiosky.com) allows students, teachers, and radio astronomy enthusiasts to view the spectral data in real time via the Internet. Ultimately team members will be able to log on to the telescope and control the antenna and spectrometer's total sweep range, polarization, and calibrations. The software and telescope controls are discussed, and recent data results are shown. These data are of high quality and can lead to research applications.

  10. An Eruptive Hot-channel Structure Observed at Metric Wavelength as a Moving Type-IV Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Vasanth, V.; Chen, Yao; Feng, Shiwei; Ma, Suli; Du, Guohui; Song, Hongqiang; Kong, Xiangliang; Wang, Bing

    2016-10-01

    Hot-channel (HC) structure, observed in the high-temperature passbands of the Atmospheric Imaging Assembly/Solar Dynamic Observatory, is regarded as one candidate of coronal flux rope that is an essential element of solar eruptions. Here, we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outward with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively high brightness temperature (∼107–109 K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structure at the metric wavelength and provides strong constraints on the t-IV emission mechanism, which, if understood, can be used to diagnose the essential parameters of the eruptive structure.

  11. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  12. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  13. A wireless multi-channel bioimpedance measurement system for personalized healthcare and lifestyle.

    PubMed

    Ramos, Javier; Ausín, José Luis; Lorido, Antonio Manuel; Redondo, Francisco; Duque-Carrillo, Juan Francisco

    2013-01-01

    Miniaturized, noninvasive, wearable sensors constitute a fundamental prerequisite for pervasive, predictive, and preventive healthcare systems. In this sense, this paper presents the design, realization, and evaluation of a wireless multi-channel measurement system based on a cost-effective high-performance integrated circuit for electrical bioimpedance (EBI) measurements in the frequency range from 1 kHz to 1 MHz. The resulting on-chip spectrometer provides high measuring EBI capabilities and together with a low-cost, commercially available radio frequency transceiver device. It provides reliable wireless communication, constitutes the basic node to build EBI wireless sensor networks (EBI-WSNs). The proposed EBI-WSN behaves as a high-performance wireless multi-channel EBI spectrometer, where the number of channels is completely scalable and independently configurable to satisfy specific measurement requirements of each individual. A prototype of the EBI node leads to a very small printed circuit board of approximately 8 cm2 including chip-antenna, which can operate several years on one 3-V coin cell battery and make it suitable for long-term preventive healthcare monitoring. PMID:23739358

  14. Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards

    NASA Astrophysics Data System (ADS)

    Gillmor, C. Stewart

    This large volume describes all the forms of radio research done at the National Bureau of Standards (now, National Institute of Standards and Technology) from its founding in 1901 until about 1980. The volume truly reflects its subtitle; it describes in great detail research in radio propagation and all its connections with geophysics and geospace, but also radio as instrument for discovery and application in meteorology, navigation, and in standards of measurement and testing in electronics.The book is a bit unwieldy and some of its chapters will be of most interest to former NBS employees. For example, there is a lengthy chapter on the transfer of radio research work from Washington, D.C, to Boulder, Colo., in the early 1950s, complete with photostat of the quit claim deed to NBS from the Boulder Chamber of Commerce. On the other hand, radio research developed and flourished in this country in the early days at industrial (Bell Telephone, General Electric, Westinghouse) and government (NBS, Naval Research Laboratory) labs more than in academia, and it is very interesting to learn how the labs interacted and to read details of the organizational structure. I can attest personally to the great difficulties in locating materials concerning radio history. While we have numerous volumes devoted to certain popular radio heroes, little is available concerning government radio pioneers such as L. W. Austin, who directed the U.S. Navy's radio research for many years while situated physically at the Bureau of Standards, or J. H. Dellinger, long-time chief of the Radio Section and head spokesman on radio for the U.S. government until the 1930s.

  15. A Novel Dynamic Channel Access Scheme Using Overlap FFT Filter-Bank for Cognitive Radio

    NASA Astrophysics Data System (ADS)

    Tanabe, Motohiro; Umehira, Masahiro; Ishihara, Koichi; Takatori, Yasushi

    An OFDMA based channel access scheme is proposed for dynamic spectrum access to utilize frequency spectrum efficiently. Though the OFDMA based scheme is flexible enough to change the bandwidth and channel of the transmitted signals, the OFDMA signal has large PAPR (Peak to Average Power Ratio). In addition, if the OFDMA receiver does not use a filter to extract sub-carriers before FFT (Fast Fourier Transform) processing, the designated sub-carriers suffer large interference from the adjacent channel signals in the FFT processing on the receiving side. To solve the problems such as PAPR and adjacent channel interference encountered in the OFDMA based scheme, this paper proposes a novel dynamic channel access scheme using overlap FFT filter-bank based on single carrier modulation. It also shows performance evaluation results of the proposed scheme by computer simulation.

  16. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  17. Equivalence and Accuracy of MOSFET Channel Length Measurement Techniques

    NASA Astrophysics Data System (ADS)

    Jain, Sanjay

    1989-02-01

    It is shown that the MOSFET channel length measurement techniques of Terada and Muta, Peng et al., Whitfield, Suciu and Johnston, and De La Moneda et al. are actually equivalent, i.e. merely different expressions of the same formula for channel length in terms of measured resistance, and that some of the transresistance methods of Jain, although not equivalent, are also related to the same formula. The accuracy of this formula is evaluated for the general case and related to the error components due to source and drain resistance asymmetry, short channel geometry effect, and variation of series resistance with bias. No independent error component due to field-induced mobility degradation is found. Finally the errors in the methods of Terada and Muta, Chen et al., Sheu et al., Wordeman et al. and Jain, are determined and compared. The gate transresistance technique is found to be the most accurate method.

  18. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications

    PubMed Central

    Cañete, Francisco J.; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J.; Paris, José F.

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  19. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications.

    PubMed

    Cañete, Francisco J; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J; Paris, José F

    2016-01-01

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression. PMID:26907281

  20. Measurement and Modeling of Narrowband Channels for Ultrasonic Underwater Communications.

    PubMed

    Cañete, Francisco J; López-Fernández, Jesús; García-Corrales, Celia; Sánchez, Antonio; Robles, Encarnación; Rodrigo, Francisco J; Paris, José F

    2016-02-19

    Underwater acoustic sensor networks are a promising technology that allow real-time data collection in seas and oceans for a wide variety of applications. Smaller size and weight sensors can be achieved with working frequencies shifted from audio to the ultrasonic band. At these frequencies, the fading phenomena has a significant presence in the channel behavior, and the design of a reliable communication link between the network sensors will require a precise characterization of it. Fading in underwater channels has been previously measured and modeled in the audio band. However, there have been few attempts to study it at ultrasonic frequencies. In this paper, a campaign of measurements of ultrasonic underwater acoustic channels in Mediterranean shallow waters conducted by the authors is presented. These measurements are used to determine the parameters of the so-called κ-μ shadowed distribution, a fading model with a direct connection to the underlying physical mechanisms. The model is then used to evaluate the capacity of the measured channels with a closed-form expression.

  1. Precision measurement of top quark mass in dilepton channel

    SciTech Connect

    Jayatilaka, Bodhitha; /Michigan U.

    2006-01-01

    We present recent measurements of the top quark mass using events collected at the CDF and D0 detectors from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron. These analyses are performed using events consistent with the decay channel t{bar t} {yields} {bar b}{ell}{sup -}{bar v}{sub {ell}}b{ell}' + v'{sub {ell}}, or the dilepton channel. 230-360 pb{sup -1} of data are used.

  2. Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Nehls, S.; Hakenjos, A.; Arts, M. J.; Blümer, J.; Bozdog, H.; van Cappellen, W. A.; Falcke, H.; Haungs, A.; Horneffer, A.; Huege, T.; Isar, P. G.; Krömer, O.

    2008-05-01

    Radio pulses are emitted during the development of air showers, where air showers are generated by ultra-high energy cosmic rays entering the Earth's atmosphere. These nano-second short pulses are presently investigated by various experiments for the purpose of using them as a new detection technique for cosmic particles. For an array of 30 digital radio antennas (LOPES experiment) an absolute amplitude calibration of the radio antennas including the full electronic chain of the data acquisition system is performed, in order to estimate absolute values of the electric field strength for these short radio pulses. This is mandatory, because the measured radio signals in the MHz frequency range have to be compared with theoretical estimates and with predictions from Monte Carlo simulations to reconstruct features of the primary cosmic particle. A commercial reference radio emitter is used to estimate frequency dependent correction factors for each single antenna of the radio antenna array. The expected received power is related to the power recorded by the full electronic chain. Systematic uncertainties due to different environmental conditions and the described calibration procedure are of order 20%.

  3. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations

    NASA Astrophysics Data System (ADS)

    Morales, Miguel F.; Hewitt, Jacqueline

    2004-11-01

    This paper explores the potential for statistical epoch of reionization (EOR) measurements using wide-field radio observations. New developments in low-frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next-generation low-frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations and are significantly more sensitive than other techniques that have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3 σ power spectrum points in 100 hr of observation with only 4 MHz bandwidth with LOFAR for simple models of the high-redshift 21 cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radio frequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual unsubtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.

  4. Crosstalk Channel Estimation via Standardized Two-Port Measurements

    NASA Astrophysics Data System (ADS)

    Lindqvist, Fredrik; Lindqvist, Neiva; Dortschy, Boris; Ödling, Per; Börjesson, Per Ola; Ericson, Klas; Pelaes, Evaldo

    2009-12-01

    The emerging multiuser transmission techniques for enabling higher data rates in the copper-access network relies upon accurate knowledge of the twisted-pair cables. In particular, the square-magnitude of the crosstalk channels between the transmission lines are of interest for crosstalk-mitigation techniques. Acquiring such information normally requires dedicated apparatus since crosstalk-channel measurement is not included in the current digital subscriber line (DSL) standards. We address this problem by presenting a standard-compliant estimator for the square-magnitude of the frequency-dependent crosstalk channels that uses only functionality existing in today's standards. The proposed estimator is evaluated by laboratory experiments with standard-compliant DSL modems and real copper access network cables. The estimation results are compared with both reference measurements and with a widely used crosstalk model. The results indicate that the proposed estimator obtains an estimate of the square-magnitude of the crosstalk channels with a mean deviation from the reference measurement less than 3 dB for most frequencies.

  5. Radio spectrum measurements of artificial ball lightning and testing the hypothesis on its plasmochemical nature

    NASA Astrophysics Data System (ADS)

    Kopeikin, V. V.

    2014-01-01

    Spectral measurements of radiowaves emitted by artificial ball lightning are presented. The measurements were carried out using two different facilities: a pulsed power generator (PPG) and a three-contour Tesla transformer. The results of these measurements confirm the hypothesis that ball lightning is a self-oscillator of high-voltage pulses in the radio range.

  6. Method to measure the radio and chemosensitivity of human spheroids

    SciTech Connect

    Carlsson, J.; Nederman, T.

    1983-01-01

    A method based on the spontaneous outgrowth of cells from spheroids was tested. Different outgrowth patterns were seen depending on the types of spheroids and on the radiation or drug doses. The method allowed dose-effect relations to be determined. Spheroid survival was defined as when the outgrowing monolayers contained at least thousand cells within five weeks. The method was used as an alternative to cloning of isolated single cells. The glioma and osteosarcoma spheroids could not be disintegrated to single cell suspensions since they resisted enzymatic and mechanical treatments for cell separation. Detection of differences in radio and chemosensitivity between different types of spheroids of human origin might be valuable for the understanding of the large variations in therapeutical response often seen between different types of tumors.

  7. FOREGROUND PREDICTIONS FOR THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM FROM MEASUREMENTS OF FAINT INVERTED RADIO SOURCES AT 5 GHz

    SciTech Connect

    Schneider, Michael D.; Becker, Robert H.; De Vries, Willem; White, Richard L.

    2012-05-10

    We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 deg{sup 2} of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 deg{sup -2} in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes {approx}< 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope, we predict a {approx}30% and {approx}10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.

  8. Radio measurements of constant variation, and perspectives with ALMA

    NASA Astrophysics Data System (ADS)

    Combes, Françoise

    2010-11-01

    In the radio domain, absorption lines in front of quasars of CO, HI, OH, HCO+, HCN, up to NH3 and CII are providing interesting constraints on fundamental constant variation (α and μ). With more absorbing systems, and a wider redshift range, they could be more competitive than optical studies. This could come with ALMA, with more than one order of magnitude in sensitivity. Up to now, at intermediate and high redshift, between z = 0.25 to z = 0.89, only four absorption lines systems have been detected in the millimeter range and a fifth system at 0.765, at the OH-18cm lines (Kanekar et al. 2005). Out of these 5 systems, 3 are intervening lensing galaxies (and the background quasar is multiply imaged), and 2 correspond to an absorption of the host (PKS1413+135, B3-1504+377, for an overview see Combes & Wiklind 1996; Wiklind & Combes 1994 to 1998). A global comparison of all molecular lines observed with the HI-21cm absorption lines in PKS1413 and B0218 systems, the two narrowest line systems, have given quite stringent constraints on y = α2 gp μ, Δ y/y = (-0.20 ± 0.44) 10-5 and Δ y/y = (-0.16 ± 0.54) 10-5 respectively (Murphy et al. 2001). The precision is comparable to the MM method (Murphy et al. 2003), with a limited number of absorbing systems. The high sensitivity if the NH3 inversion lines to variation in the μ ratio (Flambaum & Kozlov 2007) was used by Henkel et al. (2009) in a recent multi-line study of PKS1830 at z ~ 0.9, and Murphy et al. (2008) for B0218 at z ~ 0.7. They find a limit of Δμ/μ < 1.4 10-6 and Δμ/μ < 1.8 10-6 respectively. Clearly, the radio method suffers from the rarity of the objects, and the fact that they have not yet been discovered at high redshift. The main caveats are that the lines compared come from different molecules, which might have intrinsic velocity offsets, due to several reasons, chemistry, excitation, temperature, density etc. . . When very different frequencies are compared (HI to CO for instance), the

  9. Ion Channel Conductance Measurements on a Silicon-Based Platform

    NASA Astrophysics Data System (ADS)

    Wilk, S. J.; Aboud, S.; Petrossian, L.; Goryll, M.; Tang, J. M.; Eisenberg, R. S.; Saraniti, M.; Goodnick, S. M.; Thornton, T. J.

    2006-05-01

    Conductance measurements of the transmembrane porin protein OmpF as a function of pH and bath concentration have been made with both a microfabricated silicon substrate device and a commercially available polystyrene aperture. Ion transport through the channel was simulated in atomic detail: the measured current was compared with theoretically calculated current, using a Brownian Dynamics kernel coupled to the Poisson equation by a P3M force field. The explicit protein structure and fixed charge distribution in the protein are calculated using the molecular dynamics code, GROMACS. Reasonable agreement is obtained in the simulated versus measured conductance over the range of experimental concentrations studied.

  10. Investigation of the UHF mobile-radio propagation channel in a temperate-zone forested environment

    NASA Astrophysics Data System (ADS)

    White, Kenneth J.

    1986-08-01

    Experimental verification of the stochastic power-spectral-density theory of radio propagation, as applied to a mobile receiver in a forested environment, is presented. Using a novel technique to achieve fractional-hertz resolution of the diffuse and direct wave components of the Doppler-spread received spectrum, the resultant data taken at 432 MHz shows that the angle of arrival of the diffuse component of the incident energy at the receive antenna is described by an uniform probability density function for both vertical and horizontal polarizations. Given an 8.8 km transmission path with the signal penetrating 1.3 km of forest just before reaching the receiver, the ratio of coherent (direct wave) intensity to total received signal power is 42% for horizontal polarization and 5% for vertical polarization. The results of the research indicate that long transmission paths in foliage are better characterized by a forward-scattering mechanism than by a lateral wave model.

  11. Measurements of the effects of humidity on radio-aerosol penetration through ultrafine capillaries

    SciTech Connect

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 {micro}m. The ultrafine capillaries had a diameter of 250 {micro}m. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios.

  12. Observing the Water Vapor Feedback With GPS Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Vergados, P.; Mannucci, A. J.; Ao, C. O.

    2015-12-01

    Recent studies show that the distribution of projected climate sensitivity (CS) is highly asymmetric with large tails towards higher temperatures, leaving open an uncomfortably large possibility of CS > 4.5oC. Central to the estimation of CS is the distribution of water vapor in the atmosphere, which directly affects the water vapor feedback and indirectly drives the cloud feedback. Yet, a plethora of studies report large discrepancies between models and observations of the tropical humidity climatology and its vertical distribution. Our preliminary results indicate that the tropical humidity climatology derived from Global Positioning System (GPS) radio occultation (GPSRO) observations are in excellent agreement with NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA). We will present the time series of tropospheric water vapor using GPSRO data sets from 2006 onwards, and will compare our results with different sources such as the European Center for Medium Range Weather Forecasts (ECMWF) and the Atmospheric Infrared Sounder (AIRS). We will carefully quantify the statistical differences among the series to identify and document biases among the data sets. Finally, we will correlate the aforementioned humidity series with surface temperature climatologies in order to estimate the variability of water vapor in response to temperature fluctuations, dq/dTs, which is directly related to the water vapor feedback. Current research indicates that GPSRO data sets can capture the amount of water vapor in very dry and very moist air more efficiently than other observing platforms, possibly suggesting larger water vapor feedback than previously known. Inter-comparing the dq/dTs among the different data sets will provide us with an additional constraint on the water vapor feedback. The critical role of the up-coming Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC-2) mission in late 2016, in characterizing the tropical

  13. Source and event selection for radio-planetary frame-tie measurements using the Phobos Landers

    NASA Technical Reports Server (NTRS)

    Linfield, R.; Ulvestad, J.

    1988-01-01

    The Soviet Phobos Lander mission will place two spacecraft on the Martian moon Phobos in 1989. Measurements of the range from Earth-based stations to the landers will allow an accurate determination of the ephemerides of Phobos and Mars. Delta Very Long Base Interferometry (VLBI) between the landers and compact radio sources nearby on the sky will be used to obtain precise estimates of the angular offset between the radio and planetary reference frames. The accuracy of this frame-tie estimate is expected to be in the vicinity of 10 mrad, depending on how well several error sources can be controlled (calibrated or reduced). Many candidate radio sources for VLBI measurements were identified, but additional work is necessary to select those sources which have characteristics appropriate to the present application. Strategies for performing the source selection are described.

  14. Improved radio tomography of the ionosphere using EUV/optical measurements from satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Dymond, K. F.; Picone, J. M.; Cotton, D. M.; Chakrabarti, S.; Cook, T. A.; Vickers, J. S.

    1997-09-01

    Computerized tomography of the ionosphere employs radio beacons on satellites and ground-based receivers that measure the integrated electron densities along line-of-sight propagation paths. The primary limitation to satellite-based ionospheric radio tomography is the lack of near-horizontal ray paths. This restricts the accuracy for the reconstruction of vertical profiles in the F region. Horizontal integration paths may be obtained using the natural extreme ultraviolet emissions in the ionosphere. The emissions at 91.1 nm are the result of radiative recombination of O+ ions and electrons and at 83.4 nm are produced by photoionization of atomic oxygen and subsequent scatter by the atomic oxygen ion. Combining data from radio and EUV measurements yields greatly improved ionospheric density reconstructions. This concept will be tested using the TERRIERS satellite scheduled for launch in early 1998.

  15. Eddy diffusion coefficient for the atmosphere of Venus from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.; Ishimaru, A.

    1981-01-01

    Estimates are obtained of the vertical mass eddy diffusion coefficient of the Venus atmosphere in the region of turbulence near 60 km on the basis of radio scintillations observed during radio occultation by the atmosphere. The structure constant estimated from Pioneer Venus orbit 18 entrance radio occultation measurements is used, under the assumption that the turbulence is generated by wind-shear, to derive a value of 40,000 sq cm/sec for the vertical mass eddy diffusion coefficient, together with an energy dissipation rate of 20 sq cm/sec and a temperature fluctuation dissipation rate of 0.001 K-squared/sec. Results are noted to fall within the range measured for the earth's troposphere, however, indicate that small-scale turbulence is probably the dominant mechanism for vertical transport near the tropopause in the Venus atmosphere.

  16. Occupational exposure of personnel operating military radio equipment: measurements and simulation.

    PubMed

    Paljanos, Annamaria; Miclaus, Simona; Munteanu, Calin

    2015-09-01

    Technical literature provides numerous studies concerning radiofrequency exposure measurements for various radio communication devices, but there are few studies related to exposure of personnel operating military radio equipment. In order to evaluate exposure and identify cases when safety requirements are not entirely met, both measurements and simulations are needed for accurate results. Moreover, given the technical characteristics of the radio devices used in the military, personnel mainly operate in the near-field region so both measurements and simulation becomes more complex. Measurements were made in situ using a broadband personal exposimeter equipped with two isotropic probes for both electric and magnetic components of the field. The experiment was designed for three different operating frequencies of the same radio equipment, while simulations were made in FEKO software using hybrid numerical methods to solve complex electromagnetic field problems. The paper aims to discuss the comparative results of the measurements and simulation, as well as comparing them to reference levels specified in military or civilian radiofrequency exposure standards.

  17. Surface figure measurements of radio telescopes with a shearing interferometer.

    PubMed

    Serabyn, E; Phillips, T G; Masson, C R

    1991-04-01

    A new technique for determining the surface figure of large submillimeter wavelength telescopes is presented, which is based on measuring the telescope's focal plane diffraction pattern with a shearing interferometer. In addition to the instrumental theory, results obtained using such an interferometer on the 10.4-m diam telescope of the Caltech Submillimeter Observatory are discussed. Using wavelengths near 1 mm, a measurement accuracy of 9 microm, or lambda/115, has been achieved, and the rms surface accuracy has been determined to be just under 30 microm. The distortions of the primary reflector with changing elevation angle have also been measured and agree well with theoretical predictions of the dish deformation.

  18. Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling

    2016-06-01

    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

  19. Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    Xiao, Xing; Yao, Yao; Xie, Ying-Mao; Wang, Xing-Hua; Li, Yan-Ling

    2016-09-01

    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

  20. Propagation measurements on a line-of-sight over-water radio link in Norway

    NASA Astrophysics Data System (ADS)

    Thorvaldsen, Per; Henne, Ingvar

    2014-07-01

    Propagation measurements have been carried out on a 43 km long 13 GHz 128 QAM (quadrature amplitude modulation) over-water path in the coastal regions of Norway. The measurements lasted for 18 months. The intention with the measurements on this in-service radio link was to compare results with models given by the (Recommendation International Telecommunication Union) Rec. ITU-R P. 530-15. The attenuation due to combined rain and wet snow was of special interest, since the radio link is situated in an area—Trondheimsfjorden—that has a significant amount of wet snow in winter. The radio link experienced outages due to multipath, rain and wet snow, where the latter were the predominant outage cause. The fading due to combined rain and wet snow resembled the shape of the model given in Rec. ITU-R P. 530-15, but the model underpredicts the amount of fading. In addition to outages (performance degradation and unavailability) and fading, various other parameters such as fading speed, enhancement, average fade duration, and number of fade events have been measured and compared to Rec. ITU-R P. 530-15. The radio link activity has also been compared to the weather conditions at the time for the most severe fading incidents.

  1. The ATS-F radio frequency interference measurement experiment

    NASA Technical Reports Server (NTRS)

    Henry, V. F.

    1973-01-01

    The technical objectives of the uplink interference tests and measurements to be performed during this experiment are set forth as the determination of the integrated interference power from all 6-GHz terrestrial sources sharing the common carrier band with the RF field of view of the ATS-F satellite; the establishment of practical limits of receiver antenna gain-to-noise temperature ratios for satellites sharing the common 6-GHz carrier band; and the determination of the geographical and frequency distribution of 6-GHz terrestrial sources sharing the common carrier band. A brief description of the RF interference measurement system with some details on its hardware and subsystems is included. The performance characteristics of the mission and a measurement program are discussed.

  2. Measuring terrestrial radio frequency interference at orbit altitudes

    NASA Technical Reports Server (NTRS)

    Bayol, M. E.; Locke, P. A.

    1973-01-01

    An experiment has been designed to measure and characterize the effect of man-made interference on satellite receivers at orbital altitudes. The experiment, as designed, requires dedicated hardware on a spacecraft of specified orbit and will measure (within the frequency range from 400 MHz to 12.4 GHz) peak levels of interference in cells dimensioned in space, time, and frequency. The experiment will provide data indicative of some of the statistical characteristics of interference levels at satellite orbital altitudes and will provide designers of satellite communications links with new facilities for the prediction and prevention of interference problems.

  3. Wireless radio channel for intramuscular electrode implants in the control of upper limb prostheses.

    PubMed

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Farina, Dario

    2015-01-01

    In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation. PMID:26737192

  4. Dual-channel heterodyne measurements of atmospheric phase fluctuations.

    PubMed

    Ridley, Kevin D; Jakeman, Eric; Bryce, David; Watson, Stephen M

    2003-07-20

    A dual-channel fiber-coupled laser heterodyne system operating at a 1.55-microm wavelength is used to investigate phase fluctuations induced on a laser beam by propagation through turbulent air. Two receivers are used to characterize spatial and temporal variations produced by a turbulent layer of air in the laboratory. The system is also used for measurements through extended turbulence along an 80-m outdoor atmospheric path. Phase structure functions, power spectral densities, and cross correlations are presented. PMID:12921273

  5. Installations and methods for measurement of aircraft radio components and systems

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Juergen

    1993-01-01

    The requirements and workings of a flight measurement system for measurement of radio frequency systems and components used in flight control and guidance are described. These systems and components consist of radio systems for communication, navigation, flight monitoring (Air Traffic Control (ATC)), and radar systems for flight monitoring (ATC); recognition and protection procedures. A range of subsystems and components for such installations requires in flight testing. In the case of radio systems, this relates primarily to aircaft antenna whose radiation patterns have to be measured in flight. In the case of radar systems for flight monitoring, it is particularly important to have knowledge of the radar cross section of whatever aircraft are involved, in order to estimate system range and probability of detection. Recognition systems (electronic support measurement) require measurement of antenna radiation diagrams and direction, finding antenna accuracy. In order to ascertain the coverage of systems operating electronic countermeasures, it is also necessary to have knowledge of the radiation patterns of the antennae involved. Although the above mentioned system characteristics can also be at least approximately determined by other methods (theoretical calculations, model measurements, and static measurements on the original on ground test rigs), flight measurements, for example for design acceptance of new aircraft types, is neccessary. These provide practical values and make it possible largely to avoid interferences and omissions which could affect the results of the other processes mentioned above.

  6. The polar atmosphere of Venus: Radio occultation measurements with Venus Express and Magellan

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Tellmann, S.; Paetzold, M.; Haeusler, B.; Bird, M. K.; Tyler, G. L.

    2012-12-01

    The ESA Venus Express (VEx) spacecraft has been conducting radio occultation experiments since 2006. The results reported to date are based on data recorded by 35-m antennas of the ESA Tracking Station Network (e.g., Tellmann et al., J. Geophys. Res., 114, E00B36, 2009). We have recently begun to derive complementary new results through analysis of high-quality "open-loop" data recorded by a 70-m antenna of the NASA Deep Space Network. This experiment sounded the polar atmosphere in both hemispheres at latitudes greater than 75 degrees. As in previous occultation measurements in this region, there is a deep convective layer at altitudes below about 60 km. The convective layer is capped by an abrupt transition to stable stratification, and the overlying free air is modulated by vertically propagating gravity waves. These new results will be compared with Magellan radio occultation measurements acquired at comparable latitudes in the early 1990s and with the VEx results reported by Tellmann et al. (2009). Our analysis also illustrates some of the challenges that can arise in radio occultation measurements at Venus. For example, the sharp temperature minimum at the tropopause creates a thin layer that eludes radio occultation sounding owing to its peculiar refractive properties. This research is funded in part by NASA Grant NNX10AE22G of the Venus Express Participating Scientist Program.

  7. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10{sup -7} or better, resulting in a resolution of {+-}25 {mu}m for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented.

  8. New-generation data acquisition and control system for continuum radio-astronomic observations with RATAN-600 radio telescope: Development, observations, and measurements

    NASA Astrophysics Data System (ADS)

    Tsybulev, P. G.

    2011-01-01

    A new Data Acquisition and Control System for performing continuum radio-astronomical observations with the RATAN-600 radio telescope is presented. One of the "building blocks" of the system is the Embedded Radiometric Data Acquisition System (ER-DAS) developed at the RATAN-600. It is a measurement facility meant for digitizing and reducing radiometer signals and for transmitting the result of these operations via Ethernet networks. ER-DAS system is shown to have a low self-noise level and to lack 1/ f-type noise. The measurement facility is shown to operate efficiently in radio-astronomical observations. Radiometric measurements of the parameters of high-sensitivity radiometers are illustrated in the case of the measurements of radiometer gain fluctuations.

  9. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors.

  10. MF radio field strength measurements in desert terrain near Yuma, Arizona

    NASA Astrophysics Data System (ADS)

    Heckscher, J. L.; Kalakowsky, C. B.; Whidden, R. W.; Tichovolsky, E. J.

    1980-12-01

    The field strength of the commercial radio broadcast station KBLU was measured at several hundred locations in the desert southeast of Yuma, Arizona, to study MF ground-wave propagation over the desert valleys and mountain ridges. Field strengths below the surface of the desert floor were measured in specially drilled holes to observe the penetration of MF into the desert soil. Idealized propagation path models are shown to produce effects similar to the observations.

  11. The Accuracy of Radio Interferometric Measurements of Earth Rotation

    NASA Technical Reports Server (NTRS)

    Eubanks, T. M.; Steppe, J. A.; Spieth, M. A.

    1985-01-01

    The accuracy of very long base interferometry earth rotation (UT1) measurements is examined by intercomparing TEMPO and POLARIS data for 1982 and the first half of 1983. None of these data are simultaneous, and so a proper intercomparison requires accounting for the scatter introduced by the rapid, unpredictable, UT1 variations driven by exchanges of angular momentum with the atmosphere. A statistical model of these variations, based on meteorological estimates of the Atmospheric Angular Momentum is derived, and the optimal linear (Kalman) smoother for this model is constructed. The scatter between smoothed and independent raw data is consistent with the residual formal errors, which do not depend upon the actual scatter of the UT1 data. This represents the first time that an accurate prediction of the scatter between UT1 data sets were possible.

  12. Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session

  13. Magnetization of the ionospheres of Venus and Mars: Results from radio occultation measurements

    SciTech Connect

    Woo, R.; Kliore, A.J. )

    1991-07-01

    In situ measurements by the Pioneer Venus orbiting spacecraft, conducted during solar maximum only, have shown that magnetization (permeation of large-scale magnetic fields) of the ionosphere of Venus occurs under high solar wind dynamic pressure and that this takes place most frequently near the subsolar region. In this paper, the authors use remote sensing radio occultation measurements to study magnetization of the ionospheres of Venus and Mars based on these characteristics. For Venus they take advantage of the unique data set consisting of 148 electron density profiles deduced from Pioneer Venus radio occultation measurements. They demonstrate that radio occultation measurements yield results on frequency of occurrence of magnetization during solar maximum that are similar to those obtained from the Pioneer Venus in situ magnetic field measurements. During solar minimum, for which direct ionospheric measurements have never been made, they find that magnetization of the Venus ionosphere is more pervasive than at solar maximum. Magnetization extends to higher solar zenith angles (SZA) and appears stronger than at solar maximum. These results confirm that during solar minimum, the high solar wind dynamic pressure state is more prevalent at Venus because the ionospheric plasma pressure is weaker than at solar maximum. Comparison of a large number of electron density profiles of Mars (deduced from radio occultation measurements by the Viking 1 and 2 and Mariner 9 spacecraft for SZA > 46{degrees}) with those of Venus shows an absence of the ledge and disturbed topside plasma observed in the Venus profiles. These results, however, do not constitute evidence against magnetization of the ionosphere of Mars, as Shinagawa and Cravens (1989) have shown on their one-dimensional MHD models that, even when the ionosphere of Mars is highly magnetized, the magnetic structure differs from that at Venus, and a ledge does not form in its electron density profiles.

  14. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  15. Wide Range Neutron Flux Measuring Channel for Aerospace Application

    SciTech Connect

    Cibils, R. M.; Busto, A.; Gonella, J. L.; Martinez, R.; Chielens, A. J.; Otero, J. M.; Nunez, M.; Tropea, S. E.

    2008-01-21

    The use of classical techniques for neutron flux measurements in nuclear reactors involves the switching between several detection chains as the power grows up to 10 decades. In space applications where mass and size constraints are of key significance, such volume of hardware represents a clear disadvantage. Instead of requiring different instruments for each reactor operating range (start-up, ramping-up, and nominal power), a single instrument chain should be desirable. A Wide Range Neutron Detector (WRND) system, combining a classic pulse Counting Channel with a Campbell's theorem based Fluctuation Channel can be implemented for the monitoring and control of a space nuclear reactor. Such an instrument will allow for a reduction in the complexity of space-based nuclear instrumentation and control systems. In this presentation we will discuss the criteria and tradeoffs involved in the development of such a system. We will focus particularly on the characteristics of the System On Chip (SOC) and the DSP board used to implement this instrument.

  16. A Study of the Short-Term Stability of Energy Characteristics of the Ionospheric Radio Channel

    NASA Astrophysics Data System (ADS)

    Barabashov, B. G.; Ogar, A. S.; Pelevin, O. Yu.; Radio, L. P.

    2015-04-01

    On the basis of the results of long-term measurements on the calibrated mid-latitude highfrequency paths, it is concluded that the processes responsible for the energy characteristics of the high-frequency wave field have inertial properties. Slow (one-hour) absolute variations in the average signal and effective-noise levels in the daytime and the night-time hours do not exceed 2 .0 dB. Similar variations in the average signal levels in the twilight hours after removal of the trend, which is caused by the diurnal variation in the ionospheric characteristics, are also below 2 .0 dB. Analysis of the time behavior of the relative error-appearance frequency during transmission of the binary sequences with the amplitude manipulation indicates that the above frequency varies in the range 20 -75 % for an hour if the reception results are averaged for 20 min.

  17. A proposed space mission around the Moon to measure the Moon Radio-Quiet Zone

    NASA Astrophysics Data System (ADS)

    Antonietti, N.; Pagana, G.; Pluchino, S.; Maccone, C.

    In a series of papers published since 2000 mainly in Acta Astronautica the senior author Maccone dealt with the advantages of the Farside of the Moon for future utilization Clearly the Moon Farside is free from RFI Radio Frequency Interference produced in larger and larger amounts by the increasing human exploitation of radio technologies That author suggested that crater Daedalus located at the center of the Farside was the best possible location to build up in the future one or more radiotelescopes or phased arrays to achieve the maximum sensitivity in radioastronomical and SETI searches Also a radio-quiet region of space above the Farside of the Moon exists and is called the Quiet Cone The Quiet Cone actual size however is largely unknown since it depends on the orbits of radio-emitting satellites around the Earth that are themselves largely unknown due to the military involvements In addition diffraction of electromagnetic waves grazing the surface of the Moon causes further changes in the geometrical shape of the Quiet Cone This riddle can be solved only by direct measurements of the radio attenuation above the Farside of the Moon performed by satellites orbiting the Moon itself In this paper we propose to let one or more low cost radiometers be put into orbit around the Moon to measure the RFI attenuation at different frequencies and altitudes above the Moon The opportunity of adding more payload s such as an ion detector and or a temperature sensor is evaluated also In this regard we present in this paper the experience gained by

  18. Estimating water vapour along the radio path between two LEO satellites through multifrequency differential power measurements

    NASA Astrophysics Data System (ADS)

    Facheris, Luca; Cuccoli, Fabrizio

    2013-04-01

    The Normalized Differential Spectral Attenuation (NDSA) concept was proposed in 2002 by the authors for tropospheric water vapour sounding by means of a couple of LEO (Low Earth Orbit) satellites (one carrying a transmitter, the other a receiver and operating in the Ku/K bands) in limb geometry. In those years, in the course of the ACE+ mission studies (second call for proposal of the ESA Earth Explorer Opportunity Mission), the problem arose of the severe impact of scintillation due to tropospheric turbulence on the water vapour estimates provided by radio occultation measurements made in limb mode between two LEO satellites. In following ESA studies (AlmetLeo - 2004, ACTLIMB -2009) it was demonstrated that NDSA, thanks to its normalised differential approach, is effective for limiting scintillation and for estimating the Integrated Water Vapor (IWV) along the propagation path between the two LEO satellites. NDSA relies on the conversion of a spectral parameter (the spectral sensitivity S), into the IWV through IWV-S relationships. S is a finite-difference approximation of the derivative of the spectral attenuation at a given frequency fo, normalized to the spectral attenuation itself. To measure Sat fo,it is required that two tone signals with equal power at relatively close frequencies f1 and f2 (f1 > f2) symmetrically placed around fo are simultaneously transmitted. The two pertinent received powers P1 and P2 are simultaneously measured and S is provided by: S = -P2--P1- (f1 - f2 )P2 From the very beginning of the NDSA studies, it was evident that in ideal measurement conditions (no disturbance at the receiver nor propagation impairments) S is tightly correlated to the IWV. To verify this, we accounted for natural variations of the atmospheric conditions by generating simulated spherically symmetric atmospheres using real radiosonde profiles. We computed IWV along the radio path and simulated S separately obtaining IWV-S relationships at various altitudes

  19. Measurement of the top quark mass in the dilepton channel

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2006-09-01

    We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb{sup -1} of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m{sub t} = 178.1 {+-} 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

  20. Channel Measurement and Modeling for 5G Urban Microcellular Scenarios.

    PubMed

    Peter, Michael; Weiler, Richard J; Göktepe, Barış; Keusgen, Wilhelm; Sakaguchi, Kei

    2016-08-20

    In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL) and the delay spread (DS). It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62) for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns) and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS.

  1. Channel Measurement and Modeling for 5G Urban Microcellular Scenarios.

    PubMed

    Peter, Michael; Weiler, Richard J; Göktepe, Barış; Keusgen, Wilhelm; Sakaguchi, Kei

    2016-01-01

    In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL) and the delay spread (DS). It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62) for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns) and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS. PMID:27556462

  2. Channel Measurement and Modeling for 5G Urban Microcellular Scenarios

    PubMed Central

    Peter, Michael; Weiler, Richard J.; Göktepe, Barış; Keusgen, Wilhelm; Sakaguchi, Kei

    2016-01-01

    In order to support the development of channel models for higher frequency bands, multiple urban microcellular measurement campaigns have been carried out in Berlin, Germany, at 60 and 10 GHz. In this paper, the collected data is uniformly analyzed with focus on the path loss (PL) and the delay spread (DS). It reveals that the ground reflection has a dominant impact on the fading behavior. For line-of-sight conditions, the PL exponents are close to free space propagation at 60 GHz, but slightly smaller (1.62) for the street canyon at 10 GHz. The DS shows a clear dependence on the scenario (median values between 16 and 38 ns) and a strong distance dependence for the open square and the wide street canyon. The dependence is less distinct for the narrow street canyon with residential buildings. This behavior is consistent with complementary ray tracing simulations, though the simplified model tends to overestimate the DS. PMID:27556462

  3. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band.

    PubMed

    Hartwig, V; Giovannetti, G; Vanello, N; Costantino, M; Landini, L; Benassi, A

    2006-01-01

    An electrodeless measurement system based on a resonant circuit is proposed for the measurement of dielectric properties of liquid samples at RF (radio frequency). Generally, properties as dielectric constant, loss factor and conductivity are measured by parallel plate capacitor cells: this method has several limitations in the case of particular liquid samples and in the range of radiofrequencies. Our method is based on the measurements of resonance frequency and quality factor of a LC resonant circuit in different measuring conditions, without and with the liquid sample placed inside a test tube around which the home made coil is wrapped. The measurement is performed using a network analyzer and a dual loop probe, inductively coupled with the resonant circuit. One of the advantages of this method is the contactless between the liquid sample and the measurement electrodes. In this paper the measurement system is described and test measurements of conventional liquids dielectric properties are reported.

  4. High radio fluxes of PKS2023-07 measured with RATAN-600

    NASA Astrophysics Data System (ADS)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.

    2016-04-01

    After the AGILE detection the gamma-ray flare from the quasar PSK2023-07 (correctly PKS B2022-077) by Piano et al, ATel #8879 we carried out its observations with the RATAN-600 radio telescope SAO RAS. The measured flux densities are equal to 1.50, 1.96, 2.54 Jy at 4.8, 11.2, 21.7 GHz respectively on 1 Apr 2016.

  5. Venus - Mass, gravity field, atmosphere, and ionosphere as measured by the Mariner 10 dual-frequency radio system

    NASA Technical Reports Server (NTRS)

    Howard, H. T.; Tyler, G. L.; Fjeldbo, G.; Kliore, A. J.; Levy, G. S.; Brunn, D. L.; Dickinson, R.; Edelson, R. E.; Martin, W. L.; Postal, R. B.

    1974-01-01

    The unique properties of the Mariner 10 radio system, and the preliminary scientific results obtained from the analysis of the radio signals are described. In the normal two-way communication mode, a command- and range-modulated 2115-MHz signal is transmitted to the spacecraft for reception on its omnidirectional antenna. As implemented for Mariner 10, the dual-frequency system has proven fully capable of performing interplanetary columnar electron content measurements while achieving the prime goals of the celestial mechanics and radio science team. The determination of the mass and gravitational potential of Venus is one of the major objectives of the radio science experiments. Information on Venus's atmosphere was deduced from analysis of the radio signals during occultation. Open-loop receiver differential Doppler data were used to measure the nightside and dayside ionospheres of Venus.

  6. Conceptual Background to Radio

    NASA Astrophysics Data System (ADS)

    Ponsonby, J. E. B.

    2004-06-01

    The International Telecommunications Union (ITU) conceives the radio spectrum as primarily a resource for telecommunications. Indeed most applications of radio are for communications and other radio services, particularly the Radio Astronomy Service, are deemed to be `pretend'communication serviceas for spectrum amnagement purposes. The language of Radio Spectrum Management is permeated by the terminology ofcommunications, some derived from the physics of radio and some from aspects of information theory. This contribution touches on all the essential concepts of radiocommunications which the author thinks should be the common mental equipment of the Spectrum Manager. The fundamental capacity of a communication channel is discussed in terms of the degrees of freedom and bandwidth of a signal, and the signal to noise ratio. It is emphasized that an information bearing signal is inherently unpredictable, and must, at some level, be discontinuous. This has important consequences for the form of its power spectrum. The effect of inserting filters is discussed particularly with regard to constant amplitude signals and, in the context of non-linear power amplifiers, the phenomenon of`sideband recovery'. All the common generic forms of modulation are discussed including the very different case of `no-modulation' which applies in all forms of passive remote sensing. Whilst all are agreed that the radio spectrum should be used `efficiently', there is no quantitative measure of spectral efficiency which embraces all relevant aspects of spectral usage. These various aspects are dicussed. Finally a brief outline of some aspects of antennae are reviewed. It is pointed out that the recent introduction of so-called `active antennnae', which have properties unlike traditional passive antennae, has confused the interpretation of those ITU Radio Regulations which refer to antennae.

  7. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  8. Cassegrainian/Gregorian-type null correctors for surface measurements of radio telescope reflectors.

    PubMed

    Greve, A

    1997-08-01

    The (sub)millimeter wavelength radio observatory of the next generation will probably be an interferometer array of some 50 telescopes with parabolic reflectors 10-15 m in diameter. At this scale of mass production it is convenient to have at hand for workshop assembly a reflector surface measurement technique that is precise and easy to operate. We discuss the possibility of reflector measurements based on 10.6-microm CO2 laser interferometry using Cassegrainian/Gregorian-type null correctors. PMID:18259343

  9. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    NASA Astrophysics Data System (ADS)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  10. High resolution kilometric range optical telemetry in air by radio frequency phase measurement.

    PubMed

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  11. High resolution kilometric range optical telemetry in air by radio frequency phase measurement.

    PubMed

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km. PMID:27475593

  12. GIS technology for spatiotemporal measurements of gully channel width evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field observations of gully evolution in active croplands have often revealed the presence of a less erodible soil layer that is typically associated with tillage practices (i.e. plowpan). This more erosion-resistant layer limits channel incision forcing the gully channel to expand laterally through...

  13. Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: Channel scattering function

    NASA Astrophysics Data System (ADS)

    Rogers, Neil C.; Cannon, Paul S.; Groves, Keith M.

    2009-02-01

    The design and operation of transionospheric VHF and UHF radars requires knowledge of amplitude and phase scintillation due to ionospheric scattering. Phase coherence is of particular importance where long coherent integration periods and large bandwidths are required. A thin phase screen, parabolic equation based, Trans-Ionospheric Radio Propagation Simulator (TIRPS) is described. Modeled channel scattering functions (CSFs) are compared to experimental VHF and UHF data derived from the Advanced Research Projects Agency Long-range Tracking and Instrumentation Radar on Kwajalein Island (9.4°N, 166.8°E). TIRPS quantitatively reproduces the experimental results, including the quasi-parabolic profile observed in the measured CSFs under strong turbulence conditions. Variations in the simulated CSF with ionospheric phase screen parameters are also presented. Under conditions of high integrated strength of turbulence (CkL), a low phase spectral index (p = 1), indicating relatively dense small-scale irregularities, produces pronounced range spreading. Conversely, when the spectral index is high (p = 4), indicative of strong focusing/defocusing by large-scale irregularities, there is increased Doppler spreading and, when the outer scale of irregularities is large, a greater likelihood of asymmetry of the CSF about the zero Doppler axis.

  14. Molecular origins of conduction channels observed in shot-noise measurements.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-11-01

    Measurements of shot noise from single molecules have indicated the presence of various conduction channels. We present three descriptions of these channels in molecular terms showing that the number of conduction channels is limited by bottlenecks in the molecule and that the channels can be linked to transmission through different junction states. We introduce molecular-conductance orbitals, which allow the transmission to be separated into contributions from individual orbitals and contributions from interference between pairs of orbitals.

  15. Measurement of the linear polarization of channeling radiation in silicon and diamond

    SciTech Connect

    Rzepka, M.; Buschhorn, G.; Diedrich, E.; Kotthaus, R.; Kufner, W.; Roessl, W.; Schmidt, K.H.; Hoffmann-Stascheck, P.; Genz, H.; Nething, U.; Richter, A.; Sellschop, J.P.F.

    1995-07-01

    Utilizing 90{degree} Compton scattering the linear polarization of channeling radiation produced at the superconducting accelerator S-DALINAC with 62 MeV electrons in silicon and diamond has been measured in the energy range between 50 and 400 keV. Planar channeling radiation due to transitions involving transversal bound as well as unbound states is completely linearly polarized perpendicular to the channeling plane. Axial channeling radiation does not show linear polarization.

  16. The shape of the radio wavefront of extensive air showers as measured with LOFAR

    NASA Astrophysics Data System (ADS)

    Corstanje, A.; Schellart, P.; Nelles, A.; Buitink, S.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Krause, M.; Rachen, J. P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; van den Akker, M.; Alexov, A.; Anderson, J.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Bernardi, G.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Gasperin, F.; de Geus, E.; de Vos, M.; Duscha, S.; Eislöffel, J.; Engels, D.; Fallows, R. A.; Ferrari, C.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Maat, P.; Mann, G.; McFadden, R.; McKay-Bukowski, D.; Mevius, M.; Munk, H.; Norden, M. J.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Scaife, A. M. M.; Schwarz, D.; Smirnov, O.; Stewart, A.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; Toribio, C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijnholds, S. J.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2015-02-01

    Extensive air showers, induced by high energy cosmic rays impinging on the Earth's atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.

  17. Study of Cassini Radio Occultation Sensitivity to Atmospheric Constituents Based on New Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Steffes, P. G.; Mohammed, P. N.

    2002-09-01

    As described in an accompanying paper by Mohammed and Steffes (BAAS, DPS-02), new laboratory measurements of the 9 mm opacity of phosphine and ammonia under simulated conditions for Saturn have recently been completed. Using these results, plus previous results for the centimeter-wavelength opacity of these constituents (see, e.g., Hoffman et al. ICARUS 152, 172-184, 2001), studies of the sensitivity of the Cassini radio link to atmospheric constituents encountered during radio occultations are being conducted. Preliminary results suggest that for orbits with favorable occultation geometry, the Ka-Band (32 GHz, or 9.3 mm) downlink will encounter measurable absorption from PH3 at the 0.5 Bar pressure level, and will be capable of profiling phosphine down to altitudes with pressures up to 0.8 Bars, where the opacity from ammonia would then dominate followed by loss of signal (LOS) at about 0.9 Bars. As with the Voyager 2 radio occultation experiment, the X-Band (8.4 GHz, or 3.6 cm) downlink is expected to encounter measurable absorption at the 0.8 Bar pressure level from both PH3 and NH3, before losing the signal at the 1 Bar pressure level, and the S-Band (2.3 GHz or 13 cm) downlink is expected to encounter measurable absorption from both PH3 and NH3 at the 1.1 Bar pressure level with profiling capability down to the 1.6 Bar pressure level. A computer model to simulate the ray paths and attenuation encountered during Saturn occultations is currently under development. This work is supported by the NASA Planetary Atmospheres Program under grant NAG5-12122.

  18. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme. PMID:25205832

  19. HF Channel Availability under Ionospheric Disturbances: Model, Method and Measurements as Contributions

    NASA Astrophysics Data System (ADS)

    Tulunay, E.; Senalp, E. T.; Tulunay, Y.; Warrington, E. M.; Sari, M. O.

    2009-04-01

    variation of group range and line-of-sight Doppler velocity of the HF Radar echo signal were investigated. HF radar system under ionospheric disturbances has been identified globally and some operational suggestions have been presented. It is possible for the HF radar operator to estimate the possible skip distance and possible single hop group ranges for the given frequencies of 11 MHz and 14 MHz [Buyukpabuscu, 2007]. (iii) The measurements over the HF band during the 29 March 2006 total solar eclipse in Antalya (36° N; 30° E) Turkey was conducted from the channel occupancy and atmospheric noise points of view. The whole HF band ranging from 1 to 30 MHz has been swept using 10 kHz peak and 200 Hz average detectors of a certified EMI receiver equipped with a calibrated active monopole antenna. The changes in the atmospheric noise during the eclipse were reported [Tulunay, 2006]. The model based, theoretical and experimental works mentioned are promising and have potential for future research and developments. References Buyukpabuscu S.O. (2007), System Identification with Particular Interest On The High Frequency Radar Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, February 2007. Sari M.O. (2006), A New Approach For The Assessment Of Hf Channel Availability Under Ionospheric Disturbances, MS Thesis, Electrical and Electronics Eng., Middle East Technical Univ., Ankara, Turkey, September 2006. Tulunay E., E. M. Warrington, Y. Tulunay, Y. Bahadırlar, A.S. Türk, R. Çaputçu, T. Yapıcı , E.T. Şenalp (2006), Propagation Related Measurements during Three Solar Eclipses in Turkey, IET 10th International Conference on Ionospheric Radio Systems & Techniques, IRST 2006, 18-21 July 2006, London, UK.

  20. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    SciTech Connect

    Woo, R.; Sjogren, W.L.; Kliore, A.J. ); Luhmann, J.G. ); Brace, L.H. )

    1989-02-01

    This paper presents the first S-band (2.3 GHz) radio scintillations observed in the ionosphere of Venus and discovered when the Pioneer Venus Orbiter spacecraft traversed the ionosphere of Venus. In situ plasma measurements as well as propagation calculations confirm that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. While these topside plasma irregularities have not been studied before, simultaneous magnetic field measurements presented here reveal that they are associated with the penetration of large-scale magnetic fields in the ionosphere. Previous studies based on extensive magnetic field measurements have shown that the presence of large-scale magnetic fields occurs in the subsolar region when the solar wind dynamic pressure exceeds the ionospheric plasma pressure. As with the large-scale magnetic fields, the disturbed plasma and resulting scintillations are therefore a manifestation of high-dynamic solar wind interaction with the ionosphere. Since the scintillations only occur in the subsolar region of Venus, the global morphology of ionospheric scintillations at Venus is different from that of the terrestrial ionosphere, where scintillations are observed in both polar and equatorial regions, with peaks occurring during nighttime. This difference apparently stems from the fact that Venus is not a magnetic planet. The authors also demonstrate that the disturbed plasma produced by the high-dynamic solar wind interaction can be remotely sensed by scintillations during radio occultation measurements, that is, when the spacecraft is outside the ionosphere.

  1. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Sjogren, William L.; Kliore, Arvydas J.; Luhmann, Janet G.; Brace, Larry H.

    1989-01-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  2. Solar wind interaction with the ionosphere of Venus inferred from radio scintillation measurements

    NASA Astrophysics Data System (ADS)

    Woo, R.; Sjogren, W. L.; Luhmann, J. G.; Kliore, A. J.; Brace, L. H.

    1989-02-01

    The observation of S-band (2.3 GHz) radio scintillations in the ionosphere of Venus by the Pioneer Venus Orbiter is reported. In situ plasma measurements and propagation calculations show that the scintillations are caused by electron density irregularities in the topside ionosphere of Venus below the ionopause. It is suggested that these topside plasma irregularities are associated with the penetration of large-scale magnetic fields in the ionosphere. It is found that the disturbed plasma and the scintillations are a manifestation of high-dynamic solar wind interaction with the ionosphere.

  3. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.

  4. Measurement of the Coulomb logarithm in a radio-frequency Paul trap.

    PubMed

    Chen, Kuang; Sullivan, Scott T; Rellergert, Wade G; Hudson, Eric R

    2013-04-26

    Samples of ultracold 174Yb+ ions, confined in a linear radio-frequency Paul trap, are heated via micromotion interruption, while their temperature, density, and therefore structural phase are monitored and simulated. The observed time evolution of the ion temperature is compared to a theoretical model for ion-ion heating allowing a direct measurement of the Coulomb logarithm in a linear Paul trap. This result permits a simple, yet accurate, analytical description of ion cloud thermodynamic properties, e.g., density, temperature, and structural phase, as well as suggests limits to and improvements for ongoing trapped-ion quantum information efforts.

  5. Rayleigh beacon for measuring the surface profile of a radio telescope.

    PubMed

    Padin, S

    2014-12-01

    Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3  mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds. PMID:25607971

  6. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  7. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  8. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  9. Method of measuring nitric oxide release by vascular endothelial cells grown in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Hosseinpour, S.; Liu, A. C.; Barakat, A. I.; Choy, J. C.; Gray, B. L.

    2014-03-01

    In this paper, a simple and versatile method is presented which enables detection of nitric oxide (NO) released from vascular endothelial cells (ECs) cultured in microfluidic structures. The culturing system and NO measurement method allow cell shape to be controlled in a non-invasive manner using microfluidic structures while NO release is monitored for cell shape versus function studies. The culturing system consists of arrays of polydimethylsiloxane (PDMS) fluidic channels 120 micrometers in depth and ranging from 100 micrometers to 3 mm in width. The number of channels in each array is varied to yield a constant cell culture surface area (75 mm2) independent of channel width. The channel surfaces are collagen-coated and ECs are cultured to confluence within the channels. A cell scraper is then used to scrape extraneous cells cultured between channels, and NO measurements are made 18 to 24 hours later. A chemiluminescence-based sensor system (NOA 280i, Sievers NO Analyzer) is utilized to measure sample NO. Initial results indicate that NO concentrations can be measured from different microfluidic channel-containing samples using this method. It is shown that there is no significant difference in NO concentration derived from channels of different widths even though the degree of cell elongation varies due to physical constraint by microfluidic channel walls. However, cells treated with TNFα release more NO than untreated cells in fluidic channels, which is comparable to the function of ECs cultured in conventional culturing systems such as culturing dishes.

  10. Optic-electronic sensor for measuring the deformations of the axle at the radio-telescope

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Turgalieva, Tatyana V.; Li, Renpu

    2014-05-01

    The improved autocollimation sensors for measuring angular deformations of the large constructions as elevation axle and the azimuth columns of the radio telescopes are analyzed. Two new types of the reflector for autocollimation sensors are researched. The first type of the reflector is the composition of the anamorphic prism and ordinary cube-corner retroreflector. This reflector generates the narrow beam, as result the work distance and the range of measurement of the sensor increases. The second type of the reflectors is the tetrahedral reflector with flat reflecting sides and invariant axis. For this reflector the small value of the conversion coefficient is the realization of the measurements on the large work distances. The technical characteristics of the experimental setups of new reflectors are presented. The features of the anamorphic prism and tetrahedral reflector as the reflectors for autocollimation angular sensors are discussed.

  11. Sub-micrometer fluidic channel for measuring photon emitting entities

    DOEpatents

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  12. Rapid estimation of recharge potential in ephemeral-stream channels using electromagnetic methods, and measurements of channel and vegetation characteristics

    USGS Publications Warehouse

    Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, C.A.

    2007-01-01

    To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.

  13. Near-bed turbulence and sediment flux measurements in tidal channels

    USGS Publications Warehouse

    Wright, S.A.; Whealdon-Haught, D.R.

    2012-01-01

    Understanding the hydrodynamics and sediment transport dynamics in tidal channels is important for studies of estuary geomorphology, sediment supply to tidal wetlands, aquatic ecology and fish habitat, and dredging and navigation. Hydrodynamic and sediment transport data are essential for calibration and testing of numerical models that may be used to address management questions related to these topics. Herein we report preliminary analyses of near-bed turbulence and sediment flux measurements in the Sacramento-San Joaquin Delta, a large network of tidal channels and wetlands located at the confluence of the Sacramento and San Joaquin Rivers, California, USA (Figure 1). Measurements were made in 6 channels spanning a wide range of size and tidal conditions, from small channels that are primarily fluvial to large channels that are tidally dominated. The results of these measurements are summarized herein and the hydrodynamic and sediment transport characteristics of the channels are compared across this range of size and conditions.

  14. Automatic tuning of Bragg condition in a Radio-Acoustic System for PBL temperature profile measurement

    NASA Astrophysics Data System (ADS)

    Bonino, G.; Trivero, P.

    A Radio-Acoustic Sounding System (RASS) with acoustic wavelength λa ~ 1 m was designed and successfully tested. The system proved to be capable of measuring the vertical temperature profile in the Planetary Boundary Layer (PBL) with an accuracy and vertical resolution comparable to that of traditional apparatus (radiothermosondes borne by tethered or disposable balloons, thermosondes borne by aircraft and so on), yet combined with the advantages typical of remote sensing techniques. Up to the summer of 1983 the system needed attendance by an operator who had to identify the acoustic sounding frequency affording the fundamental condition of Bragg resonance between acoustic and radio wavelengths. Features and performance of the new completely automatic RASS arrangement are presented. These include the possibility of obtaining average thermal vertical profiles at preset time intervals. Maximum range of measurements obtained in about 1000 1/2-h averages was: in 90% of cases ⩾ 600m; in 50% of cases ⩾ 1100m. Such results indicate the usefulness of automatic RASS as a tool for meteorological purposes and for the application of air pollution control strategies.

  15. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    SciTech Connect

    Huffenberger, K. M.; Araujo, D.; Zwart, J. T. L.; Bischoff, C.; Buder, I.; Chinone, Y.; Hasegawa, M.; Cleary, K.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Eriksen, H. K.; Wehus, I. K.; Gaier, T.; Dickinson, C.; Gundersen, J. O.; Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  16. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Huffenberger, K. M.; Araujo, D.; Bischoff, C.; Buder, I.; Chinone, Y.; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Wehus, I. K.; Zwart, J. T. L.; Dickinson, C.; Eriksen, H. K.; Gaier, T.; Gundersen, J. O.; Hasegawa, M.; Hazumi, M.; Miller, A. D.; Radford, S. J. E.; Readhead, A. C. S.; Staggs, S. T.; Tajima, O.; Thompson, K. L.; QUIET Collaboration

    2015-06-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ˜480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30-40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%-20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  17. Measurement of the top quark mass in the dilepton channel at CDF and D0

    SciTech Connect

    Maki, Tuula; /Helsinki U. /Helsinki Inst. of Phys.

    2005-10-01

    We present recent analyses of the top quark mass measurement in dileptonic channel. The measurements use 200-360 pb{sup -1} of data collected by CDF and D0 experiments. The future prospects are discussed as well.

  18. Measurement of the Top Quark Mass in the Dilepton channel at CDF and DO

    SciTech Connect

    Maeki, Tuula

    2006-07-11

    We present recent analyses of the top quark mass measurement in dileptonic channel. The measurements use 230-360 pb-1 of data collected by CDF and DO experiments. The future prospects are discussed as well.

  19. Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching

    NASA Astrophysics Data System (ADS)

    Ares, N.; Schupp, F. J.; Mavalankar, A.; Rogers, G.; Griffiths, J.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Smith, C. G.; Cottet, A.; Briggs, G. A. D.; Laird, E. A.

    2016-03-01

    Electrical readout of spin qubits requires fast and sensitive measurements, which are hindered by poor impedance matching to the device. We demonstrate perfect impedance matching in a radio-frequency readout circuit, using voltage-tunable varactors to cancel out parasitic capacitances. An optimized capacitance sensitivity of 1.6 aF /√{Hz } is achieved at a maximum source-drain bias of 170 -μ V root-mean-square and with a bandwidth of 18 MHz. Coulomb blockade in a quantum-dot is measured in both conductance and capacitance, and the two contributions are found to be proportional as expected from a quasistatic tunneling model. We benchmark our results against the requirements for single-shot qubit readout using quantum capacitance, a goal that has so far been elusive.

  20. Calculation and measurement of terahertz radio emissions from a thin plasma filament in the tropospheric air

    NASA Astrophysics Data System (ADS)

    Isham, B.; Kunhardt, E.

    2012-12-01

    Recent advances in terawatt laser technology have made it possible to ionize the troposphere in long (centimeters to kilometers), narrow (less than 1 mm), wire-like plasma filaments. These filaments emit high-power stimulated electromagnetic emissions (SEE) in the terahertz (submillimeter) radio band, a frontier in the electromagnetic spectrum lying between the microwave and far infrared. Using an accepted model for the plasma oscillations in the filament, and a thin-wire approximation, we have calculated the current density and the resulting pattern of terahertz radiation emitted from the filament. The conical shape and opening angle match match those of recent measurements. Plans for future experiments and modeling include measurements of the radiation pattern and frequency spectrum for comparison with detailed calculations of filament plasma processes. Potential applications include safe high-resolution imaging and remote spectroscopic identification of chemical substances.

  1. Reconstruction of the energy and depth of maximum of cosmic-ray air showers from LOPES radio measurements

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.; Lopes Collaboration

    2014-09-01

    LOPES is a digital radio interferometer located at Karlsruhe Institute of Technology (KIT), Germany, that measures radio emission from extensive air showers at MHz frequencies in coincidence with KASCADE-Grande. In this article, we explore a method (slope method) that leverages the slope of the measured radio lateral distribution to reconstruct crucial attributes of primary cosmic rays. First, we present an investigation of the method on the basis of pure simulations. Second, we directly apply the slope method to LOPES measurements. Applying the slope method to simulations, we obtain uncertainties on the reconstruction of energy and depth of shower maximum (Xmax) of 13% and 50 g /cm2, respectively. Applying it to LOPES measurements, we are able to reconstruct energy and Xmax of individual events with upper limits on the precision of 20%-25% for the primary energy and 95 g /cm2 for Xmax, despite strong human-made noise at the LOPES site.

  2. Investigation of the plasmasphere electron content on the base of radio-measurements

    NASA Astrophysics Data System (ADS)

    Cherniak, I.; Zakharenkova, I.; Krankowski, A.

    2013-12-01

    The electron densities in plasmasphere are several orders of magnitude less than in ionosphere and the plasmasphere is often ignored at analysis and estimation of GPS TEC data, however the plasmaspheric contribution to the GPS TEC can became significant under certain conditions. This paper presents results of study of the plasmaspheric electron content variations for such cases - period of very low solar activity and during strong geomagnetic storm. Estimates of IEC can be retrieved as a result of integration of ionospheric electron density profiles (EDP). For this aim one can use EDPs derived from satellite radio occultation (RO) or ground-based radio-physical measurements. For case of the extended solar minimum of 23/24 cycle, 2009 the PEC was estimated by combination of GPS TEC observations and FORMOSAT-3/COSMIC RO measurements. It was analyzed the monthly medians of TEC and PEC for different seasons (equinoxes and solstices). Results shows that for mid-latitudinal points PEC estimates varied weakly with the time of a day and reached the value of several TECU for the condition of solar minimum. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 50-60%) during night-time and lesser values (25-45%) during day-time. The variations of PEC during strong geomagnetic storms at November 2004 were estimated by combining of mid-latitude Kharkov Incoherent Scatter Radar observations and GPS TEC data. The comparison between two independent measurements was performed by analysis of the height-temporal distribution for specific point corresponded to the mid-latitudes of Europe. Percentage contribution of PEC to GPS TEC indicated the clear dependence from the time with maximal values (more than 70%) during night-time and smaller values (30-45%) during day-time for weak disturbance and quite time and rather high values during strong negative storm (up to 90%) with small changes in time. These changes can be

  3. Emissive sheath measurements in the afterglow of a radio frequency plasma

    SciTech Connect

    Sheehan, J. P. Hershkowitz, N.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.

    2014-01-15

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  4. Emissive sheath measurements in the afterglow of a radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Barnat, E. V.; Weatherford, B. R.; Kaganovich, I. D.; Hershkowitz, N.

    2014-01-01

    The difference between the plasma potential and the floating potential of a highly emissive planar surface was measured in the afterglow of a radio frequency discharge. A Langmuir probe was used to measure the electron temperature and an emissive probe was used to measure the spatial distribution of the potential using the inflection point in the limit of zero emission technique. Time-resolved measurements were made using the slow-sweep method, a technique for measuring time-resolved current-voltage traces. This was the first time the inflection point in the limit of zero emission was used to make time-resolved measurements. Measurements of the potential profile of the presheath indicate that the potential penetrated approximately 50% farther into the plasma when a surface was emitting electrons. The experiments confirmed a recent kinetic theory of emissive sheaths, demonstrating that late in the afterglow as the plasma electron temperature approached the emitted electron temperature, the emissive sheath potential shrank to zero. However, the difference between the plasma potential and the floating potential of a highly emissive planar surface data appeared to be much less sensitive to the electron temperature ratio than the theory predicts.

  5. New expansion rate measurements of the Crab nebula in radio and optical

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2015-12-01

    We present new radio measurements of the expansion rate of the Crab nebula's synchrotron nebula over a ˜30-yr period. We find a convergence date for the radio synchrotron nebula of CE 1255 ± 27. We also re-evaluated the expansion rate of the optical-line-emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. Using an unbiased Bayesian analysis, we find a convergence date for the filaments of CE 1091 ± 34 (˜40 yr earlier than previous estimates). Our results show that both the synchrotron nebula and the optical-line-emitting filaments have been accelerated since the explosion in CE 1054, but that the synchrotron nebula has been relatively strongly accelerated, while the optical filaments have been only slightly accelerated. The finding that the synchrotron emission expands more rapidly than the filaments supports the picture that the latter are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely expanding supernova ejecta, and rules out models where the pulsar-wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor.

  6. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Lunar occultation of the diffuse radio sky: LOFAR measurements between 35 and 80 MHz

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.; de Bruyn, A. G.; Wijnholds, S. J.; Brentjens, M.; Abdalla, F. B.; Asad, K. M. B.; Bernardi, G.; Bus, S.; Chapman, E.; Ciardi, B.; Daiboo, S.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Jelic, V.; Jensen, H.; Kazemi, S.; Lambropoulos, P.; Martinez-Rubi, O.; Mellema, G.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Patil, A. H.; Thomas, R. M.; Veligatla, V.; Yatawatta, S.; Zaroubi, S.; Anderson, J.; Asgekar, A.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Breitling, F.; Broderick, J.; Brüggen, M.; Butcher, H. R.; Corstanje, A.; de Gasperin, F.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Hörandel, J.; Iacobelli, M.; Juette, E.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Norden, M. J.; Orru, E.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Renting, A.; Röttgering, H.; Schwarz, D.; Shulevski, A.; Smirnov, O.; Stappers, B. W.; Steinmetz, M.; Swinbank, J.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Thoudam, S.; Toribio, C.; Vocks, C.; Wise, M. W.; Wucknitz, O.; Zarka, P.

    2015-07-01

    We present radio observations of the Moon between 35 and 80 MHz to demonstrate a novel technique of interferometrically measuring large-scale diffuse emission extending far beyond the primary beam (global signal) for the first time. In particular, we show that (i) the Moon appears as a negative-flux source at frequencies 35 < ν < 80 MHz since it is `colder' than the diffuse Galactic background it occults, (ii) using the (negative) flux of the lunar disc, we can reconstruct the spectrum of the diffuse Galactic emission with the lunar thermal emission as a reference, and (iii) that reflected RFI (radio-frequency interference) is concentrated at the centre of the lunar disc due to specular nature of reflection, and can be independently measured. Our RFI measurements show that (i) Moon-based Cosmic Dawn experiments must design for an Earth-isolation of better than 80 dB to achieve an RFI temperature <1 mK, (ii) Moon-reflected RFI contributes to a dipole temperature less than 20 mK for Earth-based Cosmic Dawn experiments, (iii) man-made satellite-reflected RFI temperature exceeds 20 mK if the aggregate scattering cross-section of visible satellites exceeds 175 m2 at 800 km height, or 15 m2 at 400 km height. Currently, our diffuse background spectrum is limited by sidelobe confusion on short baselines (10-15 per cent level). Further refinement of our technique may yield constraints on the redshifted global 21 cm signal from Cosmic Dawn (40 > z > 12) and the Epoch of Reionization (12 > z > 5).

  8. Electron density profiles obtained from CHAMP GPS radio occultation measurements: Initial results from GFZ

    NASA Astrophysics Data System (ADS)

    Arras, Christina; Schmidt, Torsten; Lee, Woo-Kyoung; Wickert, Jens; Heise, Stefan; Beyerle, Georg; Rothacher, Markus; Jakowski, Norbert

    GPS radio occultation signals received by Low Earth Orbit satellites provide global information about vertical distribution of lower atmospheric parameters (e.g., temperature and water vapour) and electron density in the ionosphere. Since its launch in July 2000 the German geoscience satellite CHAMP has collected about 400,000 occultation measurements. These data form a first and unique long-term dataset of ionospheric profiles, but also of other geophysical variables as temperature, pressure and water vapour in the lower atmosphere. We present initial results of the ionospheric occultation data analyses at GFZ. Vertical electron density profiles from CHAMP are derived using a recently developed software package. To obtain electron densities from calibrated TEC (Total Electron Content) data the so-called onion peeling method is used. The application of this technique allows for the derivation of the electron density profile iteratively starting from the top altitude. The derived profiles are compared with corresponding data processed by UCAR (University Corporation of Atmospheric Research) and DLR Neustrelitz, but also with independent PLP (Planar Langmuir Probe) measurements from CHAMP. These investigations are complemented by case studies comparing the profiles with ground based ionosonde measurements. The high vertical resolution of the derived ionospheric profiles reveals thin vertical ionospheric structures such as sporadic E layers. We investigate the occurrence distribution of these layers in more detail. Sporadic E appears predominantly during summer in the lower ionosphere and has a considerable effect on the propagation of the GPS radio occultation signals. This feature is used to derive information on the altitude and on the intensity of these irregularities.

  9. HIGH-RESOLUTION RADIO CONTINUUM MEASUREMENTS OF THE NUCLEAR DISKS OF Arp 220

    SciTech Connect

    Barcos-Muñoz, L.; Evans, A. S.; Privon, G. C.; Stierwalt, S.; Leroy, A. K.; Condon, J.; Reichardt, A.; Armus, L.; Mazzarella, J. M.; Murphy, E. J.; Meier, D. S.; Momjian, E.; Ott, J.; Sakamoto, K.; Sanders, D. B.; Schinnerer, E.; Walter, F.; Surace, J. A.; Thompson, T. A.

    2015-01-20

    We present new Karl G. Jansky Very Large Array radio continuum images of the nuclei of Arp 220, the nearest ultra-luminous infrared galaxy. These new images have both the angular resolution to study the detailed morphologies of the two nuclei that power the galaxy merger and sensitivity to a wide range of spatial scales. At 33 GHz, we achieve a resolution of 0.''081 × 0.''063 (29.9 × 23.3 pc) and resolve the radio emission surrounding both nuclei. We conclude from the decomposition of the radio spectral energy distribution that a majority of the 33 GHz emission is synchrotron radiation. The spatial distributions of radio emission in both nuclei are well described by exponential profiles. These have deconvolved half-light radii (R {sub 50d}) of 51 and 35 pc for the eastern and western nuclei, respectively, and they match the number density profile of radio supernovae observed with very long baseline interferometry. This similarity might be due to the fast cooling of cosmic rays electrons caused by the presence of a strong (∼mG) magnetic field in this system. We estimate extremely high molecular gas surface densities of 2.2{sub −1.0}{sup +2.1}×10{sup 5} (east) and 4.5{sub −1.9}{sup +4.5}×10{sup 5} (west) M {sub ☉} pc{sup –2}, corresponding to total hydrogen column densities of N {sub H} = 2.7{sub −1.2}{sup +2.7}×10{sup 25} (east) and 5.6{sub −2.4}{sup +5.5}×10{sup 25} cm{sup –2} (west). The implied gas volume densities are similarly high, n{sub H{sub {sub 2}}}∼3.8{sub −1.6}{sup +3.8}×10{sup 4} (east) and ∼11{sub −4.5}{sup +12}×10{sup 4} cm{sup –3} (west). We also estimate very high luminosity surface densities of Σ{sub IR}∼4.2{sub −0.7}{sup +1.6}×10{sup 13} (east) and Σ{sub IR}∼9.7{sub −2.4}{sup +3.7}×10{sup 13} (west) L{sub ⊙} kpc{sup −2}, and star formation rate surface densities of Σ{sub SFR} ∼ 10{sup 3.7} {sup ±} {sup 0.1} (east) and Σ{sub SFR} ∼ 10{sup 4.1} {sup ±} {sup 0.1}(west) M {sub ☉} yr{sup

  10. Stability measurements of the radio science system at the 34-m high-efficiency antennas

    NASA Technical Reports Server (NTRS)

    Pham, T. T.; Breidenthal, J. C.; Peng, T. K.; Abbate, S. F.; Rockwell, S. T.

    1993-01-01

    From 1991 to 1993 the fractional frequency stability of the operational Radio Science System was measured at DSS's 15, 45, and 65. These stations are designed to have the most stable uplink and downlink equipment in the Deep Space Network (DSN). Some measurements were performed when the antenna was moving and the frequency was ramped. The stability, including contributions of all elements in the station except for the antenna and the hydrogen maser, was measured to be 0.3 to 1.3 x 10(exp -15) when the frequency was fixed, and 0.6 to 6.0 x 10(exp -15) when the frequency was ramped (sample interval, 1000 sec). Only one measurement out of fifteen exceeded specification. In all other cases, when previous measurements on the antenna and the hydrogen maser were added, a total system stability requirement of 5.0 x 10(exp -15) as met. In addition, ambient temperature was found to cause phase variation in the measurements at a rate of 5.5 deg of phase per deg C.

  11. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range.

    PubMed

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-01-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement. PMID:27388587

  12. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    PubMed Central

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-01-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement. PMID:27388587

  13. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range.

    PubMed

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-08

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  14. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    NASA Astrophysics Data System (ADS)

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  15. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  16. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  17. Extracting Host Galaxy Dispersion Measure and Constraining Cosmological Parameters using Fast Radio Burst Data

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing

    2016-10-01

    The excessive dispersion measures (DMs) and high Galactic latitudes of fast radio bursts (FRBs) hint toward a cosmological origin of these mysterious transients. Methods of using measured DM and redshift z to study cosmology have been proposed, but one needs to assume a certain amount of DM contribution from the host galaxy ({{DM}}{HG}) in order to apply those methods. We introduce a slope parameter β (z)\\equiv d{ln}< {{DM}}{{E}}> /d{ln}z (where {{DM}}{{E}} is the observed DM subtracting the Galactic contribution), which can be directly measured when a sample of FRBs have z measured. We show that < {{DM}}{HG}> can be roughly inferred from β and the mean values, \\overline{< {{DM}}{{E}}> } and \\bar{z}, of the sample. Through Monte Carlo simulations, we show that the mean value of local host galaxy DM, < {{DM}}{HG,{loc}}> , along with other cosmological parameters (mass density {{{Ω }}}m in the ΛCDM model, and the IGM portion of the baryon energy density {{{Ω }}}b{f}{IGM}), can be independently measured through Markov Chain Monte Carlo fitting to the data.

  18. Beam emittance measurements and simulations of injector line for radio frequency quadrupole.

    PubMed

    Mathew, Jose V; Rao, S V L S; Pande, Rajni; Singh, P

    2015-07-01

    A 400 keV deuteron (D(+)) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H(+) and D(+) beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D(+) beam through the RFQ, while 95% transmission has been measured experimentally. PMID:26233371

  19. Beam emittance measurements and simulations of injector line for radio frequency quadrupole

    SciTech Connect

    Mathew, Jose V. Rao, S. V. L. S.; Pande, Rajni; Singh, P.

    2015-07-15

    A 400 keV deuteron (D{sup +}) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H{sup +} and D{sup +} beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D{sup +} beam through the RFQ, while 95% transmission has been measured experimentally.

  20. Radio wave propagation in arch-shaped tunnels: Measurements and simulations by asymptotic methods

    NASA Astrophysics Data System (ADS)

    Masson, E.; Combeau, P.; Cocheril, Y.; Berbineau, M.; Aveneau, L.; Vauzelle, R.

    2010-01-01

    Several wireless communication systems are developed for communication needs between train and ground and between trains in the railway or mass transit domains. They are developed for operational needs for security and comfort. In order to deploy these systems in specific environments, such as tunnels, straight or curved, rectangular or arch-shaped section, specific propagation models have to be developed. A modelisation of the radio wave propagation in straight arch-shaped tunnels is realized by using asymptotic methods, such as Ray Tracing and Ray Launching, combined with the tessellation of the arched section. A method of interpolation of the facets' normals was implemented in order to minimize the error made when using the tessellation. Results obtained are validated by comparison to the literature and to measurement results.

  1. Optical measurements of paired luminous rings in capacitive radio-frequency hydrogen discharges.

    PubMed

    Sakawa, Y; Hori, M; Shoji, T; Sato, T

    1999-11-01

    Optical measurements of paired luminous rings separated by a narrow dark gap have been conducted in capacitive radio-frequency (rf) hydrogen discharges. The lines of molecular H(2) are strongly excited at the ring emission compared with a weaker emission of the H(alpha) line. The number of ring pairs increases with gas pressure, and the outermost ring pairs near the electrodes start to appear earlier than the inner ones. Each ring emission is turning on and off with the applied rf frequency, i.e., the left-side (right-side) ring of a paired ring is on when the left-side (right-side) electrode is biased positively. The axial light intensity profile, which is time resolved with the applied rf frequency, indicates that the emission profiles are similar to those of dc glow discharges, and the luminous rings correspond to the standing striations at the positive column. PMID:11970506

  2. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords

  3. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    The Radio-MagnetoTelluric (RMT) method uses the electromagnetic signal from distant radio transmitters in the frequency range 15 to 250 kHz. RMT applications in near-surface studies have already been well established. Two components of electric field and three components of magnetic field are measured. These measured components are related to each other via transfer functions which contain detailed information about the variation of electrical resistivity of the subsurface. The present study is carried out in the frame of TRUST (TRansparent Underground STructure) project supported by several research and public organizations as well as industry. The study area is located close to central Stockholm in Sweden where the Swedish traffic authority has planned to construct a 21-km long motorway to bypass the city. In order to reduce the impact on natural and cultural environments, 18 km of the motorway will be located in tunnels. The main objective of this study is thus to identify potential fracture zones and faults as well as the general geological settings. The proposed path of the tunnel partly passes under the Lake Mälaren at a depth of about 60 m. Thus a challenge was posed on the applicability of RMT method in shallow water environments. Successful applications of RMT measurements using the Uppsala University's EnviroMT system on land encouraged us to modify the system to acquire data over lake water especially in urban areas. Pioneered by the Geological Survey of Sweden (SGU), RMT data were collected over the Lake Mälaren in spring 2012. The prototype acquisition system did not only turn out to be appropriate for such a challenging environment, but it was also much more efficient as compared with land surveys. Fifty two lines including 1160 stations with an average spacing of 15 m were covered in three days. Cultural noise associated with the city-related environment had to be identified and filtered out before inversion could be carried out. Reliable estimates

  4. Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Ekers, Ron; Wilson, Thomas L.

    ``Radio Telescopes" starts with a brief historical introduction from Jansky's1931 discovery of radio emission from the Milky Way through the development ofradio telescope dishes and arrays to aperture synthesis imaging. It includessufficient basics of electromagnetic radiation to provide some understanding of thedesign and operation of radio telescopes. The criteria such as frequencyrange, sensitivity, survey speed, angular resolution, and field of view thatdetermine the design of radio telescopes are introduced. Because it is soeasy to manipulate the electromagnetic waves at radio frequencies, radiotelescopes have evolved into many different forms, sometimes with "wire"structures tuned to specific wavelengths, which look very different from anykind of classical telescope. To assist astronomers more familiar with otherwavelength domains, the appendix A.1. includes a comparison of radioand optical terminology. Some of the different types of radio telescopesincluding the filled aperture dishes, electronically steered phased arrays, andaperture synthesis radio telescopes are discussed, and there is a sectioncomparing the differences between dishes and arrays. Some of the morerecent developments including hierarchical beam forming, phased arrayfeeds, mosaicing, rotation measure synthesis, digital receivers, and longbaseline interferometers are included. The problem of increasing radiofrequency interference is discussed, and some possible mitigation strategies areoutlined.

  5. A Comprehensive Assessment of Radio Occultation Ionospheric Measurements at Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Keele, C.; Brum, C. G. M.; Rodrigues, F. S.; Aponte, N.; Sulzer, M. P.

    2015-12-01

    The GPS radio occultation (RO) has become a widely used technique for global measurements of the ionospheric electron density (Ne). To advance our understanding of the accuracy of the RO profiles at mid latitudes, we performed a comprehensive comparison of RO measurements made by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites and observations of Ne profiles made by the Arecibo Observatory incoherent scatter radar (ISR). COSMIC is formed by six satellites in circular, 800 km altitude low-Earth orbit (LEO) at 72° inclination. The satellites orbit in their own plane, approximately 24° apart in ascending node. The satellites are equipped with dual-frequency GPS receivers capable of making measurements of the total electron content (TEC) along the signal path and, therefore, RO observations. The Arecibo ISR, located at(18.35°N, 66.75°W; ˜28.25°N dip latitude), operates at a frequency of 430 MHz with a maximum bandwidth of about 1 MHz. The large collecting area provided by the 300 m dish antenna combined with high peak power transmitters (2.0-2.5 MW) allows the radar to make accurate Ne measurements throughout the entire ionospheric F-region and topside heights. We analyzed 74 and 89 days of line feed and Gregorian data, respectively, collected between 2006 and 2014. There were 638 RO profiles measured within 10° of latitude and 20° of longitude from Arecibo Observatory and within ±10 minutes of the radar measurements. Preliminary analyses of the observations show patterns in the relationship between densities measured by the Arecibo ISR and densities estimated from the COSMIC ROs. We will present and discuss the behavior of the patterns. We will also present results of a numerical model representing the patterns and discuss the possibility of using this model to improve RO estimates of density profiles.

  6. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  7. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  8. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID).

    PubMed

    Maselyne, J; Adriaens, I; Huybrechts, T; De Ketelaere, B; Millet, S; Vangeyte, J; Van Nuffel, A; Saeys, W

    2016-09-01

    Changes in the drinking behaviour of pigs may indicate health, welfare or productivity problems. Automated monitoring and analysis of drinking behaviour could allow problems to be detected, thus improving farm productivity. A high frequency radio frequency identification (HF RFID) system was designed to register the drinking behaviour of individual pigs. HF RFID antennas were placed around four nipple drinkers and connected to a reader via a multiplexer. A total of 55 growing-finishing pigs were fitted with radio frequency identification (RFID) ear tags, one in each ear. RFID-based drinking visits were created from the RFID registrations using a bout criterion and a minimum and maximum duration criterion. The HF RFID system was successfully validated by comparing RFID-based visits with visual observations and flow meter measurements based on visit overlap. Sensitivity was at least 92%, specificity 93%, precision 90% and accuracy 93%. RFID-based drinking duration had a high correlation with observed drinking duration (R 2=0.88) and water usage (R 2=0.71). The number of registrations after applying the visit criteria had an even higher correlation with the same two variables (R 2=0.90 and 0.75, respectively). There was also a correlation between number of RFID visits and number of observed visits (R 2=0.84). The system provides good quality information about the drinking behaviour of individual pigs. As health or other problems affect the pigs' drinking behaviour, analysis of the RFID data could allow problems to be detected and signalled to the farmer. This information can help to improve the productivity and economics of the farm as well as the health and welfare of the pigs.

  9. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier alpha-subunits.

    PubMed

    Kerschensteiner, Daniel; Soto, Florentina; Stocker, Martin

    2005-04-26

    Modulatory alpha-subunits, which comprise one-fourth of all voltagegated K(+) channel (Kv) alpha-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a broad set of native K(+) currents. Here, we combine FRET and electrophysiological measurements to determine the stoichiometry and geometry of heteromeric channels composed of the delayed rectifier Kv2.1 subunit and the modulatory Kv9.3 alpha-subunit. Kv channel alpha-subunits were fused with GFP variants, and heteromerization of different combinations of tagged and untagged alpha-subunits was studied. FRET, evaluated by acceptor photobleaching, was only observed upon formation of functional channels. Our results, obtained from two independent experimental paradigms, suggest the formation of heteromeric Kv2.1/Kv9.3 channels of fixed stoichiometry consisting of three Kv2.1 subunits and one Kv9.3 subunit. Strikingly, despite this uneven stoichiometry, we find that heteromeric Kv2.1/Kv9.3 channels maintain a pseudosymmetric arrangement of subunits around the central pore. PMID:15827117

  10. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier α-subunits

    PubMed Central

    Kerschensteiner, Daniel; Soto, Florentina; Stocker, Martin

    2005-01-01

    Modulatory α-subunits, which comprise one-fourth of all voltagegated K+ channel (Kv) α-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a broad set of native K+ currents. Here, we combine FRET and electrophysiological measurements to determine the stoichiometry and geometry of heteromeric channels composed of the delayed rectifier Kv2.1 subunit and the modulatory Kv9.3 α-subunit. Kv channel α-subunits were fused with GFP variants, and heteromerization of different combinations of tagged and untagged α-subunits was studied. FRET, evaluated by acceptor photobleaching, was only observed upon formation of functional channels. Our results, obtained from two independent experimental paradigms, suggest the formation of heteromeric Kv2.1/Kv9.3 channels of fixed stoichiometry consisting of three Kv2.1 subunits and one Kv9.3 subunit. Strikingly, despite this uneven stoichiometry, we find that heteromeric Kv2.1/Kv9.3 channels maintain a pseudosymmetric arrangement of subunits around the central pore. PMID:15827117

  11. Radio Occultation Measurements of Pluto’s Atmosphere with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, David P.; Linscott, Ivan; Tyler, Len; Bird, Mike; Paetzold, Martin; Strobel, Darrell; Summers, Mike; Woods, Will; Stern, Alan; Weaver, Hal; Olkin, Cathy; Young, Leslie; Ennico, Kimberly; Gladstone, Randy; Greathouse, Tommy; Kammer, Josh; Parker, Alex; Parker, Joel; Retherford, Kurt; Schindhelm, Eric; Singer, Kelsi; Steffl, Andrew; Tsang, Con; Versteeg, Maarten

    2015-11-01

    The reconnaissance of the Pluto System by New Horizons included radio occultations at both Pluto and Charon. This talk will present the latest results from the Pluto occultation. The REX instrument onboard New Horizons received and recorded uplink signals from two 70-m antennas and two 34-m antennas of the NASA Deep Space Network - each transmitting 20 kW at 4.2-cm wavelength - during a diametric occultation by Pluto. At the time this was written only a short segment of data at occultation entry (193°E, 17°S) was available for analysis. The REX measurements extend unequivocally to the surface, providing the first direct measure of the surface pressure and the temperature structure in Pluto’s lower atmosphere. Data from occultation exit (16°E, 15°N) are scheduled to arrive on the ground in late August 2015. Those observations will yield an improved estimate of the surface pressure, a second temperature profile, and a measure of the diameter of Pluto with a precision of a few hundred meters. This work is supported by the NASA New Horizons Mission.

  12. Probe measurements of the space potential in a radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Godyak, V. A.; Piejak, R. B.

    1990-10-01

    The dc and radio frequency (rf) components (and harmonics) of the probe potential have been measured in the midplane of a 13.56-MHz parallel-plane rf discharge in argon over a wide range of discharge voltages and at gas pressures between 10 mTorr and 1.0 Torr. rf potential measurements were made with different input capacitances to determine the true magnitude of the rf plasma potential and the probe capacitance. For a symmetrically driven rf discharge, the rf plasma potential Vrf is mainly composed of the second harmonic of the driving voltage Vdr over a wide range of gas pressures. For high values of Vdr, Vrf ≊0.1 Vdr while the dc probe potential Vdc is about 0.4 Vdr. These results are in good agreement with corresponding theoretical predictions found in the literature. For an asymmetrically driven rf discharge with equal electrode area, the rf plasma potential has an additional fundamental harmonic component equal to half the rf driving voltage. Values of rf plasma potential and probe capacitance given here allow us to specify the requirements on probe circuitry for different kinds of probe measurements in rf discharges.

  13. Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy

    SciTech Connect

    Takabayashi, Y.

    2010-06-23

    We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

  14. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  15. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    SciTech Connect

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-15

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  16. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor.

    PubMed

    Suzuki, Atsushi; Nonaka, Hidehiko

    2009-09-01

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  17. Measuring the Impact on Farmers of Agricultural Radio and Television Programs in Southwest Nigeria.

    ERIC Educational Resources Information Center

    Yahaya, Mohammed Kuta; Badiru, Olabode Idris

    2002-01-01

    A survey examined the effectiveness of two long-running Nigerian agricultural programs on television and radio as perceived by 198 farmers. Results indicate a positive assessment of their value for improving agricultural production. Although more listen to the radio, the television program also received high marks. (Contains 17 references.) (JOW)

  18. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    SciTech Connect

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  19. Polarization Methods of Measuring the Roll Angle of an Object in Motion in Radio Beacon Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gulko, V. L.; Mescheryakov, A. A.

    2016-06-01

    Polarization methods of measuring the roll angle of an object in motion with the help of radio beacon systems are considered. The polarization properties of the beacon signals received on board the object and amplitude-phase processing of their orthogonal polarized components are used to accomplish this goal.

  20. Real-time HF Radio Absorption Maps Incorporating Riometer and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Rogers, Neil; Honary, Farideh; Warrington, Mike; Stocker, Alan; Danskin, Donald

    2016-04-01

    A real-time model of HF radio propagation conditions is being developed as a service for aircraft communications at high latitudes. An essential component of this is a real-time map of the absorption of HF (3-30 MHz) radio signals in the D-region ionosphere. Empirical, climatological Polar Cap Absorption (PCA) models in common usage cannot account for day-to-day variations in ionospheric composition and are inaccurate during the large changes in recombination rate at twilight. However, parameters of such models may be optimised using an age-weighted regression to absorption measurements from riometers in Canada and Scandinavia. Such parameters include the day- and night-time sensitivity to proton flux as measured on a geostationary satellite (GOES). Modelling the twilight transition as a linear or Gauss error function over a range of solar-zenith angles (χl < χ < χu) is found to provide greater accuracy than 'Earth shadow' methods (as applied in the Sodankylä Ionospheric Chemistry (SIC) model, for example) due to a more gradual ionospheric response for χ < 90° . The fitted χl parameter is found to be most variable, with smaller values (as low as 60°) post-sunrise compared with pre-sunset. Correlation coefficients of model parameters between riometers are presented and these provide a means of appropriately weighting individual riometer contributions in an assimilative PCA model. At times outside of PCA events, the probability of absorption in the auroral zones is related to the energetic electron flux inside the precipitation loss cone, as measured on the polar-orbiting POES satellites. This varies with magnetic local time, magnetic latitude and geomagnetic activity, and its relation to the real-time solar wind - magnetospheric coupling function [Newell et al., 2007] will be presented. Reference: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10

  1. Ionospheric Scintillation at Low Frequencies: Broadband Spectra and Phase Measurements from Natural Radio Sources

    NASA Astrophysics Data System (ADS)

    Fallows, Richard A.; Forte, Biagio; Coles, William A.

    2016-04-01

    Observations of strong natural radio sources such as Cassiopeia A taken using the Low Frequency Array (LOFAR) centred on the Netherlands, and the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) in arctic Finland, over the frequency range 10-250 MHz show almost continual ionospheric scintillation. Dynamic spectra of these observations show scintillation varying from weak to strong scattering and the effects of refraction due to large-scale structure in the ionosphere can also be visible. Recent efforts have also attempted to measure phase scintillation in addition to the regular intensity measurements, using simultaneous low-resolution all-sky imaging, to confirm when strong refraction is seen. Delay-Doppler spectra (the two-dimensional power spectrum of a dynamic spectrum) sometimes show an arc structure, similar to the "scintillation arcs" reported from observations of interstellar scintillation, which can be used to model parameters such as the distance to the scattering "scree" and the velocity of the scattering medium transverse to the line of sight. These two parameters are inherently linked in modelling which means that one needs to be known before the other can be established accurately. The dense core of the LOFAR array has been used to take temporal cross-correlations between station pairs to establish a picture of the velocity field in the ionosphere; with KAIRA other supporting instrumentation can be used to estimate ionospheric velocities in nearby regions. These velocities are used to attempt to establish the altitudes dominating scattering due to the ionosphere.

  2. Radio-echo sounding at Dome C, East Antarctica: A comparison of measured and modeled data

    NASA Astrophysics Data System (ADS)

    Winter, Anna; Eisen, Olaf; Steinhage, Daniel; Zirizzotti, Achille; Urbini, Stefano; Cavitte, Marie; Blankenship, Donald D.; Wolff, Eric

    2016-04-01

    The internal layering architecture of ice sheets, detected with radio-echo sounding (RES), contains clues to past ice-flow dynamics and mass balance. A common way of relating the recorded travel time of RES reflections to depth is by integrating a wave-speed distribution. This results in an increasing absolute error with depth. We present a synchronization of RES-internal layers of different radar systems (Alfred Wegener Institute, Center for Remote Sensing of Ice Sheets, Istituto Nazionale di Geofisica e Vulcanologia, British Antarctic Survey and University of Texas Institute for Geophysics) with ice-core records from the Antarctic deep drill site Dome C. Synthetic radar traces are obtained from measurements of ice-core density and conductivity with a 1D model of Maxwell's equations. The reflection peaks of the different radar systems' measurements are shifted by a wiggle-matching algorithm, so they match the synthetic trace. In this way, we matched pronounced internal reflections in the RES data to conductivity peaks with considerably smaller depth uncertainties, and assigned them with the ice-core age. We examine the differences in shifts and resolution of the different RES data to address the question of their comparability and combined analysis for an extensive age-depth distribution.

  3. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of ~160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  4. The Huygens Doppler Wind Experiment - Titan Winds Derived from Probe Radio Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Bird, M. K.; Dutta-Roy, R.; Heyl, M.; Allison, M.; Asmar, S. W.; Folkner, W. M.; Preston, R. A.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Wohlmuth, R.; Iess, L.; Tyler, G. L.

    2002-07-01

    A Doppler Wind Experiment (DWE) will be performed during the Titan atmospheric descent of the ESA Huygens Probe. The direction and strength of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission at an altitude of ˜160 km down to the surface. The Probe's wind-induced horizontal motion will be derived from the residual Doppler shift of its S-band radio link to the Cassini Orbiter, corrected for all known orbit and propagation effects. It is also planned to record the frequency of the Probe signal using large ground-based antennas, thereby providing an additional component of the horizontal drift. In addition to the winds, DWE will obtain valuable information on the rotation, parachute swing and atmospheric buffeting of the Huygens Probe, as well as its position and attitude after Titan touchdown. The DWE measurement strategy relies on experimenter-supplied Ultra-Stable Oscillators to generate the transmitted signal from the Probe and to extract the frequency of the received signal on the Orbiter. Results of the first in-flight checkout, as well as the DWE Doppler calibrations conducted with simulated Huygens signals uplinked from ground (Probe Relay Tests), are described. Ongoing efforts to measure and model Titan's winds using various Earth-based techniques are briefly reviewed.

  5. A Measurement of the Millimeter Emission and the Sunyaev-zel'dovich Effect Associated with Low-frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark J.; Duenner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R. J.; Kosowsky, Arthur; Lin, Yen-Ting; Switzer, Eric R.; Wollack, Edward J.; Zemcov, Michael B.

    2013-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich Effect associated with the halos that host them. The Atacama Cosmology Telescope (ACT) has conducted a survey at 148 GHz, 218 GHz and 277 GHz along the celestial equator. Using samples of radio sources selected at 1.4 GHz from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey and the National Radio Astronomy Observatory Very Large Array Sky Survey (NVSS), we measure the stacked 148, 218 and 277 GHz flux densities for sources with 1.4 GHz flux densities ranging from 5 to 200 mJy. At these flux densities, the radio source population is dominated by active galactic nuclei (AGN), with both steep and at spectrum populations, which have combined radio-to-millimeter spectral indices ranging from 0.5 to 0.95, reecting the prevalence of steep spectrum sources at high flux densities and the presence of at spectrum sources at lower flux densities. The thermal Sunyaev-Zelapos;dovich (SZ) eect associated with the halos that host the AGN is detected at the 5 level through its spectral signature. When we compare the SZ eect with weak lensing measurements of radio galaxies, we find that the relation between the two is consistent with that measured by Planck for local bright galaxies. We present a detection of the SZ eect in some of the lowest mass halos (average M(sub 200) approx. equals 10(exp 13) solar M h(sup-1) (sub 70) ) studied to date. This detection is particularly important in the context of galaxy evolution models, as it confirms that galaxies with radio AGN also typically support hot gaseous halos. With Herschel* observations, we show that the SZ detection is not significantly contaminated by dusty galaxies or by dust associated with the AGN or galaxies hosting the AGN. We show that 5 mJy < S(sub 1:4) < 200 mJy radio sources contribute l(l +1)C(sub l)/(2 pi ) = 0:37+/- 0:03 micro K(exp 2) to the angular

  6. Characterizing Daytime GHZ Scintillation at Equatorial Regions Using Gnss Radio Occultation Measurements

    NASA Astrophysics Data System (ADS)

    Seif, A.; Zhang, K.; Tsunoda, R. T.; Abdullah, M.; Carter, B. A.; Norman, R.; Wu, S.

    2015-12-01

    Ionospheric scintillation of radio waves can behave differently at different locations with a strong diurnal dependence; particularly in the equatorial regions. Ionospheric scintillations at gigahertz (GHz) frequencies have been observed during both daytime and nighttime. It is believed that daytime scintillation is associated with blanketing sporadic E (Esb), whereas nighttime scintillation is attributed to F layer irregularities. Scintillation events associated with Esbduring daytime are of our primary interest. Recent studies show that in the ionosphere, electron density profiles from Global Navigation Satellite System (GNSS) Radio Occultation (RO) provide valuable information to help better understand the physics of the ionosphere. In particular, GNSS RO observations of GHz scintillation in the proximity of the E-layer have been interpreted as being caused by sporadic E. In this paper the characteristics of daytime scintillations at 1.5 GHz recorded simultaneously from two stations (i) Universiti Kebangsaan Malaysia (UKM) (2.55°N, 101.461°E; dip latitude 5.78°S), and (ii) Langkawi (6.19°N, 99.51°E; dip latitude 1.90°S) during November and December 2010 are analyzed. The characteristics of daytime GHz scintillation and its relationship with E region irregularities at equatorial regions are investigated. Ground-based scintillation and Total Electron Content (TEC) data recorded by the GSV4004 receivers were utilized in combination with the amplitude scintillation measurements in terms of GPS C/A code SNR fluctuations during a ground-based GPS and space-borne GNSS RO experiment at the two equatorial stations. Scintillation activity was found to be more prominent at UKM. Moreover, strong scintillation with the S4 index exceeding 0.6 has only been observed at UKM, while at Langkawi the scintillation intensity (S4 index) did not exceed 0.3. Signal-to-noise measurements obtained from GNSS RO indicate that daytime scintillations are very likely caused by Esb. Our

  7. A noise-aware combination of dual-frequency measurements from GPS radio occultation

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon; Kuo, Ying-Hwa

    2013-12-01

    of the fundamental difficulties that arise when using GPS Radio Occultation (RO) data in exploiting the stratosphere is that the air becomes rarefied with increasing height and accentuates the ionospheric effect and noise contained in the measurement. Customarily, the conventional linear combination (CLC) is used to extract neutral atmospheric components from dual-frequency (L1 and L2) RO data. The CLC combines and magnifies measurement noises, and thus works well only for those measurements of low noise. Although the L1 data are of considerably higher quality than the L2 data, the CLC does not take this into account and treats both equally; this makes the CLC-produced data less attractive. The authors propose a new approach, named Noise-Aware Combination (NAC), which is a generalized combination that factors in the presence of measurement noise. In this NAC method, the L1 and L2 data are each regarded independently, with each contributing to the combination according to its dynamically assessed accuracy. The performance of both the CLC and NAC are tested with two sets of data: one of synthetic data and the other of real data. The tests confirm that the NAC yields significant error reductions when compared to the CLC. While the noise in the CLC-produced data stands out in high altitudes and compels the data to be blended with the a priori, the NAC relies far less on this blending. The clear advantage of the NAC over the CLC would greatly enhance the value of RO for climate research.

  8. Morphology of solar wind fluctuations and structure in the vicinity of the Sun from radio propagation measurements

    NASA Technical Reports Server (NTRS)

    Woo, R.

    1995-01-01

    Radio propagation measurements represent a powerful means for remote probing of electron density and solar wind speed in the acceleration region of the solar wind not yet explored by in situ measurements. Recent investigations based on radio propagation measurements have led to considerable progress in our knowledge of the general morphology of solar wind fluctuations and structure, especially in terms of their relationship to solar wind properties that have been observed directly by fields and particles measurements, and to coronal features observed in white-light measurements. The purpose of this paper is to present an overview of the latest results on quasi-stationary structure covering the large scale variation of solar wind speed over the streamer belt and coronal hole regions, coronal streamers (source of slow solar wind) and their associated small-scale electron density structure, plumes, density and fractional or relative density fluctuations, and the spectral characteristics of the electron density fluctuations. The radio propagation measurements not only reveal new information on the structure near the Sun, but also show that the structure appears to undergo substantial evolution on its way to 0.3 AU, the closest radial distance for which direct in situ spacecraft measurements are available.

  9. Computer model for selecting flow measuring structures in open channels

    SciTech Connect

    Hickey, M. J.

    1980-01-01

    Quantifying various pollutants in natural waterways has received increased emphasis with more stringent regulations issued by the Environmental Protection Agency (E.P.A.). Measuring natural stream fows presents a magnitude of problems, the most significant is the type of structure needed to measure the flows at the desired level of accuracy. A computer model designed to select a structure to best fit the engineer's needs is under development. This model, given the pertinent boundary conditions, will pinpoint the structure most suitable, if one exists. This selection process greatly facilitates the old selection process of trial and error.

  10. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect

    Fedorko, Wojciech T.

    2008-12-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of √s = 1.96 TeV collisions with integrated luminosity of 1.9 fb-1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t$\\bar{t}$ pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: Mtop = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  11. Remote, PCM-controlled, multi-channel radio frequency FM telemetry system for cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1989-01-01

    A telemetry system used in the NASA-Langley cryogenic transonic wind tunnel to obtain rotational strain and temperature data is described. The system consists of four FM transmitters allowing for a remotely controlled PCM combination. A rotating four-contact mercury slip-ring is used as an interface between the fixed and rotating mechnical structures. Over 60 channels of data on the main fan disk and blade structures have been obtained. These data are studied to verify computer predictions and mechanical life. A series of block diagrams are included.

  12. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators

    NASA Astrophysics Data System (ADS)

    Melnychuk, O.; Grassellino, A.; Romanenko, A.

    2014-12-01

    In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].

  13. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Berger, B.; Schuengel, E.; Korolov, I.; Derzsi, A.; Koepke, M.; Donkó, Z.; Schulze, J.

    2016-06-01

    A computationally assisted spectroscopic technique to measure secondary electron emission coefficients (γ-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of phase resolved optical emission spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient γ. This sensitvity, in turn, allows γ to be determined by comparing experimental excitation profiles and simulation data obtained with various γ-coefficients. The diagnostic, tested here in a geometrically symmetric argon discharge, yields an effective secondary electron emission coefficient of γ =0.066+/- 0.01 for stainless steel electrodes.

  14. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    SciTech Connect

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  15. A Measurement of the Millimeter Emission and the Sunyaev-Zel'dovich Effect Associated with Low-Frequency Radio Sources

    NASA Technical Reports Server (NTRS)

    Gralla, Megan B.; Crichton, Devin; Marriage, Tobias; Mo, Wenli; Aguirre, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Bock, James; Bond, J. Richard; Devlin, Mark; Dunner, Rolando; Hajian, Amir; Halpern, Mark; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee A.; Huffenberger, Kevin M.; Hughes, John P.; Ivison, R.J.; Kosowsky, Arthur; Lin, Yen-Ting; Marsden, Danica; Menanteau, Felipe; Wollack, Edward J.

    2014-01-01

    We present a statistical analysis of the millimeter-wavelength properties of 1.4 GHz-selected sources and a detection of the Sunyaev-Zel'dovich effect associated with the halos that host them. We stack data at 148, 218 and 277 GHz from the Atacama Cosmology Telescope at the positions of a large sample of radio AGN selected at 1.4 GHz. The thermal Sunyaev-Zel'dovich (SZ) effect associated with the halos that host the AGN is detected at the 5 sigma level through its spectral signature, representing a statistical detection of the SZ effect in some of the lowest mass halos (average M(sub 200) approximately equals 10(sup 13) solar mass h(sub 70)(exp -1) ) studied to date. The relation between the SZ effect and mass (based on weak lensing measurements of radio galaxies) is consistent with that measured by Planck for local bright galaxies. In the context of galaxy evolution models, this study confirms that galaxies with radio AGN also typically support hot gaseous halos. Adding Herschel observations allows us to show that the SZ signal is not significantly contaminated by dust emission. Finally, we analyze the contribution of radio sources to the angular power spectrum of the cosmic microwave background.

  16. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brüggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eislöffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-04-01

    Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

  17. On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall

    NASA Astrophysics Data System (ADS)

    You, Yalei; Liu, Guosheng; Wang, Yu; Cao, Jie

    2011-06-01

    The response of brightness temperatures at different microwave frequencies to overland precipitation is investigated by using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) data. The Spearman correlation coefficients between observations at TMI channels or channel combinations and PR-measured near-surface rain are computed using 3 years of TRMM data. The results showed that the brightness temperature combinations from 19 and 37 GHz, that is, V19-V37 (the letter V denotes vertical polarization, and the numbers denote frequency in GHz) or V21-V37, can explain ˜10% more variance of near-surface rainfall rate than can the V85 brightness temperature. Also, the global distribution of the above correlation revealed that over almost all of the tropical land area covered by TRMM satellite, the V19-V37 channel has a closer response to the overland rainfall than does the V85 channel. This result is somewhat counterintuitive, because it has been long believed that the dominant signature of overland rainfall is the brightness temperature depression caused by ice scattering at high microwave frequencies (e.g., 85 GHz). To understand the underlying physics of this better low-frequency response, data analysis and radiative transfer modeling have been conducted to assess the influence on brightness temperatures from clouds with different ice and liquid water partitions. The results showed that under the condition of low frozen water and medium liquid water in the atmospheric column, the signal from the V19-V37 channel responded better to rainfall rate than did the one from the V85 channel. A plausible explanation to this result is that in addition to ice scattering signature, the V19-V37 channel contains liquid water information as well, which is more directly related to surface rain than to ice water aloft. At heavy rainfall conditions, the V19-V37, V37, and V85 channels all are correlated with near-surface rain reasonably well

  18. A New Top Mass Measurement in The Dilepton Channel

    SciTech Connect

    Trovato, Marco; /INFN, Pisa /Pisa U.

    2008-01-01

    The top quark discovery completed the present picture of the fundamental constituents of the nature. Since then, the Collider Detector at Fermilab and D0 Collaborations have been spending great efforts to measure its properties better. About 30 times larger than the second heaviest quark, the mass of the top has been measured with increased statistic and more and more sophisticated techniques in order to reduce as much as possible its uncertainty. This is because the top is expected to play a fundamental role in the Standard Model. The value of its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps more appealing, studies of its properties might lead to the discovery of new physics.

  19. Measurement of single-top T-channel production using ATLAS data

    NASA Astrophysics Data System (ADS)

    Holzbauer, Jenny Lyn

    This document reports the measurement of the single-top t-channel cross-section using data from the ATLAS detector, located at the Large Hadron Collider on the border of France and Switzerland. The data used were collected during the first half of 2011, from proton-proton collisions with a 7 TeV center-of-mass collision energy. Single-top is electroweak top-quark production and t-channel is one of the standard model production modes. To isolate this production, selections are applied to find events with a similar final state. A cut-based analysis is used to further isolate the signal using a series of selections in several orthogonal kinematic regions. Finally, a statistical analysis is performed to determine the measured cross-section and the CKM matrix element |Vtb|. The cross-section for top and anti-top production is considered separately and the resulting cross-sections are sigmat+ = 59+18-16 pb for the positive charge channel and sigmat - = 33+13-12 pb for the negative charge channel. The total measured single-top t-channel cross-section using all kinematic channels in this analysis is 92+29-26 pb with an expected cross-section of sigmat = 62+22-20 pb. The 95% confidence level limit on the standard model | Vtb| value is determined to be |Vtb| > 0.67.

  20. [A method for improving measuring accuracy in multi-channel impedance spectroscopy (MIS)].

    PubMed

    Thiel, F; Hartung, C

    2004-08-01

    The use of impedance spectroscopy as a diagnostic tool for the investigation of biological objects involves the consideration of numerous parameters impacting on measuring accuracy. This paper describes a calibration method for multichannel instruments that reduces the non-inconsiderable influence of frequency response variations between the channels, thus significantly increasing measuring accuracy. The method is tested in a recently developed, high-resolution, multi-channel bio-impedance analyser. Reduction of the measuring error is demonstrated, and the magnitude and phase resolution is quantified. The advantage of this method lies in its applicability to existing systems. Furthermore, an additional calibration impedance is not needed. PMID:15481406

  1. Temperature and Pressure Measurements and Visualization of He II Cavitation Flow through Venturi Channel

    SciTech Connect

    Ishii, T.; Murakami, M.; Harada, K.

    2004-06-23

    He II cavitation flow through a Venturi channel was experimentally investigated through temperature and pressure measurements and optical visualization. So far some distinctive features of cavitation between He II and He I flows were clarified. Then, detailed measurements were added for further investigation, such as the measurements of the temperature drop distribution throughout the flow channel and the void fraction. Further considerations were given on the cavitation inception with emphasis on the superheating of liquid helium, and the effect of the flow separation on cavitation.

  2. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    SciTech Connect

    Yu, Deyang Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  3. A technique for measurement of earth station antenna G/T by radio stars and Applications Technology Satellites.

    NASA Technical Reports Server (NTRS)

    Kochevar, H. J.

    1972-01-01

    A new technique has been developed to accurately measure the G/T of a small aperture antenna using geostationary satellites and the well established radio star method. A large aperture antenna having the capability of accurately measuring its G/T by using a radio star of known power density is used to obtain an accurate G/T to use as a reference. The CNR of both the large and small aperture antennas are then measured using an Applications Technology Satellite (ATS). After normalizing the two C/N ratios to the large antenna system noise temperature the G/T or the gain G of the small aperture antenna can then be determined.

  4. Nasal Potential Difference Measurements to Assess CFTR Ion Channel Activity

    PubMed Central

    Clancy, Jean-Paul; Wilschanski, Michael

    2013-01-01

    Nasal potential difference is used to measure the voltage across the nasal epithelium, which results from transepithelial ion transport and reflects in part CFTR function. The electrophysiologic abnormality in cystic fibrosis was first described 30 years ago and correlates with features of the CF phenotype. NPD is an important in vivo research and diagnostic tool, and is used to assess the efficacy of new treatments such as gene therapy and ion transport modulators. This chapter will elaborate on the electrophysiological principles behind the test, the equipment required, the methods, and the analysis of the data. PMID:21594779

  5. Revisiting the dispersion measure of fast radio bursts associated with gamma-ray burst afterglows

    SciTech Connect

    Yu, Yun-Wei

    2014-12-01

    Some fast radio bursts (FRBs) are expected to be associated with the afterglow emission of gamma-ray bursts (GRBs), while a short-lived, supermassive neutron star (NS) forms during the GRBs. I investigate the possible contributions to the dispersion measure (DM) of the FRBs from the GRB ejecta and the wind blown from the precollapsing NS. On the one hand, sometimes an internal X-ray plateau afterglow could be produced by the NS wind, which indicates that a great number of electron-positron pairs are carried by the wind. If the pair-generation radius satisfies a somewhat rigorous condition, the relativistic and dense wind would contribute a high DM to the associated FRB, which can be comparable to and even exceed the DM contributed by the intergalactic medium. On the other hand, if the wind only carries a Goldreich-Julian particle flux, its DM contribution would become negligible; meanwhile, the internal plateau afterglow would not appear. Alternatively, the FRB should be associated with a GRB afterglow produced by the GRB external shock, i.e., an energy-injection-caused shallow-decay afterglow or a normal single-power-law afterglow if the impulsive energy release of the GRB is high enough. In the latter case, the DM contributed by the high-mass GRB ejecta could be substantially important, in particular, for an environment of main-sequence stellar wind. In summary, a careful assessment on the various DM contributors could be required for the cosmological application of the expected FRB-GRB association. The future DM measurements of GRB-associated FRBs could provide a constraint on the physics of NS winds.

  6. A high-frequency warm shallow water acoustic communications channel model and measurements.

    PubMed

    Chitre, Mandar

    2007-11-01

    Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.

  7. Interplay between Appearance and Disappearance Channels for Precision Measurements of θ₂₃ and δ

    SciTech Connect

    Coloma, Pilar; Minakata, Hisakazu; Parke, Stephen J.

    2014-11-01

    We discuss how the CP violating phase δ and the mixing angle θ₂₃ can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in long-baseline neutrino oscillation experiments. We analyze and clarify the general structure of the θ₂₃ - θ₁₃ - δ degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if θ₂₃ is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing Nature has chosen the value for θ₂₃. For facilities that operate with a narrow band beam or a wide band beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel. Whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum the appearance channels dominate. On the other hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near δ ~ ± π/2.

  8. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  9. Assimilating Electron Density Profiles Measured by the Real Time Global Ionospheric Radio Observatory - GIRO

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Galkin, I. A.

    2009-04-01

    Operational applications of ionospheric models, whether they are first principles or data-driven models, rely on the accuracy of the models during quiet and disturbed conditions. Of course models can correctly describe ionospheric weather only if they assimilate measured ionospheric characteristics and electron density profiles (EDPs). For the "assimilating model" to make correct predictions, the measurements in turn must be accurate and reliable. Ionosondes provide the most accurate vertical EDPs at the site locations but do not cover all parts of the globe. Ionogram-derived EDPs have become the ground truth reference for ionospheric specification, presenting the unrivaled accuracy of the data on continuous demand for validation of alternative ionospheric techniques, including radio occultation, ultraviolet, and tomography. In recent years the digisonde network of ionosondes has grown to eighty stations and is expected to expand to more than 100 stations in the next couple of years. The new Digisonde-4D is running the Automatic Real Time Ionogram Scaler with True height inversion, ARTIST-5. The ARTIST-5 autoscaling program now calculates the EDPs together with density uncertainty limits at each height, making the data products suitable for ingestion in assimilative ionospheric models. In order to specify uncertainty at each height, two boundary profiles, inner and outer, are determined. The inner and outer boundaries reflect the uncertainties of the critical frequencies of each layer, the internal uncertainty of the starting height of the profile, and the uncertainties of the E valley model representation. The actual uncertainties are calculated from a cumulative difference characteristic representing a mismatch between automatically and manually scaled parameters (i.e., foF2, foF1) for the same ionogram. The cumulative differences are determined from statistical analysis of a large amount of ionograms for a specific station. The characteristics of interest are

  10. Effect of weak measurement on entanglement distribution over noisy channels.

    PubMed

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H

    2016-03-03

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

  11. Confirmatory measurement channels for LIF-based bioaerosol instrumentation

    NASA Astrophysics Data System (ADS)

    Bisson, Scott E.; Crocker, Robert W.; Kulp, Thomas J.; Reichardt, Thomas A.; Reilly, Peter T. A.; Whitten, William B.

    2008-04-01

    As part of the U.S. Department of Homeland Security Detect-to-Protect (DTP) program, a multilab [Sandia National Laboratories (SNL), Lawrence Livermore National Laboratories (LLNL), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and Los Alamos National Laboratory (LANL)] effort is addressing the need for useable detect-to-warn bioaerosol sensors for public facility protection. Towards this end, the SNL team is investigating the use of rapid fluorogenic staining to infer the protein content of bioaerosols. This is being implemented in a flow cytometer wherein each particle detected generates coincident signals of correlated forward scatter, side scatter, and fluorescence. Several thousand such coincident signal sets are typically collected to generate a distribution describing the probability of observing a particle with certain scattering and fluorescence values. These data are collected for sample particles in both a stained and unstained state. A linear unmixing analysis is performed to differentiate components in the mixture. In this paper, we discuss the implementation of the staining process and the cytometric measurement, the results of their application to the analysis of known and blind samples, and a potential instrumental implementations that would use staining.

  12. Effect of weak measurement on entanglement distribution over noisy channels

    PubMed Central

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.

    2016-01-01

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775

  13. Velocity distribution measurements in a fishway like open channel by Laser Doppler Anemometry (LDA)

    NASA Astrophysics Data System (ADS)

    Sayeed-Bin-Asad, S. M.; Lundström, T. S.; Andersson, A. G.; Hellström, J. G. I.

    2016-03-01

    Experiments in an open channel flume with placing a vertical half cylinder barrier have been performed in order to investigate how the upstream velocity profiles are affected by a barrier. An experimental technique using Laser Doppler Velocimetry (LDV) was adopted to measure these velocity distributions in the channel for four different discharge rates. Velocity profiles were measured very close to wall and at 25, 50 and 100 mm upstream of the cylinder wall. For comparing these profiles with well-known logarithmic velocity profiles, velocity profiles were also measured in smooth open channel flow for all same four discharge rates. The results indicate that regaining the logarithmic velocity profiles upstream of the half cylindrical barrier occurs at 100 mm upstream of the cylinder wall.

  14. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  15. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    PubMed

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  16. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers

    NASA Astrophysics Data System (ADS)

    Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S. A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P. W.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; Kuwatani, K.; Lam, J.; Liu, T. C.; Nam, J.; Naudet, C.; Nichol, R. J.; Rauch, B. F.; Rotter, B.; Saltzberg, D.; Schoorlemmer, H.; Seckel, D.; Strutt, B.; Vieregg, A. G.; Williams, C.; T-510 Collaboration

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

  17. Accelerator Measurements of Magnetically Induced Radio Emission from Particle Cascades with Applications to Cosmic-Ray Air Showers.

    PubMed

    Belov, K; Mulrey, K; Romero-Wolf, A; Wissel, S A; Zilles, A; Bechtol, K; Borch, K; Chen, P; Clem, J; Gorham, P W; Hast, C; Huege, T; Hyneman, R; Jobe, K; Kuwatani, K; Lam, J; Liu, T C; Nam, J; Naudet, C; Nichol, R J; Rauch, B F; Rotter, B; Saltzberg, D; Schoorlemmer, H; Seckel, D; Strutt, B; Vieregg, A G; Williams, C

    2016-04-01

    For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties. PMID:27104694

  18. Toward Global Soundings and Atmospheric Measurements for Climate and NWP Using GNSS Radio Occultation Systems

    NASA Astrophysics Data System (ADS)

    Mango, S. A.; Ector, D.; Wilczynski, P.; Fulton, R. A.; Whitely, D.; Cucurull, L.; Chu, V.; Schreiner, W. S.; Rocken, C.; Anthes, R. A.; Kuo, Y.; Cook, K.

    2010-12-01

    The history of observing radio occultations [RO] using a space-borne platform and an earth-based or another space-based platform to probe an intervening planetary atmosphere, i.e. to determine atmospheric profiles and characteristics, dates back to 1964 with the sounding of the atmosphere of Mars and subsequent soundings of planetary atmospheres using a radio transmitter on a satellite and the RO technique. The first use of a Global Navigation Satellite Systems (GNSS) transmitter as a signal source to sound the Earth’s intervening atmosphere utilizing the satellite RO technique was demonstrated with the transmitters on the US Global Positioning System (GPS) constellation of navigation and timing satellites (24-30 satellites) and the receiver on the GPS-MET satellite mission. Several satellite RO missions followed using GPS signal sources - i.e. CHAMP, SAC-C, Oersted, IOX, GRACE and GRAS. In April 2006 a joint USA/Taiwan mission, FORMOSAT-3/COSMIC, a constellation of 6 microsatellites, began sounding successfully the Earth’s atmosphere using GPS and RO for meteorological, ionospheric and climatic studies. Within the next two decades there will be a multiplicity of GNSS constellations flying. Several nations are now planning or initializing other full, operational GNSS missions which will significantly increase the potential number of signal source satellites for RO, to somewhere in the range of 87-125 transmitters, including: 1. GPS (USA), 2. GLONASS (Russian Federation), 3. Galileo (EU) 4. COMPASS (China), 5. IRNSS (India), 6. QZSS (Japan). The national commitments for operations and sustainment of these GNSS constellations have been made for at least the next decades. The operation and sustainment of a large constellation of RO satellites capable of handling the signals from this large multiplicity of GNSS systems would provide soundings and observations of the Earth’s atmosphere for research and operations with unparalleled spatial and temporal coverage

  19. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Tandon, N. F.; Polvani, L. M.

    2012-04-01

    The spatiotemporal structure of the lapse-rate tropopause is examined by using state-of-the-art Global Positioning System radio occultation measurements from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Formosa Satellite Mission 3 mission. The high temporal and spatial resolutions of the data reveal the detailed structure of tropopause properties such as pressure (P-LRT), temperature (T-LRT), and sharpness (S-LRT) and their relationships to upper tropospheric and lower stratospheric processes. The overall results are generally in good agreement with previous studies. The climatology of all three tropopause properties shows largely homogeneous structure in the zonal direction: noticeable asymmetries are found only in the tropics and the Northern Hemisphere extratropics during boreal winter owing to localized tropospheric processes. This contrasts with the seasonal cycles of tropopause properties which are significantly influenced by stratospheric processes such as the Brewer-Dobson circulation, the polar vortex, and the radiative processes near the tropopause. On intraseasonal time scales, P-LRT and T-LRT exhibit significant variability over the Asian summer monsoon and the subtropics where double tropopauses frequently occur. In contrast, S-LRT shows maximum variability in the tropics where P-LRT and T-LRT have minimum variability, possibly a consequence of vertically propagating waves. The tropopause properties derived from COSMIC observations are further applied to evaluate tropopause data directly available from the NCEP-NCAR Reanalysis (NNR). Although the NNR tropopause data have been widely used in climate studies, they are found to have significant and systematic biases, especially in the subtropics. This suggests that the NNR tropopause data should be treated with great caution in any quantitative studies.

  20. Venus: ionosphere and atmosphere as measured by dual-frequency radio occultation of mariner v.

    PubMed

    1967-12-29

    Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.

  1. Measurement of the PPN Parameter (gamma) with radio signals from the Cassini Spacecraft at X- and Ka-Bands

    NASA Technical Reports Server (NTRS)

    Anderson, John D.; Lau, Eunice L.; Giampieri, Giacomo

    2005-01-01

    Radio Doppler data from the Cassini spacecraft during its solar conjunction in June 2002 can be used to measure the bending of light by solar gravitation. In terms of the standard post-Newtonian parameter (gamma), we find that (gamma) - 1 = (-1.3 +/- 5.2)x10^-5 in agreement with the theory of General Relativity. This result implies that the parameter (omega) in the Brans-Dicke theory is greater than 9000 at a 95% confidence level.

  2. Analysis of the Capability and Limitations of Relativistic Gravity Measurements Using Radio Astronomy Methods

    NASA Technical Reports Server (NTRS)

    Shapiro, I. I.; Counselman, C. C., III

    1975-01-01

    The uses of radar observations of planets and very-long-baseline radio interferometric observations of extragalactic objects to test theories of gravitation are described in detail with special emphasis on sources of error. The accuracy achievable in these tests with data already obtained, can be summarized in terms of: retardation of signal propagation (radar), deflection of radio waves (interferometry), advance of planetary perihelia (radar), gravitational quadrupole moment of sun (radar), and time variation of gravitational constant (radar). The analyses completed to date have yielded no significant disagreement with the predictions of general relativity.

  3. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam.

    PubMed

    Zhao, Mingyang; Gao, Xinlu; Xie, Mutong; Zhai, Wensheng; Xu, Wenjing; Huang, Shanguo; Gu, Wanyi

    2016-06-01

    An indirect approach based on phase measurement is proposed to measure the rotational Doppler frequency shift, which takes full advantage of the phase structure of orbital angular momentum (OAM) beams in radio domain, using a vector network analyzer (VNA) as a phase discriminator. A proof-of-concept experiment is established by an optical-controlled system with the OAM state of 1. By analyzing the experiment's results, the rotational Doppler frequency shift is measured as 24.83 Hz (max error rate 0.67%) at 50π rad/s rotational velocity, deducing the rotational velocity as 50.18π (average error rate 0.36%). PMID:27244411

  4. Simplified measurement method for dissolved radio-Cs in litter and soil seepage water using copper-substituted Prussian blue.

    PubMed

    Takada, Momo; Yasutaka, Tetsuo; Okuda, Toshinori

    2016-11-01

    We developed a simple and rapid method for detecting dissolved radio-Cs in litter and/or soil seepage water using nonwoven fabrics impregnated with copper-substituted Prussian blue (Cu-NF). In laboratory and field experiments, litter and/or soil seepage water including dissolved radio-Cs were passed through traditional lysimeter systems combined with seven sheets of the Cu-NF. We then examined the recovery ratios of dissolved (137)Cs in the Cu-NF. In the laboratory experiments with faster flow rates (11-2200 mm h(-1)), over 86% of the total dissolved (137)Cs in litter seepage water was detected in the Cu-NF and over 82% of the collected (137)Cs was present in the first three sheets. In the field experiments, 99% of the total dissolved (137)Cs litter seepage water was collected in the Cu-NF and more than 96% of the collected (137)Cs was present in the first three sheets. Furthermore, the recovery ratio of dissolved (137)Cs increased with increasing installation Cu-NF length, probably because the packed soil in the Cu-NF lysimeter become more stable over time. Finally, because only the Cu-NF is measured, it is not necessary to undertake traditional measurement preparations such as filtration to remove particulate radio-Cs materials and evaporative concentration for low concentration of radio-Cs. As a result, we can save time and effort in measurement preparation by using the Cu-NF lysimeter method. PMID:27529388

  5. A Radio-Polarisation and Rotation Measure Study of the Gum Nebula and Its Environment

    NASA Astrophysics Data System (ADS)

    Purcell, C. R.; Gaensler, B. M.; Sun, X. H.; Carretti, E.; Bernardi, G.; Haverkorn, M.; Kesteven, M. J.; Poppi, S.; Schnitzeler, D. H. F. M.; Staveley-Smith, L.

    2015-05-01

    The Gum Nebula is 36°-wide shell-like emission nebula at a distance of only ˜450 pc. It has been hypothesized to be an old supernova remnant, fossil H ii region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H α data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionized gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte Carlo fit to the NVSS rotation measure data, using the H α data to constrain average electron density in the shell ne. Assuming a latitudinal background gradient in rotation measure, we find {{n}e}=1.3-0.4+0.4 c{{m}-3}, angular radius {{φ }outer}=22\\buildrel{\\circ}\\over{.} 7-0.1+0.1, shell thickness dr=18.5-1.4+1.5 pc, ambient magnetic field strength {{B}0}=3.9-2.2+4.9 μ G, and warm gas filling factor f=0.3-0.1+0.3. We constrain the local, small-scale (˜260 pc) pitch-angle of the ordered Galactic magnetic field to +7{}^\\circ ≲ \\wp ≲ +44{}^\\circ , which represents a significant deviation from the median field orientation on kiloparsec scales (˜-7.°2). The moderate compression factor X=6.0-2.5+5.1 at the edge of the H α shell implies that the “old supernova remnant” origin is unlikely. Our results support a model of the nebula as a H ii region around a wind-blown bubble. Analysis of depolarization in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.

  6. EVN measurements show no evidence for radio emission from the Type Ia SN 2014J

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M.; Lundqvist, P.; Paragi, Z.; Bjornsson, C. I.; Fransson, C.; Alberdi, A.; Argo, M. K.; Beswick, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Muxlow, T. W. M.; Ros, E.; Ryder, S.; Schmidt, B.

    2014-05-01

    We report deep electronic European VLBI Network (eEVN) radio observations of the Type Ia SN 2014J, which was discovered on 21.8 January 2014, about 6.8 days after its explosion (see http://www.k-itagaki.jp/psn-m82.jpg) in the nearby (D=3.5 Mpc) galaxy NGC 3034 = M82 ...

  7. New Radio and Optical Expansion Rate Measurements of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Bietenholz, M. F.; Nugent, R. L.

    2016-06-01

    We present new JVLA radio observations of the Crab nebula, which we use, along with older observations taken over a ~30 yr period, to determined the expansion rate of the synchrotron nebula. We find a convergence date for the radio synchrotron nebula of AD 1255 +/- 27. We also re-evaluated the expansion rate of the optical line emitting filaments, and we show that the traditional estimates of their convergence date are slightly biased. We find an un-biased convergence date of AD 1091 +/- 34, ~40 yr earlier than previous estimates. Our results show that both the synchrotron nebula and the optical line-emitting filaments have been accelerated since the explosion in AD 1054, but former more strongly than the latter. This finding supports the picture that the filaments are the result of the Rayleigh-Taylor instability at the interface between the pulsar-wind nebula and the surrounding freely-expanding supernova ejecta, and rules out models where the pulsar wind bubble is interacting directly with the pre-supernova wind of the Crab's progenitor. Our new observations were taken ~2 months after the gamma-ray flare of 2012 July, and also allow us to put a sensitive limit on any radio emission associated with the flare of <0.0002 times the radio luminosity that of the nebula.

  8. Venus: estimates of the surface temperature and pressure from radio and radar measurements.

    PubMed

    Wood, A T; Wattson, R B; Pollack, J B

    1968-10-01

    The radio brightness temperature and radar cross section spectra of Venus are in much better accord with surface boundary conditions deduced from a combination of the Mariner V results and the radar radius than those obtained by the Venera 4 space probe. The average surface temperature and pressure are approximately 750 degrees K and 90 atmospheres.

  9. The New Horizons Radio Science Experiment: Performance and Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    NASA Astrophysics Data System (ADS)

    Linscott, I.; Hinson, D. P.; Bird, M. K.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The New Horizons (NH) spacecraft payload contained the Radio Science Experiment (REX) for determining key characteristics of Pluto and Charon during the July 14, 2015, flyby of the Pluto/Charon system. The REX flight equipment augments the NH X-band radio transceiver by providing a high precision, narrow band recording of high power uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation will review the performance and initial results of two high- priority observations. First, REX received two pair of 20-kW signals, one pair per polarization, transmitted from the DSN at 4.2-cm wavelength during a diametric radio occultation by Pluto. REX recorded these uplink signals and determined precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July and processed to obtain the pressure and temperature structure of Pluto's atmosphere. Second, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side are visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto's disk and temperature resolution of 0.1 K. Occultation and radiometric temperature results presented here will encompass additional data scheduled for playback in September.

  10. Measuring the Solar Magnetic Field with STEREO A Radio Transmissions: Faraday Rotation Observations using the 100m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; Jensen, E.; Wexler, D.; Heiles, C.; Kepley, A.; Kuiper, T.; Bisi, M.

    2016-04-01

    The STEREO mission spacecraft recently passed through superior conjunction, providing an opportunity to probe the solar corona using radio transmissions. Strong magnetic field and dense plasma environment induce Faraday rotation of the linearly polarized fraction of the spacecraft radio carrier signal. Variations in the Faraday rotation signify changes in magnetic field components and plasma parameters, and thus can be used to gain understanding processes of the quiescent sun as well as active outbursts including coronal mass ejections. Our 2015 observing campaign resulted in a series of measurements over several months with the 100m Green Bank Telescope (GBT) to investigate the coronal Faraday rotation at various radial distances. These observations reveal notable fluctuations in the Faraday rotation of the signal in the deep corona, and should yield unique insights into coronal magnetohydrodynamics down to a 1.5 solar radius line-of-sight solar elongation.

  11. Updated galactic radio constraints on Dark Matter

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Taoso, Marco

    2016-07-01

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including Planck measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  12. Analysis of Tracking Measuring Method of Focus Cabin of Five-hundred-meter Aperture Spherical radio Telescope(FAST)

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhu, Lichun

    2015-08-01

    FAST (Five-hundred-meter Aperture Spherical radio Telescope) project is one of the Chinese mega-Science Projects to build the largest single dish radio telescope in the world. FAST has three outstanding innovation aspects: in the karst depression which is large to host the 500-meter telescope, an active main reflector correcting for spherical aberration on the ground to achieve a full polarization is being built, the light-weight feed focus cabin in which a parallel robot as a secondary adjustable system to move with high precision is driven by cables and servomechanism plus. The part of main reflector which is illuminated by the feed is continually adjusted to fit the paraboloid of revolution in real time when tracking the radio source. How to get high precise real-time feedback data of moving focus cabin’s position when tracking the source is one of the crucial problems for the astronomical observation.At present 24 steady basis pillars for measurement whose position coordinates are already known, have been built in the construction field of FAST. Total stations will be installed on one of those pillars, and prisms will be installed on focus cabin. The purpose of this study was to assess the accuracy and reliability of two measuring method: the space distance intersection calculation method and polar measuring method. The space distance intersection calculation method is only using multiple measuring distances between three pillars and prism and known coordinates of pillars to calculate the prism’s coordinates, the polar measurement is using the measuring distance and angles to get the prism’s coordinate.

  13. Multi-channel transimpedance measurement of a planar electromagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Chen, Dixiang; Xie, Ruifang; Zhou, Weihong; Hu, Hengjiang; Pan, Mengchun

    2015-02-01

    Planar electromagnetic sensor arrays have advantages such as nice coherence, fast response speed and high sensitivity, which can be used for micro damage inspection of crucial parts in equipment, and the key point in improving the inspection performance is to achieve a precise measurement of multi-channel transimpedances (the inductive voltages divided by the exciting current of the sensor). The principle and characteristics of planar electromagnetic sensor arrays are introduced in this paper, and a digital lock-in impedance measurement algorithm was investigated, with which the interference and noise in inductive voltage signals can be restrained effectively and the amplitude and phase of the transimpedance can be obtained with good repeatability. An eight channel impedance measurement system was established based on a field programmable gate array and utilized to inspect the micro damage in metal materials, and the experimental data were analyzed. The experimental results show that the impedance measurement has excellent repeatability when the sensor array is placed in air, and the maximum measurement error of the complete transimpedance measurement system is lower than 10%. A micro crack with a size of 1 mm (length) × 0.1 mm (width) × 1 mm (depth) can be detected through the measurement of multi-channel transimpedance in the planar electromagnetic sensor array.

  14. Measurements on the satellite-mobile channel at L and S bands

    NASA Technical Reports Server (NTRS)

    Smith, H.; Gardiner, J. G.; Barton, S. K.

    1993-01-01

    An experiment is described in which measurements are made on the satellite-mobile channel at L and S bands. A light aircraft carrying a c.w. beacon is flown at elevation angles of 40, 60 and 80 degrees to a mobile receiver. The signal strength at the mobile is recorded in open, urban, suburban and tree shadowed environments. This data is then analyzed to produce statistics for the channel with respect to frequency, elevation angle, and environment. Results are presented together with a brief discussion, suggested interpretation, and conclusion.

  15. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields

    NASA Astrophysics Data System (ADS)

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-01

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.

  16. A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields.

    PubMed

    Ketharnath, Dhivya; Pande, Rohit; Xie, Leiming; Srinivasan, Srimeenakshi; Godin, Biana; Wosik, Jarek

    2012-08-20

    We report a method for characterization of the efficiency of radio-frequency (rf) heating of nanoparticles (NPs) suspended in an aqueous medium. Measurements were carried out for water suspended 5 nm superparamagnetic iron-oxide NPs with 30 nm dextran matrix for three different configurations of rf electric and magnetic fields. A 30 MHz high-Q resonator was designed to measure samples placed inside a parallel plate capacitor and solenoid coil with or without an rf electric field shield. All components of rf losses were analyzed and rf electric and magnetic field induced heating of NPs and the dispersion medium was determined and discussed.

  17. Comparison of total electron content measurements made with the ATS-6 radio beacon over the U.S. and Europe

    NASA Technical Reports Server (NTRS)

    Davies, K.; Degenhardt, W.; Hartmann, G. K.; Leitinger, R.

    1980-01-01

    The ATS-6 radio beacon measurements made at three stations in the U.S.A. are compared and contrasted with similar measurements made in Europe the following year at two locations. It is shown that over the U.S.A. the winter plasmaspheric content reaches its maximum near 0300 LT whereas in Europe the maximum occurs near noon. The plasmaspheric content decreases with increase of magnetic activity in both continents. Winter night maxima are observed in ionospheric content in both hemispheres. Marked differences occurred in magnetic storm effects and in the day-to-night ratio of ionospheric electron content.

  18. In situ measurements of particle friction angles in steep, narrow channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.

    2013-12-01

    The persistent observation that sediment requires increased fluid stresses to move on steeper channels has inspired a wide range of explanations, which can loosely be divided into those that invoke increased grain stability (friction angle, φ) and those that require altered flow hydraulics in steep channels. Measurements of bulk fluid forces over a wide range of channel slopes (θ ≤ 22°) have been obtained using laboratory flume experiments that can control for grain stability and show that altered flow hydraulics do play a role in increased critical shear stress. However, measurements of grain stability are almost all limited to channel slopes less than a few degrees. These friction angle studies have been conducted by tilting a fixed gravel bed with a single loose particle until dislodgment, or by directly measuring the forces required to dislodge a particle using a load cell. The latter methodology is less common but offers the advantage of quickly measuring the friction angles of in situ grains in natural river channels. Indeed, it has enabled the collection of extremely large datasets at low slopes [e.g., Johnston et al., 1998]. We are adding to this dataset with measurements from several natural steep channels in the San Gabriel Mountains, CA to test if the particle friction angle changes systematically as a function of slope or width-to-grain size ratio (W/D50), which is thought to determine the propensity for particle jamming. Using a load cell that records peak forces we measure the minimum force required to pull a particle from its pocket in the downstream direction and the particle weight. Particles are sampled over a regular grid and we record the percentage of the particle buried by fines and the qualitative degree of interlocking. Preliminary results from three sites with bed slopes of θ = 2.9°, 3.2°, and 9.0° suggest that the at-a-site variability in friction angle is much higher than between-site variability, and that median values do not

  19. PRIDE — Passive Radio Ice Depth Experiment — An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit Using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T. C.; Kleinfelder, S.; Barwick, S.; Besson, D.; Connolly, A.; Patterson, G. W.; Romero-Wolf, A.; Schaefer, R.; Sequeira, H. B.

    2014-02-01

    We describe a concept for a single instrument to measure the thickness of an ice shell, such as Europa’s, by making use of the Askaryan Effect Radio Frequency signal from ultra high energy neutrinos.

  20. Coupled Radon and Water Temperature Measurements to Characterize the Effects of Altered Stream Channel Planform

    NASA Astrophysics Data System (ADS)

    Amerson, B. E.; Poole, G. C.; O'Daniel, S. J.

    2013-12-01

    In summer 2011, a 2.6 km reach of Meacham Creek, Oregon, USA, was altered from a straight, steep wall-based channel to more a sinuous, low-gradient channel. Key objectives of this restoration project were to increase the rate and magnitude of hyporheic exchange. The overarching goal was to initiate increased buffering and lagging of water temperature in the subsurface to mitigate warm surface water temperature in Meacham Creek, an important spawning and rearing stream for depressed populations of Chinook salmon and summer steelhead. To evaluate progress toward project goals and objectives, stream temperature and groundwater temperature in 22 wells have been measured hourly at the restoration site since March 2011. In addition, the radioactive isotope 222Rn was measured in each well and in the surface water on two occasions. The relative residence time of down welling stream water measured in the wells can be determined by ranked amplitude depression and lagged phase of annual temperature signals in the wells relative to that of the open channel flow. Residence times predicted by annual temperature signal dynamics are corroborated by 222Rn concentrations in each well. The data collected to date provide a foundation for developing a groundwater thermal model to predict the effects of channel reconfiguration on ground-surface water exchange and associated temperature effects at the reach scale.

  1. Comparison of the Ionospheric Electron Density Profiles Obtained by COSMIC Radio Occultation with Ground-based Measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Shagimuratov, I.; Krankowski, A.

    2009-04-01

    The Radio Occultation technique using GPS signals has been proven to be a promising technique to retrieve accurate profiles of the ionospheric electron density with high vertical resolution on a global scale. Formosat-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) is a joint scientific mission between Taiwan and the U.S.A. The mission placed six small micro-satellites into six different orbits at 700~800 kilometer above the earth surface. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric radio occultation (RO). With the ability of performing both rising and setting occultation, Formosat-3/COSMIC has been producing about 2000 profiles of the ionospheric electron density per day - much more than ever before. In the given paper we used the ionograms recorded by European ionosonde stations for the cases of winter and summer solstices and time of quiet and geomagnetically disturbed days in March 2008 and compare these ground measured data with the GPS COSMIC radio occultation ionospheric profiles. This result is important to validate the reliability of the COSMIC ionospheric observations using the radio occultation technique. The comparison of RO data with measurements provided by European ionosondes (Pruhonice, Iuliusruh, Ebre, Rome) indicates that usually COSMIC RO profiles are in a good agreement with ionosonde's profiles both in the F2 layer peak electron density (NmF2) and the bottom side part of the profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ionosonde location. But it is necessary to mention that practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde's profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements

  2. Measurement of Field Aligned Electron and Ion Densities and Ducts from the Whistler and Z Mode Radio Sounding from IMAGE

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Hazra, S.; Mayank, K.; Reddy, A.; Liu, Y.; Carpenter, D. L.

    2013-12-01

    We present recent results from the application of whistler mode (WM) and Z mode (ZM) radio sounding experiments from the IMAGE satellite to the magnetospheric plasma diagnostics. A recently developed WM radio sounding method [Sonwalkar et al., JGR, 116, A11210, doi:10.1029/2011JA016759, 2011] was applied to 200 cases of WM echoes observed within the plasmasphere to measure field aligned electron density (Ne) and ion densities (NH+, NHe+, NO+) for L~1.6 -4, altitude <5000 km, Kp ~1-7, and F10.7 ~ 72-110 (low solar activity). The measured plasma parameters are in general consistent with the past space borne (e.g. CHAMP, DMSP, Alouette, ISIS, AE) and ground (e.g. ionosonde) measurements, but show significant differences from those predicted by IRI-2012 and GCPM models. We believe our measurements will lead to an improved model of electron and ion densities at <5000 km within the plasmasphere. The WM radio sounding method was applied to a case study of the variation of plasma parameters at L~2 during the development of a major storm, from quiet conditions and subsequent recovery, followed by a moderate and minor storm. Our study showed that relative to the preceding quiet time: (1) There was depletion in electron density, H+, He+ and enhancement in O+ ions leading to increase in O+-H+ transition height; (2) The recovery period of electrons and individual ions was different; (3) A similar trend in the variation of electron density, H+, O+ was observed after the moderate storm and the minor storm but He+ was not affected. Following a ray tracing technique originally developed for whistler mode sounding, we analyzed the fast nonducted and ducted Z mode echoes to obtain field aligned electron density and duct parameters (duct width and enhancement) from the measured dispersion of Z mode echoes. With the help of two case studies, we illustrate that fast Z mode echoes provide measurement of electron density at altitudes <10,000 km and duct width and enhancement within an

  3. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  4. Radio frequency ice dielectric permittivity measurements using CReSIS data

    NASA Astrophysics Data System (ADS)

    Stockham, M.; Macy, J.; Besson, D.

    2016-03-01

    We report on studies of the ice dielectric permittivity using 150-195 MHz radar depth sounding data accumulated by the Center for Remote Sensing of Ice Sheets group, based at the University of Kansas. In the context of astroparticle physics experiments aimed at understanding radio emissions from cosmic rays interacting in the Earth's polar regions, our goals for this study were twofold: (1) identify radio frequency wave speed polarization asymmetries in Antarctica and (for the first time) in Greenland and (2) directly extract the depth dependence of the radio frequency field attenuation length as well as map out the attenuation over a large area. We first examine asymmetries in the real part of the permittivity (index-of-refraction n=√ɛ') using Center for Remote Sensing of Ice Sheets bedrock radar reflection data taken from a single location, but with different signal polarizations. These data indicate birefringence for flow parallel-, versus perpendicular-to the local ice-flow direction, with the former corresponding to smaller index-of-refraction (i.e., faster wave speed). Second, we have investigated the imaginary part of the permittivity (ɛ'') and extracted the depth dependence of the field attenuation length (Lα˜√ɛ''), as well as estimated the depth-averaged radio frequency attenuation length from data taken near the Greenland Ice Core Project site near Summit, Greenland. We obtain =500-60+90 m based on calculated values in the 1000-2000 m ice depth interval to which we have sensitivity and extrapolated to the full depth, where the errors shown reflect our uncertainty in our extrapolation. We also observe the expected decrease in attenuation length with increasing depth/temperature. A depth-averaged attenuation length is also extracted directly from the relative strengths of the observed bedrock versus surface returns over large regions of both Greenland and Antarctica.

  5. Note: radio frequency inductance-capacitance band-stop filter circuit to perform contactless conductivity measurements in pulsed magnetic fields.

    PubMed

    Altarawneh, M M

    2012-09-01

    We present a new technique to perform radio frequency (rf) contactless conductivity measurements in pulsed magnetic fields to probe different ground states in condensed matter physics. The new method utilizes a simple analog band-stop filter circuit implemented in a radio frequency transmission setup to perform contactless conductivity measurements. The new method is more sensitive than the other methods (e.g., the tunnel diode oscillator and the proximity detector oscillator) due to more sensitive dependence of the circuit resonance frequency on the tank circuit inductance (not the transmission line). More important, the new method is more robust than other methods when used to perform measurements in very high magnetic fields, works for a wide range of temperatures (i.e., 300 K-1.4 K) and is less sensitive to noise and mechanical vibrations during pulse magnet operation. The new technique was successfully applied to measure the Shubnikov-de Haas effect in Bi(2)Se(3) in pulsed magnetic fields of up to 60 T.

  6. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  7. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements.

    PubMed

    Hlondo, L R; Lalremruata, B; Punte, L R M; Rebecca, L; Lalnunthari, J; Thanga, H H

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result. PMID:27131701

  8. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    NASA Astrophysics Data System (ADS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-04-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  9. Sensitivity analysis of a new SWIR-channel measuring tropospheric CH 4 and CO from space

    NASA Astrophysics Data System (ADS)

    Jongma, Rienk T.; Gloudemans, Annemieke M. S.; Hoogeveen, Ruud W. M.; Aben, Ilse; de Vries, Johan; Escudero-Sanz, Isabel; van den Oord, Gijsbertus; Levelt, Pieternel F.

    2006-08-01

    In preparation for future atmospheric space missions a consortium of Dutch organizations is performing design studies on a nadir viewing grating-based imaging spectrometer using OMI and SCIAMACHY heritage. The spectrometer measures selected species (O 3, NO II, HCHO, H IIO, SO II, aerosols (optical depth, type and absorption index), CO and CH4) with sensitivity down to the Earth's surface, thus addressing science issues on air quality and climate. It includes 3 UV-VIS channels continuously covering the 270-490 nm range, a NIR-channel covering the 710-775 nm range, and a SWIR-channel covering the 2305-2385 nm range. This instrument concept is, named TROPOMI, part of the TRAQ-mission proposal to ESA in response to the Call for Earth Explorer Ideas 2005, and, named TROPI, part of the CAMEO-proposal prepared for the US NRC decadal study-call on Earth science and applications from space. The SWIR-channel is optional in the TROPOMI/TRAQ instrument and included as baseline in the TROPI/CAMEO instrument. This paper focuses on derivation of the instrument requirements of the SWIR-channel by presenting the results of retrieval studies. Synthetic detector spectra are generated by the combination of a forward model and an instrument simulator that includes the properties of state-of-the-art detector technology. The synthetic spectra are input to the CO and CH 4 IMLM retrieval algorithm originally developed for SCIAMACHY. The required accuracy of the Level-2 SWIR data products defines the main instrument parameters like spectral resolution and sampling, telescope aperture, detector temperature, and optical bench temperature. The impact of selected calibration and retrieval errors on the Level-2 products has been characterized. The current status of the SWIR-channel optical design with its demanding requirements on ground-pixel size, spectral resolution, and signal-to-noise ratio will be presented.

  10. Assessing the performance of multi-purpose channel management measures at increasing scales

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve

    2016-04-01

    In addition to hydroclimatic drivers, sediment deposition from high energy river systems can reduce channel conveyance capacity and lead to significant increases in flood risk. There is an increasing recognition that we need to work with the interplay of natural hydrological and morphological processes in order to attenuate flood flows and manage sediment (both coarse and fine). This typically includes both catchment (e.g. woodland planting, wetlands) and river (e.g. wood placement, floodplain reconnection) restoration approaches. The aim of this work was to assess at which scales channel management measures (notably wood placement and flood embankment removal) are most appropriate for flood and sediment management in high energy upland river systems. We present research findings from two densely instrumented research sites in Scotland which regularly experience flood events and have associated coarse sediment problems. We assessed the performance of a range of novel trial measures for three different scales: wooded flow restrictors and gully tree planting at the small scale (<1 km2), floodplain tree planting and engineered log jams at the intermediate scale (5-60 km2), and flood embankment lowering at the large scale (350 km2). Our results suggest that at the smallest scale, care is needed in the installation of flow restrictors. It was found for some restrictors that vertical erosion can occur if the tributary channel bed is disturbed. Preliminary model evidence suggested they have a very limited impact on channel discharge and flood peak delay owing to the small storage areas behind the structures. At intermediate scales, the ability to trap sediment by engineered log jams was limited. Of the 45 engineered log jams installed, around half created a small geomorphic response and only 5 captured a significant amount of coarse material (during one large flood event). As scale increases, the chance of damage or loss of wood placement is greatest. Monitoring

  11. Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields

    SciTech Connect

    Mielke, Charles H; Mcdonald, David R; Zapf, Vivien; Altarawneh, Moaz M; Lacerda, Alex H; Adak, Sourav; Karunakar, Kothapalli; Nakotte, Heinrich; Chang, S; Alsmadi, A M; Alyones, S

    2009-01-01

    We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

  12. Gain and Polarization Properties of a Large Radio Telescope from Calculation and Measurement: The John A. Galt Telescope

    NASA Astrophysics Data System (ADS)

    Du, X.; Landecker, T. L.; Robishaw, T.; Gray, A. D.; Douglas, K. A.; Wolleben, M.

    2016-11-01

    Measurement of the brightness temperature of extended radio emission demands knowledge of the gain (or aperture efficiency) of the telescope and measurement of the polarized component of the emission requires correction for the conversion of unpolarized emission from sky and ground to apparently polarized signal. Radiation properties of the John A. Galt Telescope at the Dominion Radio Astrophysical Observatory were studied through analysis and measurement in order to provide absolute calibration of a survey of polarized emission from the entire northern sky from 1280 to 1750 MHz, and to understand the polarization performance of the telescope. Electromagnetic simulation packages CST and GRASP-10 were used to compute complete radiation patterns of the telescope in all Stokes parameters, and thereby to establish gain and aperture efficiency. Aperture efficiency was also evaluated using geometrical optics and ray tracing analysis and was measured based on the known flux density of Cyg A. Measured aperture efficiency varied smoothly with frequency between values of 0.49 and 0.54; GRASP-10 yielded values 6.5% higher but with closely similar variation with frequency. Overall error across the frequency band is 3%, but values at any two frequencies are relatively correct to ∼1%. Dominant influences on aperture efficiency are the illumination taper of the feed radiation pattern and the shadowing of the reflector from the feed by the feed-support struts. A model of emission from the ground was developed based on measurements and on empirical data obtained from remote sensing of the Earth from satellite-borne telescopes. This model was convolved with the computed antenna response to estimate conversion of ground emission into spurious polarized signal. The computed spurious signal is comparable to measured values, but is not accurate enough to be used to correct observations. A simpler model, in which the ground is considered as an unpolarized emitter with a brightness

  13. Isothermal mass flow measurements in microfabricated rectangular channels over a very wide Knudsen range

    NASA Astrophysics Data System (ADS)

    Anderson, John M.; Moorman, Matthew W.; Brown, Jason R.; Hochrein, James M.; Thornberg, Steven M.; Achyuthan, Komandoor E.; Gallis, Michael A.; Torczynski, John R.; Khraishi, Tariq; Manginell, Ronald P.

    2014-05-01

    Measurement and modeling of gas flows in microelectromechanical systems (MEMS) scale channels are relevant to the fundamentals of rarefied gas dynamics (RGD) and the practical design of MEMS-based flow systems and micropumps. We describe techniques for building robust, leak-free, rectangular microchannels which are relevant to micro- and nanofluidic devices, while the channels themselves are useful for fundamental RGD studies. For the first time, we report the isothermal steady flow of helium (He) gas through these channels from the continuum to the free-molecular regime in the unprecedented Knudsen range of 0.03-1000. On the high end, our value is 20-fold larger than values previously reported by Ewart et al (2007 J. Fluid Mech. 584 337-56). We accomplished this through a dual-tank accumulation technique which enabled the monitoring of very low flow rates, below 10-14 kg s-1. The devices were prebaked under vacuum for 24 h at 100 °C in order to reduce outgassing and attain high Kn. We devised fabrication methods for controlled-depth micro-gap channels using silicon for both channel ceiling and floor, thereby allowing direct comparisons to models which utilize this simplifying assumption. We evaluated the results against a closed-form expression that accurately reproduces the continuum, slip, transition, and free-molecular regimes developed partly by using the direct simulation Monte Carlo method. The observed data were in good agreement with the expression. For Kn > ˜100, we observed minor deviations between modeled and experimental flow values. Our fabrication processes and experimental data are useful to fundamental RGD studies and future MEMS microflow devices with respect to extremely low-flow measurements, model validation, and predicting optimal designs.

  14. Measurement of top quark polarisation in t-channel single top quark production

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-04-01

    A first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. A differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is used to extract a top quark spin asymmetry of 0.26 ± 0.03(stat) ± 0.10(syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44. [Figure not available: see fulltext.

  15. Measurement of top quark polarisation in t-channel single top quark production

    DOE PAGES

    Khachatryan, Vardan

    2016-04-13

    Our first measurement of the top quark spin asymmetry, sensitive to the top quark polarisation, in t-channel single top quark production is presented. It is based on a sample of pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb-1. A high-purity sample of t-channel single top quark events with an isolated muon is selected. Signal and background components are estimated using a fit to data. Furthermore, a differential cross section measurement, corrected for detector effects, of an angular observable sensitive to the top quark polarisation is performed. The differential distribution is usedmore » to extract a top quark spin asymmetry of 0.26 ± 0.03 (stat) ± 0.10 (syst), which is compatible with a p-value of 4.6% with the standard model prediction of 0.44.« less

  16. Measurements of mixed convective heat transfer to low temperature helium in a horizontal channel

    NASA Technical Reports Server (NTRS)

    Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevchenko, O. A.; Hendricks, R. C.; Daney, D. E.

    1979-01-01

    A horizontal 2.85 m long, 19 mm i.d. stainless steel heated circular channel was employed to measure coefficients of heat transfer to low temperature helium flow. Experimental parameters range from 6.5 to 15 K, from 0.12 to 0.3 MPa at heat fluxes up to 1000 W/m square and Reynolds numbers from 9,000 to 20,000. A significantly nonuniform distribution of heat transfer coefficients over the tube periphery is observed. Difference between temperatures on the upper and lower surfaces of the stainless steel channel wall was found to reach 9 K. It was noted that the highest temperature on the wall outer surface is displaced from its uppermost point. Measurements of local flow temperatures revealed vortical structure of the flow. The displacement of the point with the highest temperature is attributable to the effect of vortices. The relationships for calculating local and averaged coefficients of heat transfer are proposed.

  17. The equilibrium velocity of spherical particles in rectangular microfluidic channels for size measurement.

    PubMed

    Sommer, Christian; Quint, Stephan; Spang, Peter; Walther, Thomas; Bassler, Michael

    2014-07-01

    According to the Segré-Silberberg effect, spherical particles migrate to a lateral equilibrium position in parabolic flow profiles. Here, for the first time, the corresponding equilibrium velocity is studied experimentally for micro particles in channels with rectangular cross section. Micro channels are fabricated in PMMA substrate based on a hot embossing process. To measure individual particle velocities at very high precision, the technique of spatially modulated emission is applied. It is found that the equilibrium velocity is size-dependent and the method offers a new way to measure particle size in microfluidic systems. The method is of particular interest for microfluidic flow cytometry as it delivers an alternative to the scatter signal for cell size determination.

  18. Transcontinental baselines and the rotation of the Earth measured by radio interferometry.

    PubMed

    Shapiro, I I; Robertson, D S; Knight, C A; Counselman, C C; Rogers, A E; Hinteregger, H F; Lippincott, S; Whitney, A R; Clark, T A; Niell, A E; Spitzmesser, D J

    1974-12-01

    Nine separate very-long-baseline interferometry (VLBI) experiments, carried out in 1972 and 1973 with radio telescopes 3900 kilometers apart, yielded values for the baseline length with a root-mean-square deviation about the mean of less than 20 centitneters. The corresponding fractional spread is about five parts in 10(8). Changes in universal time and in polar motion were also detertnined accurately from these data; the root-mean-square scatter of these results with respect to those based on optical methods were 2.9 milliseconds and 1.3 meters, respectively. Solid-earth tides were apparently detected, but no useful estimate of their amplituide was extracted.

  19. Solar gravitational deflection of radio waves measured by very-long-baseline interferometry

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Kent, S. M.; Knight, C. A.; Shapiro, I. I.; Clark, T. A.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.

    1974-01-01

    Utilizing a four-antenna technique, simultaneous observations were made, at each end of an 845-km baseline, of the radio sources 3C279 and 3C273B, which are 10 deg apart in the sky. Differences in interferometric phases at 3.7-cm wavelength monitored near the time of the 1972 occultation of 3C279 by the sun, yielded a gravitational deflection of 0.99 plus or minus 0.03 times the value predicted by general relativity, corresponding to gamma = 0.98 plus or minus 0.06 (standard error).

  20. Detection of long-term trends in the meso-/lower thermosphere from ground-based radio propagation measurements

    NASA Astrophysics Data System (ADS)

    Bremer, J.

    Long-term observations of different ground based ionospheric radio propagation experiments have been used to get information about trends in the mesosphere and lower thermosphere. Ionospheric reflection height observations (measurements of phase height in the LF range as well as of the peak height of the ionospheric E layer) suggest a shrinking of the meso-/lower thermosphere. This result is in agreement with model calculations of an increasing atmospheric greenhouse effect. From data series of different ionospheric absorption measurements in the LF, MF, and HF ranges trends have been derived with characteristic differences in dependence on the reflection height of the measuring paths. These trends in the absorption as well as in foE data from ionosonde observations cannot be explained by a simple atmospheric shrinking but confirm the prediction of different model results of a decrease of the density of nitric oxide and of changes the effective recombination coefficient in the mesosphere as well as in the lower thermosphere. In different data series of radio propagation experiments there are indications of changing trends in the MLT region before and after the year 1979 as firstly remarked by Labitzke in stratospheric temperature trends. The shrinking of the MLT region seems to be stronger after this time than before. Comparisons with ozone variations suggest that this behaviour seems to be caused by a steeper ozone decrease after 1979.

  1. Lightning Return-Stroke Current Waveforms Aloft, from Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.; Idone, V. P.

    2006-01-01

    Three-dimensional reconstructions of six rocket-triggered lightning channels are derived from stereo photographs. These reconstructed channels are used to infer the behavior of the current in return strokes above the ground from current waveforms measured at the channel base and electric-field-change waveforms measured at a range of 5.2 kilometers for 24 return strokes in these channels. Streak photographs of 14 of the same strokes are analyzed to determine the rise times, propagation speeds, and amplitudes of relative light intensity for comparison with the electrical inferences. Results include the following: 1) The fine structure of the field-change waveforms that were radiated by these subsequent return strokes can be explained, in large part, by channel geometry. 2) The average 10 - 90% rise time of the stroke current increased by about a factor of seven in our sample, from an observed 0.31 plus or minus 0.17 microseconds at the surface to an inferred 2.2 plus or minus 0.5 microcseconds at 1 kilometer path length above the surface. 3) The three-dimensional propagation speed of the current front averaged 1.80 plus or minus 0.24 X 10(exp 8) meters per second over channel lengths typically greater than 1 kilometer. 4) Assuming that the measured current was entirely due to the return stroke forced an unreasonably large and abrupt reduction in inferred current amplitude over the first few tens of meters above the surface, especially in cases when the leader was bright relative to its stroke. Therefore, a significant fraction of the current at the surface was probably due to the leader, at least in such cases. 5) Peak return-stroke currents decreased by approximately 37 plus or minus 12% from 100 meters to 1 kilometer of path length above the surface. Because of uncertainty about how to partition the measured current between leader and return stroke, we are unable to infer the variation of current amplitude near the ground.

  2. Thermal measurements and flow visualization of heat convection in a tilted channel

    NASA Astrophysics Data System (ADS)

    Tisserand, Jean-Christophe; Creyssels, Mathieu; Riedinger, Xavier; Castaing, Bernard; Chillà, Francesca

    2010-05-01

    Convection is the most important heat transport mechanism. We can find it not only in many natural situations such as stars, planet's atmosphere but also in half-natural situations such as industrial plants. Furthermore, the Rayleigh-Benard system, in which a fluid is cooled from above and heated from below, is one of the most studied systems in thermal convection. Nevertheless, in this configuration, the neighborhood of the plates controls the heat transfer. Therefore, we have to make a system in which the flow forgets the cold and the hot plate. We have built a vertical long channel which links two chambers : the hot one at the lower end and the cold one at the upper end. Moreover, this channel, which is hanged to a structure, can be tilted from an angle of 0 degree to 90 degrees. The experimental facility used for this purpose is a square channel with an inner area of 5*5 cm² m and with a height of 20 cm. The cell is filled with water and is heated at the bottom by Joule effect. At the top, the temperature is regulated by a thermal bath and the mean temperature of the bulk is 25°C . It is worth noticing that this configuration could correspond to heat pipes (without phase transformation) used in thermalisation systems or could model a vertical access pit of an underground carry. In this paper, we want to highlight how the thermal convection in the bulk of the channel is. In the first part, the paper will be focused on the visualization of the flow into the channel thanks to particle image velocimetry (PIV) technique. We look at the mean velocity field (transverse and axial components) , the fluctuations of the mean velocity field and the shear Reynolds stress. Besides, we analyze how the influence of the power supply and the dependance of the tilt angle are. At last, we will interpret the PIV measurements in terms of turbulent viscosity and effective heat conduction and we will deduce from the PIV measurements the axial mean profile of temperature. Then, in a

  3. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  4. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  5. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  6. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  7. The solar wind density spectrum near the Sun: Results from Voyager radio measurements

    SciTech Connect

    Coles, W.A.; Liu, W. ); Harmon, J.K.; Martin, C.L. )

    1991-02-01

    Spacecraft radio propagation data are analyzed to estimate the solar wind density fluctuation power spectrum across five decades of spatial wave number. The data were from radio science observations made during superior conjunctions of the Voyager 1 and Voyager 2 spacecrafts in 1979 and 1980. These data were analyzed to yield the wave structure function, a statistic which is related to, but obtained more readily than, the spectrum itself. Structure functions were obtained from a total of 28 observations spanning the heliocentric distance range 7-22 R{sub S}. Each structure function was a composite of two shorter segments estimated, respectively, from phase scintillation and spectral broadening analyses. The composite structure functions tend to be steep (approximately Kolmogorov) at large scales (10{sup 3}-10{sup 6} km) and nearly always show some flattening at smaller scales (10-100 km). The inflection between the steep and flatter regions is abrupt and occurs at scales of 100-300 km. Most of the structure functions also show some turnover at the very smallest scales. These results are in excellent agreement with the spectral shape model proposed by Coles and Harmon (1989). A few transients were seen in the Voyager data which were characterized by an overall increase in power at large scales and a steeping of the structure function at small scales. These transients were similar in appearance to transients reported earlier from Arecibo spectral broadening observations.

  8. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    SciTech Connect

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-06-10

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log ({nu}{sub b}[GHz]) = 2.84 {+-} 0.29 or {nu}{sub b} = 695{sup +651}{sub -336} GHz. The Crab Nebula is well resolved by the {approx}16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  9. Eratosthenes via Ham Radio

    ERIC Educational Resources Information Center

    Koser, John F.

    1975-01-01

    A secondary geology class used Eratosthenes' method for measuring the circumference of the earth by comparing their measurements of the shadow of a vertical rod to the measurements made by another person contacted by ham radio. (MLH)

  10. Wireless Charge Based Capacitance Measurement Circuits with On-Chip Spiral Inductor for Radio Frequency Identification Biosensor

    NASA Astrophysics Data System (ADS)

    Kim, Boram; Uno, Shigeyasu; Nakazato, Kazuo

    2012-04-01

    A wireless measuring system of charge based capacitance measurement (CBCM) circuit has been designed and demonstrated for biomedical applications. The radio frequency identification (RFID) chip that includes on-chip spiral inductor tag antenna, and RFID circuit, and CBCM sensor chip are fabricated within standard complementary metal oxide semiconductor (CMOS) process. The capacitance change caused by DNA detection can be converted into the voltage output using capacitance-to-voltage conversion circuit. To confirm the transmission of the capacitance, the poly-capacitor of fixed capacitance and on-chip spiral inductor tag antenna were fabricated using 1.2 µm, 2-metal, 2-poly CMOS technology. As a result of measurement, three different capacitances (34, 141, 564 fF) were detected wirelessly.

  11. System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications.

    PubMed

    Burla, Maurizio; Roeloffzen, Chris G H; Zhuang, Leimeng; Marpaung, David; Khan, Muhammad Rezaul; Maat, Peter; Dijkstra, Klaas; Leinse, Arne; Hoekman, Marcel; Heideman, René

    2012-03-01

    In this paper we describe the system integration and the experimental demonstration of a photonically beamformed four-element receiving array antenna for radio astronomy applications. To our knowledge, the work described here is the first demonstration of the squint-free, continuously tunable beamsteering capability offered by an integrated photonic beamformer based on optical ring resonator true-time-delay units, with measured radiation patterns. The integrated beamformer is realized in a low loss, complementary metal-oxide-semiconductor (CMOS) compatible optical waveguide technology. The measurements show a wideband, continuous beamsteering operation over a steering angle of 23.5 degrees and an instantaneous bandwidth of 500 MHz limited only by the measurement setup.

  12. Heat and Momentum Flux Measurements in the Planetary Boundary Layer with a Wind Profiling Radar/radio Acoustic Sounding System.

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne Merrill

    The planetary or atmospheric boundary layer is the lowest 100-2000 m of the atmosphere, and contains the sources of most energy and pollutants that affect the entire atmosphere. Boundary-layer structure and dynamics are key to understanding, modeling, and predicting climate, weather, and pollution. New and improved techniques for measuring the dynamics of the boundary layer are needed. One of the most important needs is for improved methods of measuring the turbulent fluxes of heat and momentum. Existing methods involving towers, surface measurements, or aircraft have limited flexibility or are expensive. This dissertation describes methods for measuring heat flux (virtual temperature flux) and momentum flux in convective boundary layers. The instrument used is the 915 MHz boundary-layer radar wind profiler radio acoustic sounding system (profiler/RASS). As the name suggests, the profiler was developed to make wind measurements, and this work is an expansion of its capabilities. The radio acoustic sounding system uses the profiler and attachments to measure virtual temperature. Before the profiler/RASS could be used to make flux measurements, the ability to make simultaneous measurements of wind velocity and temperature had to be developed. A feasibility study was conducted at Platteville, Colorado, in June 1991 to determine if flux measurements were a practical application of the profiler, with encouraging results. The Rural Oxidants in the Southern Environment II (ROSE II) experiment in Alabama in June 1992 provided the opportunity to compare flux measurements from the profiler/RASS to those made by a surface sonic anemometer and an aircraft, the National Center for Atmospheric Research (NCAR) King Air. The results indicate that the profiler/RASS is capable of making heat flux measurements that compare well with aircraft and surface measurements. The primary limitation on the precision of the measurements is the sampling uncertainty of the turbulence, a

  13. Heat and momentum flux measurements in the planetary boundary layer with a wind profiling radar/radio acoustic sounding system

    NASA Astrophysics Data System (ADS)

    Angevine, Wayne Merrill

    1993-01-01

    The planetary or atmospheric boundary layer is the lowest 100-2000 m of the atmosphere, and contains the sources of most energy and pollutants that affect the entire atmosphere. Boundary-layer structure and dynamics are key to understanding, modeling, and predicting climate, weather, and pollution. New and improved techniques for measuring the dynamics of the boundary layer are needed. One of the most important needs is for improved methods of measuring the turbulent fluxes of heat and momentum. Existing methods involving towers, surface measurements, or aircraft have limited flexibility or are expensive. This dissertation describes methods for measuring heat flux (virtual temperature flux) and momentum flux in convective boundary layers. The instrument used is the 916 MHz boundary-layer radar wind profiler radio acoustic sounding system (profiler/RASS). As the name suggests, the profiler was developed to make wind measurements, and this work is an expansion of its capabilities. The radio acoustic sounding system uses the profiler and attachments to measure virtual temperature. Before the profiler/RASS could be used to make flux measurements, the ability to make simultaneous measurements of wind velocity and temperature had to be developed. A feasibility study was conducted at Platteville, Colorado, in June 1991 to determine if flux measurements were a practical application of the profiler, with encouraging results. The Rural Oxidants in the Southern Environment II (ROSE II) experiment in Alabama in June 1992 provided the opportunity to compare flux measurements from the profiler/RASS to those made by a surface sonic anemometer and an aircraft, the National Center for Atmospheric Research (NCAR) King Air. The results indicate that the profiler/RASS is capable of making heat flux measurements that compare well with aircraft and surface measurements. The primary limitation on the precision of the measurements is the sampling uncertainty of the turbulence, a

  14. Automatized channel for resistivity measurements in layered materials by four-point probe technique

    NASA Astrophysics Data System (ADS)

    Gryaznov, A. O.; Savchenko, S. S.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-09-01

    An automatized channel for measuring the resistivity in materials by the four-point probe technique was developed. The installation was based on Cascade Microtech MPS150 microprobe station, National Instruments PXIe-4143 power supply unit and PXI-4072 digital multimeter. Registration modes of surface and bulk specific resistance for samples with positioning the probes in a line or at square vertices were implemented. Measurements under corresponding modes were carried out for metallic, semiconducting bulk samples and thin coatings. Conductive and optical properties of 10, 20 and 30 nm Au layers formed on quartz glass by magnetron sputtering were investigated.

  15. Pressure and velocity field measurements of pulsating flow in a square channel y-junction

    NASA Astrophysics Data System (ADS)

    Pastuhoff, Markus; Kalpakli, Athanasia; Alfredsson, P. Henrik

    2013-11-01

    The pressure and velocity fields in a y-junction of a square (40 × 40 mm2) cross-section channel were investigated during pulsating flow. One of the sides of the channel was covered with fast responding pressure sensitive paint (PSP) whereas the velocity field at the channel center parallel to the PSP surface was measured using particle image velocimetry (PIV). The flow conditions, in terms of mass flow rate and pulsation frequency, were selected to resemble the flow inside an exhaust manifold of a small internal combustion engine, although the gas was at room temperature. The mass flow was varied between 10 and 130 g/s with pulsations between 0 and 80 Hz. For both the PSP and the PIV measurements images were acquired unsynchronized to the pulses using a high-speed camera and phase averages were formed a posteriori. The use of PSP together with PIV demonstrates how the two techniques can be used to verify and complement each other, PIV excelling at the lower mass flow rates and PSP at the higher. It is shown that the signal-to-noise ratio for PSP at low velocities can be enhanced using a technique based on singular value decomposition.

  16. Phase distribution measurements in narrow rectangular channels using image-processing techniques

    SciTech Connect

    Bentley, C.L.; Ruggles, A.E.

    1992-06-01

    Phase distribution of air-water flow in a narrow rectangular channel is examined using image-processing techniques. Ink is added to the water, and clear channel walls were used to allow high-speed, still photographs and video tape to be taken of the air-water flow field. Flow field images are digitized and stored in a Macintosh IIci computer using a frame grabber board. Local grey levels are related to liquid thickness in the flow channel using a calibration fixture. Image-processing shareware is used to calculate the spatially averaged liquid thickness from the image of the flow field. Time-averaged spatial liquid distributions are calculated using image calculation algorithms. The spatially averaged liquid distribution is calculated from the time-averaged spatial liquid distribution to formulate the combined temporally and spatially averaged liquid fraction values. The temporally and spatially averaged liquid fractions measured using this technique compare well to those predicted from pressure gradient measurements at zero superficial liquid velocity. 11 refs.

  17. Monitoring the width of the tropical belt with GPS radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Ao, Chi O.; Hajj, Amanda J.

    2013-12-01

    GPS radio occultation data collected over the period 2002-2011 were analyzed to examine the possible expansion of the tropical belt due to climate change. By the use of high vertical-resolution temperature profiles, monthly averages of the lapse rate tropopause were obtained and used to derive a decade-long time series of the tropical edge latitude (TEL) in each hemisphere and its linear trends. Two different TEL criteria were examined. Our analysis shows that a statistically significant widening trend of ≈1° latitude/decade was found in the Northern Hemisphere (NH) by either criterion. This contrasts strongly with the Southern Hemisphere (SH), where no statistically significant trends were found. Comparison with ECMWF reanalysis shows good agreement, but the agreement is worse over SH. Substantial differences in seasonal trends were found between NH and SH, with the latter showing strong widening in the austral summer countered by contraction over the austral winter and spring.

  18. Measurements of Shear Lift Force on a Bubble in Channel Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian J.; Skor, Mark

    2003-01-01

    Under microgravity conditions, the shear lift force acting on bubbles, droplets or solid particles in multiphase flows becomes important because under normal gravity, this hydrodynamic force is masked by buoyancy. This force plays an important role in furnishing the detachment process of bubbles in a setting where a bubble suspension is needed in microgravity. In this work, measurements of the shear lift force acting on a bubble in channel flow are performed. The shear lift force is deduced from the bubble kinematics using scaling and then compared with predictions from models in literature that address different asymptotic and numerical solutions. Basic trajectory calculations are then performed and the results are compared with experimental data of position of the bubble in the channel. A direct comparison of the lateral velocity of the bubbles is also made with the lateral velocity prediction from investigators, whose work addressed the shear lift on a sphere in different two-dimensional shear flows including Poiseuille flow.

  19. Direct determination of the thickness of stratospheric layers from single-channel satellite radiance measurements.

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.; Gelman, M. E.

    1972-01-01

    The direct use of measured radiances for determining the thickness of stratospheric layers is investigated. Layers based at 100-10 mb, with upper boundaries at 10-0.5 mb, are investigated using a carefully selected family of stratospheric temperature profiles and computed radiances. On the basis of physical reasoning, a high correlation of thickness with radiance is anticipated for deep layers, such as the 100- to 2-mb layer (from about 15 to 43 km), that emit a substantial part of the infrared energy reaching a satellite radiometer in a particular channel. Empirical regression curves relating thickness and radiance are developed and are compared with blackbody curves obtained by substituting the blackbody temperature in the hydrostatic equation. Maximum thickness-radiance correlation is found, for each infrared channel, for the layer having the best agreement of empirical and blackbody curves.

  20. Dust particle size measurement by the multi-channel laser light scattering method

    NASA Astrophysics Data System (ADS)

    Choe, W.; Seon, C. R.; Chai, K. B.; Park, H. Y.; Shin, Y. H.; Chung, K. H.

    2006-10-01

    The measurement of the spatial distribution of dust particle size was performed by the multi-channel laser light scattering method. To self-consistently determine the time evolution of the particle size, in-situ polarization-sensitive laser light scattering was used using a 30 mW He-Ne laser. Polarization light intensities (incident and scattered light intensities with the same polarization) were measured at 71 . Before applying the method to the dusty plasmas, the measurement accuracy was confirmed using a distilled water solution of the size-known particles. In addition, the size-known particles were injected into the argon plasma, and the particles trapped inside the plasma were used for the accurate measurement of the light scattering angle. The measured size of the dust particles in an argon diluted silane capacitively-coupled plasma at 160 mTorr, 150 W, (11.4-11.8) s after the plasma on was (80-110) nm. In comparison, the scanning electron microscope photographs of the fallout particles showed (90-100) nm spherical particles under the similar experimental condition. The time evolution of the spatially distributed particle size at various plasma conditions was studied by using a 2-dimensional 16 channel photomultiplier tube as a detector of scattered laser light.

  1. Radiation temperature measurement method for semitransparent materials using one-channel infrared pyrometer.

    PubMed

    Fu, Tairan; Liu, Jiangfan; Zong, Anzhou

    2014-10-10

    Semitransparent zinc sulfide (ZnS) crystal materials are widely used as the infrared-transmitting windows for optical instruments operating in long wavelengths. This paper describes a temperature measurement method for high-temperature ZnS materials using the one-channel optical pyrometer based on a theoretical model of radiation transfer in semitransparent plates. Numerical analyses of the radiation properties of ZnS plate are used to optimize the spectral band for the optical pyrometry. The optimized measurement spectral band is based on a trade-off between the measurement radiation intensity and the signal-to-noise ratio (SNR) for the ZnS material. The effective waveband emittance of one-dimensional (1D) ZnS plates is analyzed for various experimental conditions (temperatures, thicknesses, and direction angles) for the one-channel infrared pyrometer with the optimized measurement spectral response. The analysis can be used to improve radiation temperature measurements of semitransparent ZnS materials in applications. PMID:25322390

  2. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  3. Radio Journalism.

    ERIC Educational Resources Information Center

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  4. Measurements of energetic helium-3 minority distributions during ion cyclotron radio-frequency heating in the Princeton Large Torus

    SciTech Connect

    Hammett, G.W.; Kaita, R.; Wilson, J.R.

    1988-03-01

    Ion cyclotron radio-frequency heating experiments were performed with a /sup 3/He minority ion species in a /sup 4/He majority plasma in the Princeton Large Torus. The energetic /sup 3/He ion ''tail'' was measured directly with a charge exchange neutral analyzer for the first time. Comparisons with bounce-averaged quasi-linear calculations suggest a modestly peaked radi-frequency power deposition profile. The double charge exchange process /sup 3/He/sup + +/ )plus) /sup 4/He/sup 0/ )plus) /sup 3/He/sup 0/ )plus) /sup 4/He/sup + +/ demonstrated in these measurements may be useful as part of an alpha particle diagnostic in a fusion reactor experiment. 18 refs., 4 figs.

  5. Precipitation measurements with GNSS polarimetric Radio Occultations: Status of the ROHP-PAZ mission and anticipated retrievals

    NASA Astrophysics Data System (ADS)

    Padullés, Ramon; Cardellach, Estel; de la Torre Juárez, Manuel; Tomás, Sergio; Turk, F. Joseph; Ao, Chi O.; Rius, Toni; Oliveras, Santi

    2016-04-01

    The upcoming ROHP-PAZ (Radio Occultations and Heavy Precipitation experiment aboard the spanish PAZ satellite) mission aims to detect, for the first time, precipitation using Global Navigation Satellite System Radio Occultations (GNSS-RO). The electromagnetic signals coming from the GNSS satellites travel tangentially through the atmosphere and will be collected in the PAZ Low Earth Orbiter at two polarizations (vertical and horizontal). This sounding-like technique of the atmosphere will measure all the atmospheric phenomena that are inducing depolarization effects, in addition to all the thermodynamic profiles that standard RO are nowadays providing. The main contributors to depolarization in the troposphere are known to be the hydrometeors, both rain drops from heavy precipitation events and horizontally oriented ice particles in the top of clouds. Their effects on the GNSS signals were predicted in Cardellach et. al. 2015 (IEEE Trans. Geosci. Remote Sens.), and measured in the ROHP-PAZ field campaign Padullés et. al. 2016 (Atmos. Chem. Phys.). Prior to the launch, a complete characterization of all the possible effects, including hydrometeors but also taking into account other elements was needed. To do so, actual data from the COSMIC - FORMOSAT 3 mission (Radio Occultation events) have been collocated with the TRMM, GPM and CloudSat missions (precipitation and clouds missions). Thousands of events have been analyzed, in terms of SNR and phase delays. For the same events, the effect of hydrometeors has been simulated as well as the most known ionospheric effects, such as Faraday Rotation and Cotton-Mouton effects. And finally, the predicted noise, actual measurements of the antenna pattern and some tolerance in the purity of the emitted signal have been included. This has resulted in an extensive data base that is key in the understanding of the upcoming actual data, as well as for the characterization of all the unpredicted effects. We will discuss here the

  6. AG Channel Measurement and Modeling Results for Over-Sea Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David; Sun, Rouyu

    2014-01-01

    This report describes results from flight tests conducted in an over-sea environment, for the purpose of characterizing the air-to-ground (AG) channel, for future unmanned aircraft system (UAS) communication system analysis and design. These results are for the first of a set of several flight tests conducted in different ground site (GS) environments. An ultimate aim of all these tests is the development of models for the AG channel that can be used in communication system evaluation. In this report we provide measured results for propagation path loss, root-mean square delay spread (RMS-DS), and the correlation coefficient of the primary received signal components on the four antennas (two antennas for C-band, two for L-band). For path loss, the curved-earth two-ray model provides a reasonable fit to the measured data, altered by several dB at the shortest link distances by aircraft antenna pattern effects. This two-ray model also accounts for the majority of measured RMS-DS results of a few tens of nanoseconds, except for the occasional intermittent reflections from surface objects. These intermittent reflections yield RMS-DS values up to several hundred nanoseconds. For portions of the flight path that were over a harbor area highly populated with boats, the channel was found to be more "continuously dispersive," with RMS-DS reaching approximately 250 ns. A separate model will be developed for this over-harbor setting. The correlation coefficient results are still undergoing analysis; preliminary observations are that correlation between signals on the same-band antennas is generally large (>0.6) for the C-band straight flight paths, whereas for the L-band signals and for the oval-shaped flight paths the correlation is generally small (below 0.4). Inter-band correlations are typically very small, and are well modeled as zero-mean Gaussian in distribution, with a standard deviation less than 0.2. Hence the over-sea channel effects in the two bands can be

  7. Exploiting artificial intelligence for in-situ analysis of high-resolution radio emission measurements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Bergman, Jan; Krause, Linda; Rincon-Charris, Amilcar; Bruhn, Fredrik; Funk, Peter; Stramkals, Arturs

    2016-07-01

    CubeSat missions are intentionally constrained by the limitations of their small platform. Mission payloads designed for low volume, mass, and power, may however be disproportionally limited by available telemetry allocations. In many cases, it is the data delivered to the ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. This concept is being implemented on the Puerto Rico CubeSat, which will make measurements of ambient ionospheric radio waves and ion irregularities and turbulence. Principle project goals include providing aerospace and systems engineering experiences to students. Science objectives include the study of natural space plasma processes to aid in better understanding of space weather and the Sun to Earth connection, and in-situ diagnostics of ionospheric modification experiments using high-power ground-based radio transmitters. We hope that this project might point the way to the productive use of AI in space and other remote, low-data-bandwidth environments.

  8. Characterization of Ionospheric Scintillation Using Simultaneous Formosat-3/COSMIC Radio Occultation Observations and AFRL SCINDA Ground Scintillation Measurements

    NASA Astrophysics Data System (ADS)

    Starks, M. J.; Lin, C. S.; Groves, K. M.; Pedersen, T. R.; Basu, S.; Syndergaard, S.; Rocken, C.

    2007-05-01

    Ionospheric scintillation at low latitudes has been studied using ionospheric radio occultation (RO) measurements by the FORMOSAT-3/COSMIC micro-satellites in conjunction with ground-based data from the Scintillation Network Decision Aid (SCINDA) station at Kwajalein Atoll. The Air Force Research Laboratory has developed the SCINDA network for monitoring low-latitude ionospheric total electron content (TEC) and scintillation associated with equatorial spread F. The network currently consists of sixteen stations distributed around the globe and the data have been used to conduct numerous studies on the characteristics and climatology of equatorial scintillation. The present study focuses on COSMIC RO and SCINDA data during the three COSMIC campaigns in 2006. Radio occultation events are selected by requiring that ionospheric scintillation was detected by the SCINDA VHF scintillation monitor at Kwajalein, and that the occultation ray path intersected the Kwajalein longitude below the satellite altitude, which varied from 500 to 800 km for the six FORMOSAT-3 satellites. In order to exclude tropospheric effects, only GPS signal amplitudes from FORMOSAT-3 with ray path tangent altitudes above 100 km are considered. Locations of ionospheric scintillation are estimated by triangulation using the satellites and the SCINDA ground station. Airglow images at Kwajalein are also used to confirm occurrence of equatorial ionospheric scintillations. For the selected events, large amplitude L1 and L2 scintillations tend to occur at altitudes below 200 km at frequencies around 0.5 Hz. The results are discussed as a potential path toward better specifying the occurrence of equatorial scintillations.

  9. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  10. Lightning Return-Stroke Current Waveforms Aloft, From Measured Field Change, Current, and Channel Geometry

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; LeVine, D. M.

    2002-01-01

    Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.

  11. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  12. Effect of Ducting on Radio Occultation Measurements: An Assessment Based on High-Resolution Radiosonde Soundings

    NASA Technical Reports Server (NTRS)

    Ao, C. O

    2007-01-01

    Recent studies have shown that the presence of elevated ducts in the lower atmosphere has an adverse effect on the inversion of GPS radio occultation data. The problem arises because the microwave refractivity within and below an elevated duct is no longer uniquely determined by the bending angle profile. Applying Abel inversion without a priori knowledge of the duct will introduce a negative bias in the retrieved refractivity profile within and below the duct. In this work, high vertical resolution radiosonde data are used to give a quantitative assessment of the characteristics and effects of ducts, including their frequency of occurrences, heights, and thicknesses at different latitudes and seasons. The negative bias from the Abel-retrieved refractivity profiles resulting from these ducts is also computed. The results give a strong indication that ducting in the lower troposphere is a frequent phenomenon over the tropics and midlatitudes. The ducts are shown to be predominantly caused by sharp changes in the vertical structure of water vapor. The majority of the ducts are found to be below 2 km, with a median duct layer thickness of about 100 m. The negative refractivity bias is shown to be largest below 2 km, with a median value of about 0.5-1% in the tropics and 0.2-0.5% in midlatitudes. The bias is about a factor of 2-3 smaller between 2 to 3 km and is negligible above 4 km.

  13. Multi-channel optical pyrometer for sub-nanosecond temperature measurements at NDCX-I/II

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Waldron, W.L.

    2011-04-13

    We present a detailed technical description of a fast multi-channel pyrometer designed for warm-dense-matter (WDM) experiments with intense heavy ion beams at the neutralized-drift-compression-experiment linear accelerator (NDCX-I/II) at Lawrence Berkeley National Laboratory (LBNL). The unique features of the described instrument are its sub-nanosecond temporal resolution (100 ps rise-time) and a broad range, 1,500 K - 12,000 K of measurable brightness temperatures in the visible and near-infrared regions of the spectrum. The working scheme, calibration procedure, experimental data obtained with the pyrometer and future applications are presented.

  14. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. PMID:25817708

  15. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.

  16. Using a novel flood prediction model and GIS automation to measure the valley and channel morphology of large river networks

    EPA Science Inventory

    Traditional methods for measuring river valley and channel morphology require intensive ground-based surveys which are often expensive, time consuming, and logistically difficult to implement. The number of surveys required to assess the hydrogeomorphic structure of large river n...

  17. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958 are…

  18. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria

    PubMed Central

    Das, Manika; Parker, Joanne E; Halestrap, Andrew P

    2003-01-01

    A mitochondrial sulphonylurea-sensitive, ATP-sensitive K+ channel (mitoKATP) that is selectively inhibited by 5-hydroxydecanoate (5-HD) and activated by diazoxide has been implicated in ischaemic preconditioning. Here we re-evaluate the evidence for the existence of this mitoKATP by measuring changes in light scattering (A520) in parallel with direct determination of mitochondrial matrix volumes using 3H2O and [14C]sucrose. Incubation of rat liver and heart mitochondria in KCl medium containing Mg2+ and inorganic phosphate caused a decrease in light scattering over 5 min, which was accompanied by a small (15–30 %) increase in matrix volume. The presence of ATP or ADP in the buffer from the start greatly inhibited the decline in A520, whilst addition after a period of incubation (1–5 min) induced a rapid increase in A520, especially in heart mitochondria. Neither response was accompanied by a change in matrix volume, as measured isotopically. However, the effects of ATP and ADP on A520 were abolished by carboxyatractyloside and bongkrekic acid, inhibitors of the adenine nucleotide translocase (ANT) that lock the transporter in two discrete conformations and cause distinct changes in A520 in their own right. These data suggest that rather than matrix volume changes, the effects of ATP and ADP on A520 reflect changes in mitochondrial shape induced by conformational changes in the ANT. Furthermore, we were unable to demonstrate either a decrease in A520 or increase in matrix volume with a range of ATP-sensitive K+ channel openers such as diazoxide. Nor did glibencamide or 5-HD cause any reduction of matrix volume, whereas the K+ ionophore valinomycin (0.2 nm), produced a 10–20 % increase in matrix volume that was readily detectable by both techniques. Our data argue against the existence of a sulphonylurea-inhibitable mitoKATP channel. PMID:12562892

  19. Measurement setup and protocol for characterizing and testing radio frequency personal exposure meters.

    PubMed

    Lauer, Oliver; Neubauer, Georg; Röösli, Martin; Riederer, Markus; Frei, Patrizia; Mohler, Evelyn; Fröhlich, Jürg

    2012-01-01

    Body-worn radiofrequency electromagnetic field (RF-EMF) personal exposure meters (PEMs) have been increasingly used for exposure assessment in epidemiological research. However, little research on the measurement accuracy of these devices is available. In this article a novel measurement setup and a measurement protocol are presented for characterizing and testing PEMs. The whole setup and procedure is tested using two EME SPY 120 devices. The performance of the PEM was analyzed for absolute measurements in an anechoic chamber. Modulated signals representing the different services as real signals generated by appropriate testers were used. Measurement results were evaluated with respect to a root mean square detector. We found that measurement accuracy depends strongly on the carrier frequency and also on the number of occupied time slots for Time Division Multiple Access (TDMA)-based services. Thus, correction factors can only be derived if the distribution of the network configuration over the measurement time for all measurement points is available. As a result of the simplicity of the measurement setup and the straightforward measurement protocol, the possibility of fast validation leads to a higher accuracy in the characterization and testing of PEMs.

  20. Ion velocities in the presheath of electronegative, radio-frequency plasmas measured by low-energy cutoff

    NASA Astrophysics Data System (ADS)

    Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda

    2016-07-01

    Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF4 gas determined the presheath exit velocities of all significant positive ions: CF3+, CF2+, CF+, and F+. At higher bias voltages, we detected essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.

  1. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    USGS Publications Warehouse

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  2. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    NASA Astrophysics Data System (ADS)

    Park, Won Hyun; Kim, Seonghui; Lee, Hanshin; Yi, Hyun-Su; Lee, Jae-Min; Ham, Sun-Jung; Yoon, Jeeyeon; Kim, Sug-Whan; Yang, Ho Soon; Choi, Ki-Hyuk; Kim, Zeen Chul; Lockwood, Mike; Morris, Nigel; Tosh, Ian

    2007-03-01

    The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm) in wavefront error, the ensquared energy of 61.7%(in 14 μ m) and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1}) at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  3. Purity of Gaussian states: Measurement schemes and time evolution in noisy channels

    SciTech Connect

    Paris, Matteo G.A.; Illuminati, Fabrizio; Serafini, Alessio; De Siena, Silvio

    2003-07-01

    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme are tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and in squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.

  4. Ultrasound Open Channel Flow-Speed Measurement Based on the Lateral Directional Echo Observations

    NASA Astrophysics Data System (ADS)

    Nishimura, Ichiro; Ishigamori, Mitsuhide; Yamada, Akira

    2012-07-01

    Conventional ultrasonic flowmeters have a problem in measuring the small open channel fluid flow. To solve this problem, a lateral observation technique using a single transmitter/receiver transducer attached at the bottom of the pipe was proposed. Pulse echo signals scattered from the particles in the medium were repetitively recorded with a constant time interval. From the slope of the correlation peak amplitude with the variation in pulse echo excitation time, the flow speed of the medium was estimated. The method has an advantage in that the variation in flow speed in the vertical depth direction is directly measured with a minimum measurement space. Moreover, the fluctuations caused by the turbulent water can be avoided compared with the case of a conventional method based on the time estimation method. Bubbles were generated by an aspirator and flour powder was mixed with water as scatterers in the imitated drainage water. The flow speed of water was measured with respect to the inflowing fluid volume. Moreover, vertical flow speed profiles were measured and compared with fluid flow simulation results. The results showed that the precision of the measured flow speed was satisfactory and tolerant against the turbulence of the water flow medium.

  5. The determination of parameters of the upper atmosphere by the radio-meteor measurements

    NASA Astrophysics Data System (ADS)

    Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus

    Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values ​​using the coefficient of ambipolar diffusion depends on the height.

  6. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  7. 1985 Voyager 2 Radio Ranging Measurements of Coronal Density: Asymmetry in the Radial Profiles Explained

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    1996-01-01

    An asymmetry in the radial variation of electron density above the cast and west limbs of the Sun was inferred from centimeter wavelength ranging measurements conducted by Voyager 2 during its 1985 solar conjunction. The Voyager 2 ranging measurements, which took place in the heliocentric distance range of 7-40 solar radius, have been compared with the white-light coronagraph measurements of the underlying corona collected by the Mark 3 K-coronameter located at the Mauna Loa Solar Observatory. It is shown that the disparity in radial profiles is not real but is instead caused by longitudinal variations stemming from the probing of significantly different source regions its revealed in the white-light measurements. These results improve our understanding of the probing abilities of ranging measurements and their relationship to white-light measurements. They reinforce the notion that the high-precision and high-sensitivity features of ranging measurements are more fully exploited in the investigation of density variations across the ubiquitous low-contrast raylike structures that permit the corona, rather than in determining radial density profiles.

  8. Low temperature radio-frequency transverse susceptibility measurements using a CMOS oscillator circuit

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; Bartolomé, J.; García del Pozo, J. M.; Arauzo, A.; Guerrero, E.; Téllez, P.; Bartolomé, F.; García, L. M.

    2012-08-01

    A transverse susceptibility (TS) measurement system based on a simple inverter CMOS cell oscillator cross-coupled to a LC tank is presented. The system has been implemented to operate at a Quantum Design Physical Properties Measurement System (PPMS). We introduce several improvements with respect to similar currently operating TS measurement equipments. The electronics have been redesigned to use CMOS transistors as active devices, which simplifies the circuit design and enlarge the tuning range, thus making the proposed electronic block more feasible, predictable, and precise. Additionally, we propose a newly designed sample holder, which facilitates the procedure to change a sample and improves reproducibility of the circuit. Our design minimizes the thermal leak of the measuring probe by one order of magnitude, allowing to measure from 1.8 K in standard PPMS systems, thanks to the use of a low temperature beryllium-copper coaxial cable instead of the conventional RG402 Cu coaxial cable employed in the insert for the PPMS in similar systems. The data acquisition method is also simplified, so that the measuring sequences are implemented directly in the PPMS controller computer by programming them in the Quantum Design MultiVu software that controls the PPMS. We present the test measurements performed on the system without sample to study the background signal and stability of the circuit. Measurements on a Gd2O3 calibrating sample yield to the estimation of the system sensitivity, which is found to be on the order of 10-6 emu. Finally, measurements on a TmCo2 Laves phase sample with a ferrimagnetic transition temperature around 4 K are described, demonstrating that the developed system is well suited to explore interesting magnetic phenomena at this temperature scale.

  9. Upper Air Temperature and Circulation Climatologies from GPS Radio Occultation Measurements for Climate Process Studies and Model Evaluation

    NASA Astrophysics Data System (ADS)

    Ao, C. O.; Verkhoglyadova, O. P.; Mannucci, A. J.; Leroy, S. S.

    2014-12-01

    GPS radio occultation (RO) measurements are known to yield highly accurate temperature and geopotential height in the upper troposphere and lower stratosphere (UTLS) with 200 m vertical resolution in all-weather conditions. With over twelve years (2001-present) of continuous GPS RO measurements now available from CHAMP, COSMIC, and other missions, the dataset has become increasingly valuable in the study of upper air climate trend, variability, and processes. In this presentation, we will describe our approach towards the generation of global monthly gridded data products that include temperature, geopotential height, and geostrophic wind in the UTLS. To interpolate or map the irregularly sampled RO data into a 2D grid, a Bayesian method with spherical harmonic basis functions is implemented. Furthermore, we will quantify the measurement and sampling uncertainty associated with the monthly gridded data. Applications of the dataset in the variability of the tropical belt and CMIP5 model evaluation will be presented. In addition, we will discuss recent progress in reducing systematic retrieval errors as well as efforts to extend the current data record rigorously to the GPS/MET era (1995-1997).

  10. A novel method for measuring the polarization angle of satellite radio waves

    NASA Technical Reports Server (NTRS)

    Antoniadis, D. A.

    1974-01-01

    One of the most important parameters for the study of the physics of the ionosphere is the columnar electron content. This can be obtained indirectly by measuring the Faraday rotation of signals emitted from satellites. Many different types of polarimeters have been developed for this purpose. Efforts to develop a new type of polarimeter, suitable for extensive network operation, led to a novel technique for measuring the polarization angle.

  11. Electrochemical impedance measurement of prostate cancer cells using carbon nanotube array electrodes in a microfluidic channel

    NASA Astrophysics Data System (ADS)

    Heung Yun, Yeo; Dong, Zhongyun; Shanov, Vesselin N.; Schulz, Mark J.

    2007-11-01

    Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

  12. Skin-Friction Measurements on Mathematically Generated Roughness in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2015-11-01

    Engineering systems are affected by surface roughness, however, predicting frictional drag has proven to be challenging. One open question is how roughness topography, whether it is idealized 2D and 3D or irregular with multi-scale features, impacts the frictional drag. A previous study from Flack and Schultz (2010) presented a new model to estimate frictional drag based on surfaces statistics. The present work takes a systematic approach by generating and manufacturing surfaces roughness where surface statistics, such as rms, skewness and power-spectral density can be controlled. Skin-friction measurements are conducted in a high Reynolds number turbulent channel flow facility, where the experiments cover all roughness regimes, from hydraulic-smooth to fully-rough. The surface roughness studied herein is produced using the random Fourier modes method with a varying power-law spectral slope, whereas the rms and surface amplitude are kept constant (krms ~ 45 μm and kt ~ 200 μm) while still possessing a Gaussian probability-density-function. These surfaces are then 3D-printed and replicated using a mold/cast technique to generate the top and bottom walls of the channel flow facility. Department of Mechanical Engineering.

  13. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 1

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1973-01-01

    An extensive set of ground-based measurements of the diurnal variation of medium frequency radio wave adsorption and virtual height is analyzed in terms of current understanding of the D- and lower E-region ion production and loss process. When this is done a gross discrepancy arises, the source of which is not known.

  14. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of a Baseline System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, a baseline system which utilizes dual-channel sensor measurements for aircraft engine on-line diagnostics is developed. This system is composed of a linear on-board engine model (LOBEM) and fault detection and isolation (FDI) logic. The LOBEM provides the analytical third channel against which the dual-channel measurements are compared. When the discrepancy among the triplex channels exceeds a tolerance level, the FDI logic determines the cause of the discrepancy. Through this approach, the baseline system achieves the following objectives: (1) anomaly detection, (2) component fault detection, and (3) sensor fault detection and isolation. The performance of the baseline system is evaluated in a simulation environment using faults in sensors and components.

  15. Direct thrust measurements and modelling of a radio-frequency expanding plasma thruster

    SciTech Connect

    Lafleur, T.; Charles, C.; Boswell, R. W.; Takahashi, K.

    2011-08-15

    It is shown analytically that the thrust from a simple plasma thruster (in the absence of a magnetic field) is given by the maximum upstream electron pressure, even if the plasma diverges downstream. Direct thrust measurements of a thruster are then performed using a pendulum thrust balance and a laser displacement sensor. A maximum thrust of about 2 mN is obtained at 700 W for a thruster length of 17.5 cm and a flow rate of 0.9 mg s{sup -1}, while a larger thrust of 4 mN is obtained at a similar power for a length of 9.5 cm and a flow rate of 1.65 mg s{sup -1}. The measured thrusts are in good agreement with the maximum upstream electron pressure found from measurements of the plasma parameters and in fair agreement with a simple global approach used to model the thruster.

  16. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng

    2016-07-01

    Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications. PMID:26780814

  17. Dielectric measurements of water in the radio microwave frequencies by time domain reflectometry

    SciTech Connect

    Merabet, M.; Bose, T.K.

    1988-10-20

    The time domain reflectometric method is used with success to measure the dielectric properties of water from 10 MHz to 8 GHz. It is shown that special precautions must be taken into account in order to determine the dielectric properties of a substance with high dielectric constant in the microwave region.

  18. Delay time measurements of the propagation of radio waves in the atmosphere

    NASA Technical Reports Server (NTRS)

    Rohde, F.

    1972-01-01

    The characteristics and operation of the Geodetic Secor System are described. The precision of the ionospheric radiation measurements was determined by a collocation experiment. The EGRS-13 satellite, which was used in the experiment, is discussed. The geodetic network is shown in a diagram form. Conclusions resulting from the experiments are reported.

  19. Assessing Chicken Meat Freshness through Measurement of Radio-Frequency Dielectric Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Change in freshness of chicken meat was assessed through measurement of the dielectric properties with a vector network analyzer and an open-ended coaxial-line probe between 200 MHz and 20 GHz at 23 oC. Chicken meat samples were stored in a refrigerator for 8 days at 4 oC. Changes in dielectric cons...

  20. Noise amplitude measurements of single-mode CW lasers at radio frequencies

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Hillard, M. E., Jr.

    1992-01-01

    This letter presents the results of noise measurements for a variety of single-longitudinal-mode CW lasers (Ar/+/, standing-wave-dye, and ring-dye) that are commercially available. A quantitative comparison of the total output power fluctuations detected over the 7-300 MHz region (3 dB points) is presented.

  1. Measurement of interior ballistic performance using FM/FM radio telemetry techniques

    NASA Astrophysics Data System (ADS)

    Evans, J. W.

    1985-12-01

    The continuous measurement of ballistic performance during the interior ballistic cycle of cannon launched projectiles is important to on-going research programs being conducted at the Ballistic Research Laboratory (BRL). These measurements, such as propelling gas pressure, projectile acceleration, and projectile-bore interactions, are necessary to evaluate existing weapon systems and validate newly formulated interior ballistic models. Of particular interest is the resistance to projectile motion and the behavior of the projectile during the engraving process. The measurement of forces on projectiles and projectile-bore interactions requires that transducers be located on-board the projectile. In-bore measurements of ballistic performance are made at the BRL using an FM/FM, S-band telemeter. Standard artillery projectiles are modified and instrumented with telemetry transmitting systems. These projectiles are test fired and data extracted via the real time telemetry link. The projectile systems are expendable free-flight rounds and those modified for recovery in the BRL Large Caliber Soft Recovery System (LCSRS). The instrumentation package for the recoverable rounds is configured so it can be removed from the projectile, recalibrated after exposure to the launch environment, and used on subsequent rounds.

  2. Radio frequency measurements of tunnel couplings and singlet-triplet spin states in Si:P quantum dots

    NASA Astrophysics Data System (ADS)

    House, M. G.; Kobayashi, T.; Weber, B.; Hile, S. J.; Watson, T. F.; van der Heijden, J.; Rogge, S.; Simmons, M. Y.

    2015-11-01

    Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet-triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot-lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon.

  3. Measurement and wireless transmission of embedded capacitive microsensor's output using ΣΔ conversion and radio frequency identification (RFID) technology

    NASA Astrophysics Data System (ADS)

    Neuzil, Pavel; Krenek, Oskar; Serry, F. Michael; Maclay, G. Jordan

    1997-05-01

    This article concerns the design and post-fabrication testing of a CMOS integrated circuit (IC) for the Remote- Queried Embedded Microsensor (RQEM) system. The IC may be coupled to capacitive microsensors to measure the output of the sensors, to digitize this measured output, and to condition and encode the digital data. Wireless transmission of the code to a commercial Radio Frequency Identification (RFID) system reader is implemented using Differential Phase Shift Keying of a low-frequency signal, which inductively couples the RQEM antenna coil to the receiving antenna of the RFID reader. The IC extracts its own operating power and digital clock signal from the interrogating signal, which is transmitted by the RFID reader. The IC uses switched- capacitor techniques for acquisition and for A/D conversion of data. A first-order Sigma-Delta ((Sigma) (Delta) ) A/D converter is used with an output transconductance amplifier (OTA) in the balancing integrator and the comparator. The same OTA is also used in the acquisition circuit, which is a sample-and-hold offset-free circuit. Several fabricated chips were tested with on-chip test capacitors, used to calibrate the IC's output.

  4. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    SciTech Connect

    Seo, B. H.; Kim, J. H.; Kim, D. W.; You, S. J.

    2015-09-15

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  5. UAV Measurement of the 2015 Large Flood Impact in Kinugawa River on Riverine Vegetation and Channel Form Changes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi; Inoue, Toshiya; Chigasaki, Yuka

    2016-04-01

    This presentation gives the results of field observation for a flood impact on riverine environment measured by using an unmanned aerial vehicle (UAV). The flood we examined occurred on September 9-10, 2015 in Kinugawa River, Japan, owing to the heavy rainfall that brought tremendous volume of water on the Kanto and Tohoku regions of Japan. In Kinugawa River, the largest record flood occurred in this time, resulting in the levee failure and the corresponding flood disaster in Joso City located in the downstream part of Kinugawa River, as well as the large flood impact on the riverine environment in the Kinugawa channel network. In order to investigate the very initial state of the after-flood-impact throughout the channel network, 13 channel sections with 2 km in longitudinal length were chosen and observed in October 2015. Orthochromatic images of the river channel sections obtained by the UAV measurement with a geographic information system (GIS) were used for analyzing the changes in riverine vegetation distributions and channel form profiles. The results show that there exist three characteristic river segments having different impact-response states in vegetation and channel form changes. The river sections in the most upstream segment indicated severe damage of trees and herbs as well as large movement of gravel bed material, while those in the most downstream segment showed relatively small damage in vegetation distribution and small change in channel forms. Furthermore, relationships between the vegetation damage, channel deformation, channel slopes, and bed shear stresses calculated by a numerical simulation model were discussed in detail along the river network.

  6. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed

  7. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel.

    PubMed

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio ( R J L / R L , fluidic resistance in the junction channel ( R J L ) to fluidic resistance in the side channel ( R L )) strongly affects the measurement accuracy. The microfluidic device with smaller R J L / R L values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional

  8. Channel probe measurements for the American sector clutter experiment, January, 1994

    SciTech Connect

    Fitzgerald, T.J.

    1994-05-20

    The ionospheric phenomenon called Equatorial Spread F encompasses a variety of effects associated with plasma irregularities occurring in the post-sunset and nighttime ionosphere near the magnetic equator. These irregularities can seriously degrade the performance of systems which involve either of necessity or inadvertently radio propagation through the equatorial ionosphere. One such system is Over-the-Horizon (OTH) radars which operate in the high-frequency (hf) band and use ionospheric reflection for forward and backscatter propagation to ranges of thousands of kilometers. When such radars are directed towards the equator, Spread F irregularities can cause scintillation effects which may be aliased into the ranges of interest and have the effect of causing, excess clutter in which targets may be hidden. In January, 1994 Los Alamos participated in a campaign to measure Spread F effects on OTH propagation from the United States looking towards South America in conjunction with local diagnostics in Peru. During the campaign Los Alamos fielded a 1600 km bistatic path between Piura, Peru, and Arequipa, Peru-, the one-hop reflection region for this path was near the magnetic equator, We obtained four types of measurements: an oblique ionogram between Piura and Arequipa every three minutes; Doppler spread and spatial correlation for a single frequency cw path between Piura and Arequipa; Doppler spread, time-delay spread, and spatial coherence for a 10 kHz bandwidth path between Piura and Arequipa-, and Doppler spread and time-delay spread for the one-way path between the AVA radar in New York and Arequipa, Peru. This report describes the diagnostic experiments that we carried out and gives a brief description of some of the data we obtained.

  9. Three-channel three-dimensional self-mixing thin-slice solid-state laser-Doppler measurements

    SciTech Connect

    Ohtomo, Takayuki; Sudo, Seiichi; Otsuka, Kenju

    2009-01-20

    We report successful real-time three-channel self-mixing laser-Doppler measurements with extreme optical sensitivity using a laser-diode-pumped thin-slice Nd:GdVO4 laser in the carrier-frequency-division-multiplexing scheme with three pairs of acoustic optical modulators (i.e., frequency shifters) and a three-channel FM-wave demodulation circuit. We demonstrate (1) simultaneous independent measurement of three different nanometer-vibrating targets, (2) simultaneous measurements of small particles in Brownian motion from three directions, and (3) identification of the velocity vector of small particles moving in water flowing in a small-diameter glass pipe.

  10. Radio emissions from double RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Lehtinen, Nikolai; Marisaldi, Martino; Smith, David; Cummer, Steven

    2016-07-01

    A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF-WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 μs. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In case of multiple-peak TGFs, WWLLN detections are observed to be simultaneous with the last TGF peak for all 16 cases of multipeak RHESSI TGFs simultaneous with WWLLN sources. VLF magnetic field sferics were recorded for two of these 16 events at Duke University. These radio measurements also attribute VLF sferics to the second peak of the double TGFs, exhibiting no detectable radio emission during the first TGF peak. Possible scenarios explaining these observations are proposed. Double (multipeak) TGFs could help to distinguish between the VLF radio emission radiated by the recoil currents in the +IC leader channel and the VLF emission from the TGF producing electrons.

  11. Radio frequency resonator structure and diagnostic measurements for a laboratory simulation of Auroral Kilometric Radiation

    SciTech Connect

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Phelps, A. D. R.; Robertson, C. W.; Whyte, C. G.; He, W.; Gillespie, K. M.; Cross, A. W.; Bingham, R.

    2008-05-15

    Auroral Kilometric Radiation is emitted from regions of depleted plasma density in the Earth's polar magnetosphere. The radiation frequency is close to the local electron cyclotron frequency, polarized in the X-mode with an efficiency of {approx}1%, with power up to 1 GW. Kinetic analysis of the instability in the descending auroral flux indicated that the phenomena scaled with the cyclotron frequency. Therefore, an experimental reproduction of the auroral geometry has been created scaled to laboratory dimensions by raising the radiation frequency to the microwave range. The experiment transports a 75-85 keV electron beam through a region of increasing magnetic flux density, with a mirror ratio of up to 30. The experiments measured the mode, spectrum, power, and conversion efficiency of the emitted radiation as a function of the mirror ratio in two resonance regimes, with frequencies of 4.42 and 11.7 GHz. The microwave diagnostics and measurements will be presented in this paper.

  12. Characterization and Absolute QE Measurements of Delta-Doped N-Channel and P-Channel CCDs

    NASA Technical Reports Server (NTRS)

    Jacquot, Blake C.; Monacos, Steve P.; Jones, Todd J.; Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh

    2010-01-01

    In this paper we present the methodology for making absolute quantum efficiency (QE) measurements from the vacuum ultraviolet (VUV) through the near infrared (NIR) on delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, and good camera vacuum to prevent chip condensation, and more stringent handling requirements. The system used for these measurements was originally designed for deep UV characterization of CCDs for the WF/PC instrument on Hubble and later for Cassini CCDs.

  13. Noise measurements in a 2-hole radio frequency SQUID at liquid nitrogen temperature

    SciTech Connect

    Harrop, S.P.; Colclough, M.S.; Gough, C.E.; Keene, M.N.; Muirhead, C.M.

    1989-03-01

    The authors report measurements of the noise in a 2-hole r.f. SQUID fabricated from bulk YBCO by an erosion technique in the frequency range 30mHz to 1kHz. Above 100Hz the noise is essentially white with an rms value of 5.10/sup -4/..cap alpha..o/..sqrt..Hz and is dominated by noise from the electronics. Below 10Hz the noise power rises as l/f/sup 0.9/.

  14. Measurement of Channel Morphology in a Headwater Stream using Low-Altitude Photography and a 3D Model Software

    NASA Astrophysics Data System (ADS)

    Nidaira, K.; Hiraoka, M.; Gomi, T.; Uchiyama, Y.

    2015-12-01

    We developed a method for measuring detail channel morphology using a low elevation photographic scanning. This study was conducted in a 36-m step-pool channel segment in a headwater stream of Ooborazawa watershed located in 20 km south of Tokyo. The channels were covered by Boenninghausenia japonica and Oplismenus undulatifolius var. undulatifolius. Therefore, topographic measurement in high altitude (up to 5 m) using a drone is not applicable. D50 and D90 of channel substrates were 4 cm and 21 cm, respectively. A plastic case that equipped with two digital cameras (RICOH CX5) is mounted at the top of 2.2 m of a glass fiber pole. Photos were taken every 5 seconds from 1.8 m above ground surface. Eleven ground control points (GCP) were installed and measured coordinates. We developed digital 3D topographic model using PhotoScan Pro edition version 1.0.0 and the developed 1 cm contour map using ArcGIS version 10.2. Furthermore, we measured the number, height, and length of steps for examining the accuracy of data. Resolution of obtained topographic model was from 9 to 11 mm per pixel. 1 cm of particle was identified using photo was 1 cm. Estimated step height was agreed to the measured step height in the field. We detected maximum channel scour from October to December, 2014 with (146.5 mm/day for maximum daily rain) occurred at pools with 13cm changes , while 5 to 10 cm of changes in sediment deposition occurred from Mya to June, 2015 with 78.5 mm/day of maximum daily rain. Disposition of sediment was concentration within the sequences of step structures. Our method allows us for understanding detail sediment movement and resultant localized channel changes in steep channels.

  15. Effect of elbow position on radiographic measurements of radio-capitellar alignment

    PubMed Central

    Sandman, Emilie; Canet, Fanny; Petit, Yvan; Laflamme, G-Yves; Athwal, George S; Rouleau, Dominique M

    2016-01-01

    AIM: To evaluate the effect of different elbow and forearm positions on radiocapitellar alignment. METHODS: Fifty-one healthy volunteers were recruited and bilateral elbow radiographs were taken to form a radiologic database. Lateral elbow radiographs were taken with the elbow in five different positions: Maximal extension and forearm in neutral, maximal flexion and forearm in neutral, elbow at 90° and forearm in neutral, elbow at 90° and forearm in supination and elbow at 90° and forearm in pronation. A goniometer was used to verify the accuracy of the elbow’s position for the radiographs at a 90° angle. The radiocapitellar ratio (RCR) measurements were then taken on the collected radiographs using the SliceOmatic software. An orthopedic resident performed the radiographic measurements on the 102 elbows, for a total of 510 lateral elbow radiographic measures. ANOVA paired t-tests and Pearson coefficients were used to assess the differences and correlations between the RCR in each position. RESULTS: Mean RCR values were -2% ± 7% (maximal extension), -5% ± 9% (maximal flexion), and for elbow at 90° and forearm in neutral -2% ± 5%, supination 1% ± 6% and pronation 1% ± 5%. ANOVA analyses demonstrated significant differences between the RCR in different elbow and forearm positions. Paired t-tests confirmed significant differences between the RCR at maximal flexion and flexion at 90°, and maximal extension and flexion. The Pearson coefficient showed significant correlations between the RCR with the elbow at 90° - maximal flexion; the forearm in neutral-supination; the forearm in neutral-pronation. CONCLUSION: Overall, 95% of the RCR values are included in the normal range (obtained at 90° of flexion) and a value outside this range, in any position, should raise suspicion for instability. PMID:26925383

  16. 1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO NORTHWEST WITH RADIO CONTROL HOUSE (RIGHT), TRANSMITTER TOWER (CENTER), AND NORTH BREAKWATER LIGHT IN DISTANCE AT LEFT - Frankfort Coast Guard Station, Radio Control House, Second Street at ship channel, Frankfort, Benzie County, MI

  17. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  18. Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements

    NASA Technical Reports Server (NTRS)

    Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih; Takahashi, Yukihiro; Frey, Harald U.; Mende, Stephen B.

    2011-01-01

    This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.

  19. Reentrant radio-frequency resonator for automated phase-equilibria and dielectric measurements in fluids

    SciTech Connect

    Goodwin, A.R.; Mehl, J.B.; Moldover, M.R.

    1996-12-01

    A reentrant rf cavity resonator has been developed for automated detection of phase separation of fluid mixtures contained within the cavity. Successful operation was demonstrated by redetermining the phase boundaries of a CO{sub 2}+C{sub 2}H{sub 6} mixture in the vicinity of its critical point. We developed an accurate electrical model for the resonator and used helium to determine the deformation of the resonator under pressure. With the model and pressure compensation, the resonator was capable of very accurate dielectric measurements. We confirmed this by remeasuring the molar dielectric polarizability {ital A}{sub {epsilon}} of argon and obtained the result {ital A}{sub {epsilon}}=(4.140{plus_minus}0.006) cm{sup 3}/mol (standard uncertainty) in excellent agreement with published values. We exploited the capability for accurate dielectric measurements to determine the densities of the CO{sub 2}+C{sub 2}H{sub 6} mixture at the phase boundaries and to determine the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant. Near the operating frequency of 375 MHz the capacitor in the resonator has an impedance near 14 {Omega}. This low impedance is more tolerant of electrical conductivity within the test fluid and in parallel paths in the support structures than comparable capacitors operating at audio frequencies. This will be an advantage for operation at high temperatures where some conductivity must be expected in all fluids. Of further value for high-temperature applications, the present rf resonator has only two metal{endash}insulator joints. These joints seal coaxial cables; neither joint is subjected to large mechanical stresses and neither joint is required to maintain precise dimensional tolerances. The resonator is rugged and may be operated with inexpensive electronics.

  20. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    SciTech Connect

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C.

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  1. Direct measurements by submersible of surge-type turbidity currents in a fjord channel, southeast Alaska

    SciTech Connect

    Cowan, E.A. . Dept. of Geology); Powell, R.D. . Geology Dept.); Lawson, D.E. ); Carlson, P.R. )

    1992-01-01

    High density, high-speed turbidity currents were observed and their properties measured in submarine channels in Queen Inlet, southeast Alaska during June, 1990 and 1991. A ROV submersible fitted with two video cameras, a CTD, an optical backscatter turbidity monitor (OBS), and electromagnetic current meter, and sidescan sonar was used to collect data from within and above the flows. Multiple flows were recorded during a ROV dive at 2.3 km from the delta front in a channel at 104 m depth. Flows were marked by sudden increases in turbidity and current velocity. In one flow, turbidity increased from 300 to 1,600 OBS units (instrument maximum) in 10 sec, and within 9.4 min, salinity (S) steadily decreased by 12.1 ppt, with only a 0.2 C temperature (T) increase. Density differences between the flow and ambient water require a minimum sediment concentration of 97 g/l. Maximum flow velocity exceeded 3.3 m/s. A vertical ROV profile indicated a flow thickness of 10 m. The upper surface was visually identified by billowing suspended sediment and by fluctuating OBS and T as ambient and flow water mixed in turbulent eddies. A faster S decrease and slower T increase with distance into and away from the flow indicate that thermal diffusive processes were less efficient than convective mass transfer. The S change indicates that flow water and ambient water mixed well beyond the flow defined by high turbidity. Warm water temperatures within the flow and low meltwater stream discharge suggest that these flows originated from the delta front and are not continuous underflows.

  2. On-line Measurements and Control of Viable Cell Density in Cell Culture Manufacturing Processes using Radio-frequency Impedance.

    PubMed

    Carvell, John P; Dowd, Jason E

    2006-03-01

    In this work, radio-frequency (RF) impedance is reviewed as a method for monitoring and controlling cell culture manufacturing processes. It is clear from the many publications cited that RF Impedance is regarded as an accurate and reliable method for measuring the live cell bio-volume both on-line and off-line and the technology is also sutable for animal cells in suspension, attached to micro-carriers or immobilized in fixed beds. In cGMP production, RF Impedance is being used in three main areas. Firstly, it is being used as a control instrument for maintaining consistent perfusion culture allowing the bioreactor to operate under optimum conditions for maximum production of recombinant proteins. In the second application it has not replaced traditional off-line live cell counting techniques but it is being used as an additional monitoring tool to check product conformance. Finally, RF Impedance is being used to monitor the concentration of live cells immobilized on micro-carriers or packed beds in cGMP processes where traditional off-line live cell counting methods are inaccurate or impossible to perform. PMID:19003069

  3. Radio-Frequency Illuminated Superconductive Disks: Reverse Josephson Effects and Implications for Precise Measuring of Proposed Gravity Effects

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. It have been indicated three essential components to achieve anomalous gravity effects, namely large, two-layer high-temperature YBCO superconductors, magnetic levitation and AC input in the form of radio-frequency (RF) electromagnetic fields. We report experiments on RF-illuminated (1-15 MHz) superconducting disks with corresponding gravity readings indicating an apparent increase in observed gravity of approximately 3-5 x l0(exp -5)cm/sq s, above and to the side of the superconductor. In this preliminary study, RF- illumination is achieved using a series of large radius (15 cm) spiral antenna with RF power inputs equal to or greater than 90 W. The observed gravitational modification range is significantly lower than the 2.1% gravity modification. The error analyses of thermal and electromagnetic interference in a magnetically shielded gravimeter with vacuum enclosures, Faraday cages and shielded instrument leads, are outlined both experimentally and theoretically. The nearly exact correspondence between the peak gravity effects reported and the well-known peak in AC resistance in superconductors (2-7 MHz, owing to reverse Josephson quantum effects) suggests that electrical resistance will arise in this frequency range and subsequently any trapped magnetic fields in the superconductor may disperse partially into the measuring instrument's local environment. Implications for propulsion initiatives and RF-heating in superconductors will be discussed.

  4. The measurement of the ionospheric total content variations caused by a powerful radio emission of "Sura" facility on a network of GNSS-receivers

    NASA Astrophysics Data System (ADS)

    Nasyrov, I. A.; Kogogin, D. A.; Shindin, A. V.; Grach, S. M.; Zagretdinov, R. V.

    2016-02-01

    Observations of the perturbations of total electron content (TEC) caused by a powerful radio emission of "Sura" facility (Radio Physical Research Institute, N. Novgorod) were carried out during several experimental campaigns from March of 2010 to March 2013. In this paper the data of experimental measurements of TEC-variations conducted on March, 15, 2010 and on March, 12, 2013, are presented. Parameters of TEC-variations were obtained by dual-frequency global navigation satellite systems (GNSS) diagnostics. Registration of signal parameters from GNSS-transmitters was performed at spatially separated sites along the geomagnetic latitude: Vasilsursk (56 °08‧ N, 46 °05‧ E), Zelenodolsk (55 °52‧ N, 48 °33‧ E) and Kazan (55 °48‧ N, 49 °08‧ E). In the experiments radio path from GNSS satellite to Vasilsursk passed over the disturbed region of ionosphere, but radio paths to Zelenodolsk and to Kazan did not. However, TEC-variations correlated with pumping of ionosphere by "Sura" facility were detected for all up to three ground measurements sites. Magnitudes of TEC-variations reached up to ∼ 0.6 - 0.7 TECU. The speculation that a sharp gradient of the electron density formed at the border of the main lobe of "Sura" facility may cause the generation of IGW is presented.

  5. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed

  6. Radio wave.

    PubMed

    Elkin, V

    1992-01-01

    In developing countries with high rates of poverty and illiteracy, radio is emerging as an excellent medium for delivering information on health issues, family planning, nutrition, and agricultural development. Since radio does not require wired electricity, it can reach remote rural populations. Surveys have found that between 50-75% of poor rural households in developing countries own radios, and the majority listen to educational radio at least once a week. A program that reaches the urban poor outside of Lima, Peru, has been instrumental in controlling the spread of cholera. A Bolivian station broadcasts 8 hours of literacy, health, agricultural, and cultural programming a day to an audience of more than 2 million Aymara Indians. Small village radio stations with a broadcast range of 15 miles can be established for under US$400 and can generally achieve sustainability through local fundraising events such as raffles. In many cases, listeners have become broadcasters at their local radio stations.

  7. Strong field radio-frequency measurements using Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Anderson, David; Raithel, Georg

    2016-05-01

    There has been a growing interest in using electromagnetically induced transparency with Rydberg atoms in a room-temperature vapor cell as an all-optical readout method for measuring microwave electric fields. We present results from RF-modulating the 60S1 / 2 and 58D5 / 2 Rydberg states of rubidium with 50 MHz and 100 MHz fields, respectively. Weak RF fields AC Stark-shifts the Rydberg states. As the field strength is increased, sidebands appear at even multiples of the driving frequency. When strong fields are applied, the nearby hydrogenic manifold begins to intersect with the shifted levels. Similar investigations have been performed in cesium. Due to the significant amount of state mixing and level structure, Floquet theory is required to describe the level shifts and mixing. By comparing the calculation with the experimental data, we obtain an absolute determination of the RF electric field reaching a maximum field of 296 V/m to within +/- 0 . 35 % . Additionally, we estimate the shielding of DC fields within the vapor cell.

  8. Objectively measuring signal detectability, contrast, blur and noise in medical images using channelized joint observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hiêp; Platiša, Ljiljana; Philips, Wilfried

    2013-03-01

    To improve imaging systems and image processing techniques, objective image quality assessment is essential. Model observers adopting a task-based quality assessment strategy by estimating signal detectability measures, have shown to be quite successful to this end. At the same time, costly and time-consuming human observer experiments can be avoided. However, optimizing images in terms of signal detectability alone, still allows a lot of freedom in terms of the imaging parameters. More specifically, fixing the signal detectability defines a manifold in the imaging parameter space on which different "possible" solutions reside. In this article, we present measures that can be used to distinguish these possible solutions from each other, in terms of image quality factors such as signal blur, noise and signal contrast. Our approach is based on an extended channelized joint observer (CJO) that simultaneously estimates the signal amplitude, scale and detectability. As an application, we use this technique to design k-space trajectories for MRI acquisition. Our technique allows to compare the different spiral trajectories in terms of blur, noise and contrast, even when the signal detectability is estimated to be equal.

  9. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel.

    PubMed

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-27

    Refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, RI contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving parts approach that provides three-dimensional refractive index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate RI maps of the samples from the measured spectra. Using this method, we demonstrate label-free 3-D imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass and density of these cells from the measured 3-D refractive index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, promises as a quantitative tool for stain-free characterization of large number of cells.

  10. Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel

    NASA Astrophysics Data System (ADS)

    Sung, Yongjin; Lue, Niyom; Hamza, Bashar; Martel, Joseph; Irimia, Daniel; Dasari, Ramachandra R.; Choi, Wonshik; Yaqoob, Zahid; So, Peter

    2014-02-01

    The refractive index of biological specimens is a source of intrinsic contrast that can be explored without any concerns of photobleaching or harmful effects caused by extra contrast agents. In addition, the refractive index contains rich information related to the metabolism of cells at the cellular and subcellular levels. Here, we report a no-moving-parts approach that provides three-dimensional refractive-index maps of biological samples continuously flowing in a microfluidic channel. Specifically, we use line illumination and off-axis digital holography to record the angular spectra of light scattered from flowing samples at high speed. Applying the scalar diffraction theory, we obtain accurate refractive-index maps of the samples from the measured spectra. Using this method, we demonstrate label-free three-dimensional imaging of live RKO human colon cancer cells and RPMI8226 multiple myeloma cells, and obtain the volume, dry mass, and density of these cells from the measured three-dimensional refractive-index maps. Our results show that the reported method, alone or in combination with the existing flow cytometry techniques, shows promise as a quantitative tool for stain-free characterization of a large number of cells.

  11. Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film

    NASA Astrophysics Data System (ADS)

    Sanaâ, F.; Palierne, J. F.; Gharbia, M.

    2016-07-01

    A convenient and accurate interferometric technique for measuring the birefringence dispersion of anisotropic Mylar film according to a continuous spectral range of wavelengths in the ultraviolet, visible and near infrared region, using the so called "Channelled Spectrum" method is described. The technique proposed here consists of considering all the experimental data, not only the minima of the transmitted light obtained after recording the transmitted light that travelled a Mylar film sandwiched between two crossed polarizers. Furthermore, we are able to measure the transmission coefficients of the polarizers, the absorption of the Mylar sheet, and other parameters involved in the experiment by using a spectroscopic detection. Thus, the transmission of the Mylar sheet vs wavelength is deduced. Using the dispersion of the optical birefringence given by the birefringence dispersion theory for uniaxial organic compounds ie the one band, three-band, and Cauchy models, and by applying a nonlinear fitting procedure on the recorded experimental data, we have obtained the parameters involved in the expressions of the optical birefringence and we have computed the optical birefringence of the Mylar film vs wavelengths. In the visible and near-infrared regions, all models give excellent fits to the experimental data. In the UV region, the three-band model considers the resonance effect. Thus, in the near-resonance region the results from the three-band model are more accurate.

  12. Radio sociology

    NASA Astrophysics Data System (ADS)

    Swenson, George W., Jr.

    1996-04-01

    A work was conducted, using radio telemetry, to locate a migrating, radio-tagged, sharp-shinned hawk. The hawk was monitored through the noise radiation it created. The hawk was found. During this study, it was found that the concentration of population corresponds with areas of increased noise temperature. Through this study, a bigger study was planned. The study would involved the relationship between a place's radiation signature and its other attributes, such as economic type, population, geographic concentration. The method of radio sociology would be used to track the sources of radio noise.

  13. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  14. Channel Analysis and Estimation and Compensation of Doppler Shift in Underwater Acoustic Communication and Mitigation of IFI, ISI in Ultra-wideband Radio

    NASA Astrophysics Data System (ADS)

    Ahmed, Sadia

    Water occupies three fourth of earth's surface. The remaining one fourth is land. Although human habitats reside on land, there is no denying of the vital connection between land and water. The future sustainability of human species on this planet depends on wise utilization of all available resources, including that provided by the vast water world. Therefore, it is imperative to explore, understand, and define this massive, varying, and in many areas, unexplored water domain. The water domain exploration and data collection can be conducted using manned or unmanned vehicles, as allowed by the water environment. This dissertation addresses three of the key difficulties that occur during underwater acoustic communication among manned and/or unmanned vehicles and proposes feasible solutions to resolve those difficulties. The focus and the contributions of this research involve the following perspectives: 1) Representation of Underwater Acoustic Communication (UAC) Channels: Providing a comprehensive classification and representation of the underwater acoustic communication channel based on the channel environment. 2) Estimation and Compensation of Doppler Shift: Providing compensation algorithm to mitigate varying Doppler shift effect over subcarriers in UAC Orthogonal Frequency Division Multiplexing (OFDM) systems. 3) Mitigation of Inter-symbol Interference (ISI): Providing feasible solution to long delay spread causing ISI in Ultra-wideband channels.

  15. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  16. Accurate radio and optical positions for southern radio sources

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce R.; Jauncey, David L.; White, Graeme L.; Nothnagel, Axel; Nicolson, George D.; Reynolds, John E.; Morabito, David D.; Bartel, Norbert

    1992-01-01

    Accurate radio positions with a precision of about 0.01 arcsec are reported for eight compact extragalactic radio sources south of -45-deg declination. The radio positions were determined using VLBI at 8.4 GHz on the 9589 km Tidbinbilla (Australia) to Hartebeesthoek (South Africa) baseline. The sources were selected from the Parkes Catalogue to be strong, flat-spectrum radio sources with bright optical QSO counterparts. Optical positions of the QSOs were also measured from the ESO B Sky Survey plates with respect to stars from the Perth 70 Catalogue, to an accuracy of about 0.19 arcsec rms. These radio and optical positions are as precise as any presently available in the far southern sky. A comparison of the radio and optical positions confirms the estimated optical position errors and shows that there is overall agreement at the 0.1-arcsec level between the radio and Perth 70 optical reference frames in the far south.

  17. Measurements of an Antenna Surface for a Millimeter-Wave Space Radio Telescope. II. Metal Mesh Surface for Large Deployable Reflector

    NASA Astrophysics Data System (ADS)

    Kamegai, Kazuhisa; Tsuboi, Masato

    2013-02-01

    Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of the metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degradation of the system noise temperature. In addition, we carried out an astronomical observation of a well-known SiO maser source, R Cas, by using a metal mesh mirror on the NRO 45-m radio telescope Coudé system. The metal mesh mirror considerably increases the system noise temperature, and slightly decreases the peak antenna temperature. These results are consistent with laboratory measurements.

  18. A Channelization-Based DOA Estimation Method for Wideband Signals.

    PubMed

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  19. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  20. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars. PMID:17836594

  1. College Radio.

    ERIC Educational Resources Information Center

    Sauls, Samuel J.

    As with commercial stations, the underlying premise of the college radio station is to serve the community, whether it be the campus community or the community at large, but in unique ways often geared to underserved niches of the population. Much of college radio's charm lies in its unpredictable nature and constant mutations. The stations give…

  2. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Niell, A. E.

    1981-01-01

    The activities of the DSN in support of Radio and Radar Astronomy Operations during September through December 1980 are described. Emphasis is on a report of an experiment selected for use of the DSN by the radio Astronomy Experiment Selection Panel: that of VLBI observations of the energetic galactic object SS-433.

  3. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Schaffer, R. D.; Gorenstein, M. V.

    1981-01-01

    The activities of the Deep Space Network in support of Radio Astronomy Operations during April and May 1981 are reported. Work in progres in support of an experiment selected for use of the DSN by the Radio Astronomy Experiment Selection Panel, Twin Quasi-Stellar Object VLBI, is reported.

  4. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Shaffer, R. D.; Wolken, P. R.; Gulkis, S.

    1981-01-01

    The activities of the Deep Space Network in support of radio astronomy operations during the first quarter of 1981 are reported. Results of the use of a low noise maser are presented, as well as updates in DSN support of experiments sanctioned by the Radio Astronomy Experiment Selection Panel.

  5. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  6. Radio stars.

    PubMed

    Hjellming, R M; Wade, C M

    1971-09-17

    Up to the present time six classes of radio stars have been established. The signals are almost always very faint and drastically variable. Hence their discovery has owed as much to serendipity as to the highly sophisticated equipment and techniques that have been used. When the variations are regular, as with the pulsars, this characteristic can be exploited very successfully in the search for new objects as well as in the detailed study of those that are already known. The detection of the most erratically variable radio stars, the flare stars and the x-ray stars, is primarily a matter of luck and patience. In the case of the novas, one at least knows where and oughly when to look for radio emission. A very sensitive interferometer is clearly the best instrument to use in the initial detection of a radio star. The fact that weak background sources are frequently present makes it essential to prove that the position of a radio source agrees with that of a star to within a few arc seconds. The potential of radio astronomy for the study of radio stars will not be realized until more powerful instruments than those that are available today can be utilized. So far, we have been able to see only the most luminous of the radio stars.

  7. The Effect of a Chandra-measured Merger-related Gas Component on the Lobes of a Dead Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.; Kraft, R. P.; Hardcastle, M. J.

    2007-04-01

    We use Chandra data to infer that an X-ray-bright component of gas is in the process of separating the radio lobes of 3C 442A. This is the first radio galaxy with convincing evidence that central gas, overpressured with respect to the lobe plasma and not simply a static atmosphere, is having a major dynamical effect on the radio structure. We speculate that the expansion of the gas also reexcites electrons in the lobes of 3C 442A through compression and adiabatic heating. Two features of 3C 442A contribute to its dynamical state. First, the radio source is no longer being powered by a detected active jet, so that the dynamical state of the radio plasma is at the mercy of the ambient medium. Second, the two early-type galaxies, NGC 7236 and NGC 7237, one of which was the original host of 3C 442A, are undergoing a merger and have already experienced a close encounter, suggesting that the X-ray-bright gas is mostly the heated combined galaxy atmospheres. The lobes have been swept apart for ~108 yr by the pressure-driven expansion of the X-ray-bright inner gas.

  8. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    NASA Astrophysics Data System (ADS)

    Valdré, S.; Barlini, S.; Casini, G.; Pasquali, G.; Piantelli, S.; Carboni, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Baiocco, G.; Bardelli, L.; Benzoni, G.; Bini, M.; Blasi, N.; Bracco, A.; Brambilla, S.; Bruno, M.; Camera, F.; Corsi, A.; Crespi, F.; D'Agostino, M.; Degerlier, M.; Kravchuk, V. L.; Leoni, S.; Million, B.; Montanari, D.; Morelli, L.; Nannini, A.; Nicolini, R.; Poggi, G.; Vannini, G.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Dudek, J.; Fornal, B.; Kmiecik, M.; Maj, A.; Matejska-Minda, M.; Mazurek, K.; Męczyński, W. M.; Myalski, S.; Styczeń, J.; Ziębliński, M.

    2014-03-01

    The 48Ti on 40Ca reactions have been studied at 300 and 600 MeV focusing on the fusion-evaporation (FE) and fusion-fission (FF) exit channels. Energy spectra and multiplicities of the emitted light charged particles have been compared to Monte Carlo simulations based on the statistical model. Indeed, in this mass region (A ~ 100) models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  9. Measurements of the average properties of a bidisperse suspension of bubbles rising in a vertical channel

    NASA Astrophysics Data System (ADS)

    Serrano-Garcia, J. C.; Zenit, R.

    2008-11-01

    This investigation presents an experimental study of a system for which the bubble size is not monodisperse. In this work an experimental equipment was designed to study the behaviour of a bidisperse suspension of bubbles rising in a vertical channel, in which the dual limit of small Weber and large Reynolds number is satisfied. Bubbles were produced using capillaries of two distinct inner diameters. Using water and water-glycerin mixtures, the range of Reynolds numbers was extended from 50 to 500, approximately. To avoid coalescence, a small amount of salt was added to the interstitial fluid, which did not affect the fluid properties significantly. Measurements of the size, bubble velocity, aspect ratio as well the equivalent diameter of the bubbles were obtained as a function of gas volume fraction. We found that the bidisperse nature of the flow changes the dynamics in a significant manner. We observed a modification of the flow agitation, characterized by the liquid velocity variance. Although the decrease of the mean velocity with gas volume fraction is similar to that observed for monodisperse flows (Martínez et. al. 2007), a general increase of the magnitude of fluctuations is observed for certain combinations of bubble size and gas fraction ratios.

  10. Determination of the manning coefficient from measured bed roughness in natural channels

    USGS Publications Warehouse

    Limerinos, John Thomas

    1970-01-01

    This report presents the results of a study to test the hypothesis that basic values of the Manning roughness coefficient of stream channels may be related to (1) some characteristic size of the streambed particles and to (2) the distribution of particle size. These two elements involving particle size can be combined into a single element by weighting characteristic particle sizes. The investigation was confined to channels with coarse bed material to avoid the complication of bed-form roughness that is associated with alluvial channels composed of fine bed material. Fifty current-meter measurements of discharge and appropriate field surveys were made at 11 sites on California streams for the purpose of computing the roughness coefficient, n, by the Manning formula. The test sites were selected to give a wide range in average size of bed material, and the discharge measurements and surveys were made at such times as to provide data covering a suitable range in stream depth. The sites selected were relatively free of the extraneous flow-retarding effects associated with irregular channel conformation and streambank vegetation. The characteristic bed-particle sizes used in the analyses were the 16,- 50,- and 84-percentile sizes as obtained from a cumulative frequency distribution of the diameters of randomly sampled surficial bed material. Separate distributions were computed for the minimum and intermediate values of the three diameters of a particle. The minimum diameters of the streambed particles were used in the study because a particle at rest on the bed invariably has its minimum diameter in the vertical position; this diameter is, therefore, the most representative measure of roughness height. The intermediate diameter was also studied because this is the diameter most easily measurable-either by sieve analysis or by photographic techniques--and--because it is the diameter that had been used in previous studies by other investigators. No significant

  11. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  12. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    DOE PAGES

    Aab, Alexander

    2016-06-14

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ± 0.7 (stat) ± 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade ofmore » extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.« less

  13. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anastasi, G. A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Awal, N.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, A.; Blanco, M.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Brogueira, P.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; dos Anjos, R. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A. W.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Louedec, K.; Lucero, A.; Malacari, M.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vasquez, R.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Welling, C.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2016-06-01

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 ±0.7 (stat)±6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.

  14. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Alves Batista, R; Ambrosio, M; Aminaei, A; Anastasi, G A; Anchordoqui, L; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Awal, N; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S G; Blanco, A; Blanco, M; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Brogueira, P; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Diaz, J C; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Dorosti Hasankiadeh, Q; Dos Anjos, R C; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; García, B; Garcia-Gamez, D; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A W; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Le Coz, S; Lebrun, D; Lebrun, P; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Louedec, K; Lucero, A; Malacari, M; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Martraire, D; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pacheco, N; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Srivastava, Y N; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suarez Durán, M; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Velzen, S; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vasquez, R; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Welling, C; Werner, F; Widom, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zuccarello, F

    2016-06-17

    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst)  MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory. PMID:27367377

  15. A parameterization for the radio emission of air showers as predicted by CoREAS simulations and applied to LOFAR measurements

    NASA Astrophysics Data System (ADS)

    Nelles, Anna; Buitink, Stijn; Falcke, Heino; Hörandel, Jörg R.; Huege, Tim; Schellart, Pim

    2015-01-01

    Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the radio signal at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five fit parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experiments.

  16. Aircraft Engine On-Line Diagnostics Through Dual-Channel Sensor Measurements: Development of an Enhanced System

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2008-01-01

    In this paper, an enhanced on-line diagnostic system which utilizes dual-channel sensor measurements is developed for the aircraft engine application. The enhanced system is composed of a nonlinear on-board engine model (NOBEM), the hybrid Kalman filter (HKF) algorithm, and fault detection and isolation (FDI) logic. The NOBEM provides the analytical third channel against which the dual-channel measurements are compared. The NOBEM is further utilized as part of the HKF algorithm which estimates measured engine parameters. Engine parameters obtained from the dual-channel measurements, the NOBEM, and the HKF are compared against each other. When the discrepancy among the signals exceeds a tolerance level, the FDI logic determines the cause of discrepancy. Through this approach, the enhanced system achieves the following objectives: 1) anomaly detection, 2) component fault detection, and 3) sensor fault detection and isolation. The performance of the enhanced system is evaluated in a simulation environment using faults in sensors and components, and it is compared to an existing baseline system.

  17. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements.

    PubMed Central

    Dani, J A; Levitt, D G

    1981-01-01

    In an open circuit there can be no net cation flux through membranes containing only cation-selective channels, because electroneutrality must be maintained. If the channels are so narrow that water and cations cannot pass by each other, then the net water flux through those "single-file" channels that contain a cation is zero. It is therefore possible to determine the cation binding constants from the decrease in the average water permeability per channel as the cation concentration in the solution is increased. Three different methods were used to determine the osmotic water permeability of gramicidin channels in lipid bilayer membranes. The osmotic water permeability coefficient per gramicidin channel in the absence of cations was found to be 6 x 10(-14) cm3/s. As the cation concentration was raised, the water permeability decreased and a binding constant was determined from a quantitative fit to the data. When the data were fitted assuming a maximum of one ion per channel, the dissociation constant was 115 mM for Li+, 69 mM for K+, and 2 mM for Tl+. PMID:6168310

  18. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  19. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  20. The radio emission pattern of air showers as measured with LOFAR—a tool for the reconstruction of the energy and the shower maximum

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2015-05-01

    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.

  1. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  2. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  3. The Cassini Radio and Plasma Wave Investigation

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Kurth, W. S.; Kirchner, D. L.; Hospodarsky, G. B.; Averkamp, T. F.; Zarka, P.; Lecacheux, A.; Manning, R.; Roux, A.; Canu, P.; Cornilleau-Wehrlin, N.; Galopeau, P.; Meyer, A.; Boström, R.; Gustafsson, G.; Wahlund, J.-E.; Åhlen, L.; Rucker, H. O.; Ladreiter, H. P.; Macher, W.; Woolliscroft, L. J. C.; Alleyne, H.; Kaiser, M. L.; Desch, M. D.; Farrell, W. M.; Harvey, C. C.; Louarn, P.; Kellogg, P. J.; Goetz, K.; Pedersen, A.

    2004-09-01

    The Cassini radio and plasma wave investigation is designed to study radio emissions, plasma waves, thermal plasma, and dust in the vicinity of Saturn. Three nearly orthogonal electric field antennas are used to detect electric fields over a frequency range from 1 Hz to 16 MHz, and three orthogonal search coil magnetic antennas are used to detect magnetic fields over a frequency range from 1 Hz to 12 kHz. A Langmuir probe is used to measure the electron density and temperature. Signals from the electric and magnetic antennas are processed by five receiver systems: a high frequency receiver that covers the frequency range from 3.5 kHz to 16 MHz, a medium frequency receiver that covers the frequency range from 24 Hz to 12 kHz, a low frequency receiver that covers the frequency range from 1 Hz to 26 Hz, a five-channel waveform receiver that covers the frequency range from 1 Hz to 2.5 kHz in two bands, 1 Hz to 26 Hz and 3 Hz to 2.5 kHz, and a wideband receiver that has two frequency bands, 60 Hz to 10.5 kHz and 800 Hz to 75 kHz. In addition, a sounder transmitter can be used to stimulate plasma resonances over a frequency range from 3.6 kHz to 115.2 kHz. Fluxes of micron-sized dust particles can be counted and approximate masses of the dust particles can be determined using the same techniques as Voyager. Compared to Voyagers 1 and 2, which are the only spacecraft that have made radio and plasma wave measurements in the vicinity of Saturn, the Cassini radio and plasma wave instrument has several new capabilities. These include (1) greatly improved sensitivity and dynamic range, (2) the ability to perform direction-finding measurements of remotely generated radio emissions and wave normal measurements of plasma waves, (3) both active and passive measurements of plasma resonances in order to give precise measurements of the local electron density, and (4) Langmuir probe measurements of the local electron density and temperature. With these new capabilities, it will be

  4. Deformation in the Santa Barbara Channel from GPS measurements 1987-1991

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Webb, Frank H.

    1992-01-01

    An analysis of GPS data over the period 1987-91 confirms geologic and seismic evidence that the Santa Barbara Channel is a complicated actively deforming region. The data indicate north-south compression in the eastern channel, with little deformation in the west. Rotation may also be an important deformation mechanism. An analysis of strain rate variation over periods of 4.5, 17, and 100 yr suggests that deformation is nonuniform.

  5. The First measurement of the top quark mass at CDF II in the lepton+jets and dilepton channels simultaneously

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    The authors present a measurement of the mass of the top quark using data corresponding to an integrated luminosity of 1.9 fb{sup -1} of p{bar p} collisions collected at {radical}s = 1.96 TeV with the CDF II detector at Fermilab's Tevatron. This is the first measurement of the top quark mass using top-antitop pair candidate events in the lepton + jets and dilepton decay channels simultaneously. They reconstruct two observables in each channel and use a non-parametric kernel density estimation technique to derive two-dimensional probability density functions from simulated signal and background samples. The observables are the top quark mass and the invariant mass of two jets from the W decay in the lepton + jets channel, and the top quark mass and the scalar sum of transverse energy of the event in the diletpon channel. They perform a simultaneous fit for the top quark mass and the jet energy scale, which is constrained in situ by the hadronic W boson mass. using 332 lepton + jets candidate events and 144 diletpon candidate events, they measure the top quark mass to be m{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}.

  6. Radio frequency distribution assembly

    NASA Astrophysics Data System (ADS)

    Culley, K. M.

    The Naval Research Laboratory (NRL) Radio Frequency Distribution Assembly (RFDA) is an interface between the Sperry four-channel, fast-switching synthesizer and the EF-111 jamming system antenna ports. The RFDS is a sophisticated, high-speed RF interface designed to convert the banded outputs of the four-channel synthesizer (16 ports) to 36 ports which represent six ordinal directions of arrival (DOA) for the EF-111 jamming system. The RFDS will distribute the RF signals while providing controlled RF amplitudes to simulate the antenna patterns of the EF-111 Electronic Warfare (EW) system. The simulation of the arrival angles which appear between the ordinal directions is performed by controlling the amplitude of the RF signal from the DOA channels. The RFDA is capable of operating over the frequency range of 500MHz to 18GHz, and can rapidly switch between varying frequencies and attenuation levels.

  7. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Chesterfield, Reid J.; McKeen, John C.; Newman, Christopher R.; Frisbie, C. Daniel; Ewbank, Paul C.; Mann, Kent R.; Miller, Larry L.

    2004-06-01

    We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI-C5). The structure of polycrystalline thin films of PTCDI-C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of π-π overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI-C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8×104 Ω cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100-300 K, with typical activation energies of 60-80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer-Neldel relationship with characteristic energy EMN=20-25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI-C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI-C5 and oxygen, which creates a deep acceptor-like trap state.

  8. A Micromechanical RF Channelizer

    NASA Astrophysics Data System (ADS)

    Akgul, Mehmet

    applications that must be stable against environmental perturbations, such as acceleration or power supply variations. Measurements on fabricated devices in fact confirm predictions by the new model of up to 4x improvement in frequency stability against DC-bias voltage variations for contour-mode disk resonators as the resistance loading their ports increases. By enhancing circuit visualization, this circuit model makes more obvious the circuit design procedures and topologies most beneficial for certain mechanical circuits, e.g., filters and oscillators. The second method enables simultaneous low motional resistance ( Rx 70,000) at 61 MHz using an improved ALD-partial electrode-to-resonator gap filling technique that reduces the Q-limiting surface losses of previous renditions by adding an alumina pre-coating before ALD of the gap-filling high-k dielectric. This effort increases the Q over the ˜10,000 of previous renditions by more than 6x towards demonstration of the first VHF micromechanical resonators in any material, piezoelectric or not, to meet the simultaneous high Q (>50,000) and low motional resistance Rx (< 200O) specs highly desired for front-end frequency channelizer requirements in cognitive and software-defined radio architectures. The methods presented in this chapter finally overcome the high impedance bottleneck that has plagued capacitively transduced micro-mechanical resonators over the past decade. The third method introduces a capacitively transduced micromechanical resonator constructed in hot filament CVD boron-doped microcrystalline diamond (MCD) structural material that posts a measured Q of 146,580 at 232.441 kHz, which is 3x higher than the previous high for conductive polydiamond. Moreover, radial-contour mode disk resonators fabricated in the same MCD film and using material mismatched stems exhibit a Q of 71,400 at 299.86 MHz. The material used here further exhibits an acoustic velocity of 18,516 m/s, which is now the highest to date among

  9. PRIDE - Passive Radio Ice Depth Experiment - An Instrument to Measure Outer Planet Lunar Ice Depths from Orbit using Neutrinos

    NASA Astrophysics Data System (ADS)

    Miller, T.; Schaefer, R. K.; Sequeira, B.

    2012-12-01

    We describe a concept for an instrument to measure the thickness of the ice shell on a planetary body such as Jupiter's moon Europa. Unlike a high powered and massive device such as an ice-penetrating radar, the described instrument is a passive receiver of a naturally occurring signal generated by interactions of deep penetrating cosmic ray neutrinos. We discuss the basic concept and consider the instrument design requirements from the perspective of a NASA Outer Planet Orbiter Mission. We show results of simulations, compare signal-to-noise estimates, and examine possible components and configurations for the antenna, receiver, and electronics. We note some options that can be used to reduce mass and power. Finally, we present a list of issues that would need further study to produce a more concrete design. In the world of astrophysics, difficult problems can occasionally benefit from the use of results derived from seemingly unrelated areas. In the case at hand we explore how results from the world of high energy cosmic rays could potentially help solve a difficult measurement problem in planetary geology. Europa, one of the Galilean moons of Jupiter, is believed to be covered with an ice shell of unknown thickness, likely ranging from a few kilometers to tens of kilometers. Indirect measurements imply that under the ice is an ocean, which is warmed by tidal and volcanic heating, and is thought to be one of the best locations for life to have formed in the solar system outside of Earth. It is therefore of high scientific priority to gain a better understanding of the geology and structure of Europa by measuring the ice shell thickness. The question is then: "How can we best probe ice that is tens of km thick given the stringent mass and power requirements of a Europan explorer satellite?" The work described here was performed to determine whether the preceding measurement question could be answered with a reasonable instrument built to use the Extreme High

  10. The ionosphere as a focusing lens - A case study involving simultaneous type III solar radio storm measurements from the ISIS 1 and 2 and ISEE 3 satellites

    NASA Technical Reports Server (NTRS)

    James, H. G.; Benson, R. F.; Fainberg, J.; Stone, R. G.

    1990-01-01

    The possibility of using terrestrial ionospheric focusing to improve the directivity of electric dipoles on space missions has been investigated by comparing simultaneous observations of a solar radio storm by the ISIS 1 and ISIS 2 spacecraft, in near earth orbit, and the ISEE 3 spacecraft located beyond the magnetosphere. To this end, a three-dimensional ray tracing in a spherically stratified ionosphere has been carried out for conditions appropriate to the observations by the ISIS spacecraft of a solar radio storm in September 1983. The procedure allows Poynting flux spectral densities measured on ISIS to be converted to spectral densities well outside the ionosphere where they can be compared directly with simultaneous observations on ISEE 3. The results demonstrate good agreement over their common observing frequency range (1-2 MHz).

  11. Innovative frequency measurement technique used in the design of a single channel frequency to digital converter ASIC

    NASA Astrophysics Data System (ADS)

    Ramalingam, Neranjen; Varadan, Vijay K.; Varadan, Vasundara V.

    1996-09-01

    The frequency to digital converter (FDC) is an application specific integrated circuit. The chip has been designed to handle one input channel but can easily be expanded to handle multiple channels of frequencies. The channel is capable of measuring frequencies from 100 Hz to 100 kHz. The power consumption of the chip is very low. The frequency measurement accuracy is better than 0.1 percent. The conversion rate per channel is 100 samples/second which can be carried too. The chip has a built-in test equipment to verify its operation. It is able to generate frequencies like 8 Mhz, 4Mhz, 2Mhz and 1Mhz which can be fed as optional clock frequencies depending on the accuracy desired. The FDC chip can be interfaced to a 16 bit bus. To meet these stringent specifications of the FDC chip an innovative frequency measurement technique has been devised called the hybrid technique of frequency measurement. The technique proves to be very accurate and it is found that by varying the sampling rate the range of input frequencies over which this accuracy can be achieved also changes. The specifications are particularly strict so that it is possible to use the chip for any military application for which a very reliable operation is demanded. The FDC chip is hence ideal for control and guidance purposes. The chip has wide ranging applications. In conjunction with sensors such as accelerometers it can be used to design smart sensors. The chip can play a vital role in engine controllers and in pressure measurements using vibrating type transducers. Sometimes to isolate transducers, the output is converted to frequency and isolation is achieved using opto-isolators; then by measuring the frequency using this chip this can be converted to digital information.

  12. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These

  13. The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity.

    PubMed

    Gillespie, Dirk; Boda, Dezso

    2008-09-15

    The cause of the anomalous mole fraction effect (AMFE) in calcium-selective ion channels is studied. An AMFE occurs when the conductance through a channel is lower in a mixture of salts than in the pure salts at the same concentration. The textbook interpretation of the AMFE is that multiple ions move through the pore in coordinated, single-file motion. Instead of this, we find that at its most basic level an AMFE reflects a channel's preferential binding selectivity for one ion species over another. The AMFE is explained by considering the charged and uncharged regions of the pore as electrical resistors in series: the AMFE is produced by these regions of high and low ion concentration changing differently with mole fraction due to the preferential ion selectivity. This is demonstrated with simulations of a model L-type calcium channel and a mathematical analysis of a simplistic point-charge model. The particle simulations reproduce the experimental data of two L-type channel AMFEs. Conditions under which an AMFE may be found experimentally are discussed. The resistors-in-series model provides a fundamentally different explanation of the AMFE than the traditional theory and does not require single filing, multiple occupancy, or momentum-correlated ion motion.

  14. Multiplexing Ligand–Receptor Binding Measurements by Chemically Patterning Microfluidic Channels

    PubMed Central

    Shi, Jinjun; Yang, Tinglu; Cremer, Paul S.

    2012-01-01

    A method has been designed for patterning supported phospholipid bilayers (SLBs) on planar substrates and inside microfluidic channels. To do this, bovine serum albumin (BSA) monolayers were formed via adsorption at the liquid/solid interface. Next, this interfacial protein film was selectively patterned by using deep UV lithography. Subsequently, SLBs could be deposited in the patterned locations by vesicle fusion. By cycling through this process several times, spatially addressed bilayer arrays could be formed with intervening protein molecules serving as two-dimensional corrals. By employing this method, phospholipid bilayers containing various concentrations of ganglioside GM1 were addressed along the length of individual microfluidic channels. Therefore, the binding of GM1 with pentameric cholera toxin B (CTB) subunits could be probed. A seven-channel microfluidic device was fabricated for this purpose. Each channel was simultaneously patterned with four chemically distinct SLBs containing 0, 0.2, 0.5, and 2.0 mol % GM1, respectively. Varying concentrations of CTB were then introduced into each of the channels. With the use of total internal reflection fluorescence microscopy, it was possible to simultaneously abstract multiple equilibrium dissociation constants as a function of ligand density for the CTB-GM1 system in a single shot. PMID:18570383

  15. AG Channel Measurement and Modeling Results for Over-Water and Hilly Terrain Conditions

    NASA Technical Reports Server (NTRS)

    Matolak, David W.; Sun, Ruoyu

    2015-01-01

    This report describes work completed over the past year on our project, entitled "Unmanned Aircraft Systems (UAS) Research: The AG Channel, Robust Waveforms, and Aeronautical Network Simulations." This project is funded under the NASA project "Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS)." In this report we provide the following: an update on project progress; a description of the over-freshwater and hilly terrain initial results on path loss, delay spread, small-scale fading, and correlations; complete path loss models for the over-water AG channels; analysis for obtaining parameter statistics required for development of accurate wideband AG channel models; and analysis of an atypical AG channel in which the aircraft flies out of the ground site antenna main beam. We have modeled the small-scale fading of these channels with Ricean statistics, and have quantified the behavior of the Ricean K-factor. We also provide some results for correlations of signal components, both intra-band and inter-band. An updated literature review, and a summary that also describes future work, are also included.

  16. Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Wolken, P. R.; Shaffer, R. D.

    1983-01-01

    Deep Space Network (DSN) 26- and 64-meter antenna stations were utilized in support of Radio Astronomy Experiment Selection Panel experiments. Within a time span of 10 days, in May 1983 (267.75 hours total), nine RAES experiments were supported. Most of these experiments involved multifacility interferometry using Mark 3 data recording terminals and as many as six non-DSN observatories. Investigations of black holes, quasars, galaxies, and radio sources are discussed.

  17. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  18. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  19. An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be

    USGS Publications Warehouse

    Reusser, L.; Bierman, P.; Pavich, M.; Larsen, J.; Finkel, R.

    2006-01-01

    We use 10Be to infer when, how fast, and why the Susquehanna River incised through bedrock along the U.S. Atlantic seaboard, one of the world's most prominent and ancient passive margins. Although the rate at which large rivers incise rock is a fundamental control on the development of landscapes, relatively few studies have directly measured how quickly such incision occurs either in tectonically active environments or along passive margins. Exposure ages of fluvially carve d, bedrock strath terraces, preserved along the lower Susquehanna River, demonstrate that even along a passive margin, large rivers are capable of incising through rock for short periods of time at rates approaching those recorded in tectonically active regions, such as the Himalayas. Over eighty samples, collected along and between three prominent levels of strath terraces within Holtwood Gorge, indicate that the Susquehanna River incised more than 10 meters into the Appalachian Piedmont during the last glacial cycle. Beginning ???36 ka, incision rates increased dramatically, and remained elevated until ???14 ka. The northern half of the Susquehanna basin was glaciated during the late Wisconsinan; however, similar rates and timing of incision occurred in the unglaciated Potomac River basin immediately to the south. The concurrence of incision periods on both rivers suggests that glaciation and associated meltwater were not the primary drivers of incision. Instead, it appears that changing climatic conditions during the late Pleistocene promoted an increase in the frequency and magnitude of flood events capable of exceeding thresholds for rock detachment and bedrock erosion, thus enabling a short-lived episode of rapid incision into rock. Although this study has constraine d the timing and rate of bedrock incision along the largest river draining the Atlantic passive margin, the dates alone cannot explain fully why, or by what processes, this incision occurred. However, cosmogenic dating offers

  20. 76 FR 36384 - Radio Broadcasting Services; Brackettville, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... Making proposed the deletion of vacant Channel 234A at Brackettville. See 75 FR 4037, published January... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Brackettville, TX AGENCY: Federal Communications..., see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting....

  1. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel

    PubMed Central

    Jun Kang, Yang; Lee, Sang-Joon

    2013-01-01

    Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBlood/μPBS) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBSSS/QBloodL). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = Aα + Aβ exp [−(t − t0)/λBlood]) is selected based on the pressure difference (ΔP = PA − PB) at each junction (A, B) of both side channels. The characteristic time of blood (λBlood) is measured by analyzing the area (ABlood) filled with blood in the bridge channel by selecting an appropriate detection window in the

  2. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel.

    PubMed

    Jun Kang, Yang; Lee, Sang-Joon

    2013-01-01

    Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBlood /μPBS ) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBS (SS) /QBlood (L) ). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = A α  + A β exp [-(t - t 0 )/λBlood ]) is selected based on the pressure difference (ΔP = PA  - PB ) at each junction (A, B) of both side channels. The characteristic time of blood (λBlood ) is measured by analyzing the area (ABlood ) filled with blood in the bridge channel by selecting an appropriate detection window in

  3. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  4. Real-time Full-spectral Imaging and Affinity Measurements from 50 Microfluidic Channels using Nanohole Surface Plasmon Resonance†

    PubMed Central

    Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun

    2012-01-01

    With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607

  5. Radio emission from supernovae.

    NASA Astrophysics Data System (ADS)

    Weiler, K. W.; Panagia, N.; Sramek, R. A.; Van Dyk, S. D.; Stockdale, C. J.; Williams, C. L.

    Study of radio supernovae over the past 30 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. Along with reviewing these general properties of the radio emission from supernovae, we present our extensive observations of the radio emission from supernova (SN) 1993J in M 81 (NGC 3031) made with the Very Large Array and other radio telescopes. The SN 1993J radio emission evolves regularly in both time and frequency, and the usual interpretation in terms of shock interaction with a circumstellar medium (CSM) formed by a pre-supernova stellar wind describes the observations rather well considering the complexity of the phenomenon. However: 1) The highest frequency measurements at 85 - 110 GHz at early times (<40 days) are not well fitted by the parameterization which describes the cm wavelength measurements. 2) At a time ˜3100 days after shock breakout, the decline rate of the radio emission steepens from (t+beta ) beta ˜ -0.7 to beta ˜ -2.7 without change in the spectral index (nu +alpha ; alpha ˜ -0.81). This decline is best described not as a power-law, but as an exponential decay with an e-folding time of ˜ 1100 days. 3) The best overall fit to all of the data is a model including both non-thermal synchrotron self-absorption (SSA) and a thermal free-free absorbing (FFA) components at early times, evolving to a constant spectral index, optically thin decline rate, until a break in that decline rate at day ˜3100, as mentioned above.

  6. Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages

    NASA Astrophysics Data System (ADS)

    Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark

    2014-05-01

    The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.

  7. 75 FR 52649 - Radio Broadcasting Services; DeBeque, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... substitution of Channel 247C3 for vacant Channel 275C3 at DeBeque, Colorado. See 75 FR 4036, published January... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; DeBeque, Colorado AGENCY: Federal Communications... Congressional Review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Radio,...

  8. Measuring inorganic nitrate species with short time resolution from an aircraft platform by dual-channel ozone chemiluminescence

    NASA Astrophysics Data System (ADS)

    Tanner, Roger L.; Valente, Ralph J.; Meagher, James F.

    1998-09-01

    A measurement technique for determining nitrate (the sum of nitric acid and particulate nitrate) with a few seconds time resolution in plumes is needed to resolve within-plume features. A technique using dual ozone-chemiluminescent NO detectors with a selective nitrate scrubber in one sampling train is promising if used with an appropriate sampling inlet, and if nitrate is the desired analyte. We report the design of, and preliminary results from a dual channel ozone-chemiluminescent system, each channel containing a gold-CO catalyzed converter which reduces all odd nitrogen species (NOy) quantitatively to NO; one channel also contains a nylon filter to remove nitrate from the air stream prior to the converter (this signal is termed NOy*). This system was deployed successfully in a Bell 205 helicopter during the 1995 Southern Oxidants Study Nashville Ozone Study. The converters were mounted forward near the air intake, and zero air and calibration gases admitted simultaneously to both channels during flight operations. The difference signal between the two channels (NOy-NOy*) indicated apparent nitrate levels in the sampled air with a time resolution of <5 s and a limit of detection of about 1 ppbv. Nitrate levels observed with this system in plumes and background air during the Nashville Ozone Study were highly correlated with ozone and varied from below detection limits to ≈20 ppbv. Nitrate levels were also highly correlated with the calculated difference between NOy and the sum of NO and NO2 (NOz). Higher nitrate levels as a fraction of NOz were found in power plant plumes (≥60%) compared with urban plumes (≈50%) and background air, consistent with apparently lower ozone production efficiencies in power plant plumes vis-à-vis urban plumes.

  9. An improved dual channel PERCA instrument for atmospheric measurements of peroxy radicals.

    PubMed

    Green, Timothy J; Reeves, Claire E; Fleming, Zoe L; Brough, Neil; Rickard, Andrew R; Bandy, Brian J; Monks, Paul S; Penkett, Stuart A

    2006-05-01

    This paper describes a new dual-channel PEroxy RadiCal Amplification (PERCA) instrument, which has been designed to improve the time resolution and signal to noise and to reduce the interference caused by variations in ambient ozone concentrations. The instrument was run at the Weybourne Atmospheric Observatory (WAO), North Norfolk, during WAOWEX (Weybourne Atmospheric Observatory Winter Experiment) in January/February 2002 and INSPECTRO (Influence of clouds on the spectral actinic flux in the lower troposphere) in September 2002. The performance of the instrument is assessed and compared to that of a single channel instrument. In particular, it is shown how the precision is greatly improved in fluctuating background ozone conditions. In addition the improved time response of the instrument allows changes in peroxy radical concentrations to be related to rapid changes in nitric oxide concentrations and the ozone photolysis frequency, j(O(1)D).

  10. IAA RAS Radio Telescope Monitoring System

    NASA Astrophysics Data System (ADS)

    Mikhailov, A.; Lavrov, A.

    2007-07-01

    Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS) has three identical radio telescopes, the receiving complex of which consists of five two-channel receivers of different bands, six cryogen systems, and additional devices: four local oscillators, phase calibration generators and IF commutator. The design, hardware and data communication protocol are described. The most convenient way to join the devices of the receiving complex into the common monitoring system is to use the interface which allows to connect numerous devices to the data bus. For the purpose of data communication regulation and to exclude conflicts, a data communication protocol has been designed, which operates with complex formatted data sequences. Formation of such sequences requires considerable data processing capability. That is provided by a microcontroller chip in each slave device. The test version of the software for the central computer has been developed in IAA RAS. We are developing the Mark IV FS software extension modules, which will allow us to control the receiving complex of the radio telescope by special SNAP commands from both operator input and schedule files. We are also developing procedures of automatic measurements of SEFD, system noise temperature and other parameters, available both in VLBI and single-dish modes of operation. The system described has been installed on all IAA RAS radio telescopes at "Svetloe", "Zelenchukskaya" and "Badary" observatories. It has proved to be working quite reliably and to show the perfonmance expected.

  11. An L2F-measurement device with image rotator prism for flow velocity analysis in rotating coolant channels

    NASA Astrophysics Data System (ADS)

    Beversdorff, M.; Hein, O.; Schodl, R.

    1993-02-01

    For further improvement of the turbine blade cooling process, the knowledge concerning the heat transfer in radial coolant channels has to be deepened. Due to rotation, the velocity distribution, as well as the turbulence structure and therefore the heat transfer, will be influenced. To carry out experimental data of the flow field within a rotating duct a non-intrusive continuous measuring system (Laser-Two-Focus) with an image rotator prism is presented. The design of the system is explained in detail. Problems of application are discussed and results of the first successful measurements compared with numerical results are presented.

  12. Measurement of the top mass in the all-jets channel with the DO detector at the Fermilab Tevatron Collider

    NASA Astrophysics Data System (ADS)

    Connolly, Brian M.

    We describe a measurement of the top quark mass in tt¯ production where the final state is 6 or more jets, which is otherwise known as the all-jets channel. The mass is extracted from 110.2 pb-1 of data taken with the DO detector at the Fermilab Tevatron (center-of-mass energy s = 1.8 TeV) from 1993--96. The top quark mass is measured to be 176.6+17.1-13.4 GeV/c2. The corresponding cross section is estimated to be 11.5+4.9-4.7 pb.

  13. 47-channel burst-mode recording hydrophone system enabling measurements of the dynamic echolocation behavior of free-swimming dolphins.

    PubMed

    Starkhammar, Josefin; Amundin, Mats; Nilsson, Johan; Jansson, Tomas; Kuczaj, Stan A; Almqvist, Monica; Persson, Hans W

    2009-09-01

    Detailed echolocation behavior studies on free-swimming dolphins require a measurement system that incorporates multiple hydrophones (often >16). However, the high data flow rate of previous systems has limited their usefulness since only minute long recordings have been manageable. To address this problem, this report describes a 47-channel burst-mode recording hydrophone system that enables highly resolved full beamwidth measurements on multiple free-swimming dolphins during prolonged recording periods. The system facilitates a wide range of biosonar studies since it eliminates the need to restrict the movement of animals in order to study the fine details of their sonar beams.

  14. Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements

    NASA Astrophysics Data System (ADS)

    Hase, Frank; Frey, Matthias; Kiel, Matthäus; Blumenstock, Thomas; Harig, Roland; Keens, Axel; Orphal, Johannes

    2016-05-01

    The portable FTIR (Fourier transform infrared) spectrometer EM27/SUN, dedicated to the precise and accurate observation of column-averaged abundances of methane and carbon dioxide, has been equipped with a second detector channel, which allows the detection of additional species, especially carbon monoxide. This allows an improved characterisation of observed carbon dioxide enhancements and makes the extended spectrometer especially suitable as a validation tool of ESA's Sentinel 5 Precursor mission, as it now covers the same spectral region as used by the infrared channel of the TROPOMI (TROPOspheric Monitoring Instrument) sensor. The extension presented here does not rely on a dichroic, but instead a fraction of the solar beam is decoupled near the aperture stop of the spectrometer using a small plane mirror. This approach allows maintaining the camera-controlled solar tracker set-up, which is referenced to the field stop in front of the primary detector. Moreover, the upgrade of existing instruments can be performed without alterating the optical set-up of the primary channel and resulting changes of the instrumental characteristics of the original instrument.

  15. Saturn's variable radio period

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Lecacheux, A.; Zarka, P.; Gurnett, D. A.; Cecconi, B.

    Temporal modulations in radio emissions are often used to determine the rotation rate of the emitting body. The rotation period (presumably) of Jupiter's interior was established in this way [Burke et al., 1962] and has recently been refined by Higgins et al. [1997]. Rotation periods for the remainder of the outer planet gas giants were determined from Voyager planetary radio astronomy observations. Similar techniques have been applied to astrophysical objects, including pulsars, for which the radio period is assumed to be the rotation period of the neutron star. In 2001, however, this simple relation between the radio period and rotation period became suspect, at least for the case of Saturn. Galopeau and Lecacheux [2001] reported that the radio period of Saturn had changed by as much as 1% from that determined by Voyager and, further, exhibited variations on time scales of years. More recently, Cassini observations indicate that the Saturn kilometric radiation is modulated with a period longer than that observed by Voyager and that this period is variable on a time scale of a year or less. The recent Higgins et al. result suggests that Jupiter's period is steady, within measurement accuracy. There are no additional measurements from Uranus or Neptune with which to look for time variations in their radio periods. For conservation of energy and angular momentum reasons, true variations of the rotation period of Saturn's deep interior are not believed to be a viable explanation for the variation in radio period, hence, it would appear that there is some disconnection of the radio period from the rotation period in the case of Saturn. One possible contributing factor may be that since Saturn's magnetic field is very accurately aligned with its rotational axis, there is no first-order beaming effect caused by the wobbling of the magnetic field, contrary to the situation at the other magnetized planets. Another explanation suggested by Galopeau and Lecacheux [2001] and

  16. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Kellermann, Kenneth I.; Heeschen, David; Backer, Donald C.; Cohen, Marshall H.; Davis, Michael; Depater, Imke; Deyoung, David; Dulk, George A.; Fisher, J. R.; Goss, W. Miller

    1991-01-01

    The following subject areas are covered: (1) scientific opportunities (millimeter and sub-millimeter wavelength astronomy; meter to hectometer astronomy; the Sun, stars, pulsars, interstellar masers, and extrasolar planets; the planets, asteroids, and comets; radio galaxies, quasars, and cosmology; and challenges for radio astronomy in the 1990's); (2) recommendations for new facilities (the millimeter arrays, medium scale instruments, and small-scale projects); (3) continuing activities and maintenance, upgrading of telescopes and instrumentation; (4) long range programs and technology development; and (5) social, political, and organizational considerations.

  17. Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Pinar, F. Javier; Úbeda, Diego

    To improve fuel cell design and performance, research studies supported by a wide variety of physical and electrochemical methods have to be carried out. Among the different techniques, current distribution measurement owns the desired feature that can be performed during operation, revealing information about internal phenomena when the fuel cell is working. Moreover, short durability is one of the main problems that is hindering fuel cell wide implementation and it is known to be related to current density heterogeneities over the electrode surface. A good flow channel geometry design can favor a uniform current density profile, hence hypothetically extending fuel cell life. With this, it was thought that a study on the influence of flow channel geometry on the performance of a high temperature polymer electrolyte membrane (PEM) fuel cell using current distribution measurement should be a very solid work to optimize flow field design. Results demonstrate that the 4 step serpentine and pin-type geometries distribute the reactants more effectively, obtaining a relatively flat current density map at higher current densities than parallel or interdigitated ones and yielding maximum powers up to 25% higher when using oxygen as comburent. If air is the oxidant chosen, interdigitated flow channels perform almost as well as serpentine or pin-type due to that the flow conditions are very important for this geometry.

  18. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  19. Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera

    USGS Publications Warehouse

    Jaumann, R.; Reiss, D.; Frei, S.; Neukum, G.; Scholten, F.; Gwinner, K.; Roatsch, T.; Matz, K.-D.; Mertens, V.; Hauber, E.; Hoffmann, H.; Kohler, U.; Head, J.W.; Hiesinger, H.; Carr, M.H.

    2005-01-01

    In High Resolution Stereo Camera (HRSC) images of the Mars Express Mission a 130 km long interior channel is identified within a 400 km long valley network system located in the Lybia Montes. Ages of the valley floor and the surroundings as derived from crater counts define a period of ???350 Myrs during which the valley might have been formed. Based on HRSC stereo measurements the discharge of the interior channel is estimated at ???4800 in m3/S, corresponding to a runoff production rate of ??? cm/day. Mass balances indicate erosion rates of a few cm/year implying the erosion activity in the valley to a few thousand years for continuous flow, or one or more orders of magnitude longer time spans for more intermittent flows. Therefore, during the Hesperian, relatively brief but recurring episodes of erosion intervals are more likely than sustained flow. Copyright 2005 by the American Geophysical Union.

  20. Non-invasive cerebral blood volume measurement during seizures using multi-channel near infrared spectroscopic topography

    NASA Astrophysics Data System (ADS)

    Watanabe, Eiju; Maki, Atsushi; Kawaguchi, Fumio; Yamashita, Yuichi; Koizumi, Hideaki; Mayanagi, Yoshiaki

    2000-07-01

    Near infrared spectroscopic topography (NIRS) is widely recognized as a noninvasive method to measure the regional cerebral blood volume (rCBV) dynamics coupled with neuronal activities. We analyzed the rCBV change in the early phase of epileptic seizures in 12 consecutive patients with medically intractable epilepsy. Seizure was induced by bemegride injection. We used eight-channel NIRS in nine cases and 24 channel in three cases. In all of the cases, rCBV increased rapidly after the seizure onset on the focus side. The increased rCBV was observed for about 30 - 60 s. The NIRS method can be applied to monitor the rCBV change continuously during seizures. Therefore, this method may be combined with ictal SPECT as one of the most reliable noninvasive methods of focus diagnosis.

  1. Initial Measurement of Intrapixel Variations in Back-Illuminated, High-Resistivity, p-Channel, Charge Coupled Device

    NASA Astrophysics Data System (ADS)

    Puls, Jason; Oluseyi, Hakeem M.

    2008-05-01

    In 1929 Edwin Hubble discovered the universe's expansion. Seventy years later it was unexpectedly found that the rate of expansion is accelerating due to some vast cosmic energy. This cosmic energy, apparently gravitationally repulsive and spread homogeneously through the universe, has come to be known as dark energy. To better understand this universal force, scientists utilize Type Ia supernovae and weak gravitational lensing as cosmological probes. Lawrence Berkeley National Laboratory (LBNL) is developing the Supernova Acceleration Probe (SNAP), a proposed space-based telescope that will be used to identify and measure supernovae and measure weak gravitational lensing signals across fifteen square degrees of the sky. The SNAP telescope will incorporate an innovative camera that consists of back-illuminated, high-resistivity, p-channel charged coupled devices (CCDs) for visible to near-infrared light detection. Presented are results obtained from the measurement and analysis of a 10.5 μm pixel pitch, 1.4k by 1.4k format, p-channel CCD fabricated on high-resistivity silicon at LBNL. The fully depleted device is 300 μm thick and backside illuminated. We report on the first measurement of the intrapixel sensitivity and spatial variations of these CCDs. We also report measurements of electric field distortions near the edges of the CCD active area.

  2. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins

    PubMed Central

    Afanasyev, Vsevolod; Buldyrev, Sergey V.; Dunn, Michael J.; Robst, Jeremy; Preston, Mark; Bremner, Steve F.; Briggs, Dirk R.; Brown, Ruth; Adlard, Stacey; Peat, Helen J.

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge’s accurate performance and demonstrates how its design is a significant improvement on existing systems. PMID:25894763

  3. Measurements of distributed polarized radio sources from spinning spacecraft - Effect of a tilted axial antenna ISEE-3 application and results

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Hoang, S.; Manning, R.

    1985-01-01

    An analysis is presented of the system response of a satellite receiver-antenna system to locate a radio source when the satellite is tilted on its axis. The satellite is spin stabilized but experiences a tilt due to either a mechanical misalignment or a shift in the electrical axis caused by parasitic currents in other spacecraft structures. The shorter the antenna, the more significant the effects. Numerical techniques are developed for obtaining the Stokes parameters and the angular parameters of a uniform conical source sensed by a linear antenna in order to derive the average power response of a synthesized dipole to a point on a distributed polarized source. Relative gains are calculated along the antenna at different angles to the source. The techniques are applied to sample ISEE-3 satellite data for Type III solar radio bursts which were sensed by an axial and an equatorial antenna. The two antennas permit localization of the source and quantification of the polarization and angular extent of the source. The resulting high precision in calculations of all three source parameters commends use of the model in analyses of data from the planned ULYSSES mission.

  4. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins.

    PubMed

    Afanasyev, Vsevolod; Buldyrev, Sergey V; Dunn, Michael J; Robst, Jeremy; Preston, Mark; Bremner, Steve F; Briggs, Dirk R; Brown, Ruth; Adlard, Stacey; Peat, Helen J

    2015-01-01

    A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge's accurate performance and demonstrates how its design is a significant improvement on existing systems.

  5. Comets at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Crovisier, Jacques; Bockelée-Morvan, Dominique; Colom, Pierre; Biver, Nicolas

    2016-11-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe. xml:lang="fr"

  6. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits

    PubMed Central

    Halgamuge, Malka N.

    2015-01-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82–0.86 V/m), the highest on the bridge roof (2.15–3.70 V/m) and in between on the bridge deck (0.47–1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with

  7. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits.

    PubMed

    Halgamuge, Malka N

    2015-05-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82-0.86 V/m), the highest on the bridge roof (2.15-3.70 V/m) and in between on the bridge deck (0.47-1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger

  8. The Measurement and Analysis of System Noise Temperatures of the TM65m Radio Telescope at Low Frequency Bands1,2

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Qing; Yu, Lin-Feng; Zhao, Rong-Bing; Jiang, Dong-Rong; Lou, Fang-Xun; Lao, Bao-Qiang; Li, Bing; Dong, Jian; Fan, Qing-Yuan; Qian, Zhi-Han; Liu, Qing-Hui; Jiang, Yong-Bin

    2015-07-01

    At first, the receiving system of the Tianma 65m radio telescope (TM65m in brief) and its noise characteristics at the L, S, C, and X four frequency bands are described. Then, a few measuring methods of system noise temperature are discussed, and the major factors affecting the noise temperature measurement are analyzed, including the errors caused by the non-linearity, feed network insertion loss, mismatch, and so on. With the Y-factor method the noise temperature of the noise source calibrated in the laboratory is verified, indicating that its accuracy attains ∼0.2K. Finally, the system noise temperatures actually measured at the four frequency bands and an analysis on the result are given.

  9. Alternative measures of dispersion applied to flow in a convoluted channel

    NASA Astrophysics Data System (ADS)

    Moroni, Monica; Kleinfelter-Domelle, Natalie; Cushman, John H.

    2009-05-01

    Steady flow in a convoluted channel is studied via Particle Tracking Velocimetry. The channel is constructed from a sequence of closed parallel cylindrical tubes welded together in plane which are then sliced down the lateral mid-plane and the lower complex is laterally shifted relative to the upper complex. Flow is induced in the lateral direction normal to the axis of the tubes. The a-time, Ta, finite-size Lyapunov exponent, λa, and the real-space self- and distinct-part of the intermediate scattering functions, Gs and Gd, and the pair density function, Gp, are computed from the data. Particle trajectories, velocity maps and streamlines show the channel has two prominent recirculation zones and a main flow region. The first passage time probability density function of tagged particles past a plane transverse to the mean flow illustrates how particles are delayed by recirculation zones. The delay caused by fluid element folding is manifested in single particle statistics such as the first passage time and the slowing increase in horizontal evolution of Gs. Gp describes initial particle distribution and allows areas in the flow domain trapping particles to be identified and visualized. Gd shows the evolution of the average separation of pairs of particles and when examined in a recirculation zone, it evolves little because of fluid element rotation. λa gives information on what transpires at a fixed scale and provides an estimate of the rate at which particles initially separated by a distance x separate to a distance ax as opposed to Gd which allows one to view changes over time. At small separations, λ1.3 approaches a constant and for intermediate separations it scales as x-0.8.

  10. Two-channel method for measuring losses in a ring optical resonator at a wavelength of 632.8 nm

    NASA Astrophysics Data System (ADS)

    Azarova, V. V.; Bessonov, A. S.; Bondarev, A. L.; Makeev, A. P.; Petrukhin, E. A.

    2016-07-01

    A two-channel method is proposed for measuring losses in an optical ring resonator (RR), in which eigenmodes (counterpropagating waves) are excited by means of a Zeeman ring He – Ne laser with a wavelength of 632.8 nm. The measured frequency splitting of the laser counterpropgating waves is used to determine the absolute value of losses in an exemplary RR. The value of losses in the measured RR is determined by comparing the resonance width of the output radiation intensity with the resonance width of the radiation intensity for an exemplary resonator. The algorithm of intensity resonance processing takes into account the distortions caused by the dynamic effect, which allows a significant increase in the accuracy (up to 1% – 2%) and sensitivity of the proposed method. The measured losses in the RR with a perimeter of 28 cm constitute 80 – 5000 ppm.

  11. Two-channel method for measuring losses in a ring optical resonator at a wavelength of 632.8 nm

    NASA Astrophysics Data System (ADS)

    Azarova, V. V.; Bessonov, A. S.; Bondarev, A. L.; Makeev, A. P.; Petrukhin, E. A.

    2016-07-01

    A two-channel method is proposed for measuring losses in an optical ring resonator (RR), in which eigenmodes (counterpropagating waves) are excited by means of a Zeeman ring He - Ne laser with a wavelength of 632.8 nm. The measured frequency splitting of the laser counterpropgating waves is used to determine the absolute value of losses in an exemplary RR. The value of losses in the measured RR is determined by comparing the resonance width of the output radiation intensity with the resonance width of the radiation intensity for an exemplary resonator. The algorithm of intensity resonance processing takes into account the distortions caused by the dynamic effect, which allows a significant increase in the accuracy (up to 1% - 2%) and sensitivity of the proposed method. The measured losses in the RR with a perimeter of 28 cm constitute 80 - 5000 ppm.

  12. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.

    PubMed

    Tang, Bo-Hui; Wu, Hua-; Li, Zhao-Liang; Nerry, Françoise

    2012-07-30

    This work addressed the validation of the MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared (MIR) channel, proposed by Tang and Li [Int. J. Remote Sens. 29, 4907 (2008)], with ground-measured data, which were collected from a field campaign that took place in June 2004 at the ONERA (Office National d'Etudes et de Recherches Aérospatiales) center of Fauga-Mauzac, on the PIRRENE (Programme Interdisciplinaire de Recherche sur la Radiométrie en Environnement Extérieur) experiment site [Opt. Express 15, 12464 (2007)]. The leaving-surface spectral radiances measured by a BOMEM (MR250 Series) Fourier transform interferometer were used to calculate the ground brightness temperatures with the combination of the inversion of the Planck function and the spectral response functions of MODIS channels 22 and 23, and then to estimate the ground brightness temperature without the contribution of the solar direct beam and the bidirectional reflectivity by using Tang and Li's proposed algorithm. On the other hand, the simultaneously measured atmospheric profiles were used to obtain the atmospheric parameters and then to calculate the ground brightness temperature without the contribution of the solar direct beam, based on the atmospheric radiative transfer equation in the MIR region. Comparison of those two kinds of brightness temperature obtained by two different methods indicated that the Root Mean Square Error (RMSE) between the brightness temperatures estimated respectively using Tang and Li's algorithm and the atmospheric radiative transfer equation is 1.94 K. In addition, comparison of the hemispherical-directional reflectances derived by Tang and Li's algorithm with those obtained from the field measurements showed that the RMSE is 0.011, which indicates that Tang and Li's algorithm is feasible to retrieve the bidirectional reflectivity in MIR channel from MODIS data.

  13. Measurement of a structured backflow in an open small channel induced by surface-tension gradients.

    PubMed

    Pulido-Companys, Alba; Claret, Josep; Ignés-Mullol, Jordi; Sagués, Francesc

    2013-05-24

    We present experiments in which the laterally confined flow of a surfactant film driven by controlled surface tension gradients causes the subtended liquid layer to self-organize into an inner upstream microduct surrounded by the downstream flow. The anomalous interfacial flow profiles and the concomitant backflow are a result of the feedback between two-dimensional and three-dimensional microfluidics realized during flow in open microchannels. Bulk and surface particle image velocimetry data combined with an interfacial hydrodynamics model explain the dependence of the observed phenomena on channel geometry.

  14. A photoelectric technique for measuring lightning-channel propagation velocities from a mobile laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Rust, W. David

    1989-01-01

    The present device for lightning channel propagation-velocity determination employs eight photodetectors mounted behind precision horizontal slits in the focal plane of a photographic camera lens. The eight photodetector pulses, IRIG-B time, and slow and fast electric field-change waveforms are recorded on a 14-track analog tape recorder. A comparison of the present results with those obtained by a streaking camera shows no significant differences between the velocities obtained from the same strokes with the two systems; neither is there any difference in pulse characteristics or in the velocities calculated from them.

  15. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.

    PubMed

    Gao, Yue-Ming; Wu, Zhu-Mei; Pun, Sio-Hang; Mak, Peng-Un; Vai, Mang-I; Du, Min

    2016-01-01

    Existing research on human channel modeling of galvanic coupling intra-body communication (IBC) is primarily focused on the human body itself. Although galvanic coupling IBC is less disturbed by external influences during signal transmission, there are inevitable factors in real measurement scenarios such as the parasitic impedance of electrodes, impedance matching of the transceiver, etc. which might lead to deviations between the human model and the in vivo measurements. This paper proposes a field-circuit finite element method (FEM) model of galvanic coupling IBC in a real measurement environment to estimate the human channel gain. First an anisotropic concentric cylinder model of the electric field intra-body communication for human limbs was developed based on the galvanic method. Then the electric field model was combined with several impedance elements, which were equivalent in terms of parasitic impedance of the electrodes, input and output impedance of the transceiver, establishing a field-circuit FEM model. The results indicated that a circuit module equivalent to external factors can be added to the field-circuit model, which makes this model more complete, and the estimations based on the proposed field-circuit are in better agreement with the corresponding measurement results. PMID:27049386