Sample records for radio frequency driven

  1. Radio frequency identification-enabled capabilities in a healthcare context: An exploratory study.

    PubMed

    Hornyak, Rob; Lewis, Mark; Sankaranarayan, Balaji

    2016-09-01

    Increasingly, the adoption and use of radio frequency identification systems in hospital settings is gaining prominence. However, despite the transformative impact that radio frequency identification has in healthcare settings, few studies have examined how and why this change may occur. The purpose of this study is to systematically understand how radio frequency identification can transform work practices in an operational process that directly impacts cost and operational efficiency and indirectly contributes to impacting patient safety and quality of care. We leverage an interdisciplinary framework to explore the contextual characteristics that shape the assimilation of radio frequency identification in healthcare settings. By linking the use of radio frequency identification with specific contextual dimensions in healthcare settings, we provide a data-driven account of how and why radio frequency identification can be useful in inventory management in this setting. In doing so, we also contribute to recent work by information systems scholars who argue for a reconfiguration of conventional assumptions regarding the role of technology in contemporary organizations. © The Author(s) 2015.

  2. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  3. Diffuse Interplanetary Radio Emission (DIRE) Accompanying Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Teklu, T. B.; Gopalswamy, N.; Makela, P. A.; Yashiro, S.; Akiyama, S.; Xie, H.

    2015-12-01

    We report on an unusual drifting feature in the radio dynamic spectra at frequencies below 14 MHz observed by the Radio and Plasma Wave (WAVES) experiment on board the Wind spacecraft. We call this feature as "Diffuse Interplanetary Radio Emission (DIRE)". The DIRE events are generally associated with intense interplanetary type II radio bursts produced by shocks driven by coronal mass ejections (CMEs). DIREs drift like type II bursts in the dynamic spectra, but the drifting feature consist of a series of short-duration spikes (similar to a type I chain). DIREs occur at higher frequencies than the associated type II bursts, with no harmonic relationship with the type II burst. The onset of DIREs is delayed by several hours from the onset of the eruption. Comparing the radio dynamic spectra with white-light observations from the Solar and Heliospheric Observatory (SOHO) mission, we find that the CMEs are generally very energetic (fast and mostly halos). We suggest that the DIRE source is typically located at the flanks of the CME-driven shock that is still at lower heliocentric distances.

  4. Division x: Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, Russ; Chapman, Jessica; Rendong, Nan; Carilli, Christopher; Giovannini, Gabriele; Hills, Richard; Hirabayashi, Hisashi; Jonas, Justin; Lazio, Joseph; Morganti, Raffaella; Rubio, Monica; Shastri, Prajval

    2012-04-01

    This triennium has seen a phenomenal investment in development of observational radio astronomy facilities in all parts of the globe at a scale that significantly impacts the international community. This includes both major enhancements such as the transition from the VLA to the EVLA in North America, and the development of new facilities such as LOFAR, ALMA, FAST, and Square Kilometre Array precursor telescopes in Australia and South Africa. These developments are driven by advances in radio-frequency, digital and information technologies that tremendously enhance the capabilities in radio astronomy. These new developments foreshadow major scientific advances driven by radio observations in the next triennium. We highlight these facility developments in section 3 of this report. A selection of science highlight from this triennium are summarized in section 2.

  5. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  6. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  7. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  8. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    NASA Astrophysics Data System (ADS)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  9. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  10. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.

    2016-07-15

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  11. Do Radio Jets Contribute to Driving Ionized Gas Outflows in Moderate Luminosity Type 2 AGN?

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Sajina, Anna; Lacy, Mark

    2016-01-01

    This poster examines the role of AGN-driven feedback in low to intermediate power radio galaxies. We begin with [OIII] measurements of ionized gas outflows in 29 moderate AGN-luminosity z~0.3-0.7 dust-obscured Type 2 AGN. We aim to examine the relative role of the AGN itself, of star-formation and of nascent radio jets in driving these outflows. The strength of the AGN and star formation are based on the [OIII] luminosities, and the far-IR luminosities respectively. For the radio jets, we present multi-frequency radio (X, S, and L-bands) JVLA imaging of our sample, which allows us both to constrain the overall radio power, but also look for signatures of young radio sources, including Giga-hertz Peaked Spectrum (GPS) sources, as well as small-scale jets. While radio jet-driven outflows are well known for powerful radio-loud galaxies, this study allows us to constrain the degree to which this mechanism is significant at more modest radio luminosities of L5GHz~10^22-25 W/Hz.

  12. Spectral and spatial characterisation of laser-driven positron beams

    DOE PAGES

    Sarri, G.; Warwick, J.; Schumaker, W.; ...

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less

  13. Equivalent circuit of radio frequency-plasma with the transformer model

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mochizuki, S.; Ohta, M.; Yasumoto, M.; Lettry, J.; Mattei, S.; Hatayama, A.

    2014-02-01

    LINAC4 H- source is radio frequency (RF) driven type source. In the RF system, it is required to match the load impedance, which includes H- source, to that of final amplifier. We model RF plasma inside the H- source as circuit elements using transformer model so that characteristics of the load impedance become calculable. It has been shown that the modeling based on the transformer model works well to predict the resistance and inductance of the plasma.

  14. A radio-frequency sheath model for complex waveforms

    NASA Astrophysics Data System (ADS)

    Turner, M. M.; Chabert, P.

    2014-04-01

    Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.

  15. Low Frequency Radio Experiment (LORE)

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.; Naidu, Arun; Joshi, B. C.; Roy, Jayashree; Kate, G.; Pethe, Kaiwalya; Galande, Shridhar; Jamadar, Sachin; Mahajan, S. P.; Patil, R. A.

    2016-03-01

    In this paper, we present a case study of Low Frequency Radio Experiment (LORE) payload to probe the corona and the solar disturbances at solar offsets greater than 2 solar radii, i.e., at frequencies below 30 MHz. The LORE can be complimentary to the planned Indian solar mission, “Aditya-L1” and its other payloads as well as synergistic to ground-based interplanetary scintillation (IPS) observations, which are routinely carried out by the Ooty Radio Telescope. We discuss the baseline design and technical details of the proposed LORE and its particular suitability for providing measurements on the detailed time and frequency structure of fast drifting type-III and slow drifting type-II radio bursts with unprecedented time and frequency resolutions. We also brief the gonio-polarimetry, which is possible with better-designed antennas and state-of-the-art electronics, employing FPGAs and an intelligent data management system. These would enable us to make a wide range of studies, such as nonlinear plasma processes in the Sun-Earth distance, in-situ radio emission from coronal mass ejections (CMEs), interplanetary CME driven shocks, nature of ICMEs driving decelerating IP shocks and space weather effects of solar wind interaction regions.

  16. Frequency-doubled microwave waveforms generation using a dual-polarization quadrature phase shift keying modulator driven by a single frequency radio frequency signal

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2018-01-01

    A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.

  17. A Semianalytical Ion Current Model for Radio Frequency Driven Collisionless Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We propose a semianalytical ion dynamics model for a collisionless radio frequency biased sheath. The model uses bulk plasma conditions and electrode boundary condition to predict ion impact energy distribution and electrical properties of the sheath. The proposed model accounts for ion inertia and ion current modulation at bias frequencies that are of the same order of magnitude as the ion plasma frequency. A relaxation equation for ion current oscillations is derived which is coupled with a damped potential equation in order to model ion inertia effects. We find that inclusion of ion current modulation in the sheath model shows marked improvements in the predictions of sheath electrical properties and ion energy distribution function.

  18. A method for computing ion energy distributions for multifrequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Alan C. F.; Lieberman, M. A.; Verboncoeur, J. P.

    2007-03-01

    The ion energy distribution (IED) at a surface is an important parameter for processing in multiple radio frequency driven capacitive discharges. An analytical model is developed for the IED in a low pressure discharge based on a linear transfer function that relates the time-varying sheath voltage to the time-varying ion energy response at the surface. This model is in good agreement with particle-in-cell simulations over a wide range of single, dual, and triple frequency driven capacitive discharge excitations.

  19. Current drive at plasma densities required for thermonuclear reactors.

    PubMed

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  20. NAVAIR Avionics Master Plan.

    DTIC Science & Technology

    1981-02-26

    data rates, sufficient to handle radio frequency infor- mation. It also diminishes the vulnerability of the data paths to extraneous interferences from...The 1990 system will be unusable if Electromagnetic Interference (EMI)/Electromagnetic Pulse (EMP)/temperature/shock environments are not successfully...direct result of technological advancements driven by over utilization of the lower frequency spectrum (resulting in signal interference ) as well as

  1. Phase-locking dynamics in optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath

    2018-05-01

    This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.

  2. A novel four-wire-driven robotic catheter for radio-frequency ablation treatment.

    PubMed

    Yoshimitsu, Kitaro; Kato, Takahisa; Song, Sang-Eun; Hata, Nobuhiko

    2014-09-01

       Robotic catheters have been proposed to increase the efficacy and safety of the radio-frequency ablation treatment. The robotized motion of current robotic catheters mimics the motion of manual ones-namely, deflection in one direction and rotation around the catheter. With the expectation that the higher dexterity may achieve further efficacy and safety of the robotically driven treatment, we prototyped a four-wire-driven robotic catheter with the ability to deflect in two- degree-of-freedom motions in addition to rotation.    A novel quad-directional structure with two wires was designed and developed to attain yaw and pitch motion in the robotic catheter. We performed a mechanical evaluation of the bendability and maneuverability of the robotic catheter and compared it with current manual catheters.    We found that the four-wire-driven robotic catheter can achieve a pitching angle of 184.7[Formula: see text] at a pulling distance of wire for 11 mm, while the yawing angle was 170.4[Formula: see text] at 11 mm. The robotic catheter could attain the simultaneous two- degree-of-freedom motions in a simulated cardiac chamber.    The results indicate that the four-wire-driven robotic catheter may offer physicians the opportunity to intuitively control a catheter and smoothly approach the focus position that they aim to ablate.

  3. Resonance of magnetization excited by voltage in magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Yu, Guoliang; Zhang, Huaiwu; Li, Yuanxun; Li, Jie; Zhang, Dainan; Sun, Nian

    2018-04-01

    Manipulation of magnetization dynamics is critical for spin-based devices. Voltage driven magnetization resonance is promising for realizing low-power information processing systems. Here, we show through Finite Element Method (FEM) simulations that magnetization resonance in nanoscale magnetic elements can be generated by a radio frequency (rf) voltage via the converse magnetoelectric (ME) effect. The magnetization dynamics induced by voltage in a ME heterostructures is simulated by taking into account the magnetoelastic and piezoelectric coupling mechanisms among magnetization, strain and voltage. The frequency of the excited magnetization resonance is equal to the driving rf voltage frequency. The proposed voltage driven magnetization resonance excitation mechanism opens a way toward energy-efficient spin based device applications.

  4. Improved transfer efficiencies in radio-frequency-driven recoupling solid-state NMR by adiabatic sweep through the dipolar recoupling condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straasø, Lasse A.; Shankar, Ravi; Nielsen, Niels Chr.

    The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence tomore » mediate efficient {sup 13}CO to {sup 13}C{sub α} polarization transfer for uniformly {sup 13}C,{sup 15}N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly {sup 13}C,{sup 15}N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%–20% depending on the spectral regions of interest.« less

  5. Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Godfroy, Thomas J. (Inventor); Bitteker, Leo (Inventor)

    2006-01-01

    Apparatus and methods are provided through which a radiofrequency dielectric heater has a cylindrical form factor, a variable thermal energy deposition through variations in geometry and composition of a dielectric, and/or has a thermally isolated power input.

  6. Trapped strontium ion optical clock

    NASA Astrophysics Data System (ADS)

    Barwood, G. P.; Gill, P.; Klein, H. A.; Hosaka, K.; Huang, G.; Lea, S. N.; Margolis, H. S.; Szymaniec, K.; Walton, B. R.

    2017-11-01

    Increasingly stringent demands on atomic timekeeping, driven by applications such as global navigation satellite systems (GNSS), communications, and very-long baseline interferometry (VBLI) radio astronomy, have motivated the development of improved time and frequency standards. There are many scientific applications of such devices in space.

  7. Observations and Analyses of Heliospheric Faraday Rotation of a Coronal Mass Ejection (CME) Using the LOw Frequency ARray (LOFAR) and Space-Based Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Bisi, Mario Mark; Jensen, Elizabeth; Sobey, Charlotte; Fallows, Richard; Jackson, Bernard; Barnes, David; Giunta, Alessandra; Hick, Paul; Eftekhari, Tarraneh; Yu, Hsiu-Shan; Odstrcil, Dusan; Tokumaru, Munetoshi; Wood, Brian

    2017-04-01

    Geomagnetic storms of the highest intensity are general driven by coronal mass ejections (CMEs) impacting the Earth's space environment. Their intensity is driven by the speed, density, and, most-importantly, their magnetic-field orientation and magnitude of the incoming solar plasma. The most-significant magnetic-field factor is the North-South component (Bz in Geocentric Solar Magnetic - GSM - coordinates). At present, there are no reliable prediction methods available for this magnetic-field component ahead of the in-situ monitors around the Sun-Earth L1 point. Observations of Faraday rotation (FR) can be used to attempt to determine average magnetic-field orientations in the inner heliosphere. Such a technique has already been well demonstrated through the corona, ionosphere, and also the interstellar medium. Measurements of the polarisation of astronomical (or spacecraft in superior conjunction) radio sources (beacons/radio frequency carriers) through the inner corona of the Sun to obtain the FR have been demonstrated but mostly at relatively-high radio frequencies. Here we show some initial results of true heliospheric FR using the Low Frequency Array (LOFAR) below 200 MHz to investigate the passage of a coronal mass ejection (CME) across the line of sight. LOFAR is a next-generation low-frequency radio interferometer, and a pathfinder to the Square Kilometre Array (SKA) - LOW telescope. We demonstrate preliminary heliospheric FR results through the analysis of observations of pulsar J1022+1001, which commenced on 13 August 2014 at 13:00UT and spanned over 150 minutes in duration. We also show initial comparisons to the FR results via various modelling techniques and additional context information to understand the structure of the inner heliosphere being detected. This observation could indeed pave the way to an experiment which might be implemented for space-weather purposes that will eventually lead to a near-global method for determining the magnetic field throughout the inner heliosphere.

  8. Overview of Solar Radio Bursts and their Sources

    NASA Astrophysics Data System (ADS)

    Golla, Thejappa; MacDowall, Robert J.

    2018-06-01

    Properties of radio bursts emitted by the Sun at frequencies below tens of MHz are reviewed. In this frequency range, the most prominent radio emissions are those of solar type II, complex type III and solar type IV radio bursts, excited probably by the energetic electron populations accelerated in completely different environments: (1) type II bursts are due to non-relativistic electrons accelerated by the CME driven interplanetary shocks, (2) complex type III bursts are due to near-relativistic electrons accelerated either by the solar flare reconnection process or by the SEP shocks, and (3) type IV bursts are due to relativistic electrons, trapped in the post-eruption arcades behind CMEs; these relativistic electrons probably are accelerated by the continued reconnection processes occurring beneath the CME. These radio bursts, which can serve as the natural plasma probes traversing the heliosphere by providing information about various crucial space plasma parameters, are also an ideal instrument for investigating acceleration mechanisms responsible for the high energy particles. The rich collection of valuable high quality radio and high time resolution in situ wave data from the WAVES experiments of the STEREO A, STEREO B and WIND spacecraft has provided an unique opportunity to study these different radio phenomena and understand the complex physics behind their excitation. We have developed Monte Carlo simulation techniques to estimate the propagation effects on the observed characteristics of these low frequency radio bursts. We will present some of the new results and describe how one can use these radio burst observations for space weather studies. We will also describe some of the non-linear plasma processes detected in the source regions of both solar type III and type II radio bursts. The analysis and simulation techniques used in these studies will be of immense use for future space based radio observations.

  9. Theory of ion Bernstein wave induced shear suppression of turbulence

    NASA Astrophysics Data System (ADS)

    Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.

    1994-06-01

    The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.

  10. Toward a Mobility-Driven Architecture for Multimodal Underwater Networking

    DTIC Science & Technology

    2017-02-01

    applications. By equipping AUVs with short-range, high -bandwidth underwater wireless communications , which feature lower energy-per-bit cost than acoustic...protocols. They suffer from significant transmission path losses at high frequencies , long propagation delays, low and distance-dependent bandwidth, time...of data preprocessing, data compression, and either tethering to a surface buoy able to use radio frequency (RF) communications or using undersea

  11. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Song, Jin Dong; Srinivasan, Kartik

    2016-01-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains. PMID:27446234

  12. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    NASA Astrophysics Data System (ADS)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  13. Magnetoplasmonic RF mixing and nonlinear frequency generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.

    2016-07-04

    We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less

  14. Clicker Evolution: Seeking Intelligent Design

    ERIC Educational Resources Information Center

    Barber, Maryfran; Njus, David

    2007-01-01

    Two years after the first low-cost radio-frequency audience response system using clickers was introduced for college classrooms, at least six different systems are on the market. Their features and user-friendliness are evolving rapidly, driven by competition and improving technology. The proliferation of different systems is putting pressure on…

  15. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    DTIC Science & Technology

    2008-03-01

    Conductor PMC: Perfect Magnetic Conductor RF: Radio Frequency RH: Right-handed SNG : Single Negative TACAN: Tactical Air Navigation UAV: Unmanned Aerial...negative ( SNG ) and double-negative (DNG) materials, and their fascinating properties have driven the interest in MTMs (Engheta and Ziolkowski, 2006

  16. Observation of a variable sub-THz radiation driven by a low energy electron beam from a thermionic rf electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A. V.; Agustsson, R.; Berg, W. J.

    We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less

  17. Observation of a variable sub-THz radiation driven by a low energy electron beam from a thermionic rf electron gun

    DOE PAGES

    Smirnov, A. V.; Agustsson, R.; Berg, W. J.; ...

    2015-09-29

    We report observations of an intense sub-THz radiation extracted from a ~3 MeV electron beam with a flat transverse profile propagating between two parallel oversized copper gratings with side openings. Low-loss radiation outcoupling is accomplished using a horn antenna and a miniature permanent magnet separating sub-THz and electron beams. A tabletop experiment utilizes a radio frequency thermionic electron gun delivering a thousand momentum-chirped microbunches per macropulse and an alpha-magnet with a movable beam scraper producing sub-mm microbunches. The radiated energy of tens of micro-Joules per radio frequency macropulse is demonstrated. The frequency of the radiation peak was generated and tunedmore » across two frequency ranges: (476–584) GHz with 7% instantaneous spectrum bandwidth, and (311–334) GHz with 38% instantaneous bandwidth. In this study, the prototype setup features a robust compact source of variable frequency, narrow bandwidth sub-THz pulses.« less

  18. Radio frequency multicusp ion source development (invited)

    NASA Astrophysics Data System (ADS)

    Leung, K. N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.

  19. Tunable photonic band gaps and optical nonreciprocity by an RF-driving ladder-type system in moving optical lattice

    NASA Astrophysics Data System (ADS)

    Ba, Nuo; Zhong, Xin; Wang, Lei; Fei, Jin-You; Zhang, Yan; Bao, Qian-Qian; Xiao, Li

    2018-03-01

    We investigate photonic transport properties of the 1D moving optical lattices filled with vast cold atoms driven into a four-level ladder-type system and obtain dynamically controlled photonic bandgaps and optical nonreciprocity. It is found that the two obvious optical nonreciprocity can be generated at two well-developed photonic bandgaps based on double dark states in the presence of a radio-frequency field. However, when the radio-frequency field is absence, the only one induced photonic bandgaps with distinguishing optical nonreciprocity can be opened up via single dark state. Dynamic control of the induced photonic bandgaps and optical nonreciprocity could be exploited to achieve all-optical diodes and routing for quantum information networks.

  20. Research to Operations of Ionospheric Scintillation Detection and Forecasting

    NASA Astrophysics Data System (ADS)

    Jones, J.; Scro, K.; Payne, D.; Ruhge, R.; Erickson, B.; Andorka, S.; Ludwig, C.; Karmann, J.; Ebelhar, D.

    Ionospheric Scintillation refers to random fluctuations in phase and amplitude of electromagnetic waves caused by a rapidly varying refractive index due to turbulent features in the ionosphere. Scintillation of transionospheric UHF and L-Band radio frequency signals is particularly troublesome since this phenomenon can lead to degradation of signal strength and integrity that can negatively impact satellite communications and navigation, radar, or radio signals from other systems that traverse or interact with the ionosphere. Although ionospheric scintillation occurs in both the equatorial and polar regions of the Earth, the focus of this modeling effort is on equatorial scintillation. The ionospheric scintillation model is data-driven in a sense that scintillation observations are used to perform detection and characterization of scintillation structures. These structures are then propagated to future times using drift and decay models to represent the natural evolution of ionospheric scintillation. The impact on radio signals is also determined by the model and represented in graphical format to the user. A frequency scaling algorithm allows for impact analysis on frequencies other than the observation frequencies. The project began with lab-grade software and through a tailored Agile development process, deployed operational-grade code to a DoD operational center. The Agile development process promotes adaptive promote adaptive planning, evolutionary development, early delivery, continuous improvement, regular collaboration with the customer, and encourage rapid and flexible response to customer-driven changes. The Agile philosophy values individuals and interactions over processes and tools, working software over comprehensive documentation, customer collaboration over contract negotiation, and responding to change over following a rigid plan. The end result was an operational capability that met customer expectations. Details of the model and the process of operational integration are discussed as well as lessons learned to improve performance on future projects.

  1. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  2. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  3. Impact of RFID on Retail Value Chain: A Mixed Method Study

    ERIC Educational Resources Information Center

    Bhattacharya, Mithu

    2011-01-01

    Radio Frequency Identification (RFID) mandates by large retailers and various government agencies have driven a large number of organizations to roll out the technology. Despite these commitments the business case for RFID is far from reality and is still at its infancy. This dissertation work aims at providing realistic perspective on the…

  4. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  5. The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation

    NASA Astrophysics Data System (ADS)

    Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O'Connell, D.

    2011-10-01

    Absolute densities of metastable He(23S1) atoms were measured line-of-sight integrated along the discharge channel of a capacitively coupled radio-frequency driven atmospheric pressure plasma jet operated in technologically relevant helium-oxygen mixtures by tunable diode-laser absorption spectroscopy. The dependences of the He(23S1) density in the homogeneous-glow-like α-mode plasma with oxygen admixtures up to 1% were investigated. The results are compared with a one-dimensional numerical simulation, which includes a semi-kinetical treatment of the pronounced electron dynamics and the complex plasma chemistry (in total 20 species and 184 reactions). Very good agreement between measurement and simulation is found. The main formation mechanisms for metastable helium atoms are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  6. United States Air Force Summer Faculty Research Program 1989. Program Technical Report. Volume 2

    DTIC Science & Technology

    1989-12-01

    of an Osmotically Dr. Juin Yu Driven Thermal Transfer Cycle 114 The Influence of Viscoelastically Dr. Lawrence Zavodney Damped Members on the Dynamic...Hormones Effect Upon Dr. Rex Moyer Chlamydomonas Phototaxis 166 Influence of Radio Frequency Dr. Raymond Quock Radiation on Psychotropic Drug Effects 167...systems do not cover. Therefore, the use of SHG for creating coherent light at twice the frequency of an- other laser is one way to extend the range

  7. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  8. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  9. Energy resolved actinometry for simultaneous measurement of atomic oxygen densities and local mean electron energies in radio-frequency driven plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur, E-mail: ag941@york.ac.uk; Niemi, Kari; O'Connell, Deborah

    2014-12-08

    A diagnostic method for the simultaneous determination of atomic oxygen densities and mean electron energies is demonstrated for an atmospheric pressure radio-frequency plasma jet. The proposed method is based on phase resolved optical emission measurements of the direct and dissociative electron-impact excitation dynamics of three distinct emission lines, namely, Ar 750.4 nm, O 777.4 nm, and O 844.6 nm. The energy dependence of these lines serves as basis for analysis by taking into account two line ratios. In this frame, the method is highly adaptable with regard to pressure and gas composition. Results are benchmarked against independent numerical simulations and two-photon absorption laser-inducedmore » fluorescence experiments.« less

  10. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  11. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  12. Discovery of radio emission from the symbiotic X-ray binary system GX 1+4

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-02-01

    We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.

  13. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.

  14. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  15. A reprogrammable receiver architecture for wireless signal interception

    NASA Astrophysics Data System (ADS)

    Yao, Timothy S.

    2003-09-01

    In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.

  16. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  17. Ion energy spread and current measurements of the rf-driven multicusp ion source

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  18. Flattened optical frequency-locked multi-carrier generation by cascading one EML and one phase modulator driven by different RF clocks

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Xiao, Jiangnan

    2015-06-01

    We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.

  19. Nonthermal Radiation Processes in Interplanetary Plasmas

    NASA Astrophysics Data System (ADS)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS

  20. The Jansky VLA: Rebuilt for 21st Century Astronomy

    NASA Astrophysics Data System (ADS)

    Hallinan, Gregg

    2016-01-01

    At the start of this decade, the Very Large Array underwent a transformative upgrade. While retaining its original 27 antennas, the signal transmission and processing systems, originally developed and built in the 1970s, have been replaced with state of the art wideband receivers and a new data transmission system, as well as one of the most powerful correlators yet built. With a ten-fold increase in continuum sensitivity, up to 4 million frequency channels and complete frequency coverage from 1-50 GHz, the resulting increase in capability and versatility is analogous to the transition from photographic plate to CCD technology that revolutionized optical astronomy in the 1980s. Post upgrade, the Jansky VLA will be the most sensitive radio interferometer in the world for this decade, probing the sub-uJy radio sky for the first time, and will remain the most versatile, frequency-agile radio telescope for the foreseeable future. Underscoring this versatility, is the VLA's capability to trace both thermal and non-thermal emission over a wide range of spatial, time and velocity resolution. At the highest frequencies, this includes imaging cool gas in high redshift galaxies and dusty disks in nearby protoplanetary systems, while at the lowest frequencies tracing AGN activity and star formation back to the epoch of reionization. In the time domain, the VLA can respond to external triggers within 15 minutes to provide an instantaneous broadband radio spectrum of explosive events. I will review some of the exciting science emerging from the Jansky VLA as well as the range of science-ready data products that will make the VLA increasingly accessible to the wider astronomical community. Finally, I will briefly introduce the new VLA Sky Survey (VLASS), a community-driven project to image 80% of the sky over multiple epochs with the VLA, reaching a depth of ~70 uJy and detecting ~10 million radio sources at high spatial and spectral resolution with full polarization information.

  1. Large-N correlator systems for low frequency radio astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Griffin

    Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.

  2. The GalileoJupiter Probe Doppler Wind Experiment

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.

    2001-09-01

    The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind recovery, the frequency residuals offer tantalizing clues to microstructure in the atmospheric dynamics, including turbulence and wave motion.

  3. Large-Scale Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  4. Thermally driven magnetic precession in spin valves

    NASA Astrophysics Data System (ADS)

    Luc, David; Waintal, Xavier

    2014-10-01

    We investigate the angular dependence of the spin torque generated when applying a temperature difference across a spin valve. Our study shows the presence of a nontrivial fixed point in this angular dependence. This fixed point opens the possibility for a temperature gradient to stabilize radio frequency oscillations without the need for an external magnetic field. This so-called "wavy" behavior can already be found upon applying a voltage difference across a spin valve but we find that this effect is much more pronounced with a temperature difference. We find that a spin asymmetry of the Seebeck coefficient of the order of 20 μ VK -1 should be large enough for a temperature gradient of a few degrees to trigger the radio-frequency oscillations. Our semiclassical theory is fully parametrized with experimentally measured(able) parameters and allows one to quantitatively predict the amplitude of the torque.

  5. The Role of Helium Metastable States in Radio-Frequency Helium-Oxygen Atmospheric Pressure Plasma Jets: Measurement and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah

    2011-10-01

    Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  6. Influences of the shielding cylinder on the length of radio-frequency cold atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Li, Jing; Zhang, Xiao-Fei; Guo, Heng; Chen, Jian; Department of Engineering Physics Team

    2017-10-01

    Cold atmospheric plasma jets driven by a radio frequency power supply contain abundant species and complex chemical reactions, which have wide applications in the fields of materials processing and modifications, food engineering, bio-medical science, etc. Our previous experiments have shown that the total length of a radio-frequency cold atmospheric plasma (RF-CAP) jet can exceed 1 meter with the shielding of a quartz tube. However, the shielding mechanisms of the solid cylinder has not been studied systematically. In this study, a two-dimensional, quasi-steady fluid model is used to investigate the influences of the shielding tube on the length of the RF-CAP jets under different conditions. The simulation results show that the total jet length grows monotonously; while simultaneously, the jet length out of the tube shows a non-monotonic variation trend, with the increase of the tube length, which is in good agreement with the experimental observations. The shielding mechanisms of the solid cylinder on the RF-CAP jet is also discussed in detail based on the modeling results. This work was supported by the National Natural Science Foundation of China (11475103, 21627812), the National Key Research and Development Program of China (2016YFD0102106) and Tsinghua University Initiative Scientific Program (20161080108).

  7. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  8. Radio frequency power load and associated method

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2010-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus includes a container and a fluid having an ion source therein, the fluid being contained in the container. Two conductors are immersed in the fluid. A radio frequency transmission system includes a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus includes a fluid having an ion source therein, and two conductors immersed in the fluid. A method of dissipating power generated by a radio frequency transmission system includes the steps of: immersing two conductors of a radio frequency power load apparatus in a fluid having an ion source therein; and connecting the apparatus to an amplifier of the transmission system.

  9. Non-linear lumped model circuit of capacitively coupled plasmas at the intermediate radio-frequencies

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed

    2018-06-01

    The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.

  10. SGR-like behaviour of the repeating FRB 121102

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Yu, H.

    2017-03-01

    Fast radio bursts (FRBs) are millisecond-duration radio signals occurring at cosmological distances. However the physical model of FRBs is mystery, many models have been proposed. Here we study the frequency distributions of peak flux, fluence, duration and waiting time for the repeating FRB 121102. The cumulative distributions of peak flux, fluence and duration show power-law forms. The waiting time distribution also shows power-law distribution, and is consistent with a non-stationary Poisson process. These distributions are similar as those of soft gamma repeaters (SGRs). We also use the statistical results to test the proposed models for FRBs. These distributions are consistent with the predictions from avalanche models of slowly driven nonlinear dissipative systems.

  11. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...

  12. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...

  13. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...

  14. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation and establish radio frequency radiation power limits or radio frequency radiation exclusion areas as required by...

  15. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    NASA Astrophysics Data System (ADS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  16. RF structure design of the China Material Irradiation Facility RFQ

    NASA Astrophysics Data System (ADS)

    Li, Chenxing; He, Yuan; Xu, Xianbo; Zhang, Zhouli; Wang, Fengfeng; Dou, Weiping; Wang, Zhijun; Wang, Tieshan

    2017-10-01

    The radio frequency structure design of the radio frequency quadrupole (RFQ) for the front end of China Material Irradiation Facility (CMIF), which is an accelerator based neutron irradiation facility for fusion reactor material qualification, has been completed. The RFQ is specified to accelerate 10 mA continuous deuteron beams from the energies of 20 keV/u to 1.5 MeV/u within the vane length of 5250 mm. The working frequency of the RFQ is selected to 162.5 MHz and the inter-vane voltage is set to 65 kV. Four-vane cavity type is selected and the cavity structure is designed drawing on the experience of China Initiative Accelerator Driven System (CIADS) Injector II RFQ. In order to reduce the azimuthal asymmetry of the field caused from errors in fabrication and assembly, a frequency separation between the working mode and its nearest dipole mode is reached to 17.66 MHz by utilizing 20 pairs of π-mode stabilizing loops (PISLs) distributed along the longitudinal direction with equal intervals. For the purpose of tuning, 100 slug tuners were introduced to compensate the errors caused by machining and assembly. In order to obtain a homogeneous electrical field distribution along cavity, vane cutbacks are introduced and output endplate is modified. Multi-physics study of the cavity with radio frequency power and water cooling is performed to obtain the water temperature tuning coefficients. Through comparing to the worldwide CW RFQs, it is indicated that the power density of the designed structure is moderate for operation under continuous wave (CW) mode.

  17. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  18. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  19. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  20. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  1. Comparison between numerical and analytical results on the required rf current for stabilizing neoclassical tearing modes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin

    2018-04-01

    Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.

  2. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  3. The WEAVE-LOFAR Survey

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Best, P. N.; Duncan, K. J.; Hatch, N. A.; Jarvis, M. J.; Röttgering, H. J. A.; Simpson, C. J.; Stott, J. P.; Cochrane, R. K.; Coppin, K. E.; Dannerbauer, H.; Davis, T. A.; Geach, J. E.; Hale, C. L.; Hardcastle, M. J.; Hatfield, P. W.; Houghton, R. C. W.; Maddox, N.; McGee, S. L.; Morabito, L.; Nisbet, D.; Pandey-Pommier, M.; Prandoni, I.; Saxena, A.; Shimwell, T. W.; Tarr, M.; van Bemmel, I.; Verma, A.; White, G. J.; Williams, W. L.

    2016-12-01

    In these proceedings we highlight the primary scientific goals and design of the WEAVE-LOFAR survey, which will use the new WEAVE spectrograph on the 4.2m William Herschel Telescope to provide the primary source of spectroscopic information for the LOFAR Surveys Key Science Project. Beginning in 2018, WEAVE-LOFAR will generate more than 10^6 R=5000 365-960nm spectra of low-frequency selected radio sources, across three tiers designed to efficiently sample the redshift-luminosity plane, and produce a data set of enormous legacy value. The radio frequency selection, combined with the high multiplex and throughput of the WEAVE spectrograph, make obtaining redshifts in this way very efficient, and we expect that the redshift success rate will approach 100 per cent at z < 1. This unprecedented spectroscopic sample - which will be complemented by an integral field component - will be transformational in key areas, including studying the star formation history of the Universe, the role of accretion and AGN-driven feedback, properties of the epoch of reionisation, cosmology, cluster haloes and relics, as well as the nature of radio galaxies and protoclusters. Each topic will be addressed in unprecedented detail, and with the most reliable source classifications and redshift information in existence.

  4. Radio Frequency Power Load and Associated Method

    NASA Technical Reports Server (NTRS)

    Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.

  5. Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    DTIC Science & Technology

    2014-09-18

    radios in a cognitive radio network using a radio frequency fingerprinting based method. In IEEE International Conference on Communications (ICC...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain...PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Presented to the Faculty Graduate School of Engineering and

  6. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.

  7. SGR-like behaviour of the repeating FRB 121102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.Y.; Yu, H., E-mail: fayinwang@nju.edu.cn, E-mail: yuhai@smail.nju.edu.cn

    2017-03-01

    Fast radio bursts (FRBs) are millisecond-duration radio signals occurring at cosmological distances. However the physical model of FRBs is mystery, many models have been proposed. Here we study the frequency distributions of peak flux, fluence, duration and waiting time for the repeating FRB 121102. The cumulative distributions of peak flux, fluence and duration show power-law forms. The waiting time distribution also shows power-law distribution, and is consistent with a non-stationary Poisson process. These distributions are similar as those of soft gamma repeaters (SGRs). We also use the statistical results to test the proposed models for FRBs. These distributions are consistentmore » with the predictions from avalanche models of slowly driven nonlinear dissipative systems.« less

  8. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, J. M., E-mail: jschmidt@physics.usyd.edu.au; Cairns, Iver H.

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME andmore » plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 10{sup 6} and ≈ 10{sup 3}, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth’s magnetosphere and drive space weather events.« less

  9. Demonstration of a viable quantitative theory for interplanetary type II radio bursts

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-03-01

    Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst for the extended frequency range ≈ 4 MHz to 30 kHz, including an intensification when the shock wave of the associated coronal mass ejection (CME) reached STEREO A. We demonstrate for the first time our ability to quantitatively and accurately simulate the fundamental (F) and harmonic (H) emission of type II bursts from the higher corona (near 11 solar radii) to 1 AU. Our modeling requires the combination of data-driven three-dimensional magnetohydrodynamic simulations for the CME and plasma background, carried out with the BATS-R-US code, with an analytic quantitative kinetic model for both F and H radio emission, including the electron reflection at the shock, growth of Langmuir waves and radio waves, and the radiations propagation to an arbitrary observer. The intensities and frequencies of the observed radio emissions vary hugely by factors ≈ 106 and ≈ 103, respectively; the theoretical predictions are impressively accurate, being typically in error by less than a factor of 10 and 20 %, for both STEREO A and B. We also obtain accurate predictions for the timing and characteristics of the shock and local radio onsets at STEREO A, the lack of such onsets at STEREO B, and the z-component of the magnetic field at STEREO A ahead of the shock, and in the sheath. Very strong support is provided by these multiple agreements for the theory, the efficacy of the BATS-R-US code, and the vision of using type IIs and associated data-theory iterations to predict whether a CME will impact Earth's magnetosphere and drive space weather events.

  10. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazzini, Tommaso, E-mail: tommaso.brazzini@bristol.ac.uk; Sun, Huarui; Uren, Michael J.

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line.more » However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.« less

  11. The cooling of confined ions driven by laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyna, L.G.; Sobehart, J.R.

    1993-07-01

    We finalize the dynamics of confined ions driven by a quantized radiation field. The ions can absorb photons from an incident laser beam and relax back to the ground state by either induced emissions or spontaneous emissions. Here we assume that the absorption of photons is immediately followed by spontaneous emissions, resulting in single-level ions perturbed by the exchange of momentum with the radiation field. The probability distribution of the ions is calculated using singular expansions in the low noise asymptotic limit. The present calculations reproduce the quantum results in the limit of heavy particles in static traps, and themore » classical results of ions in radio-frequency confining wells.« less

  12. Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.

    PubMed

    Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F

    2017-10-17

    Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.

  13. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2.815 Section 2.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815...

  14. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2.815 Section 2.815 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815...

  15. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  16. Reconfigurable Wideband Circularly Polarized Stacked Square Patch Antenna for Cognitive Radios

    NASA Technical Reports Server (NTRS)

    Barbosa Kortright, Miguel A.; Waldstein, Seth W.; Simons, Rainee N.

    2017-01-01

    An almost square patch, a square patch and a stacked square patch with corner truncation for circular polarization (CP) are researched and developed at X-band for cognitive radios. Experimental results indicate, first, that the impedance bandwidth of a CP almost square patch fed from the edge by a 50 ohm line is 1.70 percent and second, that of a CP square patch fed from the ground plane side by a surface launch connector is 1.87 percent. Third, the impedance bandwidth of a CP stacked square patch fed by a surface launch connector is 2.22 percent. The measured center frequency for the CP square patch fed by a surface launch connector without and with an identical stacked patch is 8.45 and 8.1017 GHz, respectively. By stacking a patch, separated by a fixed air gap of 0.254 mm, the center frequency is observed to shift by as much as 348.3 MHz. The shift in the center frequency can be exploited to reconfigure the operating frequency by mechanically increasing the air gap. The results indicate that a tuning bandwidth of about 100 MHz can be achieved when the distance of separation between the driven patch and the stacked patch is increased from its initial setting of 0.254 to 1.016 mm.

  17. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    NASA Astrophysics Data System (ADS)

    Corsi, A.; Cenko, S. B.; Kasliwal, M. M.; Quimby, R.; Kulkarni, S. R.; Frail, D. A.; Goldstein, A. M.; Blagorodnova, N.; Connaughton, V.; Perley, D. A.; Singer, L. P.; Copperwheat, C. M.; Fremling, C.; Kupfer, T.; Piascik, A. S.; Steele, I. A.; Taddia, F.; Vedantham, H.; Kutyrev, A.; Palliyaguru, N. T.; Roberts, O.; Sollerman, J.; Troja, E.; Veilleux, S.

    2017-09-01

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r-band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G. Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ-rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.

  18. iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corsi, A.; Palliyaguru, N. T.; Cenko, S. B.

    We present the discovery, classification, and radio-to-X-ray follow-up observations of iPTF17cw, a broad-lined (BL) type Ic supernova (SN) discovered by the intermediate Palomar Transient Factory (iPTF). Although it is unrelated to the gravitational wave trigger, this SN was discovered as a happy by-product of the extensive observational campaign dedicated to the follow-up of Advanced LIGO event GW 170104. The spectroscopic properties and inferred peak bolometric luminosity of iPTF17cw are most similar to the gamma-ray-burst (GRB)-associated SN, SN 1998bw, while the shape of the r -band light curve is most similar to that of the relativistic SN, SN 2009bb. Karl G.more » Jansky Very Large Array (VLA) observations of the iPTF17cw field reveal a radio counterpart ≈10 times less luminous than SN 1998bw, and with a peak radio luminosity comparable to that of SN 2006aj/GRB 060218 and SN 2010bh/GRB 100316D. Our radio observations of iPTF17cw imply a relativistically expanding outflow. However, further late-time observations with the VLA in its most extended configuration are needed to confirm fading of the iPTF17cw radio counterpart at all frequencies. X-ray observations carried out with Chandra reveal the presence of an X-ray counterpart with a luminosity similar to that of SN 2010bh/GRB 100316D. Searching the Fermi catalog for possible γ -rays reveals that GRB 161228B is spatially and temporally compatible with iPTF17cw. The similarity to SN 1998bw and SN 2009bb, the radio and X-ray detections, and the potential association with GRB 161228B all point to iPTF17cw being a new candidate member of the rare sample of optically discovered engine-driven BL-Ic SNe associated with relativistic ejecta.« less

  19. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco

    2017-07-01

    In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.

  20. Full-duplex radio-over-fiber system with tunable millimeter-wave signal generation and wavelength reuse for upstream signal.

    PubMed

    Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin

    2017-06-10

    A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.

  1. Ion cyclotron range of frequencies heating of plasma with small impurity production

    DOEpatents

    Ohkawa, Tihiro

    1987-01-01

    Plasma including plasma ions is magnetically confined by a magnetic field. The plasma has a defined outer surface and is intersected by resonance surfaces of respective common ion cyclotron frequency of a predetermined species of plasma ions moving in the magnetic field. A radio frequency source provides radio frequency power at a radio frequency corresponding to the ion cyclotron frequency of the predetermined species of plasma ions moving in the field at a respective said resonance surface. RF launchers coupled to the radio frequency source radiate radio frequency energy at the resonance frequency onto the respective resonance surface within the plasma from a plurality of locations located outside the plasma at such respective distances from the intersections of the respective resonance surface and the defined outer surface and at such relative phases that the resulting interference pattern provides substantially null net radio frequency energy over regions near and including substantial portions of the intersections relative to the radio frequency energy provided thereby at other portions of the respective resonance surface within the plasma.

  2. Properties of Blazar Jets Defined by an Economy of Power

    NASA Astrophysics Data System (ADS)

    Petropoulou, Maria; Dermer, Charles D.

    2016-07-01

    The absolute power of a relativistic black hole jet includes the power in the magnetic field, the leptons, the hadrons, and the radiated photons. A power analysis of a relativistic radio/γ-ray blazar jet leads to bifurcated leptonic synchrotron-Compton (LSC) and leptohadronic synchrotron (LHS) solutions that minimize the total jet power. Higher Doppler factors with increasing peak synchrotron frequency are implied in the LSC model. Strong magnetic fields {B}\\prime ≳ 100 {{G}} are found for the LHS model with variability times ≲ {10}3 {{s}}, in accord with highly magnetized, reconnection-driven jet models. Proton synchrotron models of ≳ 100 {GeV} blazar radiation can have sub-Eddington absolute jet powers, but models of dominant GeV radiation in flat spectrum radio quasars require excessive power.

  3. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  4. Development of a compact, rf-driven, pulsed ion source for neutron generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-02-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.

  5. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE PAGES

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun; ...

    2017-03-27

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  6. Mode Matching for Optical Antennas

    NASA Astrophysics Data System (ADS)

    Feichtner, Thorsten; Christiansen, Silke; Hecht, Bert

    2017-11-01

    The emission rate of a point dipole can be strongly increased in the presence of a well-designed optical antenna. Yet, optical antenna design is largely based on radio-frequency rules, ignoring, e.g., Ohmic losses and non-negligible field penetration in metals at optical frequencies. Here, we combine reciprocity and Poynting's theorem to derive a set of optical-frequency antenna design rules for benchmarking and optimizing the performance of optical antennas driven by single quantum emitters. Based on these findings a novel plasmonic cavity antenna design is presented exhibiting a considerably improved performance compared to a reference two-wire antenna. Our work will be useful for the design of high-performance optical antennas and nanoresonators for diverse applications ranging from quantum optics to antenna-enhanced single-emitter spectroscopy and sensing.

  7. On the integration of ultrananocrystalline diamond (UNCD) with CMOS chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Hongyi; Yuan, Hao -Chih; Seo, Jung -Hun

    A low temperature deposition of high quality ultrananocrystalline diamond (UNCD) film onto a finished Si-based CMOS chip was performed to investigate the compatibility of the UNCD deposition process with CMOS devices for monolithic integration of MEMS on Si CMOS platform. DC and radio-frequency performances of the individual PMOS and NMOS devices on the CMOS chip before and after the UNCD deposition were characterized. Electrical characteristics of CMOS after deposition of the UNCD film remained within the acceptable ranges, namely showing small variations in threshold voltage V th, transconductance g m, cut-off frequency f T and maximum oscillation frequency f max.more » Finally, the results suggest that low temperature UNCD deposition is compatible with CMOS to realize monolithically integrated CMOS-driven MEMS/NEMS based on UNCD.« less

  8. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs

    PubMed Central

    Bemporad, Alessandro; Mancuso, Salvatore

    2012-01-01

    White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a “radio-loud” fast CME, while the second one was a “radio quiet” slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the “radio-loud” CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the “radio-quiet” CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles. PMID:25685431

  9. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  10. Battery management system with distributed wireless sensors

    DOEpatents

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  11. Advanced capability RFID system

    DOEpatents

    Gilbert, Ronald W.; Steele, Kerry D.; Anderson, Gordon A.

    2007-09-25

    A radio-frequency transponder device having an antenna circuit configured to receive radio-frequency signals and to return modulated radio-frequency signals via continuous wave backscatter, a modulation circuit coupled to the antenna circuit for generating the modulated radio-frequency signals, and a microprocessor coupled to the antenna circuit and the modulation circuit and configured to receive and extract operating power from the received radio-frequency signals and to monitor inputs on at least one input pin and to generate responsive signals to the modulation circuit for modulating the radio-frequency signals. The microprocessor can be configured to generate output signals on output pins to associated devices for controlling the operation thereof. Electrical energy can be extracted and stored in an optional electrical power storage device.

  12. The Lens of Power: Aerial Reconnaissance and Diplomacy in the Airpower Century

    DTIC Science & Technology

    2013-01-01

    participated in the search for survivors and wreckage, at one point receiving an American radio from a nearby US ship to better communicate between... Frequency ) radio distress frequency , although it is not clear exactly what frequency he was using. VHF is Very High Frequency radio ; UHF is Ultra High... Frequency radio . 121.5 and 243.0 remain the respective VHF and UHF international distress frequencies today. Osborn, Born to Fly: The Untold Story

  13. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  14. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76.616 Operation near certain aeronautical and marine emergency radio frequencies. (a) The transmission...

  15. Optical Trapping of Ion Coulomb Crystals

    NASA Astrophysics Data System (ADS)

    Schmidt, Julian; Lambrecht, Alexander; Weckesser, Pascal; Debatin, Markus; Karpa, Leon; Schaetz, Tobias

    2018-04-01

    The electronic and motional degrees of freedom of trapped ions can be controlled and coherently coupled on the level of individual quanta. Assembling complex quantum systems ion by ion while keeping this unique level of control remains a challenging task. For many applications, linear chains of ions in conventional traps are ideally suited to address this problem. However, driven motion due to the magnetic or radio-frequency electric trapping fields sometimes limits the performance in one dimension and severely affects the extension to higher-dimensional systems. Here, we report on the trapping of multiple barium ions in a single-beam optical dipole trap without radio-frequency or additional magnetic fields. We study the persistence of order in ensembles of up to six ions within the optical trap, measure their temperature, and conclude that the ions form a linear chain, commonly called a one-dimensional Coulomb crystal. As a proof-of-concept demonstration, we access the collective motion and perform spectrometry of the normal modes in the optical trap. Our system provides a platform that is free of driven motion and combines advantages of optical trapping, such as state-dependent confinement and nanoscale potentials, with the desirable properties of crystals of trapped ions, such as long-range interactions featuring collective motion. Starting with small numbers of ions, it has been proposed that these properties would allow the experimental study of many-body physics and the onset of structural quantum phase transitions between one- and two-dimensional crystals.

  16. Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, A.; Schulz-von der Gathen, V.; O'Connell, D.; Gans, T.

    2017-11-01

    The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ = 255 nm. A two-beam setup with a reference beam in Mach-Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\\Pi }}}u+ \\to B 3 {{{\\Pi }}}g+, υ = 0 \\to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Σ }}}g+) influence the absolute O3 densities when the rf power is varied.

  17. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE PAGES

    Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...

    2016-04-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  18. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giroletti, M.; Massaro, F.; D’Abrusco, R.

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less

  19. Generation of ultra-wide and flat optical frequency comb based on electro absorption modulator

    NASA Astrophysics Data System (ADS)

    Ujjwal; Thangaraj, Jaisingh

    2018-05-01

    A novel technique is proposed for the generation of ultra-wide and flat optical frequency comb (OFC) based on serially cascading three stages of electro absorption modulators (EAMs) through sinusoidal radio frequency (RF) signals by setting frequencies at f GHz, f/2 GHz and f/4 GHz. Here, the first stage acts as subcarrier generator, the second stage acts as subcarrier doubler, and the third stage acts as subcarrier quadrupler. In addition, a higher number of subcarriers can easily be generated by adjusting the driving sinusoidal RF signal. In this paper, cascading three stages of EAMs driven by 50 GHz, 25 GHz and 12.5 GHz clock sources, we obtain 272 subcarriers with spacing of 2.5 GHz and power deviation within 1 dB. Theoretical analysis of serially cascaded EAMs for subcarrier generation is also investigated. Principal analysis and simulation of this technique are demonstrated.

  20. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailoredmore » diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.« less

  1. 47 CFR Appendix 1 to Subpart E of... - Glossary of Terms

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... typically includes a frequency monitoring system that initiates a MedRadio communications session. MedRadio... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...

  2. 47 CFR Appendix 1 to Subpart E of... - Glossary of Terms

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... typically includes a frequency monitoring system that initiates a MedRadio communications session. MedRadio... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...

  3. TRI-SERVICE ELF COMMUNICATIONS - VOL. II, BIBLIOGRAPHY.

    DTIC Science & Technology

    BIBLIOGRAPHIES, UNDERGROUND ANTENNAS , ELECTRICAL RESISTANCE, UNDERGROUND , COSTS, VERY LOW FREQUENCY, LOW FREQUENCY, PROPAGATION, NOISE(RADIO)....EXTREMELY LOW FREQUENCY), (*COMMAND AND CONTROL SYSTEMS, COMMUNICATION AND RADIO SYSTEMS), (* COMMUNICATION AND RADIO SYSTEMS, MILITARY RESEARCH

  4. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  5. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  6. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  7. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  8. 40 CFR 60.721 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... include conductive sensitizers or electromagnetic interference/radio frequency interference shielding.... Electromagnetic interference/radio frequency interference (EMI/RFI) shielding coating means a conductive coating... coating is applied, not including conductive sensitizers or electromagnetic interference/radio frequency...

  9. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  10. Pulsed radio frequency energy in the treatment of complex diabetic foot wounds: two cases.

    PubMed

    Larsen, Jerrie A; Overstreet, Julia

    2008-01-01

    The use of radio waves (pulsed radio frequency energy) has become well accepted in the treatment of chronic wounds. We present 2 cases of complex diabetic foot wounds treated adjunctively with outpatient pulsed radio frequency energy using a solid-state, 27.12 MHz fixed power output radio frequency generator that transmits a fixed dose of nonionizing, nonthermal electromagnetic energy through an applicator pad. This therapy, in combination with offloading, debridement and advanced dressings, resulted in closure of both wounds in approximately 16 weeks.

  11. Radio emission from embryonic superluminous supernova remnants

    NASA Astrophysics Data System (ADS)

    Omand, Conor M. B.; Kashiyama, Kazumi; Murase, Kohta

    2018-02-01

    It has been widely argued that Type-I superluminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of B ˜ 1013-1015 G. Murase, Kashiyama & Mészáros proposed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a relevant counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array can detect the radio nebula from SNe at DL ˜ 1 Gpc in a few years after the explosion, while the Jansky Very Large Array can also detect the counterpart in a few decades. The proposed radio follow-up observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.

  12. MASER: A Tool Box for Solar System Low Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J.-M.; Faden, J.; Piker, C.; André, N.; Génot, V.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2018-04-01

    MASER (Measuring, Analysing, and Simulating Radio Emissions) is a toolbox for solar system radio astronomy. It provides tools for reading, displaying, finding, and modeling low frequency radio datasets.

  13. 48 CFR 211.275 - Radio frequency identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Radio frequency identification. ...

  14. 76 FR 67604 - Maritime Communications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... aviation and marine radio services use a marine very high frequency (VHF), medium frequency (MF), or high... aviation and marine radio services use a very high frequency (VHF) marine or aircraft radio and, as..., the Federal Communications Commission amends 47 CFR parts 2 and 80 as follows: PART 2--FREQUENCY...

  15. Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Wyndham, E.; Maze, J.; Schulze, J.

    2018-01-01

    The behavior of a dual frequency capacitively coupled plasma (2f CCP) driven by 2.26 and 13.56 MHz radio frequency (rf) source is investigated using an approach that integrates a theoretical model and experimental data. The basis of the theoretical analysis is a time dependent dual frequency analytical sheath model that casts the relation between the instantaneous sheath potential and plasma parameters. The parameters used in the model are obtained by operating the 2f CCP experiment (2.26 MHz + 13.56 MHz) in argon at a working pressure of 50 mTorr. Experimentally measured plasma parameters such as the electron density, electron temperature, as well as the rf current density ratios are the inputs of the theoretical model. Subsequently, a convenient analytical solution for the output sheath potential and sheath thickness was derived. A comparison of the present numerical results is done with the results obtained in another 2f CCP experiment conducted by Semmler et al (2007 Plasma Sources Sci. Technol. 16 839). A good quantitative correspondence is obtained. The numerical solution shows the variation of sheath potential with the low and high frequency (HF) rf powers. In the low pressure plasma, the sheath potential is a qualitative measure of DC self-bias which in turn determines the ion energy. Thus, using this analytical model, the measured values of the DC self-bias as a function of low and HF rf powers are explained in detail.

  16. Coulomb-Driven Relativistic Electron Beam Compression

    NASA Astrophysics Data System (ADS)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  17. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion.

    PubMed

    Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J

    2014-02-01

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  18. Coulomb-Driven Relativistic Electron Beam Compression.

    PubMed

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  19. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.

    PubMed

    Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi

    2015-02-21

    We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.

  20. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  1. The Frequency Spectrum Radio.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1979-01-01

    This journal issue focuses on the frequency spectrum used in radio communication and on the World Administrative Radio Conference, sponsored by the International Telecommunication Union, held in Geneva, Switzerland, in the fall of 1979. Articles describe the World Administrative Radio Conference as the most important radio communication conference…

  2. Investigation on the Frequency Allocation for Radio Astronomy at the L Band

    NASA Astrophysics Data System (ADS)

    Abidin, Z. Z.; Umar, R.; Ibrahim, Z. A.; Rosli, Z.; Asanok, K.; Gasiprong, N.

    2013-09-01

    In this paper, the frequency allocation reserved for radio astronomy in the L band set by the International Telecommunication Union (ITU), which is between 1400 and 1427 MHz, is reviewed. We argue that the nearby frequencies are still very important for radio astronomers on the ground by investigating radio objects (H i sources) around 1300-1500 MHz. The L-band window is separated into a group of four windows, namely 1400-1427 MHz (window A), 1380-1400 MHz (window B), 1350-1380 MHz (window C), and 1300-1350 MHz (window D). These windows are selected according to their redshifts from a rest frequency for hydrogen spectral line at 1420.4057 MHz. Radio objects up to z ≈ 0.1 or frequency down to 1300 MHz are examined. We argue that since window B has important radio objects within the four windows, this window should also be given to radio astronomy. They are galaxies, spiral galaxies, and galaxy clusters. This underlines the significance of window B for radio astronomers on the ground. By investigating the severeness of radio frequency interference (RFI) within these windows, we have determined that window B still has significant, consistent RFI. The main RFI sources in the four windows have also been identified. We also found that the Department of Civil Aviation of Malaysia is assigned a frequency range of 1215-1427 MHz, which is transmitted within the four windows and inside the protected frequency for radio astronomy. We also investigated the RFI in the four windows on proposed sites of future radio astronomy observatories in Malaysia and Thailand and found the two best sites as Universiti Pendidikan Sultan Idris (UPSI) and Ubon Ratchathani, respectively. It has also been determined that RFI in window B increases with population density.

  3. NASA JSC EV2 Intern Spring 2016 - Jennie Chung

    NASA Technical Reports Server (NTRS)

    Chung, Jennie

    2016-01-01

    Exploration Mission 2 (EM-2) is a mission to resume the manned exploration of the Solar System. This mission is the first crewed mission of NASA’s Orion on the Space Launch System. The target for EM-2 is to perform a flyby of a captured asteroid in lunar orbit, which NASA plans to launch in 2023. As an intern working with EV-2 – Avionics Systems Division in Johnson Space Center, we are developing flight instrumentation systems for EM-2 (MISL & RFID). The Modular Integrated Stackable Layer (MISL) is a compact space-related computer system that is modular, scalable and reconfigurable. The RFID (radio frequency identification) sensors are used to take lower frequency (TC) type measurements and be able to stream data real-time to an RF (radio frequency) interrogator upon demand. Our job, in EV-2, is to certify, test, manufacture/assemble and deliver flight EM-2 DFI System (MISL & RFID). Our goal is to propose a development effort to design low-mass wire and wireless data acquisition and sensor solutions for EM-2 DFI (Development Flight Instrumentation). The team is tasked to provide the most effective use of 75 pounds to acquire DFI data and to collect sensor data for 100-200 high priority DFI channels (mass driven).

  4. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less

  5. Plasma processing of large curved surfaces for superconducting rf cavity modification

    DOE PAGES

    Upadhyay, J.; Im, Do; Popović, S.; ...

    2014-12-15

    In this study, plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl 2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simplemore » cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl 2/Ar gas mixtures, residence time of reactive species and temperature of the cavity. Using cylindrical electrodes with variable radius, large-surface ring-shaped samples and d.c. bias implementation in the external circuit we have demonstrated substantial average etching rates and outlined the possibility to optimize plasma properties with respect to maximum surface processing effect.« less

  6. I. S. Shklovsky and Low-Frequency Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.

    2017-03-01

    Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.

  7. 48 CFR 211.275 - Passive radio frequency identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Passive radio frequency identification. 211.275 Section 211.275 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Requirements Documents 211.275 Passive radio frequency identification. ...

  8. Particle beam injector system and method

    DOEpatents

    Guethlein, Gary

    2013-06-18

    Methods and devices enable coupling of a charged particle beam to a radio frequency quadrupole accelerator. Coupling of the charged particle beam is accomplished, at least in-part, by relying on of sensitivity of the input phase space acceptance of the radio frequency quadrupole to the angle of the input charged particle beam. A first electric field across a beam deflector deflects the particle beam at an angle that is beyond the acceptance angle of the radio frequency quadrupole. By momentarily reversing or reducing the established electric field, a narrow portion of the charged particle beam is deflected at an angle within the acceptance angle of the radio frequency quadrupole. In another configuration, beam is directed at an angle within the acceptance angle of the radio frequency quadrupole by the first electric field and is deflected beyond the acceptance angle of the radio frequency quadrupole due to the second electric field.

  9. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  10. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking.

    PubMed

    Wei, Fang; Lu, Bin; Wang, Jian; Xu, Dan; Pan, Zhengqing; Chen, Dijun; Cai, Haiwen; Qu, Ronghui

    2015-02-23

    A precision and broadband laser frequency swept technique is experimentally demonstrated. Using synchronous current compensation, a slave diode laser is dynamically injection-locked to a specific high-order modulation-sideband of a narrow-linewidth master laser modulated by an electro-optic modulator (EOM), whose driven radio frequency (RF) signal can be agilely, precisely controlled by a frequency synthesizer, and the high-order modulation-sideband enables multiplied sweep range and tuning rate. By using 5th order sideband injection-locking, the original tuning range of 3 GHz and tuning rate of 0.5 THz/s is multiplied by 5 times to 15 GHz and 2.5 THz/s respectively. The slave laser has a 3 dB-linewidth of 2.5 kHz which is the same to the master laser. The settling time response of a 10 MHz frequency switching is 2.5 µs. By using higher-order modulation-sideband and optimized experiment parameters, an extended sweep range and rate could be expected.

  11. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency i(RF) band to heat soil in-situ, thereby potentially enhancing the performances of standard soil vapor extraction (SVE) technologies. ontaminants are removed from in situ soils and transf...

  12. SITE TECHNOLOGY CAPSULE: IITRI RADIO FREQUENCY HEATING TECHNOLOGY

    EPA Science Inventory

    Radio frequency heating (RFH) technologies use electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. Contaminants are removed from in situ soils and transfe...

  13. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  14. Testing the Triggering Mechanism for Luminous, Radio-Quiet Red Quasars in the Clearing Phase: A Comparison to Radio-Loud Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eliat

    2016-10-01

    We propose to conduct a controlled study of the relationship between radio emission and host galaxy morphology for a new sample of radio-quiet dust-reddened quasars selected by their infrared colors in WISE and 2MASS (W2M). These sources are the radio-quiet analogs to the FIRST-2MASS (F2M) red quasars, which we found to be predominantly driven by major mergers. F2M red quasars are accreting at very high rates and exhibit broad absorption lines associated with outflows and feedback. Their properties are consistent with buried quasars expelling their dusty shrouds in an an evolutionary phase predicted by merger-driven co-evolution models. The quasars in both samples are the most intrinsically luminous objects in the Universe - the regime where we expect mergers to dominate. However, recent lines of evidence suggest that radio emission may be linked to AGN reddening and merging hosts. We will use WFC3/IR and ACS to image the host galaxies of W2M quasars in the two redshift regimes that our previous studies probed, z 0.7 and z 2, testing the merger-driven quasar paradigm across the full radio range with a minimum of selection effects or other biases that plague many studies comparing different samples. The images proposed here will sample the host galaxies in rest-frame visible and UV light to look for merger signatures. Evidence for mergers in these quasar hosts would support a picture in which luminous quasars and galaxies co-evolve through major-mergers, independent of their radio properties. The absence of mergers in our data would link radio emission to mergers and require an alternate explanation for the extreme properties of these radio-quiet sources.

  15. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - KAI TECHNOLOGIES, INC.

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy in the radio frequency (RF) band to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by KAI Technologies, I...

  16. IN SITU AND SOIL DECONTAMINATION BY RADIO FREQUENCY HEATING

    EPA Science Inventory

    In situ radio frequency heating is performed by applying electromagnetic energy in the radio frequency band to an array of electrodes placed in bore holes drilled through the contaminated soil. he process removes organic contaminants from large volumes of soil by volatilization, ...

  17. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  18. Marine asset security and tracking (MAST) system

    DOEpatents

    Hanson, Gregory Richard [Clinton, TN; Smith, Stephen Fulton [Loudon, TN; Moore, Michael Roy [Corryton, TN; Dobson, Eric Lesley [Charleston, SC; Blair, Jeffrey Scott [Charleston, SC; Duncan, Christopher Allen [Marietta, GA; Lenarduzzi, Roberto [Knoxville, TN

    2008-07-01

    Methods and apparatus are described for marine asset security and tracking (MAST). A method includes transmitting identification data, location data and environmental state sensor data from a radio frequency tag. An apparatus includes a radio frequency tag that transmits identification data, location data and environmental state sensor data. Another method includes transmitting identification data and location data from a radio frequency tag using hybrid spread-spectrum modulation. Another apparatus includes a radio frequency tag that transmits both identification data and location data using hybrid spread-spectrum modulation.

  19. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  20. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  1. Using Solar Radio Burst Integrated Fluxes to Predict Energetic Proton Flux Increases.

    DTIC Science & Technology

    1982-08-31

    Energy Density, ET, of the radio burst, an integration across the frequency interval of the time-integrated radio fluxes at each frequency, was found to...integrated flux or energy at five frequencies in the 600- to 8800-MHz frequency interval and related them to the peak proton flux of the associated... energy of the burst normalized to its peak flux. One other characteristic of the radio burst to which Croom 13 referred was the total energy density, ET

  2. Radio frequency spectrum management

    NASA Astrophysics Data System (ADS)

    Sujdak, E. J., Jr.

    1980-03-01

    This thesis is a study of radio frequency spectrum management as practiced by agencies and departments of the Federal Government. After a brief introduction to the international agency involved in radio frequency spectrum management, the author concentrates on Federal agencies engaged in frequency management. These agencies include the National Telecommunications and Information Administration (NTIA), the Interdepartment Radio Advisory Committee (IRAC), and the Department of Defense (DoD). Based on an analysis of Department of Defense frequency assignment procedures, recommendations are given concerning decentralizing military frequency assignment by delegating broader authority to unified commanders. This proposal includes a recommendation to colocate the individual Service frequency management offices at the Washington level. This would result in reduced travel costs, lower manpower requirements, and a common tri-Service frequency management data base.

  3. Transport and Stability in C-Mod ITBs in Diverse Regimes

    NASA Astrophysics Data System (ADS)

    Fiore, C. L.; Ernst, D. R.; Howard, N. T.; Kasten, C. P.; Mikkelsen, D.; Reinke, M. L.; Rice, J. E.; White, A. E.; Rowan, W. L.; Bespamyatnov, I.

    2012-10-01

    Internal Transport Barriers (ITBs) in C-Mod feature highly peaked density and pressure profiles and are typically induced by the introduction of radio frequency power in the ion cyclotron range of frequencies (ICRF) with the second harmonic of the resonance for minority hydrogen ions positioned off-axis at the plasma half radius on either the low or high field side of the plasma. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin< 1. Thus they allow exploration of ITB dynamics in a reactor relevant regime. Recently, linear and non-linear gyrokinetic simulations have demonstrated that changes in the ion temperature and plasma rotation profiles, coincident with the application of off-axis ICRF heating, contribute to greater stability to ion temperature gradient driven fluctuation in the plasma. This results in reduced turbulent driven outgoing heat flux. To date, ITB formation in C-Mod has only been observed in EDA H-mode plasmas with moderate (2-3 MW) ICRF power. Experiments to explore the formation of ITBs in other operating regimes such as I-mode and also with high ICRF power are being undertaken to understand further the process of ITB formation and sustainment, especially with regard to turbulent driven transport.

  4. Effects of radio frequency identification-related radiation on in vitro biologics.

    PubMed

    Uysal, Ismail; Hohberger, Clive; Rasmussen, R Scott; Ulrich, David A; Emond, Jean-Pierre; Gutierrez, Alfonso

    2012-01-01

    The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100 biopharmaceutical products from eight major pharmaceutical companies as well, as different blood products, show no non-thermal effect by radio frequency radiation. Forthcoming requirements, such as the California Board of Pharmacy Track and Trace initiative regarding the use of e-pedigree to identify the chain of custody of drugs, suggest the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. When used for pharmaceuticals, RFID technology can support additional functionalities like monitoring temperature to ensure product safety. In its guidance for the use of RFID technologies for drugs, the Food and Drug Administration outlined multiple parameters that would apply to pilot studies using RFID while excluding drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application due to concerns about the effects of radio frequency radiation on biologics. Even though the effects of radio frequency on biologics due to temperature changes are relatively well understood, there are few studies in the literature about other effects of radio frequency that can occur without a noticeable change in temperature. In this paper, we expose a wide variety of biologics including biopharmaceuticals to radio frequency radiation at different frequencies, as well as cellular blood products and plasma to high frequency radiation. The in vitro test results show no detectable effect due to radio frequency radiation.

  5. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, Daniel J.; Kimrey, Jr., Harold D.

    1993-01-01

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents.

  6. Method and apparatus for radio frequency ceramic sintering

    DOEpatents

    Hoffman, D.J.; Kimrey, H.D. Jr.

    1993-11-30

    Radio frequency energy is used to sinter ceramic materials. A coaxial waveguide resonator produces a TEM mode wave which generates a high field capacitive region in which a sample of the ceramic material is located. Frequency of the power source is kept in the range of radio frequency, and preferably between 60-80 MHz. An alternative embodiment provides a tunable radio frequency circuit which includes a series input capacitor and a parallel capacitor, with the sintered ceramic connected by an inductive lead. This arrangement permits matching of impedance over a wide range of dielectric constants, ceramic volumes, and loss tangents. 6 figures.

  7. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  8. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  9. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  10. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  11. 47 CFR 80.927 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.927... Boats § 80.927 Antenna radio frequency indicator. The transmitter must be equipped with a device which provides visual indication whenever the transmitter is supplying power to the antenna. ...

  12. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip.

    PubMed

    Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao

    2015-01-12

    Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics.

  13. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip

    PubMed Central

    Wang, Jian; Shen, Hao; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T.; Xuan, Yi; Leaird, Daniel E.; Wang, Xi; Gan, Fuwan; Weiner, Andrew M.; Qi, Minghao

    2015-01-01

    Photonic methods of radio-frequency waveform generation and processing can provide performance advantages and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, bulk optics implementations suffer from the lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic radio-frequency generation and processing and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable radio-frequency bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off-chip. It modulates an individual pulse in a radio-frequency burst within 4 ns, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offer an integrated approach to accurately manipulating individual radio-frequency waveform features without constraints set by the speed and timing jitter of electronics, and should find applications ranging from high-speed wireless to defence electronics. PMID:25581847

  14. THE LOW-FREQUENCY RADIO CATALOG OF FLAT-SPECTRUM SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Giroletti, M.; D'Abrusco, R.

    A well known property of the γ-ray sources detected by Cos-B in the 1970s, by the Compton Gamma-Ray Observatory in the 1990s, and recently by the Fermi observations is the presence of radio counterparts, particularly for those associated with extragalactic objects. This observational evidence is the basis of the radio-γ-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with γ-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts formore » the unidentified γ-ray sources allowed us to extend the radio-γ-ray connection in the MHz regime. We also showed that blazars below 1 GHz maintain flat radio spectra. Thus, on the basis of these new results, we assembled a low-frequency radio catalog of flat-spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey and of the Westerbork in the southern hemisphere catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of γ-ray sources. First, we found NVSS counterparts of Westerbork Synthesis Radio Telescope radio sources, and then we selected flat-spectrum radio sources according to a new spectral criterion, specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28,358 radio sources and their logN-logS distributions. Finally, a comparison with the Green Bank 6 cm radio source catalog was performed to investigate the spectral shape of the low-frequency flat-spectrum radio sources at higher frequencies.« less

  15. Stabilized radio-frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1982-09-29

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  16. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, Henry D.; Fugitt, Jock A.; Howard, Donald R.

    1984-01-01

    A long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator.

  17. 78 FR 19311 - Certain Radio Frequency Identification (“RFID”) Products And Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Identification (``RFID'') Products And Components Thereof; Institution of Investigation Pursuant to 19 U.S.C... sale within the United States after importation of certain radio frequency identification (``RFID... after importation of certain radio frequency identification (``RFID'') products and components thereof...

  18. Theory for low-frequency modulated Langmuir wave packets

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1992-01-01

    Langmuir wave packets with low frequency modulations (or beats) observed in the Jovian foreshock are argued to be direct evidence for the Langmuir wave decay L yields L-prime + S. In this decay, 'pump' Langmuir waves L, driven by an electron beam, produce backscattered product Langmuir waves L-prime and ion sound waves S. The L and L-prime waves beat at the frequency and wavevector of the S waves, thereby modulating the wave packets. Beam speeds calculated using the modulated Jovian wave packets (1) are reasonable, at 4-10 times the electron thermal speed, (2) are consistent with theoretical limits on the decay process, and (3) decrease with increasing foreshock depth, as expected theoretically. These results strongly support the theory. The modulation depth of some wave packets suggests saturation by the decay L yields L-prime + S. Applications to modulated Langmuir packets in the Venusian and terrestrial foreshocks and in a type III radio source are proposed.

  19. Mechanism for Deploying a Long, Thin-Film Antenna from a Rover

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Matthews, B.; Nesnas, Issa A.; Zarzhitsky, Dimitri

    2013-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. A radio antenna can be realized by using polyimide film as a substrate, with a conducting substance deposited on it. Such an antenna can be rolled into a small volume for transport, then deployed by unrolling, and a robotic rover offers a natural means of unrolling a polyimide film-based antenna. An antenna deployment mechanism was developed that allows a thin film to be deposited onto a ground surface, in a controlled manner, using a minimally actuated rover. The deployment mechanism consists of two rollers, one driven and one passive. The antenna film is wrapped around the driven roller. The passive roller is mounted on linear bearings that allow it to move radially with respect to the driven roller. Springs preload the passive roller against the driven roller, and prevent the tightly wrapped film from unspooling or "bird's nesting" on the driven spool. The antenna deployment mechanism is integrated on the minimally-actuated Axel rover. Axel is a two-wheeled rover platform with a trailing boom that is capable of traversing undulated terrain and overcoming obstacles of a wheel radius in height. It is operated by four motors: one that drives each wheel; a third that controls the rotation of the boom, which orients the body mounted sensors; and a fourth that controls the rover's spool to drive the antenna roller. This low-mass axle-like rover houses its control and communication avionics inside its cylindrical body. The Axel rover teleoperation software has an auto-spooling mode that allows a user to automatically deploy the thin-film antenna at a rate proportional to the wheel speed as it drives the rover along its trajectory. The software allows Axel to deposit the film onto the ground to prevent or minimize relative motion between the film and the terrain to avoid the risk of scraping and antenna with the terrain.

  20. Stabilized radio frequency quadrupole

    DOEpatents

    Lancaster, H.D.; Fugitt, J.A.; Howard, D.R.

    1984-12-25

    Disclosed is a long-vane stabilized radio frequency resonator for accelerating charged particles and including means defining a radio frequency resonator cavity, a plurality of long vanes mounted in the defining means for dividing the cavity into sections, and means interconnecting opposing ones of the plurality of vanes for stabilizing the resonator. 5 figs.

  1. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  2. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  3. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  4. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  5. 47 CFR 80.1019 - Antenna radio frequency indicator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Antenna radio frequency indicator. 80.1019... Act § 80.1019 Antenna radio frequency indicator. Each nonportable bridge-to-bridge transmitter must be... indication when the transmitter is supplying power to the antenna transmission line or, in lieu thereof, a...

  6. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  7. 48 CFR 552.211-92 - Radio Frequency Identification (RFID) using passive tags.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Identification (RFID) using passive tags. 552.211-92 Section 552.211-92 Federal Acquisition Regulations System... Provisions and Clauses 552.211-92 Radio Frequency Identification (RFID) using passive tags. As prescribed in 511.204(b)(11), insert the following clause: Radio Frequency Identification (RFID) Using Passive Tags...

  8. Optical Tunable-Based Transmitter for Multiple Radio Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung (Inventor); Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor); Freeman, Jon C. (Inventor)

    2016-01-01

    An optical tunable transmitter is used to transmit multiple radio frequency bands on a single beam. More specifically, a tunable laser is configured to generate a plurality of optical wavelengths, and an optical tunable transmitter is configured to modulate each of the plurality of optical wavelengths with a corresponding radio frequency band. The optical tunable transmitter is also configured to encode each of the plurality of modulated optical wavelengths onto a single laser beam for transmission of a plurality of radio frequency bands using the single laser beam.

  9. [Microstrip antenna design and system research of radio frequency identification temperature sensor].

    PubMed

    Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min

    2008-12-01

    Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.

  10. Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.

    2018-05-01

    Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.

  11. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  12. Transient effects in π-pulse sequences in MAS solid-state NMR

    NASA Astrophysics Data System (ADS)

    Hellwagner, Johannes; Wili, Nino; Ibáñez, Luis Fábregas; Wittmann, Johannes J.; Meier, Beat H.; Ernst, Matthias

    2018-02-01

    Dipolar recoupling techniques that use isolated rotor-synchronized π pulses are commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological molecules. These sequences excel through their simplicity, stability towards radio-frequency (rf) inhomogeneity, and low rf requirements. For a theoretical understanding of such sequences, we present a Floquet treatment based on an interaction-frame transformation including the chemical-shift offset dependence. This approach is applied to the homonuclear dipolar-recoupling sequence Radio-Frequency Driven Recoupling (RFDR) and the heteronuclear recoupling sequence Rotational Echo Double Resonance (REDOR). Based on the Floquet approach, we show the influence of effective fields caused by pulse transients and discuss the advantages of pulse-transient compensation. We demonstrate experimentally that the transfer efficiency for homonuclear recoupling can be doubled in some cases in model compounds as well as in simple peptides if pulse-transient compensation is applied to the π pulses. Additionally, we discuss the influence of various phase cycles on the recoupling efficiency in order to reduce the magnitude of effective fields. Based on the findings from RFDR, we are able to explain why the REDOR sequence does not suffer in the recoupling efficiency despite the presence of effective fields.

  13. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  14. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  15. Low-Frequency Beacon Signal Strength Determination.

    DTIC Science & Technology

    1980-01-01

    Radio Frequency List , RIS AF-6050-12 [141. Using this value and assum- ing performance for these facilities as indicatcd in FAA Handbook 6050.10, ERP...FAA Handbook 6050. 10 for facilities of appropriate transmitter power, determined from FAA Master Radio Frequency List 6050-12, April 1979...these facilities has not been directly measured and, therefore, values corresponding to transmitter powers given in FAA Master Radio Frequency List , RIS

  16. Nanoscale Design of Nano-Sized Particles in Shape-Memory Polymer Nanocomposites Driven by Electricity

    PubMed Central

    Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai

    2013-01-01

    In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303

  17. The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur; Niemi, Kari; O'Connell, Deborah

    2013-12-09

    Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

  18. Nano-patterned superconducting surface for high quantum efficiency cathode

    DOEpatents

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  19. Rectenna for high-voltage applications

    NASA Technical Reports Server (NTRS)

    Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor)

    2002-01-01

    An energy transfer system is disclosed. The system includes patch elements, shielding layers, and energy rectifying circuits. The patch elements receive and couple radio frequency energy. The shielding layer includes at least one opening that allows radio frequency energy to pass through. The openings are formed and positioned to receive the radio frequency energy and to minimize any re-radiating back toward the source of energy. The energy rectifying circuit includes a circuit for rectifying the radio frequency energy into dc energy. A plurality of energy rectifying circuits is arranged in an array to provide a sum of dc energy generated by the energy rectifying circuit.

  20. Multi-mode radio frequency device

    DOEpatents

    Gilbert, Ronald W [Morgan Hill, CA; Carrender, Curtis Lee [Morgan Hill, CA; Anderson, Gordon A [Benton City, WA; Steele, Kerry D [Kennewick, WA

    2007-02-13

    A transponder device having multiple modes of operation, such as an active mode and a passive mode, wherein the modes of operation are selected in response to the strength of a received radio frequency signal. A communication system is also provided having a transceiver configured to transmit a radio frequency signal and to receive a responsive signal, and a transponder configured to operate in a plurality of modes and to activate modes of operation in response to the radio frequency signal. Ideally, each mode of operation is activated and deactivated independent of the other modes, although two or more modes may be concurrently operational.

  1. Time-Frequency and Non-Laplacian Phenomena at Radio Frequencies

    DTIC Science & Technology

    2017-01-22

    Unlimited UU UU UU UU 22-01-2017 30-Sep-2012 30-Sep-2016 Final Report: Time -Frequency and Non-Laplacian Phenomena at Radio Frequencies The views...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data... Time ‐Frequency and Non‐Laplacian Phenomena at Radio Frequencies  U.S. Army Research Office grant W911NF‐12‐1‐0526  Michael B. Steer  Department of

  2. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  3. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  4. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source is capable of amplification of that signal, and (2) is not an integral part of a radio transmitter as... following: (1) The external radio frequency power amplifier shall not be capable of amplification in the...

  5. A low frequency RFI monitoring system

    NASA Astrophysics Data System (ADS)

    Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.

    Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.

  6. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  7. Multi-messenger astronomy of gravitational-wave sources with flexible wide-area radio transient surveys

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Cregg C. Yancey, Brandon E. Bear, Bernadine Akukwe, Kevin Chen, Jayce Dowell, Jonathan D. Gough, Jonah Kanner, Kenneth Obenberger, Peter Shawhan, John H. Simonetti , Gregory B. Taylor , Jr-Wei Tsai

    2016-01-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg(2) sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  8. Multi-messenger Astronomy of Gravitational-wave Sources with Flexible Wide-area Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Yancey, Cregg C.; Bear, Brandon E.; Akukwe, Bernadine; Chen, Kevin; Dowell, Jayce; Gough, Jonathan D.; Kanner, Jonah; Kavic, Michael; Obenberger, Kenneth; Shawhan, Peter; Simonetti, John H.; -Wei Tsai, Gregory B. Taylor, Jr.

    2015-10-01

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ˜30 s time window and ˜200-500 deg2 sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ˜2. For some models, we also map the parameter space that may be constrained by non-detections.

  9. 47 CFR 90.357 - Frequencies for LMS systems in the 902-928 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies for LMS systems in the 902-928 MHz band. 90.357 Section 90.357 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.357 Frequencies for LMS systems in...

  10. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  11. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  12. 47 CFR 87.41 - Frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES... frequencies in order to minimize interference and obtain the most effective use of stations. See subpart E and... geographical areas. (c) Government frequencies. Frequencies allocated exclusively to federal government radio...

  13. VizieR Online Data Catalog: Radio continuum survey of Kepler K2 mission Field 1 (Tingay+, 2016)

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Hancock, P. J.; Wayth, R. B.; Intema, H.; Jagannathan, P.; Mooley, K.

    2016-10-01

    We describe contemporaneous observations of K2 Field 1 with the Murchison Widefield Array (MWA) and historical (from 2010-2012) observations from the Tata Institute of Fundamental Research (TIFR) Giant Metrewave Radio Telescope (GMRT) Sky Survey (TGSS; http://tgss.ncra.tifr.res.in/), via the TGSS Alternative Data Release 1 (ADR1; Intema et al. 2016, in prep.). The MWA and GMRT are radio telescopes operating at low radio frequencies (approximately 140-200MHz for the work described here). K2 mission Campaign 1 was conducted on Field 1 (center at R.A.=11:35:45.51; decl.=+01:25:02.28; J2000), covering the North Galactic Cap, between 2014 May 30 and August 21. The parameters of MWA observations are described in Table1, showing the 15 observations conducted over a period of approximately one month in 2014 June and July. All observations were made in a standard MWA imaging mode with a 30.72MHz bandwidth consisting of 24 contiguous 1.28MHz "coarse channels", each divided into 32 "fine channels" each of 40kHz bandwidth (total of 768 fine channels across 30.72MHz). The temporal resolution of the MWA correlator output was set to 0.5s. All observations were made in full polarimetric mode, with all Stokes parameters formed from the orthogonal linearly polarized feeds. Observations were made at two center frequencies, 154.88 and 185.60MHz, with two 296s observations of the K2 field at each frequency on each night of observation, accompanied by observations of one of three calibrators (Centaurus A, Virgo A, or Hydra A) at each frequency, with 112s observations. The observed fields were tracked, and thus, due to the fixed delay settings available to point the MWA primary beam, the tracked R.A. and decl. changes slightly between different observations (always a very small change compared to the MWA field of view). The total volume of MWA visibility data processed was approximately 2.2TB. A full survey of the radio sky at 150MHz as visible from the Giant Metrewave Radio (GMRT) was performed within the scope of the PI-driven TGSS project between 2010 and early 2012, covering the declination range -55° to +90°. Summarizing the observational parameters as given on the TGSS project website (http://tgss.ncra.tifr.res.in/150MHz/obsstrategy.html), the survey consists of more than 5000 pointings on an approximate hexagonal grid. Data were recorded in full polarization (RR, LL, RL, LR) every 2s, in 256 frequency channels across 16MHz of bandwidth (140-156MHz). Each pointing was observed for about 15 minutes, split over three or more scans spaced in time to improve UV-coverage. Typically, 20-40 pointings were grouped together into single night-time observing sessions, bracketed and interleaved by primary (flux density and bandpass) calibrator scans on 3C48, 3C147, and/or 3C286. Interleaving secondary (phase) calibrator scans on a variety of standard phase calibrators were also included, but were typically too faint to be of significant benefit at these frequencies. A source catalog was produced from each of the two frequencies of MWA data (see table2) and the single TGSS image (see table3). The final set of MWA images after source finding yields a total of 1085 radio sources at 154MHz, and 1468 at 185MHz over 314 square degrees, at angular resolutions of ~4'. The GMRT images, after source finding, yields a total of 7445 radio sources over the same field, at an angular resolution of ~0.3'. Thus, the overall survey covers multiple epochs of observation, spans approximately 140-200MHz, is sensitive to structures on angular scales from arcseconds to degrees, and is contemporaneous with the K2 observations of the field over a period of approximately one month. (4 data files).

  14. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  15. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  16. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  17. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  18. Electromagnetic Propagation Problems in the Tactical Environment

    DTIC Science & Technology

    1982-04-01

    Radio Consultative Committee of the International Telecommunications Union , Geneva 1-9 Table I Frequency Ranges Frequency Band Typical Tactical... Union , Geneva, 1978. 4. Bradley, P. A., AGARD Lecture Series No. 99, Propagation at medium and high frequencies: Practical radio systems and...International Radio Consultative Committee, Antenna Diagrams, International Telecommunication Union , Geneva, 1978. 7. Barghausen, A. F., J. W. Finney, L. L

  19. Development of paper-based wireless communication modules for point-of-care diagnostic applications

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne; Bezuidenhout, Petroné H.; Land, Kevin; Korvink, Jan G.; Mager, Dario

    2016-02-01

    We present an ultra-high frequency radio frequency identification based wireless communication set-up for paper-based point-of-care diagnostic applications, based on a sensing radio frequency identification chip. Paper provides a low-cost, disposable platform for ease of fluidic handling without bulky instrumentation, and is thus ideally suited for point-ofcare applications; however, result communication - a crucial aspect for healthcare to be implemented effectively - is still lacking. Printing of radio frequency identification antennas and electronic circuitry for sensing on paper are presented, with read out of the results using a radio frequency identification reader illustrated, demonstrating the feasibility of developing integrated, all-printed solutions for point-of-care diagnosis in resource-limited settings.

  20. Method for high resolution magnetic resonance analysis using magic angle technique

    DOEpatents

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  1. 47 CFR 95.1113 - Frequency coordinator.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...

  2. 47 CFR 95.1113 - Frequency coordinator.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1113 Frequency coordinator. (a... with radio astronomy observatories and Federal Government radar systems as specified in §§ 95.1119 and...

  3. DEMONSTRATION BULLETIN: RADIO FREQUENCY HEATING - IIT RESEARCH INSTITUTE

    EPA Science Inventory

    Radio frequency heating (RFH) is a process that uses electromagnetic energy generated by radio waves to heat soil in situ, thereby potentially enhancing the performance of standard soil vapor extraction (SVE) technologies. An RFH system developed by the IIT Research Institute ...

  4. 47 CFR 2.801 - Radiofrequency device defined.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....801 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.801 Radiofrequency device..., but are not limited to: (a) The various types of radio communication transmitting devices described...

  5. Wide band stepped frequency ground penetrating radar

    DOEpatents

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  6. Radiosurgical fistulotomy; an alternative to conventional procedure in fistula in ano.

    PubMed

    Gupta, Pravin J

    2003-01-01

    Most surgeons continue to prefer the classic lay open technique [fistulotomy] as the gold standard of treatment in anal fistula. In this randomized study, a comparison is made between conventional fistulotomy and fistulotomy performed by a radio frequency device. One hundred patients of low anal fistula posted for fistulotomy were randomized prospectively to either a conventional or radio frequency technique. Parameters measured included time taken for the procedure, amount of blood loss, postoperative pain, return to work, and recurrence rate. The patient demographic was comparable in 2 groups. The radio frequency fistulotomy was quicker as compared to a conventional one [22 versus 37 minutes, p = 0.001], amount of bleeding was significantly less [47 ml versus 134 ml, p = 0.002], and hospital stay was less when patient was operated by radio frequency method [37 hours versus 56 hours in conventional method, p = 0.001]. The postoperative pain in the first 24 hours was more in conventional group [2 to 5 versus 0 to 3 on visual analogue scale]. The patients from radio frequency group resumed their duties early with a reduced healing period of the wounds [47 versus 64 days, p = 0.01]. The recurrence or failure rates were comparable in the radio frequency and conventional groups [2% versus 6%]. Fistulotomy procedure using a radio frequency technique has significant advantages over a conventional procedure with regard to operation time, blood loss, return to normal activity, and healing time of the wound.

  7. MULTI-MESSENGER ASTRONOMY OF GRAVITATIONAL-WAVE SOURCES WITH FLEXIBLE WIDE-AREA RADIO TRANSIENT SURVEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yancey, Cregg C.; Shawhan, Peter; Bear, Brandon E.

    We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emission of GWs and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, the Low Frequency Array and the Murchison Widefield Array. We find that a broad range of models may bemore » tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a ∼30 s time window and ∼200–500 deg{sup 2} sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a prompt radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of ∼2. For some models, we also map the parameter space that may be constrained by non-detections.« less

  8. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    NASA Astrophysics Data System (ADS)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  9. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  10. Winds as the origin of radio emission in z = 2.5 radio-quiet extremely red quasars

    NASA Astrophysics Data System (ADS)

    Hwang, Hsiang-Chih; Zakamska, Nadia L.; Alexandroff, Rachael M.; Hamann, Fred; Greene, Jenny E.; Perrotta, Serena; Richards, Gordon T.

    2018-06-01

    Most active galactic nuclei (AGNs) are radio quiet, and the origin of their radio emission is not well understood. One hypothesis is that this radio emission is a byproduct of quasar-driven winds. In this paper, we present the radio properties of 108 extremely red quasars (ERQs) at z = 2-4. ERQs are among the most luminous quasars (Lbol ˜ 1047-48 erg s-1) in the Universe, with signatures of extreme (≫1000 km s-1) outflows in their [O III]λ5007 Å emission, making them the best subjects to seek the connection between radio and outflow activities. All ERQs but one are unresolved in the radio on ˜10 kpc scales, and the median radio luminosity of ERQs is νLν[6 GHz] = 1041.0 erg s-1, in the radio-quiet regime, but 1-2 orders of magnitude higher than that of other quasar samples. The radio spectra are steep, with a mean spectral index <α> = -1.0. In addition, ERQs neatly follow the extrapolation of the low-redshift correlation between radio luminosity and the velocity dispersion of [O III]-emitting ionized gas. Uncollimated winds, with a power of one per cent of the bolometric luminosity, can account for all these observations. Such winds would interact with and shock the gas around the quasar and in the host galaxy, resulting in acceleration of relativistic particles and the consequent synchrotron emission observed in the radio. Our observations support the picture in which ERQs are signposts of extremely powerful episodes of quasar feedback, and quasar-driven winds as a contributor of the radio emission in the intermediate regime of radio luminosity νLν = 1039-1042 erg s-1.

  11. Stable radio frequency dissemination by simple hybrid frequency modulation scheme.

    PubMed

    Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang

    2014-09-15

    In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.

  12. OMEGA SYSTEM SYNCHRONIZATION.

    DTIC Science & Technology

    TIME SIGNALS, * SYNCHRONIZATION (ELECTRONICS)), NETWORKS, FREQUENCY, STANDARDS, RADIO SIGNALS, ERRORS, VERY LOW FREQUENCY, PROPAGATION, ACCURACY, ATOMIC CLOCKS, CESIUM, RADIO STATIONS, NAVAL SHORE FACILITIES

  13. 47 CFR Appendix 1 to Subpart E of... - Glossary of Terms

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... which also typically includes a frequency monitoring system that initiates a MedRadio communications... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...

  14. 47 CFR Appendix 1 to Subpart E of... - Glossary of Terms

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... which also typically includes a frequency monitoring system that initiates a MedRadio communications... Part 95 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... station authorized in the CB. Channel frequencies. Reference frequencies from which the carrier frequency...

  15. 47 CFR 15.105 - Information to the user.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...

  16. 47 CFR 15.105 - Information to the user.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...

  17. 47 CFR 15.105 - Information to the user.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...

  18. 47 CFR 15.105 - Information to the user.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Unintentional Radiators § 15.105... generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this...

  19. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less

  20. Characterization of an Outdoor Ambient Radio Frequency Environment

    DTIC Science & Technology

    2016-02-16

    radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization

  1. Radio Frequency Identification (RFID) Based Corrosion Monitoring Sensors. Part 2: Application and Testing of the Coating Materials

    DTIC Science & Technology

    2014-12-22

    Radio frequency identification ( RFID ) based corrosion monitoring sensors: Part II Application and testing of the coating materials Youliang He1...email: yohe@nrcan.gc.ca Keywords: Corrosion monitoring; Wireless sensor; RFID ; Electromagnetic interference; Coating. Abstract Cost-effective...Radio Frequency Identification ( RFID ) transponders (tags) were investigated for wireless corrosion monitoring by applying a metal-filled conductive

  2. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  3. Energetic storm particle events in coronal mass ejection-driven shocks

    NASA Astrophysics Data System (ADS)

    Mäkelä, P.; Gopalswamy, N.; Akiyama, S.; Xie, H.; Yashiro, S.

    2011-08-01

    We investigate the variability in the occurrence of energetic storm particle (ESP) events associated with shocks driven by coronal mass ejections (CMEs). The interplanetary shocks were detected during the period from 1996 to 2006. First, we analyze the CME properties near the Sun. The CMEs with an ESP-producing shock are faster ($\\langle$VCME$\\rangle$ = 1088 km/s) than those driving shocks without an ESP event ($\\langle$VCME$\\rangle$ = 771 km/s) and have a larger fraction of halo CMEs (67% versus 38%). The Alfvénic Mach numbers of shocks with an ESP event are on average 1.6 times higher than those of shocks without. We also contrast the ESP event properties and frequency in shocks with and without a type II radio burst by dividing the shocks into radio-loud (RL) and radio-quiet (RQ) shocks, respectively. The shocks seem to be organized into a decreasing sequence by the energy content of the CMEs: RL shocks with an ESP event are driven by the most energetic CMEs, followed by RL shocks without an ESP event, then RQ shocks with and without an ESP event. The ESP events occur more often in RL shocks than in RQ shocks: 52% of RL shocks and only ˜33% of RQ shocks produced an ESP event at proton energies above 1.8 MeV; in the keV energy range the ESP frequencies are 80% and 65%, respectively. Electron ESP events were detected in 19% of RQ shocks and 39% of RL shocks. In addition, we find that (1) ESP events in RQ shocks are less intense than those in RL shocks; (2) RQ shocks with ESP events are predominately quasi-perpendicular shocks; (3) their solar sources are located slightly to the east of the central meridian; and (4) ESP event sizes show a modest positive correlation with the CME and shock speeds. The observation that RL shocks tend to produce more frequently ESP events with larger particle flux increases than RQ shocks emphasizes the importance of type II bursts in identifying solar events prone to producing high particle fluxes in the near-Earth space. However, the trend is not definitive. If there is no type II emission, an ESP event is less likely but not absent. The variability in the probability and size of ESP events most likely reflects differences in the shock formation in the low corona and changes in the properties of the shocks as they propagate through interplanetary space and the escape efficiency of accelerated particles from the shock front.

  4. The electrical asymmetry effect in a multi frequency geometrically asymmetric capacitively coupled plasma: A study by a nonlinear global model

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Bora, B.; Kakati, M.; Wyndham, E.; Rawat, R. S.; Schulze, J.

    2018-05-01

    We investigate the electrical asymmetry effect (EAE) and the current dynamics in a geometrically asymmetric capacitively coupled radio frequency plasma driven by multiple consecutive harmonics based on a nonlinear global model. The discharge symmetry is controlled via the EAE, i.e., by varying the total number of harmonics and tuning the phase shifts ( θ k ) between them. Here, we systematically study the EAE in a low pressure (4 Pa) argon discharge with different geometrical asymmetries driven by a multifrequency rf source consisting of 13.56 MHz and its harmonics. We find that the geometrical asymmetry strongly affects the absolute value of the DC self-bias voltage, but its functional dependence on θ k is similar at different values of the geometrical asymmetry. Also, the values of the DC self-bias are enhanced by adding more consecutive harmonics. The voltage drop across the sheath at the powered and grounded electrode is found to increase/decrease, respectively, with the increase in the number of harmonics of the fundamental frequency. For the purpose of validating the model, its outputs are compared with the results obtained in a geometrically and electrically asymmetric 2f capacitively coupled plasmas experiment conducted by Schuengel et al. [J. Appl. Phys. 112, 053302 (2012)]. Finally, we study the self-excitation of nonlinear plasma series resonance oscillations and its dependence on the geometrical asymmetry as well as the phase angles between the driving frequencies.

  5. Radio-science performance analysis software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  6. Radio-Science Performance Analysis Software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1994-10-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.

  7. Radio-science performance analysis software

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Asmar, S. W.

    1995-01-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  8. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.

    2011-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.

  9. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Aller, H. D.; ...

    2016-12-12

    Continuum spectra covering centimetre to submillimetre wavelengths are presented in this paper for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at highmore » frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Finally, variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.« less

  10. Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Calabrese, E.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gurwell, M. A.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hobson, M.; Hornstrup, A.; Hovatta, T.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Järvelä, E.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Max-Moerbeck, W.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mingaliev, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Nieppola, E.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Ramakrishnan, V.; Rastorgueva-Foi, E. A.; S Readhead, A. C.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Richards, J. L.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savelainen, M.; Savini, G.; Scott, D.; Sotnikova, Y.; Stolyarov, V.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Türler, M.; Valenziano, L.; Valiviita, J.; Valtaoja, E.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wehrle, A. E.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-12-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.

  11. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Aller, H. D.

    Continuum spectra covering centimetre to submillimetre wavelengths are presented in this paper for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at highmore » frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Finally, variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.« less

  12. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei

    2013-11-15

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperaturemore » of atmospheric pressure plasma could also be obtained using dual-frequency excitation.« less

  13. Effect of pulsed discharge on the ignition of pulse modulated radio frequency glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.

    2018-01-01

    A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.

  14. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.

    2018-05-01

    Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.

  15. Architecture Analysis of Wireless Power Transmission for Lunar Outposts

    DTIC Science & Technology

    2015-09-01

    through his work on wireless communication using radio wave propagation for both transmitting and receiving high frequency electricity using a focusing...Administration nm nanometers NRC National Research Council PGT platform generic technologies PMAD power management and distribution RF radio frequency xiv...GHz (Marzwell 2008). While the slot antenna can handle frequencies between 70 GHz and 150 GHz, it has been optimized for 94 GHz and has a radio

  16. Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications

    DTIC Science & Technology

    2012-02-07

    circuits on mechanically flexible substrates for digital, analog and radio frequency applications. The asobtained thin-film transistors ( TFTs ) exhibit... flexible substrates for digital, analog and radio frequency applications. The as- obtained thin-film transistors ( TFTs ) exhibit highly uniform device...LCD) and organic light- emitting diode ( OLED ) displays lack the transparency and flexibility and are thus unsuitable for flexible electronic

  17. Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, M. A., E-mail: lieber@eecs.berkeley.edu; Lichtenberg, A. J.; Kawamura, E.

    It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths andmore » the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power.« less

  18. Variability of fractal dimension of solar radio flux

    NASA Astrophysics Data System (ADS)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  19. 47 CFR 2.1204 - Import conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...

  20. 47 CFR 2.1204 - Import conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... generations of a particular model under development are considered to be separate devices. (4) The radio... particular model under development are considered to be separate devices. (5) The radio frequency device is... offered for sale or marketed. (9) The radio frequency device is a medical implant transmitter inserted in...

  1. 47 CFR 76.616 - Operation near certain aeronautical and marine emergency radio frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Operation near certain aeronautical and marine emergency radio frequencies. 76.616 Section 76.616 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Technical Standards § 76...

  2. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  3. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  4. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  5. High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources

    NASA Astrophysics Data System (ADS)

    Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.

    2011-09-01

    We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org

  6. Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts: NH3 Storage Influence to Catalyst Performance under Transient Conditions

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589

  7. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  8. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  9. Likelihood of Incomplete Kidney Tumor Ablation with Radio Frequency Energy: Degree of Enhancement Matters.

    PubMed

    Lay, Aaron H; Stewart, Jeremy; Canvasser, Noah E; Cadeddu, Jeffrey A; Gahan, Jeffrey C

    2016-07-01

    Larger size and clear cell histopathology are associated with worse outcomes for malignant renal tumors treated with radio frequency ablation. We hypothesize that greater tumor enhancement may be a risk factor for radio frequency ablation failure due to increased vascularity. A retrospective review of patients who underwent radio frequency ablation for renal tumors with contrast enhanced imaging available was performed. The change in Hounsfield units (HU) of the tumor from the noncontrast phase to the contrast enhanced arterial phase was calculated. Radio frequency ablation failure rates for biopsy confirmed malignant tumors were compared using the chi-squared test. Multivariate logistic analysis was performed to assess predictive variables for radio frequency ablation failure. Disease-free survival was calculated using Kaplan-Meier analysis. A total of 99 patients with biopsy confirmed malignant renal tumors and contrast enhanced imaging were identified. The incomplete ablation rate was significantly lower for tumors with enhancement less than 60 vs 60 HU or greater (0.0% vs 14.6%, p=0.005). On multivariate logistic regression analysis tumor enhancement 60 HU or greater (OR 1.14, p=0.008) remained a significant predictor of incomplete initial ablation. The 5-year disease-free survival for size less than 3 cm was 100% vs 69.2% for size 3 cm or greater (p <0.01), while 5-year disease-free survival for HU change less than 60 was 100% vs 92.4% for HU change 60 or greater (p=0.24). Biopsy confirmed malignant renal tumors, which exhibit a change in enhancement of 60 HU or greater, experience a higher rate of incomplete initial tumor ablation than tumors with enhancement less than 60 HU. Size 3 cm or greater portends worse 5-year disease-free survival after radio frequency ablation. The degree of enhancement should be considered when counseling patients before radio frequency ablation. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Inhomogeneous nuclear spin polarization induced by helicity-modulated optical excitation of fluorine-bound electron spins in ZnSe

    NASA Astrophysics Data System (ADS)

    Heisterkamp, F.; Greilich, A.; Zhukov, E. A.; Kirstein, E.; Kazimierczuk, T.; Korenev, V. L.; Yugova, I. A.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.

    2015-12-01

    Optically induced nuclear spin polarization in a fluorine-doped ZnSe epilayer is studied by time-resolved Kerr rotation using resonant excitation of donor-bound excitons. Excitation with helicity-modulated laser pulses results in a transverse nuclear spin polarization, which is detected as a change of the Larmor precession frequency of the donor-bound electron spins. The frequency shift in dependence on the transverse magnetic field exhibits a pronounced dispersion-like shape with resonances at the fields of nuclear magnetic resonance of the constituent zinc and selenium isotopes. It is studied as a function of external parameters, particularly of constant and radio frequency external magnetic fields. The width of the resonance and its shape indicate a strong spatial inhomogeneity of the nuclear spin polarization in the vicinity of a fluorine donor. A mechanism of optically induced nuclear spin polarization is suggested based on the concept of resonant nuclear spin cooling driven by the inhomogeneous Knight field of the donor-bound electron.

  11. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  12. Signal Identification and Isolation Utilizing Radio Frequency Photonics

    DTIC Science & Technology

    2017-09-01

    analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters

  13. 78 FR 58487 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... display units (DUs). These DUs exhibited susceptibility to radio frequency emissions in WiFi frequency... certification of WiFi system installations. The phase 3 DUs provide primary flight information including... flickering and blanking when subjected to radio frequency emissions in WiFi frequency bands at radiated power...

  14. 47 CFR 90.275 - Selection and assignment of frequencies in the 421-430 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specify the frequencies in which the proposed system will operate pursuant to a recommendation by a...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or...

  15. 47 CFR 90.275 - Selection and assignment of frequencies in the 421-430 MHz band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specify the frequencies in which the proposed system will operate pursuant to a recommendation by a...) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Standards for Special Frequencies or...

  16. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Astrophysics Data System (ADS)

    Springett, James C.

    1994-05-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  17. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  18. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DOE PAGES

    Aatrokoski, J.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less

  19. Radio interference in the near-earth environment

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1988-01-01

    Natural and man-made radio frequency interference (RFI) are potentially serious obstacles to the successful operation of an array of spacecraft used for low frequency (1 to 30 MHz) radio interferometry in the near-earth environment. Several satellites and planetary probes have carried radio astronomy experiments, and the moderate data base that they provide are examined to help understand the near-earth RFI environment. The general conclusion is that the region of space within 100 earth-radii of the earth is a hostile environment for any radio astronomy experiment. If a low frequency array in earth orbit is to yield useful astronomical results, severe interference problems must be anticipated and overcome. A number of recommendations are made to further examine the feasibility of such an array.

  20. Numerical simulations of particle acceleration and low frequency radio emission in stellar environments

    NASA Astrophysics Data System (ADS)

    Paraskevi Moschou, Sofia; Sokolov, Igor; Cohen, Ofer; Drake, Jeremy J.; Borovikov, Dmitry; Alvarado-Gomez, Julian D.; Garraffo, Cecilia

    2018-06-01

    Due to their favorable atmospheric window radio waves are a useful tool for ground-based observations of astrophysical systems throughout a plethora of scales, from cosmological down to planetary ones. A wide range of physical mechanisms, from thermal processes to eruptive events linked to magnetic reconnection, can generate emission in radio frequencies. Radio waves have the distinct characteristic that they follow curved paths as they propagate in stratified environments, such as the solar corona, due to their dependence on the refraction index. Low frequency radio rays in particular are affected the most by refraction.Solar radio observations are of particular importance, since it is possible to spatially resolve the Sun and its corona and gain insights on highly dynamic and complex radio-emitting phenomena. The multi-scale problem of particle acceleration and energy partition between CMEs, flares and SEPs requires both MHD and kinetic considerations to account for the emission and mass propagation through the interplanetary space.Radio observations can play a significant role in the rapidly developing area of exoplanetary research and provide insights on the stellar environments of those systems. Even though a large number of flares has been observed for different stellar types, nevertheless there is a lack of stellar CME observations. Currently, the most promising method to incontrovertibly observe stellar CMEs is through Type II radio bursts. Low frequency radio emission can also be produced by the interaction of a magnetized planet with the stellar wind of the host star.The above mentioned characteristics of radio-waves make their integration into numerical simulations imperative for capturing and disentangling the complex radio emitting processes along the actual radio paths and provide the observers with detection limits for future Earth- and space-based missions. Radio synthetic imaging tools incorporated in realistic computational codes are already available for solar radio-emitting processes with different physical and observational characteristics.

  1. 47 CFR 90.175 - Frequency coordinator requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a frequency and/or transmitter site location. (18) Applications for base, mobile, or control... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...

  2. 47 CFR 90.175 - Frequency coordinator requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a frequency and/or transmitter site location. (18) Applications for base, mobile, or control... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...

  3. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  4. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  5. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  6. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  7. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  8. 47 CFR 18.101 - Basis and purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... industrial, scientific, and medical equipment (ISM) that emits electromagnetic energy on frequencies within the radio frequency spectrum in order to prevent harmful interference to authorized radio...

  9. The Mobile Laboratory for Radio-Frequency Interference Monitoring at the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Bolli, Pietro; Gaudiomonte, Francesco; Ambrosini, Roberto; Bortolotti, Claudio; Roma, Mauro; Barberi, Carlo; Piccoli, Fabrizio

    2013-10-01

    In this paper, a quite unique mobile laboratory for monitoring radio-frequency interference with a radio-astronomical observatory is described. The unit is fully operational at the new Sardinia Radio Telescope, a 64-m antenna now in the commissioning phase in Italy. The mobile laboratory is mainly used to identify the source of interference with the radio astronomy service using iterative triangulations in the azimuth directions. Both the design and realization of this prototype were handled with outstanding care to limit the emission of self-interference as much as possible. The laboratory was equipped with excellent microwave instruments in terms of sensitivity, frequency coverage, dynamic range, and various demodulation and signal-analysis facilities. The unit can be quickly switched to different RF and power-supply configurations, while offering operators a safe and efficient workplace, even in adverse meteorological and driving conditions. In the past months, the mobile laboratory has proven to be successful in detecting and identifying many radio interferers. Two examples of measurement campaigns are described.

  10. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  11. Coherent curvature radiation and fast radio bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele; Locatelli, Nicola

    2018-06-01

    Fast radio bursts are extragalactic radio transient events lasting a few milliseconds with a Jy flux at 1 GHz. We propose that these properties suggest a neutron star progenitor, and focus on coherent curvature radiation as the radiation mechanism. We study for which sets of parameters the emission can fulfil the observational constraints. Even if the emission is coherent, we find that self-absorption can limit the produced luminosities at low radio frequencies and that an efficient re-acceleration process is needed to balance the dramatic energy losses of the emitting particles. Self-absorption limits the luminosities at low radio frequency, while coherence favours steep optically thin spectra. Furthermore, the magnetic geometry must have a high degree of order to obtain coherent curvature emission. Particles emit photons along their velocity vectors, thereby greatly reducing the inverse Compton mechanism. In this case we predict that fast radio bursts emit most of their luminosities in the radio band and have no strong counterpart in any other frequency bands.

  12. tf_unet: Generic convolutional neural network U-Net implementation in Tensorflow

    NASA Astrophysics Data System (ADS)

    Akeret, Joel; Chang, Chihway; Lucchi, Aurelien; Refregier, Alexandre

    2016-11-01

    tf_unet mitigates radio frequency interference (RFI) signals in radio data using a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. The code is not tied to a specific segmentation and can be used, for example, to detect radio frequency interference (RFI) in radio astronomy or galaxies and stars in widefield imaging data. This U-Net implementation can outperform classical RFI mitigation algorithms.

  13. A Search for Periodic Optical Variability in Radio Detected Ultracool Dwarfs: A Consequence of a Magnetically-Driven Auroral Process?

    NASA Astrophysics Data System (ADS)

    Harding, L. K.; Hallinan, G.; Boyle, R. P.; Butler, R. F.; Sheehan, B.; Golden, A.

    2011-12-01

    A number of ultracool dwarfs have been unexpectedly detected as radio sources in the last decade, four of which have been found to be producing periodic pulses. More recently, two of these pulsing dwarfs have also been found to be periodically variable in broadband optical photometry. The detected periods match the periods of the radio pulses which have previously been associated with the rotation period of the dwarf. For one of these objects, it has also been established that the optical and radio periodic variability are possibly linked, being a consequence of magnetically-driven auroral processes. In order to investigate the ubiquity of the periodic optical variability in radio detected sources, the GUFI instrument (Galway Ultra Fast Imager) was commissioned on the 1.8m Vatican Advanced Technology Telescope, on Mt. Graham, Arizona, and has been obtaining data for the past eighteen months. More than two hundred hours of multi-epoch photometric monitoring observations of radio detected ultracool dwarfs have been completed. We present initial results confirming optical periodic variability for four of this sample, three of which have been newly confirmed using GUFI.

  14. Calculus, Radio Dials and the Straight-Line Frequency Variable Capacitor

    ERIC Educational Resources Information Center

    Boyadzhiev, Khristo N.

    2010-01-01

    Most often radio dials of analogue radios are not uniformly graded; the frequencies are cramped on the left side or on the right side. This makes tuning more difficult. Why are dials made this way? We shall see here that simple calculus can help understand this problem and solve it. (Contains 7 figures.)

  15. 75 FR 9850 - Tank Level Probing Radars in the Frequency Band 77-81 GHz

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... National Radio Astronomy Observatory (NRAO) states that it would not object to the Ohmart/VEGA waiver if it Frequency Band of Operation. Authorized operations in the 77-81 GHz band currently include radio astronomy... operations in this band would have on authorized services. Regarding radio astronomy, the Commission observes...

  16. Frequency Allocation; The Radio Spectrum.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) assigns segments of the radio spectrum to categories of users, and specific frequencies within each segment to individual users. Since demand for channel space exceeds supply, the process is complex. The radio spectrum can be compared to a long ruler: the portion from 10-540 kiloHertz has been set aside…

  17. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Funk, S.; Giroletti, M.

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected atmore » 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.« less

  18. The AGN-driven shock in NGC 4472

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2016-04-01

    Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.

  19. 47 CFR 74.503 - Frequency selection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Frequency selection. 74.503 Section 74.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... § 74.503 Frequency selection. (a) Each application for a new station or change in an existing station...

  20. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  1. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-06

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.

  2. Conveyorized Radio Frequency Cure of Epoxy Glass Composites.

    DTIC Science & Technology

    1980-05-01

    a conveyorized radio frequency oven. The conveyorized radio frequency 20-kilowatt (90-100 megahertz) dielectric heater was de - designed and...Process were de - termined with reference to property requirements specified in Table three of 8MS-8-196A. Although the BM-8,196A relates to material...requirements of the 8MS and agree with the values contained in the 3M certifying report. De - tailed test results are presented as Appendix J. In addition

  3. Momentum-resolved radio-frequency spectroscopy of a spin-orbit-coupled atomic Fermi gas near a Feshbach resonance in harmonic traps

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun

    2012-12-01

    We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.

  4. RF lockout circuit for electronic locking system

    NASA Astrophysics Data System (ADS)

    Becker, Earl M., Jr.; Miller, Allen

    1991-02-01

    An electronics lockout circuit was invented that includes an antenna adapted to receive radio frequency signals from a transmitter, and a radio frequency detector circuit which converts the radio frequency signals into a first direct current voltage indicative of the relative strength of the field resulting from the radio frequency signals. The first direct current voltage is supplied to a trigger circuit which compares this direct current voltage to an adjustable direct current reference voltage. This provides a second direct current voltage at the output whenever the amplitude of the first direct current voltage exceeds the amplitude of the reference voltage provided by the comparator circuit. This is supplied to a disconnect relay circuit which, upon receiving a signal from the electronic control unit of an electronic combination lock during the time period at which the second direct current voltage is present, isolates the door strike coil of a security door from the electronic control unit. This prevents signals falsely generated by the electronic control unit because of radio frequency signals in the vicinity of the electronic control unit energizing the door strike coil and accidentally opening a security door.

  5. Methods for magnetic resonance analysis using magic angle technique

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  6. Modelling and mitigating refractive propagation effects in precision pulsar timing observations

    NASA Astrophysics Data System (ADS)

    Shannon, R. M.; Cordes, J. M.

    2017-01-01

    To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.

  7. Direct measurement of axial momentum imparted by an electrothermal radiofrequency plasma micro-thruster

    NASA Astrophysics Data System (ADS)

    Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin

    2016-05-01

    Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.

  8. 47 CFR 73.682 - TV transmission standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...

  9. 47 CFR 73.682 - TV transmission standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...

  10. 47 CFR 73.682 - TV transmission standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...

  11. 47 CFR 73.682 - TV transmission standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...

  12. 47 CFR 73.682 - TV transmission standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....682 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO... frequency shall be nominally 1.25 MHz above the lower boundary of the channel. (3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency. (4) The visual transmission amplitude...

  13. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.

    PubMed

    Zainal, M A; Ahmad, A; Mohamed Ali, M S

    2017-03-01

    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.

  14. The Contribution of "Around the Dial" to American Music Radio Announcing Culture.

    ERIC Educational Resources Information Center

    Shields, Steven O.; Ogles, Robert M.

    Shared conventions of the modern radio industry should allow radio announcers and other producers of radio content to distinguish "good radio" from "bad radio." To help in making this distinction, a study delineated some of the basic conventions used in the production of radio content and analyzed the frequency of their…

  15. Wave optics-based LEO-LEO radio occultation retrieval

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2016-06-01

    This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium-Range Weather Forecasts analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board the LEO satellite. LEO-LEO cross-link radio occultations using high frequencies are a relatively new technique, and the possibilities and advantages of the technique still need to be investigated. The retrieval of this type of radio occultations is considerably more complicated than standard GPS to LEO radio occultations, because the attenuation of the probing radio waves is used in the retrieval and the atmospheric parameters are found using a least squares solver. The best algorithms and the number of probing frequencies that is economically viable must also be determined. This paper intends to answer some of these questions using end-to-end simulations.

  16. Pulsar-aided SETI experimental observations

    NASA Technical Reports Server (NTRS)

    Heidmann, J.; Biraud, F.; Tarter, J.

    1989-01-01

    The rotational frequencies of pulsars are used to select preferred radio frequencies for SETI. Pulsar rotational frequencies are converted into SETI frequencies in the 1-10 GHz Galactic radio window. Experimental observations using the frequencies are conducted for target stars closer than 25 parsecs, unknown targets in a globular cluster, and unknown targets in the Galaxy closer than 2.5 kpc. The status of these observations is discussed.

  17. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74 MHz to extract three-dimensional data on the distribution of Galactic cosmic ray emissivity, a measurement possible only at low radio frequencies.

  18. 48 CFR 211.275-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Documents 211.275-1 Definitions. Bulk commodities, case, palletized unit load, passive RFID tag, and radio frequency identification are defined in the clause at 252.211-7006, Passive Radio Frequency Identification...

  19. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  20. 47 CFR 300.1 - Incorporation by reference of the Manual of Regulations and Procedures for Federal Radio...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...

  1. 47 CFR 300.1 - Incorporation by reference of the Manual of Regulations and Procedures for Federal Radio...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...

  2. 47 CFR 300.1 - Incorporation by reference of the Manual of Regulations and Procedures for Federal Radio...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The Federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...

  3. 47 CFR 300.1 - Incorporation by reference of the Manual of Regulations and Procedures for Federal Radio...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The Federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...

  4. 47 CFR 300.1 - Incorporation by reference of the Manual of Regulations and Procedures for Federal Radio...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... authority under 47 U.S.C. 901 et seq. and Executive Order 12046 (March 27, 1978). (b) The federal agencies... Regulations and Procedures for Federal Radio Frequency Management. 300.1 Section 300.1 Telecommunication... AND PROCEDURES FOR FEDERAL RADIO FREQUENCY MANAGEMENT § 300.1 Incorporation by reference of the Manual...

  5. Radio Frequency (RF) Trap for Confinement of Antimatter Plasmas Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III; Pearson, J. Boise

    2004-01-01

    Perturbations associated with a rotating wall electric field enable the confinement of ions for periods approaching weeks. This steady state confinement is a result of a radio frequency manipulation of the ions. Using state-of-the-art techniques it is shown that radio frequency energy can produce useable manipulation of the ion cloud (matter or antimatter) for use in containment experiments. The current research focuses on the improvement of confinement systems capable of containing and transporting antimatter.

  6. A Student's Hands-on Introduction to Radio Astronomy With the Simple Construction, Operation and Testing, Utilizing Commonly Available Materials, of a Functioning Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Knight, D.

    2016-12-01

    Our study of the Sun, an object that provides life to this planet but also is a serious threat to the existence we now enjoy, is frequently limited in hands-on activities by the unavailability of the necessary observational tools. While small optical telescopes are more easily obtained, telescopes that work the other regions of the electromagnetic spectrum, such as the radio frequencies, are unusual. Radio emissions from solar storms, however, can be "viewed" by a student constructing a simple, tunable and inexpensive radio telescope designed to receive the most common radio frequencies broadcast from the Sun during such a storm. The apparatus employs normally available materials and technology in new purposes. Utilizing this telescope, students have the ability to test and modify its design for changes in frequency and signal amplitude, and therefore examine a wide spectrum of radio emission emanating from our star. This engaging introduction to radio electronics not only involves the study of the electrical circuit involved, but also sets the student up for detailed study in the form of specific research projects focusing on solar activity in the radio wavelengths. So far, my students have been actively involved in varying the electrical properties of a simple one-transistor circuit that selects the observational frequencies of the solar radio telescope they have constructed. Student research projects also have examined antenna design in terms of directionality and signal strength gain. In the future, collaboration is possible to link student observers in different locations on this planet, allowing for significant peer evaluation and cooperation. NASA's "Project Jove", a program that Sonoma Valley High School and Robert Ferguson Observatory have been connected with since about the year 2000, already has a worldwide collaboration network in place for similar student-operated radio telescopes for primarily studying Jupiter. Because of the higher frequencies with most of the solar storm radio spectrum, our apparatus is correspondingly much smaller and easier to manipulate, thus promoting student research on a much larger scale.

  7. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  8. 47 CFR 97.307 - Emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-modulated emission may have a modulation index greater than 1 at the highest modulation frequency. (2) No..., or for frequency-shift keying, the frequency shift between mark and space must not exceed 1 kHz. (5... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO...

  9. 47 CFR 97.307 - Emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-modulated emission may have a modulation index greater than 1 at the highest modulation frequency. (2) No..., or for frequency-shift keying, the frequency shift between mark and space must not exceed 1 kHz. (5... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO...

  10. 47 CFR 97.307 - Emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-modulated emission may have a modulation index greater than 1 at the highest modulation frequency. (2) No..., or for frequency-shift keying, the frequency shift between mark and space must not exceed 1 kHz. (5... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO...

  11. 47 CFR 97.307 - Emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-modulated emission may have a modulation index greater than 1 at the highest modulation frequency. (2) No..., or for frequency-shift keying, the frequency shift between mark and space must not exceed 1 kHz. (5... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO...

  12. 47 CFR 97.307 - Emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-modulated emission may have a modulation index greater than 1 at the highest modulation frequency. (2) No..., or for frequency-shift keying, the frequency shift between mark and space must not exceed 1 kHz. (5... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AMATEUR RADIO...

  13. Comparing Zero Ischemia Laparoscopic Radio Frequency Ablation Assisted Tumor Enucleation and Laparoscopic Partial Nephrectomy for Clinical T1a Renal Tumor: A Randomized Clinical Trial.

    PubMed

    Huang, Jiwei; Zhang, Jin; Wang, Yanqing; Kong, Wen; Xue, Wei; Liu, Dongming; Chen, YongHui; Huang, Yiran

    2016-06-01

    We evaluated the functional outcome, safety and efficacy of zero ischemia laparoscopic radio frequency ablation assisted tumor enucleation compared with conventional laparoscopic partial nephrectomy. A prospective randomized controlled trial was conducted from April 2013 to March 2015 in patients with cT1a renal tumor scheduled for laparoscopic nephron sparing surgery. All patients were followed for at least 12 months. Patients in the laparoscopic radio frequency ablation assisted tumor enucleation group underwent tumor enucleation after radio frequency ablation without hilar clamping. The primary outcome was the change in glomerular filtration rate of the affected kidney by renal scintigraphy at 12 months. Secondary outcomes included changes in estimated glomerular filtration rate, estimated blood loss, operative time, hospital stay, postoperative complications and oncologic outcomes. The Pearson chi-square or Fisher exact, Student t-test and Wilcoxon rank sum tests were used. The trial ultimately enrolled 89 patients, of whom 44 were randomized to the laparoscopic radio frequency ablation assisted tumor enucleation group and 45 to the laparoscopic partial nephrectomy group. In the laparoscopic partial nephrectomy group 1 case was converted to radical nephrectomy. Compared with the laparoscopic partial nephrectomy group, patients in the laparoscopic radio frequency ablation assisted tumor enucleation group had a smaller decrease in glomerular filtration rate of the affected kidney at 3 months (10.2% vs 20.5%, p=0.001) and 12 months (7.6% vs 16.2%, p=0.002). Patients in the laparoscopic radio frequency ablation assisted tumor enucleation group had a shorter operative time (p=0.002), lower estimated blood loss (p <0.001) and a shorter hospital stay (p=0.029) but similar postoperative complications (p=1.000). There were no positive margins or local recurrence in this study. Zero ischemia laparoscopic radio frequency ablation assisted tumor enucleation enables tumor excision with better renal function preservation compared to conventional laparoscopic partial nephrectomy. Less blood loss and a shorter operative time were achieved with similar postoperative complication rates. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta

    2016-12-01

    The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev-Zel'dovich effect to probe the ICM pressure in addition to tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the `off-state' or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.

  15. Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.

    PubMed

    Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P

    2012-02-01

    The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.

  16. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Reilly, Elizabeth K.; Burghardt, Fred; Fain, Romy; Wright, Paul

    2011-12-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%.

  17. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Konecny, R.; Antipov, S.

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures inmore » many accelerator applications.« less

  18. Compact Low Frequency Radio Antenna

    DOEpatents

    Punnoose, Ratish J.

    2008-11-11

    An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.

  19. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    NASA Astrophysics Data System (ADS)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  20. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, M.; Engel, J.; Good, J.

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  1. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE PAGES

    Gross, M.; Engel, J.; Good, J.; ...

    2018-04-06

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  2. A Multicusp Ion Source for Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  3. Temperature, ordering, and equilibrium with time-dependent confining forces

    PubMed Central

    Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.

    2000-01-01

    The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1984-01-01

    Developments in space communications, radio navigation, radio science, ground-base radio astronomy, reports on the Deep Space Network (DSN) and its Ground Communications Facility (GCF), and applications of radio interferometry at microwave frequencies are discussed.

  5. 77 FR 53159 - Passenger Use of Portable Electronic Devices on Board Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... to navigation systems such as very high frequency (VHF) Omni Range (VOR) navigation systems. \\1\\ 14... navigation, communication, and surveillance radio receivers that may be susceptible at certain frequencies to... space by electromagnetic waves on specific radio frequencies that are used to communicate information...

  6. Ultra-wideband technology radio frequency interference effects to GPS and interference scenario development : first interim report

    DOT National Transportation Integrated Search

    2000-09-12

    In October, 1999, at the request of the Department of Transportation (DoT), the RTCA undertook an effort to investigate the radio frequency interference (RFI) environment in the vicinity of the new Global Positioning System (GPS) L5 frequency (1176.4...

  7. Measuring changes of radio-frequency dielectric properties of chicken meat during storage

    USDA-ARS?s Scientific Manuscript database

    Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...

  8. Prediction of scour depth in gravel bed rivers using radio frequency IDs : application to the Skagit River.

    DOT National Transportation Integrated Search

    2013-10-01

    The overarching goal of the proposed research was to develop, test and verify a robust system based on the Low Frequency (134.2 : kHz), passive Radio Frequency Identification (RFID) technology to be ultimately used for determining the maximum scour d...

  9. An assessment of the impact of radio frequency interference on microwave SETI searches

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Armstrong, E. F.; Jackson, E. B.

    1987-01-01

    The problem posed for SETI by radio frequency interference (RFI) is briefly discussed. The degree to which various frequencies are subject to RFI is indicated, and predictions about the future of such interference are made. Suggestions for coping with the problem are given.

  10. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  11. Review of Radio Frequency Photonics Basics

    DTIC Science & Technology

    2017-09-06

    essentially from “Direct Current to Daylight,” allowing use for high frequency applications. This report covers some needs and advantages of radio...operate essentially from “Direct Current (DC) to Daylight,” allowing use for high frequency applications. The following sections of this report cover...spectrum leaving higher frequencies open for new uses. Frequency bands from 600 MHz to 5 GHz are used for commercial communications in the US. The future

  12. Tactical Radios: Multiservice Communications Procedures for Tactical Radios in a Joint Environment

    DTIC Science & Technology

    2002-06-01

    joint restricted frequency list (JRFL). It specifies the frequency allocations for communication and jamming missions restricted from use by...coordination commit- tee also builds the frequency list for the mission sets. In building the list, the committee should use JACS or RBECS software...restricted frequency list . A time and geographical listing of prioritized frequencies essential to an operation and restricted from targeting by friendly EP

  13. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    NASA Astrophysics Data System (ADS)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  14. Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs

    NASA Astrophysics Data System (ADS)

    Fu, Hai

    2016-09-01

    Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.

  15. Radio Frequency Identification Applications in Pavements

    DOT National Transportation Integrated Search

    2014-08-01

    Radio frequency identification (RFID) technology is widely used for inventory control, tool and material tracking, and other similar applications where line-of-sight optical bar codes are inconvenient or impractical. Several applications of RFID tech...

  16. Pulsar current sheet C̆erenkov radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  17. Design of a radio telescope surface segment actuator based on a form-closed eccentric cam

    NASA Astrophysics Data System (ADS)

    Smith, David R.

    2014-07-01

    As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.

  18. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  19. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    PubMed

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  20. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  1. Clicker Evolution: Seeking Intelligent Design

    PubMed Central

    Barber, Maryfran

    2007-01-01

    Two years after the first low-cost radio-frequency audience response system using clickers was introduced for college classrooms, at least six different systems are on the market. Their features and user-friendliness are evolving rapidly, driven by competition and improving technology. The proliferation of different systems is putting pressure on universities to standardize or otherwise limit the number of different clickers a student is expected to acquire. To facilitate that choice, the strengths and weaknesses of six systems (eInstruction Classroom Performance System, Qwizdom, TurningPoint, Interwrite PRS, iClicker, and H-ITT) are compared, and the factors that should be considered in making a selection are discussed. In our opinion, the selection of a clicker system should be driven by the faculty, although students and the relevant teaching and technology support units of the university must also participate in the dialogue. Given the pace of development, it is also wise to reconsider the choice of a clicker system at regular intervals. PMID:17339388

  2. Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Medvedev, M. V.; Loeb, A.

    2013-04-01

    Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.

  3. Development of fundamental power coupler for C-ADS superconducting elliptical cavities

    NASA Astrophysics Data System (ADS)

    Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo

    2017-06-01

    5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)

  4. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  5. PSA: A program to streamline orbit determination for launch support operations

    NASA Technical Reports Server (NTRS)

    Legerton, V. N.; Mottinger, N. A.

    1988-01-01

    An interactive, menu driven computer program was written to streamline the orbit determination process during the critical launch support phase of a mission. Residing on a virtual memory minicomputer, this program retains the quantities in-core needed to obtain a least squares estimate of the spacecraft trajectory with interactive displays to assist in rapid radio metric data evaluation. Menu-driven displays allow real time filter and data strategy development. Graphical and tabular displays can be sent to a laser printer for analysis without exiting the program. Products generated by this program feed back to the main orbit determination program in order to further refine the estimate of the trajectory. The final estimate provides a spacecraft ephemeris which is transmitted to the mission control center and used for antenna pointing and frequency predict generation by the Deep Space Network. The development and implementation process of this program differs from that used for most other navigation software by allowing the users to check important operating features during development and have changes made as needed.

  6. Time and Frequency Synchronization on the Virac Radio Telescope RT-32

    NASA Astrophysics Data System (ADS)

    Bezrukovs, V.

    2016-04-01

    One of the main research directions of Ventspils International Radio Astronomy Centre (VIRAC) is radio astronomy and astrophysics. The instrumental base for the centre comprised two fully steerable parabolic antennas, RT-16 and RT-32 (i.e. with the mirror diameter of 16 m and 32 m). After long reconstruction, radio telescope RT-32 is currently equipped with the receiving and data acquisition systems that allow observing in a wide frequency range from 327 MHz to 9 GHz. New Antenna Control Unit (ACU) allows stable, fast and precise pointing of antenna. Time and frequency distribution service provide 5, 10 and 100 MHz reference frequency, 1PPS signals and precise time stamps by NTP protocol and in the IRIG-B format by coaxial cable. For the radio astronomical observations, main requirement of spatially Very Long Base Line Interferometric (VLBI) observations for the observatory is precise synchronization of the received and sampled data and linking to the exact time stamps. During October 2015, radio telescope RT-32 performance was tested in several successful VLBI experiments. The obtained results confirm the efficiency of the chosen methods of synchronization and the ability to reproduce them on similar antennas.

  7. A miniature disposable radio (MiDR) for unattended ground sensor systems (UGSS) and munitions

    NASA Astrophysics Data System (ADS)

    Wells, Jeffrey S.; Wurth, Timothy J.

    2004-09-01

    Unattended and tactical sensors are used by the U.S. Army"s Future Combat Systems (FCS) and Objective Force Warrior (OFW) to detect and identify enemy targets on the battlefield. The radios being developed as part of the Networked Sensors for the Objective Force (NSOF) are too costly and too large to deploy in missions requiring throw-away hardware. A low-cost miniature radio is required to satisfy the communication needs for unmanned sensor and munitions systems that are deployed in a disposable manner. A low cost miniature disposable communications suite is leveraged using the commercial off-the-shelf market and employing a miniature universal frequency conversion architecture. Employing the technology of universal frequency architecture in a commercially available communication unit delivers a robust disposable transceiver that can operate at virtually any frequency. A low-cost RF communication radio has applicability in the commercial, homeland defense, military, and other government markets. Specific uses include perimeter monitoring, infrastructure defense, unattended ground sensors, tactical sensors, and border patrol. This paper describes a low-cost radio architecture to meet the requirements of throw-away radios that can be easily modified or tuned to virtually any operating frequency required for the specific mission.

  8. Probing the Jet Turnover Frequency Dependence on Mass and Mass Accretion Rate

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica; Gültekin, Kayhan; King, Ashley

    2018-01-01

    We have examined a sample of 15 sub-Eddington supermassive black holes (SMBHs) in a variety of galaxy classifications to further understand the proposed fundamental plane of black hole activity and scaling relations between black hole masses and their radio and X-ray luminosities. This plane describes black holes from stellar-mass to supermassive. The physics probed by these sub-Eddington systems is thought to be a radiatively inefficient, jet-dominated accretion flow. By studying black holes in this regime, we can learn important information on the disk-jet connection for accreting black holes.A key factor in studying the fundamental plane is the turnover frequency — the frequency at which emission transitions from optically thick at lower frequencies to optically thin at higher frequencies. This turnover point can be measured by observing the source in both radio and X-ray. Our project aims to test the dependence of the turnover frequency on mass and mass accretion rate.Radio observations of the sample were obtained using the Karl G. Jansky Very Large Array (VLA) in the range of 5-40 GHz across four different frequency bands in A configuration to give the highest spatial resolution to focus on the core emission. Our carefully chosen sample of SMBHs with dynamically measured masses consists of two sub-samples: those with approximately constant mass accretion rate (LX/LEdd ~ 10‑7) and those with approximately constant mass (MBH ~ 108 Msun). X-ray data were obtained from archival Chandra observations. To find the turnover frequency, we used Markov Chain Monte Carlo methods to fit two power laws to the radio data and the archival X-ray data. The intersection of the radio and X-ray fits is the turnover frequency.We present the results for both subsamples of SMBHs and their relationship between the turnover frequency and X-ray luminosity, which we take to scale with mass accretion rate, and jet power derived from both radio and X-ray properties.

  9. Investigating the unification of LOFAR-detected powerful AGN in the Boötes field

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Williams, W. L.; Duncan, Kenneth J.; Röttgering, H. J. A.; Miley, George; Saxena, Aayush; Barthel, Peter; Best, P. N.; Bruggen, M.; Brunetti, G.; Chyży, K. T.; Engels, D.; Hardcastle, M. J.; Harwood, J. J.; Jarvis, Matt J.; Mahony, E. K.; Prandoni, I.; Shimwell, T. W.; Shulevski, A.; Tasse, C.

    2017-08-01

    Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Boötes field at 150 MHz made with the Low-Frequency Array (LOFAR) to select a sample of radio sources. We identify 60 radio sources with powers P > 1025.5 W Hz-1 at 150 MHz using cross-matched multiwavelength information from the AGN and Galaxy Evolution Survey, which provides spectroscopic redshifts and photometric identification of 16 quasars and 44 radio galaxies. When considering the radio spectral slope only, we find that radio sources with steep spectra have projected linear sizes that are on average 4.4 ± 1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1 ± 1.0 larger than those of quasars (2.0 ± 0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data are consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.

  10. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  11. VLA radio observations of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  12. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    PubMed

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  13. Development of a Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA)

    NASA Astrophysics Data System (ADS)

    Ingala, Dominique Guelord Kumamputu

    2015-03-01

    This dissertation describes the development and construction of the Multi-frequency Interferometer Telescope for Radio Astronomy (MITRA) at the Durban University of Technology. The MITRA station consists of 2 antenna arrays separated by a baseline distance of 8 m. Each array consists of 8 Log-Periodic Dipole Antennas (LPDAs) operating from 200 MHz to 800 MHz. The design and construction of the LPDA antenna and receiver system is described. The receiver topology provides an equivalent noise temperature of 113.1 K and 55.1 dB of gain. The Intermediate Frequency (IF) stage was designed to produce a fixed IF frequency of 800 MHz. The digital Back-End and correlator were implemented using a low cost Software Defined Radio (SDR) platform and Gnu-Radio software. Gnu-Octave was used for data analysis to generate the relevant received signal parameters including total power, real, and imaginary, magnitude and phase components. Measured results show that interference fringes were successfully detected within the bandwidth of the receiver using a Radio Frequency (RF) generator as a simulated source. This research was presented at the IEEE Africon 2013 / URSI Session Mauritius, and published in the proceedings.

  14. Sensor Research Targets Smart Building Technology Using Radio-Frequency

    Science.gov Websites

    a battery-free radio-frequency identification (RFID) sensor network with spatiotemporal pattern network based data fusion system for human presence sensing, with ARPA-E awarding the team $2 million over

  15. Cost studies of thermally enhanced in situ soil remediation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies willmore » ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.« less

  16. LOFAR discovery of radio emission in MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Brüggen, M.; Rafferty, D.; Zhuravleva, I.; Riseley, C. J.; van Weeren, R. J.; Farnes, J. S.; Vazza, F.; Savini, F.; Wilber, A.; Botteon, A.; Brunetti, G.; Cassano, R.; Ferrari, C.; de Gasperin, F.; Orrú, E.; Pizzo, R. F.; Röttgering, H. J. A.; Shimwell, T. W.

    2018-05-01

    We present results from LOFAR and GMRT observations of the galaxy cluster MACS J0717.5+3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.

  17. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  18. Three-dimensional effects for radio frequency antenna modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-12-31

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused bymore » feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.« less

  19. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  20. Pulse-Modulated Radio-Frequency Alternating-Current-Driven Atmospheric-Pressure Glow Discharge for Continuous-Flow Synthesis of Silver Nanoparticles and Evaluation of Their Cytotoxicity toward Human Melanoma Cells.

    PubMed

    Dzimitrowicz, Anna; Bielawska-Pohl, Aleksandra; diCenzo, George C; Jamroz, Piotr; Macioszczyk, Jan; Klimczak, Aleksandra; Pohl, Pawel

    2018-06-02

    An innovative and environmentally friendly method for the synthesis of size-controlled silver nanoparticles (AgNPs) is presented. Pectin-stabilized AgNPs were synthesized in a plasma-reaction system in which pulse-modulated radio-frequency atmospheric-pressure glow discharge (pm-rf-APGD) was operated in contact with a flowing liquid electrode. The use of pm-rf-APGD allows for better control of the size of AgNPs and their stability and monodispersity. AgNPs synthesized under defined operating conditions exhibited average sizes of 41.62 ± 12.08 nm and 10.38 ± 4.56 nm, as determined by dynamic light scattering and transmission electron microscopy (TEM), respectively. Energy-dispersive X-ray spectroscopy (EDS) confirmed that the nanoparticles were composed of metallic Ag. Furthermore, the ξ-potential of the AgNPs was shown to be -43.11 ± 0.96 mV, which will facilitate their application in biological systems. Between 70% and 90% of the cancerous cells of the human melanoma Hs 294T cell line underwent necrosis following treatment with the synthesized AgNPs. Furthermore, optical emission spectrometry (OES) identified reactive species, such as NO, NH, N₂, O, and H, as pm-rf-APGD produced compounds that may be involved in the reduction of the Ag(I) ions.

  1. Imaging spectroscopy of solar radio burst fine structures.

    PubMed

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  2. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  3. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    USDA-ARS?s Scientific Manuscript database

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  4. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  5. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    NASA Astrophysics Data System (ADS)

    Mena, J.; Bandura, K.; Cliche, J.-F.; Dobbs, M.; Gilbert, A.; Tang, Q. Y.

    2013-10-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications.

  6. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bora, B., E-mail: bbora@cchen.cl

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found tomore » work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.« less

  7. An Optical Receiver Post Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administrations (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  8. An Optical Receiver Post-Processing System for the Integrated Radio and Optical Communications Software Defined Radio Test Bed

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Tokars, Roger P.; Wroblewski, Adam C.

    2016-01-01

    The Integrated Radio and Optical Communications (iROC) project at the National Aeronautics and Space Administration's (NASA) Glenn Research Center is investigating the feasibility of a hybrid radio frequency (RF) and optical communication system for future deep space missions. As a part of this investigation, a test bed for a radio frequency (RF) and optical software defined radio (SDR) has been built. Receivers and modems for the NASA deep space optical waveform are not commercially available so a custom ground optical receiver system has been built. This paper documents the ground optical receiver, which is used in order to test the RF and optical SDR in a free space optical communications link.

  9. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    DTIC Science & Technology

    2013-11-20

    Product Service Code RAA Rapid Acquisition Authority RCS Radar Cross Section REF Rapid Equipping Force RFID Radio Frequency Identification RDT...the radio frequency identification (RFID) chip also provides a useful basis for comparison. WWII served as the proving ground for RFID technology...enabling miniaturized Free Space Optical Communications systems capable of scaling across data rates, distances, and platforms and integrating with radio

  10. Direct observations of low-energy solar electrons associated with a type 3 solar radio burst

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Gurnett, D. A.

    1972-01-01

    On 6 April 1971 a solar X-ray flare and a type 3 solar radio noise burst were observed with instrumentation on the eccentric-orbiting satellite IMP 6. The type 3 solar radio noise burst was detected down to a frequency of 31 kHz. A highly anisotropic packet of low-energy solar electron intensities arrived at the satellite approximately 6000 seconds after the onset of the solar flare. This packet of solar electron intensities was observed for 4200 seconds. Maximum differential intensities of the solar electrons were in the energy range of one to several keV. The frequency drift rate of the type 3 radio noise at frequencies below 178 kHz also indicated an average particle speed corresponding to that of a 3-keV electron. The simultaneous observations of these solar electron intensities and of the type 3 solar radio burst are presented, and their interrelationships are explored.

  11. Grating formation by a high power radio wave in near-equator ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less

  12. Improved fire resistant radio frequency anechoic materials

    NASA Technical Reports Server (NTRS)

    Robinson, D. A.

    1969-01-01

    Protective, flameproof foam covering improves the resistance to fire and surface contamination of low-cost radio frequency absorbing and shielding anechoic materials. This promotes safety of operating personnel and equipment being tested in an otherwise combustible anechoic chamber.

  13. Base-level management of radio-frequency radiation-protection program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation-protection program. This report supersedes USAFOEHL Report 80-42, 'A Practical R-F Guide for BEES.'

  14. Base-level management of radio-frequency radiation-protection program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation protection program. This report supersedes USAFOEHL Report 80-42, 'A practical R-F Guide for BEES.'

  15. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasadas, Francisco, E-mail: Francisco.Pasadas@uab.cat; Jiménez, David

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been includedmore » considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.« less

  16. Use of mobile phones and cancer risk.

    PubMed

    Ayanda, Olushola S; Baba, Alafara A; Ayanda, Omolola T

    2012-01-01

    Mobile phones work by transmitting and receiving radio frequency microwave radiation. The radio frequency (RF) emitted by mobile phones is stronger than FM radio signal which are known to cause cancer. Though research and evidence available on the risk of cancer by mobile phones does not provide a clear and direct support that mobile phones cause cancers. Evidence does not also support an association between exposure to radio frequency and microwave radiation from mobile phones and direct effects on health. It is however clear that lack of available evidence of cancer as regards the use of mobile phone should not be interpreted as proof of absence of cancer risk, so that excessive use of mobile phones should be taken very seriously and with caution to prevent cancer.

  17. Software Configurable Multichannel Transceiver

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  18. Radio Frequency Signals in Jupiter's Atmosphere

    PubMed

    Lanzerotti; Rinnert; Dehmel; Gliem; Krider; Uman; Bach

    1996-05-10

    During the Galileo probe's descent through Jupiter's atmosphere, under the ionosphere, the lightning and radio emission detector measured radio frequency signals at levels significantly above the probe's electromagnetic noise. The signal strengths at 3 and 15 kilohertz were relatively large at the beginning of the descent, decreased with depth to a pressure level of about 5 bars, and then increased slowly until the end of the mission. The 15-kilohertz signals show arrival direction anisotropies. Measurements of radio frequency wave forms show that the probe passed through an atmospheric region that did not support lightning within at least 100 kilometers and more likely a few thousand kilometers of the descent trajectory. The apparent opacity of the jovian atmosphere increases sharply at pressures greater than about 4 bars.

  19. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  20. The Spectrum Landscape: Prospects for Terrestrial Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey Steven

    2018-01-01

    Radio astronomers work within broad constraints imposed by commercial and other non-astronomical uses of the radio spectrum, somewhat modified to accommodate astronomy’s particular needs through the provision of radio quiet zones, radio frequency allocations, coordination agreements and other devices of spectrum management. As radio astronomers increase the instantaneous bandwidth, frequency coverage and sensitivity of their instruments, these external constraints, and not the limitations of their own instruments, will increasingly be the greatest obstacles to radio astronomy’s ability to observe the cosmos from the surface of the Earth. Therefore, prospects for future radio astronomy operations are contingent on situational awareness and planning for the impact of non-astronomical uses of the radio frequency spectrum. New radio astronomy instruments will have to incorporate adaptive reactions to external developments, and radio astronomers should be encouraged to think in untraditional ways. Increased attention to spectrum management is one of these. In this talk I’ll recap some recent developments such as the proliferation of 76 – 81 GHz car radar and orbiting earth-mapping radars, either of which can burn out a radio astronomy receiver. I’ll summarize present trends for non-astronomical radio spectrum use that will be coming to fruition in the next decade or so, categorized into terrestrial fixed and mobile, airborne and space-borne uses, sub-divided by waveband from the cm to the sub-mm. I’ll discuss how they will impact terrestrial radio astronomy and the various ways in which radio astronomy should be prepared to react. Protective developments must occur both within radio astronomy’s own domain – designing, siting and constructing its instruments and mitigating unavoidable RFI – and facing outward toward the community of other spectrum users. Engagement with spectrum management is no panacea but it is an important means, and perhaps the only means, by which radio astronomy can take an active role in shaping its terrestrial environment.

  1. Study of sporadic E layers based on GPS radio occultation measurements and digisonde data over the Brazilian region

    NASA Astrophysics Data System (ADS)

    Resende, Laysa C. A.; Arras, Christina; Batista, Inez S.; Denardini, Clezio M.; Bertollotto, Thainá O.; Moro, Juliano

    2018-04-01

    This work presents new results about sporadic E-layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data. The RO profiles are used to study the Es layer occurrence as well as its intensity of the signal-to-noise ratio (SNR) of the 50 Hz GPS L1 signal. The methodology was applied to identify the Es layer on RO measurements over Cachoeira Paulista, a low-latitude station in the Brazilian region, in which the Es layer development is not driven tidal winds only as it is at middle latitudes. The coincident events were analyzed using the RO technique and ionosonde observations during the year 2014 to 2016. We used the electron density obtained using the blanketing frequency parameter (fbEs) and the Es layer height (h'Es) acquired from the ionograms to validate the satellite measurements. The comparative results show that the Es layer characteristics extracted from the RO measurements are in good agreement with the Es layer parameters from the digisonde.

  2. Cobalt: A GPU-based correlator and beamformer for LOFAR

    NASA Astrophysics Data System (ADS)

    Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.

    2018-04-01

    For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.

  3. New radio meteor detecting and logging software

    NASA Astrophysics Data System (ADS)

    Kaufmann, Wolfgang

    2017-08-01

    A new piece of software ``Meteor Logger'' for the radio observation of meteors is described. It analyses an incoming audio stream in the frequency domain to detect a radio meteor signal on the basis of its signature, instead of applying an amplitude threshold. For that reason the distribution of the three frequencies with the highest spectral power are considered over the time (3f method). An auto notch algorithm is developed to prevent the radio meteor signal detection from being jammed by a present interference line. The results of an exemplary logging session are discussed.

  4. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    PubMed

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  5. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected atmore » S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.« less

  6. The radio spectral energy distribution of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  7. Quasiperiodic oscillations of the sub-mHz band in near-sun plasma according to the coherent radio occultation data

    NASA Astrophysics Data System (ADS)

    Efimov, A. I.; Lukanina, L. A.; Chashei, I. V.; Kolomiets, S. F.; Bird, M. K.; Pätzold, M.

    2018-01-01

    In 2013 and 2015, investigations of the internal solar wind were carried out using the method of two-frequency radio sounding by signals from the Mars Express European spacecraft. The values of the S- and X-bands' frequency and the differential frequency were registered with a sampling rate of 1s at the American and European networks of ground-based tracking stations. The spatial distribution of the frequency fluctuation's level has been studied. It has been shown that the intensity of frequency fluctuation considerably decreases at high heliolatitudes. In some radio sounding sessions, quasiperiodic oscillations of sub-mHz band have been observed in the temporal spectra of frequency fluctuations; they are supposed to be associated with the density inhomogeneities, the sizes of which are close to the turbulence outer scale.

  8. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and rolling them out may be a solution for solar radio observations, but it probably does not provide a sufficiently-uniform beam for other science targets.

  9. CAVITIES AND SHOCKS IN THE GALAXY GROUP HCG 62 AS REVEALED BY CHANDRA, XMM-NEWTON, AND GIANT METREWAVE RADIO TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitti, Myriam; O'Sullivan, Ewan; Giacintucci, Simona

    2010-05-01

    We report on the results of an analysis of Chandra, XMM-Newton, and new Giant Metrewave Radio Telescope (GMRT) data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for active galactic nucleus/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHzmore » and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity, and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of {approx}10{sup -4}, and that the radio pressure of the lobes is about 1 order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the southwest of the group center, close to the southern radio lobe, with a Mach number {approx}1.5 and a total power which is about 1 order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.« less

  10. Synchrotron Spectral Curvature from 22 MHZ to 23 GHZ

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    We combine surveys of the radio sky at frequencies 22 MHz to 1.4 GHz with data from the ARCADE-2 instrument at frequencies 3 GHz to 10 GHz to characterize the frequency spectrum of diffuse synchrotron emission in the Galaxy. The radio spectrum steepens with frequency from 22 MHz to 10 GHz. The projected spectral index at 23 GHz derived from the low-frequency data agrees well with independent measurements using only data at frequencies 23 GHz and above. Comparing the spectral index at 23 GHz to the value from previously published analyses allows extension of the model to higher frequencies. The combined data are consistent with a power-law index beta = -2.64 +/-= 0.03 at 0.31 GHz, steepening by an amount of Delta-beta = 0.07 every octave in frequency. Comparison of the radio data to models including the cosmic-ray energy spectrum suggests that any break in the synchrotron spectrum must occur at frequencies above 23 GHz.

  11. Effects of the 2017 Solar Eclipse on HF Radio Propagation and the D-Region Ionosphere: Citizen Science Investigation

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Adams, M.; Gallagher, D. L.; Habash Krause, L.; Rawlins, L.; Suggs, R. M.; Anderson, S. C.

    2017-12-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged students and citizen scientists in an investigation of the eclipse effects on the mid-latitude ionosphere. The Amateur Radio community has developed several automated receiving and reporting networks that draw from widely-distributed, automated and manual radio stations to build a near-real time, global picture of changing radio propagation conditions. We used these networks and employed HF radio propagation modeling in our investigation. A Ham Radio Science Citizen Investigation (HamSCI) collaboration with the American Radio Relay League (ARRL) ensured that many thousands of amateur radio operators would be "on the air" communicating on eclipse day, promising an extremely large quantity of data would be collected. Activities included implementing and configuring software, monitoring the HF Amateur Radio frequency bands and collecting radio transmission data on days before, the day of, and days after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Our expectations were the D-Region ionosphere would be most impacted by the eclipse, enabling over-the-horizon radio propagation on lower HF frequencies (3.5 and 7 MHz) that are typically closed during the middle of the day. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse. We report on results, interpretation, and conclusions of these investigations.

  12. Cooperation Helps Power Saving

    DTIC Science & Technology

    2009-04-07

    the destination node hears the poll, the link between the two nodes is activated. In the original STEM, two radios working on two separate channels... hears the poll, the link between the two nodes is activated. In the original STEM, two radios working on two separate chan- nels are used: one radio is...Computer and Communications Societies. Proceedings. IEEE, vol. 3, pp. 1548–1557 vol.3, 2001. [2] R . Kravets and P. Krishnan, “Application-driven power

  13. Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system.

    PubMed

    Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels

    2012-09-01

    A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.

  14. Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles

    DOT National Transportation Integrated Search

    2007-01-26

    The Aerospace Corporation was tasked to assess radio frequency (RF) blackout phenomena caused by plasma generation around vehicles during reentry and presently known methodologies for mitigation of this condition inhibiting communications. The purpos...

  15. Prospects of Biometrics at-a-Distance

    DTIC Science & Technology

    2015-09-01

    PHI Protected Health Information RFID Radio-Frequency Identification SAF Small Arms Fire SEEK Secure Electronic Enrollment Kit SFPD San...data to be encoded. It also contains a Radio-Frequency Identification ( RFID ) readers and the capability to verify electronic passports and other

  16. Radio-Frequency and Wideband Modulation Arraying

    NASA Technical Reports Server (NTRS)

    Brockman, M. H.

    1984-01-01

    Summing network receives coherent signals from all receivers in array. Method sums narrow-band radio-frequency (RF) carrier powers and wide-band spectrum powers of array of separate antenna/receiver systems designed for phase-locked-loop or suppressed-carrier operation.

  17. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  18. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.

    2010-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.

  19. Ionospheric Caustics in Solar Radio Observations

    NASA Astrophysics Data System (ADS)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  20. On the production mechanism of radio-pulses from large extensive air showers

    NASA Technical Reports Server (NTRS)

    Datta, P.; Pathak, K. M.

    1985-01-01

    None of the theories put forward so far to explain the radio emission from cosmic ray showers, has been successful in giving a satisfactory explanation for all the experimental data obtained from various laboratories over the globe. It is apprehended that emission mechanism at low and high frequencies may be quite different. This calls for new theoretical look into the phenomenon. Theoretical as well as the experimental results indicate that the frequency spectrum is rather flat in the frequency range (40 to 60 MHz. Above 80 MHz, the radio emission can be explained with the help of geomagnetic mechanism. But at very low frequency ( 10 MHz), mechanisms other than geomagnetic are involved.

  1. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    NASA Technical Reports Server (NTRS)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  2. Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM spectroscopy.

    PubMed

    Mahnke, Peter

    2018-01-01

    A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/Hz. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm -1 absorption line of carbon monoxide.

  3. Characterization of a commercial software defined radio as high frequency lock-in amplifier for FM spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahnke, Peter

    2018-01-01

    A commercial software defined radio based on a Rafael Micro R820T2 tuner is characterized for the use as a high-frequency lock-in amplifier for frequency modulation spectroscopy. The sensitivity limit of the receiver is 1.6 nV/√{Hz }. Frequency modulation spectroscopy is demonstrated on the 6406.69 cm-1 absorption line of carbon monoxide.

  4. MIT Lincoln Laboratory Facts 2013

    DTIC Science & Technology

    2012-12-01

    efforts span all network layers (from physical to application), with primary focuses on radio - frequency (RF) military satellite communications (MILSATCOM...upgrade, Kwajalein Atoll ■■ Extremely high- frequency submarine communications demonstrated ■■ Lincoln Experimental Satellites 8 and 9 Overview 5...Immersive Surveillance ■■ Lincoln Adaptable Real-time Information Assurance Testbed ■■ Graph detection algorithms ■■ Miniaturized radio - frequency

  5. Astronomers Win Protection for Key Part of Radio Spectrum

    NASA Astrophysics Data System (ADS)

    2000-06-01

    Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are easily clogged up. It's very important that we keep them as free as possible from interference." The new spectrum allocations were welcomed by Dr Johannes Andersen, General Secretary of the International Astronomical Union, which represents astronomers worldwide. "Protecting our ability to observe the Universe is the top priority for the International Astronomical Union," he said. "This action shows that international bodies accept the need for environmental emission standards in space as well as on Earth, for the benefit of all."

  6. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    NASA Astrophysics Data System (ADS)

    Hota, Ananda; Konar, C.; Stalin, C. S.; Vaddi, Sravani; Mohanty, Pradeepta K.; Dabhade, Pratik; Dharmik Bhoga, Sai Arun; Rajoria, Megha; Sethi, Sagar

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny's Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.

  7. Wireless Robotic Communications in Urban Environments: Issues for the Fire Service

    DTIC Science & Technology

    2008-03-01

    affect signal propagation? Do some frequencies perform better than others in specific settings? • Radio Environment: How much impact might...of responders at each scenario, the radio frequency environment for each will be examined. Link budget calculations will be performed to assess...soldiers indicated that the main technical drawbacks were the narrow field of view, poor image quality, and limited radio range. The authors concluded

  8. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  9. Transient dynamics of secondary radiation from an HF pumped magnetized space plasma

    NASA Astrophysics Data System (ADS)

    Norin, L.; Grach, S. M.; Thidé, B.; Sergeev, E. N.; Leyser, T. B.

    2007-09-01

    In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission (SEE), from the ionosphere, preconditioned such that geomagnetic field-aligned plasma irregularities are already present. The transient dynamics experiments were made using a duty cycle of the HF radio wave of 200 ms (180 ms on and 20 ms off) and 100 ms (80 ms on and 20 ms off) for various frequencies near the fifth harmonic of the local ionospheric electron cyclotron frequency. Within the first 10 ms after the radio pulse turn-on, frequency downshifted structures of the SEE exhibit an overshoot with a maximum at 3 ms < t < 8 ms, whereas the upshifted spectral components do not exhibit this feature. The relative magnitude of the overshoot is strongly dependent on the frequency offset of the pump from the harmonic of the electron cyclotron frequency. A transient blue-shifted frequency component is identified. This component is upshifted from the pump by 14 kHz < Δ f < 55 kHz and exists only within the first 10 ms after the radio pulse turn-on. On a longer time scale we analyze the amplitude modulation, or ``ringing,'' of the reflected radio wave, (also known as ``quasi-periodic oscillations'' or ``spikes''). The ringing has a frequency of the order 15-20 Hz and we show that this phenomenon is also present in the SEE sidebands and is synchronized with the ringing of the reflected HF wave itself.

  10. Multi-level RF identification system

    DOEpatents

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  11. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  12. Loran-C RFI Measured in Los Angeles, California

    DOT National Transportation Integrated Search

    1980-10-01

    Radio noise and RFI at and near frequencies employed by Loran-C radio navigation systems were investigated in portions of Los Angeles, California. Emphasis was placed on the definition of the detailed time and frequency domain structure of noise and ...

  13. The Astronomical Low Frequency Array: A Proposed Explorer Mission for Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Jones, D.; Allen, R.; Basart, J.; Bastian, T.; Bougeret, J. L.; Dennison, B.; Desch, M.; Dwarakanath, K.; Erickson, W.; Finley, D.; hide

    1999-01-01

    A radio interferometer array in space providing high dynamic range images with unprecedented angular resolution over the broad frequency range from 0.030 - 30 MHz will open new vistas in solar, terrestial, galactic, and extragalactic astrophysics.

  14. Radio Frequency Ablation Registration, Segmentation, and Fusion Tool

    PubMed Central

    McCreedy, Evan S.; Cheng, Ruida; Hemler, Paul F.; Viswanathan, Anand; Wood, Bradford J.; McAuliffe, Matthew J.

    2008-01-01

    The Radio Frequency Ablation Segmentation Tool (RFAST) is a software application developed using NIH's Medical Image Processing Analysis and Visualization (MIPAV) API for the specific purpose of assisting physicians in the planning of radio frequency ablation (RFA) procedures. The RFAST application sequentially leads the physician through the steps necessary to register, fuse, segment, visualize and plan the RFA treatment. Three-dimensional volume visualization of the CT dataset with segmented 3D surface models enables the physician to interactively position the ablation probe to simulate burns and to semi-manually simulate sphere packing in an attempt to optimize probe placement. PMID:16871716

  15. A new method for finding and characterizing galaxy groups via low-frequency radio surveys

    NASA Astrophysics Data System (ADS)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.; Mingo, B.

    2017-09-01

    We describe a new method for identifying and characterizing the thermodynamic state of large samples of evolved galaxy groups at high redshifts using high-resolution, low-frequency radio surveys, such as those that will be carried out with LOFAR and the Square Kilometre Array. We identify a sub-population of morphologically regular powerful [Fanaroff-Riley type II (FR II)] radio galaxies and demonstrate that, for this sub-population, the internal pressure of the radio lobes is a reliable tracer of the external intragroup/intracluster medium (ICM) pressure, and that the assumption of a universal pressure profile for relaxed groups enables the total mass and X-ray luminosity to be estimated. Using a sample of well-studied FR II radio galaxies, we demonstrate that our method enables the estimation of group/cluster X-ray luminosities over three orders of magnitude in luminosity to within a factor of ˜2 from low-frequency radio properties alone. Our method could provide a powerful new tool for building samples of thousands of evolved galaxy groups at z > 1 and characterizing their ICM.

  16. Model interpretation of type III radio burst characteristics. I - Spatial aspects

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.

    1988-01-01

    The ways that the finite size of the source region and directivity of the emitted radiation modify the observed characteristics of type III radio bursts as they propagate through the interplanetary medium are investigated. A simple model that simulates the radio source region is developed to provide insight into the spatial behavior of the parameters that characterize radio bursts. The model is used to demonstrate that observed radio azimuths are systematically displaced from the geometric centroid of the exciter electron beam in such a way as to cause trajectories of the radio bursts to track back to the observer at low frequencies, rather than to follow expected Archimedean spiral-like paths. The source region model is used to investigate the spatial behavior of the peak intensities of radio bursts, and it is found that the model can qualitatively account for both the frequency dependence and the east-west asymmetry of the observed peak flux densities.

  17. Sensitive radio survey of obscured quasar candidates

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael M.; Zakamska, Nadia L.; van Velzen, Sjoert; Greene, Jenny E.; Strauss, Michael A.

    2016-12-01

    We study the radio properties of moderately obscured quasars in samples at both low (z ˜ 0.5) and high (z ˜ 2.5) redshift to understand the role of radio activity in accretion, using the Karl G. Jansky Very Large Array (VLA) at 6.0 GHz and 1.4 GHz. Our z ˜ 2.5 sample consists of optically selected obscured quasar candidates, all of which are radio-quiet, with typical radio luminosities of νLν[1.4 GHz] ≲ 1040 erg s-1. Only a single source is individually detected in our deep (rms˜10 μJy) exposures. This population would not be identified by radio-based selection methods used for distinguishing dusty star-forming galaxies and obscured active nuclei. In our pilot A-array study of z ˜ 0.5 radio-quiet quasars, we spatially resolve four of five objects on scales ˜5 kpc and find they have steep spectral indices with an average value of α = -0.75. Therefore, radio emission in these sources could be due to jet-driven or radiatively driven bubbles interacting with interstellar material on the scale of the host galaxy. Finally, we also study the additional population of ˜200 faint ( ˜ 40 μJy-40 mJy) field radio sources observed over ˜120 arcmin2 of our data. 60 per cent of these detections (excluding our original targets) are matched in the Sloan Digital Sky Survey (SDSS) and/or Wide-Field Infrared Survey Explorer (WISE) and are, in roughly equal shares, active galactic nuclei (AGN) at a broad range of redshifts, passive galaxies with no other signs of nuclear activity and infrared-bright but optically faint sources. Spectroscopically or photometrically confirmed star-forming galaxies constitute only a small minority of the matches. Such sensitive radio surveys allow us to address important questions of AGN evolution and evaluate the AGN contribution to the radio-quiet sky.

  18. DEEP CHANDRA X-RAY IMAGING OF A NEARBY RADIO GALAXY 4C+29.30: X-RAY/RADIO CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; Aldcroft, Thomas L.; Burke, D. J.

    2012-05-10

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z = 0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N{sub H} {approx_equal} 3.95{sup +0.27}{sub -0.33} Multiplication-Sign 10{sup 23} cm{sup -2}) with an unabsorbed luminosity of L{sub 2-10keV} {approx_equal} (5.08 {+-} 0.52) Multiplication-Sign 10{sup 43} erg s{sup -1} characteristic of Type 2 active galactic nuclei. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlatedmore » with radio structures along the main radio axis, indicating a strong relation between the two. The X-ray emission extends beyond the radio source and correlates with the morphology of optical-line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT {approx_equal} 0.5 keV, with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming that these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray-emitting gas in the outermost regions suggests that the hot ISM is slightly underpressured with respect to the cold optical-line-emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.« less

  19. Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.

    PubMed

    He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce

    2013-08-12

    We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.

  20. FPGA-based RF spectrum merging and adaptive hopset selection

    NASA Astrophysics Data System (ADS)

    McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.

    The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.

  1. Tuner control system of Spoke012 SRF cavity for C-ADS injector I

    NASA Astrophysics Data System (ADS)

    Liu, Na; Sun, Yi; Wang, Guang-Wei; Mi, Zheng-Hui; Lin, Hai-Ying; Wang, Qun-Yao; Liu, Rong; Ma, Xin-Peng

    2016-09-01

    A new tuner control system for spoke superconducting radio frequency (SRF) cavities has been developed and applied to cryomodule I of the C-ADS injector I at the Institute of High Energy Physics, Chinese Academy of Sciences. We have successfully implemented the tuner controller based on Programmable Logic Controller (PLC) for the first time and achieved a cavity tuning phase error of ±0.7° (about ±4 Hz peak to peak) in the presence of electromechanical coupled resonance. This paper presents preliminary experimental results based on the PLC tuner controller under proton beam commissioning. Supported by Proton linac accelerator I of China Accelerator Driven sub-critical System (Y12C32W129)

  2. WWVB: A Half Century of Delivering Accurate Frequency and Time by Radio

    PubMed Central

    Lombardi, Michael A; Nelson, Glenn K

    2014-01-01

    In commemoration of its 50th anniversary of broadcasting from Fort Collins, Colorado, this paper provides a history of the National Institute of Standards and Technology (NIST) radio station WWVB. The narrative describes the evolution of the station, from its origins as a source of standard frequency, to its current role as the source of time-of-day synchronization for many millions of radio controlled clocks. PMID:26601026

  3. Report to the President: Realizing the Full Potential of Government-Held Spectrum to Spur Economic Growth

    DTIC Science & Technology

    2012-07-01

    managing the use of the Radio Frequency (RF) spectrum to ensure reliable emergency, civil, and government communications . At that time, when the rules of...or equipment and/or radio frequencies to provide electronic communication services under standard conditions (a class license) or authorizing the...Cognitive Radio Networks.” IEEE Communications Magazine (2008). Circular A- 11 : Preparation, Submission, and Execution of the Budget. Executive Office

  4. Radio jets clearing the way through galaxies: the view from Hi and molecular gas

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella

    2015-03-01

    Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.

  5. Light effects on the multicellular magnetotactic prokaryote 'Candidatus Magnetoglobus multicellularis' are cancelled by radiofrequency fields: the involvement of radical pair mechanisms.

    PubMed

    de Melo, Roger Duarte; Acosta-Avalos, Daniel

    2017-02-01

    'Candidatus Magnetoglobus multicellularis' is the most studied multicellular magnetotactic prokaryote. It presents a light-dependent photokinesis: green light decreases the translation velocity whereas red light increases it, in comparison to blue and white light. The present article shows that radio-frequency electromagnetic fields cancel the light effect on photokinesis. The frequency to cancel the light effect corresponds to the Zeeman resonance frequency (DC magnetic field of 4 Oe and radio-frequency of 11.5 MHz), indicating the involvement of a radical pair mechanism. An analysis of the orientation angle relative to the magnetic field direction shows that radio-frequency electromagnetic fields disturb the swimming orientation when the microorganisms are illuminated with red light. The analysis also shows that at low magnetic fields (1.6 Oe) the swimming orientation angles are well scattered around the magnetic field direction, showing that magnetotaxis is not efficiently in the swimming orientation to the geomagnetic field. The results do not support cryptochrome as being the responsible chromophore for the radical pair mechanism and perhaps two different chromophores are necessary to explain the radio-frequency effects.

  6. INSPIRE

    NASA Technical Reports Server (NTRS)

    Taylor, Bill; Pine, Bill

    2003-01-01

    INSPIRE (Interactive NASA Space Physics Ionosphere Radio Experiment - http://image.gsfc.nasa.gov/poetry/inspire) is a non-profit scientific, educational organization whose objective is to bring the excitement of observing natural and manmade radio waves in the audio region to high school students and others. The project consists of building an audio frequency radio receiver kit, making observations of natural and manmade radio waves and analyzing the data. Students also learn about NASA and our natural environment through the study of lightning, the source of many of the audio frequency waves, the atmosphere, the ionosphere, and the magnetosphere where the waves travel.

  7. Prospects and limitations for use of frequency spectrum from 40 to 300 GHz

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.

    1979-01-01

    The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.

  8. Aircraft measurement of radio frequency noise at 121.5 MHz, 243 MHz and 406 MHz

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.

    1977-01-01

    An airborne survey measurement of terrestrial radio-frequency noise over U.S. metropolitan areas was carried out at 121.5, 243 and 406 MHz with horizontal-polarization monopole antennas. Flights were at 25,000 feet altitude. Radio-noise measurements, expressed in equivalent antenna-noise temperature, indicate a steady-background noise temperature of 572,000 K, at 121.5 MHz, during daylight over New York City. This data is helpful in compiling radio-noise temperature maps; in turn useful for designing satellite-aided, emergency-distress search and rescue communication systems.

  9. 47 CFR 95.1511 - Frequencies available.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequencies available. 95.1511 Section 95.1511 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO... this problem by mutually satisfactory arrangements. If the licensees are unable to do so, the...

  10. 47 CFR 95.1511 - Frequencies available.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequencies available. 95.1511 Section 95.1511 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO... this problem by mutually satisfactory arrangements. If the licensees are unable to do so, the...

  11. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  12. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  13. 48 CFR 252.211-7006 - Passive Radio Frequency Identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radio frequency identification (RFID) or item unique identification (IUID) information, order... CodeTM (EPC®) means an identification scheme for universally identifying physical objects via RFID tags... passive RFID technology. Exterior container means a MIL-STD-129 defined container, bundle, or assembly...

  14. Facets of radio-loud AGN evolution : a LOFAR surveys perspective

    NASA Astrophysics Data System (ADS)

    Williams, W. L.

    2015-12-01

    Radio observations provide a unique view of black holes in the Universe. This thesis presents low frequency radio images and uses the radio sources in those images to study the evolution of black holes and galaxies through the age of the Universe.

  15. Searching the Nearest Stars for Exoplanetary Radio Emission: VLA and LOFAR Observations

    NASA Astrophysics Data System (ADS)

    Knapp, Mary; Winterhalter, Daniel; Lazio, Joseph

    2016-10-01

    Six of the eight solar system planets and one moon (Ganymede) exhibit present-day dynamo magnetic fields. To date, however, there are no conclusive detections of exoplanetary magnetic fields. Low frequency radio emission via the cyclotron maser instability (CMI) from interactions between a planet and the solar/stellar wind is the most direct means of detecting and characterizing planetary/exoplanetary magnetic fields. We have undertaken a survey of the very nearest stars in low frequency radio (30 MHz - 4 GHz) in order to search for yet-undiscovered planets. The closest stars are chosen in order to reduce the attenuation of the magnetospheric radio signal by distance dilution, thereby increasing the chances of making a detection if a planet with a strong magnetic field is present. The VLA telescope (P-band: 230-470 MHz, L-band: 1-2 GHz, S-band: 2-4 GHz) and LOFAR telescope (LBA: 30-75 MHz) have been used to conduct this survey.This work focuses on VLA and LOFAR observations of an M-dwarf binary system: GJ 725. We present upper limits on radio flux as a function of frequency. Since the peak emission frequency of CMI-type emission is the local plasma frequency in the emission region, the peak frequency of planetary radio emission is a direct proxy for the magnetic field strength of the planet. Our spectral irradiance upper limits therefore represent upper limits on the magnetic field strengths of any planets in the GJ 725 system.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study.

    PubMed

    Winkler, Itai; Adam, Dan

    2011-05-01

    The object of this study was to evaluate the monitoring of thermal ablation therapy by measuring the nonlinear response to ultrasound insonation at the region being treated. Previous reports have shown that during tissue heating, microbubbles are formed. Under the application of ultrasound, these microbubbles may be driven into nonlinear motion that produces acoustic emissions at sub-harmonic frequencies and a general increase of emissions at low frequencies. These low frequency emissions may be used to monitor ablation surgery. In this study, a modified commercial ultrasound system was used for transmitting ultrasound pulses and for recording raw RF-lines from a scan plane in porcine (in vitro) and rabbit (in vivo) livers during radio-frequency ablation (RFA). The transmission pulse was 15 cycles in length at 4 MHz (in vitro) and 3.6 MHz (in vivo). Thermocouples were used for monitoring temperatures during the RFA treatment.In the in vitro experiments, recorded RF signals (A-lines) were segmented, and the total energy was measured at two different frequency bands: at a low frequency band (LFB) of 1-2.5 MHz and at the transmission frequency band (TFB) of 3.5-4.5 MHz. The mean energy at the LFB and at the TFB increased substantially in areas adjacent to the RF needle. These energies also changed abruptly at higher temperatures, thus, producing great variance in the received energy. Mean energies in areas distant from RF needle showed little change and variation during treatment. It was also shown that a 3 dB increase of energy at the low frequency band was typically obtained in regions in which temperature was above 53.3 ± 5° C. Thus, this may help in evaluating regions undergoing hyperthermia. In the in vivo experiments, an imaging algorithm based on measuring the LFB energy was used. The algorithm performs a moving average of the LFB energies measured at segments within the scan plane.Results show that a colored region is formed on the image and that it is similar in size to a measurement of the lesion from gross pathology, with a correlation coefficient of 0.743. Copyright © 2011. Published by Elsevier Inc.

  17. PLASMA ENERGIZATION

    DOEpatents

    Furth, H.P.; Chambers, E.S.

    1962-03-01

    BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

  18. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  19. Population density effect on radio frequencies interference (RFI) in radio astronomy

    NASA Astrophysics Data System (ADS)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  20. Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes

    NASA Astrophysics Data System (ADS)

    Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.

    Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4π steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.

  1. REGENERATION AND REACTIVATION OF CARBON ADSORBENTS BY RADIO FREQUENCY INDUCTION HEATING

    EPA Science Inventory

    1. Electrical Properties of Adsorbents: We measured the electric permittivity of four commercially available carbon adsorbents (supplied by Wesvaco Inc) over the radio frequency range (1 to 40 MHz). Westvaco is by far the largest volume supplier of activated carbon...

  2. 78 FR 52097 - Revision to the Manual of Regulations and Procedures for Federal Radio Frequency Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... DEPARTMENT OF COMMERCE National Telecommunications and Information Administration 47 CFR Part 300... Federal Radio Frequency Management AGENCY: National Telecommunications and Information Administration, U.S. Department of Commerce. ACTION: Final rule. SUMMARY: The National Telecommunications and Information...

  3. Theoretical Feasibility of Digital Communication Over Ocean Areas by High Frequency Radio

    DOT National Transportation Integrated Search

    1979-11-01

    The theoretical reliability of digital data transmission via high frequency radio is examined for typical air traffic routes in the Atlantic and Pacific areas to assist the U.S. Department of Transportation in the evaluation of a system for improving...

  4. 47 CFR 90.175 - Frequency coordinator requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... site location. (18) Applications for base, mobile, or control stations in the 763-768 MHz and 793-798... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...

  5. 47 CFR 90.175 - Frequency coordinator requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... site location. (18) Applications for base, mobile, or control stations in the 763-768 MHz and 793-798... Section 90.175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.175...

  6. EVLA observations of radio-loud quasars selected to study radio orientation

    NASA Astrophysics Data System (ADS)

    Maithil, Jaya; Brotherton, Michael S.; Runnoe, Jessie; Wardle, John F. C.; DiPompeo, Michael; De Breuck, Carlos; Wills, Beverley J.

    2018-06-01

    We present preliminary work to develop an unbiased sample of radio-loud quasars to test orientation indicators. We have obtained radio data of 147 radio-loud quasars using EVLA at 10 GHz and with the A-array. With this high-resolution data we have measured the uncontaminated core flux density to determine orientation indicators based on radio core dominance. The radio cores of quasars have a flat spectrum over a broad range of frequencies, so we expect that the core flux density at the FIRST and the observed frequencies should be the same in the absence of variability. Jackson & Brown (2012) pointed out that the survey measurements of core flux density, like FIRST, often doesn't have the spatial resolution to distinguish cores from extended emission. Our measurements show that at FIRST spatial resolution, core flux measurements are indeed systematically high. Our results establish that orientation studies need high-resolution radio data as compared to survey data, and that the optical emission is a better normalization than the extended radio emission for a core dominance parameter to track orientation.

  7. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients

    NASA Astrophysics Data System (ADS)

    Ibrahim, M.; Pardi, C. I.; Brown, T. W. C.; McDonald, P. J.

    2018-02-01

    Improvement in the signal-to-noise ratio of Nuclear Magnetic Resonance (NMR) systems may be achieved either by increasing the signal amplitude or by decreasing the noise. The noise has multiple origins - not all of which are strictly "noise": incoherent thermal noise originating in the probe and pre-amplifiers, probe ring down or acoustic noise and coherent externally broadcast radio frequency transmissions. The last cannot always be shielded in open access experiments. In this paper, we show that pulsed, low radio-frequency data communications are a significant source of broadcast interference. We explore two signal processing methods of de-noising short T2∗ NMR experiments corrupted by these communications: Linear Predictive Coding (LPC) and the Discrete Wavelet Transform (DWT). Results are shown for numerical simulations and experiments conducted under controlled conditions with pseudo radio frequency interference. We show that both the LPC and DWT methods have merit.

  8. Flexible and reversibly deformable radio-frequency antenna based on stretchable SWCNTs/PANI/Lycra conductive fabric

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Wu, Can; Mao, Leidong; Wang, Yue; Xie, Zhicheng; Liu, Caixia; Zhang, Yugang

    2017-10-01

    We demonstrated a flexible and reversibly deformable radio-frequency antenna based on SWCNTs/PANI/Lycra conductive fabric and semipermeable film for wireless wearable communications applications. The conductive fabric fabricated by using the ‘dip and dry’ process exhibits good flexibility, electrical stability, stretchability and mechanical properties, and a high electrical conductivity (with low sheet resistance of ˜35 Ω/sq) was obtained based on the SWCNTs/PANI synergistic conductive network. The morphology of the semipermeable film was investigated to further illustrate the waterproof breathable features. Meanwhile, the modeling, fabrication procedure and radiating properties of the radio-frequency textile antenna worked at 2.45 GHz were systematically illustrated. The measured reflection coefficient, VSWR and the -10 dB bandwidth is ˜-18.6 dB, 1.58 and ˜270 MHz respectively, which agreed well with the simulation results. Furthermore, the results indicate that the design methodology for the radio-frequency textile antenna could have promising applications in flexible and reversibly deformable antennas for wearable wireless communications systems.

  9. KSC-2013-1783

    NASA Image and Video Library

    2013-03-05

    CAPE CANAVERAL, Fla. – A telemetry antenna and tracker camera is attached to the roof of the Launch Control Center, or LCC, in Launch Complex 39 at NASA's Kennedy Space Center in Florida. This antenna and camera system is the first of three to be installed on the LCC roof for the Radio Frequency and Telemetry Station RFTS, which will be used to monitor radio frequency communications from a launch vehicle at Launch Pad 39A or B as well as provide radio frequency relay for a launch vehicle in the Vehicle Assembly Building. The RFTS replaces the shuttle-era communications and tracking labs at Kennedy. The modern RFTS checkout station is designed to primarily support NASA's Space Launch System, or SLS, and Orion spacecraft, but can support multi-user radio frequency tests as the space center transitions to support a variety of rockets and spacecraft. For more information on the modernization efforts at Kennedy, visit the Ground Systems Development and Operations, or GSDO, website at http://go.nasa.gov/groundsystems. Photo credit: NASA/Jim Grossmann

  10. The Jet-driven Outflow in the Radio Galaxy SDSS J1517+3353: Implications for Double-peaked Narrow-line Active Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Rosario, D. J.; Shields, G. A.; Taylor, G. B.; Salviander, S.; Smith, K. L.

    2010-06-01

    We report on the study of an intriguing active galaxy that was selected as a potential multiple supermassive black hole merger in the early-type host SDSS J151709.20+335324.7 (z = 0.135) from a complete search for double-peaked [O III] lines from the SDSS spectroscopic quasi-stellar object (QSO) database. Ground-based SDSS imaging reveals two blue structures on either side of the photometric center of the host galaxy, separated from each other by about 5.7 kpc. From a combination of SDSS fiber and Keck/HIRES long-slit spectroscopy, it is demonstrated that, in addition to these two features, a third distinct structure surrounds the nucleus of the host galaxy. All three structures exhibit highly ionized line emission with line ratios characteristic of Seyfert II active galactic nuclei. The analysis of spatially resolved emission-line profiles from the HIRES spectrum reveal three distinct kinematic subcomponents, one at rest and the other two moving at -350 km s-1 and 500 km s-1 with respect to the systemic velocity of the host galaxy. A comparison of imaging and spectral data confirm a strong association between the kinematic components and the spatial knots, which implies a highly disturbed and complex active region in this object. A comparative analysis of the broadband positions, colors, kinematics, and spectral properties of the knots in this system lead to two plausible explanations: (1) a multiple active galactic nucleus (AGN) produced due to a massive dry merger, or (2) a very powerful radio jet-driven outflow. Subsequent VLA radio imaging reveals a clear jet aligned with the emission-line gas, confirming the latter explanation. We use the broadband radio measurements to examine the impact of the jet on the interstellar medium of the host galaxy, and find that the energy in the radio lobes can heat a significant fraction of the gas to the virial temperature. Finally, we discuss tests that may help future surveys distinguish between jet-driven kinematics and true black-hole binaries. J1517+3353 is a remarkable laboratory for AGN feedback and warrants deeper follow-up study. In the Appendix, we present high-resolution radio imaging of a second AGN with double-peaked [O III] lines, SDSS J112939.78+605742.6, which shows a sub-arcsecond radio jet. If the double-peaked nature of the narrow lines in radio-loud AGNs are generally due to radio jet interactions, we suggest that extended radio structure should be expected in most of such systems.

  11. Spacecraft VHF Radio Propagation Analysis in Ocean Environments Including Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Hwu, Shian; Moreno, Gerardo; Desilva, Kanishka; Jih, CIndy

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the National Aeronautics and Space Administration (NASA)/Johnson Space Center (JSC) is tasked to perform spacecraft and ground network communication system simulations. The CSSL has developed simulation tools that model spacecraft communication systems and the space/ground environment in which they operate. This paper is to analyze a spacecraft's very high frequency (VHF) radio signal propagation and the impact to performance when landing in an ocean. Very little research work has been done for VHF radio systems in a maritime environment. Rigorous Radio Frequency (RF) modeling/simulation techniques were employed for various environmental effects. The simulation results illustrate the significance of the environmental effects on the VHF radio system performance.

  12. Crowd-Sourced Radio Science at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  13. Wavelet Based Characterization of Low Radio Frequency Solar Emissions

    NASA Astrophysics Data System (ADS)

    Suresh, A.; Sharma, R.; Das, S. B.; Oberoi, D.; Pankratius, V.; Lonsdale, C.

    2016-12-01

    Low-frequency solar radio observations with the Murchison Widefield Array (MWA) have revealed the presence of numerous short-lived, narrow-band weak radio features, even during quiet solar conditions. In their appearance in in the frequency-time plane, they come closest to the solar type III bursts, but with much shorter spectral spans and flux densities, so much so that they are not detectable with the usual swept frequency radio spectrographs. These features occur at rates of many thousand features per hour in the 30.72 MHz MWA bandwidth, and hence necessarily require an automated approach to determine robust statistical estimates of their properties, e.g., distributions of spectral widths, temporal spans, flux densities, slopes in the time-frequency plane and distribution over frequency. To achieve this, a wavelet decomposition approach has been developed for feature recognition and subsequent parameter extraction from the MWA dynamic spectrum. This work builds on earlier work by the members of this team to achieve a reliable flux calibration in a computationally efficient manner. Preliminary results show that the distribution of spectral span of these features peaks around 3 MHz, most of them last for less than two seconds and are characterized by flux densities of about 60% of the background solar emission. In analogy with the solar type III bursts, this non-thermal emission is envisaged to arise via coherent emission processes. There is also an exciting possibility that these features might correspond to radio signatures of nanoflares, hypothesized (Gold, 1964; Parker, 1972) to explain coronal heating.

  14. New methods to constrain the radio transient rate: results from a survey of four fields with LOFAR.

    PubMed

    Carbone, D; van der Horst, A J; Wijers, R A M J; Swinbank, J D; Rowlinson, A; Broderick, J W; Cendes, Y N; Stewart, A J; Bell, M E; Breton, R P; Corbel, S; Eislöffel, J; Fender, R P; Grießmeier, J-M; Hessels, J W T; Jonker, P; Kramer, M; Law, C J; Miller-Jones, J C A; Pietka, M; Scheers, L H A; Stappers, B W; van Leeuwen, J; Wijnands, R; Wise, M; Zarka, P

    2016-07-01

    We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). Four fields have been monitored with cadences between 15 min and several months. A total of 151 images were obtained, giving a total survey area of 2275 deg 2 . We analysed our data using standard LOFAR tools and searched for radio transients using the LOFAR Transients Pipeline. No credible radio transient candidate has been detected; however, we are able to set upper limits on the surface density of radio transient sources at low radio frequencies. We also show that low-frequency radio surveys are more sensitive to steep-spectrum coherent transient sources than GHz radio surveys. We used two new statistical methods to determine the upper limits on the transient surface density. One is free of assumptions on the flux distribution of the sources, while the other assumes a power-law distribution in flux and sets more stringent constraints on the transient surface density. Both of these methods provide better constraints than the approach used in previous works. The best value for the upper limit we can set for the transient surface density, using the method assuming a power-law flux distribution, is 1.3 × 10 -3  deg -2 for transients brighter than 0.3 Jy with a time-scale of 15 min, at a frequency of 150 MHz. We also calculated for the first time upper limits for the transient surface density for transients of different time-scales. We find that the results can differ by orders of magnitude from previously reported, simplified estimates.

  15. Radio Emission from the Exoplanetary System ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Villadsen, J.; Maps, A.; Hallinan, G.; Beasley, A. J.

    2018-04-01

    As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets, ɛ Eridani was observed by the Jansky Very Large Array (VLA) in the 2–4 GHz and 4–8 GHz frequency bands. In addition, as part of a separate survey of thermal emission from solar-like stars, ɛ Eri was observed in the 8–12 GHz and the 12–18 GHz bands of the VLA. Quasi-steady continuum radio emission from ɛ Eri was detected in the three high-frequency bands at levels ranging from 67 to 83 μJy. No significant variability is seen in the quasi-steady emission. The emission in the 2–4 GHz emission, however, is shown to be the result of a circularly polarized (up to 50%) radio pulse or flare of a few minutes in duration that occurred at the beginning of the observation. We consider the astrometric position of the radio source in each frequency band relative to the expected position of the K2V star and the purported planet. The quasi-steady radio emission at frequencies ≥8 GHz is consistent with a stellar origin. The quality of the 4–8 GHz astrometry provides no meaningful constraint on the origin of the emission. The location of the 2–4 GHz radio pulse is >2.5σ from the star; however, based on the ephemeris of Benedict et al., it is not consistent with the expected location of the planet either. If the radio pulse has a planetary origin, then either the planetary ephemeris is incorrect or the emission originates from another planet.

  16. Searching for giga-Jansky fast radio bursts from the Milky Way with a global array of low-cost radio receivers

    NASA Astrophysics Data System (ADS)

    Maoz, Dan; Loeb, Abraham

    2017-06-01

    If fast radio bursts (FRBs) originate from galaxies at cosmological distances, then their all-sky rate implies that the Milky Way may host an FRB every 30-1500 yr, on average. If many FRBs persistently repeat for decades or more, a local giant FRB could be active now, with 1 GHz radio pulses of flux ˜3 × 1010 Jy, comparable with the fluxes and frequencies detectable by cellular communication devices (cell phones, Wi-Fi and GPS). We propose searching for Galactic FRBs using a global array of low-cost radio receivers. One possibility is the ˜1 GHz communication channel in cellular phones, through a Citizens-Science downloadable application. Participating phones would continuously listen for and record candidate FRBs and would periodically upload information to a central data-processing website which will identify the signature of a real, globe-encompassing, FRB from an astronomical distance. Triangulation of the GPS-based pulse arrival times reported from different Earth locations will provide the FRB sky position, potentially to arcsecond accuracy. Pulse arrival times versus frequency, from reports from phones operating at diverse frequencies, or from fast signal de-dispersion by the application, will yield the dispersion measure (DM). Compared to a Galactic DM model, it will indicate the source distance within the Galaxy. A variant approach uses the built-in ˜100 MHz FM-radio receivers present in cell phones for an FRB search at lower frequencies. Alternatively, numerous 'software-defined radio' devices, costing ˜$10 US each, could be deployed and plugged into USB ports of personal computers (particularly in radio-quiet locations) to establish the global network of receivers.

  17. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.

    PubMed

    Bartsch, Sebastian T; Lovera, Andrea; Grogg, Daniel; Ionescu, Adrian M

    2012-01-24

    Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing. © 2011 American Chemical Society

  18. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics

    NASA Astrophysics Data System (ADS)

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-01

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m-3) in a regulated and managed manner. This self-charging unit can be universally applied as a standard `infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  19. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics.

    PubMed

    Niu, Simiao; Wang, Xiaofeng; Yi, Fang; Zhou, Yu Sheng; Wang, Zhong Lin

    2015-12-11

    Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.

  20. A Deep Space Network Portable Radio Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre P.; Sigman, Elliott H.; Chandra, Kumar; Trinh, Joseph T.; Navarro, Robert; Rogstad, Stephen P.; Goodhart, Charles E.; Proctor, Robert C.; Finley, Susan G.; White, Leslie A.

    2009-01-01

    The Radio Science Receiver (RSR) is an open-loop receiver installed in NASA s Deep Space Network (DSN), which digitally filters and records intermediate-frequency (IF) analog signals. The RSR is an important tool for the Cassini Project, which uses it to measure perturbations of the radio-frequency wave as it travels between the spacecraft and the ground stations, allowing highly detailed study of the composition of the rings, atmosphere, and surface of Saturn and its satellites.

  1. Very Long Baseline Interferometry: Dependencies on Frequency Stability

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald

    2018-04-01

    Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.

  2. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  3. Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael W.; Hallinan, Gregg

    2018-05-01

    21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.

  4. Intelligent cognitive radio jamming - a game-theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabcevic, Kresimir; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo S.

    2014-12-01

    Cognitive radio (CR) promises to be a solution for the spectrum underutilization problems. However, security issues pertaining to cognitive radio technology are still an understudied topic. One of the prevailing such issues are intelligent radio frequency (RF) jamming attacks, where adversaries are able to exploit on-the-fly reconfigurability potentials and learning mechanisms of cognitive radios in order to devise and deploy advanced jamming tactics. In this paper, we use a game-theoretical approach to analyze jamming/anti-jamming behavior between cognitive radio systems. A non-zero-sum game with incomplete information on an opponent's strategy and payoff is modelled as an extension of Markov decision process (MDP). Learning algorithms based on adaptive payoff play and fictitious play are considered. A combination of frequency hopping and power alteration is deployed as an anti-jamming scheme. A real-life software-defined radio (SDR) platform is used in order to perform measurements useful for quantifying the jamming impacts, as well as to infer relevant hardware-related properties. Results of these measurements are then used as parameters for the modelled jamming/anti-jamming game and are compared to the Nash equilibrium of the game. Simulation results indicate, among other, the benefit provided to the jammer when it is employed with the spectrum sensing algorithm in proactive frequency hopping and power alteration schemes.

  5. Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)

    NASA Technical Reports Server (NTRS)

    Reyes, Miguel A. De Jesus

    2014-01-01

    GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.

  6. MIT Lincoln Laboratory Facts 2015

    DTIC Science & Technology

    2015-01-01

    this technology to industry for deployment in operational systems. Current efforts focus on radio - frequency (RF) military satellite communications ... frequency submarine communications demonstration ■■ Continuous-wave diode laser developed in InGaAsP/InP alloy ■■ Ground-based Electro-Optical Deep...Radar upgrade ■■ Miniaturized radio - frequency receiver ■■ Missile Alternative Range Target Instrument payloads ■■ Multifunction phased array radar

  7. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  8. Land mobile spectrum utilization: San Francisco, California and Chicago, Illinois

    NASA Astrophysics Data System (ADS)

    Reed, L. D.

    1980-08-01

    Radio frequency utilization by Federal Communication Commission licenses in the San Francisco and Chicago urbanized areas is described. The license include among others: police and fire departments; hospitals; public utilities; marine; and common carrier users. The extent of frequency utilization is described in terms of four occupancy categorizations (zero, low, substantial and very high). The rationale for these categories and their relationship to measured usage data is given. Summary tables enable direct comparison of the use by various individual, radio services, e.g., police, business, taxicab, etc. Separate analyses are given for utilization by each of the land mobile radio services and for each frequency band.

  9. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor)

    2016-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  10. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor); Boose, Haley C. (Inventor)

    2015-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  11. Reconfigurable radio-over-fiber system based on optical switch and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng

    2017-09-01

    As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.

  12. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Brown, Dewey T. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Byerly, Diane (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Ngo, Phong H. (Inventor)

    2017-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  13. 47 CFR 90.179 - Shared use of radio stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared use of radio stations. 90.179 Section 90.179 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Policies Governing the Assignment of Frequencies § 90.179 Shared use of...

  14. 47 CFR 25.203 - Choice of sites and frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... National Radio Astronomy Observatory: In order to minimize possible harmful interference at the National Radio Astronomy Observatory site at Green Bank, Pocahontas County, W. Va., and at the Naval Radio..., simultaneously notify the Director, National Radio Astronomy Observatory, P.O. Box No. 2, Green Bank, W. Va...

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1985-01-01

    Reports on developments in space communications, radio navigation, radio science, and ground-based radio astronomy are presented. Activities of the Deep Space Network (DSN) are reported in the areas of planning, supporting research and technology, implementation and operations. The application of radio interferometry at microwave frequencies for geodynamic measurements is also discussed.

  16. The impact of the SZ effect on cm-wavelength (1-30 GHz) observations of galaxy cluster radio relics

    NASA Astrophysics Data System (ADS)

    Basu, Kaustuv; Vazza, Franco; Erler, Jens; Sommer, Martin

    2016-07-01

    Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power law spectrum has been found, most noticeably in the famous "Sausage" relic. Such spectral steepening is seen as an evidence for non-standard relic models, such as ones requiring seed electron population with a break in their energy spectrum. In this paper, however, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed synchrotron flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed synchrotron fluxes can be diminished by a factor of several from their true values. At higher redshift the contamination gets stronger due to the redshift independence of the SZ effect. Interferometric observations are not immune to this contamination, since the change in the SZ signal occurs roughly at the same length scale as the synchrotron emission, although there the flux loss is less severe than single-dish observations. Besides presenting this warning to observers, we suggest that the negative contribution from the SZ effect can be regarded as one of the best evidence for the physical association between radio relics and shock waves. We present a simple analytical approximation for the synchrotron-to-SZ flux ratio, based on a theoretical radio relic model that connects the nonthermal emission to the thermal gas properties, and show that by measuring this ratio one can potentially estimate the relic magnetic fields or the particle acceleration efficiency.

  17. DECONTAMINATION OF HAZARDOUS WASTE SUBSTANCES FROM SPILLS AND UNCONTROLLED WASTE SITES BY RADIO FREQUENCY IN SITU HEATING

    EPA Science Inventory

    The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...

  18. Industrial-scale radio frequency treatments for insect control in lentils

    USDA-ARS?s Scientific Manuscript database

    Radio frequency (RF) treatments are considered to be a potential postharvest technology for disinfesting legumes of internal seed pests such as the cowpea weevil. After treatment protocols are shown to control postharvest insects without significant quality degradation, it is important to scale-up l...

  19. Heating uniformity and differential heating of insects in almonds associated with radio frequency energy

    USDA-ARS?s Scientific Manuscript database

    Radio frequency (RF) treatments have potential as alternatives to chemical fumigation for phytosanitary disinfestation treatments in the dried nut industry. To develop effective RF treatment protocols for almonds, it is desirable to determine heating uniformity and the occurrence of differential hea...

  20. Radio Frequency Heat Treatments to Disinfest Dried Pulses of Cowpea Weevil

    USDA-ARS?s Scientific Manuscript database

    To explore the potential of radio frequency (RF) heat treatments as an alternative to chemical fumigants for disinfestation of dried pulses, the relative heat tolerance and dielectric properties of different stages of the cowpea weevil (Callosobruchus maculatus) was determined. Among the immature st...

Top