Science.gov

Sample records for radio galaxies massive

  1. Radio-Mode Feedback in Massive Galaxies at Redshift 0 < z < 1

    NASA Astrophysics Data System (ADS)

    Sadler, Elaine M.; Croom, Scott M.; Ching, John H. Y.; Johnston, Helen M.; Cannon, Russell D.; Mauch, Tom

    2010-05-01

    We have carried out a large observational study of the radio luminosities, stellar populations, and environments of massive galaxies over the redshift range 0 < z < 1. Radio jets powered by an accreting central black hole are common in massive galaxies, and there is a large class of “optically quiet AGN,” with radio emission but no optical/IR signature of black-hole accretion. The central black holes in these galaxies are probably accreting in a radiatively inefficient mode, and our results suggest that “radio-mode feedback” as described by Croton et al. is likely to occur in all masssive early-type galaxies at z < 0.8. While it appears that radio-loud AGN occur episodically in all massive early-type galaxies, we also identify a sub-population of galaxies with powerful radio sources and a prominent younger (~ 108 yr) stellar population that may have undergone recent mergers.

  2. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    SciTech Connect

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  3. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  4. Early quenching of massive protocluster galaxies around z = 2.2 radio galaxies

    NASA Astrophysics Data System (ADS)

    Husband, K.; Bremer, M. N.; Stott, J. P.; Murphy, D. N. A.

    2016-10-01

    Radio galaxies are among the most massive galaxies in the high-redshift Universe and are known to often lie in protocluster environments. We have studied the fields of seven z = 2.2 radio galaxies with High Acuity Wide field K-band Imager (HAWK-I) narrow-band and broad-band imaging in order to map out their environment using Hα emitters (HAEs). The results are compared to the blank field HAE survey HiZELS. All of the radio galaxy fields are overdense in HAEs relative to a typical HiZELS field of the same area and four of the seven are richer than all except one of 65 essentially random HiZELS subfields of the same size. The star formation rates of the massive HAEs are lower than those necessary to have formed their stellar population in the preceding Gyr - indicating that these galaxies are likely to have formed the bulk of their stars at higher redshifts, and are starting to quench.

  5. ATCA detections of massive molecular gas reservoirs in dusty, high-z radio galaxies

    NASA Astrophysics Data System (ADS)

    Heywood, I.; Contreras, Y.; Smith, D. J. B.; Cooray, A.; Dunne, L.; Gómez, L.; Ibar, E.; Ivison, R. J.; Jarvis, M. J.; Michałowski, M. J.; Riechers, D. A.; Werf, P. van der

    2017-02-01

    Observations using the 7-mm receiver system on the Australia Telescope Compact Array have revealed large reservoirs of molecular gas in two high-redshift radio galaxies: HATLAS J090426.9+015448 (z = 2.37) and HATLAS J140930.4+003803 (z = 2.04). Optically, the targets are very faint, and spectroscopy classifies them as narrow-line radio galaxies. In addition to harbouring an active galactic nucleus the targets share many characteristics of sub-mm galaxies. Far-infrared data from Herschel-Astrophysical Terahertz Large Area Survey suggest high levels of dust (>109 M⊙) and a correspondingly large amount of obscured star formation (∼1000 M⊙ yr-1). The molecular gas is traced via the J = 1 → 0 transition of 12CO, its luminosity implying total H2 masses of (1.7 ± 0.3) × 1011 and (9.5 ± 2.4) × 1010 (αCO/0.8) M⊙ in HATLAS J090426.9+015448 and HATLAS J140930.4+003803, respectively. Both galaxies exhibit molecular line emission over a broad (∼1000 km s-1) velocity range and feature double-peaked profiles. We interpret this as evidence of either a large rotating disc or an on-going merger. Gas depletion time-scales are ∼100 Myr. The 1.4-GHz radio luminosities of our targets place them close to the break in the luminosity function. As such they represent 'typical' z > 2 radio sources, responsible for the bulk of the energy emitted at radio wavelengths from accretion-powered sources at high redshift, and yet they rank amongst the most massive systems in terms of molecular gas and dust content. We also detect 115-GHz rest-frame continuum emission, indicating a very steep high-radio-frequency spectrum, possibly classifying the targets as compact steep spectrum objects.

  6. Radio AGN signatures in massive quiescent galaxies out to z=1.5

    NASA Astrophysics Data System (ADS)

    Järvelä, Emilia

    2016-08-01

    Detection of gamma-rays from narrow-line Seyfert 1 galaxies (NLS1) by Fermi confirmed the presence of powerful relativistic jets in them, and thus challenged our understanding of active galactic nuclei (AGN). In the current AGN paradigm powerful relativistic jets are produced in massive elliptical galaxies with supermassive black holes. NLS1s differ from them significantly; they harbour lower mass black holes accreting at higher Eddington ratios, have preferably compact radio morphology, reside mostly in spiral galaxies, and were thought to be radio-quiet.Fermi's discovery invokes questions about the AGN evolution; what triggers and maintains the AGN activity, and what are the evolutionary lines of the different populations? It is also necessary to revise the AGN unification schemes to fit in NLS1s. They convolute the whole AGN scenario, but offer us a new look on the jet phenomena and will help us construct a more comprehensive big picture of AGN.Despite their importance, NLS1s are rather poorly studied as a class. For example, some NLS1s seem to be totally radio-silent, but a considerable fraction are radio-loud and thus probably host jets. This, along with other observational evidence, implies that they do not form a homogeneous class. However, it remains unclear what is triggering the radio loudness in some of them, but, for example, the properties of the host galaxy and the large-scale environment might play a role. Also the parent population of NLS1s remains an open question.We used various statistical methods, for example, multiwavelength correlations and principal component analysis to study a large sample of NLS1 sources. We will present the results and discuss the interplay between their properties, such as emission properties, black hole masses, large-scale environments, and their effect on radio loudness. We will also introduce the Metsähovi Radio Observatory NLS1 galaxy observing programme, which is the first one dedicated to systematical observations

  7. Constraining star formation and AGN in z ~ 2 massive galaxies using high-resolution MERLIN radio observations

    NASA Astrophysics Data System (ADS)

    Casey, C. M.; Chapman, S. C.; Muxlow, T. W. B.; Beswick, R. J.; Alexander, D. M.; Conselice, C. J.

    2009-05-01

    We present high spatial resolution Multi-Element Radio-Linked Interferometer Network (MERLIN) 1.4-GHz radio observations of two high-redshift (z ~ 2) sources, RGJ123623 (HDF147) and RGJ123617 (HDF130), selected as the brightest radio sources from a sample of submillimetre-faint radio galaxies. They have starburst classifications from their rest-frame ultraviolet spectra. However, their radio morphologies are remarkably compact (<80 and <65mas, respectively), demanding that the radio luminosity be dominated by active galactic nuclei (AGN) rather than starbursts. Near-infrared (IR) imaging [Hubble Space Telescope Near Infrared Camera and Multi-Object Spectrometer (NICMOS) F160W] shows large-scale sizes (R1/2 ~ 0.75arcsec, diameters ~12kpc) and spectral energy distribution (SED) fitting to photometric points (optical through the mid-IR) reveals massive (~5 × 1011Msolar), old (a few Gyr) stellar populations. Both sources have low flux densities at observed 24 μm and are undetected in observed 70 μm and 850 μm, suggesting a low mass of interstellar dust. They are also formally undetected in the ultradeep 2 Ms Chandra data, suggesting that any AGN activity is likely intrinsically weak. We suggest both galaxies have evolved stellar populations, low star formation rates and low accretion rates on to massive black holes (108.6Msolar) whose radio luminosity is weakly beamed (by factors of a few). A cluster-like environment has been identified near HDF130 by an overdensity of galaxies at z = 1.99, reinforcing the claim that clusters lead to more rapid evolution in galaxy populations. These observations suggest that high-resolution radio (MERLIN) can be a superb diagnostic tool of AGN in the diverse galaxy populations at z ~ 2.

  8. High Redshift Radio Galaxies: Laboratories for Massive Galaxy and Cluster Formation in the Early Universe

    DTIC Science & Technology

    2010-01-01

    Lyα (blue, resolution ∼1”) obtained with ESO’s very Large Telescope (VLT), delineating the gaseous nebula and radio 8 GHz contours (red, resolution...0.3”) obtained with NRAO’s VLA, delineating the non-thermal radio emission. The gaseous nebula extends for >200 kpc and is comparable in size with the

  9. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ∼1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  10. Are “quiescent” galaxies really void of star formation? The mid-, far-infrared and radio properties of massive quiescent galaxies at z=0.1-3

    NASA Astrophysics Data System (ADS)

    Man, Allison W. S.; Greve, Thomas; Toft, Sune

    2015-08-01

    Quiescent galaxy candidates in deep field photometric surveys are typically identified by their low unobscured star formation rates. However, this assumes a universal dust attenuation curve, leading to possible misclassification of dusty star-forming galaxies as quiescent ones. Current surveys at mid-, far-infrared and radio wavelengths are limited to detecting only galaxies with very strong star formation or AGN activity. I will present the first comprehensive stacking results across mid-, far-infrared and radio wavelengths using Spitzer, Herschel and VLA data in the COSMOS field. We find that the rest-frame NUV-r and r-J color criteria, combined with low 24um emission, provides a robust selection of quiescent galaxies out to z=3 that have obscured star formation rates >10 times lower than those of star-forming galaxies. Additionally, we find evidence of radio emission in excess of the expected total star formation in quiescent galaxies at z~0-1.5, most notable for the massive ones, indicative of the ubiquity of low-luminosity radio AGN among them.

  11. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  12. B2 1637+29, a massive radio galaxy probing a poor but gas-rich group

    SciTech Connect

    De Ruiter, H.R.; Parma, P.; Fanti, R.; Ekers, R.D.

    1988-06-01

    New VLA and CCD observations of the radio source B2 1637+29, a member of the faint B2 sample of low-luminosity radio galaxies, are reported. The environment of the galaxy is discussed, and a description of the radio source morphology is given. The CCD image reveals that the optical counterpart is a double galaxy with radio jets emanating from the nucleus of the brighter of the two galaxies. It is shown that the galaxy is the dominant member of a poor group of galaxies, and it is argued that it moves with an average velocity of a few hundred km/s with respect to an intergalactic gas cloud with mass of 10 to the 13th solar or more. The relevance of the enviroment of the radio galaxy to the source morphology is discussed, and an explanation for the highly peculiar features, such as the undulation in the radio tail and the difference in both length and brightness of the main and counter jet, is proposed. 32 references.

  13. AO Observations of Three Powerful Radio Galaxies

    SciTech Connect

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  14. Subsonic evolution of the radio bubbles in the nearby massive early-type galaxy NGC 4472: uplift, buoyancy, and heating

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Gendron Marsolais, Marie-Lou; Bogdan, Akos; Su, Yuanyuan; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2017-01-01

    We present results from a deep (380 ks) Chandra observation of the hot gas in the nearby massive early-type galaxy NGC 4472. X-ray cavities were previously reported coincident with the radio lobes (Biller et al. 2004). In our deeper observation, we confirm the presence of the cavities and detect rims of enhanced emission surrounding the bubbles. The temperature of the gas in these rims is less than that of the ambient medium, demonstrating that they cold, low entropy material that has been drawn up from the group center by the buoyant rise of the bubbles and not shocks from supersonic inflation of the lobes. Interestingly, the gravitational energy required to lift these lobes from the group center is a significant fraction of the bubble enthalpy. This suggests that uplift by AGN bubbles may play an important role in some cases in offsetting the radiative cooling at cluster and group centers. This uplift also provides an efficient means of transporting enriched material from the group center to large radii.

  15. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  16. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  17. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  18. Feedback in high redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    De Breuck, Carlos; Nesvadba, Nicole; Lehnert, Matthew; Best, Philip

    High redshift radio galaxies are among the best objects to study AGN feedback in action, as they are among the most massive galaxies (1011 - 1012 M ) hosting powerful radio-loud AGN. I will present near-infrared imaging spectroscopy of a sample of over 50 radio galaxies at 2 < z < 5 using SINFONI at the VLT. We identify kpc-sized outflows of few x 1010 M of ionized gas, located along the radio source axis. Velocity fields are consistent with bipolar outflows, with total velocity offsets of 1000 km/s. FWHMs 1000 km/s suggest strong turbulence. The geometry is consistent with the radio source driving these outflows. Over the lifetime of the radio source (˜ 107 yr), these outflows can eject up to 1011 M of gas out of the gravitational potential of the host galaxy. Such mass loss would be sufficient to terminate star formation within the host galaxy. I will also present results from an ongoing follow-up programme to study the molecular gas in these high z radio galaxies using the IRAM interferometer. In several sources, we find a remarkable deficit in cold molecular relative to ionized gas, which may imply that significant fractions of the interstellar medium of these galaxies are participating in the winds.

  19. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  20. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    SciTech Connect

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  1. Galaxy clusters: Radio relics from fossil electrons

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, Melanie

    2017-01-01

    The detection of a tailed radio galaxy in a galaxy cluster conjoined to a region of diffuse radio emission confirms that radio galaxies provide the energetic electrons needed to explain the origin of this enigmatic emission.

  2. Radio galaxies and their environment

    SciTech Connect

    van Breugel, W.

    1993-02-24

    The relationships between radio galaxies and their environment are varied, complex, and evolve with cosmic epoch. Basic questions are what role the environment plays in triggering and fuelling (radio) galaxy activity what the effects of this activity are on its environment, and how radio galaxies and environment evolve. Clearly, this could be the topic of a workshop all in itself and the scope of this review will necessarily be limited. A review of the connections between environment and galaxy activity in general has been given by Heckman. First, I will briefly summarize the relationships between parent galaxy and cluster environments, and radio galaxies. A more detailed discussion of various aspects of this will be given elsewhere by F. Owen, J.0. Burns and R. Perley. I will then discuss the current status of investigations of extended emission-line regions in radio galaxies, again referring elsewhere in this volume for more detailed discussions of some particular aspects (kinematics and ionization mechanisms by K. Meisenheimer; polarization and spectral index lobe asymmetries by G. Pooley). I will conclude with a brief discussion of the current status of observations of high redshift radio galaxies.

  3. EXTREME HOST GALAXY GROWTH IN POWERFUL EARLY-EPOCH RADIO GALAXIES

    SciTech Connect

    Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2012-10-01

    During the first half of the universe's life, a heyday of star formation must have occurred because many massive galaxies are in place after that epoch in cosmic history. Our observations with the revolutionary Herschel Space Observatory reveal vigorous optically obscured star formation in the ultra-massive hosts of many powerful high-redshift 3C quasars and radio galaxies. This symbiotic occurrence of star formation and black hole driven activity is in marked contrast to recent results dealing with Herschel observations of X-ray-selected active galaxies. Three archetypal radio galaxies at redshifts 1.132, 1.575, and 2.474 are presented here, with inferred star formation rates of hundreds of solar masses per year. A series of spectacular coeval active galactic nucleus/starburst events may have formed these ultra-massive galaxies and their massive central black holes during their relatively short lifetimes.

  4. Imaging Radio Galaxies with Adaptive Optics

    NASA Astrophysics Data System (ADS)

    de Vries, W. H.; van Breugel, W. J. M.; Quirrenbach, A.; Roberts, J.; Fidkowski, K.

    2000-12-01

    We present 42 milli-arcsecond resolution Adaptive Optics near-infrared images of 3C 452 and 3C 294, two powerful radio galaxies at z=0.081 and z=1.79 respectively, obtained with the NIRSPEC/SCAM+AO instrument on the Keck telescope. The observations provide unprecedented morphological detail of radio galaxy components like nuclear dust-lanes, off-centered or binary nuclei, and merger induced starforming structures; all of which are key features in understanding galaxy formation and the onset of powerful radio emission. Complementary optical HST imaging data are used to construct high resolution color images, which, for the first time, have matching optical and near-IR resolutions. Based on these maps, the extra-nuclear structural morphologies and compositions of both galaxies are discussed. Furthermore, detailed brightness profile analysis of 3C 452 allows a direct comparison to a large literature sample of nearby ellipticals, all of which have been observed in the optical and near-IR by HST. Both the imaging data and the profile information on 3C 452 are consistent with it being a relative diminutive and well-evolved elliptical, in stark contrast to 3C 294 which seems to be in its initial formation throes with an active AGN off-centered from the main body of the galaxy. These results are discussed further within the framework of radio galaxy triggering and the formation of massive ellipticals. The work of WdV and WvB was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. The work at UCSD has been supported by the NSF Science and Technology Center for Adaptive Optics, under agreement No. AST-98-76783.

  5. HST Infrared Imaging of MASSIVE Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Jensen, Joseph B.; Goullaud, Charles; Blakeslee, John; Mitchiner, Casey; Ma, Chung-Pei; Greene, Jenny E.; McConnell, Nicholas J.; Thomas, Jens

    2017-01-01

    We have recently obtained high-resolution HST WFC3/IR F110W (J-band) images of 34 early-type galaxies in the MASSIVE study sample. These galaxies are among the most massive in the local universe, and were chosen to study the connection between supermassive central black holes and their host galaxies. To determine accurate masses for the black holes, we are measuring high-precision surface brightness fluctuation (SBF) distances to the galaxies. The WFC3/IR data also allow us to measure high spatial resolution central surface brightness profiles to understand better the nuclear structure and dynamics of the galaxies. We present a first look at the IR images, profiles, and SBF magnitudes for 34 galaxies in the MASSIVE sample.

  6. Inside-out formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    de la Rosa, I. G.

    2017-03-01

    A significant fraction of the present day massive galaxies have compact cores embedded inside their disks or halos. Strikingly, those compact cores are similar to the massive high-redshift quiescent compact galaxies, nicknamed red-nuggets. We present observational evidence supporting an inside-out formation scenario, where present-day massive galaxies can begin as dense spheroidal cores (red-nuggets), around which either a spheroidal halo or a disk are accreted later. This contribution is based on the paper by de la Rosa et al. (2016).

  7. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  8. Epsiodic Activity in Radio Galaxies

    SciTech Connect

    Saikia, D.J.; Konar, C.; Jamrozy, M.; Machalski, J.; Gupta, Neeraj; Stawarz, L.; Mack, K.-H.; Siemiginowska, A.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-10-15

    One of the interesting issues in our understanding of active galactic nuclei is the duration of their active phase and whether such activity is episodic. In this paper we summarize our recent results on episodic activity in radio galaxies obtained with the GMRT and the VLA.

  9. Dwarf Galaxies with Active Massive Black Holes

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Greene, J. E.; Geha, M. C.

    2014-01-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies with bulges, power AGN, and are thought to be important agents in the evolution of their hosts. However, the birth and growth of the first supermassive BH "seeds" is far from understood. While direct observations of these distant BHs in the infant Universe are unobtainable with current capabilities, massive BHs in present-day dwarf galaxies can place valuable constraints on the masses, formation path, and hosts of supermassive BH seeds. Using optical spectroscopy from the SDSS, we have systematically assembled the largest sample of dwarf galaxies hosting active massive BHs to date. These dwarf galaxies have stellar masses comparable to the Magellanic Clouds and contain some of the least-massive supermassive BHs known.

  10. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    SciTech Connect

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-03-20

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 < z < 0.07. We discover a significant population of superdense massive galaxies with masses and sizes comparable to those observed at high redshift. They approximately represent 22% of all cluster galaxies more massive than 3 x 10{sup 10} M{sub sun}, are mostly S0 galaxies, have a median effective radius (R{sub e} ) = 1.61 +- 0.29 kpc, a median Sersic index (n) = 3.0 +- 0.6, and very old stellar populations with a median mass-weighted age of 12.1 +- 1.3 Gyr. We calculate a number density of 2.9 x 10{sup -2} Mpc{sup -3} for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10{sup -5} Mpc{sup -3} in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z {approx} 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M{sub *} > 4 x 10{sup 11} M{sub sun} compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  11. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  12. Superdense massive galaxies in the nearby universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio

    2010-04-01

    At high-z the most superdense massive galaxies are supposed to be the result of gas-rich mergers resulting in compact remnant (Khochfar & Silk (2006); Naab et al. (2007)). After this, dry mergers are expected to be the mechanism that moves these very massive galaxies towards the current stellar mass size relation. Whitin these merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the past universe.Using the NYU Value-Added Galaxy Catalog (DR6), we find only a tiny fraction of galaxies (~0.03%) with re ≤ 1.5 kpc and M* ≥ 8x1010M⊙ in the local Universe (z~0.2). Surprisingly, they are relatively young (~2Gyr) and metal rich ([Z/H]~0.2) These results have been published in Trujillo et al. (2009)

  13. The Host Galaxies of Micro-Jansky Radio Sources

    NASA Astrophysics Data System (ADS)

    Luchsinger, K. M.; Lacy, M.; Jones, K. M.; Mauduit, J. C.; Pforr, J.; Surace, J. A.; Vaccari, M.; Farrah, D.; Gonzales-Solares, E.; Jarvis, M. J.; Maraston, C.; Marchetti, L.; Oliver, S.; Afonso, J.; Cappozi, D.; Sajina, A.

    2015-09-01

    We combine a deep 0.5 deg2, 1.4 GHz deep radio survey in the Lockman Hole with infrared and optical data in the same field, including the Spitzer Extragalactic Representative Volume Survey (SERVS) and UKIDSS near-infrared surveys, to make the largest study to date of the host galaxies of radio sources with typical radio flux densities ˜ 50 μJy. 87% (1274/1467) of radio sources have identifications in SERVS to {AB}≈ 23.1 at 3.6 or 4.5μm, and 9% are blended with bright objects (mostly stars), leaving only 4% (59 objects), which are too faint to confidently identify in the near-infrared. We are able to estimate photometric redshifts for 68% of the radio sources. We use mid-infrared diagnostics to show that the source population consists of a mixture of star-forming galaxies, rapidly accreting (cold mode) active galactic nuclei (AGNs) and low accretion rate (hot mode) AGNs, with neither AGNs nor star-forming galaxies clearly dominating. We see the breakdown in the K-z relation in faint radio source samples, and show that it is due to radio source populations becoming dominated by sources with radio luminosities ˜ {10}23 {{WHz}}-1. At these luminosities, both the star-forming galaxies and the cold mode AGNs have hosts with stellar luminosities of about a factor of two lower than those of hot mode AGNs, which continue to reside in only the most massive hosts. We show that out to at least z˜ 2, galaxies with stellar masses \\gt {10}11.5 {M}⊙ have radio-loud fractions up to ˜30%. This is consistent with there being a sufficient number of radio sources for radio-mode feedback to play a role in galaxy evolution.

  14. Rings in Radio Galaxies: a Multiwavelength Approach

    NASA Astrophysics Data System (ADS)

    Gizani, Nectaria A.; Garrett, M. A.; Morganti, R.; Cohen, A.; Kassim, N.; Gonzales-Serrano, I.; Leahy, J. P.

    We are studying the two powerful radio galaxies Hercules A and 3C310 and their clusters. They present many essential and atypical similarities with the striking one being the presence of large-scale rings instead of hotspots. Employing a multiwavelength observational campaign from radio to Gamma-ray wavelengths we are trying to determine the origin of their unusual structure and tenue (compared with the common AGN) and to disentagle the physical mechanisms taking place interior to them and in their clusters. For example: -In the RADIO we probe the pc- and kpc-scale environment. -In the (Near-)INFRARED we try to constrain the nature of the acceleration mechanism in the rings with the corresponding in the usual hotspots investigate the ISM shed light in their evolution. -In the OPTICAL we study of the ionized gas in the accretion disk fuelling the massive black hole. -In the ULTRAVIOLET we explore the nuclear region the ISM and its interaction with the jets. -In the X-RAYS we probe the intracluster medium identify possible interactions between the X-ray and radio emission measure cluster magnetic fields. -In the GAMMA-RAYS we study the intergalactic medium.

  15. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  16. Dwarf galaxy evolution within the environments of massive galaxies

    NASA Astrophysics Data System (ADS)

    Arraki, Kenza S.; Klypin, Anatoly A.; Ceverino, Daniel; Trujillo-Gomez, Sebastian; Primack, Joel R.

    2016-01-01

    Understanding galaxy evolution depends on connecting large-scale structure determined by the ΛCDM model with, at minimum, the small-scale physics of gas, star formation, and stellar feedback. Formation of galaxies within dark matter halos is sensitive to the physical phenomena occurring within and around the halo. This is especially true for dwarf galaxies, which have the smallest potential wells and are more susceptible to the effects of gas ionization and removal than larger galaxies. At dwarf galaxies scales comparisons of dark matter-only simulations with observations has unveiled various differences including the core-cusp, the missing satellites, and the too-big-to-fail problems. We have run a new suite of hydrodynamical simulations using the ART code to examine the evolution of dwarf galaxies in massive host environments. These are cosmological zoom-in simulations including deterministic star formation and stellar feedback in the form of supernovae feedback, stellar winds, radiation pressure, and photoionization pressure. We simulates galaxies with final halo masses on the order of 1012 M⊙ with high resolution, allowing us to examine the satellite dwarf galaxies and local isolated dwarf galaxies around each primary galaxy. We analyzed the abundance and structure of these dwarfs specifically the velocity function, their star formation rates, core creation and the circumgalactic medium. By reproducing observations of dwarf galaxies in simulations we show how including baryons in simulations relieves tensions seen in comparing dark matter only simulations with observations.

  17. Radio galaxy jets as probes of galactic structure

    SciTech Connect

    Saslaw, W.C.; Whittle, M.

    1988-02-01

    It has been noted that the central source of an asymmetric nuclear galactic radio jet may experience considerable net thrust and consequently behave like a massive rocket. In this paper, simple models for the motion of a rocket through a galaxy are examined. It is found that the density distribution of the galaxy is important, and determines whether a given source can escape. Thus, observations of the location and velocity of a source relative to its galactic center may provide new constraints on models of the density distribution in galaxies. 35 references.

  18. Giant radio galaxies and cosmic web

    NASA Astrophysics Data System (ADS)

    Heinämäki, Pekka

    2016-10-01

    Giant radio galaxies create the welldistinguishable class of sources.These sources are characterized with edge-brightened radio lobes withhighly collimated radio jets and large linear sizes which make themthe largest individual structures in the Universe. They are also knownto be hosted by elliptical/disturbed host galaxies and avoid clustersand high galaxy density regions. Because of GRG, large linear sizeslobes extend well beyond the interstellar media and host galaxyhalo the evolution of the radio lobes may depend on interactionwith this environment. Using our method to extract filamentarystructure of the galaxies in our local universe we study whetherradio lobe properties in some giant radio galaxies are determinedon an interaction of this filament ambient.

  19. Radio luminosity function of brightest cluster galaxies

    NASA Astrophysics Data System (ADS)

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2016-08-01

    By cross-matching the currently largest optical catalogue of galaxy clusters and the NVSS radio survey data base, we obtain a large complete sample of brightest cluster galaxies (BCGs) in the redshift range of 0.05 < z ≤ 0.45, which have radio emission and redshift information. We confirm that more powerful radio BCGs tend to be these optically very bright galaxies located in more relaxed clusters. We derived the radio luminosity functions of the largest sample of radio BCGs, and find that the functions depend on the optical luminosity of BCGs and the dynamic state of galaxy clusters. However, the radio luminosity function does not show significant evolution with redshift.

  20. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' Multiplication-Sign 107''), allowing us to achieve remarkably high signal-to-noise ratios of {approx}20-70 pixel{sup -1} in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions {sigma}{sub *} > 150 km s{sup -1}, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by {approx}50%, and only a weak correlation between {sigma}{sub *} and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are {approx} an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 R{sub e} , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high {alpha}-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  1. The Stellar Halos of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' × 107''), allowing us to achieve remarkably high signal-to-noise ratios of ~20-70 pixel-1 in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions σ* > 150 km s-1, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by ~50%, and only a weak correlation between σ* and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are ~ an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 Re , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high α-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  2. A Radio Galaxy at z = 5.19

    NASA Astrophysics Data System (ADS)

    van Breugel, Wil; De Breuck, Carlos; Stanford, S. A.; Stern, Daniel; Röttgering, Huub; Miley, George

    1999-06-01

    We report the discovery of the most distant known active galactic nucleus, the radio galaxy TN J0924-2201 at z=5.19. The radio source was selected from a new sample of ultrasteep spectrum sources, has an extreme radio spectral index α1.4GHz365MHz=-1.63, and is identified at near-IR wavelengths with a very faint, K=21.3+/-0.3 object. Spectroscopic observations show a single emission line at λ~7530 Å, which we identify as Lyα. The K-band image, sampling rest-frame U band, shows a multicomponent, radio-aligned morphology, which is typical of lower-redshift radio galaxies. TN J0924-2201 extends the near-IR Hubble, or K-z, relation for powerful radio galaxies to z>5 and is consistent with models of massive galaxies forming at even higher redshifts. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the University of California, the California Institute of Technology, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. The Cosmological Evolution of Dust and Gas in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Archibald, E. N.

    The main epoch of activity for active galactic nuclei appears to have been z~2. Until very recently, the suspected symbiotic link between star formation, galaxy mergers and nuclear activity led people to believe that star formation activity in the Universe also peaked at z~2, despite the failure of searches to find a primeval galaxy at z>1. When a large population of star-forming galaxies was finally discovered at z>2, the astronomical community believed it had entered a new era of understanding how and when most of the stars of the Universe were formed. However, the star-formation rates observed in these systems are relatively modest, a few tens of solar masses per year, and are unable to build a massive elliptical galaxy in anything less than a Hubble time. Furthermore, the stellar populations in local massive ellipticals appear to have been formed in a short-lived, violent, dusty starburst at high-redshift, although it is not clear whether the formation trigger is a galaxy merger or the collapse of a huge halo of gas. The large quantities of dust that are expected during formation will absorb the optical/ultraviolet emission of the young stellar population and re-emit it in the far-infrared waveband. Locally, all powerful radio sources reside in massive elliptical hosts. It is therefore natural to assume that high-redshift radio galaxies are the progenitors or earlier examples of these local systems. This thesis presents a study of the evolution of dust and gas (and hence star formation) in massive ellipticals. A sample of 47 luminous, steep-spectrum, lobe-dominated radio galaxies spanning a wide range of redshifts, 0.77

  4. Cosmological Studies with Radio Galaxies and Supernovae

    NASA Astrophysics Data System (ADS)

    Daly, Ruth A.; Mory, Matthew P.; O'Dea, C. P.; Kharb, P.; Baum, S.; Guerra, E. J.; Djorgovski, S. G.

    2009-02-01

    Physical sizes of extended radio galaxies can be employed as a cosmological "standard ruler," using a previously developed method. Eleven new radio galaxies are added to our previous sample of 19 sources, forming a sample of 30 objects with redshifts between 0 and 1.8. This sample of radio galaxies are used to obtain the best-fit cosmological parameters in a quintessence model in a spatially flat universe, a cosmological constant model that allows for nonzero space curvature, and a rolling scalar field model in a spatially flat universe. Results obtained with radio galaxies are compared with those obtained with different supernova samples, and with combined radio galaxy and supernova samples. Results obtained with different samples are consistent, suggesting that neither method is seriously affected by systematic errors. Best-fit radio galaxy and supernovae model parameters determined in the different cosmological models are nearly identical, and are used to determine dimensionless coordinate distances to supernovae and radio galaxies, and distance moduli to the radio galaxies. The distance moduli to the radio galaxies can be combined with supernovae samples to increase the number of sources, particularly high-redshift sources, in the samples. The constraints obtained here with the combined radio galaxy plus supernovae dataset in the rolling scalar field model are quite strong. The best-fit parameter values suggest that Ω m is less than about 0.35, and the model parameter α is close to zero; that is, a cosmological constant provides a good description of the data. We also obtain new constraints on the physics of engines that power the large-scale radio emission. The equation that describes the predicted size of each radio source is controlled by one model parameter, β, which parameterizes the extraction of energy from the black hole. Joint fits of radio galaxy and supernova samples indicate a best-fit value of β that is very close to a special value for which

  5. The TANGO Project: Thorough ANalysis of radio-Galaxies Observations

    NASA Astrophysics Data System (ADS)

    Ocaña Flaquer, Breezy; Leon Tanne, Stephane; Combes, Francoise; Lim, Jeremy

    2010-05-01

    We present a sample of radio galaxies selected only on the basis of radio continuum emission and we confirm that these galaxies have lower molecular gas mass than other elliptical galaxies with different selection criteria.

  6. Hard X-Ray Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, Francesca; Bassani, L.; Venturi, T.; Molina, M.; Dallacasa, D.; Ubertini, P.; Bazzano, A.; Malizia, A.; La Franca, F.; Landi, R.

    2016-10-01

    In order to investigate the role of absorption in AGN with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/IBIS and Swift/BAT AGN catalogues. They represent 7-10% of the total AGN population and are characterized by high 20-100 keV luminosities and high Eddington ratios. The radio morphology is typical of FRII galaxies and all of them have an optical classification and a measure of the column density. The observed fraction of absorbed AGN is around 40% among the total sample, and 75% among type 2 AGN. The observed fraction of Compton thick AGN is 2-3%. In this talk we will discuss the obscuration characteristics of radio galaxies compared to non-radio galaxies selected at hard X-rays.

  7. SEGUE 2: THE LEAST MASSIVE GALAXY

    SciTech Connect

    Kirby, Evan N.; Boylan-Kolchin, Michael; Bullock, James S.; Kaplinghat, Manoj; Cohen, Judith G.; Geha, Marla

    2013-06-10

    Segue 2, discovered by Belokurov et al., is a galaxy with a luminosity of only 900 L{sub Sun }. We present Keck/DEIMOS spectroscopy of 25 members of Segue 2-a threefold increase in spectroscopic sample size. The velocity dispersion is too small to be measured with our data. The upper limit with 90% (95%) confidence is {sigma}{sub v} < 2.2 (2.6) km s{sup -1}, the most stringent limit for any galaxy. The corresponding limit on the mass within the three-dimensional half-light radius (46 pc) is M{sub 1/2} < 1.5 (2.1) Multiplication-Sign 10{sup 5} M{sub Sun }. Segue 2 is the least massive galaxy known. We identify Segue 2 as a galaxy rather than a star cluster based on the wide dispersion in [Fe/H] (from -2.85 to -1.33) among the member stars. The stars' [{alpha}/Fe] ratios decline with increasing [Fe/H], indicating that Segue 2 retained Type Ia supernova ejecta despite its presently small mass and that star formation lasted for at least 100 Myr. The mean metallicity, ([Fe/H]) = -2.22 {+-} 0.13 (about the same as the Ursa Minor galaxy, 330 times more luminous than Segue 2), is higher than expected from the luminosity-metallicity relation defined by more luminous dwarf galaxy satellites of the Milky Way. Segue 2 may be the barest remnant of a tidally stripped, Ursa Minor-sized galaxy. If so, it is the best example of an ultra-faint dwarf galaxy that came to be ultra-faint through tidal stripping. Alternatively, Segue 2 could have been born in a very low mass dark matter subhalo (v{sub max} < 10 km s{sup -1}), below the atomic hydrogen cooling limit.

  8. The evolution of the radio SED of high-z powerful radio galaxies

    NASA Astrophysics Data System (ADS)

    Drouart, G.

    2016-08-01

    The SKA_LOW pathfinder MWA (Murchison Wide Array) executed the first all-sky radio survey in the 80-230MHz range, revealing more than 300000 extragalactic sources. Combined with data up to 20GHz, we build exquisite radio SEDs (>~30 data-points) of a sample of a well-known sample of 70 high redshift radio galaxies (the HeRGE sample: L_3GHz restframe > 10^26 W/Hz and z>1). The synchrotron emission is composed of the core, jet and the lobe emission, providing insight on the direct vicinity of the galaxy and the accretion properties of the central supermassive black hole (SMBH). Combined with our previous multi-wavelength campaign from optical to submm (including VLT, Keck, HST, Spitzer, Herschel, SCUBA, LABOCA, and more recently ALMA), providing information on the host galaxy, we now investigate simultaneously the mechanical (from radio) and radiative (from IR) of the SMBH hosted in these progenitors of our local massive galaxies. I will present the results from our radio SED fitting and discuss the connection with our previous results in term of radio loud AGN evolution at the peak of activity in the Universe.

  9. Are all radio galaxies genuine ellipticals?

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M. P.; Véron, P.

    2001-09-01

    Classical double radio sources are believed to be powered by a strong relativistic jet due to the presence of a rapidly spinning black hole in the center of a giant E galaxy formed by the merging of two galaxies. If this is true, no radio source should have been found in spiral or S0 galaxies. A number of radio S0s have been reported, but most of them are probably misclassified Es. However, our own observations confirm that NGC 612 is an S0 although it is associated with the FR II radio source PKS 0131-36. We conclude that S0s can be classical radio sources, but that such occurences are extremely rare. Partly based on observations obtained with the ESO 3.6 m telescope, La Silla, Chile.

  10. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  11. Multicolor surface photometry of powerful radio galaxies

    SciTech Connect

    Smith, E.P.

    1988-01-01

    CCD images of 72 powerful radio galaxies have been obtained with the KPNO 2.1m, 4m and CTIO 4m telescopes utilizing B, V, and R filters to study the colors and other photometric properties of these large systems. The GASP software package was used for the data reduction and detailed 2-d surface photometry. In addition, image modeling techniques were employed to investigate the contributions to galaxy properties by point-like nuclear sources seen in some of these galaxies. It was found that powerful radio galaxies show a much higher frequency than normal bright ellipticals of having optical morphologies which deviate from elliptical symmetry. Approximately 50% of the sample exhibit non-elliptically symmetric isophotes. These prominent distortions are present at surface brightness levels of {le} 25 V mag/(arc sec){sup 2}. In addition, a large fraction ({approximately}50%) of the remaining radio galaxies without the aforementioned morphological peculiarities have large isophotal twists ({Delta}P.A. {ge} 10{degree}) or ellipticity gradients. Significantly {approximately}50% of the galaxies with strong optical emission lines in their spectra display optically peculiar structures very similar to those found by Toomre and Toomre (1972) in their simulations of interacting disk galaxies. The galaxies with weak emission lines in their spectra are less frequently ({approximately}10%) distorted from elliptical shape. Those that are exhibit features like isophote twists, double nuclei and close companion galaxies embedded in the radio galaxy optical isophotes. The (B-V) colors of many of the powerful radio galaxies with strong emission lines are blue relative to normal giant ellipticals at the same redshift.

  12. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    SciTech Connect

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-05-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  13. Brightest cluster galaxies in the extended GMRT radio halo cluster sample. Radio properties and cluster dynamics

    NASA Astrophysics Data System (ADS)

    Kale, R.; Venturi, T.; Cassano, R.; Giacintucci, S.; Bardelli, S.; Dallacasa, D.; Zucca, E.

    2015-09-01

    Aims: First-ranked galaxies in clusters, usually referred to as brightest cluster galaxies (BCGs), show exceptional properties over the whole electromagnetic spectrum. They are the most massive elliptical galaxies and show the highest probability to be radio loud. Moreover, their special location at the centres of galaxy clusters raises the question of the role of the environment in shaping their radio properties. In the attempt to separate the effect of the galaxy mass and of the environment on their statistical radio properties, we investigate the possible dependence of the occurrence of radio loudness and of the fractional radio luminosity function on the dynamical state of the hosting cluster. Methods: We studied the radio properties of the BCGs in the Extended GMRT Radio Halo Survey (EGRHS), which consists of 65 clusters in the redshift range 0.2-0.4, with X-ray luminosity LX ≥ 5 × 1044 erg s-1, and quantitative information on their dynamical state from high-quality Chandra imaging. We obtained a statistical sample of 59 BCGs, which we divided into two classes, depending on whether the dynamical state of the host cluster was merging (M) or relaxed (R). Results: Of the 59 BCGs, 28 are radio loud and 31 are radio quiet. The radio-loud sources are favourably located in relaxed clusters (71%), while the reverse is true for the radio-quiet BCGs, which are mostly located in merging systems (81%). The fractional radio luminosity function for the BCGs in merging and relaxed clusters is different, and it is considerably higher for BCGs in relaxed clusters, where the total fraction of radio loudness reaches almost 90%, to be compared to the ~30% in merging clusters. For relaxed clusters, we found a positive correlation between the radio power of the BCGs and the strength of the cool core, consistent with previous studies on local samples. Conclusions: Our study suggests that the radio loudness of the BCGs strongly depends on the cluster dynamics; their fraction is

  14. High-energy neutrinos from radio galaxies

    NASA Astrophysics Data System (ADS)

    Becker Tjus, J.; Eichmann, B.; Halzen, F.; Kheirandish, A.; Saba, S. M.

    2014-06-01

    The IceCube experiment has recently reported the first observation of high-energy cosmic neutrinos. Their origin is still unknown. In this paper, we investigate the possibility that they originate in active galaxies. We show that hadronic interactions (pp) in the generally less powerful, more frequent, FR-I radio galaxies are one of the candidate source classes being able to accommodate the observation while the more powerful, less frequent, class of FR-II radio galaxies has too low of a column depths to explain the signal.

  15. Radio observations of nearby moderately luminous IRAS galaxies.

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Su, Bumei

    1999-05-01

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelength by using the Australian AT. Among them, radio emissions have been detected for two galaxies, i.e. IRAS 20272-4738 and IRAS 23156-4238, and their radio parameters, like radio fluxes, peak positions, source sizes and spectral indices, are obtained. The radio sources are confirmed with infrared, radio and optical observations. Some characteristics of the radio emissions of these galaxies are discussed with previous observational data.

  16. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    NASA Astrophysics Data System (ADS)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  17. TANGO I: Interstellar medium in nearby radio galaxies. Molecular gas

    NASA Astrophysics Data System (ADS)

    Ocaña Flaquer, B.; Leon, S.; Combes, F.; Lim, J.

    2010-07-01

    Context. Powerful radio-AGN are hosted by massive elliptical galaxies that are usually very poor in molecular gas. Nevertheless, gas is needed at their very center to feed the nuclear activity. Aims: We study the molecular gas properties (i.e., mass, kinematics, distribution, origin) of these objects, and compare them with results for other known samples. Methods: At the IRAM-30m telescope, we performed a survey of the CO(1-0) and CO(2-1) emission from the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. Results: The main result of our survey is that the molecular gas content of these galaxies is very low compared to spiral or FIR-selected galaxies. The median value of the molecular gas mass, including detections and upper limits, is 2.2 × 108 M⊙. When separated into FR-I and FR-II types, a difference in their H2 masses is found. The median value of FR-I galaxies is about 1.9 × 108 M⊙ and higher for FR-II galaxies, at about 4.5 × 108 M⊙. Which is probably entirely because of a Malmquist bias. Our results contrast with those of previous surveys, whose targets were mainly selected by means of their FIR emission, implying that we measure higher observed masses of molecular gas. Moreover, the shape of CO spectra suggest that a central molecular gas disk exists in 30% of these radio galaxies, a lower rate than in other active galaxy samples. Conclusions: We find a low level of molecular gas in our sample of radio-selected AGNs, indicating that galaxies do not need much molecular gas to host an AGN. The presence of a molecular gas disk in some galaxies and the wide range of molecular gas masses may be indicative of different origins for the gas, which we can not exclude at present (e.g., minor/major mergers, stellar mass loss, or accretion). Appendices and Figure 15 are only available in electronic form at http://www.aanda.org

  18. Giant Radio Jet Coming From Wrong Kind of Galaxy

    NASA Astrophysics Data System (ADS)

    2003-01-01

    black holes at their cores. The discovery that the jet was coming from a spiral galaxy dubbed 0313-192 required using a combination of radio, optical and infrared observations to examine the galaxy and its surroundings. The story began more than 20 years ago, when Owen began a survey of 500 galaxy clusters using the National Science Foundation's then-new VLA to make radio images of the clusters. In the 1990s, Ledlow joined the project, making optical-telescope images of the same clusters as part of his research for a Ph.D dissertation at the University of New Mexico. An optical image from Kitt Peak National Observatory gave a hint that this galaxy, clearly seen with a jet in the VLA images, might be a spiral. Nearly a billion light-years from Earth, 0313-192 proved an elusive target, however. Subsequent observations with the VLA and the 3.5-meter telescope at Apache Point Observatory supported the idea that the galaxy might be a spiral but still were inconclusive. In the Spring of 2002, astronauts installed the Advanced Camera for Surveys on the Hubble Space Telescope. This new facility produced a richly-detailed image of 0313-192, showing that it is a dust-rich spiral seen almost exactly edge-on. "The finely-detailed Hubble image resolved any doubt and proved that this galaxy is a spiral," Ledlow said. Infrared images with the Gemini-South telescope complemented the Hubble images and further confirmed the galaxy's spiral nature. Now, the astronomers seek to understand why this one spiral galaxy, unlike all others seen so far, is producing the bright jets seen with the VLA and other radio telescopes. Several factors may have combined, the researchers feel. "This galaxy's disk is twisted, and that may indicate that it has been disturbed by a close passage of another galaxy or may have swallowed up a companion dwarf galaxy," Keel said. He added, "This galaxy shows signs of having a very massive black hole at its core, and the jets are taking the shortest path out of the

  19. A CANDIDATE MASSIVE BLACK HOLE IN THE LOW-METALLICITY DWARF GALAXY PAIR MRK 709

    SciTech Connect

    Reines, Amy E.; Condon, James J.; Plotkin, Richard M.; Russell, Thomas D.; Mezcua, Mar; Sivakoff, Gregory R.; Johnson, Kelsey E.

    2014-06-01

    The incidence and properties of present-day dwarf galaxies hosting massive black holes (BHs) can provide important constraints on the origin of high-redshift BH seeds. Here we present high-resolution X-ray and radio observations of the low-metallicity, star-forming, dwarf-galaxy system Mrk 709 with the Chandra X-ray Observatory and the Karl G. Jansky Very Large Array. These data reveal spatially coincident hard X-ray and radio point sources with luminosities suggesting the presence of an accreting massive BH (M {sub BH} ∼ 10{sup 5-7} M {sub ☉}). Based on imaging from the Sloan Digital Sky Survey (SDSS), we find that Mrk 709 consists of a pair of compact dwarf galaxies that appear to be interacting with one another. The position of the candidate massive BH is consistent with the optical center of the southern galaxy (Mrk 709 S), while no evidence for an active BH is seen in the northern galaxy (Mrk 709 N). We derive stellar masses of M {sub *} ∼ 2.5 × 10{sup 9} M {sub ☉} and M {sub *} ∼ 1.1 × 10{sup 9} M {sub ☉} for Mrk 709 S and Mrk 709 N, respectively, and present an analysis of the SDSS spectrum of the BH host Mrk 709 S. At a metallicity of just ∼10% solar, Mrk 709 is among the most metal-poor galaxies with evidence for an active galactic nucleus. Moreover, this discovery adds to the growing body of evidence that massive BHs can form in dwarf galaxies and that deep, high-resolution X-ray and radio observations are ideally suited to reveal accreting massive BHs hidden at optical wavelengths.

  20. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  1. The progenitors of the most massive galaxy clusters at 1 < z < 3

    NASA Astrophysics Data System (ADS)

    Hatch, Nina; Brodwin, Mark; Cooke, Elizabeth; Galametz, Audrey; Gonzalez, Anthony; Muldrew, Stuart; Noirot, Gael; Smith, Daniel; Stern, Daniel; Vernet, Joel; Wylezalek, Dominika

    2016-08-01

    This project will locate and characterize the progenitors of the most massive galaxy clusters in our Universe at z ~ 2. These rare, massive objects are cosmological probes that test the validity of Lambda-CDM, and open a window into the early formation of the oldest and most massive galaxies in the most extreme overdensities in the Universe. Searching across 10,000 square degrees of the SDSS BOSS survey we have located 27 spectroscopically confirmed groups of radio-loud quasars at 1.3 < z < 3.2. Radio-loud quasars are preferentially located in high-redshift clusters and protoclusters (Wylezalek et al. 2013; Hatch et al. 2014), but the association of several radio-loud quasars implies the presence of an agglomeration of several >10^13 solar mass dark matter haloes that will eventually combine to form some of the most massive clusters in the Universe (Orsi et al. 2016; see Fig. 1). In this proposal we request 119.1 hours to observe all 27 radio-loud quasar groups in order to identify the associated galaxy overdensities that makes up the collapsing clusters.

  2. Recurrent Activity in Radio Galaxies

    SciTech Connect

    Jamrozy, Marek; Konar, Chiranjib; Machalski, Jerzy; Mack, Karl-Heinz; Saikia, Dhruba; Siemiginowska, Aneta; Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U.

    2007-10-15

    One of the outstanding issues concerning extragalactic radio sources is the total duration of their active phase and the possible existence of duty cycles of their nuclear activity. A duty cycle can be recognized if there is a mechanism which preserves the information of past activity for a sufficiently long time after a new activity has started up. If a new cycle starts before the radio lobes created during a former activity period have faded, we can recognize this by the observations of a young radio source embedded in an old relic structure.

  3. Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.

    2016-12-01

    Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.

  4. Steep Spectrum Radio Sources in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy E.

    2012-05-01

    Steep spectrum radio emission associated with galaxy clusters comes from compact central active galactic nuclei (AGN) driven radio sources in dense cool core clusters as well as from large regions of diffuse (halo and relic) emission associated with dynamically complex merging systems. These radio halos and relics are best traced at low radio frequencies where details of their morphology, location and spectral index distribution can be used to probe the underlying acceleration mechanism(s) as well as important details of large scale structure formation. Low frequency radio observations also play an important role in the study of AGN feedback into the intracluster medium and the regulation of cooling cores. While spectacular results are coming from the current generation of low frequency instruments, there will soon be a new revolution in studies of steep spectrum sources with the upcoming generation of low frequency interferometers on Earth and ultimately the moon.

  5. Tracing low-mass galaxy clusters using radio relics: the discovery of Abell 3527-bis

    NASA Astrophysics Data System (ADS)

    de Gasperin, F.; Intema, H. T.; Ridl, J.; Salvato, M.; van Weeren, R.; Bonafede, A.; Greiner, J.; Cassano, R.; Brüggen, M.

    2017-01-01

    Context. Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). Aims: In this paper we analyse the radio, optical and X-ray data from a candidate galaxy cluster that has been selected from the radio emission coming from a candidate radio relic detected in NRAO VLA Sky Survey (NVSS). Our aim is to clarify the nature of this source and prove that under certain conditions radio emission from radio relics can be used to trace relatively low-mass galaxy clusters. Methods: We observed the candidate galaxy cluster with the Giant Meterwave Radio Telescope (GMRT) at three different frequencies. These datasets have been analysed together with archival data from ROSAT in the X-ray and with archival data from the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) telescope in four different optical bands. Results: We confirm the presence of a 1 Mpc long radio relic located in the outskirts of a previously unknown galaxy cluster. We confirm the presence of the galaxy cluster through dedicated optical observations and using archival X-ray data. Due to its proximity and similar redshift to a known Abell cluster, we named it Abell 3527-bis. The galaxy cluster is amongst the least massive clusters known to host a radio relic. Conclusions: We showed that radio relics can be effectively used to trace a subset of relatively low-mass galaxy clusters that might have gone undetected in X-ray or Sunyaev-Zel'dovich (SZ) surveys. This technique might be used in future deep, low-frequency surveys such as those carried on by the Low Frequency Array (LOFAR), the Upgraded GMRT (uGMRT) and, ultimately, the Square Kilometre Array (SKA).

  6. The origin of the α-enhancement of massive galaxies

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-09-01

    We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a `downsizing' galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars.

  7. The software system ``Evolution of radio galaxies''

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Kopylov, A. I.; Zhelenkova, O. P.; Verkhodanova, N. V.; Chernenkov, V. N.; Parijskij, Yu. N.; Soboleva, N. S.; Temirova, A. V.

    The project of the informational system creation on the problem of evolution of radio galaxies is described. This system, being developed at present at the server http://sed.sao.ru, allows a user to operate with simulated curves of spectral energy distributions (SED) and to estimate ages and redshifts by photometric data using χ2-method. Authors use SEDs of several models (GISSEL'98 (Bruzual, Charlot, 1996), PEGASE (Fioc, Rocca-Volmerange, 1996, 1998)) for different types of galaxies. Synthetic spectra are smoothed by the filter sensetivity curves before the procedure of age estimation. There is a possibility to calculate extictions in different filters using infrared maps. The server containes full archive of RC-catalog radio galaxy images obtained with 6 m telescope of SAO and VLA data. Modes of HTTP, FTP and FTP access, formats of output result (TABLE and GNUPLOT graphic) and additional functions are described.

  8. System to Study Evolution of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Verkhodanova, N. V.; Verkhodanov, O. V.; Kopylov, A. I.; Zhelenkova, O. P.; Chernenkov, V. N.; Parijskij, Yu. N.; Soboleva, N. S.; Temirova, A. V.

    The project of the informational system creation on the problem of evolution of radio galaxies is described. This system, being developed at present at the server http:// sed.sao.ru, allows a user to operate with simulated curves of spectral energy distributions (SED) and to estimate ages and redshifts by photometric data using χ2-method. Authors use SEDs of several models (GISSEL'98 (Bruzual, Charlot, 1996), PEGASE (Fioc, Rocca-Volmerange, 1996, 1998)) for different types of galaxies. Synthetic spectra are smoothed by the filter sensetivity curves before the procedure of age estimation. There is a possibility to calculate extictions in different filters using infrared maps. The server containes full archive of RC-catalog radio galaxy images obtained with 6 m telescope of SAO and VLA data. Modes of HTTP, FTP and FTP access, formats of output result (TABLE and GNUPLOT graphic) and additional functions are described.

  9. Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McDonald, M.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Bayliss, M. B.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Edge, A. C.; Hlavacek-Larrondo, J.; Marrone, D. P.; Reichardt, C. L.; Vieira, J. D.

    2017-02-01

    We report new ALMA observations of the CO(3-2) line emission from the 2.1+/- 0.3× {10}10 {M}ȯ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500{--}800 {M}ȯ {{yr}}-1 and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10{--}20 {kpc} long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.

  10. Kinematic signatures of AGN feedback in moderately powerful radio galaxies at z ~ 2 observed with SINFONI

    NASA Astrophysics Data System (ADS)

    Collet, C.; Nesvadba, N. P. H.; De Breuck, C.; Lehnert, M. D.; Best, P.; Bryant, J. J.; Hunstead, R.; Dicken, D.; Johnston, H.

    2016-02-01

    Most successful galaxy formation scenarios now postulate that the intense star formation in massive, high-redshift galaxies during their major growth period was truncated when powerful AGNs launched galaxy-wide outflows of gas that removed large parts of the interstellar medium. SINFONI imaging spectroscopy of the most powerful radio galaxies at z ~ 2 show clear signatures of such winds, but are too rare to be good representatives of a generic phase in the evolution of all massive galaxies at high redshift. Here we present SINFONI imaging spectroscopy of the rest-frame optical emission-line gas in 12 radio galaxies at redshifts ~2. Our sample spans a range in radio power that is intermediate between the most powerful radio galaxies with known wind signatures at these redshifts and vigorous starburst galaxies, and are about two orders of magnitude more common than the most powerful radio galaxies. Thus, if AGN feedback is a generic phase of massive galaxy evolution for reasonable values of the AGN duty cycle, these are just the sources where AGN feedback should be most important. Our sources show a diverse set of gas kinematics ranging from regular velocity gradients with amplitudes of Δv = 200-400 km s-1 consistent with rotating disks to very irregular kinematics with multiple velocity jumps of a few 100 km s-1. Line widths are generally high, typically around FWHM = 800 km s-1, more similar to the more powerful high-z radio galaxies than mass-selected samples of massive high-z galaxies without bright AGNs, and consistent with the velocity range expected from recent hydrodynamic models. A broad Hα line in one target implies a black hole mass of a few 109 M⊙. Velocity offsets of putative satellite galaxies near a few targets suggest dynamical masses of a few 1011 M⊙ for our sources, akin to the most powerful high-z radio galaxies. Ionized gas masses are 1-2 orders of magnitude lower than in the most powerful radio galaxies, and the extinction in the gas is

  11. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda Louise

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  12. Alignments of radio galaxies in deep radio imaging of ELAIS N1

    NASA Astrophysics Data System (ADS)

    Taylor, A. R.; Jagannathan, P.

    2016-06-01

    We present a study of the distribution of radio jet position angles of radio galaxies over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of 10 μJy and angular resolution of 6 arcsec × 5 arcsec. The image contains 65 resolved radio galaxy jets. The spatial distribution reveals a prominent alignment of jet position angles along a `filament' of about 1°. We examine the possibility that the apparent alignment arises from an underlying random distribution and find that the probability of chance alignment is less than 0.1 per cent. An angular covariance analysis of the data indicates the presence of spatially coherence in position angles on scales >0 .^{circ}5. This angular scales translates to a comoving scale of >20 Mpc at a redshift of 1. The implied alignment of the spin axes of massive black holes that give rise to the radio jets suggest the presence of large-scale spatial coherence in angular momentum. Our results reinforce prior evidence for large-scale spatial alignments of quasar optical polarization position angles.

  13. Satellites around massive galaxies since z˜ 2

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.; Trujillo, I.; Pérez-González, P. G.; Varela, J.; Barro, G.

    2012-05-01

    The accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of massive galaxies over cosmic time. Using a sample of 629 massive (Mstar˜ 1011 M⊙) galaxies from the near-infrared Palomar/DEEP-2 survey, we explore what fraction of these objects have satellites with 0.01 < Msat/Mcentral < 1 (1:100) up to z= 1 and what fraction have satellites with 0.1 < Msat/Mcentral < 1 (1:10) up to z= 2 within a projected radial distance of 100 kpc. We find that the fraction of massive galaxies with satellites, after background correction, remains basically constant and close to 30 per cent for satellites with a mass ratio down to 1:100 up to z= 1, and close to 15 per cent for satellites with a 1:10 mass ratio up to z= 2. The family of spheroid-like massive galaxies presents a 2-3 times larger fraction of objects with satellites than the group of disc-like massive galaxies. A crude estimation of the number of 1:3 mergers a massive spheroid-like galaxy has experienced since z˜ 2 is around 2. For a disc-like galaxy this number decreases to ˜1.

  14. The Most Massive Black Holes in Small Galaxies

    NASA Astrophysics Data System (ADS)

    van den Bosch, Remco

    2012-10-01

    Massive galaxies represent the extreme of galaxy formation and contain the most massive black holes {BH}, as reflected in the scaling relations of BH masses with galaxy velocity dispersions {M-sigma} and luminosities {M-L}. Our spectroscopic survey of 600 nearby galaxies revealed 17 galaxies with extremely high velocity dispersions {indicating BH masses of 10^10 solar masses} and at the same time shockingly small sizes {<2 kpc} and {bulge} luminosities. For one of these galaxies archival HST imaging allowed us to measure an extremely big BH mass of 23 billion solar masses, and confirm it is hosted by a small disk-dominated galaxy of only 90 billion solar masses in stars. This demonstrates that the BH in this system did not co-evolve with its host galaxy the way others are thought to have. It is imperative to go beyond a single anecdotal example to a real sample of galaxies with small bulges and suspected monster black holes. Here we propose to obtain HST imaging of the other 16 galaxies. The WFC3 imaging is required to resolve their small bulge and put accurate constraints {in combination with our spectroscopy} on their black hole mass. A significant sample of compact galaxies with very high black hole masses would be in stark conflict with the popular co-evolution picture and could form the missing link between local galaxies and the quiescent compact nugget galaxies found at z 2.

  15. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect

    Galametz, Audrey; Stern, Daniel; De Breuck, Carlos; Vernet, Joeel; Hatch, Nina; Mayo, Jack; Miley, George; Rettura, Alessandro; Seymour, Nick; Adam Stanford, S.

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  16. Large Scale Outflow from a Radio Loud AGN in Merging Galaxies at Redshift 2.48

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6×1011 M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the AGN producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At >~ 50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio jet-driven outflow.

  17. Radiative versus Jet Mode in Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Hardcastle, Martin

    2016-07-01

    In the local universe, the vast majority of radio-loud active galaxies show none of the conventional AGN apparatus of accretion disk, torus, corona, or broad/narrow-line regions. Instead such nuclear emission as they have appears to be completely dominated by emission directly from the jet; the accretion, which must be present to drive the jet, appears to be highly radiatively inefficient. However, the most radio-luminous objects in the universe are almost all quasars (type I or type II) which behave in the textbook manner, appearing as a normal radiatively efficient AGN with the addition of a jet. The past decade has seen a substantial evolution in our understanding of the physical origins of these differences, their relation to the host galaxy and environment, and their interpretation in terms of completely unified models of AGN, and I will review our current understanding of these issues in my talk.

  18. The nature of powerful compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Woltjer, L.; Staveley-Smith, L.; Ekers, R. D.

    2000-10-01

    Three compact powerful radio galaxies, PKS 1353- 341, PKS 1814-637 and PKS 1934-638, have been imaged. The three galaxies seem to be giant ellipticals, the last two being bluer than normal gEs by 0.2-0.3 mag in B-I, which is expected if they are the result of recent merging. HI absorption has been detected in all three objects with very different characteristics. The broad absorption in PKS 1353 -341 probably takes place in a torus or a disk with a radius of at least a few tens of pc. For PKS 1814-637 the principal absorption is less broad and the disk radius more likely a few hundreds of pc. The absorption in PKS 1934-638 is very narrow and is probably due to gas not directly connected to the central engine. Data for a dozen of powerful radio galaxies with H I absorption are reviewed. Such absorption seems to be particularly common at high radio power. Based on observations obtained with the Australia Telescope and the 3.6m and NTT telescopes of ESO La Silla (Chile)

  19. Optical emission in the radio lobes of radio galaxies. II - New observations of 21 radio lobes

    NASA Astrophysics Data System (ADS)

    Crane, P.; Tyson, J. A.; Saslaw, W. C.

    1983-02-01

    The authors report new identifications of optical emission associated with the radio lobes of double radio galaxies. Optical emission is present in the outer radio structure of the sources 3C 219, 3C 244.1, 3C 247, 3C 252, 3C 268.2, 3C 321, 3C 319, 3C 337, and possibly in 3C 330. The authors have not found emission to the detection limit of V ≡ 24 in the sources 3C 79, 3C 173.1, 3C 223, 3C 325, and 3C 381. Of the 21 separate sources in optical studies of extended lobes of radio galaxies reported to date, 16 radio sources observed so far show significant optical emission within one or both lobes, while in 11 of these the optical object is within 2arcsec of the radio peak.

  20. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  1. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  2. High Frequency Cluster Radio Galaxies: Luminosity Functions and Implications for SZE Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Saro, A.; Mohr, J. J.; Benson, B. A.; Bocquet, S.; Capasso, R.; Carlstrom, J. E.; Chiu, I.; Crawford, T. M.; de Haan, T.; Dietrich, J. P.; Gangkofner, C.; Holzapfel, W. L.; McDonald, M.; Rapetti, D.; Reichardt, C. L.

    2017-01-01

    We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the Meta-Catalog of X-ray detected Clusters of galaxies (MCXC; = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multi-frequency catalog of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev-Zel'dovich Effect (SZE) signal, which is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogs. We find that the high frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass-observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 percent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. Allowing for redshift evolution of the form (1 + z)2.5 increases the incompleteness to 5.6 ± 1.0 percent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.

  3. The Radio Properties of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Hogan, M. T.

    2014-09-01

    Energetic feedback from the Active Galactic Nucleus (AGN) of the Brightest Cluster Galaxy (BCG) is required to prevent catastrophic cooling of the intra-cluster medium (ICM) in galaxy clusters. Evidence for this is seen through the inflation of cavities in the ICM by AGN-launched, radio-emitting jets, and understanding this process is an active area of research. Radio observations play an integral role in this, as they trace the active stages of the feedback cycle. Understanding the radio properties of BCGs is therefore paramount for understanding both galaxy clusters and AGN feedback processes globally. Within this thesis, the BCGs in a large (>700) sample of X-ray selected clusters are studied. We observe these BCGs with a wide variety of facilities, building a census of their radio properties across a range of frequencies, timescales and angular resolutions. Radio spectral energy distributions (SEDs) are built for over 200 BCGs, and then decomposed into two components; a core, attributable to ongoing nuclear activity, and a non-core, attributable to historical accretion. Both components are not only more common, but also significantly more powerful in cool-core (CC) clusters than non-cool core (NCC) clusters. However, it is the presence of an active core that shows BCGs in CC clusters are constantly `on' - explaining how they regulate their environments over gigayear timescales. We observe 35 currently active BCGs at high (15-353 GHz) radio frequencies, and monitor their variability. Self-absorbed, active components are found to be common at high frequency. Little variability is seen on < year timescales, although longer term variation of ~10% annually over few-decade timescales is observed. Evidence is presented for a hitherto unseen component in BCG spectra that may be attributable to a naked Advection Dominated Accretion Flow (ADAF). The milli-arcsecond scale radio properties of 59 sources are studied, with a large range of morphologies recovered although no

  4. THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Robaina, Aday R.; Van der Wel, Arjen; Skelton, Rosalind E.; Meisenheimer, Klaus; Bell, Eric F.; Somerville, Rachel S.; McIntosh, Daniel H.; Wolf, Christian

    2010-08-10

    We explore the rate and impact of galaxy mergers on the massive galaxy population using the amplitude of the two-point correlation function on small scales for M {sub *} > 5 x 10{sup 10} M {sub sun} galaxies from the COSMOS and COMBO-17 surveys. Using a pair fraction derived from the Sloan Digital Sky Survey as a low-redshift benchmark, the large survey area at intermediate redshifts allows us to determine the evolution of the close-pair fraction with unprecedented accuracy for a mass-selected sample: we find that the fraction of galaxies more massive than 5 x 10{sup 10} M {sub sun} in pairs separated by less than 30 kpc in three-dimensional space evolves as F(z) = (0.0130 {+-} 0.0019) x (1 + z){sup 1.21{+-}0.25} between z = 0 and z = 1.2. Assuming a merger timescale of 0.5 Gyr, the inferred merger rate is such that galaxies with mass in excess of 10{sup 11} M {sub sun} have undergone, on average, 0.5 (0.7) mergers involving progenitor galaxies both more massive than 5 x 10{sup 10} M {sub sun} since z = 0.6 (1.2). We also study the number density evolution of massive red sequence galaxies using published luminosity functions and constraints on the M/L {sub B} evolution from the fundamental plane. Moreover, we demonstrate that the measured merger rate of massive galaxies is sufficient to explain this observed number density evolution in massive red sequence galaxies since z = 1.

  5. When galaxies collide: understanding the broad absorption-line radio galaxy 4C +72.26

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Simpson, C.; Swinbank, A. M.; Rawlings, S.; Jarvis, M. J.

    2010-05-01

    We present a range of new observations of the `broad absorption-line radio galaxy' 4C +72.26 (z ~ 3.5), including sensitive rest-frame ultraviolet integral field spectroscopy using the Gemini/GMOS-N instrument and Subaru/CISCO K-band imaging and spectroscopy. We show that 4C +72.26 is a system of two vigorously star-forming galaxies superimposed along the line of sight separated by ~1300 +/- 200 km s-1 in velocity, with each demonstrating spectroscopically resolved absorption lines. The most active star-forming galaxy also hosts the accreting supermassive black hole which powers the extended radio source. We conclude that the star formation is unlikely to have been induced by a shock caused by the passage of the radio jet, and instead propose that a collision is a more probable trigger for the star formation. Despite the massive starburst, the ultraviolet-mid-infrared spectral energy distribution suggests that the pre-existing stellar population comprises ~1012Msolar of stellar mass, with the current burst only contributing a further ~2 per cent, suggesting that 4C +72.26 has already assembled most of its final stellar mass.

  6. Confirmation of a Radio-Selected Galaxy Overdensity at z=1.11

    NASA Technical Reports Server (NTRS)

    Stern, Daniel; Holden, Brad; Stanford, S. A.; Spinard, Hyron

    2003-01-01

    We report the discovery of a galaxy overdensity at z = 1.11 associated with the z = 1.110 high-redshift radio galaxy MG1 J04426+0202 (hereafter MG 0442+0202). The group, Cl 0442+0202, was found in a near-infrared survey of z > 1 radio galaxies undertaken to identify spatially coincident regions with a high density of objects red in I-K' color, typical of z > 1 elliptical galaxies. Spectroscopic observations from the Keck I telescope reveal five galaxies within 35" of MG 0442+0202 at 1.10 < z < 1.11. These member galaxies have broadband colors and optical spectra consistent with passively evolving elliptical galaxies formed at high redshift. Archival ROSAT observations reveal a 3 (sigma) detection of soft X-ray emission coincident with Cl 0442+0202 at a level 5 times greater than expected for the radio galaxy. These data suggest a rich galaxy cluster and inspired a 45 ks Chandra X-Ray Observatory observation. As expected, the radio galaxy is unresolved by Chandra but is responsible for approximately half the observed X-ray flux. The remaining ROSAT flux is resolved into four point sources within 15' of the radio galaxy, corresponding to a surface density 2 orders of magnitude higher than average for X-ray sources at these flux levels [S(0.5-2 keV) > 5 x 10(exp -16) ergs cm (exp -2) s(exp -1)]. One of these point sources is identified with a radio-quiet type II quasar at z = 1.863, akin to sources recently reported in deep Chandra surveys. The limit on an extended hot intracluster medium in the Chandra data is S(1-6 keV) < 1.9 x 10-15 ergs cm (exp -2) s(exp -1) (3 (sigma), 30" radius aperture). Though the X-ray observations do not confirm the existence of a massive bound cluster at z > 1, the success of the optical/near-infrared targeting of early-type systems near the radio galaxy validates searches using radio galaxies as beacons for high-redshift large-scale structure. We interpret Cl 0442+0202 as a massive cluster in the process of formation.

  7. Spectroscopic Confirmation of A Radio-Selected Galaxy Overdensity at z = 1.11

    SciTech Connect

    Stanford, S; Stern, D; Holden, B; Spinrad, H

    2004-02-26

    We report the discovery of a galaxy overdensity at z = 1.11 associated with the z = 1.110 high-redshift radio galaxy MG 0442+0202. The group, CL 0442+0202, was found in a near-infrared survey of z > 1 radio galaxies undertaken to identify spatially-coincident regions with a high density of objects red in I - K' color, typical of z > 1 elliptical galaxies. Spectroscopic observations from the Keck I telescope reveal five galaxies within 35'' of MG 0442+0202 at 1.10 < z < 1.11. These member galaxies have broad-band colors and optical spectra consistent with passively-evolving elliptical galaxies formed at high redshift. Archival ROSAT observations reveal a 3{sigma} detection of soft X-ray emission coincident with CL 0442+0202 at a level five times greater than expected for the radio galaxy. These data are suggestive of a rich galaxy cluster and inspired a 45 ks Chandra X-Ray Observatory observation. As expected, the radio galaxy is unresolved to Chandra, but is responsible for approximately half of the observed X-ray flux. The remaining ROSAT flux is resolved into four point sources within 15'' of the radio galaxy, corresponding to a surface density two orders of magnitude higher than average for X-ray sources at these flux levels (S{sub 0.5-2keV} > 5x10{sup -16} ergs cm{sup -2} s{sup -1}). One of these point sources is identified with a radio-quiet, type II quasar at z = 1.863, akin to sources recently reported in deep Chandra surveys. The limit on an extended hot intracluster medium in the Chandra data is S{sub 1-6keV} < 1.9 x 10{sup -15} ergs cm{sup -2} s{sup -1} (3{sigma}, 30'' radius aperture). Though the X-ray observations do not confirm the existence of a massive, bound cluster at z > 1, the success of the optical/near-infrared targeting of early-type systems near the radio galaxy validates searches using radio galaxies as beacons for high-redshift large-scale structure. We interpret CL 0442+0202 to be a massive cluster in the process of formation.

  8. The nature of the 3CR radio galaxies at z ~ 1

    NASA Astrophysics Data System (ADS)

    Best, Philip; Longair, Malcolm

    We present evidence that the 3CR radio galaxies at redshift z ~ 1 are already very massive, highly dynamically evolved galaxies, which lie at the heart of (proto-)cluster environments. Since nearby 3CR double radio sources are generally found in more isolated surroundings, the galactic environments of these galaxies must change dramatically with redshift. Therefore, the original `uniform population, closed box' interpretation of the infrared K-magnitude vs redshift relationship no longer appears valid. We propose a new interpretation: the powerful radio galaxies selected at high and low redshift have different evolutionary histories, but must contain a similar mass of stars, a few times 1011M ⊙, and so conspire to produce the `passively evolving' K-z relation observed. We discuss this model in the context of the current understanding of powerful radio sources and, in light of this new model, we compare the K-z relation of the 3CR galaxies with those derived for lower power radio galaxies and for brightest cluster galaxies.

  9. Jet-CO alignments in the environments high-z radio galaxies

    NASA Astrophysics Data System (ADS)

    Emonts, Bjorn

    2017-03-01

    In the outskirts of massive high-redshift radio galaxies, powerful radio-jets often interact with ambient warm Lyα-emitting gas. We present the discovery of luminous reservoirs of cold molecular gas in these environments, based on CO(1-0) observations with the Australia Telescope Compact Array. The CO-emission is aligned with the radio jets, and found tens of kpc outside the host galaxy. These molecular gas reservoirs have CO luminosities in the range of those found in submm-galaxies (L'CO ~ 4-9 × 1010 K km/s pc2), but they lack any near-infrared counterpart in deep Spitzer imaging. These results suggest that jet-triggered feedback takes place in the circum-galactic environment of high-z radio galaxies. We prefer the interpretation that the CO-emitting gas is formed when the propagating jets enrich, shock and cool pre-existing dusty halo gas. We further argue that sensitive low-surface-brightness CO observations, using radio interferometers in very compact array-configurations, are essential to study the role of the cold molecular medium in the outskirts of massive high-z galaxies.

  10. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  11. Millimeter and submillimeter observations of nearby radio galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Patten, Brian M.

    1991-01-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals.

  12. Pilot study of the radio-emitting AGN population: the emerging new class of FR 0 radio-galaxies

    NASA Astrophysics Data System (ADS)

    Baldi, Ranieri D.; Capetti, Alessandro; Giovannini, Gabriele

    2015-04-01

    We present the results of a pilot JVLA project aimed at studying the bulk of the radio-emitting AGN population, that was unveiled by the NVSS/FIRST and SDSS surveys. The key questions are related to the origin of their radio-emission and to its connection with the properties of their hosts. We obtained A-array observations at the JVLA at 1.4, 4.5, and 7.5 GHz for 12 sources, a small but representative subsample. The radio maps reveal compact unresolved or only slightly resolved radio structures on a scale of 1-3 kpc, with the one exception of a hybrid FR I/FR II source extended over ~40 kpc. Thanks to either the new high-resolution maps or to the radio spectra, we isolated the radio core component in most of them. We split the sample into two groups. Four sources have low black hole (BH) masses (mostly ~107 M⊙) and are hosted by blue galaxies, often showing evidence of a contamination from star formation to their radio emission, and are associated with radio-quiet (RQ) AGN. The second group consists in seven radio-loud (RL) AGN, which are located in red massive (~1011 M⊙) early-type galaxies, have high BH masses (≳108 M⊙), and are spectroscopically classified as low excitation galaxies (LEG). These are all characteristics typical of FR I radio galaxies. They also lie on the correlation between radio core power and [O III] line luminosity defined by FR Is. However, they are more core-dominated (by a factor of ~30) than FR Is and show a deficit of extended radio emission. We dub these sources "FR 0" to emphasize their lack of prominent extended radio emission, which is their single distinguishing feature with respect to FR Is. The differences in radio properties between FR 0s and FR Is might be ascribed to an evolutionary effect, with the FR 0 sources undergoing rapid intermittency that prevents the growth of large-scale structures. However, this contrasts with the scenario in which low-luminosity radio-galaxies are fed by continuous accretion of gas from

  13. ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES

    SciTech Connect

    Lee, Jaehyun; Yi, Sukyoung K.

    2013-03-20

    Matsuoka and Kawara showed that the number density of the most massive galaxies (log M/M{sub Sun} = 11.5-12.0) increases faster than that of the next massive group (log M/M{sub Sun} = 11.0-11.5) during 0 < z < 1. This appears to be in contradiction to the apparent 'downsizing effect'. We attempt to understand the two observational findings in the context of the hierarchical merger paradigm using semi-analytic techniques. Our models closely reproduce the result of Matsuoka and Kawara. Downsizing can also be understood as larger galaxies have, on average, smaller assembly ages but larger stellar ages. Our fiducial models further reveal details of the history of the stellar mass growth of massive galaxies. The most massive galaxies (log M/M{sub Sun} = 11.5-12.0 at z = 0), which are mostly the brightest cluster galaxies, obtain roughly 70% of their stellar components via merger accretion. The role of merger accretion monotonically declines with galaxy mass: 40% for log M/M{sub Sun} = 11.0-11.5 and 20% for log M/M{sub Sun} = 10.5-11.0 at z = 0. The specific accreted stellar mass rates via galaxy mergers decline very slowly during the whole redshift range, while specific star formation rates sharply decrease with time. In the case of the most massive galaxies, merger accretion becomes the most important channel for the stellar mass growth at z {approx} 2. On the other hand, in situ star formation is always the dominant channel in L{sub *} galaxies.

  14. Tracing the Formation and Evolution of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh

    Massive galaxies at higher redshift, z > 2, show different characteristics than their local counterparts. They are compact and most likely have a disk. Understanding the evolutionary path of these massive galaxies can give us some clues on how the universe has been behaving in the last 10 billion years. How well can we measure the bulge and disk properties of these systems? We perform two sets of comprehensive simulations in order to systematically quantify the effects of non-homology in structures and the methods employed. For the first set of simulations, by accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. For the second set of simulations, we employ empirical scaling relations to produce realistic-looking two-component local galaxies with a uniform and wide range of bulge-to-total ratios (B/T), and then rescale them to mimic the signal-to-noise ratios and sizes of observed galaxies at z ≈ 2. This provides the first set of simulations for which we can examine the robustness of two-component decomposition of compact disk galaxies at different B/T . We can measure B/T accurately without imposing any constraints on the light profile shape of the bulge, but, due to the small angular sizes of bulges at high redshift, their detailed properties can only be recovered for galaxies with B/T ≥ 0.2. The disk component, by contrast, can be measured with little difficulty. Next, we trace back the evolution of local massive galaxies but performing detailed morphological analysis: namely, single Swrsic fitting and bulge+disk decomposition. CANDELS images and catalogues offer an ideal dataset for this study. We

  15. Most Massive Globular Cluster in Our Galaxy

    NASA Astrophysics Data System (ADS)

    1994-05-01

    Far down in the southern sky, in the constellation of Centaurus, a diffuse spot of light can be perceived with the unaided eye. It may be unimpressive, but when seen through a telescope, it turns out to be a beautiful, dense cluster of innumerable stars [1]. Omega Centauri, as this object is called, is the brightest of its type in the sky. We refer to it as a "globular cluster", due to its symmetric form. It belongs to our Milky Way galaxy and astrophysical investigations have shown that it is located at a distance of about 16,500 light-years (1 light-year = 9,460,000,000,000 km). Nobody knows for sure how many individual stars it contains, but recent estimates run into the millions. Most of these stars are more than 10,000 million years old and it is generally agreed that Omega Centauri has a similar age. Measurements of its motion indicate that Omega Centauri plows through the Milky Way in an elongated orbit. It is not easy to understand how it has managed to keep its stars together during such an extended period. MEASURING STELLAR VELOCITIES IN OMEGA CENTAURI A group of astronomers [2] have recently carried through a major investigation of Omega Centauri. After many nights of observations at the ESO La Silla observatory, they now conclude that not only is this globular cluster the brightest, it is indeed by far the most massive known in the Milky Way. The very time-consuming observations were made during numerous observing sessions over a period of no less than 13 years (1981-1993), with the photoelectric spectrometer CORAVEL mounted on the 1.5-m Danish telescope at La Silla. The CORAVEL instrument (COrelation RAdial VELocities) was built in a joint effort between the Geneva (Switzerland) and Marseilles (France) observatories. It functions according to the cross-correlation technique, by means of which the spectrum of the observed star is compared with a "standard stellar spectrum" [3]. HOW HEAVY IS OMEGA CENTAURI? In the present study, a total of 1701

  16. The 2dF galaxy redshift survey: clustering properties of radio galaxies

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Maddox, Steve J.; Hawkins, Ed; Peacock, John A.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Cole, Shaun; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; de Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Frenk, Carlos S.; Glazebrook, Karl; Jackson, Carole A.; Jones, Bryn; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Norberg, Peder; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith; 2dFGRS Team

    2004-06-01

    The clustering properties of local, S1.4 GHz>= 1 mJy, radio sources are investigated for a sample of 820 objects drawn from the joint use of the Faint Images of the Radio Sky at 20 cm (FIRST) and 2dF Galaxy Redshift surveys. To this aim, we present 271 new bJ<= 19.45 spectroscopic counterparts of FIRST radio sources to be added to those already introduced in our previous paper. The two-point correlation function for the local radio population is found to be entirely consistent with estimates obtained for the whole sample of 2dFGRS galaxies. From measurements of the redshift-space correlation function ξ(s) we derive a redshift-space clustering length s0= 10.7+0.8-0.7 Mpc, while from the projected correlation function Ξ(rT) we estimate the parameters of the real-space correlation function ξ(r) = (r/r0)-γ, r0= 6.7+0.9-1.1 Mpc and γ= 1.6 +/- 0.1, where h= 0.7 is assumed. Different results are instead obtained if we only consider sources that present signatures of active galactic nucleus (AGN) activity in their spectra. These objects are shown to be very strongly correlated, with r0= 10.9+1.0-1.2 Mpc and γ= 2 +/- 0.1, a steeper slope than has been claimed in other recent works. No difference is found in the clustering properties of radio-AGNs of different radio luminosity. Comparisons with models for ξ(r) show that AGN-fuelled sources reside in dark matter haloes more massive than ~1013.4 Msolar, higher than the corresponding figure for radio-quiet quasi-stellar objects. This value can be converted into a minimum black hole mass associated with radio-loud, AGN-fuelled objects of MminBH~ 109 Msolar. The above results then suggest - at least for relatively faint radio objects - the existence of a threshold black hole mass associated with the onset of significant radio activity such as that of radio-loud AGNs; however, once the activity is triggered, there appears to be no evidence for a connection between black hole mass and level of radio output.

  17. Global and radial variations in the efficiency of massive star formation among galaxies

    NASA Technical Reports Server (NTRS)

    Allen, Lori E.; Young, Judith S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well.

  18. Satellite galaxies: the infalling pieces of the puzzle of massive galaxies

    NASA Astrophysics Data System (ADS)

    Mármol-Queraltó, E.

    2013-05-01

    Accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of the massive galaxies over cosmic time. A direct way of probing this scenario is to measure the frequency of satellites around massive galaxies at different redshifts. In this contribution, I present the study that we have performed to search for satellites around 629 massive ({M}_* ˜ 10^{11} {M}_{⊙}) galaxies up to z˜2 from the near-infrared Palomar/DEEP-2 survey. We find that the fraction of massive galaxies with satellites remains basically constant and close to 30% for satellites with a mass ratio down to 1:100 up to z=1, and ˜15% for satellites with a 1:10 mass ratio up to z=2. In addition, at low redshift the satellites are, in average, 1.5 Gyr younger than the massive galaxies that host them. In the minor merging model, this rejuvenated material is likely to be placed in the outskirts of the massive objects, and negative age gradients should be observed in local massive galaxies. Hence, this work gives new clues to explore the minor merging scenario from the study of nearby galaxies.

  19. Radio emission and the forbidden line region of Seyfert galaxies

    SciTech Connect

    Ulvestad, J.S.

    1981-01-01

    The results of an extensive program of mapping Seyfert galaxies using the Very Large Array radio telescope are presented. Unlike the majority of radio galaxies, the radio emission in most Seyferts is confined to the inner few kiloparsecs (or less) of the galaxy. This scale is similar to the size of the region in which optical forbidden line emission occurs. Six double (or triple) radio sources have been mapped now in Seyfert galaxies. Approximately ten more galaxies shown more diffuse emission or are resolved only slightly. In almost all galaxies, the central radio peak, when present, coincides with the optical continuum peak. In every double or triple radio source, the outer radio lobes straddle that optical peak. The major axes of the double and triple radio sources may be correlated with the directions of greatest elongation of the optical line-emitting cloud complexes. However, the radio source axes do not appear to be related to the major or minor axes of the outer optical continuum isophotes of the Seyfert galaxies. Synchrotron emission is the dominant source of radio photons in all the galaxies observed. Thermal processes contribute, on the average, no more than about 6% of the total radio emission at 4.885 GHz. Using standard assumptions, radio luminosities, magnetic fields, and total energy contents have been calculated for the observed galaxies. The triple radio source in NGC 5548 has been studied in detail. The properties of NGC 5548 have been used to investigate some theoretical aspects of the double and triple sources and their relationship to the forbidden line region (FLR).

  20. Limits on Planets Orbiting Massive Stars from Radio Pulsar Timing

    NASA Technical Reports Server (NTRS)

    Thorsett, S. E.; Dewey, R. J.

    1993-01-01

    When a massive star collapses to a neutron star, rapidly losing over half its mass in a symmetric supernova explosiosn, any planets orbiting the star will be unbound. However, to explain the observed space velocity and binary fraction of radio pulsars, an asymmetric kick must be given to the neutron star of birth.

  1. Discovery of a bright quasar without a massive host galaxy.

    PubMed

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  2. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  3. The Local Dwarf GALAXIES:BUILDING Blocks of Massive Ones? I.THE Fornax Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T. V.

    A chemical evolution of the Local Group dwarf galaxy Fornax is considered in the framework of the merger scenario. We suppose a galactic stellar halo to be formed as separate fragments which then merge; thus, we can calculate the set of such the fragments to reproduce the observed metallicity distribution function of a galaxy. Accordingly, if dwarf galaxies were such the systems, which, once merged, have formed massive galaxies, we need to obtain only one fragment to reproduce the observed metallicity distribution function of a dwarf galaxy. To test this assumption, the stellar metallicity distribution functions of Fornax was calculated in the framework of the merger scenario. The more than one fragment was obtained for galaxy under consideration; thus, it is unlikely the systems similar to Fornax to be building blocks of massive galaxies.

  4. Ultra Massive Passive Galaxies at z~1.7

    NASA Astrophysics Data System (ADS)

    Arcila-Osejo, Liz; Sawicki, Marcin; Golob, Anneya; Arnouts, Stephane; Moutard, Thibaud

    At redshift z~1.7 the Universe was at the peak of its star-formation activity. It is thus a puzzle why some galaxies, many of them very massive (M* >= 1011 M⊙), had already chosen to stop forming stars. These ultra-massive galaxies, guaranteed to be the central galaxies of their host dark matter halos, must have attained very high rates of star formation to assemble their stellar masses in such a short amount of time. Using the largest (to date) K-selected gzK s survey of passive galaxies (in an effective area of ~ 27.5 deg2) we study the demographics of these dead monsters, hoping to help understand the quenching mechanism that shut them down.

  5. Do massive black holes reside in elliptical galaxies?

    NASA Technical Reports Server (NTRS)

    Fabian, A. C.; Canizares, C. R.

    1988-01-01

    The accretion by a central black hole of the hot interstellar medium in an elliptical galaxy is investigated, and the minimum expected luminosity and manner of its emission is estimated. It is not obviously detected at any wavelength. The problem of 'starving the monster', if indeed there is a monster, is raised. The simplest conclusion from the evidence is that most bright elliptical galaxies do not contain massive black holes.

  6. Radio Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Bonamente, M.; Carlstrom, J. E.; Dawson, K.; Hasler, N.; Holzapfel, W.; Joy, M.; LaRoque, S.; Marrone, D. P.; Reese, E. D.

    2007-01-01

    Extra-galactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zeldovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered on known massive galaxy clusters and 8 non-cluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster center) are a factor of 8.9 (+4.2 to -3.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions of the cluster fields are in turn a factor of 3.3 (+4.1 -1.8) greater than those in the noncluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of al[ja = 0.66 with an rms dispersion of 0.36, where flux S varies as upsilon(sup -alpha). The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

  7. Radio Sources toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Bonamente, M.; Carlstrom, J. E.; Dawson, K.; Hasler, N.; Holzapfel, W.; Joy, M.; LaRoque, S.; Marrone, D. P.; Reese, E. D.

    2007-01-01

    Extragalactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of millijansky source fluxes from 89 fields centered on known massive galaxy clusters and 8 noncluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5' of the cluster center) are a factor of 8.9 (sup +4.3)(sub -2.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5'). Counts in the outer regions of the cluster fields are, in turn, a factor of 3.3 (sup +4.1) (sub -1.8) greater than those in the noncluster fields. Counts in the noncluster fields are consistent with extrapolations from the results of other surveys. We compute the spectral indices of millijansky sources in the cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of alpha = 0.66 with an rms dispersion of 0.36, where flux S proportional to nu(sup -alpha). The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

  8. Compact radio sources in luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Parra, Rodrigo

    2007-08-01

    Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220

  9. A study of diffuse radio sources and X-ray emission in six massive clusters

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Dwarakanath, K. S.; Kale, R.; Intema, H.

    2017-01-01

    The goal of this study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to z > 0.3. Here, we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235, and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036, and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic, or both) in the first four clusters. In the last two clusters, we do not detect any diffuse radio emission but we put stringent upper limits on their radio powers. We also use archival Chandra X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio powers of the first four MACS clusters are consistent with their expected values in the LX-P1.4 GHz plot. However, we found ultrasteep spectrum radio halo in the MACSJ0417.5-1154 cluster whose rest-frame cut-off frequency is at ˜900 MHz. The remaining two clusters whose radio powers are ˜11 times below the expected values are most likely to be in the `off-state' as has been postulated in some of the models of radio halo formation.

  10. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Søren S.

    2017-03-01

    Dwarf galaxies can have very high globular cluster specific frequencies, and the GCs are in general significantly more metal-poor than the bulk of the field stars. In some dwarfs, such as Fornax, WLM, and IKN, the fraction of metal-poor stars that belong to GCs can be as high as 20%-25%, an order of magnitude higher than the 1%-2% typical of GCs in halos of larger galaxies. Given that chemical abundance anomalies appear to be present also in GCs in dwarf galaxies, this implies severe difficulties for self-enrichment scenarios that require GCs to have lost a large fraction of their initial masses. More generally, the number of metal-poor field stars in these galaxies is today less than what would originally have been present in the form of low-mass clusters if the initial cluster mass function was a power-law extending down to low masses. This may imply that the initial GC mass function in these dwarf galaxies was significantly more top-heavy than typically observed in present-day star forming environments.

  11. The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Best, P. N.

    2017-01-01

    Powerful radio galaxies exist as either compact or extended sources, with the extended sources traditionally classified by their radio morphologies as Fanaroff-Riley (FR) type I and II sources. FRI/II and compact radio galaxies have also been classified by their optical spectra into two different types: high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode). We present a catalogue of visual morphologies for a complete sample of >1000 1.4-GHz-selected extended radio sources from the Sloan Digital Sky Survey. We study the environment and host galaxy properties of FRI/II and compact sources, classified into HERG/LERG types, in order to separate and distinguish the factors that drive the radio morphological variations from those responsible for the spectral properties. Comparing FRI LERGs with FRII LERGs at fixed stellar mass and radio luminosity, we show that FRIs typically reside in richer environments and are hosted by smaller galaxies with higher mass surface density; this is consistent with extrinsic effects of jet disruption driving the FR dichotomy. Using matched samples of HERGs and LERGs, we show that HERG host galaxies are more frequently star-forming, with more evidence for disk-like structure than LERGs, in accordance with currently-favoured models of fundamentally different fuelling mechanisms. Comparing FRI/II LERGs with compact LERGs, we find the primary difference is that compact objects typically harbour less massive black holes. This suggests that lower-mass black holes may be less efficient at launching stable radio jets, or do so for shorter times. Finally, we investigate rarer sub-classes: wide-angle tail, head-tail, FR-hybrid and double-double sources.

  12. Interferometric Radio Observations of the Interactive Winds of Massive Stars

    NASA Astrophysics Data System (ADS)

    Brookes, Diane Patricia

    2016-06-01

    Massive stars have very strong stellar winds which interact with their environment. This work has involved the study of these interactive winds at radio and other wavelengths. Radio observations have been made of the massive runaway star BD+43 3654 and its bow shock which is interacting with the inter-stellar medium. These observations, together with archive data at other wavelengths, have revealed stratified dust and turbulent gas in this interaction zone. Further radio studies have been undertaken of the interaction zones of the colliding winds of massive binary systems. Observations of the colliding wind binary WR 147 at 5GHz have revealed a curved collision zone, suggestive of simple interactive models. Measurements of the flux from the Wolf-Rayet component of this massive binary system has allowed a mass-loss rate to be derived and though the companion O-star is not detected, an upper flux limit has allowed upper limits on the mass-loss rate and limits on the terminal velocity to be inferred. Also revealed is a curious ’bridge’ feature previously observed in WR 147 which occurs between the two binary components. One mechanism is suggested to explain this anomalous feature, the ionising flux of one binary component, the O-star, may be ionising the wind of the other, the WR component. Modelling of the ionisation structure of the stellar winds has been undertaken to verify that this may be occurring. Radio observations of massive stars made at low-frequency have produced detections of WR 147 and the brighter colliding wind binary, WR 146. These detections have allowed modelling of the non-thermal emission in order to deduce where the non-thermal absorption turn-over occurs in these systems. The resultant modelling has illustrated that these colliding wind regions are complex, with multiple absorption regions best describing their nature.

  13. Low-Frequency Radio Observations of Galaxy Cluster Merger Shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2014-10-01

    In a few dozen merging galaxy clusters diffuse extended radio emission has been found, implying the presence of relativistic particles and magnetic fields in the intracluster medium. A major question is how these particles are accelerated up to such extreme energies. In this talk I will present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. Our deep LOFAR and JVLA observations allow a radio spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms.

  14. Radio-continuum observations of Sersic-Pastoriza galaxies

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Saikia, D. J.; Pedlar, A.; Axon, D. J.

    1989-07-01

    Preliminary results of radio continuum observations of selected Sersic-Pastoriza galaxies are presented. Subjects reported are their radio properties at 6 and 20 cm, estimates of linear polarization and spectral indices and a discussion of possible relationships between nuclear morphology and radio luminosity.

  15. Searching for Molecular Gas in Southern Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Laing, R. A.; de Ruiter, H. R.; Parma, P.

    2012-07-01

    It has recently been proposed that the jets of low-luminosity radio galaxies are powered by direct accretion of the hot phase of the IGM onto the central black hole. Cold gas remains a plausible alternative fuel supply, however. The most compelling evidence that cold gas plays a role in fueling radio galaxies is that dust is detected more commonly and/or in larger quantities in (elliptical) radio galaxies compared with radio-quiet elliptical galaxies. On the other hand, only small numbers of radio galaxies have yet been detected in CO (and even fewer imaged), and whether or not all radio galaxies have enough cold gas to fuel their jets remains an open question. If so, then the dynamics of the cold gas in the nuclei of radio galaxies may provide important clues to the fuelling mechanism. The only instrument capable of imaging the molecular component on scales relevant to the accretion process is ALMA, but very little is yet known about CO in southern radio galaxies. Our aim is to measure the CO content in a complete volume-limited sample of southern radio galaxies, in order to create a well-defined list of nearby targets to be imaged in the near future with ALMA. APEX has been equipped with a receiver (APEX-1) able to observe the 230 GHz waveband. This allows us to search for CO(2-1) line emission in our target galaxies. Here we present the results of CO(2-1) APEX-1 spectroscopy taken in 2008 and 2010 for our southern sample. The experiment was successful with nearly all targets detected, and several indications for double-horned CO line profiles, consistent with ordered rotation.

  16. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    SciTech Connect

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  17. A Study of Massive and Evolved Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Nayyeri, H.; Mobasher, B.; Hemmati, S.; De Barros, S.; Ferguson, H. C.; Wiklind, T.; Dahlen, T.; Dickinson, M.; Giavalisco, M.; Fontana, A.; Ashby, M.; Barro, G.; Guo, Y.; Hathi, N. P.; Kassin, S.; Koekemoer, A.; Willner, S.; Dunlop, J. S.; Paris, D.; Targett, T. A.

    2014-10-01

    We use data taken as part of Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) observations of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to identify massive and evolved galaxies at 3 < z < 4.5. This is performed using the strength of the Balmer break feature at rest-frame 3648 Å, which is a diagnostic of the age of the stellar population in galaxies. Using the WFC3 H-band-selected catalog for the CANDELS GOODS-S field and deep multi-waveband photometry from optical (HST) to mid-infrared (Spitzer) wavelengths, we identify a population of old and evolved post-starburst galaxies based on the strength of their Balmer breaks (Balmer break galaxies, BBGs). The galaxies are also selected to be bright in rest-frame near-IR wavelengths and hence massive. We identify a total of 16 BBGs. Fitting the spectral energy distribution of the BBGs shows that the candidate galaxies have average estimated ages of ~800 Myr and average stellar masses of ~5 × 1010 M ⊙, consistent with being old and massive systems. Two of our BBG candidates are also identified by the criteria that are sensitive to star-forming galaxies (Lyman break galaxy selection). We find a number density of ~3.2 × 10-5 Mpc-3 for the BBGs, corresponding to a mass density of ~2.0 × 106 M ⊙ Mpc-3 in the redshift range covering the survey. Given the old age and the passive evolution, it is argued that some of these objects formed the bulk of their mass only a few hundred million years after the big bang.

  18. A study of massive and evolved galaxies at high redshift

    SciTech Connect

    Nayyeri, H.; Mobasher, B.; Hemmati, S.; De Barros, S.; Ferguson, H. C.; Wiklind, T.; Dahlen, T.; Kassin, S.; Koekemoer, A.; Dickinson, M.; Giavalisco, M.; Fontana, A.; Paris, D.; Ashby, M.; Willner, S.; Barro, G.; Guo, Y.; Hathi, N. P.; Dunlop, J. S.; Targett, T. A.

    2014-10-10

    We use data taken as part of Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) observations of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to identify massive and evolved galaxies at 3 < z < 4.5. This is performed using the strength of the Balmer break feature at rest-frame 3648 Å, which is a diagnostic of the age of the stellar population in galaxies. Using the WFC3 H-band-selected catalog for the CANDELS GOODS-S field and deep multi-waveband photometry from optical (HST) to mid-infrared (Spitzer) wavelengths, we identify a population of old and evolved post-starburst galaxies based on the strength of their Balmer breaks (Balmer break galaxies, BBGs). The galaxies are also selected to be bright in rest-frame near-IR wavelengths and hence massive. We identify a total of 16 BBGs. Fitting the spectral energy distribution of the BBGs shows that the candidate galaxies have average estimated ages of ∼800 Myr and average stellar masses of ∼5 × 10{sup 10} M {sub ☉}, consistent with being old and massive systems. Two of our BBG candidates are also identified by the criteria that are sensitive to star-forming galaxies (Lyman break galaxy selection). We find a number density of ∼3.2 × 10{sup –5} Mpc{sup –3} for the BBGs, corresponding to a mass density of ∼2.0 × 10{sup 6} M {sub ☉} Mpc{sup –3} in the redshift range covering the survey. Given the old age and the passive evolution, it is argued that some of these objects formed the bulk of their mass only a few hundred million years after the big bang.

  19. The Most Distant AGN: A Radio Galaxy at Z = 5.19

    NASA Astrophysics Data System (ADS)

    van Breugel, W. J. M.; De Breuck, C.; Stanford, S. A.; Stern, D.; Rottgering, H.; Miley, G. K.

    1999-09-01

    We report the discovery of the most distant known AGN since the discovery of quasars, the radio galaxy TN J0924-2201 at z = 5.19. The radio source was selected from a new sample of ultra-steep spectrum (USS) sources, has an extreme radio spectral index alpha(365 MHz,1.4 GHz) = -1.63, and is identified at near-IR wavelengths with a very faint, K = 21.3 object. Optical spectroscopic observations show a single emission line at 7530 A, which we identify as Lyman alpha. The K-band image, sampling rest-frame U-band, shows a multi-component, radio-aligned morphology, typical of lower-redshift radio galaxies. TN J0924-2201 extends the near-IR Hubble, or K-z, relation for powerful radio galaxies to z > 5, and is consistent with models of massive galaxies forming at even higher redshifts. The work at IGPP/LLNL was performed under the auspices of the US Department of Energy under contract W-7405-ENG-48. W.v.B. also acknowledges support from NASA grant GO 5940, and D.S. from IGPP/LLNL grant 98-AP017. The observations were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the University of California, the California Institute of Technology, and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  20. Galaxy Bulges and Their Massive Black Holes: A Review

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.

    With references to both key and often forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centers of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.

  1. Characterizing radio continuum sources in a sample of Hi-GAL massive cores

    NASA Astrophysics Data System (ADS)

    Armstrong, Jason

    In 2012 and 2013, Olmi and collaborators conducted a survey for 6.7GHz methanol masers with the Arecibo Telescope toward far infrared sources selected from the Hi-GAL catalog of massive cores. They reported a number of sources with weak 6.7GHz methanol masers, possibly indicating regions in early stages of star formation. Follow-up observations were conducted with the Karl G. Jansky Very Large Array (VLA) in New Mexico to characterize the sources. This thesis presents the results of radio continuum observations of nine of the Arecibo regions. A total of 33 radio continuum sources were detected. The nature of the radio continuum sources was analyzed based on their spectral indices. Most of the sources have negative spectral indices, which is indicative of synchrotron radiation. Many of the synchrotron sources are associated with a supernova remnant in our Galaxy, while the rest are likely background radio galaxies and quasars. Evidence for thermal bremsstrahlung radiation was found toward six sources associated with the Arecibo regions, which is consistent with the interpretation of gas ionized by young high-mass stellar objects.

  2. Accretion processes of radio galaxies at high energies

    NASA Astrophysics Data System (ADS)

    de Jong, Sandra

    2013-10-01

    AGN are the luminous (L>10^42 erg/s) cores of active galaxies, powered by accretion onto the central super massive black hole, either via an accretion disk or via a radiatively inefficient accretion flow. There are still several open questions, for example on the launching of jets, which are present in about 10% of the AGN. Another question appeared with the Fermi/LAT gamma-ray survey, which detected many blazars but also a small group of radio galaxies. Radio galaxies are postulated to be blazars where the observer sees the jet at an angle θ>10 degrees allowing a view of both jet and core, rather than only the jet as is the case with blazars. Radio galaxies are divided into two classes, depending on the radio luminosity of the jets. The Fanaroff-Riley I (FR-I) sources have jets that are bright near the core, where the FR-IIs display extended edge-brightened jets. The FR-I sources are connected to the BL Lacs, which are low-luminosity blazars. FR-II types are thought to be the parent population of the luminous FSRQ, which are also blazars. This thesis presents a study of gamma-ray bright radio galaxies. By analysing X-ray and gamma-ray data in addition to creating broad-band spectral energy distributions (SEDs), we studied two examples of this new class of sources. For the FR-II source 3C 111 we analysed Suzaku/XIS and PIN and INTEGRAL IBIS/ISGRI observations to create a X-ray spectrum. We also used a Swift/BAT spectrum from the 58-month survey. The 0.4-200 keV spectrum of the source shows both thermal, Seyfert-like signatures such as an iron K-α line, and non-thermal jet features. We also analysed gamma-ray data from Fermi/LAT. The gamma-ray and X-ray data are combined with historical radio, infrared and optical observations to build the SED, which can be well represented with a non-thermal jet model. The bolometric luminosity of 3C111 is rather low, and the SED model shows rather a BL Lac type than the expected FSRQ. The next source we studied is the nearby FR

  3. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  4. Infrared Color Selection of Massive Galaxies at z > 3

    NASA Astrophysics Data System (ADS)

    Wang, T.; Elbaz, D.; Schreiber, C.; Pannella, M.; Shu, X.; Willner, S. P.; Ashby, M. L. N.; Huang, J.-S.; Fontana, A.; Dekel, A.; Daddi, E.; Ferguson, H. C.; Dunlop, J.; Ciesla, L.; Koekemoer, A. M.; Giavalisco, M.; Boutsia, K.; Finkelstein, S.; Juneau, S.; Barro, G.; Koo, D. C.; Michałowski, M. J.; Orellana, G.; Lu, Y.; Castellano, M.; Bourne, N.; Buitrago, F.; Santini, P.; Faber, S. M.; Hathi, N.; Lucas, R. A.; Pérez-González, P. G.

    2016-01-01

    We introduce a new color selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H160 (H) and Infrared Array Camera (IRAC) 4.5 μm bands, specifically H-[4.5]\\gt 2.25 mag. These galaxies, called “HIEROs,” include two major populations that can be separated with an additional J - H color. The populations are massive and dusty star-forming galaxies at z\\gt 3 ({JH}-{blue}) and extremely dusty galaxies at z≲ 3 ({JH}-{red}). The 350 arcmin2 of the GOODS-North and GOODS-South fields with the deepest Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared and IRAC data contain as many as 285 HIEROs down to [4.5]\\lt 24 mag. Inclusion of the most extreme HIEROs, not even detected in the H band, makes this selection particularly complete for the identification of massive high-redshift galaxies. We focus here primarily on {JH}-{blue} (z\\gt 3) HIEROs, which have a median photometric redshift < z> ˜ 4.4 and stellar mass {M}*˜ {10}10.6 {M}⊙ and are much fainter in the rest-frame UV than similarly massive Lyman-break galaxies (LBGs). Their star formation rates (SFRs), derived from their stacked infrared spectral energy distributions (SEDs), reach ˜240 {M}⊙ yr-1, leading to a specific SFR, {{sSFR}}\\equiv {{SFR}}/{M}*˜ 4.2 Gyr-1, suggesting that the sSFRs for massive galaxies continue to grow at z\\gt 2 but at a lower growth rate than from z = 0 to z = 2. With a median half-light radius of 2 kpc, including ˜ 20% as compact as quiescent (QS) galaxies at similar redshifts, {JH}-{blue} HIEROs represent perfect star-forming progenitors of the most massive ({M}*≳ {10}11.2 {M}⊙ ) compact QS galaxies at z˜ 3 and have the right number density. HIEROs make up ˜ 60% of all galaxies with {M}*\\gt {10}10.5 {M}⊙ identified at z\\gt 3 from their photometric redshifts. This is five times more than LBGs with nearly no overlap between the two populations

  5. Radio Point Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Carlstrom, J. E.; Bonamente, M.; Dawson, K.; Holzapfel, W.; Joy, M.; LaRoque, S.; Reese, E. D.

    2006-01-01

    Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.

  6. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  7. Host Galaxies of X-Shaped Radio Sources

    SciTech Connect

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  8. Direct Evidence for AGN-Driven Winds in a z = 1.5 Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2010-05-01

    Feedback from AGN is a key component in most current models of galaxy formation and evolution. For the most massive galaxies, heating and removal of gas by the AGN could precipitate an abrupt quenching of star formation during a dramatic blow-out phase. The “smoking gun” for such a scenario would be direct evidence of powerful outflows associated with the jet. I present some preliminary results of a program to look for these in high-z radio galaxies (HzRGs). Recent observations of the z = 1.5 radio galaxy 3C 230 obtained with the NIFS integral-field spectrograph and Altair laser adaptive optics facility on Gemini North are shown. These reveal with unprecedented resolution the complex kinematics of this system in redshifted Hα and [N ii] emission. The bi-polar velocity field is aligned with the jet axis, with a kinematic center associated with the radio core itself, and turbulent edges approaching the galaxy's escape velocity. This suggests a gas mass of roughly 1011 M⊙ has been propagating outwards for 107 to 108 years, corresponding to a mass loss of roughly 102-3 M⊙ yr-1, based on its velocity and spatial extent. This is in good agreement with the energetics and typical ages of radio jets, and likely heralds the onset of the “red and dead” stage for this HzRG.

  9. The impact of compact radio sources on their host galaxies: observations

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.

    2016-02-01

    I review the observational evidence that CSS/GPS radio sources have a significant impact on the evolution of their host galaxies, particularly on the kpc-scales of the galaxy bulges. Starting with an overview of the observational evidence for jet-cloud interactions and warm ionised outflows in CSS/GPS sources, I then consider the challenges involved in quantifying the feedback effect of the warm outflows in terms of their mass outflow rates and kinetic powers. For the best-observed cases it is shown that the warm outflows may have a major negative feedback effect in the very central regions, but probably lack the power to heat and eject the full cool ISM contents of the host galaxies. In contrast, the recently-discovered neutral and molecular outflows are more massive and powerful and therefore carry more destructive potential. However, the feedback effect of such outflows is not necessarily negative: there is now clear observational evidence that the molecular outflows are formed as the hot, compressed gas cools behind fast shocks driven into the ISM by the relativistic jets. The natural endpoint of this process is the formation of stars. Therefore, jet-induced star formation may be a significant process in CSS/GPS radio galaxies. Finally, I discuss whether CSS/GPS sources are ``imposters'' in flux-limited radio samples, due the flux boosting of the radio sources by strong jet-cloud interactions in the early stages of radio source evolution.

  10. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  11. Millimeter and submillimeter observations of nearby radio galaxies

    SciTech Connect

    Knapp, G.R.; Patten, B.M. Hawaii, University, Honolulu )

    1991-05-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals. 55 refs.

  12. The Trivariate / Radio Optical X-Ray / Luminosity Function CD Galaxies - Part Two - the Fuelling of Radio Sources

    NASA Astrophysics Data System (ADS)

    Valentijn, E. A.; Bijleveld, W.

    1983-09-01

    the relations between cluster richness R, Lx, Mv, and P1.4 are discussed in detail. Several lines of evidence suggest gravitational binding of the X-ray gas to the cD galaxies. It is argued that the observed relation between Lx and P1.4 is not caused by confinement of the radio emitting plasmas by the X-ray gas, but instead by gas accretion into the galaxies. A gravitationally driven radiative accretion flow of the X-ray gas is fuelling the central non-thermal radio source. The observed correlations are interpreted according to the following scheme, (see also Fig. 7): (i) R - Mv: more massive cDs are formed in richer clusters. (ii) Mv - Lx: more massive galaxies are able to bind gravitationally more intergalactic gas and hence produce more luminous X-ray haloes. (iii) Lx - P1.4: in galaxies with more luminous X-ray babes the central engine, which generates the radio source, is fuelled at a higher rate. Other relations between the four parameters are thought to originate dominantly from these three principal relations. E.g. the result of Auriemma et al. (t977) that optically more luminous elliptical galaxies have a higher probability of becoming a radio source, is an indirect result of the combination of relations (ii) + (iii). Our study shows on three different and fully independent occasions an agreement between observed correlations and the predictions from Bondi's solution for spherical accretion of gas on consequently massive galaxies, where a fraction of that mass is fuelling radio sources (the Mv - Lx relation, the dependence of the RLF on Mv, the P0.6 - Vgal relation for Coma cluster galaxies). Finally, it is suggested that gas accretion into normal and giant elliptical galaxies might be a very general phenomenon, which provides a natural explanation of the radio, optical and X-ray properties of ellipticals.

  13. Sampling Studies Of Quasars, Radio-loud Galaxies, & Radio-quiet Galaxies -- Searching For The Cause Of Radio Emission

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Salois, Amee; Soechting, I.; Smith, M.

    2011-01-01

    Comparing the environments of Radio-Loud Galaxies, Radio-Quiet Galaxies, and Quasars offers an opportunity to study the evolution of these objects. Our samples have been carefully chosen from Data Release 7 of the Sloan Digital Sky Survey, which also includes samples studied in the FIRST survey, and have been cut to determine the best possible results. Our study includes three samples. The Quasar sample currently contains 69 objects, the Radio-Loud Galaxy (RLG) sample has 1,335 objects, and the Radio-Quiet Galaxy (RQG) sample contains 2,436 objects (any updates will be given at the meeting). A number of trims were made to produce (smaller) samples with characteristics suited for precise results. By comparing the environments of these three samples we will be able to see any similarities or differences between them. If similarities are detected it suggests that the central object has evolved according to 'nature' - in an isolated manner with little environmental feedback, which may or may not have an effect on its evolution, as supposed by Coldwell et al. (2009). If differences are detected it suggests that the central object has evolved according to `nurture’ and that the environment may have played an important role in the development of their properties. We employ similar procedures used by Coldwell et al. (2009) in their study of blue and red AGNs. Upon the completion of an accurate sample, future work will be pursued studying a number of properties of the environments including studies of: the stellar masses, star formation rates, sersic morphologies, as well as densities and ages of the environments.

  14. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  15. On stars, galaxies and black holes in massive bigravity

    SciTech Connect

    Enander, Jonas; Mörtsell, Edvard E-mail: edvard@fysik.su.se

    2015-11-01

    In this paper we study the phenomenology of stars and galaxies in massive bigravity. We give parameter conditions for the existence of viable star solutions when the radius of the star is much smaller than the Compton wavelength of the graviton. If these parameter conditions are not met, we constrain the ratio between the coupling constants of the two metrics, in order to give viable conditions for e.g. neutron stars. For galaxies, we put constraints on both the Compton wavelength of the graviton and the conformal factor and coupling constants of the two metrics. The relationship between black holes and stars, and whether the former can be formed from the latter, is discussed. We argue that the different asymptotic structure of stars and black holes makes it unlikely that black holes form from the gravitational collapse of stars in massive bigravity.

  16. Radio-optical galaxy shape correlations in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-12-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the Cosmic Evolution Survey (COSMOS) field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01 per cent) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS (Hubble Space Telescope-Advanced Camera for Surveys) optical data, Very Large Array (VLA) radio data and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that are well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π rad (or 38.2°) at a 95 per cent confidence level.

  17. Molecular disks in radio galaxies. The pathway to ALMA

    NASA Astrophysics Data System (ADS)

    Prandoni, I.; Laing, R. A.; de Ruiter, H. R.; Parma, P.

    2010-11-01

    Context. It has recently been proposed that the jets of low-luminosity radio galaxies are powered by direct accretion of the hot phase of the IGM onto the central black hole. Cold gas remains a plausible alternative fuel supply, however. The most compelling evidence that cold gas plays a role in fueling radio galaxies is that dust is detected more commonly and/or in larger quantities in (elliptical) radio galaxies compared with radio-quiet elliptical galaxies. On the other hand, only small numbers of radio galaxies have yet been detected in CO (and even fewer imaged), and whether or not all radio galaxies have enough cold gas to fuel their jets remains an open question. If so, then the dynamics of the cold gas in the nuclei of radio galaxies may provide important clues to the fuelling mechanism. Aims: The only instrument capable of imaging the molecular component on scales relevant to the accretion process is ALMA, but very little is yet known about CO in southern radio galaxies. Our aim is to measure the CO content in a complete volume-limited sample of southern radio galaxies, in order to create a well-defined list of nearby targets to be imaged in the near future with ALMA. Methods: APEX [This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.] has recently been equipped with a receiver (APEX-1) able to observe the 230 GHz waveband. This allows us to search for CO(2-1) line emission in our target galaxies. Results: Here we present the results for our first three southern targets, proposed for APEX-1 spectroscopy during science verification: NGC 3557, IC 4296 and NGC 1399. The experiment was successful with two targets detected, and possible indications for a double-horned CO line profile, consistent with ordered rotation. These early results are encouraging, demonstrating that APEX can

  18. 50 KPC radio trails behind irregular galaxies in A1367

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Jaffe, W.

    1987-11-01

    The authors report the discovery of exceptionally bright and extended trails of radio emission behind three irregular galaxies in the periphery of the cluster A 1367, in the Coma Supercluster. Turbulent interaction with the intergalactic medium or a past catastrophic collision between galaxies could have produced the observed phenomenon.

  19. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    NASA Astrophysics Data System (ADS)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850<26.5 (5 σ), two of which are also in the spectroscopic sample. We compare the surface density of ~2 arcmin-2 to that of similarly selected V606 dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  20. Uncovering star formation feedback and magnetism in galaxies with radio continuum surveys

    NASA Astrophysics Data System (ADS)

    Tabatabaei, F. S.

    2017-03-01

    Recent studies show the importance of the star formation feedback in changing the energetic and structure of galaxies. Dissecting the physics of the feedback is hence crucial to understand the evolution of galaxies. Full polarization radio continuum surveys can be ideally performed to trace not only star formation but also the energetic components of the interstellar medium (ISM), the magnetic fields and cosmic ray electrons. Using the SKA precursors, we investigate the effect of the massive star formation on the ISM energy balance in nearby galaxies. Our multi-scale and multi-frequency surveys show that cosmic rays are injected in star forming regions and lose energy propagating away from their birth place. Due to the star formation feedback, cosmic ray electron population becomes younger and more energetic. Star formation also amplifies the turbulent magnetic field inserting a high pressure which is important in energy balance in the ISM and structure formation in the host galaxy.

  1. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    SciTech Connect

    Rodriguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-08-20

    Several occupational distributions for satellite galaxies more massive than m{sub *} Almost-Equal-To 4 Multiplication-Sign 10{sup 7} M{sub Sun} around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m{sub *}. For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are Almost-Equal-To 0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N{sub s} ({>=}m{sub *}) , down to the mass of the Fornax dwarf is within the 1{sigma} distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N{sub s} ({>=}m{sub *}) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N{sub s} ({>=}m{sub *}). Then, it is not possible to accurately determine the MW halo mass by means of its N{sub s} ({>=}m{sub *}); from our catalog, we constrain a lower limit of 1.38 Multiplication-Sign 10{sup 12} M{sub Sun} at the 1{sigma} level. Our analysis strongly suggests that the abundance of massive

  2. Gas and radio galaxies: a story of love and hate

    NASA Astrophysics Data System (ADS)

    Morganti, Rafaella

    2011-07-01

    Gas in radio galaxies is an important component that plays different roles. Gas can feed the AGN and make it active but dense gas can also be an obstacle for radio jets and (temporarily) destroy their flow. The characteristics of the different phases of gas in the circumnuclear regions of active nuclei hold clear signatures of the influences that the black hole activity has on its surroundings. I will review these effects based on some recent results obtained in the study of neutral hydrogen and CO. In particular, I will concentrate on the effects of radio jets in generating the strong negative feedback of the kind invoked in current scenarios for galaxy evolution.

  3. Highest redshift radio galaxy known in the Southern Hemisphere

    SciTech Connect

    De Breuck, C., LLNL

    1997-12-01

    We present the discovery of a z = 4 13 galaxy TN J1338-1942, the most distant radio galaxy in the southern hemisphere known to date The source was selected from a sample of Ultra Steep Spectrum (USS; {alpha}<-1 3; S {proportional_to} {nu}{sup {alpha}}) radio sauces using the Texas and NVSS catalogs The discovery spectrum, obtained with the ES0 3 6m telescope, shows bright extended Ly-{alpha} emission The radio source has a very asymmetric morphology, suggesting a strong interaction with an inhomogeneous surrounding medium

  4. Feedback and Brightest Cluster Galaxy Formation: ACS Observations of the Radio Galaxy TN J1338-1942 at z = 4.1

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Overzier, R. A.; Miley, G. K.; Blakeslee, J. P.; Clampin, M.; De Breuck, C.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Homeier, N.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Benítez, N.; Bouwens, R. J.; Bradley, L. D.; Broadhurst, T. J.; Brown, R. A.; Burrows, C. J.; Cheng, E. S.; Cross, N. J. G.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Infante, L.; Kimble, R. A.; Krist, J. E.; Lesser, M. P.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2005-09-01

    We present deep optical imaging of the z=4.1 radio galaxy TN J1338-1942, obtained using the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope, as well as ground-based near-infrared imaging data from the European Southern Observatory (ESO) Very Large Telescope (VLT). The radio galaxy is known to reside within a large galaxy overdensity (both in physical extent and density contrast). There is good evidence that this ``protocluster'' region is the progenitor of a present-day rich galaxy cluster. TN J1338 is the dominant galaxy in the protocluster in terms of size and luminosity (in both the optical and near-infrared) and therefore seems destined to evolve into the brightest cluster galaxy. The high spatial resolution ACS images reveal several kiloparsec-scale features within and around the radio galaxy. The continuum light is aligned with the radio axis and is resolved into two clumps in the i775 and z850 bands. These components have luminosities ~109 Lsolar and sizes of a few kpc. The estimated nebular continuum, scattered light, synchrotron- and inverse Compton-scattering contributions to the aligned continuum light are only a few percent of the observed total, indicating that the observed flux is likely dominated by forming stars. The estimated star formation rate for the whole radio galaxy is ~200 Msolar yr-1. A simple model in which the jet has triggered star formation in these continuum knots is consistent with the available data. A striking, but small, linear feature is evident in the z850 aligned light and may be indicative of a large-scale shock associated with the advance of the radio jet. The rest of the aligned light also seems morphologically consistent with star formation induced by shocks associated with the radio source, as seen in other high-z radio galaxies (e.g., 4C 41.17). An unusual feature is seen in Lyα emission. A wedge-shaped extension emanates from the radio galaxy perpendicularly to the radio axis. This ``wedge

  5. Extended optical-emission-line gas in powerful radio galaxies

    SciTech Connect

    Baum, S.A.

    1987-01-01

    Results of a search for extended optical-emission-line gas in 43 powerful radio galaxies are presented. Spatially extended optical-emission-line gas is common in these galaxies. The extent and luminosity of the emission-line gas in powerful radio galaxies is an order of magnitude greater than in normal elliptical galaxies of similar optical magnitudes. The total emission-line luminosity is roughly half of the radio luminosity, and the radio luminosity correlates with the narrow-line luminosity over four decades. The near-nuclear emission-line gas is often distributed in a smooth, roughly elliptical feature, centered on and symmetric about the nucleus. The distribution of axial ratios found in these small emission-line nebulae (ELN) is inconsistent with them being disks seen from different orientations. The minor axes of the small regions of emission-line gas show only a weak tendency to align with the position angle of the extended radio source and the major axis of the stellar isophotes. The very extended emission line gas (d{sub neb} > 10 kpc) is filamentary and is found preferentially within the regions occupied by the radio source. The small (d{sub radio} < 100 kpc) radio sources with very extended ELN show evidence of interacting with their gas-rich environments; the large (d{sub radio} > 100 kpc) radio sources with very extended ELN show no signs that they have been disturbed by their surrounding media. Lower limits to the density of the emission line gas at distances of 10 kpc from the galaxy nucleus are {approximately}0.1 cm{sup {minus}3} and upper limits to the total mass in emission line gas are {approximately}10{sup 9} M {circle dot}. The optical nuclear continuum is strongly correlated with the narrow emission line luminosity and is sufficient to photoionize the ELN.

  6. Radio identifications of UGC galaxies - starbursts and monsters

    SciTech Connect

    Condon, J.J.; Broderick, J.J.

    1988-07-01

    New and previously published observational data on galaxies with declination less than +82 deg from the Uppsala General Catalog (Nilson, 1973) are compiled in extensive tables and characterized in detail. Optical positions are confirmed by measurement of Palomar Sky Survey O prints, and radio identifications for 176 galaxies are made on the basis of 1.4-GHz Green Bank sky maps or 1.49-GHz observations obtained with the C configuration of the VLA in November-December 1986; contour maps based on the latter observations are provided. Radio-selected and IR-selected galaxy populations are found to be similar (and distinct from optically selected populations), and three radio/IR criteria are developed to distinguish galaxies powered by starbursts from those with supermassive black holes or other monster energy sources. 197 references.

  7. Radio jets clearing the way through a galaxy: watching feedback in action.

    PubMed

    Morganti, Raffaella; Fogasy, Judit; Paragi, Zsolt; Oosterloo, Tom; Orienti, Monica

    2013-09-06

    The energy released by an active galactic nucleus (AGN) has a strong impact on the surrounding interstellar medium (ISM). This feedback is considered to be the regulating factor for the growth of the central massive black hole and for the rate of star formation in a galaxy. We have located, using very-long-baseline interferometry, the fast outflow of neutral hydrogen in the young, restarted radio-loud AGN 4C12.50. The outflow is located 100 parsec from the nucleus where the radio jet interacts with the ISM, as well as around the associated radio lobe. These observations show that the radio plasma drives the outflow and removes gas from the central regions and that jet-driven outflows can play a relevant role in feedback mechanisms.

  8. A search for the most massive galaxies: double trouble?

    SciTech Connect

    Bernardi, Mariangela; Sheth, R.K.; Nichol, R.C.; Miller, C.J.; Schlegel, D.; Frieman, J.; Schneider, D.P.; Subbarao, M.; York, D.G.; Brinkmann, J.; /Apache Point Observ.

    2005-10-01

    We describe the results of a search for galaxies with large ({approx}> 350 kms{sup -1}) velocity dispersions. The largest systems we have found appear to be the extremes of the early-type galaxy population: compared to other galaxies with similar luminosities, they have the largest velocity dispersions and the smallest sizes. However, they are not distant outliers from the Fundamental Plane and mass-to-light scaling relations defined by the bulk of the early-type galaxy population. They may host the most massive black holes in the Universe, and their abundance and properties can be used to constrain galaxy formation models. Clear outliers from the scaling relations tend to be objects in superposition (angular separations smaller than 1 arcsec), evidence for which comes sometimes from the spectra, sometimes from the images, and sometimes from both. The statistical properties of the superposed pairs, e.g., the distribution of pair separations and velocity dispersions, can be used to provide useful information about the expected distribution of image multiplicities, separations and flux ratios due to gravitational lensing by multiple lenses, and may also constrain models of their interaction rates.

  9. Radioactive 26Al from massive stars in the Galaxy.

    PubMed

    Diehl, Roland; Halloin, Hubert; Kretschmer, Karsten; Lichti, Giselher G; Schönfelder, Volker; Strong, Andrew W; von Kienlin, Andreas; Wang, Wei; Jean, Pierre; Knödlseder, Jürgen; Roques, Jean-Pierre; Weidenspointner, Georg; Schanne, Stephane; Hartmann, Dieter H; Winkler, Christoph; Wunderer, Cornelia

    2006-01-05

    Gamma-rays from radioactive 26Al (half-life approximately 7.2 x 10(5) years) provide a 'snapshot' view of continuing nucleosynthesis in the Galaxy. The Galaxy is relatively transparent to such gamma-rays, and emission has been found concentrated along its plane. This led to the conclusion that massive stars throughout the Galaxy dominate the production of 26Al. On the other hand, meteoritic data show evidence for locally produced 26Al, perhaps from spallation reactions in the protosolar disk. Furthermore, prominent gamma-ray emission from the Cygnus region suggests that a substantial fraction of Galactic 26Al could originate in localized star-forming regions. Here we report high spectral resolution measurements of 26Al emission at 1808.65 keV, which demonstrate that the 26Al source regions corotate with the Galaxy, supporting its Galaxy-wide origin. We determine a present-day equilibrium mass of 2.8 (+/- 0.8) solar masses of 26Al. We use this to determine that the frequency of core collapse (that is, type Ib/c and type II) supernovae is 1.9 (+/- 1.1) events per century.

  10. The Argo simulation - I. Quenching of massive galaxies at high redshift as a result of cosmological starvation

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert; Mayer, Lucio

    2015-01-01

    Observations show a prevalence of high-redshift galaxies with large stellar masses and predominantly passive stellar populations. A variety of processes have been suggested that could reduce the star formation in such galaxies to observed levels, including quasar mode feedback, virial shock heating, or galactic winds driven by stellar feedback. However, the main quenching mechanisms have yet to be identified. Here we study the origin of star formation quenching using Argo, a cosmological, hydrodynamical zoom-in simulation that follows the evolution of a massive galaxy at z ≥ 2. This simulation adopts the same subgrid recipes of the Eris simulations, which have been shown to form realistic disc galaxies, and, in one version, adopts also a mass and spatial resolution identical to Eris. The resulting galaxy has properties consistent with those of observed, massive (M* ˜ 1011 M⊙) galaxies at z ˜ 2 and with abundance matching predictions. Our models do not include active galactic nuclei (AGN) feedback indicating that supermassive black holes likely play a subordinate role in determining masses and sizes of massive galaxies at high-z. The specific star formation rate (sSFR) of the simulated galaxy matches the observed M*-sSFR relation at early times. This period of smooth stellar mass growth comes to a sudden halt at z = 3.5 when the sSFR drops by almost an order of magnitude within a few hundred Myr. The suppression is initiated by a levelling off and a subsequent reduction of the cool gas accretion rate on to the galaxy, and not by feedback processes. This `cosmological starvation' occurs as the parent dark matter halo switches from a fast collapsing mode to a slow accretion mode. Additional mechanisms, such as perhaps radio mode feedback from an AGN, are needed to quench any residual star formation of the galaxy and to maintain a low sSFR until the present time.

  11. Most Massive Spiral Galaxy Known in the Universe

    NASA Astrophysics Data System (ADS)

    2000-12-01

    The VLT Observes Rapid Motion in Distant Object Summary The most massive spiral galaxy known so far in the Universe has been discovered by a team of astronomers from Garching, Padova, Leiden, ESO and London [1]. They base their conclusion on recent observations with ISAAC , an infrared-sensitive, multi-mode instrument on ESO's Very Large Telescope at the Paranal Observatory. This galaxy has been designated ISOHDFS 27 and is located at a distance of approx. 6 billion light-years (the redshift is 0.58). Its measured mass is more than 1000 billion times that of the Sun [2]. It is thus about four times more massive than our own galaxy, the Milky Way, and twice as heavy as the heaviest spiral galaxy known so far. The determination of the mass of ISOHDFS 27 is based on a unique measurement of the motions of its stars and nebulae around the center. The faster the motion is, the greater is the mass. It is, in essence, the same method that allows determining the mass of the Earth from the orbital speed and distance of the Moon. This is the first time a "rotation curve" has been observed in such a distant galaxy by means of infrared observations, allowing a very detailed dynamical study. Other observations by the team concern a pair of distant, interacting galaxies that were also found to possess comparably high masses. They also have observations of a third galaxy at a distance of about 10 billion light-years, with a mass that approaches that of ISOHDFS 27 . The new result has important cosmological implications, as it demonstrates that very heavy structures had already been formed in the Universe at a comparatively early epoch . PR Photo 33a/00 : ISOHDFS 27 , the heaviest spiral galaxy known. PR Photo 33b/00 : The "raw" ISAAC spectrum of ISOHDFS 27 . PR Photo 33c/00 : H-alpha profile of ISOHDFS 27 . Star formation in young galaxies It is of fundamental importance to current cosmological studies to understand how stars evolve within galaxies and how the galaxies themselves

  12. The host galaxy of a fast radio burst.

    PubMed

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  13. Stellar haloes in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    The Hubble Ultra Deep Field (HUDF) opens up an unique window to witness galaxy assembly at all cosmic distances. Thanks to its extraordinary depth, it is a privileged tool to beat the cosmological dimming, which affects any extragalactic observations and has a very strong dependence with redshift (1 +z)^4. In particular, massive (M_{stellar}>5 × 10^{10} M_⊙) Early Type Galaxies (ETGs) are the most interesting candidates for these studies, as they must grow in an inside-out fashion developing an extended stellar envelope/halo that accounts for their remarkable size evolution (˜5 times larger in the nearby Universe than at z=2-3). To this end we have analysed the 6 most massive ETGs at z <1 in the HUDF12. Because of the careful data reduction and the exhaustive treatment of the Point Spread Function (PSF), we are able to trace the galaxy surface brightness profiles up to the same levels as in the local Universe but this time at = 0.65 (31 mag arcsec^{-2} in all 8 HST bands, ˜ 29 mag arcsec^{-2} restframe or beyond 25 effective radii). This fact enables us to investigate the galactic outskirts or stellar haloes at a previously unexplored era, characterising their light and mass profiles, colors and for the first time the amount of mass in ongoing mergers.

  14. Submillimeter evidence for the coeval growth of massive black holes and galaxy bulges.

    PubMed

    Page, M J; Stevens, J A; Mittaz, J P; Carrera, F J

    2001-12-21

    The correlation, found in nearby galaxies, between black hole mass and stellar bulge mass implies that the formation of these two components must be related. Here we report submillimeter photometry of eight x-ray-absorbed active galactic nuclei that have luminosities and redshifts characteristic of the sources that produce the bulk of the accretion luminosity in the universe. The four sources with the highest redshifts are detected at 850 micrometers, with flux densities between 5.9 and 10.1 millijanskies, and hence are ultraluminous infrared galaxies. If the emission is from dust heated by starbursts, then the majority of stars in spheroids were formed at the same time as their central black holes built up most of their mass by accretion. This would account for the observed demography of massive black holes in the local universe. The skewed rate of submillimeter detection with redshift is consistent with a high redshift epoch of star formation in radio-quiet active galactic nuclei, similar to that seen in radio galaxies.

  15. Investigating star formation properties of galaxies in massive clusters with Herschel and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Baker, Andrew J.; Aguirre, Paula; Barkats, D.; Halpern, Mark; Hilton, Matt; Hughes, John Patrick; Infante, Leopoldo; Lindner, Robert; Marriage, Tobias; Menanteau, Felipe; Sifon, Cristobal; Weiss, Axel; ACT Collaboration

    2016-01-01

    I will present results from an investigation of star formation properties of galaxies residing in two massive z ~ 1 clusters (including the 'El Gordo' merger) that were initially selected via their Sunyaev-Zeldovich decrements by the Atacama Cosmology Telescope (ACT) southern survey. This study uses new Herschel Space Observatory and Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations, which provide information about the dust and cold gas content of galaxies in our targeted clusters. We have detected CO (4-3) and [CI] in individual star-forming cluster galaxies, and also measured stacked continuum and spectral line fluxes at long (e.g., far-infrared, submillimeter, and radio) wavelengths. We use these results to explore the relations between star formation and local environment and cluster dynamical state.This work has been supported by (i) an award issued by JPL/Caltech in association with Herschel, which is a European Space Agency Cornerstone Mission with significant participation by NASA, and (ii) the National Science Foundation through award GSSP SOSPA2-018 from the National Radio Astronomy Observatory, which is operated under cooperative agreement by Associated Universities, Inc.

  16. Radio Selected Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Wing, Joshua; Blanton, Elizabeth

    2010-08-01

    Previous studies have shown that three-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD type galaxy at the center of a cluster. We have cross-correlated the Sloan Digital Sky Survey (SDSS) with samples selected from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) catalog and measured the richness of the cluster environments surrounding three- component sources exhibiting both bent and straight lobes. This has lead to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. For both bent- and straight- lobed sources without an optical counterpart it is likely that the radio emission is associated with a galaxy fainter than m_r=22 (the limiting magnitude of the SDSS) and at a redshift higher than z~0.8. We propose to observe a small sub-sample of these sources with the FLAMINGOS instrument on the Mayall 4-m telescope in an attempt to discover if these sources are located in high redshift (z≳0.8) galaxy clusters. In our visually-selected bent radio source sample, 78% of sources with counterparts in the SDSS are associated with clusters.

  17. A Radio-Jet-Galaxy Interaction in 3C441

    NASA Technical Reports Server (NTRS)

    Lacy, Mark; Rawlings, Steve; Blundell, Katherine M.; Ridgway, Susan E.

    1998-01-01

    Multi-wavelength imaging and spectroscopy of the zeta = 0.708 radio galaxy 3C441 and a red aligned optical/infrared component are used to show that the most striking aspect of the radio-optical "alignment effect" in this object is due to the interaction of the radio jet with a companion galaxy in the same group or cluster. The stellar population of the red aligned continuum component is predominately old, but with a small post-starburst population superposed, and it is surrounded by a low surface- brightness halo, possibly a face-on spiral disc. The [OIII]500.7/[OII]372.7 emission line ratio changes dramatically from one side of the component to the other, with the low-ionisation material apparently having passed through the bow shock of the radio source and been compressed. A simple model for the interaction is used to explain the velocity shifts in the emission line gas, and to predict that the ISM of the interacting galaxy is likely to escape once the radio source bow shock has passed though. We also discuss another, much fainter, aligned component, and the sub-arcsecond scale alignment of the radio source host galaxy. Finally we comment on the implications of our explanation of 3C441 for theories of the alignment effect.

  18. The Ubiquity of Coeval Starbursts in Massive Galaxy Cluster Progenitors

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.

    2016-06-01

    The universe’s largest galaxy clusters likely built the majority of their massive >1011 M {}⊙ galaxies in simultaneous, short-lived bursts of activity well before virialization. This conclusion is reached based on emerging data sets for z\\gt 2 proto-clusters and the characteristics of their member galaxies, in particular, rare starbursts and ultraluminous active galactic nuclei (AGN). The most challenging observational hurdle in identifying such structures is their very large volumes, ˜104 comoving Mpc3 at z\\gt 2, subtending areas of approximately half a degree on the sky. Thus, the contrast afforded by an overabundance of very rare galaxies in comparison to the background can more easily distinguish overdense structures from the surrounding, normal density field. Five 2≲ z≲ 3 proto-clusters from the literature are discussed in detail and are found to contain up to 12 dusty starbursts or luminous AGN galaxies each, a phenomenon that is unlikely to occur by chance even in overdense environments. These are contrasted with three higher-redshift (4≲ z≲ 5.5) dusty star-forming galaxy (DSFG) groups, whose evolutionary fate is less clear. Measurements of DSFGs’ gas depletion times suggest that they are indeed short-lived on ˜100 Myr timescales, and accordingly the probability of finding a structure containing more than 8 such systems is ˜0.2%, unless their “triggering” is correlated on very large spatial scales, ˜10 Mpc across. The volume density of DSFG-rich proto-clusters is found to be comparable to all of the >1015 M {}⊙ galaxy clusters in the nearby universe, which is a factor of five larger than expected in some simulations. Some tension still exists between measurements of the volume density of DSFG-rich proto-clusters and the expectation that they are generated via short-lived episodes, as the latter suggests that only a fraction (\\lt \\tfrac{1}{2}) of all proto-clusters should be rich with DSFGs. However, improved observations of proto

  19. Global Cosmological Parameters Determined Using Classical Double Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Guerra, Erick J.; Daly, Ruth A.; Wan, Lin

    2000-12-01

    A sample of 20 powerful extended radio galaxies with redshifts between zero and 2 were used to determine constraints on global cosmological parameters. Data for six radio sources were obtained from the VLA archive, analyzed, and combined with the sample of 14 radio galaxies used previously by Guerra & Daly to determine cosmological parameters. The new results are consistent with our previous results, and indicate that the current value of the mean mass density of the universe is significantly less than the critical value. A universe with Ωm of unity in matter is ruled out at 99.0% confidence, and the best-fitting values of Ωm in matter are 0.10+0.25-0.10 and -0.25+0.35-0.25 assuming zero space curvature and zero cosmological constant, respectively. Note that identical results obtain when the low-redshift bin, which includes Cygnus A, is excluded; these results are independent of whether the radio source Cygnus A is included. The method does not rely on a zero-redshift normalization. The radio properties of each source are also used to determine the density of the gas in the vicinity of the source, and the beam power of the source. The six new radio sources have physical characteristics similar to those found for the original 14 sources. The density of the gas around these radio sources is typical of gas in present-day clusters of galaxies. The beam powers are typically about 1045 ergs s-1.

  20. Large rotation measures in radio galaxies at Z > 2

    NASA Astrophysics Data System (ADS)

    Athreya, R. M.; Kapahi, V. K.; McCarthy, P. J.; van Breugel, W.

    1998-01-01

    We have carried out multifrequency radio polarisation imaging of a sample of 15 radio galaxies at z > 2 from the MRC/1Jy sample using the VLA. We report here the discovery of large rotation measures (RM) in a considerable fraction of the high redshift radio galaxies. Using the difference between the RM values of the two radio lobes in each source and statistical arguments, we show that the Faraday screens responsible for the RMs are most likely to be in the vicinity of the radio sources themselves. Four of the 15 galaxies show intrinsic (redshift corrected) RMs in excess of 1000radm\\pow{-2\\ } with the highest value of ~ 6000radm\\pow{-2\\ } in 1138-262 at z = 2.17. These observations suggest that the environments of the radio galaxies at z > 2 have micro gauss magnetic fields correlated over many kpc (>5--10), at least. We have discussed the problems due to the short time available at those redshifts for the various mechanisms, which are believed to generate and correlate strong magnetic fields on large scales, to operate. In particular, we argue that, unlike at low redshifts, cluster cooling flows are unlikely to have a role in forming deep Faraday screens at high redshifts. It is not clear if the dynamo mechanism is capable of generating such fields in the ambient medium around the radio sources. It appears plausible that condensates of magnetised plasma (galactic or subgalactic sized) are the deep Faraday screens responsible for the observed RMs. We suggest that plasma clumps of as small as \\solmass{9} in the path of the radio jet may generate very large RMs. The presence of such strong and large scale magnetic fields in the medium around the radio sources at such early epochs poses a considerable challenge to models of the origin of magnetic fields in the Universe.

  1. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  2. THE CHANDRA VIEW OF NEARBY X-SHAPED RADIO GALAXIES

    SciTech Connect

    Hodges-Kluck, Edmund J.; Reynolds, Christopher S.; Miller, M. Coleman; Cheung, Chi C.

    2010-02-20

    We present new and archival Chandra X-ray Observatory observations of X-shaped radio galaxies (XRGs) within z {approx} 0.1 alongside a comparison sample of normal double-lobed FR I and II radio galaxies. By fitting elliptical distributions to the observed diffuse hot X-ray emitting atmospheres (either the interstellar or intragroup medium), we find that the ellipticity and the position angle of the hot gas follow that of the stellar light distribution for radio galaxy hosts in general. Moreover, compared to the control sample, we find a strong tendency for X-shaped morphology to be associated with wings directed along the minor axis of the hot gas distribution. Taken at face value, this result favors the hydrodynamic backflow models for the formation of XRGs which naturally explain the geometry; the merger-induced rapid reorientation models make no obvious prediction about orientation.

  3. Radio Emission From The Brightest Central Galaxies In The Shapley Concentration Core

    NASA Astrophysics Data System (ADS)

    Di Gennaro, Gabriella; Venturi, T.; Dallacasa, D.; Giacintucci, S.

    2016-10-01

    Extended cluster radio galaxies show different morphologies compared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of radio loud cluster galaxies, which show mainly tailed morphologies. Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the brightest central galaxies (BCGs) in major merging and non/tidal-merging clusters, we performed a multifrequency study of extended radio galaxies inside two cluster complexes, A3528 and A3558, belonging to the Shapley Concentration Core.

  4. Jet Feedback on the Hosts of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Lanz, L.; Ogle, P. M.; Alatalo, K.; Appleton, P. N.

    2016-06-01

    Feedback due to active galactic nuclei is one of the key components of the current paradigm of galaxy evolution; however our understanding of the process remains incomplete. Radio galaxies with strong rotational H_2 emission provide an interesting window into the effect of radio jet feedback on their host galaxies, since the large masses of warm (>100 K) H_2 cannot solely be heated by star formation, instead requiring jet-driven ISM turbulence to power the molecular emission. I will discuss the insights multiwavelength (X-ray to submm) observations of 22 H_2 luminous radio galaxies yield on the process of jet feedback in these galaxies and the impact on star formation activity. Specifically, I find that the diffuse X-ray and warm H_2 emission are consistent with both being powered by dissipation of the jet's mechanical energy into the interstellar medium (ISM) and that the resulting turbulence injected into the ISM by this process results in the suppression of star formation activity by a factor of 3--6. The hosts of these galaxies show a wide range of star formation activity and optical and IR colors, indicating a diversity of evolutionary states in which this process may be active.

  5. Radio observations of nearby moderately luminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Li, Yong-sheng; Su, Bu-mei

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelengths with the Australia Telescope Compact Array. Radio emission was detected in two of them, IRAS 20272-4738 and IRAS 23156-4238, and their parameters including flux, peak position, size and spectral index, obtained. These sources were confirmed with infrared, radio and optical data. Combining with previous results we discuss their emission characteristics.

  6. RADIO AND X-RAY SHOCKS IN CLUSTERS OF GALAXIES

    SciTech Connect

    Hong, Sungwook E.; Kang, Hyesung; Ryu, Dongsu E-mail: hskang@pusan.ac.kr

    2015-10-10

    Radio relics detected in the outskirts of galaxy clusters are thought to trace radio-emitting relativistic electrons accelerated at cosmological shocks. In this study, using the cosmological hydrodynamic simulation data for the large-scale structure formation and adopting a diffusive shock acceleration (DSA) model for the production of cosmic-ray (CR) electrons, we construct mock radio and X-ray maps of simulated galaxy clusters that are projected in the sky plane. Various properties of shocks and radio relics, including the shock Mach number, radio spectral index, and luminosity, are extracted from the synthetic maps and compared with observations. A substantial fraction of radio and X-ray shocks identified in these maps involve multiple shock surfaces along lines of sight (LOSs), and the morphology of shock distributions in the maps depends on the projection direction. Among multiple shocks in a given LOS, radio observations tend to pick up stronger shocks with flatter radio spectra, while X-ray observations preferentially select weaker shocks with larger kinetic energy flux. As a result, in some cases the shock Mach numbers and locations derived from radio and X-ray observations could differ from each other. We also find that the distributions of the spectral index and radio power of the synthetic radio relics are somewhat inconsistent with those of observed real relics; a bit more radio relics have been observed closer to the cluster core and with steeper spectral indices. We suggest that the inconsistency could be explained if very weak shocks with M{sub s} ≲ 2 accelerate CR electrons more efficiently, compared with the DSA model adopted here.

  7. Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Andernach, H.; Kapińska, A. D.; Rudnick, L.; Hardcastle, M. J.; Cotter, G.; Vaughan, S.; Jones, T. W.; Heywood, I.; Wing, J. D.; Wong, O. I.; Matorny, T.; Terentev, I. A.; López-Sánchez, Á. R.; Norris, R. P.; Seymour, N.; Shabala, S. S.; Willett, K. W.

    2016-08-01

    We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z = 0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr = -22.6 and a 1.4 GHz radio luminosity density of L1.4 = 5.5 × 1024 W Hz-1. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley classes I and II. The projected largest angular size of ≈8 arcmin corresponds to 800 kpc and the full length of the source along the curved jets/trails is 1.1 Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301 at 1.2-2.6 × 1043 erg s-1 for assumed intracluster medium temperatures of 1.0-5.0 keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 107 yr in between. This reinforces the idea that an association between RGZ J082312.9+033301 and the newly discovered poor cluster exists.

  8. The Impact of Massive Starbursts on the Chemical Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.

    Young, compact star clusters containing hundreds to thousands of the most massive OB and Wolf-Rayet type stars are common features of actively star-forming galaxies. Radio-wave H scI and millimeter-wave CO aperture synthesis observations of the interstellar gas in several such systems reveal strong evidence for recent collisions or mergers with other galaxies which probably triggered the present burst. Most of the oxygen in the universe, and to a lesser extent carbon and nitrogen, is synthesized within massive stars and returned to the interstellar gas by stellar winds and supernova explosions as these stars evolve. Yet, spatially-resolved spectroscopic investigations of the ionized gas in several starburst galaxies fail to find any sign of recent nucleosynthesis products in the vicinity of evolved starclusters. The chemical abundances of O, N, He, and probably C, appear very homogeneous on scales of ~1 kpc or less, despite the fact that models of the chemical enrichment expected from a single 106/ Msolar burst show that large localized chemical enhancements should occur. That there is no evidence of localized chemical enrichment within the H scII regions of most metal-poor galaxies suggests the recently-released heavy elements are 'hiding' either in a hot, 106 phase or in a cool neutral atomic or molecular phase. In either case, the timescale for visible enrichment in galaxies appears to exceed the lifetimes of the H scII regions and the spatial scales must exceed 1 kpc. These data are inconsistent with the H scII region 'self-enrichment' or 'pollution' hypothesis. For now, heavy elements produced in starbursts can be considered 'missing', but upcoming X-ray observatories may be able to establish their physical phase and location. Hubble Space Telescope spectroscopic measurements show evidence for a correlation between C and N abundances among galaxies with similar metallicity (O/H). The existence of such a correlation implies that C and N production mechanisms

  9. Multiwavelength Study of Radio Loud Early-Type Galaxies from the B2 Sample

    NASA Astrophysics Data System (ADS)

    Sahu, Sheetal Kumar; Chaware, Laxmikant; Pandey, S. K.; Kulkarni, Samridhi; Pandge, M. B.; Chakradhari, N. K.

    2014-07-01

    We present multiwavelength study of a sample of radio loud early-type galaxies chosen from the B2 sample. We performed surface photometry in BVR broad band filters and Hα narrow band filter on CCD images of sample galaxies using IGO 2m telescope, Pune (INDIA), to get radial profiles of various photometric and geometrical parameters that describe elliptical isophotes fitted to the 2D light distribution of the galaxies. The analysis of radial profiles of quantities such as the (local) surface brightness, the ellipticity, and the deviations from elliptical isophotes parametrized by the Fourier coefficients are main focus of our study. We generated color maps, residual maps, and dust extinction maps, Hα emission maps of the galaxies to study the morphology of the dust and ionized gas content present in the galaxies. We carried out detailed analysis of the properties of the dust present in our sample galaxies. Additionaly, we investigated properties of the dust in the central ~10 arcsec region of our sample galaxies using optical images available from the HST (WFPC2) data archive. We estimated mass and temperature of the dust, molecular gas mass, in the sample galaxies using FIR fluxes of the galaxies obtained from IRAS. We used spectroscopic data available from the SDSS (DR7) to get an estimate of the mass of the central super massive black-hole for B2 1257+28 (NGC 4874). We plotted rotation curve for coma cluster (Abell 1656), which indicates the presence of dark matter halo around the galaxy B2 1257+28.

  10. Cluster X-Ray Substructure and Radio Galaxy Correlations

    NASA Astrophysics Data System (ADS)

    Ledlow, M. J.; Burns, J. O.

    1994-12-01

    Current wisdom suggests that X-ray substructure in the intracluster medium (ICM) is fairly common in galaxy clusters. This substructure takes the form of elongations, isophotal twisting, asymmetries, and sub-clumping. Substructure is also frequently present in kinematical analysis of the galaxy velocity and spatial distributions. These features include bimodality, kurtosis or skewness, and non-Gaussian velocity distributions. Consistent with the observations, Hydro/N-Body simulations suggest that cluster-subcluster mergers may be the culprit to explain these features in the ICM gas distribution, and would indicate that many clusters, even at the present epoch, are still undergoing significant dynamical evolution. From a sample of X-ray images from the Einstein satellite and, more recently, the ROSAT mission, Burns et al. (1994) found a significant correlation between the positions of radio galaxies and subclumps within the cluster-scale X-ray emission. Burns et al. have suggested that radio galaxies reside in the residue of cluster/sub-cluster merging sites, and may therefore act as pointers to clusters with ongoing and intersting dynamical activity. We are following up these ideas with a detailed substructure analysis, and a comparison to a sample of clusters without radio galaxies. In order to determine the signficance of substructure, we have reanalyzed the X-ray images using a Bootstrap-Resampling Monte-Carlo technique. In this method, asymmetries, elongations, and other forms of substructure are evaluated using a moment-analysis similar to M{o}hr et al. (1994), with the advantage that we need not assume apriori any specific substructure-free model for the source (\\ie\\ a Beta-model). The significance of individual features is determined solely from a comparison to statistical fluctuations (including noise) of the actual data. Using this technique, we place limits on the fraction of clusters with significant substructure and test the radio galaxy

  11. A Comparison of Radio-loud and Radio-quiet E+A Galaxies

    NASA Astrophysics Data System (ADS)

    Camacho, Yssavo; Wallack, Nicole; Learis, Anna; Liu, Charles

    2015-01-01

    E+A galaxies are systems undergoing an important evolutionary transition. Their optical spectra show significant numbers of A-type stars in an elliptical galaxy that has little to no star formation (SF). These galaxies have likely experienced a recent starburst (< 1 Gyr) followed by an even more recent quench in their SF. What caused their recent SF quench remains one of the most prominent questions surrounding E+A galaxies. Within the Goto (2007, MNRAS 381,187) catalogue of 564 E+A galaxies, there is a small fraction (~3%) that have detectable radio continuum emission from FIRST or NVSS. One possible cause for the observed radio continuum is active galactic nuclei (AGN). AGN feedback is believed to be important in galaxy evolution, including SF quenching (Dubois et al. 2013, MNRAS 433, 3297). In an effort to understand better the differences between radio-loud and radio-quiet E+As, we obtained and compared their spectral energy distributions (SEDs) using the publicly available data from SDSS, 2MASS, and WISE. We also compared them to the SEDs of other known galaxy types. We find that the radio-loud and radio-quiet samples exhibit statistically insignificant differences in the optical, near-infrared, and mid-infrared bands. We also compare the two samples on a (J-H) vs. (H-K) color-color diagram. This work was supported by the National Science Foundation via grant AST-1004583 to the CUNY College of Staten Island, and grant AST-1004591 to the American Museum of Natural History.

  12. The SINFONI survey of powerful radio galaxies at z 2: Jet-driven AGN feedback during the Quasar Era

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; De Breuck, C.; Lehnert, M. D.; Best, P. N.; Collet, C.

    2017-03-01

    We present VLT/SINFONI imaging spectroscopy of the rest-frame optical emission lines of warm ionized gas in 33 powerful radio galaxies at redshifts z ≳ 2, which are excellent sites to study the interplay of rapidly accreting active galactic nuclei and the interstellar medium of the host galaxy in the very late formation stages of massive galaxies. Our targets span two orders of magnitude in radio size (2-400 kpc) and kinetic jet energy (a few 1046- almost 1048 erg s-1). All sources have complex gas kinematics with broad line widths up to 1300 km s-1. About half have bipolar velocity fields with offsets up to 1500 km s-1 and are consistent with global back-to-back outflows. The others have complex velocity distributions, often with multiple abrupt velocity jumps far from the nucleus of the galaxy, and are not associated with a major merger in any obvious way. We present several empirical constraints that show why gas kinematics and radio jets seem to be physically related in all galaxies of the sample. The kinetic energy in the gas from large scale bulk and local outflow or turbulent motion corresponds to a few 10-3 to 10-2 of the kinetic energy output of the radio jet. In galaxies with radio jet power ≳ 1047 erg s-1, the kinetic energy in global back-to-back outflows dominates the total energy budget of the gas, suggesting that bulk motion of outflowing gas encompasses the global interstellar medium. This might be facilitated by the strong gas turbulence, as suggested by recent analytical work. We compare our findings with recent hydrodynamic simulations, and discuss the potential consequences for the subsequent evolution of massive galaxies at high redshift. Compared with recent models of metal enrichment in high-z AGN hosts, we find that the gas-phase metallicities in our galaxies are lower than in most low-z AGN, but nonetheless solar or even super-solar, suggesting that the ISM we see in these galaxies is very similar to the gas from which massive low

  13. Multiphase ISM in Radio Loud Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, Sheetal Kumar; Chaware, Laxmikant; Pandey, S. K.

    We present optical, IR and X-ray photometric study of a sample of radio loud early type galaxies chosen from B2 sample. To get radial profiles of various photometric and geometrical parameters, We per- formed multiband surface photometry on CCD images of our sample gala- xies in ’BVR’ broad band filter and Hα narrow band filter obtained from IUCAA Girawali Observatory(IGO 2m telescope) Pune(INDIA),that descri- be elliptical isophotes fitted to the 2D light distribution of the galaxies. The main focus of our study is to analyze radial profiles of quantities such as the (local) surface brightness, the ellipticity, and the deviations from elliptical isophotes parametrized by the Fourier coefficients. We generated color maps,residual maps,dust extinction maps, Hα emission maps and x-ray diffuse maps (obtained from CHANDRA data archive) of the galaxies to study the morphology of the dust, ionized and hot gas content present in the galaxies. We carried out detailed analysis of the dust properties(mass and temperature of the dust) for sample galaxies. We also made use of the HST(WFPC2) archival optical images to investigate properties of the dust in the central region(˜10 arcsec) of our sample galaxies, including this we also estimated molecular gas mass, mass loss by red giant stars and mass loss rate from evolved stars in the sample galaxies obtained from IRAS fluxes. This multiwavelength study of our sample galaxies enabled us to find physical correlation among different phases of ISM also to address various issues related to dust i.e origin, nature and ate(evolution)of dust in radio-loud early type galaxies, coexistence of multiphase ISM in extra-galactic environment and its possible implications for the scenarios of formation and evolution of galaxies.

  14. Radio Telescope Reveals Secrets of Massive Black Hole

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At the cores of many galaxies, supermassive black holes expel powerful jets of particles at nearly the speed of light. Just how they perform this feat has long been one of the mysteries of astrophysics. The leading theory says the particles are accelerated by tightly-twisted magnetic fields close to the black hole, but confirming that idea required an elusive close-up view of the jet's inner throat. Now, using the unrivaled resolution of the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA), astronomers have watched material winding a corkscrew outward path and behaving exactly as predicted by the theory. Galactic core and jet Artist's conception of region near supermassive black hole where twisted magnetic fields propel and shape jet of particles (Credit: Marscher et al., Wolfgang Steffen, Cosmovision, NRAO/AUI/NSF). Click on image for high-resolution file. Watch Video of Black-Hole-Powered Jet (Credit: Cosmovision, Wolfgang Steffen) Download: NTSC Format (90MB) | PAL Format (90MB) "We have gotten the clearest look yet at the innermost portion of the jet, where the particles actually are accelerated, and everything we see supports the idea that twisted, coiled magnetic fields are propelling the material outward," said Alan Marscher, of Boston University, leader of an international research team. "This is a major advance in our understanding of a remarkable process that occurs throughout the Universe," he added. Marscher's team studied a galaxy called BL Lacertae (BL Lac), some 950 million light-years from Earth. BL Lac is a blazar, the most energetic type of black-hole-powered galactic core. A black hole is a concentration of mass so dense that not even light can escape its gravitational pull. Supermassive black holes in galaxies' cores power jets of particles and intense radiation in similar objects including quasars and Seyfert galaxies. Material pulled inward toward the black hole forms a flattened, rotating disk, called an accretion disk

  15. The MASSIVE Survey. IV. The X-ray Halos of the Most Massive Early-type Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Greene, Jenny E.; Ma, Chung-Pei; Veale, Melanie; Bogdan, Akos; Nyland, Kristina; Blakeslee, John P.; McConnell, Nicholas J.; Thomas, Jens

    2016-08-01

    Studies of the physical properties of local elliptical galaxies are shedding new light on galaxy formation. Here we present the hot-gas properties of 33 early-type systems within the MASSIVE galaxy survey that have archival Chandra X-ray observations, and we use these data to derive X-ray luminosities ({L}{{X,gas}}) and plasma temperatures ({T}{{gas}}) for the diffuse gas components. We combine this with the {{ATLAS}}{{3D}} survey to investigate the X-ray-optical properties of a statistically significant sample of early-type galaxies across a wide range of environments. When X-ray measurements are performed consistently in apertures set by the galaxy stellar content, we deduce that all early types (independent of galaxy mass, environment, and rotational support) follow a universal scaling law such that {L}{{X,gas}}\\propto {T}{{gas}}˜ 4.5. We further demonstrate that the scatter in {L}{{X,gas}} around both K-band luminosity (L K ) and the galaxy stellar velocity dispersion ({σ }e) is primarily driven by {T}{{gas}}, with no clear trends with halo mass, radio power, or angular momentum of the stars. It is not trivial to tie the gas origin directly to either stellar mass or galaxy potential. Indeed, our data require a steeper relation between {L}{{X,gas}},{L}K, and {σ }e than predicted by standard mass-loss models. Finally, we find that {T}{{gas}} is set by the galaxy potential inside the optical effective radius. We conclude that within the innermost 10-30 kpc region, early types maintain pressure-supported hot gas, with a minimum {T}{{gas}} set by the virial temperature, but the majority show evidence for additional heating.

  16. Radio identifications of UGC galaxies - Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1988-07-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with δ < +82° were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density SP ≥ 150 mJy in the ≈12 arcmin FWHM map point-source response and position <5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C array maps made with 18 arcsec resolution were used to confirm or reject candidate identifications. The resulting list of 176 confirmed identifications should be complete, reliable, and suitable for statistical investigations of radio emission from nearby (D < 300 Mpc for H0 = 50 km s-1Mpc-1) galaxies of all morphological types. Three criteria for distinguishing starbursts from monsters on the basis of radio and far-infrared continuum only are given and used to classify the dominant energy sources in the N = 176 confirmed galaxy identifications.

  17. Deep Radio Observations of the Toothbrush Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Van Weeren, Reinout J.; Jones, C.; Forman, W. R.; Röttgering, H.; Brüggen, M.; Brunetti, G.; de Gasperin, F.; Bonafede, A.; Pizzo, R.; Ferrari, C.; Orrù, E.; Ogrean, G. A.; LOFAR Busyweek Team; surveys KSP, LOFAR

    2014-01-01

    We present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. XMM-Newton X-ray observations show that the cluster is undergoing a major merger event. Both the radio relic and halo are likely related to this ongoing merger. Radio relics are proposed to be direct tracers of shock waves in the intracluster medium. The XMM observations indeed reveal a shock, but there is a puzzling 200 kpc spatial offset between the shock position and relic. Our deep LOFAR and JVLA observations allow a detailed spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms. Finally, the LOFAR observations highlight the science that could be obtained from a deep low-frequency all-sky survey.

  18. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Momjian, Emmanuel; Carilli, Chris L.; Wu, Xue-Bing; Fan, Xiaohui; Walter, Fabian; Strauss, Michael A.; Wang, Feige; Jiang, Linhua

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μJy beam‑1 and a total flux density of 88 ± 19 μJy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be TB = (1.6 ± 1.2) × 107 K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  19. Broad Line Radio Galaxies with NuSTAR

    NASA Astrophysics Data System (ADS)

    Lohfink, A.; Ogle, P.; Matt, G.; Lanz, L.; Madejski, G.; Reynolds, C.; Walton, D.; Harrison, F.

    2014-07-01

    The formation of relativistic jets is an open question in AGN physics. Despite significant observational efforts it is still unclear why some AGN show strong radio jets while others do not. Of particular interest to answer this question are broad line radio galaxies, which do show a strong jet but otherwise show an X-ray spectrum similar to their radio-quiet kin. While studies of the standard X-ray band (0.5-10 keV) have not yielded any significant insights, the newly launched X-ray mission NuSTAR offers the possibility to also study the hard X-ray spectra of these sources. In combination with coordinated XMM-Newton and Suzaku observations this provides the best broad-band X-ray spectra of broad line radio galaxies to-date. In this talk I will discuss the first results from the NuSTAR Radio Galaxy program and their implications for our understanding of jet formation.

  20. A velocity dipole in the distribution of radio galaxies.

    PubMed

    Blake, Chris; Wall, Jasper

    2002-03-14

    The motion of our Galaxy through the Universe is reflected in a systematic shift in the temperature of the cosmic microwave background-because of the Doppler effect, the temperature of the background is about 0.1 per cent higher in the direction of motion, with a correspondingly lower temperature in the opposite direction. This effect is known as dipole anisotropy. If our standard cosmological model is correct, a related dipole effect should also be present as an enhancement in the surface density of distant galaxies in the direction of motion. The main obstacle to finding this signal is the uneven distribution of galaxies in the local supercluster, which drowns out the small cosmological signal. Here we report a detection of the expected cosmological dipole anisotropy in the distribution of galaxies. We use a survey of radio galaxies that are mainly located at cosmological distances, so the contamination from nearby clusters is small. When local radio galaxies are removed from the sample, the resulting dipole is in the same direction as the temperature anisotropy of the microwave background, and close to the expected amplitude. The result therefore confirms the standard cosmological interpretation of the microwave background.

  1. WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS

    SciTech Connect

    Stefanon, Mauro; Rudnick, Gregory H.; Marchesini, Danilo; Brammer, Gabriel B.; Whitaker, Katherine E.

    2013-05-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z {approx} 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z {approx} 2, implying that the SFRs for all of these galaxies must be much lower by z {approx} 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening {approx}1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z {approx} 3 that are compact (R{sub e} < 1.4 kpc) and have stellar mass M{sub *} > 10{sup 10.6} M{sub Sun }; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z {approx} 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z {approx} 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z {approx} 2 that are consistent with the observed number density. Better agreement with the observed

  2. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift.

    PubMed

    Emonts, B H C; Lehnert, M D; Villar-Martín, M; Norris, R P; Ekers, R D; van Moorsel, G A; Dannerbauer, H; Pentericci, L; Miley, G K; Allison, J R; Sadler, E M; Guillard, P; Carilli, C L; Mao, M Y; Röttgering, H J A; De Breuck, C; Seymour, N; Gullberg, B; Ceverino, D; Jagannathan, P; Vernet, J; Indermuehle, B T

    2016-12-02

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy-a massive galaxy in a distant protocluster-is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  3. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The extremely metal-poor galaxy I Zw 18, is the Rosetta Stone for understanding z=7-8 galaxies now being discovered by Hubb|e's Wide Field Camera 3 (HST/WFC3). Using HST/STIS images and recently obtained HST/COS ultraviolet spectra, we derive information about the hot, massive stars in this galaxy including stellar abundances, constraints on the stellar IMF and mass distribution of young clusters containing hot, massive stars.

  4. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.; Häußler, Boris

    2013-01-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar ≥ 1011 h- 270 M⊙) galaxies in the redshift interval 0 < z < 3. Our sample of 1082 objects comprises 207 local galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sérsic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ˜20-30 per cent at z ˜ 3 to ˜70 per cent at z = 0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1.

  5. The radio luminosity function of spiral galaxies - Correlations with aggregation and Hubble type

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Trinchieri, G.

    1981-04-01

    The Radio Luminosity Function of spiral galaxies is derived from the Arecibo observations of UGC galaxies at 2380 MHz. It is found that the average radio power and the optical luminosity are linearly correlated (αL1) and that, at any given radio power, the probability for a spiral galaxy to become a radio source scales with the optical luminosity as L1.3. Both results confirm the analysis of Hummel (1980, b) who studied with the Westerbork radio telescope (WSRT) the 1415 MHz continuum emission from nearby spiral galaxies. It is also attempted to correlate the radio emission from spiral galaxies with their detailed Hubble type and cluster membership. A weak evidence is found that early type galaxies and cluster members are slightly deficient in radio emission with respect to late type or isolated galaxies, particularly among the optically brightest objects.

  6. A search for massive compact halo objects in our Galaxy

    NASA Astrophysics Data System (ADS)

    Bennett, D. P.; Alcock, C.; Axelrod, T.; Cook, K.; Park, H.; Griest, K.; Stubbs, C.; Freeman, K.; Peterson, B.; Quinn, P.; Rogers, A.

    1991-04-01

    Massive compact halo objects such as brown dwarfs, Jupiters, and black holes are prime candidates to comprise the dark halo of our galaxy. Our group is currently involved in constructing a dedicated observing system at the Mount Stromlo Observatory in Australia. We will use a refurbished 1.27 meter telescope and an innovative two-color CCD camera with 3.4 x 10 exp 7 pixels to monitor 10 exp 6 - 10 exp 7 stars in the Magellanic Clouds. During the first year of operation (1991-1992), we hope to detect (or rule out) objects in the mass range between 0.001 and 0.1 solar mass, and after five years, we hope to have covered the range 10 exp -6 solar mass - 10 exp 2 solar masses.

  7. Kiloparsec-scale radio emission in Seyfert and LINER galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Wadadekar, Yogesh; Beelen, Alexandre; Kharb, Preeti

    2015-01-01

    Seyfert and LINER galaxies are known to exhibit compact radio emission on ˜10-100 pc scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high-resolution observations. We investigate the prevalence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density (θ = (Sint/Speak)1/2) as a parameter to infer the presence of extended radio emission we show that ≥30 per cent of FIRST-detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in ≥42.5 per cent KSR sources in FIRST-NVSS sub-sample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O III] λ5007 Å line luminosity and this can be interpreted as KSRs being powered by AGN rather than star formation. The distributions of the FIR-to-radio ratios and mid-IR colours of KSR sources are also consistent with their AGN origin. However, contribution from star formation cannot be ruled out particularly in sources with low radio luminosities.

  8. Constraints on shear and rotation with massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ahmad; Pace, Francesco; Malekjani, Mohammad; Del Popolo, Antonino

    2017-03-01

    A precise determination of the mass function is an important tool to verify cosmological predictions of the Λ cold dark matter (CDM) model and to infer more precisely the better model describing the evolution of the Universe. Galaxy clusters have been currently used to infer cosmological parameters, in particular the matter density parameter Ωm, the matter power spectrum normalization σ8 and the equation of state parameter wde of the dark energy fluid. In this work, using data on massive galaxy clusters (M > 8 × 1014 h-1 M⊙) in the redshift range 0.05 ≲ z ≲ 0.83, for the first time we put constraints on the parameter α introduced within the formalism of the extended spherical collapse model to quantify deviations from sphericity due to shear and rotation. Since at the moment there is no physical model describing its functional shape, we assume it to be a logarithmic function of the cluster mass. By holding σ8 fixed and restricting our analysis to a ΛCDM model, we find, at 1σ confidence level, Ωm = 0.284 ± 0.0064, h = 0.678 ± 0.017 and β =0.0019^{+0.0008}_{-0.0015}, where β represents the slope of the parameter α. This result translates into a 9 per cent decrement of the number of massive clusters with respect to a standard ΛCDM mass function, but better data are required to better constrain this quantity, since at the 2σ and 3σ confidence level we are only able to infer upper limits.

  9. COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS

    SciTech Connect

    Xu Hao; Li Hui; Collins, David C.; Govoni, Federica; Murgia, Matteo; Norman, Michael L.; Cen Renyue; Feretti, Luigina; Giovannini, Gabriele E-mail: hli@lanl.gov E-mail: mlnorman@ucsd.edu E-mail: matteo@oa-cagliari.inaf.it E-mail: lferetti@ira.inaf.it

    2012-11-01

    Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.

  10. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  11. Powerful Radio Galaxies with Simbol-X: the Nuclear Environment

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Malaguti, G.; Palumbo, G. G. C.; Bianchin, V.

    2009-05-01

    Fanaroff & Riley type II radio galaxies (FRII) are complex objects. In particular FRII Narrow Line Radio Galaxies (NLRG), optically classified as High Excitation Galaxies (HEG) show X-ray spectra very similar to their radio-quiet counterparts, the Seyfert 2 galaxies. They show 2-10 keV continua heavily obscured (NH~1023-24 cm-2) and intense FeKα lines, typical cold matter reprocessing features. Moreover recent Chandra and XMM-Newton observations suggest that the soft X-ray emission of HEG and Seyfert 2 have a common origin from photoionized gas, reinforcing the idea that not only their nuclear engine but also the circumnuclear gas (at least the warm phase) are similar. On the contrary, our knowledge of NLRG HEG above 10 keV is very poor when compared to brighter Seyfert 2. As a consequence, the physical properties of the cold phase of the circumnuclear gas (possibly linked to a dusty torus) are largely unknown. Thanks to its high sensitivity up to 80 keV, Simbol-X will provide very accurate spectra and will allow a direct comparison between the NLRG and Seyfert 2 cold environments.

  12. Raining on black holes and massive galaxies: the top-down multiphase condensation model

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Temi, P.; Brighenti, F.

    2017-04-01

    The plasma haloes filling massive galaxies, groups and clusters are shaped by active galactic nucleus (AGN) heating and subsonic turbulence (σv ∼ 150 km s-1), as probed by Hitomi. Novel 3D high-resolution simulations show the soft X-ray, keV hot plasma cools rapidly via radiative emission at the high-density interface of the turbulent eddies, stimulating a top-down condensation cascade of warm 104 K filaments. The kpc-scale ionized (optical/ultraviolet) filaments form a skin enveloping the neutral filaments (optical/infrared/21 cm). The peaks of the warm filaments further condense into cold molecular clouds (<50 K; radio) with total mass of several 107 M⊙ and inheriting the turbulent kinematics. In the core, the clouds collide inelastically, mixing angular momentum and leading to Chaotic Cold Accretion (CCA). The black hole accretion rate (BHAR) can be modelled via quasi-spherical viscous accretion, dot{M}_bullet ∝ ν _c, with clump collisional viscosity νc ≡ λc σv and λc ∼ 100 pc. Beyond the core, pressure torques shape the angular momentum transport. In CCA, the BHAR is recurrently boosted up to 2 dex compared with the disc evolution, which arises as turbulence becomes subdominant. With negligible rotation too, compressional heating inhibits the molecular phase. The CCA BHAR distribution is lognormal with pink noise, f-1 power spectrum characteristic of fractal phenomena. Such chaotic fluctuations can explain the rapid luminosity variability of AGN and high-mass X-ray binaries. An improved criterium to trace non-linear condensation is proposed: σv/vcool ≲ 1. The three-phase CCA reproduces key observations of cospatial multiphase gas in massive galaxies, including Chandra X-ray images, SOAR Hα filaments and kinematics, Herschel [C+] emission and ALMA molecular associations. CCA plays important role in AGN feedback and unification, the evolution of BHs, galaxies and clusters.

  13. Radio Bubbles in Clusters of Galaxies

    SciTech Connect

    Dunn, Robert J.H.; Fabian, A.C.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-12-14

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with GHz radio emission, to our sample, and also investigating ''ghost bubbles'', i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10MHz and 10GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 {approx}< k/f {approx}< 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have higher upper limits on k/f than the active bubbles, especially when compared to those in the same cluster. A study of the Brightest 55 cluster sample shows that 17, possibly 20, clusters required some form of heating as they have a short central cooling time, t{sub cool} {approx}< 3 Gyr, and a large central temperature drop, T{sub centre}/T{sub outer} < 1/2. Of these between 12 (70 per cent) and 15 (75 per cent), contain bubbles. This indicates that the duty cycle of bubbles is large in such clusters and that they can play a major role in the heating process.

  14. Hunting for missing (massive) stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas

    2015-08-01

    We discovered over 400 compact (<1’) “bubbles” from visual inspection of the Spitzer/MIPSGAL 24 μm images of the Galactic plane (Carey et al. 2009; Mizuno et al. 2010). At the time of their discovery, only 15% of these MIPSGAL bubbles (MBs) existed in available catalogs, and most of these previously known MB were planetary nebulae. Over the past three years an important observational effort has been made to characterize the nature of more MBs (e.g. Wachter et al. 2010; Gvaramadze et al. 2010; Flagey et al. 2011, 2014; Nowak et al. 2014). The number of identified MBs has now doubled (30% of the 428), and massive stars represent almost half of the known objects. Most of the new identifications have been obtained via optical and near-IR spectroscopic observations of the source detected at the center of the MBs.I will first present the catalog of the MB and the general properties, in terms of morphology, size, and broadband fluxes, of the circumstellar shells. In particular, I will show that far-IR observations from the Herschel Galactic Plane Survey (Molinari et al. 2010) provide a direct measurement of the dust mass ejected by theMB. Then, I will detail some of the follow-up spectroscopic observations obtained to identify the origin of the mid-IR emission and the nature of the unknown objects. In particular, I will focus on: (1) unique Spitzer/IRS observations of 15 MBs that lead to the discovery of several dust poor planetary nebulae with very hot white dwarf, and the characterization of several WR and LBV candidates; (2) ground based (Palomar, IRTF, VLT) near-IR observations of central sources in MB, that revealed a large number of new massive stars, both cool and hot. I will summarize the results of these investigations and others in terms of newly discovered massive stars in our Galaxy.

  15. REVISITING SCALING RELATIONS FOR GIANT RADIO HALOS IN GALAXY CLUSTERS

    SciTech Connect

    Cassano, R.; Brunetti, G.; Venturi, T.; Kale, R.; Pratt, G. W.; Markevitch, M.

    2013-11-10

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R{sub 500} as P{sub 1.4}∼L{sup 2.1±0.2}{sub 500}. Our bigger and more homogenous sample confirms that the X-ray luminous (L{sub 500} > 5 × 10{sup 44} erg s{sup –1}) clusters branch into two populations—radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P{sub 1.4} scales with the cluster integrated SZ signal within R{sub 500}, measured by Planck, as P{sub 1.4}∼Y{sup 2.05±0.28}{sub 500}, in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that 'SZ-luminous' Y{sub 500} > 6 × 10{sup –5} Mpc{sup 2} clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle

  16. Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.

    2013-01-01

    Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.

  17. Magnetism in galaxies - Observational overview and next generation radio telescopes

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2011-06-01

    The strength and structure of cosmic magnetic fields is best studied by observations of radio continuum emission, its polarization and its Faraday rotation. Fields with a well-ordered spiral structure exist in many types of galaxies. Total field strengths in spiral arms and bars are 20-30 μG and dynamically important. Strong fields in central regions can drive gas inflows towards an active nucleus. The strongest regular fields (10-15 μG) are found in interarm regions, sometimes forming ``magnetic spiral arms'' between the optical arms. The typical degree of polarization is a few % in spiral arms, but high (up to 50%) in interarm regions. The detailed field structures suggest interaction with gas flows. Faraday rotation measures of the polarization vectors reveals large-scale patterns in several spiral galaxies which are regarded as signatures of large-scale (coherent) fields generated by dynamos. - Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission traces low-energy cosmic ray electrons which can propagate further away from their origin. LOFAR (30-240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way. Polarization at higher frequencies (1-10 GHz), to be observed with the EVLA, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of galaxies in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP and the SKA are dedicated to measure magnetic fields in distant intervening galaxies and clusters, and will be used to model the overall structure and strength of the magnetic field in the Milky Way.

  18. New Detections of Radio Minihalos in Cool Cores of Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Giacintucci, Simona; Markevitch, Maxim; Venturi, Tiziana; Clarke, Tracy E.; Cassano, Rossella; Mazzotta, Pasquale

    2013-01-01

    Cool cores of some galaxy clusters exhibit faint radio minihalos. Their origin is unclear, and their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quality radio data. In this article, we report four new minihalos (A 478, ZwCl 3146,RXJ 1532.9+3021, and A 2204) and five candidates found in the reanalyzed archival Very Large Array observations.The radio luminosities of our minihalos and candidates are in the range of 102325 W Hz1 at 1.4 GHz, which is consistent with these types of radio sources. Their sizes (40160 kpc in radius) are somewhat smaller than those of previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck.We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less extended minihalos.

  19. Detection of Prominent Stellar Disks in the Progenitors of Present-day Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Davari, Roozbeh H.; Ho, Luis C.; Mobasher, Bahram; Canalizo, Gabriela

    2017-02-01

    Massive galaxies at high redshifts (z > 2) show different characteristics from their local counterparts: they are compact and most likely have a disk. In this study, we trace the evolution of local massive galaxies by performing a detailed morphological analysis, namely, fitting single Sérsic profiles and performing bulge+disk decompositions. We analyze ∼250 massive galaxies selected from all CANDELS fields (COSMOS, UDS, EGS, GOODS-South, and GOODS-North). We confirm that both star-forming and quiescent galaxies increase their sizes significantly from z ≈ 2.5 to the present day. The global Sérsic index of quiescent galaxies increases over time (from n ≈ 2.5 to n > 4), while that of star-forming galaxies remains roughly constant (n ≈ 2.5). By decomposing galaxy profiles into bulge+disk components, we find that massive galaxies at high redshift have prominent stellar disks, which are also evident from visual inspection of the images. By z ≈ 0.5, the majority of the disks disappear and massive quiescent galaxies begin to resemble the local elliptical galaxies. Star-forming galaxies have lower bulge-to-total ratios (B/T) than their quiescent counterparts in each redshift bin. The bulges of star-forming and quiescent galaxies follow different evolutionary histories, while their disks evolve similarly. Based on our morphological analysis and previous cosmological simulations, we argue that major mergers, along with minor mergers, have played a crucial role in the significant increase in size of high-z galaxies and the destruction of their massive and large-scale disks.

  20. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  1. A New Radio Loudness Diagnostic for Active Galaxies: A Radio-to-Mid-Infrared Parameter

    NASA Technical Reports Server (NTRS)

    Melendez, Marcio B.; Kraemer, S. B.; Schmitt, H. R.

    2010-01-01

    We have studied the relationship between the nuclear (high-resolution) radio emission, at 8.4GHz (3.6cm) and 1.4GHz (20cm), the [O IV) (gamma)25.89 micron, [Ne III] (gamma)l5.56 micron and [Ne II] (gamma)l2.81 micron emission lines and the black hole mass accretion rate for a sample of Seyfert galaxies. In order to characterize the radio contribution for the Seyfert nuclei we used the 8.4 GHz/[O IV] ratio, assuming that [0 IV] scales with the luminosity of the active galactic nuclei (AGN). From this we find that Seyfert 1 s (i.e. Seyfert 1.0s, 1.2s and 1.5s) and Seyfert 2s (i.e. Seyfert 1.8s, 1.9s and 2.0s) have similar radio contributions, relative to the AGN. On the other hand, sources in which the [Ne u] emission is dominated either by the AGN or star formation have statistically different radio contributions, with star formation dominated sources more 'radio loud', by a factor of approx.2.8 on average, than AGN dominated sources. We show that star formation dominated sources with relatively larger radio contribution have smaller mass accretion rates. Overall, we suggest that 8.4 GHz/[O IV], or alternatively, 1.4 GHz/[O IV] ratios, can be used to characterize the radio contribution, relative to the AGN, without the limitation of previous methods that rely on optical observables. Key words: Galaxy: stellar content - galaxies: Seyfert - infrared: galaxies

  2. A high abundance of massive galaxies 3-6 billion years after the Big Bang.

    PubMed

    Glazebrook, Karl; Abraham, Roberto G; McCarthy, Patrick J; Savaglio, Sandra; Chen, Hsiao-Wen; Crampton, David; Murowinski, Rick; Jørgensen, Inger; Roth, Kathy; Hook, Isobel; Marzke, Ronald O; Carlberg, R G

    2004-07-08

    Hierarchical galaxy formation is the model whereby massive galaxies form from an assembly of smaller units. The most massive objects therefore form last. The model succeeds in describing the clustering of galaxies, but the evolutionary history of massive galaxies, as revealed by their visible stars and gas, is not accurately predicted. Near-infrared observations (which allow us to measure the stellar masses of high-redshift galaxies) and deep multi-colour images indicate that a large fraction of the stars in massive galaxies form in the first 5 Gyr (refs 4-7), but uncertainties remain owing to the lack of spectra to confirm the redshifts (which are estimated from the colours) and the role of obscuration by dust. Here we report the results of a spectroscopic redshift survey that probes the most massive and quiescent galaxies back to an era only 3 Gyr after the Big Bang. We find that at least two-thirds of massive galaxies have appeared since this era, but also that a significant fraction of them are already in place in the early Universe.

  3. Two new confirmed massive relic galaxies: red nuggets in the present-day Universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio; Martín-Navarro, Ignacio; Vazdekis, Alexandre; Mezcua, Mar; Balcells, Marc; Domínguez, Lilian

    2017-01-01

    We confirm two new local massive relic galaxies, i.e. untouched survivors of the early universe massive population: Mrk 1216 and PGC 032873. Both show early and peaked formation events within very short timescales (<1 Gyr) and thus old mean mass-weighted ages (˜13 Gyr). Their star formation histories remain virtually unchanged out to several effective radii, even when considering the steeper IMF values inferred out to ˜3 effective radii. Their morphologies, kinematics and density profiles are like those found in the z>2 massive population, setting them apart of the typical z˜0 massive early-type galaxies. We find that there seems to exist a degree of relic that is related on how far into the path to become one of these typical z˜0 massive galaxies the compact relic has undergone. This path is partly dictated by the environment the galaxy lives in. For galaxies in rich environments, such as the previously reported relic galaxy NGC 1277, the most extreme properties (e.g. sizes, short formation timescales, larger super-massive black holes) are expected, while lower density environments will have galaxies with delayed and/or extended star formations, slightly larger sizes and not that extreme black hole masses. The confirmation of 3 relic galaxies up to a distance of 106 Mpc implies a lower limit in the number density of these red nuggets in the local universe of 6× 10-7 Mpc3, which is within the theoretical expectations.

  4. FRICAT: A FIRST catalog of FR I radio galaxies

    NASA Astrophysics Data System (ADS)

    Capetti, A.; Massaro, F.; Baldi, R. D.

    2017-01-01

    We built a catalog of 219 FR I radio galaxies (FR Is), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio morphology, redshift ≤ 0.15, and extending (at the sensitivity of the FIRST images) to a radius r larger than 30 kpc from the center of the host. We also selected an additional sample (sFRICAT) of 14 smaller (10 < r < 30 kpc) FR Is, limiting to z < 0.05. The hosts of the FRICAT sources are all luminous (-21 ≳ Mr ≳ -24), red early-type galaxies with black hole masses in the range 108 ≲ MBH ≲ 3 × 109M⊙; the spectroscopic classification based on the optical emission line ratios indicates that they are all low excitation galaxies. Sources in the FRICAT are then indistinguishable from the FR Is belonging to the Third Cambridge Catalogue of Radio Sources (3C) on the basis of their optical properties. Conversely, while the 3C-FR Is show a strong positive trend between radio and [O III] emission line luminosity, these two quantities are unrelated in the FRICAT sources; at a given line luminosity, they show radio luminosities spanning about two orders of magnitude and extending to much lower ratios between radio and line power than 3C-FR Is. Our main conclusion is that the 3C-FR Is just represent the tip of the iceberg of a much larger and diverse population of FR Is.

  5. DISCOVERY OF GIANT RELIC RADIO LOBES STRADDLING THE CLASSICAL DOUBLE RADIO GALAXY 3C452

    SciTech Connect

    Sirothia, S. K.; Gopal-Krishna; Wiita, Paul J. E-mail: krishna@ncra.tifr.res.in

    2013-03-01

    We report the discovery of a pair of megaparsec size radio lobes of extremely steep spectrum straddling the well-known classical double radio source 3C452. The existence of such fossil lobes was unexpected since for the past several decades this powerful radio galaxy has been regarded as a textbook example of an edge-brightened double radio source of Fanaroff-Riley type II (FR II), which we now show to be a bona fide ''double-double'' radio galaxy (DDRG). Thus, 3C452 presents a uniquely robust example of recurrent nuclear activity in which the restarted jets are expanding non-relativistically within the relic synchrotron plasma from an earlier active phase and hence the inner double fed by them has evolved into a perfectly normal FR II radio source. This situation contrasts markedly with the strikingly narrow inner doubles observed in a few other DDRGs that have been interpreted in terms of compression of the synchrotron plasma of the relic outer lobes at the relativistic bow-shocks driven by the near ballistic propagation of the two inner jets through the relic plasma. A key ramification of this finding is that it cautions against the currently widespread use of FR II classical double radio sources for testing cosmological models and unification schemes for active galactic nuclei.

  6. The Molecular Gas Content of z < 0.1 Radio Galaxies: Linking the Active Galactic Nucleus Accretion Mode to Host Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Riechers, D. A.

    2011-04-01

    One of the main achievements in modern cosmology is the so-called unified model, which successfully describes most classes of active galactic nuclei (AGNs) within a single physical scheme. However, there is a particular class of radio-luminous AGNs that presently cannot be explained within this framework—the "low-excitation" radio AGN (LERAGN). Recently, a scenario has been put forward which predicts that LERAGNs and their regular "high-excitation" radio AGN (HERAGN) counterparts represent different (red sequence versus green valley) phases of galaxy evolution. These different evolutionary states are also expected to be reflected in their host galaxy properties, in particular their cold gas content. To test this, here we present CO(1→0) observations toward a sample of 11 of these systems conducted with CARMA. Combining our observations with literature data, we derive molecular gas masses (or upper limits) for a complete, representative, sample of 21 z < 0.1 radio AGNs. Our results yield that HERAGNs on average have a factor of ~7 higher gas masses than LERAGNs. We also infer younger stellar ages, lower stellar, halo, and central supermassive black masses, as well as higher black hole accretion efficiencies in HERAGNs relative to LERAGNs. These findings support the idea that HERAGNs and LERAGNs form two physically distinct populations of galaxies that reflect different stages of massive galaxy buildup.

  7. Why do the HIghMass Galaxies Have so Much Gas?: Studying Massive, Gas-Rich Galaxies at z~0 with Resolved HI and H2

    NASA Astrophysics Data System (ADS)

    Hallenbeck, Gregory L.; HIghMass Team

    2016-01-01

    In the standard ΛCDM cosmology, galaxies form via mergers of many smaller dark matter halos. Because mergers drive star formation, the most massive galaxies should also be the ones which have been the most efficient at converting their gas reservoirs into stars. This trend is seen observationally: in general, as stellar mass increases, gas fraction (GF = MHI/M*) decreases. Galaxies which have large reservoirs of atomic hydrogen (HI) are thus expected to be extremely rare, which was seemingly supported by earlier blind HI surveys.In seeming contradiction, ALFALFA, the Arecibo Legacy Fast ALFA Survey has observed a sample of 34 galaxies which are both massive (MHI>1010 M⊙) and have unusually high gas fractions (all ≥ 0.3; half are > 1). We call this sample HighMass. Unlike other extremely HI-massive samples, such galaxies are neither low surface brightness galaxies nor are they simply "scaled up" spirals. Could this gas be recently acquired, either from accreting small companions or directly from the cosmic web? Or is it primordial, and has been kept from forming stars, possibly because of an unusually high dark matter halo spin parameter?We present resolved HI, H2, and star formation properties of three of these HIghMass galaxies, and compare them with two HIghMass galaxies previously discussed in Hallenbeck et al. (2014). One of these galaxies, UGC 6168, appears in the process of transitioning from a quiescent to star-forming phase, as indicated by its bar and potential non-circular flows. A second, UGC 7899, has a clear warp, which could be evidence of recently accreted gas—but the presence of a warp is far from conclusive evidence. Both have moderately high dark matter halo spin parameters (λ' = 0.09), similar to the previously studied UGC 9037. The third, NGC 5230, looks undisturbed both optically and in its radio emission, but is in a group full of extragalactic gas. A neighboring galaxy has been significantly disrupted, and NGC 5230 may be in the

  8. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  9. Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Lehnert, M. D.; Villar-Martín, M.; Norris, R. P.; Ekers, R. D.; van Moorsel, G. A.; Dannerbauer, H.; Pentericci, L.; Miley, G. K.; Allison, J. R.; Sadler, E. M.; Guillard, P.; Carilli, C. L.; Mao, M. Y.; Röttgering, H. J. A.; De Breuck, C.; Seymour, N.; Gullberg, B.; Ceverino, D.; Jagannathan, P.; Vernet, J.; Indermuehle, B. T.

    2016-12-01

    The largest galaxies in the universe reside in galaxy clusters. Using sensitive observations of carbon monoxide, we show that the Spiderweb galaxy—a massive galaxy in a distant protocluster—is forming from a large reservoir of molecular gas. Most of this molecular gas lies between the protocluster galaxies and has low velocity dispersion, indicating that it is part of an enriched intergalactic medium. This may constitute the reservoir of gas that fuels the widespread star formation seen in earlier ultraviolet observations of the Spiderweb galaxy. Our results support the notion that giant galaxies in clusters formed from extended regions of recycled gas at high redshift.

  10. The interplay between radio galaxies and cluster environment

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Brüggen, Marcus

    2007-07-01

    radio luminosity function of radio galaxies associated with cluster centres is of a flattening at all luminosities LR <~ 1024 WHz-1sr-1.

  11. Serendipitous Discovery of a Radio Transient in the Luminous Radio Galaxy Cygnus A

    NASA Astrophysics Data System (ADS)

    Perley, Richard A.; Perley, Daniel A.; Carilli, Chris Luke; Dhawan, Vivek

    2017-01-01

    Recent Jansky Very Large Array observations of the luminous radio galaxy Cygnus A have revealed the presence of a 3 mJy, flat-spectrum, unresolved radio source located 0.4" (450 pc) from the nucleus. This source was not present in observations made 25 years ago. The luminosity and SED of the transient are comparable to the most luminous supernovae in the universe, and to GRB afterglows, although the most likely interpretation is that the transient represents a luminous flare from the nucleus of a minor galaxy merging with the host of Cygnus A -- possibly in the form of a tidal disruption event. We present our observations and interpretation of this event using recent JVLA and VLBA observations, and discuss its implications for the Cygnus A system and for dusty, merging galaxies generally.

  12. CONSTRAINING JET PRODUCTION SCENARIOS BY STUDIES OF NARROW-LINE RADIO GALAXIES

    SciTech Connect

    Sikora, Marek; Stasinska, Grazyna; Koziel-Wierzbowska, Dorota; Madejski, Greg M.; Asari, Natalia V.

    2013-03-01

    We study a large sample of narrow-line radio galaxies (NLRGs) with extended radio structures. Using 1.4 GHz radio luminosities L {sub 1.4}, narrow optical emission line luminosities L {sub [OIII]} and L{sub H{sub {alpha}}}, as well as black hole masses M {sub BH} derived from stellar velocity dispersions measured from the optical spectra obtained with the Sloan Digital Sky Survey, we find that (1) NLRGs cover about four decades of the Eddington ratio, {lambda} {identical_to} L {sub bol}/L {sub Edd}{proportional_to}L {sub line}/M {sub BH}; (2) L {sub 1.4}/M {sub BH} strongly correlates with {lambda}; and (3) radio loudness, R{identical_to}L{sub 1.4}/L{sub line}, strongly anti-correlates with {lambda}. A very broad range of the Eddington ratio indicates that the parent population of NLRGs includes both radio-loud quasars (RLQs) and broad-line radio galaxies (BLRGs). The correlations they obey and their high jet production efficiencies favor a jet production model which involves the so-called magnetically choked accretion scenario. In this model, production of the jet is dominated by the Blandford-Znajek mechanism, and the magnetic fields in the vicinity of the central black hole are confined by the ram pressure of the accretion flow. Since large net magnetic flux accumulated in central regions of the accretion flow required by the model can take place only via geometrically thick accretion, we speculate that the massive, 'cold' accretion events associated with luminous emission-line active galactic nucleus can be accompanied by an efficient jet production only if preceded by a hot, very sub-Eddington accretion phase.

  13. EXAMINING THE RADIO-LOUD/RADIO-QUIET DICHOTOMY WITH NEW CHANDRA AND VLA OBSERVATIONS OF 13 UGC GALAXIES

    SciTech Connect

    Kharb, P.; Axon, D. J.; Robinson, A.; Capetti, A.; Balmaverde, B.; Chiaberge, M.; Macchetto, D.; Grandi, P.; Giovannini, G.; Montez, R.

    2012-04-15

    We present the results from new {approx}15 ks Chandra-ACIS and 4.9 GHz Very Large Array (VLA) observations of 13 galaxies hosting low-luminosity active galactic nuclei (AGNs). This completes the multiwavelength study of a sample of 51 nearby early-type galaxies described in Capetti and Balmaverde and Balmaverde and Capetti. The aim of the three previous papers was to explore the connection between the host galaxies and AGN activity in a radio-selected sample. We detect nuclear X-ray emission in eight sources and radio emission in all but one (viz., UGC 6985). The new VLA observations improve the spatial resolution by a factor of 10: the presence of nuclear radio sources in 12 of the 13 galaxies confirms their AGN nature. As previously indicated, the behavior of the X-ray and radio emission in these sources depends strongly on the form of their optical surface brightness profiles derived from Hubble Space Telescope imaging, i.e., on their classification as 'core', 'power-law', or 'intermediate' galaxies. With more than twice the number of 'power-law' and 'intermediate' galaxies compared to previous work, we confirm with a much higher statistical significance that these galaxies lie well above the radio-X-ray correlation established in Fanaroff-Riley type I radio galaxies and the low-luminosity 'core' galaxies. This result highlights the fact that the 'radio-loud/radio-quiet' dichotomy is a function of the host galaxy's optical surface brightness profile. We present radio-optical-X-ray spectral indices for all 51 sample galaxies. Survival statistics point to significant differences in the radio-to-optical and radio-to-X-ray spectral indices between the 'core' and 'power-law galaxies (Gehan's Generalized Wilcoxon test probability p for the two classes being statistically similar is <10{sup -5}), but not in the optical-to-X-ray spectral indices (p = 0.25). Therefore, the primary difference between the 'core' and 'power-law' galaxies is in their ability to launch

  14. Giant ringlike radio structures around galaxy cluster Abell 3376.

    PubMed

    Bagchi, Joydeep; Durret, Florence; Neto, Gastão B Lima; Paul, Surajit

    2006-11-03

    In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies. Here, we report Very Large Array telescope observations of giant ( approximately 2 Mpc by 1.6 Mpc), ring-shaped nonthermal radio-emitting structures, found at the outskirts of the rich cluster of galaxies Abell 3376. These structures may trace the elusive shock waves of cosmological large-scale matter flows, which are energetic enough to power them. These radio sources may also be the acceleration sites where magnetic shocks are possibly boosting cosmic-ray particles with energies of up to 10(18) to 10(19) electron volts.

  15. THE COMPACT RADIO STRUCTURE OF RADIO-LOUD NARROW LINE SEYFERT 1 GALAXIES

    SciTech Connect

    Gu Minfeng; Chen Yongjun

    2010-06-15

    We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from the Very Long Baseline Array archive data at 2.3, 5, and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature, and inverted spectrum between simultaneous 2.3 and 8.4 GHz strongly favors jet relativistic beaming. Combined with the very long baseline interferometry data at 1.6 and 8.4 GHz from the literature, we argue that RXS J16333+4718 also may harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved with a well-defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g., B3 1702+457) or apparently radio loud due to jet beaming effects (e.g., RXS J16290+4007 and RXS J16333+4718).

  16. Massive Galaxies Are Larger in Dense Environments: Environmental Dependence of Mass–Size Relation of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Kim, Jae-Woo

    2017-01-01

    Under the Λ cold dark matter (ΛCDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at 0.1 ≤ z < 0.15, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than 1011.2 M⊙ show a clear environmental dependence in mass–size relation, in such a way that galaxies are as much as 20%–40% larger in the densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the ΛCDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.

  17. Formation des etoiles massives dans les galaxies spirales

    NASA Astrophysics Data System (ADS)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R < R25) de dix galaxies mais aussi à leur périphérie (R ≥ R 25). De façon générale, la répartition des régions HII ne montre aucune évidence de structure morphologique à R < R25 (bras spiraux, anneau, barre) à moins de limiter l'analyse aux régions HII les plus grosses ou les plus lumineuses. La répartition des régions HII, de même que leur taille et leur luminosité, sont toutefois sujettes à de forts effets de sélection qui dépendent de la distance des galaxies et qu'il faut corriger en ramenant l'échantillon à une résolution spatiale commune. Les fonctions de luminosité montrent que les régions HII les plus brillantes ont tendance à se former dans la portion interne du disque. De plus, l'analyse des pentes révèle une forte corrélation linéaire par rapport au type morphologique. Aucun pic n'est observé dans les fonctions de luminosité à log L-37 qui révèlerait la transition entre les régions HII bornées par l'ionisation et par la densité. Une relation cubique est obtenue entre la taille et la luminosité des régions HII, cette relation variant toutefois de façon significative entre le disque interne et la périphérie d'une même galaxie. La densité et la dynamique du gaz et des étoiles pourraient influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue

  18. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    activity in these galaxies are thus combining to produce an even more effective and widespread "feedback" process, acting on the long-term gas reservoir for the galaxy, than either individually could achieve. If episodic radio activity and co-eval starbursts are common in massive, high-redshift galaxies, then this IC-feedback mechanism may play a role in affecting the star formation histories of the most massive galaxies at the present day.

  19. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  20. Chandra Observations of Dying Radio Sources in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-01-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  1. Chandra observations of dying radio sources in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.

    2012-12-01

    Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims: We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods: We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results: The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions: We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from

  2. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  3. Bubbles and braided jets in galaxies with compact radio nuclei

    NASA Astrophysics Data System (ADS)

    Ford, Holland C.; Dahari, Oved; Jacoby, George H.; Crane, Patrick C.; Ciardullo, Robin

    1986-12-01

    Narrow-band H-alpha CCD images showing ionized gas in organized kiloparsec-scale structures in three galaxies with low-level active nuclei are presented. The edge-on spiral NGC 3079 contains an apparent loop structure which corresponds to previously reported nonthermal radio emission along the minor axis. The optical emission probably results from interaction between the ejected plasma and the ISM in the disk and halo. The S0 galaxy NGC 3998 exhibits an S-shaped structure centered on the nucleus, with no other evidence for spiral structure. In the spiral galaxy NGC 4258, the presence of continuum-free emission-line arms which coincide with the nonthermal radio arms is confirmed. The morphology of the arms suggests the presence of two double-sided jets which braid or wrap around one another and which bifurcate on both sides. It is concluded that the optical and radio emission in NGC 3079 and in NGC 4258 are related, and it is suggested that both are powered by a plasma which flows from the active nucleus and dissipates kinetic energy in the surrounding ISM.

  4. Bubbles and braided jets in galaxies with compact radio nuclei

    NASA Technical Reports Server (NTRS)

    Ford, Holland C.; Dahari, Oved; Jacoby, George H.; Crane, Patrick C.; Ciardullo, Robin

    1986-01-01

    Narrow-band H-alpha CCD images showing ionized gas in organized kiloparsec-scale structures in three galaxies with low-level active nuclei are presented. The edge-on spiral NGC 3079 contains an apparent loop structure which corresponds to previously reported nonthermal radio emission along the minor axis. The optical emission probably results from interaction between the ejected plasma and the ISM in the disk and halo. The S0 galaxy NGC 3998 exhibits an S-shaped structure centered on the nucleus, with no other evidence for spiral structure. In the spiral galaxy NGC 4258, the presence of continuum-free emission-line arms which coincide with the nonthermal radio arms is confirmed. The morphology of the arms suggests the presence of two double-sided jets which braid or wrap around one another and which bifurcate on both sides. It is concluded that the optical and radio emission in NGC 3079 and in NGC 4258 are related, and it is suggested that both are powered by a plasma which flows from the active nucleus and dissipates kinetic energy in the surrounding ISM.

  5. The Galaxy Cluster Environments of Wide Angle Tail Radio Sources

    NASA Astrophysics Data System (ADS)

    Douglass, Edmund; Blanton, Elizabeth L.; Randall, Scott W.; Clarke, Tracy E.; Wing, Joshua

    2016-01-01

    Generally found in the centers of galaxy clusters, Wide Angle Tail radio sources (WATs) are defined by their characteristic jet-hotspot-lobe transition and intermediate radio power. They are typically associated with the luminous central galaxy within the cluster and often appear bent due to interaction with the hot, X-ray bright intracluster medium (ICM). Their linear extent (r > 100 kpc) and radio luminosity make them good tracers of high redshift systems where X-ray and optical observations are more difficult. In an effort to characterize the global X-ray properties of WAT clusters, we have assembled a sample of WAT systems from the Chandra archive. We have examined the distribution of substructure, temperature, abundance, density and pressure within the ICM. We find the majority of WAT clusters display some merger signatures and many show evidence of cool/high metallicity gas within 100 kpc of the WAT host galaxy. Most notably, we observe that clusters with the highest central densities and pressures host WATs with the shortest flare radii.

  6. New insight on double-double radio galaxies

    NASA Astrophysics Data System (ADS)

    Nandi, Sumana

    2016-07-01

    Striking examples of episodic jet activity in active galactic nuclei (AGN) are the double-double radio galaxies (DDRGs) with two pairs of lobes emerging from the same central engine. The number of DDRGs reported so far is very limited, and it is important to identify more of these to provide a significant statistical overview of the conditions to trigger the jets and the role of jets in terms of feedback mechanisms that affect the host galaxies. Although most DDRGs were believed initially to be giant radio sources with sizes more than a Mpc, a significant number of smaller sized candidate DDRGs have also been identified in our recent study. We started GMRT observation of this sample to confirm that the sources are related to distinct epochs of nuclear activity. In addition to this radio observation we have also investigated the properties of the host galaxies and their environments to understand the triggering mechanisms for recurrent jet emission. Here, I will highlight the main results from these observations and discuss on the possible scenarios responsible for the episodic activity in different types of DDRGs .

  7. The hydrogen line spectra of narrow-line radio galaxies

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-02-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  8. The hydrogen line spectra of narrow-line radio galaxies

    NASA Technical Reports Server (NTRS)

    Ferland, G. J.; Osterbrock, D. E.

    1985-01-01

    The results of the first detection of Ly-alpha in a narrow-line radio galaxy are reported. Nearly simultaneous optical and UV observations of 3C 192 and 3C 223 allow the measurement of both Balmer and Lyman decrements. These line ratios are approximate functions of the interstellar reddening and of a parameter which is proportional to the amount of H I collisional excitation present. The reddening of 3C 192 is slightly larger than that due to the Galaxy, although 3C 223 may have a larger value. Both galaxies have intrinsic Balmer and Lyman decrements which are significantly steeper than case B, suggesting that the gas is photoionized by a fairly hard X-ray continuum. The deduced values of L-alpha/H-beta and H-alpha/H-beta compare favorably with predictions of recent models.

  9. Revealing Massive Black Holes in Dwarf Galaxies with X-rays

    NASA Astrophysics Data System (ADS)

    Reines, A.

    2014-07-01

    Supermassive black holes (BHs) live at the heart of essentially all massive galaxies, power AGN, and are thought to be important agents in the evolution of their hosts. However, the origin of these monster BHs is largely unknown. While direct observations of the first ``seeds" of supermassive BHs in the infant Universe are unobtainable with current telescopes, finding and studying dwarf galaxies hosting massive BHs today can provide valuable constraints on the masses, host galaxies, and formation mechanism of supermassive BH seeds. We have recently completed the first systematic search for AGN in dwarf galaxies using optical spectroscopy, increasing the number of known dwarfs with massive BHs by more than an order of magnitude (Reines et al. 2013). However, this optical search is biased towards BHs radiating at high fractions of their Eddington limit in galaxies with little on-going star formation. Alternative search techniques and diagnostics at other wavelengths are necessary to make further progress. I will discuss our efforts to find and study massive BHs in dwarf galaxies using observations at X-ray wavelengths. These observations are more sensitive to weakly accreting massive BHs and are already beginning to reveal massive BHs hidden at optical wavelengths in star-forming dwarf galaxies.

  10. SATELLITES AROUND MASSIVE GALAXIES SINCE z {approx} 2: CONFRONTING THE MILLENNIUM SIMULATION WITH OBSERVATIONS

    SciTech Connect

    Quilis, Vicent; Trujillo, Ignacio

    2012-06-20

    Minor merging has been postulated as the most likely evolutionary path to produce the increase in size and mass observed in the massive galaxies since z {approx} 2. In this Letter, we directly test this hypothesis, comparing the population of satellites around massive galaxies in cosmological simulations versus the observations. We use state-of-the-art, publically available, Millennium I and II simulations, and the associated semi-analytical galaxy catalogs to explore the time evolution of the fraction of massive galaxies that have satellites, the number of satellites per galaxy, the projected distance at which the satellites locate from the host galaxy, and the mass ratio between the host galaxies and their satellites. The three virtual galaxy catalogs considered here overproduce the fraction of galaxies with satellites by a factor ranging between 1.5 and 6 depending on the epoch, whereas the mean projected distance and ratio of the satellite mass over host mass are in closer agreement with data. The larger pull of satellites in the semi-analytical samples could suggest that the size evolution found in previous hydrodynamical simulations is an artifact due to the larger number of infalling satellites compared to the real universe. These results advise us to revise the physical ingredients implemented in the semi-analytical models in order to reconcile the observed and computed fraction of galaxies with satellites, and eventually, it would leave some room for other mechanisms explaining the galaxy size growth not related to the minor merging.

  11. VizieR Online Data Catalog: Massive early-type galaxies (Buitrago+, 2013)

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Trujillo, I.; Conselice, C. J.; Haussler, B.

    2013-08-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar>=1011h-270M⊙) galaxies in the redshift interval 0galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sersic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ~20-30 per cent at z~3 to~70 per cent at z=0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z~1. (1 data file).

  12. The cosmic assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Curtis-Lake, Emma; Montes, Mireia; Cooper, Andrew P.; Bruce, Victoria A.; Pérez-González, Pablo G.; Cirasuolo, Michele

    2017-01-01

    Using the exquisite depth of the Hubble Ultra Deep Field (HUDF12 programme) dataset, we explore the ongoing assembly of the outermost regions of the most massive galaxies (M_stellar≥5× 1010 M⊙) at z ≤ 1. The outskirts of massive objects, particularly Early-Types Galaxies (ETGs), are expected to suffer a dramatic transformation across cosmic time due to continuous accretion of small galaxies. HUDF imaging allows us to study this process at intermediate redshifts in 6 massive galaxies, exploring the individual surface brightness profiles out to ˜25 effective radii. We find that 5-20% of the total stellar mass for the galaxies in our sample is contained within 10 galaxies (≲5%). The fraction of stellar mass stored in the outer envelopes/haloes of Massive Early-Type Galaxies increases with decreasing redshift, being 28.7% at = 0.1, 15.1% at = 0.65 and 3.5% at = 2. The fraction of mass in diffuse features linked with ongoing minor merger events is > 1-2%, very similar to predictions based on observed close pair counts. Therefore, the results for our small albeit meaningful sample suggest that the size and mass growth of the most massive galaxies have been solely driven by minor and major merging from z = 1 to today.

  13. THE RADIO PROPERTIES OF RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXIES ON PARSEC SCALES

    SciTech Connect

    Gu, Minfeng; Chen, Yongjun; Shen, Zhiqiang; Komossa, S.; Zensus, J. A.; Yuan, Weimin; Wajima, Kiyoaki; Zhou, Hongyan

    2015-11-15

    We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loud NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.

  14. Dispersion by pulsars, magnetars, fast radio bursts and massive electromagnetism at very low radio frequencies

    NASA Astrophysics Data System (ADS)

    Bentum, Mark J.; Bonetti, Luca; Spallicci, Alessandro D. A. M.

    2017-01-01

    Our understanding of the universe relies mostly on electromagnetism. As photons are the messengers, fundamental physics is concerned in testing their properties. Photon mass upper limits have been earlier set through pulsar observations, but new investigations are offered by the excess of dispersion measure (DM), sometimes observed with pulsar and magnetar data at low frequencies, or with the fast radio bursts (FRBs), of yet unknown origin. Arguments for the excess of DM do not reach a consensus, but are not mutually exclusive. Thus, we remind that for massive electromagnetism, dispersion goes as the inverse of the frequency squared. Thereby, new avenues are offered also by the recently operating ground observatories in 10-80 MHz domain and by the proposed Orbiting Low Frequency Antennas for Radio astronomy (OLFAR). The latter acts as a large aperture dish by employing a swarm of nano-satellites observing the sky for the first time in the 0.1-15 MHz spectrum. The swarm must be deployed sufficiently away from the ionosphere to avoid distorsions from terrestrial interference, especially during solar maxima, and offer stable conditions for calibration during observations.

  15. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  16. Radio Continuum Mapping of the Spiral Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Calle, Daniel; Hyman, Scott D.; Weiler, Kurt W.; van Dyk, Schuyler D.; Sramek, Richard A.

    1996-05-01

    We have combined numerous, short radio continuum observations of the Seyfert 1 galaxy NGC 4258 (M 106) made at 20 and 6 cm with the Very Large Array (VLA) to produce deep radio maps at these frequencies. These observations were originally taken for monitoring the radio supernova SN 1981K (Weiler et al. 1986, ApJ, 310, 790; Van Dyk et al. 1992, ApJ, 396, 195). The present analysis is analogous to our recent work on NGC 6946 (Hyman et al. 1993, BAAS 25, 1322) and on NGC 4321 (Hyman et al. 1994, BAAS 26, 1498) using observations taken for monitoring SN 1980K and SN 1979C, respectively. The maps we produce for NGC 4258 are of superior sensitivity (sigma ~ lt 0.02 mJy/beam at 6 cm) and spatial resolution ( ~ 0.5" at 6 cm) to those previously published by other investigators (e. g., Turner & Ho 1994, ApJ, 421, 122; Cecil et al. 1995, ApJ, 452, 613). We present preliminary measurements and analyses of the nuclear region, the anomalous arms, and of detected thermal and nonthermal sources throughout the galaxy. We also make comparisons of our radio maps with existing data at other wavelengths and with the results of our analyses of NGC 6946 and NGC 4321.

  17. Studying Galaxy Evolution with Radio Surveys into the SKA Era

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.

    2014-04-01

    We are beginning to see a next generation of radio surveys aimed at addressing a number of key astrophysical questions surrounding the formation and evolution of galaxies from early times right after the Big Bang to the present-day universe. Due to the nature of interferometric radio observations, coupled with wide-field imaging and the need for high spectral and temporal resolutions, one quickly finds themselves faced with significant computational (data volume and processing) challenges. While it will likely take a full-scale SKA before we see true "exascale" problems, facilities such as, e.g., the JVLA, LOFAR, ALMA, MeerKAT, and ASKAP will be faced with petascale requirements and act as a valuable stepping stone for conceiving novel ways to handle the increasing data demands. Here I highlight some of the science questions being addressed by these next generation radio surveys, and outline the general direction for such surveys into the SKA era.

  18. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  19. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modeling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modeling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1 degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  20. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey (DES). This pathfinder study is meant to (1) validate the Dark Energy Camera (DECam) imager for the task of measuring weak lensing shapes, and (2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, point spread function (PSF) modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting Navarro-Frenk-White profiles to the clusters in this study, we determine weak lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak lensing mass, and richness. In addition, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1. (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  1. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    DOE PAGES

    Melchior, P.; Suchyta, E.; Huff, E.; ...

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Sciencemore » Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.« less

  2. Mass and galaxy distributions of four massive galaxy clusters from Dark Energy Survey Science Verification data

    SciTech Connect

    Melchior, P.; Suchyta, E.; Huff, E.; Hirsch, M.; Kacprzak, T.; Rykoff, E.; Gruen, D.; Armstrong, R.; Bacon, D.; Bechtol, K.; Bernstein, G. M.; Bridle, S.; Clampitt, J.; Honscheid, K.; Jain, B.; Jouvel, S.; Krause, E.; Lin, H.; MacCrann, N.; Patton, K.; Plazas, A.; Rowe, B.; Vikram, V.; Wilcox, H.; Young, J.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S. S.; Banerji, M.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Buckley-Geer, E.; Burke, D. L.; Castander, F. J.; da Costa, L. N.; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Neto, A. F.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gaztanaga, E.; Gerdes, D.; Gruendl, R. A.; Gutierrez, G. R.; Jarvis, M.; Karliner, I.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Makler, M.; Marriner, J.; Marshall, J. L.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Mohr, J.; Neilsen, E.; Nichol, R. C.; Nord, B. D.; Reil, K.; Roe, N. A.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B. X.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, C.; Soares-Santos, M.; Swanson, M. E. C.; Sypniewski, A. J.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A.; Wechsler, R.; Weller, J.; Wester, W.

    2015-03-31

    We measure the weak-lensing masses and galaxy distributions of four massive galaxy clusters observed during the Science Verification phase of the Dark Energy Survey. This pathfinder study is meant to 1) validate the DECam imager for the task of measuring weak-lensing shapes, and 2) utilize DECam's large field of view to map out the clusters and their environments over 90 arcmin. We conduct a series of rigorous tests on astrometry, photometry, image quality, PSF modelling, and shear measurement accuracy to single out flaws in the data and also to identify the optimal data processing steps and parameters. We find Science Verification data from DECam to be suitable for the lensing analysis described in this paper. The PSF is generally well-behaved, but the modelling is rendered difficult by a flux-dependent PSF width and ellipticity. We employ photometric redshifts to distinguish between foreground and background galaxies, and a red-sequence cluster finder to provide cluster richness estimates and cluster-galaxy distributions. By fitting NFW profiles to the clusters in this study, we determine weak-lensing masses that are in agreement with previous work. For Abell 3261, we provide the first estimates of redshift, weak-lensing mass, and richness. Additionally, the cluster-galaxy distributions indicate the presence of filamentary structures attached to 1E 0657-56 and RXC J2248.7-4431, stretching out as far as 1degree (approximately 20 Mpc), showcasing the potential of DECam and DES for detailed studies of degree-scale features on the sky.

  3. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    PubMed

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  4. Size dependence of the radio-luminosity-mechanical-power correlation in radio galaxies

    SciTech Connect

    Shabala, S. S.; Godfrey, L. E. H.

    2013-06-01

    We examine the relationship between source radio luminosity and kinetic power in active galactic nucleus jets. We show that neglecting various loss processes can introduce a systematic bias in the jet powers inferred from radio luminosities for a sample of radio galaxies. This bias can be corrected for by considering source size as well as radio luminosity; effectively the source size acts as a proxy for source age. Based on a sample of Fanaroff-Riley Type II radio sources with jet powers derived from the measured hotspot parameters, we empirically determine a new expression for jet power that accounts for the source size, (Q{sub jet}/10{sup 36} W)=1.5{sub −0.8}{sup +1.8}(L{sub 151}/10{sup 27} W Hz{sup −1}){sup 0.8}(1+z){sup 1.0}(D/kpc){sup 0.58±0.17}, where D is source size and L {sub 151} the 151 MHz radio luminosity. By comparing a flux-limited and volume-limited sample, we show that any derived radio-luminosity-jet-power relation depends sensitively on sample properties, in particular the source size distribution and the size-luminosity correlation inherent in the sample. Such bias will affect the accuracy of the kinetic luminosity function derived from lobe radio luminosities and should be treated with caution.

  5. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  6. On the Interaction of the PKS B1358-113 Radio Galaxy with the A1836 Cluster

    NASA Astrophysics Data System (ADS)

    Stawarz, Ł.; Szostek, A.; Cheung, C. C.; Siemiginowska, A.; Kozieł-Wierzbowska, D.; Werner, N.; Simionescu, A.; Madejski, G.; Begelman, M. C.; Harris, D. E.; Ostrowski, M.; Hagino, K.

    2014-10-01

    Here we present the analysis of multifrequency data gathered for the Fanaroff-Riley type-II (FR II) radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy in the center of A1836. The galaxy harbors one of the most massive black holes known to date, and our analysis of the acquired optical data reveals that this black hole is only weakly active, with a mass accretion rate \\dot{M}_acc ˜ 2 × 10-4 \\dot{M}_Edd ˜ 0.02 M⊙ yr-1. Based on analysis of new Chandra and XMM-Newton X-ray observations and archival radio data, and assuming the well-established model for the evolution of FR II radio galaxies, we derive the preferred range for the jet kinetic luminosity L j ~ (1-6) × 10-3 L Edd ~ (0.5-3) × 1045 erg s-1. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We also constrain the radio source lifetime as τj ~ 40-70 Myr, meaning the total amount of deposited jet energy E tot ~ (2-8) × 1060 erg. We argue that approximately half of this energy goes into shock heating of the surrounding thermal gas, and the remaining 50% is deposited into the internal energy of the jet cavity. The detailed analysis of the X-ray data provides indication for the presence of a bow shock driven by the expanding radio lobes into the A1836 cluster environment. We derive the corresponding shock Mach number in the range {M}_sh ˜ 2{--}4, which is one of the highest claimed for clusters or groups of galaxies. This, together with the recently growing evidence that powerful FR II radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. In this context, we speculate on a possible bias against detecting stronger jet-driven shocks in poorer environments

  7. On the interaction of the PKS B1358–113 radio galaxy with the A1836 cluster

    SciTech Connect

    Stawarz, Ł.; Simionescu, A.; Hagino, K.; Szostek, A.; Kozieł-Wierzbowska, D.; Ostrowski, M.; Cheung, C. C.; Siemiginowska, A.; Harris, D. E.; Werner, N.; Madejski, G.; Begelman, M. C.

    2014-10-20

    Here we present the analysis of multifrequency data gathered for the Fanaroff-Riley type-II (FR II) radio galaxy PKS B1358-113, hosted in the brightest cluster galaxy in the center of A1836. The galaxy harbors one of the most massive black holes known to date, and our analysis of the acquired optical data reveals that this black hole is only weakly active, with a mass accretion rate M-dot {sub acc}∼2×10{sup −4} M-dot {sub Edd}∼0.02 M{sub ⊙} yr{sup –1}. Based on analysis of new Chandra and XMM-Newton X-ray observations and archival radio data, and assuming the well-established model for the evolution of FR II radio galaxies, we derive the preferred range for the jet kinetic luminosity L {sub j} ∼ (1-6) × 10{sup –3} L {sub Edd} ∼ (0.5-3) × 10{sup 45} erg s{sup –1}. This is above the values implied by various scaling relations proposed for radio sources in galaxy clusters, being instead very close to the maximum jet power allowed for the given accretion rate. We also constrain the radio source lifetime as τ{sub j} ∼ 40-70 Myr, meaning the total amount of deposited jet energy E {sub tot} ∼ (2-8) × 10{sup 60} erg. We argue that approximately half of this energy goes into shock heating of the surrounding thermal gas, and the remaining 50% is deposited into the internal energy of the jet cavity. The detailed analysis of the X-ray data provides indication for the presence of a bow shock driven by the expanding radio lobes into the A1836 cluster environment. We derive the corresponding shock Mach number in the range M{sub sh}∼2--4, which is one of the highest claimed for clusters or groups of galaxies. This, together with the recently growing evidence that powerful FR II radio galaxies may not be uncommon in the centers of clusters at higher redshifts, supports the idea that jet-induced shock heating may indeed play an important role in shaping the properties of clusters, galaxy groups, and galaxies in formation. In this context, we speculate on

  8. CORE CREATION IN GALAXIES AND HALOS VIA SINKING MASSIVE OBJECTS

    SciTech Connect

    Goerdt, Tobias; Moore, Ben; Stadel, Joachim; Read, J. I.

    2010-12-20

    We perform a detailed investigation into the disruption of central cusps via the transfer of energy from sinking massive objects. Constant density inner regions form at the radius where the enclosed mass approximately matches the mass of the infalling body. We explore parameter space using numerical simulations and give an empirical relation for the size of the resulting core within structures that have different initial cusp slopes. We find that infalling bodies always stall at the edge of these newly formed cores, experiencing no dynamical friction over many dynamical times. As applications, we consider the resulting decrease in the dark matter annihilation flux due to centrally destroyed cusps, and we present a new theory for the formation of close binary nuclei-the 'stalled binary' model. We focus on one particularly interesting binary nucleus system, the dwarf spheroidal galaxy VCC 128 which is dark matter dominated at all radii. We show that its nuclei would rapidly coalesce within a few million years if it has a central dark matter cusp slope steeper than r {sup -1}. However, if its initial dark matter cusp is slightly shallower than a logslope of -0.75 at {approx}0.1% of the virial radius, then the sinking nuclei naturally create a core equal to their observed separation and stall. This is close to the logslope measured in a recent billion particle cold dark matter halo simulation.

  9. Super-Sharp Radio "Vision" Measures Galaxy's Motion in Space

    NASA Astrophysics Data System (ADS)

    2005-03-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have measured the motion across the sky of a galaxy nearly 2.4 million light-years from Earth. While scientists have been measuring the motion of galaxies directly toward or away from Earth for decades, this is the first time that the transverse motion (called proper motion by astronomers) has been measured for a galaxy that is not a satellite of our own Milky Way Galaxy. M33 Radio/Optical Image of M33 CREDIT: NRAO/AUI/NSF, NOAO/AURA/NSF (Click on image for more files) An international scientific team analyzed VLBA observations made over two and a half years to detect minuscule shifts in the sky position of the spiral galaxy M33. Combined with previous measurements of the galaxy's motion toward Earth, the new data allowed the astronomers to calculate M33's movement in three dimensions for the first time. "A snail crawling on Mars would appear to be moving across the surface more than 100 times faster than the motion we measured for this galaxy," said Mark Reid, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. M33 is a satellite of the larger galaxy M31, the well-known Andromeda Galaxy that is the most distant object visible to the naked eye. Both are part of the Local Group of galaxies that includes the Milky Way. In addition to measuring the motion of M33 as a whole, the astronomers also were able to make a direct measurement of the spiral galaxy's rotation. Both measurements were made by observing the changes in position of giant clouds of molecules inside the galaxy. The water vapor in these clouds acts as a natural maser, strengthening, or amplifying, radio emission the same way that lasers amplify light emission. The natural masers acted as bright radio beacons whose movement could be tracked by the ultra-sharp radio "vision" of the VLBA. Reid and his colleagues plan to continue measuring M33's motion and also to make similar measurements of M31's motion

  10. SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS)

    SciTech Connect

    Valentinuzzi, T.; D'onofrio, M.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Moretti, A.; Saglia, R. P.; Aragon-Salamanca, A.; Simard, L.; Sanchez-Blazquez, P.; Cava, A.; Couch, W. J.

    2010-09-20

    We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4 < z < 1. They have similar stellar masses, ages, sizes, and axial ratios to local z {approx} 0.04 compact galaxies in WIde field Nearby Galaxy clusters Survey (WINGS) clusters, and to z = 1.4-2 massive and passive galaxies found in the general field. If non-brightest cluster galaxies of all densities, morphologies, and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyr may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z {approx} 0.7 to z {approx} 0.04. In contrast, the masses and sizes of BCGs and galaxies with M {sub *}>4 x 10{sup 11} M {sub sun} have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.

  11. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NASA Astrophysics Data System (ADS)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-07-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into three distinct images. In the observed near infrared, these images are connected by an arc of ~1''.8 radius forming an Einstein half-ring centered near the radio galaxy. In visible light, only the arc is apparent. 3C 220.3 is the only known instance of strong galaxy-scale lensing by a PRG not located in a galaxy cluster and therefore it offers the potential to probe the dark matter content of the radio galaxy host. Lens modeling rejects a single lens, but two lenses centered on the radio galaxy host A and a companion B, separated by 1''.5, provide a fit consistent with all data and reveal faint candidates for the predicted fourth and fifth images. The model does not require an extended common dark matter halo, consistent with the absence of extended bright X-ray emission on our Chandra image. The projected dark matter fractions within the Einstein radii of A (1''.02) and B (0''.61) are about 0.4 ± 0.3 and 0.55 ± 0.3. The mass to i-band light ratios of A and B, M/Li ˜ 8 +/- 4 M⊙ L⊙ -1, appear comparable to those of radio-quiet lensing galaxies at the same redshift in the CfA-Arizona Space Telescope LEns Survey, Lenses Structure and Dynamics, and Strong Lenses in the Legacy Survey samples. The lensed SMG is extremely bright with observed f(250 μm) = 440 mJy owing to a magnification factor μ ~ 10. The SMG spectrum shows luminous, narrow C IV λ1549 Å emission, revealing that the SMG houses a hidden quasar in addition to a violent starburst. Multicolor image reconstruction of the SMG indicates a bipolar morphology of the emitted ultraviolet (UV) light suggestive of cones through which UV light escapes a dust-enshrouded nucleus.

  12. 1 Mpc giant radio galaxy IC 711 - 3 km Westerbork observations at 92 cm

    SciTech Connect

    Vallee, J.P.; Strom, R.G.

    1988-05-01

    New Westerbork obsevations at 92 cm of the galaxy IC 711 show a radio trail that extends 1 Mpc long, much farther out than previously observed at shorter wavelengths. These new observations confirm IC 711 as the longest head-tail galaxy known, and move IC 711 to the fifth rank among galaxies with the largest radio extension from an optical galaxy nucleus (after the classical double sources 3C 236, 3C 326, HB 13, and MSH 05-22). 20 references.

  13. Feeding and feedback in radio galaxies of the local universe

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme dos Santos

    2016-10-01

    We present integral field spectroscopic data covering the inner kiloparsecs of four radio galaxies of the local Universe (z<0.07), Arp 102B, Pictor A, 3C 33 and 4C +29.30, obtained with the GMOS-IFU instrument of the Gemini telescopes. We use these data to analyze the gas excitation and kinematics via two-dimensional maps. Using the flux distributions of the emission lines, we identify extended emission in ionized gas up to the edges of the observed field, which corresponds to 1.7 kpc x 2.5 kpc for Arp 102B, 2.5 kpc x 3.4 kpc for Pictor A, 4.0 kpc x 5.8 kpc for 3C 33 and 4.3 kpc x 6.2 kpc for 4C +29.30. The extended line emitting gas displays structures resembling rotating disks, spiral arms and bars. Line ratios indicate that both photons from the nuclear source and shocks originated in the interaction of the radio jet with circumnuclear gas are ionizing mechanisms of the gas. Line ratio values are typical of Seyfert galaxies for 3C 33 and 4C +29.30, while intermediate values between Seyferts and LINERs are observed in Arp 102B. Pictor A galaxy, however, shows low values of [NII]/Ha=0.15-0.25, expected for HII regions. We suggest that these values are observed due to the low gas metallicity (12+log(O/H)=8.39). Centroid velocity maps show that the gas kinematics is dominated by rotation only in Arp 102B and 3C 33. Outflows are observed in the galaxies Arp 102B, 3C 33 and 4C +29.30. We obtain mass outflow rates of 0.32-0.49 Msun per year, but the outflow kinetic power is small, ranging 0.04-0.07% of the AGN bolometric luminosity, indicating that the feedback has little impact in the host galaxies evolution. The high masses of ionized gas, ranging from 7.4E7 to 4.6E8 Msun, and the fact that these galaxies are early-type, suggest an external origin of the gas. Indeed, it is observed evidence of interaction with companion galaxies in Arp 102B, Pictor A and 4C +29.30. We suggest that the capture of mass has triggered the nuclear activity in these galaxies, with the high

  14. Flat-spectrum radio source C1 in M33 is a background radio galaxy

    SciTech Connect

    Reynolds, S.P.; Fix, J.D.

    1988-10-01

    A candidate Crab-like supernova remnant in M33 discovered in a high-resolution survey of compact radio sources (Reynolds and Fix, 1987) has been observed. VLA observations at 1465 and 4885 MHz show that it is simply the flat-spectrum core of a completely normal double-lobed radio galaxy. This eliminates the last candidate Crab-like object in M33 whose size and brightness do not at all resemble those of the Crab Nebula, and confirms the dearth of Crab-like supernova remnants reported earlier. 7 references.

  15. UNIFICATION SCHEME OF RADIO GALAXIES AND QUASARS FALSIFIED BY THEIR OBSERVED SIZE DISTRIBUTIONS

    SciTech Connect

    Singal, Ashok K.; Singh, Raj Laxmi

    2013-03-20

    In the currently popular orientation-based unified scheme, a radio galaxy appears as a quasar when its principal radio-axis happens to be oriented within a certain cone opening angle around the observer's line of sight. Due to geometrical projection, the observed sizes of quasars should therefore appear smaller than those of radio galaxies. We show that this simple, unambiguous prediction of the unified scheme is not borne out by the actually observed angular sizes of radio galaxies and quasars. Except in the original 3CR sample, based on which the unified scheme was proposed, in other much larger samples no statistically significant difference is apparent in the size distributions of radio galaxies and quasars. The population of low-excitation radio galaxies with apparently no hidden quasars inside, which might explain the observed excess number of radio galaxies at low redshifts, cannot account for the absence of any foreshortening of the sizes of quasars at large redshifts. On the other hand, from infrared and X-ray studies, there is evidence of a hidden quasar within a dusty torus in many radio galaxies, at z > 0.5. It is difficult to reconcile this with the absence of foreshortening of quasar sizes at even these redshifts, and perhaps one has to allow that the major radio axis may not have anything to do with the optical axis of the torus. Otherwise, to resolve the dichotomy of radio galaxies and quasars, a scheme quite different from the present might be required.

  16. VLBI observations of a complete sample of radio galaxies. 4: The radio galaxies NGC 2484, 3C 109, and 3C 382

    NASA Technical Reports Server (NTRS)

    Giovannini, G.; Feretti, L.; Venturi, T.; Lara, L.; Marcaide, J.; Rioja, M.; Spangler, S. R.; Wehrle, A. E.

    1994-01-01

    We present here new Very Long Base Interferometry (VLBI) observations of one Fanaroff and Riley (F-R) I radio galaxy (NGC 2484) and two broad-line F-R II radio galaxies (3C 109 and 3C 382). For 3C 109 new Very Large Array (VLA) maps are also shown. These sources belong to a complete sample of radio galaxies under study for a better knowledge of their structures at parsec resolution. The parsec structure of these three objects is very similar: asymmetric emission, which we interpret as the core plus a one-side jet. The parsec-scale jet is always on the same side of the main kiloparsec-scale jet. The limit on the jet to counterjet brightness ratio, the ratio of the core radio power to the total radio power and the synchrotron-self Compton model allow us to derive some constraints on the jet velocity and orientation with respect to the line of sight. From these data and from those published on two other sources of our sample, we suggest that parsec-scale jets are relativistic in both F-R I and F-R II radio galaxies and that parsec scale properties in F-R I and F-R II radio galaxies are very similar despite the large difference between these two classes of radio galaxies on the kiloparsec scale.

  17. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  18. A Search for Giant Radio Galaxy Candidates and Their Radio-Optical Follow-up

    NASA Astrophysics Data System (ADS)

    Santiago-Bautista, I. del C.; Rodríguez-Rico, C. A.; Andernach, H.; Coziol, R.; Torres-Papaqui, J. P.; Jiménez Andrade, E. F.; Plauchu-Frayn, I.; Momjian, E.

    We present results of a search for giant radio galaxies (GRGs) larger than 1 Mpc in projected size. We designed a computer algorithm to identify contiguous emission regions, large and elongated enough to serve as GRG candidates, and applied it to the entire 1.4-GHz NRAO VLA Sky survey (NVSS) image atlas. Subsequent visual inspection of 1,000 such regions revealed 15 new GRGs, as well as many other candidate GRGs, some of them previously reported, for which no redshift was known. Our optical spectroscopy of 25 host galaxies with two 2.1-m telescopes in Mexico, and four others with the 10.4-m Gran Telescopio Canarias (GTC), yielded another 24 GRGs. We also obtained higher-resolution radio images with the Karl G. Jansky Very Large Array for some unconfirmed GRG candidates.

  19. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  20. The flat density profiles of massive, and relaxed galaxy clusters

    SciTech Connect

    Popolo, A. Del

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  1. INSIGHTS ON THE FORMATION, EVOLUTION, AND ACTIVITY OF MASSIVE GALAXIES FROM ULTRACOMPACT AND DISKY GALAXIES AT z = 2-3

    SciTech Connect

    Weinzirl, Tim; Jogee, Shardha; Conselice, Christopher J.; Gruetzbauch, Ruth; Buitrago, Fernando; Papovich, Casey; Chary, Ranga-Ram; Bluck, Asa; Mobasher, Bahram; Lucas, Ray A.; Dickinson, Mark; Bauer, Amanda E.

    2011-12-10

    We present our results on the structure and activity of massive galaxies at z = 1-3 using one of the largest (166 with M{sub *} {>=} 5 Multiplication-Sign 10{sup 10} M{sub Sun }) and most diverse samples of massive galaxies derived from the GOODS-NICMOS survey: (1) Sersic fits to deep NIC3 F160W images indicate that the rest-frame optical structures of massive galaxies are very different at z = 2-3 compared to z {approx} 0. Approximately 40% of massive galaxies are ultracompact (r{sub e} {<=} 2 kpc), compared to less than 1% at z {approx} 0. Furthermore, most ({approx}65%) systems at z = 2-3 have a low Sersic index n {<=} 2, compared to {approx}13% at z {approx} 0. We present evidence that the n {<=} 2 systems at z = 2-3 likely contain prominent disks, unlike most massive z {approx} 0 systems. (2) There is a correlation between structure and star formation rates (SFRs). The majority ({approx}85%) of non-active galactic nucleus (AGN) massive galaxies at z = 2-3, with SFR high enough to yield a 5{sigma} (30 {mu}Jy) 24 {mu}m Spitzer detection, have low n {<=} 2. Such n {<=} 2 systems host the highest SFR. (3) The frequency of AGNs is {approx}40% at z = 2-3. Most ({approx}65%) AGN hosts have disky (n {<=} 2) morphologies. Ultracompact galaxies appear quiescent in terms of both AGN activity and star formation. (4) Large stellar surface densities imply massive galaxies at z = 2-3 formed via rapid, highly dissipative events at z > 2. The large fraction of n {<=} 2 disky systems suggests cold mode accretion complements gas-rich major mergers at z > 2. In order for massive galaxies at z = 2-3 to evolve into present-day massive E/S0s, they need to significantly increase (n, r{sub e} ). Dry minor and major mergers may play an important role in this process.

  2. Environment and Structure of Massive Central Galaxies through the Eye of Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Huang, Song; HSC Survey Collaboration

    2017-01-01

    Although the environmental dependence of structures for massive central galaxies is predicted by the promising hierarchical assembly model, observations at low redshift seem to find no convincing evidence of that. With the help of deep i-band images of a large sample of massive central galaxies at 0.3 < z < 0.5 from the Subaru Hyper Suprime-Cam (HSC) survey, we map their stellar mass distributions out to radius larger than 100 kpc, and discover subtle, but systematic and robust structural differences that depend on halo mass. At fixed stellar mass within 100 kpc, the massive central galaxies in more massive (M_{200,c} > 1.6x10^14 M_sun$) halos have a slightly flattened inner profile within ~15-20 kpc, and a more prominent outer envelope compared to ones in less massive (M_{200,c} < 8.7\\x10^13 M_sun) halos. For centrals with M_* > 10^11.5 M_sun, the ones in more massive halos show very significant excess of mass in the outskirt when the two samples are matched using proxies of mass assembled at z > 1. Such differences are broadly consistent with richer recent merging history for more massive halos. We suggest that the relation between total stellar mass and mass within inner 5 or 10 kpc is potentially interesting for diagnosing the role played by host halo in shaping the structures of massive central galaxies. These results also highlight the importance of deep photometry and the usage of detailed structural information in the study of the assembly history of galaxies. We also show that the radial profiles of ellipticity and optical color, along with the preliminary weak lensing signals will enable us gain more insights about the evolution of massive galaxies.

  3. Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies

    SciTech Connect

    Whalen, J; Laurent-Muehleisen, S A; Moran, E C; Becker, R H

    2006-01-05

    We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit {approx} 1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of {approx} 5.

  4. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  5. NIR SPECTROSCOPIC OBSERVATION OF MASSIVE GALAXIES IN THE PROTOCLUSTER AT z = 3.09

    SciTech Connect

    Kubo, Mariko; Yamada, Toru; Ichikawa, Takashi; Kajisawa, Masaru; Matsuda, Yuichi; Tanaka, Ichi

    2015-01-20

    We present the results of near-infrared spectroscopic observations of the K-band-selected candidate galaxies in the protocluster at z = 3.09 in the SSA22 field. We observed 67 candidates with K {sub AB} < 24 and confirmed redshifts of the 39 galaxies at 2.0 < z {sub spec} < 3.4. Of the 67 candidates, 24 are certainly protocluster members with 3.04 ≤ z {sub spec} ≤ 3.12, which are massive red galaxies that have been unidentified in previous optical observations of the SSA22 protocluster. Many distant red galaxies (J – K {sub AB} > 1.4), hyper extremely red objects (J – K {sub AB} > 2.1), Spitzer MIPS 24 μm sources, active galactic nuclei (AGNs) as well as the counterparts of Lyα blobs and the AzTEC/ASTE 1.1 mm sources in the SSA22 field are also found to be protocluster members. The mass of the SSA22 protocluster is estimated to be ∼2-5 × 10{sup 14} M {sub ☉}, and this system is plausibly a progenitor of the most massive clusters of galaxies in the current universe. The reddest (J – K {sub AB} ≥ 2.4) protocluster galaxies are massive galaxies with M {sub star} ∼ 10{sup 11} M {sub ☉} showing quiescent star formation activities and plausibly dominated by old stellar populations. Most of these massive quiescent galaxies host moderately luminous AGNs detected by X-ray. There are no significant differences in the [O III] λ5007/Hβ emission line ratios and [O III] λ5007 line widths and spatial extents of the protocluster galaxies from those of massive galaxies at z ∼ 2-3 in the general field.

  6. Correlation between excitation index and Eddington ratio in radio galaxies

    NASA Astrophysics Data System (ADS)

    Hu, Jing-Fu; Cao, Xin-Wu; Chen, Liang; You, Bei

    2016-09-01

    We use a sample of 111 radio galaxies with redshift z < 0.3 to investigate their nuclear properties. The black hole masses of the sources in this sample are estimated with the velocity dispersion/luminosity of the galaxies, or the width of the broad-lines. We find that the excitation index, the relative intensity of low and high excitation lines, is correlated with the Eddington ratio for this sample. The size of the narrow-line region (NLR) was found to vary with ionizing luminosity as RNLR ∝ Lion0.25 (Liu et al. 2013). Using this empirical relation, we find that the correlation between the excitation index and the Eddington ratio can be reproduced by photoionization models. We adopt two sets of spectral energy distributions (SEDs), with or without a big blue bump in ultraviolet as the ionizing continuum, and infer that the modeled correlation between the excitation index and the Eddington ratio is insensitive to the applied SED. This means that the difference between high excitation galaxies and low excitation galaxies is not caused by the different accretion modes in these sources. Instead, it may be caused by the size of the NLR.

  7. Shaping massive galaxies: their morphology and kinematics at z = 1-3

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Conselice, C. J.; Epinat, B.; Bedregal, A. G.; Trujillo, I.; Grützbauch, R.

    2011-11-01

    Massive (M_* ≥ 10^{11} M_⊙) galaxies at high redshift (z ≥ 1.5) remain mysterious objects. Their extremely small sizes (effective radii of 1-2 kpc) make them as dense as modern globular clusters. It is thought that a highly dissipational merger is needed to create such compact galaxies. Within this proceedings, we discuss this issue, along with state-of-the-art morphological and kinematic observations of these objects. In the present day Universe massive galaxies contain large sizes, and harbour old and metal-rich stellar populations. In order to explore their development, we present near-IR IFU observations with SINFONI@VLT for ten massive galaxies at z ˜ 1.4 solely selected by their high stellar mass which allows us to retrieve velocity dispersions, kinematic maps and dynamical masses. We combine this with data from the GOODS NICMOS Survey, the largest sample of massive galaxies (80 objects) with high-resolution imaging at high redshift (1.7 < z < 3) acquired to date. As a result, we show how massive galaxy morphology changes possibly result through elusive minor merging.

  8. A massive protocluster of galaxies at a redshift of z ≈ 5.3.

    PubMed

    Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G

    2011-02-10

    Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.

  9. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    PubMed

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  10. Interstellar matter in early-type galaxies. III - Radio emission and star formation

    NASA Technical Reports Server (NTRS)

    Walsh, D. E. P.; Knapp, G. R.; Wrobel, J. M.; Kim, D.-W.

    1989-01-01

    The relationship between the IR and radio luminosity in early-type galaxies is examined using the correlation among spiral galaxies as a diagnostic of the presence of star formation. For ellipticals, the presence of long-wavelength IR emission enhances the probability that the galaxy is a radio source and is also correlated with the strength of that source. These findings are consistent with the idea that active radio nuclei are due to black holes being fueled by accretion of gas. The majority of S0s detected in both radio and far-IR have a similar ratio of IR to radio luminosity as has been found in spirals, and which is considered to be indicative of recent star formation. Sensitive radio limits for several galaxies reveal another substantial population of S0s with moderately strong IR emission unaccompanied by radio power.

  11. The intriguing properties of local compact massive galaxies: What are they?

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, A.; Vazdekis, A.; Trujillo, I.; Sánchez-Blázquez, P.; Ricciardelli, E.; de la Rosa, I. G.

    2013-07-01

    Studying the properties of the few compact massive galaxies that exist in the local Universe (Trujillo et al. 2009) might provide a closer look to the nature of their high redshift (z >= 1.0) massive counterparts. By this means we have characterized their main kinematics, structural properties, stellar populations and star formation histories with a set of new high quality spectroscopic and imaging data (Ferré-Mateu et al. 2012 and Trujillo et al. 2012). These galaxies seem to be truly unique, as they do not follow the characteristic kinematics, stellar surface mass density profiles and stellar population patterns of present-day massive ellipticals or spirals of similar mass. They are, instead, more alike their high-z analogs. Summarizing, local compact massive galaxies are rare, unique and the perfect laboratory to study their high redshift counterparts.

  12. Multifrequency radio observations of Cygnus A - Spectral aging in powerful radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Perley, R. A.; Dreher, J. W.; Leahy, J. P.

    1991-01-01

    A detailed analysis of the radio spectrum across the lobes of Cygnus A is presented in order to critically test the synchroton spectral aging theory. The results are in good agreement with the jet model for powerful radio galaxies, involving particle acceleration at the hot spots and outflow into the radio lobes, with subsequent energy loss due to synchrotron radiation. The hot spot spectra are well represented by a spectral aging model involving continuous injection of relativistic particles. Both hot spots have spectral break frequencies around 10 GHz. An injection index of 0.5 is found for both hot spots, consistent with diffusive shock acceleration at a strong nonrelativistic shock in a Newtonian fluid. The LF hot spot emission spectrum falls below the injected power law. This effect is isolated to the hot spots, and is best explained by a low-energy cutoff in the particle distribution.

  13. Radio galaxies and the star formation history of the universe

    NASA Astrophysics Data System (ADS)

    Gopal-Krishna; Wiita, P. J.; Osterman, M. A.

    Multi-wavelength observations made in the last decade strongly suggest that the universe underwent an intense phase of star-formation in the past (z > 1). This intensive activity is commonly attributed to a higher galaxy merger rate when the universe was a fraction of its present age. After briefly reviewing these evidences, we examine the role of the powerful radio sources whose comoving density is known to be a few orders of magnitude higher at z ˜2 (the so called `quasar era'). Taking into account the most recent theoretical models for the temporal evolution of the size and luminosity of a powerful double radio source, as well as advanced Lambda-CDM simulations of the cosmic web of baryonic material at different redshifts, it is argued that during the quasar era a high fraction of the volume of the web was occupied by the lobes of double radio sources. Wide-spread compression of proto-stellar clouds, triggered by the high pressure of the synchrotron plasma of the radio lobes, can thus be expected to have played a significant role in the star formation history of the universe, and also in causing a rather high level of magnitization of the galactic and intergalactic material at early epochs.

  14. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-06

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  15. Giant radio galaxies as effective probes of X-ray gas in large-scale structure

    NASA Astrophysics Data System (ADS)

    Saripalli, Lakshmi; Subrahmanyan, Ravi; Malarecki, Jurek; Jones, Heath; Staveley-Smith, Lister

    2015-08-01

    Giant radio galaxies are AGNs with relativistic jets that dynamically evolve into Mpc scale synchrotron lobes around the host elliptical. The thermal gas environment influences the jet advance and lobe formation. Since the host ellipticals are in filamentary low-density galaxy environments, the ambient gas for the Mpc-scale radio structures is likely the warm-hot X-ray gas inhabiting the intergalactic medium. We have, therefore, used large radio galaxies as probes of the distribution of hot and tenuous gas on mega-parsec scales in these relatively low density large-scale structures.For a sample of 19 giant radio galaxies we obtained radio continuum images of the synchrotron structures, and redshifts of a total of nearly 9000 galaxies in their vicinity. The 2-degree field redshift data traces the large-scale galaxy structure around the radio sources. The radio-optical data allows an estimation of the pressure, temperature and distribution of hot thermal gas associated with the large-scale structure in the vicinity of the radio AGN (Malarecki, Staveley-Smith, Saripalli, Subrahmanyan, Jones, Duffy, Rioja 2013, MNRAS 432, 200).Strong correspondence between radio galaxy lobes and galaxy distribution is observed. The data suggests that galaxies trace gas, and that radio jets and lobes of giant radio galaxies are sensitive tracers of gas on mega-parsec scales and may be used as effective probes of the difficult-to-detect IGM (Malarecki, Jones, Saripalli, Stavele-Smith, Subrahmanyan, 2015, MNRAS in press; arXiv150203954).

  16. A radio continuum survey of southern E and SO galaxies at 2.7 GHz and 5.0 GHz

    NASA Astrophysics Data System (ADS)

    Sadler, E. M.

    A radio survey has been conducted of about 250 E and SO galaxies which makes possible, since the distances of all the radio galaxies are known, a discussion of such absolute quantities as radio power and optical luminosity. Use is made of the fractional luminosity function defined by Hummel (1981). The results of the present study indicate that, unlike the case of spiral galaxies, the galaxy environment appears to have little influence on the formation of radio sources in elliptical and SO galaxies, and there is no evidence for excess radio emission from paired galaxies.

  17. The Warped Nuclear Disk of Radio Galaxy 3C 449

    NASA Astrophysics Data System (ADS)

    Tremblay, G. R.; Quillen, A. C.; Floyd, D. J. E.; Noel-Storr, J.; Baum, S. A.; Axon, D. J.; O'Dea, C. P.; Chiaberge, M.; Macchetto, F. D.; Sparks, W. B.; Miley, G. K.; Capetti, A.; Madrid, J. P.; Perlman, E.

    2005-12-01

    Among radio galaxies containing nuclear dust disks, the bipolar jet axis is generally expected to be perpendicular to the disk major axis. However, the FR I radio source 3C 449, possessing a nearly parallel jet/disk orientation on the sky, is an extreme example of a system that does not conform to this expectation. We examine the 600 pc dusty disk in this galaxy with images from the Hubble Space Telescope. We find that a colormap of the disk exhibits a twist in its isocolor contours (isochromes). We model the colormap by integrating galactic starlight through an absorptive disk, and find that the anomalous twist in the isochromes can be reproduced in the model with a vertically thin, warped disk. The model predicts that the disk is nearly perpendicular to the jet axis within 100 pc of the nucleus. We discuss physical mechanisms capable of causing such a warp. We show that a torque on the disk arising from a possible binary black hole in the AGN or radiation pressure from the AGN causes precession on a timescale that is too long to generate such a warp. However, we estimate that the pressure in the X-ray emitting interstellar medium is large enough to perturb the disk. The warped disk in 3C 449 may be a new manifestation of feedback from an active galactic nucleus.

  18. VLBA Observations of Low Luminosity Flat Spectrum Radio Galaxies and BL Lac Objects: Polarisation Properties

    NASA Astrophysics Data System (ADS)

    Bondi, M.; Dallacasa, D.; Stanghellini, C.; Marchã, M. J. M.

    We obtained two-epoch VLBA observations at 5 GHz of a list of radio galaxies drawn from the 200 mJy sample (Marcha et al. 1996). The objects selected for milli-arcsecond scale observations are classified, on the basis of their optical spectroscopic and polarimetric properties, as BL Lac objects, normal weak line radio galaxies, broad line radio galaxies, and transition objects (those with intermediate properties). We present preliminary results on the radio polarization properties, on the milli-arcsecond scale, of objects with different optical properties and discuss structural variations detected from the two epochs.

  19. Gas-to-dust ratios in massive star-forming galaxies at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Aono, Yuya; Iono, Daisuke

    2016-08-01

    We present results of 12CO(J = 2-1) observations toward four massive star-forming galaxies at z ˜ 1.4 with the Nobeyama 45 m radio telescope. The galaxies are detected with Spitzer/MIPS in 24 μm and Herschel/SPIRE in 250 μm and 350 μm, and they mostly reside in the main sequence. Their gas-phase metallicities derived by the N2 method using the Hα and [N II]λ 6584 emission lines are near the solar value. CO lines are detected toward three galaxies. The molecular-gas masses obtained are (9.6-35) × 1010 M⊙ by adopting the Galactic CO-to-H2 conversion factor and a CO(2-1)/CO(1-0) flux ratio of 3. The dust masses derived from the modified blackbody model (assuming a dust temperature of 35 K and an emissivity index of 1.5) are (2.4-5.4) × 108 M⊙. Resulting gas-to-dust ratios (not accounting for H I mass) at z ˜ 1.4 are 220-1450, which are several times larger than those in local star-forming galaxies. A dependence of the gas-to-dust ratio on the far-infrared luminosity density is not clearly seen.

  20. ULTRA-DEEP SUB-KILOPARSEC VIEW OF NEARBY MASSIVE COMPACT GALAXIES

    SciTech Connect

    Trujillo, Ignacio; Ferre-Mateu, Anna

    2012-05-20

    Using Gemini North telescope ultra-deep and high-resolution (sub-kiloparsec) K-band adaptive optics imaging of a sample of four nearby (z {approx} 0.15) massive ({approx}10{sup 11} M{sub Sun }) compact (R < 1.5 kpc) galaxies, we have explored the structural properties of these rare objects with unprecedented detail. Our surface brightness profiles expand over 12 mag in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities {approx}10{sup 6} M{sub Sun} kpc{sup -2} at radial distances of {approx}15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, visually resembling S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around (2-3) Multiplication-Sign 10{sup 10} M{sub Sun} stellar mass from their inner (R < 1.7 kpc) region toward their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size, and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.

  1. A massive, quiescent galaxy at a redshift of 3.717.

    PubMed

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G; Oesch, Pascal A; Papovich, Casey; Spitler, Lee R; Straatman, Caroline M S; Tran, Kim-Vy H; Yuan, Tiantian

    2017-04-05

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 10(11) solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  2. A massive, quiescent galaxy at a redshift of 3.717

    NASA Astrophysics Data System (ADS)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3–4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  3. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    SciTech Connect

    Trujillo, Ignacio; Vazdekis, Alexandre; Balcells, Marc; Sánchez-Blázquez, Patricia

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  4. Chemical abundances of massive stars in Local Group galaxies

    NASA Astrophysics Data System (ADS)

    Venn, Kim A.; Kaufer, Andreas; Tolstoy, Eline; Kudritzki, Rolf-Peter; Przybilla, Norbert; Smartt, Stephen J.; Lennon, Daniel J.

    The relative abundances of elements in galaxies can provide valuable information on the stellar and chemical evolution of a galaxy. While nebulae can provide abundances for a variety of light elements, stars are the only way to directly determine the abundances of iron-group and s-process and r-process elements in a galaxy. The new 8m and 10m class telescopes and high-efficiency spectrographs now make high-quality spectral observations of bright supergiants possible in dwarf galaxies in the Local Group. We have been concentrating on elemental abundances in the metal-poor dwarf irregular galaxies, NGC 6822, WLM, Sextants A, and GR 8. Comparing abundance ratios to those predicted from their star formation histories, determined from color-magnitude diagrams, and comparing those ratios between these galaxies can give us new insights into the evolution of these dwarf irregular galaxies. Iron-group abundances also allow us to examine the metallicities of the stars in these galaxies directly, which affects their inferred mass loss rates and predicted stellar evolution properties.

  5. Further evidence for large central mass-to-light ratios in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Wegner, G. A.; Thomas, J.; Saglia, R. P.; Bender, R.; Pu, S. B.

    2013-07-01

    We studied the stellar populations, distribution of dark matter, and dynamical structure of a sample of 25 early-type galaxies in the Coma and Abell~262 clusters. We derived dynamical mass-to-light ratios and dark matter densities from orbit-based dynamical models, complemented by the ages, metallicities, and α-element abundances of the galaxies from single stellar population models. Most of the galaxies have a significant detection of dark matter and their halos are about 10 times denser than in spirals of the same stellar mass. Calibrating dark matter densities to cosmological simulations we find assembly redshifts z DM ~ 1-3. The dynamical mass that follows the light is larger than expected for a Kroupa stellar initial mass function, especially in galaxies with high velocity dispersion σeff inside the effective radius r eff. We now have 5 of 25 galaxies where mass follows light to 1-3 r eff, the dynamical mass-to-light ratio of all the mass that follows the light is large (~ 8-10 in the Kron-Cousins R band), the dark matter fraction is negligible to 1-3 r eff. This could indicate a `massive' initial mass function in massive early-type galaxies. Alternatively, some of the dark matter in massive galaxies could follow the light very closely suggesting a significant degeneracy between luminous and dark matter.

  6. AGN JET KINETIC POWER AND THE ENERGY BUDGET OF RADIO GALAXY LOBES

    SciTech Connect

    Godfrey, L. E. H.; Shabala, S. S.

    2013-04-10

    Recent results based on the analysis of radio galaxies and their hot X-ray emitting atmospheres suggest that non-radiating particles dominate the energy budget in the lobes of FR I radio galaxies, in some cases by a factor of more than 1000, while radiating particles dominate the energy budget in FR II radio galaxy lobes. This implies a significant difference in the radiative efficiency of the two morphological classes. To test this hypothesis, we have measured the kinetic energy flux for a sample of 3C FR II radio sources using a new method based on the observed parameters of the jet terminal hotspots, and compared the resulting Q{sub jet}-L{sub radio} relation to that obtained for FR I radio galaxies based on X-ray cavity measurements. Contrary to expectations, we find approximate agreement between the Q{sub jet}-L{sub radio} relations determined separately for FR I and FR II radio galaxies. This result is ostensibly difficult to reconcile with the emerging scenario in which the lobes of FR I and FR II radio galaxies have vastly different energy budgets. However, a combination of lower density environment, spectral aging and strong shocks driven by powerful FR II radio galaxies may reduce the radiative efficiency of these objects relative to FR Is and counteract, to some extent, the higher radiative efficiency expected to arise due to the lower fraction of energy in non-radiating particles. An unexpected corollary is that extrapolating the Q{sub jet}-L{sub radio} relation determined for low power FR I radio galaxies provides a reasonable approximation for high power sources, despite their apparently different lobe compositions.

  7. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC 1138-262: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe?

    NASA Astrophysics Data System (ADS)

    Nesvadba, N. P. H.; Lehnert, M. D.; Eisenhauer, F.; Gilbert, A.; Tecza, M.; Abuter, R.

    2006-10-01

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such feedback in the optical emission line gas around the z=2.16 powerful radio galaxy MRC 1138-262, likely a massive galaxy in formation. The kiloparsec-scale kinematics, with FWHMs and relative velocities <~2400 km s-1 and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of a few ×1060 ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models and suggest that AGN winds might have a cosmological significance that is similar to, or perhaps larger than, starburst-driven winds if MRC 1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions (<~50%) from a >L* galaxy within a few tens to 100 Myr, fast enough to preserve the observed [α/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC 1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation. Based on observations collected at the European Southern Observatory, Very Large Telescope Array, Cerro Paranal; program Nos. 70.B-0545, 70.A-0229, and 076.A-0684.

  8. Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC1138-262: Evidence for Efficient AGN Feedback in the Early Universe?

    SciTech Connect

    Nesvadba, N H; Lehnert, M D; Eisenhauer, F; Gilbert, A M; Tecza, M; Abuter, R

    2007-06-26

    To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z = 2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities {approx}< 2400 km s{sup -1} and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of {approx} few x 10{sup 60} ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions ({approx}< 50%) from a > L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [{alpha}/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.

  9. Evidence for HI replenishment in massive galaxies through gas accretion from the cosmic web

    NASA Astrophysics Data System (ADS)

    Kleiner, Dane; Pimbblet, Kevin A.; Heath Jones, D.; Koribalski, Bärbel S.; Serra, Paolo

    2016-12-01

    We examine the HI -to-stellar mass ratio (HI fraction) for galaxies near filament backbones within the nearby Universe (d < 181 Mpc). This work uses the 6 degree Field Galaxy Survey (6dFGS) and the Discrete Persistent Structures Extractor (DisPerSE) to define the filamentary structure of the local cosmic web. HI spectral stacking of HI Parkes All Sky Survey (HIPASS) observations yield the HI fraction for filament galaxies and a field control sample. The HI fraction is measured for different stellar masses and 5th nearest neighbour projected densities (Σ5) to disentangle what influences cold gas in galaxies. For galaxies with stellar masses log(M⋆) ≤ 11 M⊙ in projected densities 0 ≤ Σ5 < 3 galaxies Mpc-2, all HI fractions of galaxies near filaments are statistically indistinguishable from the control sample. Galaxies with stellar masses log(M⋆) ≥ 11 M⊙ have a systematically higher HI fraction near filaments than the control sample. The greatest difference is 0.75 dex, which is 5.5σ difference at mean projected densities of 1.45 galaxies Mpc-2. We suggest that this is evidence for massive galaxies accreting cold gas from the intra-filament medium which can replenish some HI gas. This supports cold mode accretion where filament galaxies with a large gravitational potential can draw gas from the large scale structure.

  10. Testing for Shock-Heated X-Ray Gas around Compact Steep Spectrum Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; O'Dea, Christopher; Worrall, Diana M.; Clarke, Tracy E.; Tremblay, Grant; Baum, Stefi; Christiansen, Kevin; Mullarkey, Christopher; Mittal, Rupal

    2017-01-01

    We present Chandra and XMM-Newton X-ray, VLA radio, and optical observations of two CSS radio galaxies. B3 1445+410 is a low excitation emission line galaxy with possibly a hybrid FRI/II (or Fat Double) radio morphology. The Chandra observations are point-like and well fit with a power-law consistent with emission from a Doppler boosted core. PKS B1017-325 is a galaxy with a bent double radio morphology. The XMM-Newton observations are consistent with an ISM with a contribution from hot shocked gas. We compile selected radio and X-ray properties of the nine CSS radio galaxies with X-ray detections so far. We find that 1/3 show evidence for hot shocked gas. We note that the counts in the sources are low and the properties of the 3 sources with evidence for hot shocked gas are typical of the other CSS radio galaxies. We suggest that hot shocked gas may be typical of CSS radio galaxies due to their propagation through their host galaxies.

  11. Protoclusters with evolved populations around radio galaxies at z ~ 2.5

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard

    2006-09-01

    We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.

  12. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    NASA Astrophysics Data System (ADS)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  13. A massive, quiescent, population II galaxy at a redshift of 2.1.

    PubMed

    Kriek, Mariska; Conroy, Charlie; van Dokkum, Pieter G; Shapley, Alice E; Choi, Jieun; Reddy, Naveen A; Siana, Brian; van de Voort, Freeke; Coil, Alison L; Mobasher, Bahram

    2016-12-07

    Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years-characteristics that are similar to population II stars in the Milky Way. With an average past star

  14. A massive, quiescent, population II galaxy at a redshift of 2.1

    NASA Astrophysics Data System (ADS)

    Kriek, Mariska; Conroy, Charlie; van Dokkum, Pieter G.; Shapley, Alice E.; Choi, Jieun; Reddy, Naveen A.; Siana, Brian; van de Voort, Freeke; Coil, Alison L.; Mobasher, Bahram

    2016-12-01

    Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years—characteristics that are similar to population II stars in the Milky Way. With an average past star

  15. 3D Spectroscopy Unveils Massive Galaxy Formation Modes at High-z

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Conselice, C. J.; Epinat, B.; Bedregal, A. G.; Trujillo, I.; Grützbauch, R.

    Massive (stellar mass ≥ 1011 M ⊙) galaxies at high redshift (z ≥ 1. 5) remain mysterious objects. Their extremely small sizes (effective radii of 1 - 2 kpc) make them as dense as globular clusters, whereas in the present day Universe similar mass systems are large with old and metal-rich stellar populations. In order to explore this development, we present near-IR IFU observations with SINFONI@VLT for ten massive galaxies at z ˜ 1. 4 solely selected by their high stellar mass which allows us to retrieve velocity dispersions, kinematic maps and dynamical masses. We join this with imaging from the GOODS NICMOS Survey (GNS), which was carried out by our group, and which is the largest sample of massive galaxies (80 objects) at high redshift (1. 7 < z < 3) to date. With these data we show how their morphology changes, possibly as a result of minor merging events also seen in the kinematics.

  16. Galaxy And Mass Assembly (GAMA): the 325 MHz radio luminosity function of AGN and star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Prescott, Matthew; Mauch, T.; Jarvis, M. J.; McAlpine, K.; Smith, D. J. B.; Fine, S.; Johnston, R.; Hardcastle, M. J.; Baldry, I. K.; Brough, S.; Brown, M. J. I.; Bremer, M. N.; Driver, S. P.; Hopkins, A. M.; Kelvin, L. S.; Loveday, J.; Norberg, P.; Obreschkow, D.; Sadler, E. M.

    2016-03-01

    Measurement of the evolution of both active galactic nuclei (AGN) and star-formation in galaxies underpins our understanding of galaxy evolution over cosmic time. Radio continuum observations can provide key information on these two processes, in particular via the mechanical feedback produced by radio jets in AGN, and via an unbiased dust-independent measurement of star formation rates. In this paper, we determine radio luminosity functions at 325 MHz for a sample of AGN and star-forming galaxies by matching a 138 deg2 radio survey conducted with the Giant Metrewave Radio Telescope, with optical imaging and redshifts from the Galaxy And Mass Assembly survey. We find that the radio luminosity function at 325 MHz for star-forming galaxies closely follows that measured at 1.4 GHz. By fitting the AGN radio luminosity function out to z = 0.5 as a double power law, and parametrizing the evolution as Φ ∝ (1 + z)k, we find evolution parameters of k = 0.92 ± 0.95 assuming pure density evolution and k = 2.13 ± 1.96 assuming pure luminosity evolution. We find that the Low Excitation Radio Galaxies are the dominant population in space density at lower luminosities. Comparing our 325 MHz observations with radio continuum imaging at 1.4 GHz, we determine separate radio luminosity functions for steep- and flat-spectrum AGN, and show that the beamed population of flat-spectrum sources in our sample can be shifted in number density and luminosity to coincide with the unbeamed population of steep-spectrum sources, as is expected in the orientation-based unification of AGN.

  17. THE CLUSTERING OF GALAXIES AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Worpel, Hauke; Brown, Michael J. I.; Jones, D. Heath; Floyd, David J. E.; Beutler, Florian

    2013-07-20

    We examine the hypothesis that mergers and close encounters between galaxies can fuel active galactic nuclei (AGNs) by increasing the rate at which gas accretes toward the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors, and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the Six Degree Field Galaxy Survey. We find tentative evidence that radio AGNs with more than 200 times the median radio power have, on average, more close (r < 160 kpc) companions than their radio-quiet counterparts, suggesting that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is neither a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.

  18. Gamma-ray Bursts: Radio Afterglow and Host Galaxy Study with The FAST Telescope

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Huang, Y. F.; Kong, S. W.; Zhang, Z. B.; Li, D.; Luo, J. J.

    2016-02-01

    For four types of GRBs, namely high-luminosity, low-luminosity, standard and failed GRBs, we calculated their radio afterglow light curves. Meanwhile, considering contributions from host galaxies in radio bands, we statistically investigated the effect of hosts on radio afterglows. It is found that a tight anti-correlation exists between the ratio of radio flux (RRF) of host galaxy to the total radio afterglow peak flux and the observed frequency. Using this method, the host flux densities of those bursts without host measurements can be estimated at low or medium frequencies. We predicted that almost all types of radio afterglows, except that of low-luminosity GRBs, can be observed by FAST up to z = 15 or even more. FAST is expected to significantly expand the samples of GRB radio afterglows and host galaxies.

  19. Optical and radio astrometry of the galaxy associated with FRB 150418

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Beswick, R.; Tingay, S. J.; Keane, E. F.; Bhandari, S.; Johnston, S.; Totani, T.; Tominaga, N.; Yasuda, N.; Stappers, B. W.; Barr, E. D.; Kramer, M.; Possenti, A.

    2016-11-01

    A fading radio source, coincident in time and position with the fast radio burst FRB 150418, has been associated with the galaxy WISE J071634.59-190039.2. Subsequent observations of this galaxy have revealed that it contains a persistent, but variable, radio source. We present e-Multi-Element Radio Linked Interferometer Network, Very Long Baseline Array, and Australia Telescope Compact Array radio observations and Subaru optical observations of WISE J071634.59-190039.2 and find that the persistent radio source is unresolved and must be compact (<0.01 kpc), and that its location is consistent with the optical centre of the galaxy. We conclude that it is likely that WISE J071634.59-190039.2 contains a weak radio active galactic nucleus.

  20. Relics in galaxy clusters at high radio frequencies

    NASA Astrophysics Data System (ADS)

    Kierdorf, M.; Beck, R.; Hoeft, M.; Klein, U.; van Weeren, R. J.; Forman, W. R.; Jones, C.

    2017-03-01

    Aims: We investigated the magnetic properties of radio relics located at the peripheries of galaxy clusters at high radio frequencies, where the emission is expected to be free of Faraday depolarization. The degree of polarization is a measure of the magnetic field compression and, hence, the Mach number. Polarization observations can also be used to confirm relic candidates. Methods: We observed three radio relics in galaxy clusters and one radio relic candidate at 4.85 and 8.35 GHz in total emission and linearly polarized emission with the Effelsberg 100-m telescope. In addition, we observed one radio relic candidate in X-rays with the Chandra telescope. We derived maps of polarization angle, polarization degree, and Faraday rotation measures. Results: The radio spectra of the integrated emission below 8.35 GHz can be well fitted by single power laws for all four relics. The flat spectra (spectral indices of 0.9 and 1.0) for the so-called Sausage relic in cluster CIZA J2242+53 and the so-called Toothbrush relic in cluster 1RXS 06+42 indicate that models describing the origin of relics have to include effects beyond the assumptions of diffuse shock acceleration. The spectra of the radio relics in ZwCl 0008+52 and in Abell 1612 are steep, as expected from weak shocks (Mach number ≈2.4). Polarization observations of radio relics offer a method of measuring the strength and geometry of the shock front. We find polarization degrees of more than 50% in the two prominent Mpc-sized radio relics, the Sausage and the Toothbrush, which are among the highest percentages of linear polarization detected in any extragalactic radio source to date. This is remarkable because the large beam size of the Effelsberg single-dish telescope corresponds to linear extensions of about 300 kpc at 8.35 GHz at the distances of the relics. The high degree of polarization indicates that the magnetic field vectors are almost perfectly aligned along the relic structure, as expected for shock

  1. Strangers in Our Midst: Massive, Evolved, Highly-obscured Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; 3D-HST Survey Team

    2015-01-01

    Among the most massive galaxies at z > 1, we have uncovered a significant population of galaxies with unique SEDs that are best fit with highly-obscured evolved stellar populations (log M > 11, Av > 2, age > 1 Gyr). These are not galaxies at the detection limit or galaxies with the most extreme optical-IR colors: they have always been lurking in IR-selected photometric surveys but with their redshifts significantly overestimated and subsequently-biased derived stellar population properties. Characterizing this population has previously been impossible even with medium-band near-IR photometry due to strong degeneracies between photometric redshifts and SED shapes, which we can now critically break with robust emission-line redshifts obtained from the 3D-HST grism survey (H-alpha and [OIII] at 1 < z < 2). Understanding this population is imperative for interpreting the evolution of the high-mass end of the galaxy stellar mass function. Intriguingly, these galaxies could represent an evolutionary bridge between dusty starbursts and relatively unobscured quiescent galaxies, both of which are found among massive galaxies at z > 1 but with the latter dominating at lower redshifts.

  2. DISCOVERY OF ULTRA-STEEP SPECTRUM GIANT RADIO GALAXY WITH RECURRENT RADIO JET ACTIVITY IN ABELL 449

    SciTech Connect

    Hunik, Dominika; Jamrozy, Marek

    2016-01-20

    We report a discovery of a 1.3 Mpc diffuse radio source with extremely steep spectrum fading radio structures in the vicinity of the Abell 449 cluster of galaxies. Its extended diffuse lobes are bright only at low radio frequencies and their synchrotron age is about 160 Myr. The parent galaxy of the extended relic structure, which is the dominant galaxy within the cluster, is starting a new jet activity. There are three weak X-rays sources in the vicinity of the cluster as found in the ROSAT survey, however it is not known if they are connected with this cluster of galaxies. Just a few radio galaxy relics are currently known in the literature, as finding them requires sensitive and high angular resolution low-frequency radio observations. Objects of this kind, which also are starting a new jet activity, are important for understanding the life cycle and evolution of active galactic nuclei. A new 613 MHz map as well as the archival radio data pertaining to this object are presented and analyzed.

  3. Polarimetry and Unification of Low-Redshift Radio Galaxies

    SciTech Connect

    Cohen, Marshall H.; Ogle, Patrick M.; Tran, Hien D.; Goodrich, Robert W.; Miller, Joseph S.

    1999-11-01

    We have made high-quality measurements of the polarization spectra of 13 FR II radio galaxies and taken polarization images for 11 of these with the Keck telescopes. Seven of the eight narrow-line radio galaxies (NLRGs) are polarized, and six of the seven show prominent broad Balmer lines in polarized light. The broad lines are also weakly visible in total flux. Some of the NLRGs show bipolar regions with roughly circumferential polarization vectors, revealing a large reflection nebula illuminated by a central source. Our observations powerfully support the hidden quasar hypothesis for some NLRGs. According to this hypothesis, the continuum and broad lines are blocked by a dusty molecular torus, but can be seen by reflected, hence polarized, light. Classification as a NLRG, a broad-line radio galaxy (BLRG), or a quasar therefore depends on orientation. However, not all objects fit into this unification scheme. Our sample is biased toward objects known in advance to be polarized, but the combination of our results with the 1996 findings of Hill, Goodrich, and DePoy show that at least six out of a complete, volume and flux-limited sample of nine FR II NLRGs have broad lines, seen either in polarization or P{alpha}.The BLRGs in our sample range from 3C 382, which has a quasar-like spectrum, to the highly reddened IRAS source FSC 2217+259. This reddening sequence suggests a continuous transition from unobscured quasar to reddened BLRG to NLRG. Apparently the obscuring torus does not have a distinct edge. The BLRGs have polarization images that are consistent with a point source broadened by seeing and diluted by starlight. We do not detect extended nebular or scattered emission, perhaps because it is swamped by the nuclear source. Our starlight-corrected BLRG spectra can be explained with a two-component model: a quasar viewed through dust and quasar light scattered by dust. The direct flux is more reddened than the scattered flux, causing the polarization to rise

  4. An observational study of quasar host galaxies, radio galaxies, and lyman alpha emitters

    NASA Astrophysics Data System (ADS)

    Wold, Isak George Bayard

    In this thesis I provide observational constraints on quasar host galaxies, radio galaxies, and Lyman Alpha Emitters (LAEs). I develop and implement a method to provide stellar age constraints for the host galaxies of nearby (z<0.3) quasars. The observational strategy is to spectroscopically observe quasar host galaxies offset from the bright central point source to maximize the signal-to-noise of the stellar light. The central quasar is also spectroscopically observed, so that any nuclear light scattered into our off-axis spectrum can be efficiently modeled and subtracted. The reliability of my technique is tested via a Monte-Carlo routine in which the correspondence between synthetic spectra with known parameters and the model output is determined. Application of this model to a preliminary sample of 10 objects is presented and compared to previous studies. I present 1.4 GHz catalogs for the cluster fields A370 and A2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. I construct differential number counts for each field and find results consistent with previous studies. I emphasize the need to account for cosmic variance. These high resolution, ultra-deep radio catalogs will be vital to future multiwavelength studies. Finally, I apply a newly developed search method to all of the deep GALEX grism fields, which correspond to some of the most intensively studied regions in the sky. My work provides the first large sample of z=0.67-1.16 LAEs (N=60) that can be used to investigate the physical properties of these galaxies. I catalog the candidate z=1 LAE samples in each field and give optical redshifts from both archival and newly obtained observations. With X-ray, UV, and optical data, I determine the false detection rate (cases where the emission line is either not confirmed or is not Lya) and the AGN contamination rate of my sample. With the remaining LAEs, I compute the LAE galaxy luminosity function

  5. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  6. Constraints on the evolutionary mechanisms of massive galaxies since z ∼ 1 from their velocity dispersions

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, L.; Balcells, M.; Trujillo, I.; Falcón-Barroso, J.; Tapia, T.; Cardiel, N.; Gallego, J.; Guzmán, R.; Hempel, A.; Martín-Navarro, I.; Pérez-González, P. G.; Sánchez-Bláquez, P.

    2015-10-01

    Several authors have reported that the dynamical masses of massive compact galaxies (M* ≳ 1011 M⊙, re ∼ 1 kpc), computed as Mdyn = 5.0 σe2 re/G, are lower than their stellar masses M*. In a previous study from our group, the discrepancy is interpreted as a breakdown of the assumption of homology that underlie the Mdyn determinations. Here, we present new spectroscopy of six redshift z ≈ 1.0 massive compact ellipticals from the Extended Groth Strip, obtained with the 10.4 m Gran Telescopio Canarias. We obtain velocity dispersions in the range 161-340 km s-1. As found by previous studies of massive compact galaxies, our velocity dispersions are lower than the virial expectation, and all of our galaxies show Mdyn < M* (assuming a Salpeter initial mass function). Adding data from the literature, we build a sample covering a range of stellar masses and compactness in a narrow redshift range z ≈ 1.0. This allows us to exclude systematic effects on the data and evolutionary effects on the galaxy population, which could have affected previous studies. We confirm that mass discrepancy scales with galaxy compactness. We use the stellar mass plane (M*, σe, re) populated by our sample to constrain a generic evolution mechanism. We find that the simulations of the growth of massive ellipticals due to mergers agree with our constraints and discard the assumption of homology.

  7. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan Lulu; Chen Yang; Pan Zhizheng; Lv Xuanyi; Li Jinrong; Lin Lin; Kong Xu; Fang Guanwen

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  8. Photometric Study of Massive Evolved Galaxies in the CANDELS GOODS-S at z>3

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang; Mobasher, B.; Ferguson, H. C.; Wiklind, T.; Hemmati, S.; De Barros, S.; Fontana, A.; Dahlen, T.; Koekemoer, A. M.

    2014-01-01

    According to the hierarchical models, galaxies assemble their mass through time with the most massive and evolved systems found in the more recent times and in the most massive dark matter halos. Understanding the evolution of mass assembly with cosmic time plays a central role in observational astronomy. Here, we use the very deep near Infra-red HST/WFC3 observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) to study passively evolving, old and massive systems at high redshifts. For this we utilize the pronounced Balmer Break (an age dependent diagnostic at rest-frame 3648Å) in post-starburst galaxies to devise a Balmer Break Galaxy (BBG) selection. We use the CANDELS WFC3 1.6 μm selected catalog in the GOODS-S, generated with TFIT algorithm suitable for mixed resolution data sets, to select the candidates. We identified 24 sources as candidates for evolved systems in the redshift 3.5galaxies show that the most noticeable source of contamination is from dusty starburst galaxies that can produce similar red colors. Fitting the spectral energy distribution (SED) of the candidate galaxies with a well-constructed library of model galaxies show that the candidate galaxies have estimated ages older than 100 Myr and masses larger than 10^10 M_Sun consistent with being old and massive systems. Forty percent of the passive candidates are also selected by the LBG selection indicating presence of residual star formation in the post-starburst population. Given the age and the current redshift, some of these systems must have formed bulk of their mass only a few hundred million years after the Big Bang.

  9. Starburst and old stellar populations in the z ≃ 3.8 radio galaxies 4C 41.17 and TN J2007-1316

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, B.; Drouart, G.; De Breuck, C.; Vernet, J.; Seymour, N.; Wylezalek, D.; Lehnert, M.; Nesvadba, N.; Fioc, M.

    2013-03-01

    Using the new evolutionary code PÉGASE.3, we undertook an evolutionary spectral synthesis of the optical-IR-submm spectral energy distribution of two distant (z = 3.8) radio galaxies, 4C 41.17 and TN J2007-1316. These two radio galaxies were selected from the HeRGÉ (Herschel Radio Galaxies Evolution) Project in particular for their faint active galactic nucleus contribution and because they show evidence of a large stellar contribution to their bolometric luminosity. PÉGASE.3 coherently models the reprocessing of the stellar luminosity to dust emission, allowing us to build UV to IR-submm spectral energy distribution libraries that can then be used to fit spectral energy distributions in the observer's frame. Our principal conclusion is that a single stellar population is insufficient to fit the spectral energy distribution of either radio galaxy. Our best fits are a sum of two evolving stellar populations - a recent starburst plus an old population - plus the thermal emission from an active galactic nucleus (which provides a good fit to the mid-IR emission). The two stellar components are: (i) a massive (≃ 1011 M⊙) starburst ≃30 Myr after formation,which is required simultaneously to fit the far-IR Herschel to submm data and the optical data; and (ii) an older massive (≃ 1011-12 M⊙) early-type galaxy population, ≃1.0 Gyr old, which is required principally to fit the mid-IR Spitzer/IRAC data. A young population alone is insufficient because an evolved giant star population produces a 1-μm rest-frame peak that is observed in the IRAC photometry. This discovery confirms that many of the stellar populations in high-redshift radio galaxies were formed by massive starbursts in the early Universe. Gas-rich mergers and/or jet-cloud interactions are favoured for triggering the intense star formation necessary to explain the properties of the spectral energy distributions. The discovery of similar characteristics in two distant radio galaxies suggeststhat

  10. A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux

    SciTech Connect

    Hooper, Dan

    2016-09-01

    Here, we present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.

  11. A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux

    DOE PAGES

    Hooper, Dan

    2016-09-01

    Here, we present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes ofmore » neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.« less

  12. A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux

    SciTech Connect

    Hooper, Dan

    2016-09-01

    We present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.

  13. Spectroscopy of emission-line nebulae in powerful radio galaxies - Interpretation

    NASA Astrophysics Data System (ADS)

    Baum, S. A.; Heckman, T. M.; van Breugel, W.

    1992-04-01

    Long-slit optical spectra of the emission-line nebulae associated with 21 low-redshift (less than 0.2) radio galaxies are analyzed. Nebulae are classified kinematically into three types: rotators, calm nonrotators, and violent nonrotators; these types are characterized. It is proposed that the rotators have dynamically young disks of gas recently acquired by the radio galaxy in an interaction or merger with a gas-rich galaxy. This is consistent with the data on the morphologies, colors, and stellar dynamics of radio galaxies with strong emission lines. It is inferred from the association of the large-scale gas kinematics with the radio and optical properties of an active galaxy that the angular momentum of the gas which fuels the AGN may be an important parameter in the determinant of how activity is manifest in an AGN.

  14. Evidence for Reduced Specific Star Formation Rates in the Centers of Massive Galaxies at z = 4

    NASA Astrophysics Data System (ADS)

    Jung, Intae; Finkelstein, Steven L.; Song, Mimi; Dickinson, Mark; Dekel, Avishai; Ferguson, Henry C.; Fontana, Adriano; Koekemoer, Anton M.; Lu, Yu; Mobasher, Bahram; Papovich, Casey; Ryan, Russell E., Jr.; Salmon, Brett; Straughn, Amber N.

    2017-01-01

    We perform the first spatially resolved stellar population study of galaxies in the early universe (z = 3.5–6.5), utilizing the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey imaging data set over the GOODS-S field. We select a sample of 418 bright and extended galaxies at z = 3.5–6.5 from a parent sample of ∼8000 photometric-redshift-selected galaxies from Finkelstein et al. We first examine galaxies at 3.5 ≲ z ≲ 4.0 using additional deep K-band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000 Å break at these redshifts. We measure the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions. We also study galaxies at z ∼ 5 and 6 (here limited to high spatial resolution in the rest-frame ultraviolet only), finding that they show sSFRs which are generally independent of radial distance from the center of the galaxies. This indicates that stars are formed uniformly at all radii in massive galaxies at z ∼ 5–6, contrary to massive galaxies at z ≲ 4.

  15. Dust and ionized gas in active radio elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Forbes, D. A.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    The authors present broad and narrow bandwidth imaging of three southern elliptical galaxies which have flat-spectrum active radio cores (NGC 1052, IC 1459 and NGC 6958). All three contain dust and extended low excitation optical line emission, particularly extensive in the case of NGC 1052 which has a large H alpha + (NII) luminosity. Both NGC 1052 and IC 1459 have a spiral morphology in emission-line images. All three display independent strong evidence that a merger or infall event has recently occurred, i.e., extensive and infalling HI gas in NGC 1052, a counter-rotating core in IC 1459 and Malin-Carter shells in NGC 6958. This infall event is the most likely origin for the emission-line gas and dust, and the authors are currently investigating possible excitation mechanisms (Sparks et al. 1990).

  16. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    SciTech Connect

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  17. Hot, Massive Stars in the Extremely Metal-Poor Galaxy, I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Malumuth, Eliot M.

    2010-01-01

    The carbon-enhanced metal-poor galaxy, I Zw 18, is the Rosetta Stone for understanding galaxies in the early universe by providing constraints on the IMF of massive stars, the role of galaxies in reionization of the universe, mixing of newly synthesized material in the ISM, and gamma-ray bursts at low metallicity, and on the earliest generations of stars producing the observed abundance pattern. We describe these constraints as derived from analyses of HST/COS spectra of I Zw 18 including stellar atmosphere analysis and photo-ionization modeling of both the emission and absorption spectra of the nebular material and interstellar medium.

  18. A Snapshot Survey of The Most Massive Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald

    2007-07-01

    We propose the continuation of our highly successful SNAPshot survey of a sample of 125 very X-ray luminous clusters in the redshift range 0.3-0.7. As demonstrated by the 25 snapshots obtained so far in Cycle14 and Cycle15 these systems frequently exhibit strong gravitational lensing as well as spectacular examples of violent galaxy interactions. The proposed observations will provide important constraints on the cluster mass distributions, the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. All of our primary science goals require only the detection and characterisation of high-surface-brightness features and are thus achievable even at the reduced sensitivity of WFPC2. Because of their high redshift and thus compact angular scale our target clusters are less adversely affected by the smaller field of view of WFPC2 than more nearby systems. Acknowledging the broad community interest in this sample we waive our data rights for these observations. Due to a clerical error at STScI our approved Cycle15 SNAP program was barred from execution for 3 months and only 6 observations have been performed to date - reinstating this SNAP at Cycle16 priority is of paramount importance to reach meaningful statistics.

  19. Gravitational Heating Helps Make Massive Galaxies Red and Dead

    NASA Astrophysics Data System (ADS)

    Johansson, Peter H.; Naab, Thorsten; Ostriker, Jeremiah P.

    2009-05-01

    We study the thermal formation history of four simulated galaxies that were shown by Naab et al. to reproduce a number of observed properties of elliptical galaxies. The temperature of the gas in the galaxies is steadily increasing with decreasing redshift, although much of the gas has a cooling time shorter than the Hubble time. The gas is being heated and kept hot by gravitational heating processes through the release of potential energy from infalling stellar clumps. The energy is dissipated in supersonic collisions of infalling gas lumps with the ambient gas and through the dynamical capturing of satellite systems causing gravitational wakes that transfer energy to the surrounding gas. Furthermore, dynamical friction from the infalling clumps pushes out dark matter (DM), lowering the central DM density by up to a factor of 2 from z = 3 to z = 0. In galaxies in which the late formation history (z lsim 2) is dominated by minor merging and accretion, the energy released (E ~ 5 × 1059 erg) from gravitational feedback is sufficient to form red and dead elliptical galaxies by z ~ 1 even in the absence of supernova and AGN feedback.

  20. Chemical properties in the most distant radio galaxy

    NASA Astrophysics Data System (ADS)

    Matsuoka, K.; Nagao, T.; Maiolino, R.; Marconi, A.; Taniguchi, Y.

    2011-08-01

    We present a deep optical spectrum of TN J0924-2201, the most distant radio galaxy at z = 5.19, obtained with FOCAS on the Subaru Telescope. We successfully detect, for the first time, the C ivλ1549 emission line from the narrow-line region. In addition to the emission-line fluxes of Lyα and C iv, we set upper limits on the N v and He ii emissions. We use these line detections and upper limits to constrain the chemical properties of TN J0924-2201. By comparing the observed emission-line flux ratios with photoionization models, we infer that the carbon-to-oxygen relative abundance is already [C/O] > -0.5 at a cosmic age of ~1.1 Gyr. This lower limit on [C/O] is higher than the ratio expected at the earliest phases of the galaxy chemical evolution, indicating that TN J0924-2201 has already experienced significant chemical evolution at z = 5.19.

  1. Herschel-ATLAS: far-infrared properties of radio-selected galaxies

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.; Virdee, J. S.; Jarvis, M. J.; Bonfield, D. G.; Dunne, L.; Rawlings, S.; Stevens, J. A.; Christopher, N. M.; Heywood, I.; Mauch, T.; Rigopoulou, D.; Verma, A.; Baldry, I. K.; Bamford, S. P.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Croom, S. M.; Dariush, A.; de Zotti, G.; Eales, S.; Fritz, J.; Hill, D. T.; Hughes, D.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Jones, D. H.; Loveday, J.; Maddox, S. J.; Michałowski, M. J.; Negrello, M.; Norberg, P.; Pohlen, M.; Prescott, M.; Rigby, E. E.; Robotham, A. S. G.; Rodighiero, G.; Scott, D.; Sharp, R.; Smith, D. J. B.; Temi, P.; van Kampen, E.

    2010-11-01

    We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. E-mail: m.j.hardcastle@herts.ac.uk

  2. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    SciTech Connect

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano; Rudnick, Lawrence

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  3. Cold streams in early massive hot haloes as the main mode of galaxy formation.

    PubMed

    Dekel, A; Birnboim, Y; Engel, G; Freundlich, J; Goerdt, T; Mumcuoglu, M; Neistein, E; Pichon, C; Teyssier, R; Zinger, E

    2009-01-22

    Massive galaxies in the young Universe, ten billion years ago, formed stars at surprising intensities. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids. Cosmological simulations and clustering theory are used to explore how these galaxies acquired their gas. Here we report that they are 'stream-fed galaxies', formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes. A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duty cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid. This stream-driven scenario for the formation of discs and spheroids is an alternative to the merger picture.

  4. Black Hole Demographics in and Nuclear Properties of Nearby Low Luminosity Radio Galaxies; Connections to Radio Activity?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; Kleijn, G. A. Verdoes; Xu, C.; ODea, C. P.; deZeeuw, P. T.

    2004-01-01

    We combine the results of an HST STIS and WFPC study of a complete sample of 21 nearby UGC low luminosity radio galaxies with the results of a radio VLA and VLBA study of the same sample. We examine the relationship between the stellar and gaseous properties of the galaxies on tens to hundreds of parsec scale with the properties of the radio jets on the same scale. From the VLA and VLBA data we constrain the physics of the outflowing radio plasma from the tens of parsecs to hundreds of kiloparsec scales. From the WFPC2 H alpha and dust images and the STIS kinematics of the near nuclear gas we obtain constraints on the orientation of near nuclear disks of gas and measures of the nuclear stellar, continuum point source, and line emission fluxes. Under the statistically supported assumption that the radio jet issues perpendicular to the disk, we use the orientation of the optical (large scale accretion?) disks to constrain the three-dimensional orientation of the radio ejection. From HST/STIS spectroscopy of the near-nuclear emission line gas we obtain measures/limits on the black hole masses. We examine correlations between the VLBA and VLA-scale radio emission, the nuclear line emission, and the nuclear optical and radio continuum emission. Though our sample is relatively small, it is uniquely well defined, spans a narrow range in redshift and we have a consistent set of high resolution data with which to carefully examine these relationships. We use the combined radio and optical data to: 1) Constrain the orientation, physics, and bulk outflow speed of the radio plasma; 2) Put limits on the mass accretion rate and study the relationship between black hole mass, radio luminosity, and near nuclear gaseous content; 3) Provide insight into the relationship between BL Lac objects and low luminosity radio galaxies.

  5. Obscuration, orientation, and the infrared properties of radio-loud active galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.; O'Dea, Christopher P.; Baum, Stefi A.; Laurikainen, Eija

    1994-01-01

    We report on a study of the mid- and far-infrared (MFIR) properties of several different classes of radio-loud active galactic nuclei (AGNs) using the IRAS database. Our goal is to try to improve the understanding of the possible relationships between the diverse classes of AGNs. The MFIR and radio properties of radio-loud AGNs are especially useful in this regard, since (excluding the blazar class, which we do not study here) the radio emission is thought to be emitted isotropically, and the radio and MFIR radiation should be much less affected by dust obscuration than radiation at shorter wavelengths. We have first compared samples of 3CR broad-line radio galaxies (BLRGs) and narrow-line radio galaxies (NLRGs) matched in radio flux and mean redshift. We find that the BLRGs are stronger than the NLRGs by a factor of 4-5 in their mid-IR emission but are similar to the NLRGs in the far-IR. This is qualitatively consistent with recent 'unification' models for NLRGs and BLRGs which invoke thermal MFIR emission from dusty 'obscuring tori,' but there may be an additional source of far-IR emission present in the more luminous broad-line objects (the radio-loud quasars) studied previously by Heckman, Chambers & Postman (1992). We have also compared samples of Fanaroff-Riley class I (FRI) and Fanaroff-Riley class II (FRII) radio galaxies matched in radio flux and redshift. The FRII galaxies are stronger MFIR emitters than the FRI galaxies by a factor of about 4. This is consistent with suggestions that the central engine in FRI galaxies produces relatively little radiant energy per unit jet power (expecially since we find that the weak MFIR emission from the FRI galaxies may not be powered by the AGN). Comparing samples of gigahertz-peaked spectrum (GPS) and compact steep spectrum (CSS) sources versus non-GPS-CSS sources, we find that the GPS-CSS and non-GPS-CSS sources have similar MFIR strengths. This suggests that the efficiency of the conversion of jet kinetic energy

  6. A non-thermal study of the brightest cluster galaxy NGC 1275 - the Gamma-Radio connection over four decades

    NASA Astrophysics Data System (ADS)

    Dutson, K. L.; Edge, A. C.; Hinton, J. A.; Hogan, M. T.; Gurwell, M. A.; Alston, W. N.

    2014-08-01

    Emission from the active nucleus in the core of the brightest cluster galaxy of the Perseus cluster, NGC 1275, has varied dramatically over the past four decades. Prompted by the Fermi detection of flaring in the γ-ray band, we present the recent increased activity of this source in the context of its past radio and γ-ray output. The broad correspondence between the high-frequency radio data and the high-energy (HE) emission is striking. However, on short time-scales this correlation breaks down and the 1.3 mm Submillimeter Array flux is apparently unaffected during Fermi -detected flaring activity. The fact that NGC 1275 is also detected at TeV energies during the periods of HE γ-ray flaring suggests that the short-time-scale variation might be primarily related to changes in the inverse Compton scattering of photons by the electron population in the jet. The longer-time-scale changes suggest a 30-40 year variation in the fuelling of the black hole that affects the power of the inner jet. NCG 1275 is a laboratory for the class of brightest cluster galaxies, and its variability on these time-scales has implications for our understanding of massive galaxies in cooling-core clusters. The case of NGC 1275 highlights the need for wide coverage across the radio band to correctly account for the contribution to emission from a synchrotron self-absorbed core (for example when considering contamination of Sunyaev-Zel'dovich effect observations), and the danger of variability biases in radio surveys of galaxies.

  7. Unveiling the Most Massive Galaxies in the Universe: IRAC Mapping of the NMBSII/CFHTLS Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; Muzzin, Adam; van Dokkum, Pieter; Wake, David; Franx, Marijn; Marsan, Cemile; Rudnick, Gregory; Brammer, Gabriel; Stefanon, Mauro; Lundgren, Britt; Whitaker, Katherine; Tal, Tomer; Labbe, Ivo; Bezanson, Rachel; Weigel, Catherine

    2013-10-01

    Observations of massive galaxies and their redshift evolution place strong constraints on the physical processes of galaxy formation. Although substantial data have been collected on galaxies with masses LogM~11.2 out to z~4-5 from the recent myriad of ground-based wide-field NIR surveys, very little is known about the evolution of the most massive (LogM>11.4) galaxies in the universe. At the tip of the Schechter function, their space density is estimated to be 30x lower than LogM=11 galaxies and hence only a few have been found, even in the widest-field surveys. We recently undertook the NMBS-II survey, a medium-deep wide-field (4.7 deg^2) NIR medium-band survey designed to accurately characterize the stellar mass function, number density, stellar populations, and clustering properties of the most massive galaxies out to z=3. The primary survey fields of the NMBS-II are the CFHTLS-deep fields; however, presently only 60% of these fields have IRAC coverage. We propose to complete the IRAC coverage of the NMBS-II. The IRAC data are essential for accurately measuring photometric redshifts and stellar masses of the high-redshift population. IRAC data are critical for constructing the UVJ diagram, which has become the de-facto method for differentiating red dusty star-forming from red quiescent galaxies. The proposed observations will allow us to construct a sample of ~300 ultra-massive (LogM>11.4) galaxies at 1.5galaxies. Because these massive galaxies are expected to be one of the most clustered populations, and thus greatly affected by cosmic variance, maximal area and number of independent sight-lines are needed for robust clustering measurements. The proposed IRAC survey will more than double the sight-lines allowing us to exploit the full NMBS-II area. We waive our proprietary data-rights period, committing to publicly release the fully reduced IRAC

  8. Stellar Mass Functions of Galaxies At 4 < z < 7 from an IRAC-selected Sample in Cosmos/Ultravista: Limits on the Abundance of Very Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Marchesini, Danilo; Muzzin, Adam; Brammer, Gabriel; Dunlop, James S.; Franx, Marijin; Fynbo, Johan P. U.; Labbé, Ivo; Milvang-Jensen, Bo; van Dokkum, Pieter G.

    2015-04-01

    We build a Spitzer IRAC-complete catalog of objects complementing the Ks-band selected UltraVISTA catalog with objects detected in IRAC only. To identify massive (log ({{M}*}/{{M}⊙ })\\gt 11) galaxies at 4\\lt z\\lt 7, we consider the systematic effects on photometric redshift measurements from the introduction of an old and dusty template and of a bayesian prior on luminosity, as well as the systematic effects from different star formation histories (SFHs) and from nebular emission lines in estimated stellar population properties. Our results are most affected by the luminosity prior, while nebular lines and SFHs marginally increase the measurement dispersion; the samples include 52 to 382 galaxies, depending on the adopted configuration. Using these results we investigate, for the first time, the evolution of the massive end of the stellar mass functions (SMFs) at 4\\lt z\\lt 7. Given the rarity of massive galaxies at these redshifts, cosmic variance and Poisson noise dominate the total error budget. The SMFs obtained excluding the luminosity prior show no evolution from z˜ 6.5 to z˜ 3.5, indicating that massive galaxies could already be present at early epochs. The luminosity prior reduces the number of z\\gt 4 massive galaxies by 83%, implying a rapid growth of massive galaxies in the first 1.5 Gyr of cosmic history. The stellar-mass complete sample includes one candidate of a very massive (log ({{M}*}/{{M}⊙ })˜ 11.5), quiescent galaxy at z˜ 5.4 with MIPS 24 μ m detection, suggesting the presence of an obscured active galactic nucleus. Finally, we show that the observed number of 4\\lt z\\lt 7 massive galaxies matches the number of massive galaxies at 3\\lt z\\lt 6 predicted by current galaxy formation models.

  9. Gas disks and supermassive black holes in nearby radio galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob

    2004-12-01

    We present a detailed analysis of a set of medium- resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission-line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets. For each galaxy nucleus we present spectroscopic data in the region of hydrogen-alpha and the kinematics derived therefrom. We find in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by inclusion of a broad emission-line component. These broad components have a mean velocity dispersion of 1349 kilometers per second (with a standard deviation of 345 kilometers per second) and are redshifted from the narrow-line components (assuming an origin in hydrogen-alpha) by 486 kilometers per second (with a standard deviation of 443 kilometers per second). We generated model velocity profiles including no black hole, a one hundred million solar mass black hole and a nine hundred million solar mass black hole. We compared the predicted profiles to the observed velocity profiles from the above spectra, finding kinematic signatures compatible with black holes greater than one hundred million solar masses in 53% of the sample. We suspect that hydrodynamic flow of the gas is a significant factor in the nucleus of NGC 2329. We found hints of jet-disk interaction in 24% of the sample nuclei and signs of twists or warps in 19%. Twenty-four percent of the velocity profiles show signs of multiple kinematic components. We suggest that the gas disks in these galaxies are generally not well-settled systems. We characterize the kinematic state of the nuclear gas through three weighted mean parameters, and find that again the disks appear not to be well-settled. We show evidence of a connection between the stellar and gas velocity

  10. The many assembly histories of massive void galaxies as revealed by integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A.; Penny, Samantha J.; Brown, Michael J. I.

    2016-06-01

    We present the first detailed integral field spectroscopy study of nine central void galaxies with M⋆ > 1010 M⊙ using the Wide Field Spectrograph to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Hα-derived star formation rates (<1 M⊙ yr-1). Two of our nine galaxies host active galactic nuclei, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph galaxy survey. We find that despite environmental differences, galaxies of mass M⋆ > 1010 M⊙ have similarly low star formation rates (<3 M⊙ yr-1). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

  11. A massive young cluster in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Monguió, M.; Marco, A.; González-Fernández, C.; Dorda, R.

    2017-03-01

    We present the results of our investigation of the reddened open cluster Berkeley 51. We find an important population of yellow and red supergiant stars. Multi-object spectroscopy with GTC/OSIRIS reveals a population of B-type stars, with a main-sequence extending up to B3 V. With a combination of spectroscopy and photometry, we determine an age around 35 Ma and a distance probably compatible with the Perseus Arm in this direction. The large population of supergiants suggests a rather massive cluster, confirming that this kind of young massive clusters are much more frequent in the Milky Way than envisaged only a few years ago.

  12. Charting the evolution of the ages and metallicities of massive galaxies since z = 0.7

    SciTech Connect

    Gallazzi, Anna; Zibetti, Stefano; Bell, Eric F.; Brinchmann, Jarle; Kelson, Daniel D.

    2014-06-10

    Detailed studies of the stellar populations of intermediate-redshift galaxies can shed light onto the processes responsible for the growth of the massive galaxy population in the last 8 billion years. We here take a step toward this goal by means of deep, multiobject rest-frame optical spectroscopy, performed with the Inamori Magellan Areal Camera and Spectrograph on the Magellan telescope, of a sample of ∼70 galaxies in the Extended Chandra Deep Field South survey with redshift 0.65 ≤ z ≤ 0.75, apparent R > 22.7 mag{sub Vega}, and stellar mass >10{sup 10} M {sub ☉}. We measure velocity dispersion and stellar absorption features for individual sources. We interpret them by means of a large Monte Carlo library of star formation histories, following the Bayesian approach adopted for previous low redshift studies, and derive constraints on the stellar mass, mean stellar age, and stellar metallicity of these galaxies. We characterize for the first time the relations between stellar age and stellar mass and between stellar metallicity and stellar mass at z ∼ 0.7 for the galaxy population as a whole and for quiescent and star-forming galaxies separately. These relations of increasing age and metallicity with galaxy mass for the galaxy population as a whole have a similar shape as the z ∼ 0.1 analog derived for Sloan Digital Sky Survey galaxies but are shifted by –0.28 dex in age and by –0.13 dex in metallicity, at odds with simple passive evolution. Considering z = 0.7 quiescent galaxies alone, we find that no additional star formation and chemical enrichment are required for them to evolve into the present-day quiescent population. However, other observations require the quiescent population to grow from z = 0.7 to the present day. This growth could be supplied by the quenching of a fraction of z = 0.7 M {sub *} > 10{sup 11} M {sub ☉} star-forming galaxies with metallicities already comparable to those of quiescent galaxies, thus leading to the

  13. The Radio Luminosity Function and Galaxy Evolution in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; Hornschemeier, Ann E.; Mabasher, Bahram; Brudgesm Terrry J.; Hudson, Michael J.; Marzke, Ronald O.; Smith, Russell J.

    2008-01-01

    We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (> approx. 3x10(exp 22) W/Hz) and low (< approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.

  14. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  15. The assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.

  16. Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe.

    PubMed

    Hennawi, Joseph F; Prochaska, J Xavier; Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio

    2015-05-15

    All galaxies once passed through a hyperluminous quasar phase powered by accretion onto a supermassive black hole. But because these episodes are brief, quasars are rare objects typically separated by cosmological distances. In a survey for Lyman-α emission at redshift z ≈ 2, we discovered a physical association of four quasars embedded in a giant nebula. Located within a substantial overdensity of galaxies, this system is probably the progenitor of a massive galaxy cluster. The chance probability of finding a quadruple quasar is estimated to be ∼10(-7), implying a physical connection between Lyman-α nebulae and the locations of rare protoclusters. Our findings imply that the most massive structures in the distant universe have a tremendous supply (≃10(11) solar masses) of cool dense (volume density ≃ 1 cm(-3)) gas, which is in conflict with current cosmological simulations.

  17. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  18. THE SCALING RELATIONS AND THE FUNDAMENTAL PLANE FOR RADIO HALOS AND RELICS OF GALAXY CLUSTERS

    SciTech Connect

    Yuan, Z. S.; Han, J. L.; Wen, Z. L.

    2015-11-01

    Diffuse radio emission in galaxy clusters is known to be related to cluster mass and cluster dynamical state. We collect the observed fluxes of radio halos, relics, and mini-halos for a sample of galaxy clusters from the literature, and calculate their radio powers. We then obtain the values of cluster mass or mass proxies from previous observations, and also obtain the various dynamical parameters of these galaxy clusters from optical and X-ray data. The radio powers of relics, halos, and mini-halos are correlated with the cluster masses or mass proxies, as found by previous authors, while the correlations concerning giant radio halos are in general the strongest. We found that the inclusion of dynamical parameters as the third dimension can significantly reduce the data scatter for the scaling relations, especially for radio halos. We therefore conclude that the substructures in X-ray images of galaxy clusters and the irregular distributions of optical brightness of member galaxies can be used to quantitatively characterize the shock waves and turbulence in the intracluster medium responsible for re-accelerating particles to generate the observed diffuse radio emission. The power of radio halos and relics is correlated with cluster mass proxies and dynamical parameters in the form of a fundamental plane.

  19. Radio galaxies dominate the high-energy diffuse gamma-ray background

    SciTech Connect

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  20. A CO-rich merger shaping a powerful and hyperluminous infrared radio galaxy at z = 2: the Dragonfly Galaxy

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Mao, M. Y.; Stroe, A.; Pentericci, L.; Villar-Martín, M.; Norris, R. P.; Miley, G.; De Breuck, C.; van Moorsel, G. A.; Lehnert, M. D.; Carilli, C. L.; Röttgering, H. J. A.; Seymour, N.; Sadler, E. M.; Ekers, R. D.; Drouart, G.; Feain, I.; Colina, L.; Stevens, J.; Holt, J.

    2015-07-01

    In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (`wet') merger associated with a powerful radio galaxy at a redshift of z ˜ 2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the Southern hemisphere. Using the Australia Telescope Compact Array, we obtained high-resolution CO(1-0) data of cold molecular gas, which we complement with Hubble Space Telescope (HST)/Wide Field Planetary Camera 2 (WFPC2) imaging and William Herschel Telescope long-slit spectroscopy. We find that, while roughly MH2 ˜ 2 × 1010 M⊙ of molecular gas coincides with the central host galaxy, another MH2 ˜ 3 × 1010 M⊙ is spread across a total extent of ˜60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HST/WFPC2 imaging. Lyα emission shows an excess over He II, but a deficiency over LIR, which is likely the result of photoionization by enhanced but very obscured star formation that was triggered by the merger. In terms of feedback, the radio source is aligned with widespread CO(1-0) emission, which suggests that there is a physical link between the propagating radio jets and the presence of cold molecular gas on scales of the galaxy's halo. Its optical appearance, combined with the transformational stage at which we witness the evolution of MRC 0152-209, leads us to adopt the name `Dragonfly Galaxy'.

  1. Unifying X-ray winds in radio galaxies with Chandra HETG

    NASA Astrophysics Data System (ADS)

    Tombesi, Francesco

    2013-09-01

    X-ray winds are routinely observed in the spectra of Seyfert galaxies. They can be classified as warm absorbers (WAs), with v~100-1,000km/s, and ultra-fast outflows (UFOs), with v>10,000km/s. In stark contrast, the lack of sensitive enough observations allowed the detection of WAs or UFOs only in very few radio galaxies. Therefore, we propose to observe a small sample of three radio galaxies with the Chandra HETG - 3C111 for 150ks, 3C390.3 for 150ks and 3C120 for 200ks - to detect and study in detail their WAs. We will quantify the importance of mechanical feedback from winds in radio galaxies and compare them to the radio jet power. We will also test whether WAs and UFOs can be unified in a single, multi-phase and multi-scale outflow, as recently reported for Seyferts.

  2. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  3. Massive Star Formation in Early-type(Sa-Sab) Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Hameed, S.

    1999-12-01

    We have conducted an Hα imaging survey of 57 bright, nearby, early-type spiral galaxies. The new Hα images have revealed them to be a heterogeneous class of galaxies with Hα morphologies ranging from filamentary, low luminosity nuclear emission line spirals to what we suspect are compact, luminous nuclear starbursts. Contrary to popular perception, our images have revealed a significant number(15-20%) of Sa-Sab galaxies with massive star formation rates comparable to the most prolifically star forming Sc galaxies. A determination of the Hα morphology and a measure of the Hα luminosity suggests that early-type spirals can be classified into two broad categories. The first category includes galaxies for which the individual HII regions have L(Hα ) < 1039 erg/s. Most of the category 1 galaxies appear to be morphologically undisturbed, but show a wide diversity in nuclear Hα properties. The second category includes galaxies which have at least one HII region in the disk with L(Hα ) >= 1039 erg/s. All category 2 galaxies show morphological peculiarities, such as tidal tails, which suggests that the anomalously luminous HII regions may have formed as a result of a recent interaction. We have also determined HII region luminosity functions for a subset of our sample and find that the shape of the HII region LF is different when a giant HII region is present compared to a galaxy which contains only HII regions of modest luminosity. The difference may point to corresponding differences in massive star formation triggering mechanisms.

  4. JELLYFISH: EVIDENCE OF EXTREME RAM-PRESSURE STRIPPING IN MASSIVE GALAXY CLUSTERS

    SciTech Connect

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M {sub F606W} < –21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters.

  5. Jellyfish: Evidence of Extreme Ram-pressure Stripping in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Stephenson, L. N.; Edge, A. C.

    2014-02-01

    Ram-pressure stripping by the gaseous intracluster medium has been proposed as the dominant physical mechanism driving the rapid evolution of galaxies in dense environments. Detailed studies of this process have, however, largely been limited to relatively modest examples affecting only the outermost gas layers of galaxies in nearby and/or low-mass galaxy clusters. We here present results from our search for extreme cases of gas-galaxy interactions in much more massive, X-ray selected clusters at z > 0.3. Using Hubble Space Telescope snapshots in the F606W and F814W passbands, we have discovered dramatic evidence of ram-pressure stripping in which copious amounts of gas are first shock compressed and then removed from galaxies falling into the cluster. Vigorous starbursts triggered by this process across the galaxy-gas interface and in the debris trail cause these galaxies to temporarily become some of the brightest cluster members in the F606W passband, capable of outshining even the Brightest Cluster Galaxy. Based on the spatial distribution and orientation of systems viewed nearly edge-on in our survey, we speculate that infall at large impact parameter gives rise to particularly long-lasting stripping events. Our sample of six spectacular examples identified in clusters from the Massive Cluster Survey, all featuring M F606W < -21 mag, doubles the number of such systems presently known at z > 0.2 and facilitates detailed quantitative studies of the most violent galaxy evolution in clusters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-10491, -10875, -12166, and -12884.

  6. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-07

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  7. Stellar kinematics of X-ray bright massive elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lyskova, N.; Churazov, E.; Moiseev, A.; Sil'chenko, O.; Zhuravleva, I.

    2014-07-01

    We discuss a simple and fast method for estimating masses of early-type galaxies from optical data and compare the results with X-ray derived masses. The optical method relies only on the most basic observables such as the surface brightness I(R) and the line-of-sight velocity dispersion σp(R) profiles and provides an anisotropy-independent estimate of the galaxy circular speed Vc. The mass-anisotropy degeneracy is effectively overcome by evaluating Vc at a characteristic radius Rsweet defined from local properties of observed profiles. The sweet radius Rsweet is expected to lie close to R2, where I(R) ∝ R-2, and not far from the effective radius Reff. We apply the method to a sample of five X-ray bright elliptical galaxies observed with the 6 m telescope BTA-6 in Russia. We then compare the optical Vc estimate with the X-ray derived value, and discuss possible constraints on the non-thermal pressure in the hot gas and configuration of stellar orbits. We find that the average ratio of the optical Vc estimate to the X-ray one is equal to ≈0.98 with 11 per cent scatter, i.e. there is no evidence for the large non-thermal pressure contribution in the gas at ˜Rsweet. From analysis of the Lick indices Hβ, Mgb, Fe5270 and Fe5335, we calculate the mass of the stellar component within the sweet radius. We conclude that a typical dark matter fraction inside Rsweet in the sample galaxies is ˜60 per cent for the Salpeter initial mass function (IMF) and ˜75 per cent for the Kroupa IMF.

  8. Rapid growth of black holes in massive star-forming galaxies.

    PubMed

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  9. The Stellar Populations in the Outer Banks of Massive Disk Galaxies

    NASA Astrophysics Data System (ADS)

    De Jong, Roelof; GHOSTS Team

    2006-12-01

    In recent years we have started to appreciate that the outer banks of galaxies contain valuable information about the formation process of galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are formed by accretion of minor satellites, predominantly in the earlier assembly phases. The size, metallicity, and amount of substructure in current day halos are therefore directly related to issues like the small scale properties of the primordial power spectrum of density fluctuations and the suppression of star formation in small dark matter halos after reionization. We will show initial results from our ongoing HST/ACS GHOSTS (Galaxy Halos, Outer disks, Star clusters, Thick disks, and Substructure) survey of the resolved stellar populations of 14 nearby, massive disk galaxies. We will show that the smaller galaxies have no significant halo. We will present the stellar populations of a very low surface brightness stream around M83, the first such a stream resolved into stars beyond those of the Milky Way and M31. Finally, we will show that the old RGB stars of the thick disk in an edge-on galaxy truncate at the same radius as the young thin disk stars, providing insights into the formation of both disk truncations and thick disks.

  10. The Coevolution of Nuclear Star Clusters, Massive Black Holes, and Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-01

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  11. Strong Lens Models for Massive Galaxy Clusters in the Reionization Lensing Cluster Survey

    NASA Astrophysics Data System (ADS)

    Cerny, Catherine; Sharon, Keren; Coe, Dan A.; Paterno-Mahler, Rachel; Jones, Christine; Czakon, Nicole G.; Umetsu, Keiichi; Stark, Daniel; Bradley, Larry D.; Trenti, Michele; Johnson, Traci; Bradac, Marusa; Dawson, William; Rodney, Steven A.; Strolger, Louis-Gregory; RELICS Team

    2017-01-01

    We present strong lensing models for five galaxy clusters from the Planck SZ cluster catalog as a part of the Reionization Lensing Cluster Survey (RELICS), a program that seeks to constrain the galaxy luminosity function past z~9 by conducting a wide field survey of massive galaxy clusters with HST (GO-14096, PI: Coe). The strong gravitational lensing effects of these clusters significantly magnify background galaxies, which enhances our ability to discover the large numbers of high redshift galaxies at z~9-12 needed to create a representative sample. We use strong lensing models for these clusters to study their mass distribution and magnification, which allows us to quantify the lensing effect on the background galaxies. These models can then be utilized in the RELICS survey in order to identify high redshift galaxy candidates that may be lensed by the clusters. The intrinsic properties of these galaxy candidates can be derived by removing the lensing effect as predicted by our models, which will meet the science goals of the RELICS survey. We use HST WFC3 and ACS imaging to create lensing models for the clusters RXC J0142.9+4438, ACO-2537, ACO-2163, RXCJ2211.7-0349, and ACT-CLJ0102-49151.

  12. Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3

    NASA Astrophysics Data System (ADS)

    Cai, Zheng; Fan, Xiaohui; Yang, Yujin; Bian, Fuyan; Prochaska, J. Xavier; Zabludoff, Ann; McGreer, Ian; Zheng, Zhen-Ya; Green, Richard; Cantalupo, Sebastiano; Frye, Brenda; Hamden, Erika; Jiang, Linhua; Kashikawa, Nobunari; Wang, Ran

    2017-03-01

    Enormous Lyα nebulae (ELANe), unique tracers of galaxy density peaks, are predicted to lie at the nodes and intersections of cosmic filamentary structures. Previous successful searches for ELANe have focused on wide-field narrowband surveys or have targeted known sources such as ultraluminous quasi-stellar objects (QSOs) or radio galaxies. Utilizing groups of coherently strong Lyα absorptions, we have developed a new method to identify high-redshift galaxy overdensities and have identified an extremely massive overdensity, BOSS1441, at z=2{--}3. In its density peak, we discover an ELAN that is associated with a relatively faint continuum. To date, this object has the highest diffuse Lyα nebular luminosity of {L}{nebula}=5.1+/- 0.1× {10}44 erg s‑1. Above the 2σ surface brightness limit of SB{}{Lyα }=4.8× {10}-18 erg s‑1 cm‑2 arcsec‑2, this nebula has an end-to-end spatial extent of 442 kpc. This radio-quiet source also has extended C iv λ 1549 and He ii λ 1640 emission on ≳ 30 {kpc} scales. Note that the Lyα, He ii, and C iv emissions all have double-peaked line profiles. Each velocity component has an FWHM of ≈700–1000 km s‑1. We argue that this Lyα nebula could be powered by shocks due to an active galactic nucleus–driven outflow or photoionization by a strongly obscured source.

  13. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  14. A massive dense gas cloud close to the nucleus of the Seyfert galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Furuya, Ray S.; Taniguchi, Yoshiaki

    2016-12-01

    Using the ALMA archival data of both 12CO (6-5) line and 689-GHz continuum emission towards the archetypical Seyfert galaxy, NGC 1068, we identified a distinct continuum peak separated by 15 pc from the nuclear radio component S1 in projection. The continuum flux gives a gas mass of ˜2 × 105 M⊙ and bolometric luminosity of ˜108 L⊙, leading to a star formation rate of ˜0.1 M⊙ yr-1. Subsequent analysis on the line data suggest that the gas cloud has a size of ˜10 pc, yielding to a mean H2 number density of ˜105 cm-3. We therefore refer to the gas as a "massive dense gas cloud": the gas density is high enough to form a "protostar cluster" with a stellar mass of ˜104 M⊙. We found that the gas stands at a unique position between galactic and extraglactic clouds in the diagrams of start formation rate (SFR) vs. gas mass proposed by Lada et al. (2012, ApJ, 745, 190) and surface density of gas vs. SFR density by Krumholz and McKee (2005, ApJ, 630, 250). All the gaseous and star-formation properties may be understood in terms of the turbulence-regulated star formation scenario. Since there are two stellar populations with ages of 300 Myr and 30 Myr in the 100 pc scale circumnulear region, we discuss that NGC 1068 has experienced at least three episodic star-formation events with the likelihood that the inner star-forming region is the younger. Together with several lines of evidence that the dynamics of the nuclear region is decoupled from that of the entire galactic disk, we discuss that the gas inflow towards the nuclear region of NGC 1068 may be driven by a past minor merger.

  15. A representative survey of the dynamics and energetics of FRII radio galaxies

    NASA Astrophysics Data System (ADS)

    Ineson, J.; Croston, J. H.; Hardcastle, M. J.; Mingo, B.

    2017-01-01

    We report the first large, systematic study of the dynamics and energetics of a representative sample of FRII radio galaxies with well-characterized group/cluster environments. We used X-ray inverse-Compton and radio synchrotron measurements to determine the internal radio-lobe conditions, and these were compared with external pressures acting on the lobes, determined from measurements of the thermal X-ray emission of the group/cluster. Consistent with previous work, we found that FRII radio lobes are typically electron-dominated by a small factor relative to equipartition, and are over-pressured relative to the external medium in their outer parts. These results suggest that there is typically no energetically significant proton population in the lobes of FRII radio galaxies (unlike for FRIs), and so for this population, inverse-Compton modelling provides an accurate way of measuring total energy content and estimating jet power. We estimated the distribution of Mach numbers for the population of expanding radio lobes, finding that at least half of the radio galaxies are currently driving strong shocks into their group/cluster environments. Finally, we determined a jet power-radio luminosity relation for FRII radio galaxies based on our estimates of lobe internal energy and Mach number. The slope and normalisation of this relation are consistent with theoretical expectations, given the departure from equipartition and environmental distribution for our sample.

  16. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    SciTech Connect

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  17. Structure and Formation of Massive Galaxies with Old Stellar Populations at z=1.5

    NASA Astrophysics Data System (ADS)

    McGrath, Elizabeth J.; Stockton, A.

    2006-12-01

    Observational evidence has been mounting over the past decade that at least some luminous ( 2 L*) galaxies at high redshift have formed nearly all of their stars within the first billion years after the big bang. These are examples of the first major episodes of star formation in the universe and provide insights into the formation of the earliest massive galaxies. We have examined in detail the morphologies and stellar populations of seven z=1.5 passively evolving galaxies using high resolution HST NICMOS and ACS imaging data as well as medium resolution Keck spectroscopy. Almost all of these galaxies appear to be relaxed systems, with smooth morphologies at both rest-frame UV and visible wavelengths. Furthermore, spectral synthesis modeling favors a single burst of star formation more than 2 Gyr before the observed epoch. We note, however, that the prevalence of old stellar populations does not necessarily correlate with early-type morphologies, as the light profiles for several of these galaxies appear to be dominated by massive exponential disks. This evidence for massive old disks, along with the uniformity of stellar age across the disk, suggests formation by a mechanism better described as a form of monolithic collapse than as a hierarchical merger. There is at least one case, however, that appears to be undergoing a "dry merger", which may be an example of the process that converts these unusual galaxies into the familiar spheroids that dominate galaxies comprising old stellar populations at the present epoch. We acknowledge our collaborators in the HST observations, Gabriela Canalizo, Masanori Iye, and Toshinori Maihara. This research was supported by NSF grant AST03-07335 and HST grant GO-10418.01-A.

  18. Giant clumps in the FIRE simulations: a case study of a massive high-redshift galaxy

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hopkins, Philip F.; Feldmann, Robert; Kereš, Dušan; Faucher-Giguère, Claude-André; Murray, Norman

    2017-02-01

    The morphology of massive star-forming galaxies at high redshift is often dominated by giant clumps of mass ˜108-109 M⊙ and size ˜100-1000 pc. Previous studies have proposed that giant clumps might have an important role in the evolution of their host galaxy, particularly in building the central bulge. However, this depends on whether clumps live long enough to migrate from their original location in the disc or whether they get disrupted by their own stellar feedback before reaching the centre of the galaxy. We use cosmological hydrodynamical simulations from the FIRE (Feedback in Realistic Environments) project which implement explicit treatments of stellar feedback and interstellar medium physics to study the properties of these clumps. We follow the evolution of giant clumps in a massive (M* ˜ 1010.8 M⊙ at z = 1), discy, gas-rich galaxy from redshift z ≳ 2 to z = 1. Even though the clumpy phase of this galaxy lasts over a gigayear, individual gas clumps are short-lived, with mean lifetime of massive clumps of ˜20 Myr. During that time, they turn between 0.1 per cent and 20 per cent of their gas into stars before being disrupted, similar to local giant molecular clouds. Clumps with M ≳ 107 M⊙ account for ˜20 per cent of the total star formation in the galaxy during the clumpy phase, producing ˜1010 M⊙ of stars. We do not find evidence for net inward migration of clumps within the galaxy. The number of giant clumps and their mass decrease at lower redshifts, following the decrease in the overall gas fraction and star formation rate.

  19. Radio continuum and H I emission from the spiral galaxies in the Virgo cluster area

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.

    The statistical method used by Hummel (1981) to derive the radioluminosity functions of galaxies is applied to the H I data obtained on a sample of 101 spiral galaxies in the Virgo cluster. The analysis permits a quantitative demonstration of H I deficiency among the Virgo spiral galaxies without invoking the deficiency parameter. In addition, evidence is presented that Virgo spiral galaxies might show a correlation between H I content and radio continuum luminosity, which is more marked among the unperturbed sample. The results are discussed from the viewpoint of stellar and galaxy evolution and its relation with the intergalactic environment.

  20. A rare example of low surface-brightness radio lobes in a gas-rich early-type galaxy: the story of NGC 3998

    NASA Astrophysics Data System (ADS)

    Frank, Bradley S.; Morganti, Raffaella; Oosterloo, Tom; Nyland, Kristina; Serra, Paolo

    2016-08-01

    We study the nearby lenticular galaxy NGC 3998. This galaxy is known to host a low-power radio AGN with a kpc-size one-sided jet and a large, nearly polar H i disc. It is therefore a good system to study to understand the relation between the availability of cold-gas and the triggering of AGNs in galaxies. Our new WSRT data reveal two faint, S-shaped radio lobes extending out to ~10 kpc from the galaxy centre. Remarkably, we find that the inner H i disc warps back towards the stellar mid-plane in a way that mirrors the warping of the radio lobes. We suggest that the polar H i disc was accreted through a minor merger, and that the torques causing it to warp in the inner regions are also responsible for feeding the AGN. The "S" shape of the radio lobes would then be due to the radio jets adapting to the changing angular momentum of the accreted gas. The extended radio jets are likely poorly collimated, which would explain their quick fading and, therefore, their rarity in galaxies similar to NGC 3998. The fuelling of the central super-massive black hole is likely occurring via "discrete events", suggested by the observed variability of the radio core and the extremely high core dominance, which we attribute to the formation and ejection of a new jet resulting from a recent fuelling event. The reduced radiocontinuum image and HI datacube (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A94

  1. Constraining Metallicity and Age for Massive Quiescent Galaxies in a Redshift Range of 1

    NASA Astrophysics Data System (ADS)

    Estrada-Carpenter, Vicente; Papovich, Casey J.; Momcheva, Ivelina G.; Brammer, Gabriel; Bridge, Joanna; Dickinson, Mark; Closson Ferguson, Henry; finlator, kristian; Finkelstein, Steven L.; Giavalisco, Mauro; Gosmeyer, Catherine; Livermore, Rachael C.; Long, James; Lotz, Jennifer M.; Kawinwanichakij, Lalitwadee; Pirzkal, Norbert; Quadri, Ryan; Salmon, Brett W.; Tilvi, Vithal; Trump, Jonathan R.; Weiner, Benjamin J.

    2017-01-01

    Using HST/WFC3 grism spectroscopy from the CANDELS Lyman-alpha Emission at Reionization (CLEAR) survey, we constrain the metallicities and ages of massive quiescent galaxies, at z ~ 1.5. CLEAR provides deep spectroscopy (12 HST orbits per pointing) with the WFC3/G102 grism over the wavelength range ~ 7,500 < λ < 12,000 Å, at a spectral resolution of R ~ 200, within the GOODS-N and GOODS-S Deep regions of CANDELS. These data cover important age and metallicity sensitive spectral features for galaxies at 1 < z < 2, including the redshifted Ca HK lines, 4000 Å break, Balmer-series lines, and Hg+G features. We stack the G102 spectra of a stellar-mass limited sample of 34 quiescent galaxies, with log(M*/M⊙) > 10 and 1 < z < 2, and fit the spectra using two sets of stellar population synthesis models, BC03 (Bruzual & Charlot 2003) and FSPS (Flexible Stellar Population Synthesis, Conroy & Gunn 2010). From these fits, we construct probability distribution functions of age and metallicity for these galaxies, separated into two mass bins, 10 < log(M*/M⊙) < 10.9 and log(M*/M⊙) > 10.9. The model fits favor higher metallicity for the more massive quiescent galaxies, with Z/Z⊙ ~ 1, with some systematics possibly leading from differences in the stellar population models. Therefore, there is no evidence for significant evolution in metallicity for the most massive quiescent galaxies since z ~ 1.5. The model fits to the lower mass quiescent galaxies favor lower metallicites, Z/Z⊙ ~ 0.4, with an offset of ~ 0.3 dex from the present-day relation (e.g., Galazzi et al. 2005). For quiescent galaxies in this mass range, 10.0 < log(M*/M⊙) < 10.9, this requires evolution in metallicity, either as a result of continued chemical enrichment of current galaxies, or the formation of additional quiescent galaxies (presumably quenching of star-forming galaxies at z > 1), or a combination of the two.

  2. Far-UV Emission Properties of FR1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C.; Perlman, Eric

    2016-11-01

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Lyα recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Lyα emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Lyα emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Lyα, which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Lyα luminosities ˜1040 erg s-1 are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Lyα-emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Lyα luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Lyα, a clear indicator of relativistic beaming in our direction. Given their substantial space density (˜4 × 10-3 Mpc-3), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (˜10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  3. Fueling the central engine of radio galaxies. III. Molecular gas and star formation efficiency of 3C 293

    NASA Astrophysics Data System (ADS)

    Labiano, A.; García-Burillo, S.; Combes, F.; Usero, A.; Soria-Ruiz, R.; Piqueras López, J.; Fuente, A.; Hunt, L.; Neri, R.

    2014-04-01

    Context. Powerful radio galaxies show evidence of ongoing active galactic nuclei (AGN) feedback, mainly in the form of fast, massive outflows. But it is not clear how these outflows affect the star formation of their hosts. Aims: We investigate the different manifestations of AGN feedback in the evolved, powerful radio source 3C 293 and their impact on the molecular gas of its host galaxy, which harbors young star-forming regions and fast outflows of H i and ionized gas. Methods: We study the distribution and kinematics of the molecular gas of 3C 293 using high spatial resolution observations of the 12CO(1-0) and 12CO(2-1) lines, and the 3 mm and 1 continuum taken with the IRAM Plateau de Bure interferometer. We mapped the molecular gas of 3C 293 and compared it with the dust and star-formation images of the host. We searched for signatures of outflow motions in the CO kinematics, and re-examined the evidence of outflowing gas in the H i spectra. We also derived the star formation rate (SFR) and star formation efficiency (SFE) of the host with all available SFR tracers from the literature, and compared them with the SFE of young and evolved radio galaxies and normal star-forming galaxies. Results: The 12CO(1-0) emission line shows that the molecular gas in 3C 293 is distributed along a massive (M(H2) ~ 2.2 × 1010M⊙) ~24″(21 kpc-) diameter warped disk, that rotates around the AGN. Our data show that the dust and the star formation are clearly associated with the CO disk. The 12CO(2-1) emission is located in the inner 7 kpc (diameter) region around the AGN, coincident with the inner part of the 12CO(1-0) disk. Both the 12CO(1-0) and 12CO(2-1) spectra reveal the presence of an absorber against the central regions of 3C 293 that is associated with the disk. We do not detect any fast (≳500 km s-1) outflow motions in the cold molecular gas. The host of 3C 293 shows an SFE consistent with the Kennicutt-Schmidt law of normal galaxies and young radio galaxies, and it

  4. Using Data Mining to Find Bent-Double Radio Galaxies in the FIRST Survey

    SciTech Connect

    Kamath,C; Cantu-Paz,E; Fodor,I; Tang,N A

    2001-06-22

    In this paper, the authors describe the use of data mining techniques to search for radio-emitting galaxies with a bent-double morphology. In the past, astronomers from the FIRST (Faint Images of the Radio Sky at Twenty-cm) survey identified these galaxies through visual inspection. This was not only subjective but also tedious as the on-going survey now covers 8000 square degrees, with each square degree containing about 90 galaxies. In this paper, they describe how data mining can be used to automate the identification of these galaxies. They discuss the challenges faced in defining meaningful features that represent the shape of a galaxy and their experiences with ensembles of decision trees for the classification of bent-double galaxies.

  5. The X-ray view of giga-hertz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    Tengstrand, O.; Guainazzi, M.; Siemiginowska, A.; Fonseca Bonilla, N.; Labiano, A.; Worrall, D. M.; Grandi, P.; Piconcelli, E.

    2009-07-01

    Context: This paper presents the X-ray properties of a flux- and volume-limited complete sample of 16 giga-hertz peaked spectrum (GPS) galaxies. Aims: This study addresses three basic questions in our understanding of the nature and evolution of GPS sources: a) What is the physical origin of the X-ray emission in GPS galaxies? b) Which physical system is associated with the X-ray obscuration? c) What is the “endpoint” of the evolution of compact radio sources? Methods: We discuss in this paper the results of the X-ray spectral analysis, and compare the X-ray properties of the sample sources with radio observables. Results: We obtain a 100% (94%) detection fraction in the 0.5-2 keV (0.5-10 keV) energy band. GPS galaxy X-ray spectra are typically highly obscured (< N_HGPS > = 3 × 1022 cm-2; σN_H ≃ 0.5 dex). The X-ray column density is larger than the HI column density measured in the radio by a factor 10 to 100. GPS galaxies lie well on the extrapolation to high radio powers of the correlation between radio and X-ray luminosity known in low-luminosity FR I radio galaxies. On the other hand, GPS galaxies exhibit a comparable X-ray luminosity to FR II radio galaxies, notwithstanding their much larger radio luminosity. Conclusions: The X-ray to radio luminosity ratio distribution in our sample is consistent with the bulk of the high-energy emission being produced by the accretion disk, as well as with dynamical models of GPS evolution where X-rays are produced by Compton upscattering of ambient photons. Further support to the former scenario comes from the location of GPS galaxies in the X-ray to O[iii] luminosity ratio versus NH plane. We propose that GPS galaxies are young radio sources, which would reach their full maturity as classical FR II radio galaxies. However, column densities ≳ 1022 cm-2 could lead to a significant underestimate of dynamical age determinations based on the hotspot recession velocity measurements.

  6. CO detections and IRAS observations of bright radio spiral galaxies at cz equal or less than 9000 kilometers per second

    NASA Technical Reports Server (NTRS)

    Sanders, D. B.; Mirabel, I. F.

    1985-01-01

    CO emission has been detected from 20 of 21 bright radio spirals with strong extended nuclear sources, including the most distant (NGC 7674) and the most luminous (IC 4553 = Arp 220, NGC 6240) galaxies yet detected in CO. All of these galaxies are rich in molecular gas, with M total(H2) = 3 x 10 to the 8th - 2 x 10 to the 10th solar masses. IRAS observations show that they have a strong far-infrared (FIR) excess, with L(FIR)/L(B) approximately equal to 1-35 and L(FIR) (40-400 microns) approximately equal to 10 to the 10th - 10 to the 12th L solar masses. The primary luminosity source for these radio cores appears to be star formation in molecular clouds. A strong correlation is found between the FIR and extended 21 cm continuum flux, implying that the fraction of massive stars formed is independent of the star formation rate. The ratio L(FIR)/M(H2) provides a measure of the current rate of star formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. At these rates their molecular gas will be depleted in about 10 to the 8th yr.

  7. High resolution radio and optical observations of the central starburst in the low-metallicity dwarf galaxy II Zw 40

    SciTech Connect

    Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.; Walker, Lisa May E-mail: areines@nrao.edu E-mail: lisamay@virginia.edu

    2014-02-01

    The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceeds that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.

  8. SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1

    SciTech Connect

    Chang, Yu-Yen; Van der Wel, Arjen; Rix, Hans-Walter; Ramkumar, Balasubramanian; Wuyts, Stijn; Zibetti, Stefano; Holden, Bradford

    2013-01-10

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg{sup 2} to study the structural evolution of massive early-type galaxies since z {approx} 2. Mass-selected samples, complete down to log(M/M {sub Sun }) {approx} 10.7 such that 'typical' (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the {approx}400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z {approx}< 2, the most massive early-type galaxies (log(M/M {sub Sun }) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M {sub Sun }) {approx} 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  9. Shape Evolution of Massive Early-type Galaxies: Confirmation of Increased Disk Prevalence at z > 1

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Yen; van der Wel, Arjen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford

    2013-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 deg2 to study the structural evolution of massive early-type galaxies since z ~ 2. Mass-selected samples, complete down to log(M/M ⊙) ~ 10.7 such that "typical" (L*) galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separate the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.6 < z < 1.8 are accurate to 0.1 or better. The projected axis-ratio distributions are then compared with lower redshift samples. We find strong evidence for evolution of the population properties: early-type galaxies at z > 1 are, on average, flatter than at z < 1 and the median projected axis ratio at a fixed mass decreases with redshift. However, we also find that at all epochs z <~ 2, the most massive early-type galaxies (log(M/M ⊙) > 11.3) are the roundest, with a pronounced lack of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs, merging is required for early-type galaxies to grow beyond log(M/M ⊙) ~ 11.3, and all early types over time gradually and partially lose their disk-like characteristics.

  10. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-RedshiftRadio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; van Breugel, Wil J. M.; Heckman, Timothy M.; Miley, George K.

    1999-09-01

    We present rest-frame UV and Lyα images of spatially resolved structures (``hosts'') around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope (HST). The quasars were imaged with the PC1 through the F555W (``V''-band) filter, which at the redshifts of the quasars (2.1radio-loud quasars at high redshift have prominent host galaxies that appeared to have properties similar to those of high-redshift radio galaxies. Our HST observations allow a more detailed investigation of quasar host morphologies and a comparison with similar HST studies of radio galaxies by others. Using several methods to measure and quantify the host properties we find that all five quasars are extended and that this ``fuzz'' contains ~5%-40% of the total continuum flux and 15%-65% of the Lyα flux within a radius of about 1.5". The rest-frame UV luminosities of the hosts are log λPλ~11.9-12.5 Lsolar (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low-redshift starburst galaxies. The Lyα luminosities of the hosts are log LLyα~44.3-44.9 ergs s-1, which are also similar to the those of luminous high-redshift radio galaxies and considerably larger than the Lyα luminosities of high-redshift field galaxies. To generate the Lyα luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. The UV continuum morphologies of the hosts appear complex and knotty at the relatively high surface brightness levels of our exposures (about 24 V mag arcsec-2). In two quasars we find evidence for foreground galaxies that confuse the

  11. Soft γ-ray selected radio galaxies: favouring giant size discovery

    NASA Astrophysics Data System (ADS)

    Bassani, L.; Venturi, T.; Molina, M.; Malizia, A.; Dallacasa, D.; Panessa, F.; Bazzano, A.; Ubertini, P.

    2016-09-01

    Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of 64 confirmed plus three candidate radio galaxies selected in the soft gamma-ray band. The sample covers all optical classes and is dominated by objects showing a Fanaroff-Riley type II radio morphology; a large fraction (70 per cent) of the sample is made of `radiative mode' or high-excitation radio galaxies. We measured the source size on images from the NRAO VLA Sky Survey, the Faint Images of the Radio Sky at twenty-cm and the Sydney University Molonglo Sky Survey images and have compared our findings with data in the literature obtaining a good match. We surprisingly found that the soft gamma-ray selection favours the detection of large size radio galaxies: 60 per cent of objects in the sample have size greater than 0.4 Mpc while around 22 per cent reach dimension above 0.7 Mpc at which point they are classified as giant radio galaxies (GRGs), the largest and most energetic single entities in the Universe. Their fraction among soft gamma-ray selected radio galaxies is significantly larger than typically found in radio surveys, where only a few per cent of objects (1-6 per cent) are GRGs. This may partly be due to observational biases affecting radio surveys more than soft gamma-ray surveys, thus disfavouring the detection of GRGs at lower frequencies. The main reasons and/or conditions leading to the formation of these large radio structures are still unclear with many parameters such as high jet power, long activity time and surrounding environment all playing a role; the first two may be linked to the type of active galactic nucleus discussed in this work and partly explain the high fraction of GRGs found in the present sample. Our result suggests that high energy surveys may be a more efficient way than radio surveys to find these peculiar objects.

  12. The extreme behavior of the radio-loud narrow-line Seyfert 1 galaxy J0849+5108

    SciTech Connect

    Maune, Jeremy D.; Eggen, Joseph R.; Miller, H. Richard; Marshall, Kevin; Readhead, Anthony C. S.; Hovatta, Talvikki; King, Oliver

    2014-10-10

    Simultaneous radio, optical (both photometry and polarimetry), X-ray, and γ-ray observations of the radio-loud narrow-line Seyfert 1 (RL-NLSy1) galaxy J0849+5108 are presented. A massive three-magnitude optical flare across five nights in 2013 April is detected, along with associated flux increases in the γ-ray, infrared, and radio regimes; no comparable event was detected in the X-rays, though this may be due to poor coverage. A spectral energy distribution (SED) for the object using quasi-simultaneous data centered on the optical flare is compared to the previously published SEDs for the object by D'Ammando et al. The flare event coincided with a high degree of optical polarization. High amplitude optical microvariability is clearly detected, and is found to be of comparable amplitude when the object is observed in both faint and bright states. The object is also seen to undergo rapid shifts in polarization in both degree and electric vector position angle within a single night. J0849+5108 appears to show even more extreme variability than that previously reported for the similar object J0948+0022. These observations appear to support the growing claim that some RL-NLSy1 galaxies constitute a sub-class of blazar-like active galactic nuclei.

  13. Complete identification of the Parkes half-Jansky sample of GHz peaked spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Snellen, I. A. G.; Schilizzi, R. T.; Lehnert, M. D.; Bremer, M. N.

    2007-03-01

    Context: Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources. Statistically complete samples of GPS sources are vital for studying the early evolution of radio-loud AGN and the trigger of their nuclear activity. The "Parkes half-Jansky" sample of GPS radio galaxies is such a sample, representing the southern counterpart of the 1998 Stanghellini sample of bright GPS sources. Aims: As a first step of the investigation of the sample, the host galaxies need to be identified and their redshifts determined. Methods: Deep R-band VLT-FORS1 and ESO 3.6 m EFOSC II images and long slit spectra have been taken for the unidentified sources in the sample. Results: We have identified all twelve previously unknown host galaxies of the radio sources in the sample. Eleven have host galaxies in the range 21.0 < RC < 23.0, while one object, PKS J0210+0419, is identified in the near infrared with a galaxy with Ks = 18.3. The redshifts of 21 host galaxies have been determined in the range 0.474 < z < 1.539, bringing the total number of redshifts to 39 (80%). Analysis of the absolute magnitudes of the GPS host galaxies show that at z>1 they are on average a magnitude fainter than classical 3C radio galaxies, as found in earlier studies. However their restframe UV luminosities indicate that there is an extra light contribution from the AGN, or from a population of young stars. Based on observations collected at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO prog. ID No. 073.B-0289(B)) and the European Southern Observatory 3.6 m Telescope, La Silla, Chile (prog. ID No. 073.B-0289(A)). Appendices are only available in electronic form at http://www.aanda.org

  14. HST/ACS observations of Lyman-break galaxies and Lyα emitters associated with radio galaxies at z>4

    NASA Astrophysics Data System (ADS)

    Overzier, R. A.

    2006-03-01

    Distant radio galaxies may pinpoint overdense regions in the early universe. We have collected data with HST/ACS towards several overdensities of Lyα emitters associated with radio galaxies discovered by Venemans et al. Using the Lyman break selection technique we find statistical evidence for additional galaxies associated with the radio galaxies TN J1338-1942 at z=4.1 and TN J0924-2201 at z=5.2. In the case of TN J1338-1942, the angular distribution of candidate Lyman break galaxies is highly filamentary across the ˜12 arcmin2 field, with more than half of the objects clustered in a 4.4 arcmin2 region that includes the radio galaxy. Both fields appear to be significantly richer in Lyman break galaxies than the Great Observatories Origins Deep Survey (GOODS) fields, suggesting that the radio galaxies are embedded in galaxy groups or (forming) clusters. The Lyman break galaxies have mild to moderate star formation rates and relatively blue UV continuum colours. Except for their high equivalent width Lyα, the properties of spectroscopically confirmed Lyα emitters associated with these radio galaxies are consistent with those of normal Lyman break galaxies at relatively low luminosities. The two radio galaxies have some intriguing properties: TN J1338-1942 is extremely bright in the rest-frame UV, and has a highly disturbed morphology presumed to arise from interactions between the jet and the surrounding medium, and a starburst-driven superwind. The UV star formation rate and (projected) size of TN J0924-2201 are typical of relatively faint Lyman break galaxies at z˜3-5. Yet it is a luminous, radio-loud AGN, suggesting the presence of a supermassive black hole that may have acquired its mass before the host galaxy produced the bulk of its stars.

  15. A radio map of the colliding winds in the very massive binary system HD 93129A

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Marcote, B.; Moldón, J.; Nelan, E.; De Becker, M.; Dougherty, S. M.; Koribalski, B. S.

    2015-07-01

    Context. Radio observations are an effective tool for discovering particle acceleration regions in colliding-wind binaries through detection of synchrotron radiation. Wind-collision region (WCR) models can reproduce the radio continuum spectra of massive binaries. However, key constraints for models come from high-resolution imaging. Only five WCRs have been resolved to date at radio frequencies on milliarcsec (mas) angular scales. The source HD 93129A, a prototype of the very few known O2 I stars, is a promising target for study. Recently, a second massive, early-type star about 50 mas away was discovered, and a non-thermal radio source was detected in the region. Preliminary long-baseline array data suggest that a significant fraction of the radio emission from the system comes from a putative WCR. Aims: We seek evidence that HD 93129A is a massive binary system with colliding stellar winds that produce non-thermal radiation through spatially resolved images of the radio emitting regions. Methods: We completed observations with the Australian Long Baseline Array (LBA) to resolve the system at mas angular resolutions and reduced archival Australia Telescope Compact Array (ATCA) data to derive the total radio emission. We also compiled optical astrometric data of the system in a homogeneous way. We reduced historical Hubble Space Telescope data and obtained absolute and relative astrometry with milliarcsec accuracy. Results: The astrometric analysis leads us to conclude that the two stars in HD 93129A form a gravitationally bound system. The LBA data reveal an extended arc-shaped non-thermal source between the two stars, which is indicative of a WCR. The wind momentum-rate ratio of the two stellar winds is estimated. The ATCA data show a point source with a change in flux level between 2003-4 and 2008-9, which is modeled with a non-thermal power-law spectrum with spectral indices of -1.03 ± 0.09 and -1.21 ± 0.03, respectively. The mass-loss rates derived from the

  16. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  17. The Hierarchical Build-Up of Massive Galaxies And the Intracluster Light Since z=1

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.; Kravtsov, Andrey V.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI

    2007-03-19

    We use a set of simulation-based models for the dissipationless evolution of galaxies since z = 1 to constrain the fate of accreted satellites embedded in dark matter subhalos. These models assign stellar mass to dark matter halos at z = 1 by relating the observed galaxy stellar mass function (GSMF) to the halo+subhalo mass function monotonically. The evolution of the stellar mass content is then followed using halo merger trees extracted from N-body simulations. Our models are differentiated only in the fate assigned to satellite galaxies once subhalos, within which satellites are embedded, disrupt. These models are confronted with the observed evolution in the massive end of the GSMF, the z {approx} 0 brightest cluster galaxy (BCG)-cluster mass relation, and the combined BCG and intracluster light (ICL) luminosity distribution--all observables expected to evolve approximately dissipationlessly since z = 1. The combined observational constraints favor a model in which the vast majority ({approx}> 80%) of satellite stars from disrupted subhalos go into the ICL (operationally defined here as light below a surface brightness cut of {mu}{sub i} {approx} 23mag arcsec{sup -2}). Conversely, models that leave behind a significant population of satellite galaxies once the subhalo has disrupted are strongly disfavored, as are models that put a significant fraction of satellite stars into the BCG. Our results show that observations of the ICL provide useful and unique constraints on models of galaxy merging and the dissipationless evolution of galaxies in groups and clusters.

  18. Modeling and Classifying X-Shaped Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Wiita, Paul

    2012-03-01

    While there are several explanations for the formation of the apparently modest subset of radio galaxies that display an X-shaped morphology (XRGs), an important but often overlooked aspect of observing XRGs is the classification uncertainties arising from projection effects. These XRGs have hot-spots in one set of primary lobes, as is typical for powerful RGs, but also have a greatly offset pair of secondary lobes that lack hot-spots. To determine the likelihood of a true XRG appearing non-X-shaped, we developed a computer algorithm to model fiducial XRGs and then rotated the models by random angles so as to develop probabilities that observations would lead to classification errors due to projection effects. We show that XRGs may be misclassified as showing Z-shaped, winged, standard double, and double-double morphologies. A ``perfect'' XRG, that is, one with perpendicular, equal-sized primary and secondary lobes, may appear as having a different morphology ˜20% of the time. Thus many true XRG sources can be misclassified, significantly affecting the number that are known to exist. The double-double RGs are very rare and usually are interpreted as manifestations of restarted jet activity; however, a substantial fraction of them may really be XRGs viewed at special angles.

  19. The stellar accretion origin of stellar population gradients in massive galaxies at large radii

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.; Forbes, Duncan A.; Duc, Pierre-Alain; Davé, Romeel; Oser, Ludwig; Karabal, Emin

    2015-05-01

    We investigate the evolution of stellar population gradients from z = 2 to 0 in massive galaxies at large radii (r > 2Reff) using 10 cosmological zoom simulations of haloes with 6 × 1012 M⊙ < Mhalo < 2 × 1013 M⊙. The simulations follow metal cooling and enrichment from SNII, SNIa and asymptotic giant branch winds. We explore the differential impact of an empirical model for galactic winds that reproduces the mass-metallicity relation and its evolution with redshift. At larger radii the galaxies, for both models, become more dominated by stars accreted from satellite galaxies in major and minor mergers. In the wind model, fewer stars are accreted, but they are significantly more metal-poor resulting in steep global metallicity (<∇Zstars> = -0.35 dex dex-1) and colour (e.g. <∇g - r> = -0.13 dex dex-1) gradients in agreement with observations. In contrast, colour and metallicity gradients of the models without winds are inconsistent with observations. Age gradients are in general mildly positive at z = 0 (<∇Agestars> = 0.04 dex dex-1) with significant differences between the models at higher redshift. We demonstrate that for the wind model, stellar accretion is steepening existing in situ metallicity gradients by about 0.2 dex by the present day and helps to match observed gradients of massive early-type galaxies at large radii. Colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. The effect of stellar migration of in situ formed stars to large radii is discussed. This study highlights the importance of stellar accretion for stellar population properties of massive galaxies at large radii, which can provide important constraints for formation models.

  20. Photometric Selection of a Massive Galaxy Catalog with z ≥ 0.55

    NASA Astrophysics Data System (ADS)

    Núñez, Carolina; Spergel, David N.; Ho, Shirley

    2017-02-01

    We present the development of a photometrically selected massive galaxy catalog, targeting Luminous Red Galaxies (LRGs) and massive blue galaxies at redshifts of z≥slant 0.55. Massive galaxy candidates are selected using infrared/optical color–color cuts, with optical data from the Sloan Digital Sky Survey (SDSS) and infrared data from “unWISE” forced photometry derived from the Wide-field Infrared Survey Explorer (WISE). The selection method is based on previously developed techniques to select LRGs with z> 0.5, and is optimized using receiver operating characteristic curves. The catalog contains 16,191,145 objects, selected over the full SDSS DR10 footprint. The redshift distribution of the resulting catalog is estimated using spectroscopic redshifts from the DEEP2 Galaxy Redshift Survey and photometric redshifts from COSMOS. Restframe U ‑ B colors from DEEP2 are used to estimate LRG selection efficiency. Using DEEP2, the resulting catalog has an average redshift of z = 0.65, with a standard deviation of σ =2.0, and an average restframe of U-B=1.0, with a standard deviation of σ =0.27. Using COSMOS, the resulting catalog has an average redshift of z = 0.60, with a standard deviation of σ =1.8. We estimate 34 % of the catalog to be blue galaxies with z≥slant 0.55. An estimated 9.6 % of selected objects are blue sources with redshift z< 0.55. Stellar contamination is estimated to be 1.8%.

  1. A WISE Search for the Most Massive High-Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gonzalez, Anthony

    We propose a comprehensive program to detect and characterize the most massive galaxy clusters at z>1 over half the sky. The foundation for this program is the Preliminary Release data from the NASA Wide-field Infrared Survey Explorer (WISE). WISE is an all-sky infrared survey mission for which the first 23,600 sq. deg. of data are publicly available, providing images and photometric catalogs at 3.4, 4.6, 12, and 22 microns. The shortest wavelength band achieves a 5-sigma depth of 50 microJansky, which is sufficient to detect L* galaxies out to a z~1 (8 Gyr lookback time). Our team has developed a modified version of a cluster detection algorithm developed by Papovich (2008) that employs color selection in the two bluest bands (3.4 and 4.6 microns) to isolate galaxies at z>1 and identify galaxy clusters as overdensities of galaxies brighter than L*. The technique has been been tested using WISE data for a small (3,000 sq. deg.) subfield and optimized to enable an efficient search over the full Preliminary Release area. Within this subfield we find candidates that appear comparable to the most massive z>1 systems known. As a continuation of this pilot study, we propose to conduct a search over the full PR area (excluding the galactic plane) for high-redshift clusters. We will use multiwavelength observations of known and newly confirmed clusters to understand the mass and redshift selection function. The cluster sample resulting from this program is designed to be optimal for investigations of the Gaussianity of the initial density perturbations after inflation, the evolution of massive galaxies in the most overdense environments during their epoch of star formation and mass assembly, and the high-redshift Universe by employing the clusters as gravitational telescopes.

  2. Linking the spin evolution of massive black holes to galaxy kinematics

    SciTech Connect

    Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

    2014-10-20

    We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad Kα iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

  3. Which processes shape stellar population gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2016-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.

  4. Multiwavelength observations of giant radio galaxy 3C 35 and 3C 284

    NASA Astrophysics Data System (ADS)

    Pal, Sabyasachi; Chakrabarti, Sandip Kumar; Patra, Dusmanta; Konar, Chiranjib

    2016-07-01

    We report multi wavelength observations of large radio galaxy 3C35 and 3C284. The low frequency observations were done with the Giant Metrewave Radio Telescope (GMRT) starting from 150 MHz. The high frequency observations were done with Jansky Very Large Array (JVLA). Our main motivation for these observations is to estimate the spectral ages of these galaxies and to examine any proof of extended emission at low radio frequencies due to an earlier cycle of activity. The spectral age is measured by fitting the spectra with different spectral ageing models e.g. Kardashev-Pacholczyk (KP), Jaffe-Perola (JP) and Continuous Injection (CI).

  5. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    SciTech Connect

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-04-20

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  6. A Substantial Population of Massive Quiescent Galaxies at z ~ 4 from ZFOURGE

    NASA Astrophysics Data System (ADS)

    Straatman, Caroline M. S.; Labbé, Ivo; Spitler, Lee R.; Allen, Rebecca; Altieri, Bruno; Brammer, Gabriel B.; Dickinson, Mark; van Dokkum, Pieter; Inami, Hanae; Glazebrook, Karl; Kacprzak, Glenn G.; Kawinwanichakij, Lalit; Kelson, Daniel D.; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andy; Murphy, David; Papovich, Casey; Persson, S. Eric; Quadri, Ryan; Rees, Glen; Tomczak, Adam; Tran, Kim-Vy H.; Tilvi, Vithal

    2014-03-01

    We report the likely identification of a substantial population of massive M ~ 1011 M ⊙ galaxies at z ~ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10-11 yr-1. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ~ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10-5 Mpc-3 to a limit of log10 M/M ⊙ >= 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (~35%) of z ~ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 1011 M ⊙, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M ⊙ yr-1, far exceeding that of similarly abundant UV-bright galaxies at z >= 4. This suggests that most of the star formation in the progenitors of quiescent z ~ 4 galaxies was obscured by dust. This Letter contains data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE

    SciTech Connect

    Straatman, Caroline M. S.; Labbé, Ivo; Spitler, Lee R.; Allen, Rebecca; Glazebrook, Karl; Kacprzak, Glenn G.; Altieri, Bruno; Dickinson, Mark; Inami, Hanae; Van Dokkum, Pieter; Kawinwanichakij, Lalit; Mehrtens, Nicola; Papovich, Casey; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andy; Murphy, David; Persson, S. Eric; Quadri, Ryan; and others

    2014-03-01

    We report the likely identification of a substantial population of massive M ∼ 10{sup 11} M {sub ☉} galaxies at z ∼ 4 with suppressed star formation rates (SFRs), selected on rest-frame optical to near-IR colors from the FourStar Galaxy Evolution Survey (ZFOURGE). The observed spectral energy distributions show pronounced breaks, sampled by a set of near-IR medium-bandwidth filters, resulting in tightly constrained photometric redshifts. Fitting stellar population models suggests large Balmer/4000 Å breaks, relatively old stellar populations, large stellar masses, and low SFRs, with a median specific SFR of 2.9 ± 1.8 × 10{sup –11} yr{sup –1}. Ultradeep Herschel/PACS 100 μm, 160 μm and Spitzer/MIPS 24 μm data reveal no dust-obscured SFR activity for 15/19(79%) galaxies. Two far-IR detected galaxies are obscured QSOs. Stacking the far-IR undetected galaxies yields no detection, consistent with the spectral energy distribution fit, indicating independently that the average specific SFR is at least 10 × smaller than that of typical star-forming galaxies at z ∼ 4. Assuming all far-IR undetected galaxies are indeed quiescent, the volume density is 1.8 ± 0.7 × 10{sup –5} Mpc{sup –3} to a limit of log{sub 10} M/M {sub ☉} ≥ 10.6, which is 10 × and 80 × lower than at z = 2 and z = 0.1. They comprise a remarkably high fraction (∼35%) of z ∼ 4 massive galaxies, suggesting that suppression of star formation was efficient even at very high redshift. Given the average stellar age of 0.8 Gyr and stellar mass of 0.8 × 10{sup 11} M {sub ☉}, the galaxies likely started forming stars before z = 5, with SFRs well in excess of 100 M {sub ☉} yr{sup –1}, far exceeding that of similarly abundant UV-bright galaxies at z ≥ 4. This suggests that most of the star formation in the progenitors of quiescent z ∼ 4 galaxies was obscured by dust.

  8. Observational Studies of the Angular Structure of the Radio Galaxy 3C 234 at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Megn, A. V.; Braude, S. Ya.; Rashkovskiy, S. L.; Sharykin, N. K.; Shepelev, V. A.; Inyutin, G. A.; Vashchishin, R. V.; Brazhenko, A. I.; Bulatsen, V. G.

    2003-12-01

    An analysis of the angular structure of the radio galaxy 3C 234 at decameter wavelengths based on data obtained on the URAN-1 and URAN-2 interferometers is presented. Four of the five model components that describe the radio-brightness distribution at centimeter wavelengths are observed at decameter wavelengths: two compact components and two neighboring extended components. The fifth, undetected, component is the most extended, and encompasses the central region of the radio source, including the nucleus of the galaxy. Self-absorption is detected in the compact components, whose angular sizes are determined to be 0.27±0.03″ (northeast component) and 0.55±0.05″ (southwest component), in agreement with direct measurements at centimeter wavelengths. Most of the decameter emission of the radio galaxy is associated with its extended components.

  9. Soft Gamma-ray selected radio galaxies: favouring giant size discovery

    NASA Astrophysics Data System (ADS)

    Panessa, Francesca; Bassani, Loredana

    2016-07-01

    Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of radio galaxies selected in the soft gamma-ray band. The sample consists of known and candidate radio galaxies. The sample extraction criteria will be presented and its general properties outlined. In particular we provide strong evidence that this soft gamma-ray selection favours the discovery of large size radio objects, otherwise known as Giant Radio Galaxies or GRG. The main reasons and/or conditions leading to the formation of these sources are still unclear and this result suggests that they maybe related to exceptional internal properties of the source central engine, like a high jet power or a long activity time. Broad band analysis of new GRG, discovered during this work, will also be presented.

  10. The compact radio structure of radio-loud NLS1 galaxies and the relationship to CSS sources

    NASA Astrophysics Data System (ADS)

    Gu, M.; Chen, Y.; Komossa, S.; Yuan, W.; Shen, Z.

    2016-02-01

    Narrow-line Seyfert 1 galaxies are thought to be young AGNs with relatively small black hole masses and high accretion rates. Radio-loud narrow-line Seyfert 1 galaxies (RLNLS1s) are very special, because some of them show blazar-like characteristics, while others resemble compact steep-spectrum sources. Relativistic jets were shown to exist in a few RLNLS1s based on VLBI observations and confirmed by the gamma-ray flaring of some of them. These properties may possibly be contrary to typical radio-loud AGNs, in light of the low black-hole masses, and high accretion rates. We present the compact radio structure of fourteen RLNLS1 galaxies from Very Long Baseline Array observations at 5 GHz in 2013. Although all these sources are very radio-loud with {R > 100}, their jet properties are diverse, in terms of their milli-arcsecond (mas) scale (pc scale) morphology and their overall radio spectral shape. The core brightness temperatures of our sources are significantly lower than those of blazars, therefore, the beaming effect is generally not significant in our sources, compared to blazars. This implies that the bulk jet speed may likely be low in our sources. The relationship between RLNLS1s and compact steep-spectrum sources, and the implications on jet formation are discussed based on the pc-scale jet properties.

  11. EVIDENCE FOR WIDESPREAD ACTIVE GALACTIC NUCLEUS ACTIVITY AMONG MASSIVE QUIESCENT GALAXIES AT z {approx} 2

    SciTech Connect

    Olsen, Karen P.; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew W.

    2013-02-10

    We quantify the presence of active galactic nuclei (AGNs) in a mass-complete (M {sub *} > 5 Multiplication-Sign 10{sup 10} M {sub Sun }) sample of 123 star-forming and quiescent galaxies at 1.5 {<=} z {<=} 2.5, using X-ray data from the 4 Ms Chandra Deep Field-South (CDF-S) survey. 41% {+-} 7% of the galaxies are detected directly in X-rays, 22% {+-} 5% with rest-frame 0.5-8 keV luminosities consistent with hosting luminous AGNs (L {sub 0.5-8keV} > 3 Multiplication-Sign 10{sup 42} erg s{sup -1}). The latter fraction is similar for star-forming and quiescent galaxies, and does not depend on galaxy stellar mass, suggesting that perhaps luminous AGNs are triggered by external effects such as mergers. We detect significant mean X-ray signals in stacked images for both the individually non-detected star-forming and quiescent galaxies, with spectra consistent with star formation only and/or a low-luminosity AGN in both cases. Comparing star formation rates inferred from the 2-10 keV luminosities to those from rest-frame IR+UV emission, we find evidence for an X-ray excess indicative of low-luminosity AGNs. Among the quiescent galaxies, the excess suggests that as many as 70%-100% of these contain low- or high-luminosity AGNs, while the corresponding fraction is lower among star-forming galaxies (43%-65%). Our discovery of the ubiquity of AGNs in massive, quiescent z {approx} 2 galaxies provides observational support for the importance of AGNs in impeding star formation during galaxy evolution.

  12. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  13. PKS 0347+05: a radio-loud/radio-quiet double active galactic nucleus system triggered in a major galaxy merger

    NASA Astrophysics Data System (ADS)

    Tadhunter, C. N.; Ramos Almeida, C.; Morganti, R.; Holt, J.; Rose, M.; Dicken, D.; Inskip, K.

    2012-12-01

    We present optical, infrared (IR) and radio observations of the powerful Fanaroff-Riley type II (FR II) radio source PKS 0347+05 (z = 0.3390), and demonstrate that it is a rare example of a radio-loud/radio-quiet double active galactic nucleus (AGN) system, comprising a weak-line radio galaxy (WLRG) separated by 25 kpc (in projection) from a Seyfert 1 nucleus at the same redshift. Our deep Gemini optical images show a highly disturbed morphology, with a warped dust lane crossing through the halo and nuclear regions of the radio galaxy host, tidal tails and a bridge connecting the radio galaxy to the Seyfert 1 nucleus. Spectral synthesis modelling of our Gemini optical spectrum of the radio galaxy shows evidence for a reddened young stellar population of age ≤100 Myr. Further evidence for recent star formation activity in this source is provided by the detection of strong polycyclic aromatic hydrocarbon features in mid-IR Spitzer/IRS spectra. Together, these observations support a model in which both AGN have been triggered simultaneously in a major galaxy merger. However, despite the presence of a powerful FR II radio source, and the apparently plentiful supply of fuel provided by the merger, the nucleus of the radio galaxy shows only weak, low-ionization emission-line activity. We speculate that the fuel supply to nuclear regions of the radio galaxy has recently switched off (within the last ˜106 yr), but the information about the resulting decrease in nuclear AGN activity has yet to reach the extended lobes and hotspots of the FR II radio source. Based on this scenario, we derive a lower limit on the typical lifetimes of powerful, intermediate-redshift FR II radio sources of τ FR II ≳5×106 yr. Overall, our observations emphasize that the fuelling of AGN activity in major galaxy mergers is likely to be highly intermittent.

  14. Examining the Center: Positions, Dominance, and Star Formation Rates of Most Massive Group Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Connelly, Jennifer L.; Parker, Laura C.; McGee, Sean; Mulchaey, John S.; Finoguenov, Alexis; Balogh, Michael; Wilman, David; Group Environment Evolution Collaboration

    2015-01-01

    The group environment is believed to be the stage for many galaxy transformations, helping evolve blue star-forming galaxies to red passive ones. In local studies of galaxy clusters, the central member is usually a single dominant giant galaxy at the center of the potential with little star formation thought to be the result of galaxy mergers. In nearby groups, a range of morphologies and star formation rates are observed and the formation history is less clear. Further, the position and dominance of the central galaxy cannot be assumed in groups, which are less massive and evolved than clusters. To understand the connections between global group properties and properties of the central group galaxy at intermediate redshift, we examine galaxy groups from the Group Environment and Evolution Collaboration (GEEC) catalog, including both optically- and X-ray-selected groups at redshift z~0.4. The sample is diverse, containing a range in overall mass and evolutionary state. The number of groups is significant, membership is notably complete, and measurements span the IR to the UV allowing the properties of the members to be connected to those of the host groups. Having investigated trends in the global group properties previously, including mass and velocity substructure, we turn our attention now to the galaxy populations, focusing on the central regions of these systems. The most massive and second most massive group galaxies are identified by their stellar mass. The positions of the most massive galaxies (MMGs) are determined with respect to both the luminosity-weighted and X-ray center. Star formation rates are used to explore the fraction of passive/quiescent versus star-forming MMGs and the dominance of the MMGs in our group sample is also tested. Determinations of these characteristics and trends constitute the important first steps toward a detailed understanding of the relationships between the properties of host groups and their most massive galaxies and the

  15. 1-20 micron infrared photometry of 3CR radio galaxies

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Willner, S. P.; Fabbiano, G.; Carleton, N. P.; Lawrence, A.; Ward, M.

    1984-05-01

    Seven emission-line radio galaxies in the wavelength range from 1 to 20 microns were observed in February 1983. Three broad emission-line galaxies (BLRGs 3C 109, 3C 234, and 3C 445), and four narrow emission-line radio galaxies (NLRGs 3C 98, 3C 198, 3C 223, and 3C 293) were found. The BLRGs showed strong infrared fluxes beyond 3.5 microns, with steep infrared slopes similar to optical slopes. In a comparison with earlier observational data it was found that two of the BLRGs are variable in the JHK filter range without a change of slope. The NLRGs showed strong excess at 10 microns and normal elliptical galaxy colors at JHK and L. Simple predictions based on type-2 Seyfert galaxies show that strong infrared excesses are absent.

  16. 1-20 micron infrared photometry of 3CR radio galaxies

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Willner, S. P.; Fabbiano, G.; Carleton, N. P.; Lawrence, A.; Ward, M.

    1984-01-01

    Seven emission-line radio galaxies in the wavelength range from 1 to 20 microns were observed in February 1983. Three broad emission-line galaxies (BLRGs 3C 109, 3C 234, and 3C 445), and four narrow emission-line radio galaxies (NLRGs 3C 98, 3C 198, 3C 223, and 3C 293) were found. The BLRGs showed strong infrared fluxes beyond 3.5 microns, with steep infrared slopes similar to optical slopes. In a comparison with earlier observational data it was found that two of the BLRGs are variable in the JHK filter range without a change of slope. The NLRGs showed strong excess at 10 microns and normal elliptical galaxy colors at JHK and L. Simple predictions based on type-2 Seyfert galaxies show that strong infrared excesses are absent.

  17. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    SciTech Connect

    McWilliams, Sean T.; Pretorius, Frans; Ostriker, Jeremiah P.

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of h{sub c}(f = 1 yr{sup –1}) = (1.1 × 10{sup –15}, 6.8 × 10{sup –16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  18. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  19. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; deHaan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Joy, M.

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  20. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    SciTech Connect

    Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.

    2010-06-01

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  1. Mass assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  2. Mass Assembly of galaxies from the MASSIV survey and the MIRAGE simulation sample.

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2015-08-01

    The MIRAGE (Merging & isolated high-redshift AMR galaxies, Perret et al. 2014) sample has been built in order to understand the contribution of the merger processes to the mass assembly in the MASSIV (Mass Assembly Survey with SINFONI in VVDS, Contini et al. 2012) sample. It consists of a sample of idealized simulations based on the RAMSES code; the initial conditions were designed to reproduce the physical properties of the most gas-rich young galaxies. It is composed of simulations of mergers exploring the initial parameters of mass and orientation of the disks with a spatial resolution reaching 7 parsecs. We carry out a comparative study of the MASSIV kinematical data to a set of more than 4000 pseudo-observations at z=1.7 built from simulations of the MIRAGE sample to determine the ability to detect galaxy merger signatures under the observational conditions of the SINFONI instrument. The MIRAGE simulations show (i) an absence of star formation bursts in mergers of fragmented and turbulent disks, suggesting a saturation mechanism; (ii) that the gas rich clump merging mechanism is able to control the bulge mass growth, to erode the central profile of the dark matter halo and to drive massive gas outflows into the disk plane; (iii) irrespectively of the orbital configuration and of the mass ratio between the disks a new disk of gas is reconstructed quickly after the merger.

  3. Optical spectroscopy of the radio-loud nuclei of spiral galaxies: Starbursts or monsters

    SciTech Connect

    Heckman, T.M.; Van Breugel, W.; Miley, G.K.; Butcher, H.R.

    1983-08-01

    We present optical spectroscopic data pertaining to the physical state, kinematics, and spatial extent of the emission-line gas near the radio-loud nuclei of spiral galaxies. These data are combined with published optical, radio, and infrared data to evaluate the suggestions by Condon et al. (1982) that the nuclear radio emission in this class of galaxy is produced by multiple supernova remnants generated as a consequence of a nuclear starburst. As a whole, the radio-loud nuclei have stronger emission lines than radio-quiet nuclei of galaxies of similar Hubble/de Vaucouleurs type. This emission-line gas is generally at least as spatially extended as the radio continuum emission. However, we find that only about 1/3 of the spiral galaxies examined have optical spectroscopic properties consistent with those of ''extranuclear starbursts'' (i.e., giant H II regions). The majority of the nuclei seem to require a form of energy input to the ionized gas which is ''harder'' than the Lyman continuum radiation of OB stars, as their emission-line spectra are of the Seyfert or Liner variety. The nuclei with H II region spectra are distinct from the nuclei with Seyfert spectra in terms of radio morphology and radio spectral index, and tend to occur in spiral galaxies of much later Hubble type than do the Seyfert or Liner nuclei (Sc vs Sa). Moreover, the most luminous nuclear radio sources in our sample (PMHz> or =10/sup 22/ Watts Hz/sup -1/ Sr/sup -1/) are not associated with H II region nuclei. We summarize evidence that the putative nuclear starbursts must differ significantly from extranuclear starbursts.

  4. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  5. Using deep images and simulations to trace collisional debris around massive galaxies

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2017-03-01

    Deep imaging programs, such as MATLAS which has just been completed at the CFHT, allows us to study with their diffuse light the outer stellar populations around large number of galaxies. We have carried out a systematic census of their fine structures, i.e. the collisional debris from past mergers. We have identified among them stellar streams from minor mergers, tidal tails from gas-rich major mergers, plumes from gas-poor major mergers, and shells from intermediate mass mergers. Having estimated the visibility and life time of each of these structures with numerical simulations, we can reconstruct the past mass assembly of the host galaxy. Preliminary statistical results based on a sample of 360 massive nearby galaxies are presented.

  6. A Photometric and Spectroscopic Study of Massive and Evolved Galaxies at z > 3

    NASA Astrophysics Data System (ADS)

    Nayyeri, Hooshang

    I use deep data taken as part of the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) along with ground-based and Spitzer Space Telescope data to identify massive and evolved galaxies at z > 3. This is performed using the strength of the Balmer break feature at rest-frame 3648AA, which is an age dependent diagnostic of the stellar population, to develop a Balmer Break Galaxy (BBG) selection. Fitting the spectral energy distribution (SED) of the candidates show that these systems have average estimated ages of ~ 800 Myr and average stellar masses of ~ 5 x1010M_sun, consistent with being old and massive. I find a number density of ~ 3.2 x 10--5 Mpc--3 for these systems corresponding to a mass density of ~ 2.0 x 106 M_sun/Mpc3 at 3 < z < 3 are far more compact than lower redshift early type galaxies. Using the GALFIT measured sizes, I confirm that the physical size of the early type galaxies evolve rapidly with redshift according to: Re ∝ (1 + z) --1.48 out to z ~ 3.3.

  7. What shapes stellar metallicity gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2017-03-01

    We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).

  8. The Nearest GHz Peaked-Spectrum Radio Galaxy, PKS 1718-649

    NASA Technical Reports Server (NTRS)

    Tingay, S. J.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; Preston, R. A.; Lovell, J. E.; McCulloch, P. M.; Costa, M. E.; Nicolson, G.

    1997-01-01

    In this paper we identify PKS 1718-649, at a distance of 56 Mpc (z = 0.014; H(sub o) = 75 km/s/Mpc, q(sub o) = 0), as the nearest GHz peaked-spectrum (GPS) radio galaxy, more than four times closer than any previously known. Extensive observations at radio wavelengths with the Australia Telescope Compact Array, the Southern Hemisphere VLBI Experiment array, and the Swedish-ESO Submillimetre Telescope have allowed us to determine the properties of the radio source: PKS 1718-649 consists of two compact sub-pc-scale components separated by approximately 2 pc, the overall radio polarization is low, and the radio spectrum is peaked near 3 GHz. Order-of-magnitude agreement between the quantitative model for GPS sources of Bicknell et al. and the radio data we present, as well as data at optical wavelengths from the literature, raises the interesting possibility that PKS 1718-649 may be frustrated in its development by the nuclear environment of its host galaxy, NGC 6328. The model of Bicknell et al. suggests free-free absorption as an explanation of the PKS 1718-649 radio spectrum. However, both free-free absorption and synchrotron self-absorption mechanisms are plausible for this source and both may contribute to the overall radio spectrum. PKS 1718-649 provides evidence to strengthen the speculative suggestion that GPS sources arise as a consequence of galaxy merger activity.

  9. What are the Progenitors of Compace, Massive, Quiescent Galaxies at z (equals) 2.3? The Population of Massive Galaxies at z (greater than) 3 From NMBS AND CANDELS

    NASA Technical Reports Server (NTRS)

    Stefanon, Mauro; Marchesini, Danilo; Rudnick, Gregory H.; Brammer, Gabriel B.; Tease, Katherine Whitaker

    2013-01-01

    Using public data from the NEWFIRM Medium-Band Survey (NMBS) and the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we investigate the population of massive galaxies at z > 3. The main aim of this work is to identify the potential progenitors of z 2 compact, massive, quiescent galaxies (CMQGs), furthering our understanding of the onset and evolution of massive galaxies. Our work is enabled by high-resolution images from CANDELS data and accurate photometric redshifts, stellar masses, and star formation rates (SFRs) from 37-band NMBS photometry. The total number of massive galaxies at z > 3 is consistent with the number of massive, quiescent galaxies (MQGs) at z 2, implying that the SFRs for all of these galaxies must be much lower by z 2. We discover four CMQGs at z > 3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z < 2 with similar masses, SFRs, and sizes, implying that additional CMQGs must be created in the intervening 1 Gyr between z = 3 and z = 2. We find five star-forming galaxies at z 3 that are compact (Re < 1.4 kpc) and have stellar mass M* > 1010.6M; these galaxies are likely to become members of the massive, quiescent, compact galaxy population at z 2. We evolve the stellar masses and SFRs of each individual z > 3 galaxy adopting five different star formation histories (SFHs) and studying the resulting population of massive galaxies at z = 2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQGs at z 2, whereas a constant delayed-exponential SFH would result in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQGs at z 2 that are consistent with the observed number density. Better agreement with the observed number density of CMQGs at z 2 is obtained if merging is included in the analysis and better still if

  10. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    SciTech Connect

    Pace, Cameron; Salim, Samir E-mail: salims@indiana.edu

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  11. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  12. Is the Size Evolution of Massive Galaxies Accelerated in Cluster Environments?

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2013-10-01

    At z 1.6 the main progenitors of present-day massive clusters are undergoing rapid collapse, and have the highest rates of galaxy merging and assembly. Recent observational studies have hinted at accelerated galaxy evolution in dense environments at this epoch, including increased merger rates and rapid growth in galaxy size relative to the field. We propose WFC3 G102 spectroscopy and F125W {Broad J} imaging of a sample of four massive spectroscopically-confirmed clusters at z = 1.6. Our primary scientific goal is to leverage the CANDELS Wide Legacy dataset to carry out a head-to-head comparison of the sizes of cluster members relative to the field {as a function of stellar mass and Sersic index}, and quantify the role of environment in the observed rapid evolution in galaxy sizes since z = 2. These clusters are four of the highest significance overdensities in the 50 square degree SWIRE fields, and will evolve over time to have present-day masses similar to Coma. They were detected using IRAC [3.6]-[4.5] color, which identifies galaxy overdensities regardless of optically red or blue color. A heroic ground-based spectroscopic campaign has resulted in 44 spectroscopically-confirmed members. However this sample is heavily biased toward star-forming {SF} galaxies, and WFC3 spectroscopy is essential to definitively determine cluster membership for 200 members, without bias with respect to quiescent or SF type. The F125W {rest-frame V-band} imaging is necessary to measure the sizes and morphologies of cluster members. 17-passband broadband imaging spanning UV, optical, near-IR, Spitzer IR and Herschel far-IR is already in hand.

  13. Star formation in nearby early-type galaxies: the radio continuum perspective

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina; Young, Lisa M.; Wrobel, Joan M.; Davis, Timothy A.; Bureau, Martin; Alatalo, Katherine; Morganti, Raffaella; Duc, Pierre-Alain; de Zeeuw, P. T.; McDermid, Richard M.; Crocker, Alison F.; Oosterloo, Tom

    2017-01-01

    We present a 1.4 GHz Karl G. Jansky Very Large Array (VLA) study of a sample of early-type galaxies (ETGs) from the ATLAS3D survey. The radio morphologies of these ETGs at a resolution of θFWHM ≈ 5 arcsec include sources that are compact on sub-kpc scales, resolved structures similar to those seen in star-forming spiral galaxies, and kpc-scale radio jets/lobes associated with active nuclei. We compare the radio, CO, and infrared (IR) properties of these ETGs. The most CO-rich ETGs have radio luminosities consistent with extrapolations from H2 mass derived star-formation rates from studies of late-type galaxies. These ETGs also follow the radio-IR correlation. However, ETGs with lower molecular gas masses tend to have less radio emission relative to their CO and IR emission compared to spirals. The fraction of galaxies in our sample with high IR-radio ratios is much higher than in previous studies, and cannot be explained by a systematic underestimation of the radio luminosity due to the presence extended, low-surface-brightness emission that was resolved out in our VLA observations. We find that the high IR-radio ratios tend to occur at low IR luminosities, but are not associated with low dynamical mass or metallicity. Thus, we have identified a population of ETGs that have a genuine shortfall of radio emission relative to both their IR and CO emission. A number of mechanisms may cause this deficiency, including a bottom-heavy stellar initial mass function, weak magnetic fields, a higher prevalence of environmental effects compared to spirals, and enhanced cosmic ray losses.

  14. Massive star-forming host galaxies of quasars on Sloan digital sky survey stripe 82

    SciTech Connect

    Matsuoka, Yoshiki; Strauss, Michael A.; Price, Ted N. III; DiDonato, Matthew S.

    2014-01-10

    The stellar properties of about 800 galaxies hosting optically luminous, unobscured quasars at z < 0.6 are analyzed. Deep co-added Sloan Digital Sky Survey (SDSS) images of the quasars on Stripe 82 are decomposed into nucleus and host galaxy using point spread function and Sérsic models. The systematic errors in the measured galaxy absolute magnitudes and colors are estimated to be less than 0.5 mag and 0.1 mag, respectively, with simulated quasar images. The effect of quasar light scattered by the interstellar medium is also carefully addressed. The measured quasar-to-galaxy ratio in total flux decreases toward longer wavelengths, from ∼8 in the u band to ∼1 in the i and z bands. We find that the SDSS quasars are hosted exclusively by massive galaxies (stellar mass M {sub star} > 10{sup 10} M {sub ☉}), which is consistent with previous results for less luminous narrow-line (obscured) active galactic nuclei (AGNs). The quasar hosts are very blue and almost absent on the red sequence, showing stark contrast to the color-magnitude distribution of normal galaxies. The fact that more powerful AGNs reside in galaxies with higher star-formation efficiency may indicate that negative AGN feedback, if it exists, is not concurrent with the most luminous phase of AGNs. We also find positive correlation between the mass of supermassive black holes (SMBHs; M {sub BH}) and host stellar mass, but the M {sub BH}-M {sub star} relation is offset toward large M {sub BH} or small M {sub star} compared to the local relation. While this could indicate that SMBHs grow earlier than do their host galaxies, such an argument is not conclusive, as the effect may be dominated by observational biases.

  15. THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES

    SciTech Connect

    Antonini, Fabio; Barausse, Enrico; Silk, Joseph

    2015-10-10

    Studying how nuclear star clusters (NSCs) form and how they are related to the growth of the central massive black holes (MBHs) and their host galaxies is fundamental for our understanding of the evolution of galaxies and the processes that have shaped their central structures. We present the results of a semi-analytical galaxy formation model that follows the evolution of dark matter halos along merger trees, as well as that of the baryonic components. This model allows us to study the evolution of NSCs in a cosmological context, by taking into account the growth of NSCs due to both dynamical-friction-driven migration of stellar clusters and star formation triggered by infalling gas, while also accounting for dynamical heating from (binary) MBHs. We find that in situ star formation contributes a significant fraction (up to ∼80%) of the total mass of NSCs in our model. Both NSC growth through in situ star formation and that through star cluster migration are found to generate NSC—host galaxy scaling correlations that are shallower than the same correlations for MBHs. We explore the role of galaxy mergers on the evolution of NSCs and show that observational data on NSC—host galaxy scaling relations provide evidence of partial erosion of NSCs by MBH binaries in luminous galaxies. We show that this observational feature is reproduced by our models, and we make predictions about the NSC and MBH occupation fraction in galaxies. We conclude by discussing several implications for theories of NSC formation.

  16. Jellyfish: Observational Properties of Extreme Ram-Pressure Stripping Events in Massive Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Conor, McPartland; Ebeling, Harald; Roediger, Elke

    2015-08-01

    We investigate the physical origin and observational signatures of extreme ram-pressure stripping (RPS) in 63 massive galaxy clusters at z=0.3-0.7, based on data in the F606W passband obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Using a training set of a dozen ``jellyfish" galaxies identified earlier in the same imaging data, we define quantitative morphological criteria to select candidate galaxies which are similar to known cases of RPS. Considering a sample of 16 ``jellyfish" galaxies (10 of which we present for the first time), we visually derive estimates of the projected direction of motion based on dynamical features such as apparent compression shocks and debris trails. Our findings suggest that the observed events occur primarily at large distances from the cluster core and involve infall trajectories featuring high impact parameters. Simple models of cluster growth show that such trajectories are consistent with two scenarios: 1) galaxy infall along filaments; and 2) infall at high velocities (≥1000 km/s) characteristic of cluster mergers. The observed distribution of events is best described by timescales of ˜few Myr in agreement with recent numerical simulations of RPS. The broader areal coverage of the Hubble Frontier Fields should provide an even larger sample of RPS events to determine the relative contributions of infall and cluster mergers. Prompted by the discovery of several jellyfish galaxies whose brightness in the F606W passband rivals or exceeds that of the respective brightest cluster galaxy, we attempt to constrain the luminosity function of galaxies undergoing RPS. The observed significant excess at the bright end compared to the luminosity functions of blue cluster members strongly suggests enhanced star formation, thus challenging theoretical and numerical studies according to which RPS merely displaces existing star-forming regions. In-depth studies of individual objects will help test our

  17. Star Formation in Edge-on Galaxies and its Relation to Radio Continuum Halos

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos J.; Mora Partiarroyo, Silvia Carolina; Schmidt, Philip; Walterbos, Rene A. M.; Irwin, Judith; Wang, Daniel; Rand, Richard J.; Stein, Yelena; CHANG-ES

    2017-01-01

    We study the radio continuum emission in edge-on galaxies from the Continuum Halos in Nearby Galaxies -- an EVLA Survey (CHANG-ES), with a particular focus on the question of the correlation of radio synchroton halos with the star formation rate distribution across the galaxy disks. To determine the star formation rates we analyze the application of various SFR calibration methods, in particular those involving Hα and 24 μm emission for the galaxies in the sample. We test consistency of the published SFR calibrations by predicting thermal radio continuum maps that are compared with the observed radio data and with the derived spectral index maps, both before and after removal of the predicted thermal maps. In addition to published calibrations of the SFR from Hα and 24 μm data, we explore different mixtures of Hα and 24 μm maps that may be more applicable in the case of an edge-on galaxy perspective. We also discuss the correlation between the luminosity, morphology, and spectral indices of radio synchrotron halos with the distribution of SF in the galactic disks, and explore the connection with extra-planar diffuse ionized gas obtained from sensitive Hα images with the ARC 3.5m telescope for the entire sample. This research is supported by the National Science Foundation under Grant No 1650681 and AST - 1615594.

  18. Radio constraints on heavily obscured star formation within dark gamma-ray burst host galaxies

    SciTech Connect

    Perley, D. A.; Perley, R. A.

    2013-12-01

    Highly dust-obscured starbursting galaxies (submillimeter galaxies and their ilk) represent the most extreme sites of star formation in the distant universe and contribute significantly to overall cosmic star formation beyond z > 1.5. Some stars formed in these environments may also explode as gamma-ray bursts (GRBs) and contribute to the population of 'dark' bursts. Here we present Very Large Array wideband radio-continuum observations of 15 heavily dust-obscured Swift GRBs to search for radio synchrotron emission associated with intense star formation in their host galaxies. Most of these targets (11) are not detected. Of the remaining four objects, one detection is marginal, and for two others we cannot yet rule out the contribution of a long-lived radio afterglow. The final detection is secure, but indicates a star formation rate (SFR) roughly consistent with the dust-corrected UV-inferred value. Most galaxies hosting obscured GRBs are therefore not forming stars at extreme rates, and the amount of optical extinction seen along a GRB afterglow sightline does not clearly correlate with the likelihood that the host has a sufficiently high SFR to be radio-detectable. While some submillimeter galaxies do readily produce GRBs, these GRBs are often not heavily obscured—suggesting that the outer (modestly obscured) parts of these galaxies overproduce GRBs and the inner (heavily obscured) parts underproduce GRBs relative to their respective contributions to star formation, hinting at strong chemical or initial mass function gradients within these systems.

  19. The dynamics and excitation of circumnuclear disks in radio-active galaxies

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brown, Michael; Jannuzi, Buell; McGregor, Peter; Floyd, David; Jones, Heath; Ferrarese, Laura

    2011-08-01

    Powerful radio-active galaxies may harbor a heavily obscured Active Galactic Nucleus (AGN), where the black hole is hidden by an optically and geometrically thick dust "torus". Near-IR spectroscopy with Adaptive Optics (AO) has shown that the ratio of atomic to molecular hydrogen varies greatly across the nuclear regions, thus allowing one to set limits of the size of the torus. AO IFU observations with Gemini and Keck will enable a study of a complete sample of early-type galaxies harboring radio AGNs, resulting in a complete picture of the kinematics and distribution of the gas around the nucleus, and trace the 2-D structure of the torus in these galaxies. The time is right to survey a complete sample of nearby radio-active galaxies to (1) characterize the dynamics of these circumnuclear disks as a function of galaxy mass and (2) outline the ecology of the gas flows that support them. %First we must see which of Brown et al's %complete sample of nearby radiogalaxies have emission As a first step, we need to determine which of our selected sample of 23 nearby radio-active galaxies have emission lines in J & H and are thus amenable to NIR IFU observations. This we propose to do with FLAMINGOS. To survey our sample for suitable objects for the Keck/Gemini follow-up will require approximately 22 nights distributed evenly over the next four observing semesters.%It will take 11 nights in 11B & 12B and

  20. Evidence for particle re-acceleration in the radio relic in the galaxy cluster PLCKG287.0+32.9

    SciTech Connect

    Bonafede, A.; Brüggen, M.; Intema, H. T.; Girardi, M.; Nonino, M.; Kantharia, N.; Van Weeren, R. J.; Röttgering, H. J. A.

    2014-04-10

    Radio relics are diffuse radio sources observed in galaxy clusters, probably produced by shock acceleration during cluster-cluster mergers. Their large size, of the order of 1 Mpc, indicates that the emitting electrons need to be (re)accelerated locally. The usually invoked diffusive shock acceleration models have been challenged by recent observations and theory. We report the discovery of complex radio emission in the Galaxy cluster PLCKG287.0+32.9, which hosts two relics, a radio halo, and several radio filamentary emission. Optical observations suggest that the cluster is elongated, likely along an intergalactic filament, and displays a significant amount of substructure. The peculiar features of this radio relic are that (1) it appears to be connected to the lobes of a radio galaxy and (2) the radio spectrum steepens on either side of the radio relic. We discuss the origins of these features in the context of particle re-acceleration.

  1. PRECISE IDENTIFICATIONS OF SUBMILLIMETER GALAXIES: MEASURING THE HISTORY OF MASSIVE STAR-FORMING GALAXIES TO z > 5 {sup ,} {sup ,}

    SciTech Connect

    Barger, A. J.; Wang, W.-H.; Cowie, L. L.; Chen, C.-C.; Williams, J. P.; Owen, F. N.

    2012-12-20

    We carried out extremely sensitive Submillimeter Array (SMA) 340 GHz (860 {mu}m) continuum imaging of a complete sample of SCUBA 850 {mu}m sources (>4{sigma}) with fluxes >3 mJy in the GOODS-N. Using these data and new SCUBA-2 data, we do not detect 4 of the 16 SCUBA sources, and we rule out the original SCUBA fluxes at the 4{sigma} level. Three more resolve into multiple fainter SMA galaxies, suggesting that our understanding of the most luminous high-redshift dusty galaxies may not be as reliable as we thought. 10 of the 16 independent SMA sources have spectroscopic redshifts (optical/infrared or CO) up to z = 5.18. Using a new, ultradeep 20 cm image obtained with the Karl G. Jansky Very Large Array (rms of 2.5 {mu}Jy), we find that all 16 of the SMA sources are detected at >5{sigma}. Using Herschel far-infrared (FIR) data, we show that the five isolated SMA sources with Herschel detections are well described by an Arp 220 spectral energy distribution template in the FIR. They also closely obey the local FIR-radio correlation, a result that does not suffer from a radio bias. We compute the contribution from the 16 SMA sources to the universal star formation rate (SFR) per comoving volume. With individual SFRs in the range 700-5000 M{sub Sun} yr{sup -1}, they contribute {approx}30% of the extinction-corrected ultraviolet-selected SFR density from z = 1 to at least z = 5. Star formation histories determined from extinction-corrected ultraviolet populations and from submillimeter galaxy populations only partially overlap, due to the extreme ultraviolet faintness of some submillimeter galaxies.

  2. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  3. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    SciTech Connect

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G. E-mail: genzel@mpe.mpg.de; and others

    2014-11-20

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M {sub *}/M {sub ☉}) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M {sub *}/M {sub ☉}) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS{sup 3D}spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s{sup –1}), with large [N II]/Hα ratios, above log(M {sub *}/M {sub ☉}) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  4. SLOSHING COLD FRONTS IN GALAXY GROUPS AND THEIR PERTURBING DISK GALAXIES: AN X-RAY, OPTICAL, AND RADIO CASE STUDY

    SciTech Connect

    Gastaldello, Fabio; Di Gesu, Laura; Ghizzardi, Simona; Rossetti, Mariachiara; Giacintucci, Simona; Girardi, Marisa; Roediger, Elke; Brighenti, Fabrizio; Buote, David A.; Humphrey, Philip J.; Eckert, Dominique; Ettori, Stefano; Mathews, William G.

    2013-06-10

    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

  5. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Oonk, J. B. R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B. H. C.; Oosterloo, T. A.

    2016-01-01

    Fast outflows of gas, driven by the interaction between the radio jets and interstellar medium (ISM) of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C 293. In this paper we present integral field unit observations taken with OASIS on the William Herschel Telescope, enabling us to map the spatial extent of the ionized gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C 293 is detected along the inner radio lobes with a mass outflow rate ranging from ˜0.05 to 0.17 M⊙ yr-1 (in ionized gas) and corresponding kinetic power of ˜0.5-3.5 × 1040 erg s-1. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find linewidths broader than 300 km s-1 up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet linewidths >400 km s-1 are detected out to 7 kpc from the nucleus and linewidths of >500 km s-1 at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.

  6. Research of the fine structure of the radio galaxy 3C 234 with radio interferometer URAN-2

    NASA Astrophysics Data System (ADS)

    Vashchishin, R. V.; Megn, A. V.; Rashkovsky, S. L.; Shepelev, V. A.; Inyutin, G. A.; Brazhenko, A. I.; Bulatsen, V. G.

    2005-06-01

    The brief description and the basic characteristics of the radio interferometer URAN-2 aerial system, included in VLBI decameter system URAN, are presented. The research results of the 3C 234 angular structure with URAN system are submitted. The model of radiobrightness distribution of this source at frequencies of 20 and 25 MHz is obtained. With the URAN-2 radio interferometer compact details in a radio galaxy have been found and their contribution to the general flow of a radio emission at decameter waves is determined. The effect of reabsorption in compact details (hot spots) is found and their true angular size are determined based on the research of the 3C 234 spectrum.

  7. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and i-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and i bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  8. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  9. The Stellar Halos of Massive Elliptical Galaxies. III. Kinematics at Large Radius

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Greene, Jenny E.; Murphy, Jeremy D.

    2014-05-01

    We present a two-dimensional kinematic analysis out to ~2-5 effective radii (Re ) of 33 massive elliptical galaxies with stellar velocity dispersions σ > 150 km s-1. Our observations were taken using the Mitchell Spectrograph (formerly VIRUS-P), a spectrograph with a large 107 × 107 arcsec2 field of view that allows us to construct robust, spatially resolved kinematic maps of V and σ for each galaxy extending to at least 2 Re . Using these maps, we study the radial dependence of the stellar angular momentum and other kinematic properties. We see the familiar division between slow and fast rotators persisting out to a large radius in our sample. Centrally slow rotating galaxies, which are almost universally characterized by some form of kinematic decoupling or misalignment, remain slowly rotating in their halos. The majority of fast-rotating galaxies show either increases in specific angular momentum outward or no change beyond Re . The generally triaxial nature of the slow rotators suggests that they formed through mergers, consistent with a "two-phase" picture of elliptical galaxy formation. However, we do not observe the sharp transitions in kinematics proposed in the literature as a signpost of moving from central dissipationally formed components to outer accretion-dominated halos.

  10. The stellar halos of massive elliptical galaxies. III. Kinematics at large radius

    SciTech Connect

    Raskutti, Sudhir; Greene, Jenny E.; Murphy, Jeremy D.

    2014-05-01

    We present a two-dimensional kinematic analysis out to ∼2-5 effective radii (R{sub e} ) of 33 massive elliptical galaxies with stellar velocity dispersions σ > 150 km s{sup –1}. Our observations were taken using the Mitchell Spectrograph (formerly VIRUS-P), a spectrograph with a large 107 × 107 arcsec{sup 2} field of view that allows us to construct robust, spatially resolved kinematic maps of V and σ for each galaxy extending to at least 2 R{sub e} . Using these maps, we study the radial dependence of the stellar angular momentum and other kinematic properties. We see the familiar division between slow and fast rotators persisting out to a large radius in our sample. Centrally slow rotating galaxies, which are almost universally characterized by some form of kinematic decoupling or misalignment, remain slowly rotating in their halos. The majority of fast-rotating galaxies show either increases in specific angular momentum outward or no change beyond R{sub e} . The generally triaxial nature of the slow rotators suggests that they formed through mergers, consistent with a 'two-phase' picture of elliptical galaxy formation. However, we do not observe the sharp transitions in kinematics proposed in the literature as a signpost of moving from central dissipationally formed components to outer accretion-dominated halos.

  11. Clustering Of Radio-Selected AGN (And Star-Forming Galaxies) Up To Redshifts z = 3

    NASA Astrophysics Data System (ADS)

    Magliocchetti, Manuela; Popesso, P.; Brusa, M.; Salvato, M.

    2016-10-01

    We present the clustering properties of a complete sample of 957 radio sources detected by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. Based on their radio-luminosity, these objects have been furtherly divided into two populations of 642 AGN and 246 star-forming galaxies. Investigations of their clustering properties return values for the minimum masses of dark matter haloes capable to host at least one of such sources of Mmin=10^13.6 Msun for radio-selected AGN and Mmin=10^13.1 Msun for radio-emitting star-forming galaxies. Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. Our results indicate a larger relative stellar content in the star-forming population with respect to AGN and also clearly show the cosmic process of star-formation build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.

  12. Radio AGN in 13,240 galaxy clusters from the Sloan Digital Sky Survey

    SciTech Connect

    Croft, S; de Vries, W; Becker, R

    2007-05-30

    We correlate the positions of 13,240 Brightest Cluster Galaxies (BCGs) with 0.1 {le} z {le} 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGN in galaxy clusters. We find that 19.7% of our BCGs are radio-loud, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster (in the sense of increasing radio loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to {approx} 1.4 kpc.

  13. X-ray emission around the z = 4.1 radio galaxy TN J1338-1942 and the potential role of far-infrared photons in AGN feedback

    NASA Astrophysics Data System (ADS)

    Smail, Ian; Blundell, Katherine M.

    2013-10-01

    We report the discovery in an 80-ks observation of spatially extended X-ray emission around the high-redshift radio galaxy TN J1388-1942 (z = 4.11) with the Chandra X-ray Observatory. The X-ray emission extends over a ˜30-kpc diameter region and although it is less extended than the GHz-radio lobes, it is roughly aligned with them. We suggest that the X-ray emission arises from inverse-Compton (IC) scattering of photons by relativistic electrons around the radio galaxy. At z = 4.11, this is the highest redshift detection of IC emission around a radio galaxy. We investigate the hypothesis that in this compact source, the cosmic microwave background (CMB), which is ˜700× more intense than at z ˜ 0 is nonetheless not the relevant seed photon field for the bulk of the IC emission. Instead, we find a tentative correlation between the IC emission and far-infrared luminosities of compact, far-infrared luminous high-redshift radio galaxies (those with lobe lengths of ≲100 kpc). Based on these results, we suggest that in the earliest phases of the evolution of radio-loud active galactic nuclei at very high redshift, the far-infrared photons from the co-eval dusty starbursts occurring within these systems may make a significant contribution to their IC X-ray emission and so contribute to the feedback in these massive high-redshift galaxies.

  14. The Dragonfly Galaxy. II. ALMA unveils a triple merger and gas exchange in a hyper-luminous radio galaxy at z = 2

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; De Breuck, C.; Lehnert, M. D.; Vernet, J.; Gullberg, B.; Villar-Martín, M.; Nesvadba, N.; Drouart, G.; Ivison, R.; Seymour, N.; Wylezalek, D.; Barthel, P.

    2015-12-01

    The Dragonfly Galaxy (MRC 0152-209), at redshift z ~ 2, is one of the most vigorously star-forming radio galaxies in the Universe. What triggered its activity? We present ALMA Cycle 2 observations of cold molecular CO(6-5) gas and dust, which reveal that this is likely a gas-rich triple merger. It consists of a close double nucleus (separation ~4 kpc) and a weak CO-emitter at ~10 kpc distance, all of which have counterparts in HST/NICMOS imagery. The hyper-luminous starburst and powerful radio-AGN were triggered at this precoalescent stage of the merger. The CO(6-5) traces dense molecular gas in the central region, and complements existing CO(1-0) data, which reveal more widespread tidal debris of cold gas. We also find ~1010 M⊙ of molecular gas with enhanced excitation at the highest velocities. At least 20-50% of this high-excitation, high-velocity gas shows kinematics that suggests it is being displaced and redistributed within the merger, although with line-of-sight velocities of |v| < 500 km s-1, this gas will probably not escape the system. The processes that drive the redistribution of cold gas are likely related to either the gravitational interaction between two kpc-scale discs, or starburst/AGN-driven outflows. We estimate that the rate at which the molecular gas is redistributed is at least [Ṁentity!#x2009!]~ 1200 ± 500 M⊙ yr-1, and could perhaps even approach the star formation rate of ~3000 ± 800 M⊙ yr-1. The fact that the gas depletion and gas redistribution timescales are similar implies that dynamical processes can be important in the evolution of massive high-z galaxies.

  15. AXIAL RATIO OF EDGE-ON SPIRAL GALAXIES AS A TEST FOR BRIGHT RADIO HALOS

    SciTech Connect

    Singal, J.; Jones, E.; Dunlap, H.; Kogut, A.

    2015-01-20

    We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Cowsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo. (letters)

  16. Highlights of the Merging Cluster Collaboration's Analysis of 26 Radio Relic Galaxy Cluster Mergers

    NASA Astrophysics Data System (ADS)

    Dawson, William; Golovich, Nathan; Wittman, David M.; Bradac, Marusa; Brüggen, Marcus; Bullock, James; Elbert, Oliver; Jee, James; Kaplinghat, Manoj; Kim, Stacy; Mahdavi, Andisheh; Merten, Julian; Ng, Karen; Annika, Peter; Rocha, Miguel E.; Sobral, David; Stroe, Andra; Van Weeren, Reinout J.; Merging Cluster Collaboration

    2016-01-01

    Merging galaxy clusters are now recognized as multifaceted probes providing unique insight into the properties of dark matter, the environmental impact of plasma shocks on galaxy evolution, and the physics of high energy particle acceleration. The Merging Cluster Collaboration has used the diffuse radio emission associated with the synchrotron radiation of relativistic particles accelerated by shocks generated during major cluster mergers (i.e. radio relics) to identify a homogenous sample of 26 galaxy cluster mergers. We have confirmed theoretical expectations that radio relics are predominantly associated with mergers occurring near the plane of the sky and at a relatively common merger phase; making them ideal probes of self-interacting dark matter, and eliminating much of the dominant uncertainty when relating the observed star formation rates to the event of the major cluster merger. We will highlight a number of the discovered common traits of this sample as well as detailed measurements of individual mergers.

  17. The MASSIVE Survey - V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan

    2017-01-01

    We present spatially resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (ETGs; MK ≲ -25.7 mag, stellar mass M* ≳ 1011.8 M⊙) of the volume-limited (D < 108 Mpc) MASSIVE survey. For each galaxy, we obtain high-quality spectra in the wavelength range of 3650-5850 Å from the 246-fibre Mitchell integral-field spectrograph at McDonald Observatory, covering a 107 arcsec × 107 arcsec field of view (often reaching 2 to 3 effective radii). We measure the 2D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80 per cent) of slow and non-rotators with λ ≲ 0.2. When combined with the lower mass ETGs in the ATLAS3D survey, we find the fraction of slow rotators to increase dramatically with galaxy mass, reaching ˜50 per cent at MK ˜ -25.5 mag and ˜90 per cent at MK ≲ -26 mag. All of our fast rotators show a clear anticorrelation between h3 and V/σ, and the slope of the anticorrelation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven `isolated' galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05, while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.

  18. Luminosity function of [O II] emission-line galaxies in the MassiveBlack-II simulation

    NASA Astrophysics Data System (ADS)

    Park, KwangHo; Di Matteo, Tiziana; Ho, Shirley; Croft, Rupert; Wilkins, Stephen M.; Feng, Yu; Khandai, Nishikanta

    2015-11-01

    We examine the luminosity function (LF) of [O II] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [O II] emission line luminosity L([O II]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [O II] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([O II]) = 1043.0 erg s-1 while the low redshifts (z ≤ 0.3) show an excess in the prediction of bright [O II] galaxies, but still displaying a good match with observations below L([O II]) = 1041.6 erg s-1. Based on the validity in reproducing the properties of [O II] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [O II] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from -3 to -2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)-1 at z ≤ 2 while the faint end evolves as ˜3(z + 1)-1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [O III] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. Finally, we show that the auto-correlation function of [O II] and [O III] emitting galaxies shows a rapid evolution from z = 2 to 1.

  19. Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS

    SciTech Connect

    Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf; Senger, Robert; Thomas, Daniel; Maraston, Claudia; Steele, Oliver; Masters, Karen L.; Pforr, Janine; Tojeiro, Rita; Johansson, Jonas; Nichol, Robert C.; Chen, Yan-Mei; Wake, David; Bolton, Adam; Brownstein, Joel R.; Leauthaud, Alexie; Schneider, Donald P.; Skibba, Ramin; Pan, Kaike; and others

    2014-07-10

    We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurements with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.

  20. Luminosity function of [OII] emission-line galaxies in the MassiveBlack-II simulation

    DOE PAGES

    Park, KwangHo; Khandai, Nishikanta; Matteo, Tiziana Di; ...

    2015-09-18

    We examine the luminosity function (LF) of [OII] emission-line galaxies in the high-resolution cosmological simulation MassiveBlack-II (MBII). From the spectral energy distribution of each galaxy, we select a sub-sample of star-forming galaxies at 0.06 ≤ z ≤ 3.0 using the [OII] emission line luminosity L([OII]). We confirm that the specific star formation rate matches that in the Galaxy And Mass Assembly survey. We show that the [OII] LF at z = 1.0 from the MBII shows good agreement with the LFs from several surveys below L([OII]) = 1043.0 erg s–1 while the low redshifts (z ≤ 0.3) show an excessmore » in the prediction of bright [OII] galaxies, but still displaying a good match with observations below L([OII]) = 1041.6 erg s–1. Based on the validity in reproducing the properties of [OII] galaxies at low redshift (z ≤ 1), we forecast the evolution of the [OII] LF at high redshift (z ≤ 3), which can be tested by upcoming surveys such as the Hobby-Eberly Telescope Dark Energy Experiment and Dark Energy Spectroscopic Instrument. The slopes of the LFs at bright and faint ends range from –3 to –2 showing minima at z = 2. The slope of the bright end evolves approximately as (z + 1)–1 at z ≤ 2 while the faint end evolves as ~3(z + 1)–1 at 0.6 ≤ z ≤ 2. In addition, a similar analysis is applied for the evolution of [OIII] LFs, which is to be explored in the forthcoming survey Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets. As a result, we show that the auto-correlation function of [OII] and [OIII] emitting galaxies shows a rapid evolution from z = 2 to 1.« less

  1. The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ˜ 0

    NASA Astrophysics Data System (ADS)

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao-Sheng

    2015-06-01

    We investigate the properties of haloes, galaxies and black holes to z = 0 in the high-resolution hydrodynamical simulation MassiveBlack-II (MBII) which evolves a Λ cold dark matter cosmology in a comoving volume Vbox = (100 Mpc h-1)3. MBII is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the MBII data set and publicly release our galaxy catalogues. We find that baryons affect strongly the halo mass function (MF), with 20-33 per cent change in the halo abundance below the knee of the MF (Mhalo < 1013.2 M⊙ h-1 at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations. We study the halo occupation distribution and clustering of galaxies, in particular the evolution and scale dependence of stochasticity and bias finding reasonable agreement with observational data. The shape of the cosmic spectral energy distribution of galaxies in MBII is consistent with observations, but lower in amplitude. The Galaxy stellar mass function (GSMF) function is broadly consistent with observations at z ≥ 2. At z < 2, the population of passive low-mass (M* < 109 M⊙) galaxies in MBII makes the GSMF too steep compared to observations whereas at the high-mass end (M* > 1011 M⊙) galaxies hosting bright AGNs make significant contributions to the GSMF. The quasar bolometric luminosity function is also largely consistent with observations. We note however that more efficient AGN feedback is necessary for the largest, rarest objects/clusters at low redshifts.

  2. FIRST RESULTS FROM THE 3D-HST SURVEY: THE STRIKING DIVERSITY OF MASSIVE GALAXIES AT z > 1

    SciTech Connect

    Van Dokkum, Pieter G.; Nelson, Erica; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Fumagalli, Mattia; Franx, Marijn; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Bian Fuyan; Fan Xiaohui; Erb, Dawn K.; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2011-12-10

    We present first results from the 3D-HST program, a near-IR spectroscopic survey performed with the Wide Field Camera 3 (WFC3) on the HST. We have used 3D-HST spectra to measure redshifts and H{alpha} equivalent widths (EW{sub H{alpha}}) for a complete, stellar mass-limited sample of 34 galaxies at 1 < z < 1.5 with M{sub star} > 10{sup 11} M{sub Sun} in the COSMOS, GOODS, and AEGIS fields. We find that a substantial fraction of massive galaxies at this epoch are forming stars at a high rate: the fraction of galaxies with EW{sub H{alpha}} >10 A is 59%, compared to 10% among Sloan Digital Sky Survey galaxies of similar masses at z = 0.1. Galaxies with weak H{alpha} emission show absorption lines typical of 2-4 Gyr old stellar populations. The structural parameters of the galaxies, derived from the associated WFC3 F140W imaging data, correlate with the presence of H{alpha}; quiescent galaxies are compact with high Sersic index and high inferred velocity dispersion, whereas star-forming galaxies are typically large two-armed spiral galaxies, with low Sersic index. Some of these star-forming galaxies might be progenitors of the most massive S0 and Sa galaxies. Our results challenge the idea that galaxies at fixed mass form a homogeneous population with small scatter in their properties. Instead, we find that massive galaxies form a highly diverse population at z > 1, in marked contrast to the local universe.

  3. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at