Science.gov

Sample records for radio-activated compounds produced

  1. [Evaluation of Radio-activated Compounds Produced in the Walls and Adjacent Areas of a Small Medical Cyclotron].

    PubMed

    Saito, Kyoko; Takahashi, Yasuyuki; Yamaguchi, Ichiro; Kimura, Ken-Ichi; Kanzaki, Takao; Shimada, Hirotaka; Otake, Hidenori; Oriuchi, Noboru; Endo, Keigo

    2009-01-01

    According to the (18)O(p, n) (18)F reaction, fast neutrons produced in the target will cause residual radioactivity in a cyclotron itself and in the concrete walls mainly after thermalization of neutrons.As exploratory work prior to decommissioning of a medical cyclotron facility, surface and core samples of the facility's concrete walls were collected after confirming the external radiation was at a low level based on hollow ionization chamber-type survey meter and glass dosimeter measurements. The residual radioactivity in these samples was measured by gamma-spectrometry. Residual radioactivity was detected in all of the components of the cyclotron. In the concrete, eight residual radioactive nuclides were identified. However, radioactivity concentrations of these radionuclides were less than that of (40)K which may exist generally in a natural environment. A clearance level for radioactive solid waste has not been defined nor implemented at present in Japan, and reliable evaluation will be required to minimize radioactive waste at the time of decommissioning. The present results provide basic data for establishment of regulatory guidelines for decommissioning of medical cyclotrons.

  2. Laser fluorescence on radio-active isotopes produced in very low yield

    NASA Astrophysics Data System (ADS)

    Dancy, M. P.; Billowes, J.; Grant, I. S.; Evans, D. E.; Griffith, J. A. R.; Wells, S. A.; Eastham, D. A.; Groves, J.; Smith, J. R. H.; Tolfree, D. W. L.; Walker, P. M.

    1990-08-01

    East particle-photon coincidence techniques, developed at Daresbury with strontium isotopes, allow ultrasensitive laser fluorescence spectroscopy of beams of radio-active isotopes which can only be produced in very low yields. The technique has now been applied to neutron-deficient barium isotopes down to120Ba. From measured hyperfine splittings and isotope shifts, nuclear moments and changes in mean square radii have been determined. The work has revealed an abrupt increase in the mean square radius for121Ba large enough to disrupt the systematic staggering of nuclear size seen for the series. In a recent experiment an isomeric state of127Ba with a half-life of about 2 seconds has been produced in a very low yield; nevertheless we have succeeded in obtaining a fluorescence spectrum.

  3. [Organisms producing hypolipidemic compounds with antioxidant activity].

    PubMed

    Puzhevskaia, T O; Grammatikova, N E; Bibikova, M V; Katlinskiĭ, A V

    2009-01-01

    Complex compounds produced by fungal cultures of Lecanicilium and Beauveria with both high hypolipidemic and antioxydant activities were screened. Two fractions of the hypolipipidemic compounds with antioxidant activity of 95 and 75% in a dose of 25 mcg/ml were isolated.

  4. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, Foster A.

    1998-01-01

    A process for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400.degree. C. to about 600.degree. C. at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1-3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof.

  5. Process for producing phenolic compounds from lignins

    DOEpatents

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  6. Process for producing phenolic compounds from lignins

    SciTech Connect

    Agblevor, F.A.

    1998-09-15

    A process is described for the production of low molecular weight phenolic compounds from lignins through the pyrolysis of the lignins in the presence of a strong base. In a preferred embodiment, potassium hydroxide is present in an amount of from about 0.1% to about 5% by weight, the pyrolysis temperature is from about 400 C to about 600 C at atmospheric pressure, and the time period for substantial completion of the reaction is from about 1--3 minutes. Examples of low molecular weight phenolic compounds produced include methoxyphenols, non-methoxylated phenols, and mixtures thereof. 16 figs.

  7. RadioActive101 Practices

    ERIC Educational Resources Information Center

    Brites, Maria José; Ravenscroft, Andrew; Dellow, James; Rainey, Colin; Jorge, Ana; Santos, Sílvio Correia; Rees, Angela; Auwärter, Andreas; Catalão, Daniel; Balica, Magda; Camilleri, Anthony F.

    2014-01-01

    In keeping with the overarching RadioActive101 (RA101) spirit and ethos, this report is the product of collaborative and joined-up thinking from within the European consortium spread across five countries. As such, it is not simply a single voice reporting on the experiences and knowledge gained during the project. Rather it is a range of…

  8. Methods of producing compounds from plant materials

    SciTech Connect

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine J.

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  9. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  10. Method of producing purified carotenoid compounds

    NASA Technical Reports Server (NTRS)

    Eggink, Laura (Inventor)

    2007-01-01

    A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

  11. Process for producing high purity aromatic compounds

    SciTech Connect

    Mayes, W.W.

    1980-05-20

    High-purity C7 and/or C8 aromatic hydrocarbons are produced by reforming a C7 or C8 full boiling carbon number naphtha feed fraction or combinations thereof under reforming conditions of sufficient severity to convert essentially all of the nonaromatic portion of the naphtha feed boiling in the C7 to C8 aromatic boiling range to C7 and/or C8 aromatics, and then separating the reformate by fractional distillation into highpurity fractions of C7 and/or C8 aromatic hydrocarbons. Preferably, the C7 and/or C8 full boiling carbon number naphtha feed fraction is reformed in a plurality of reformer reaction stages with increasingly more severe conditions in order to maximize the yield of the C7 and C8 aromatics.

  12. Method for producing heat-resistant semi-inorganic compounds

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Hasegawa, Y.

    1983-01-01

    The method for producing a heat resistant, semi-inorganic compound is discussed. Five examples in which various alcohols, phenols, and aromatic carbonic acids are used to test heat resistance and solubility are provided.

  13. Biodegradation of central intermediate compounds produced from biodegradation of aromatic compounds.

    PubMed

    Cinar, Ozer

    2004-10-01

    In this study I consider the incomplete biodegradation of aromatic compounds during the waste- water cycle between aerobic or anaerobic zones in biological nutrient removal processes, including aerobic biodegradation of compounds (such as cyclohex-l-ene-1-carboxyl-CoA) produced during the incomplete anaerobic biodegradation of aromatic compounds, and anaerobic biodegradation of compounds (such as catechol, protocatechuate, and gentisic acid) produced during the incomplete aerobic biodegradation of aromatic compounds. Anaerobic degradation of the aerobic central intermediates that result from the incomplete aero-bic degradation of aromatic compounds usually leads to benzoyl-CoA. On the other hand, aerobic degradation of the anaerobic central intermediates that result from the incomplete anaerobic degradation of aromatic compounds usually leads to protocatechuate.

  14. Identifying producers of antibacterial compounds by screening for antibiotic resistance.

    PubMed

    Thaker, Maulik N; Wang, Wenliang; Spanogiannopoulos, Peter; Waglechner, Nicholas; King, Andrew M; Medina, Ricardo; Wright, Gerard D

    2013-10-01

    Microbially derived natural products are major sources of antibiotics and other medicines, but discovering new antibiotic scaffolds and increasing the chemical diversity of existing ones are formidable challenges. We have designed a screen to exploit the self-protection mechanism of antibiotic producers to enrich microbial libraries for producers of selected antibiotic scaffolds. Using resistance as a discriminating criterion we increased the discovery rate of producers of both glycopeptide and ansamycin antibacterial compounds by several orders of magnitude in comparison with historical hit rates. Applying a phylogeny-based screening filter for biosynthetic genes enabled the binning of producers of distinct scaffolds and resulted in the discovery of a glycopeptide antibacterial compound, pekiskomycin, with an unusual peptide scaffold. This strategy provides a means to readily sample the chemical diversity available in microbes and offers an efficient strategy for rapid discovery of microbial natural products and their associated biosynthetic enzymes.

  15. Plant-derived bioactive compounds produced by endophytic fungi.

    PubMed

    Zhao, J; Shan, T; Mou, Y; Zhou, L

    2011-02-01

    Plant endophytic fungi are an important and novel resource of natural bioactive compounds with their potential applications in agriculture, medicine and food industry. In the past two decades, many valuable bioactive compounds with antimicrobial, insecticidal, cytotoxic, and anticancer activities have been successfully discovered from endophytic fungi. During the long period of co-evolution, a friendly relationship was formed between each endophyte and its host plant. Some endophytes have the ability to produce the same or similar bioactive compounds as those originated from their host plants. This review mainly deals with the research progress on endophytic fungi for producing plant-derived bioactive compounds such as paclitaxel, podophyllotoxin, camptothecine, vinblastine, hypericin, and diosgenin. The relations between endophytic fungi and their host plants, biological activities and action mechanisms of these compounds from endophytic fungi, some available strategies for efficiently promoting production of these bioactive compounds, as well as their potential applications in the future will also be discussed. It is beneficial for us to better understand and take advantage of plant endophytic fungi.

  16. Types of Linguistic Knowledge: Interpreting and Producing Compound Nouns.

    ERIC Educational Resources Information Center

    Clark, Eve V.; Berman, Ruth A.

    1987-01-01

    Examination of the types of linguistic knowledge that affect three- to nine-year-olds' (N=60) and adults' (N=12) ability to understand and produce novel compounds in Hebrew revealed that comprehension was achieved ahead of production. Knowledge of morphological form had little effect on comprehension, but was crucial to production. (Author/CB)

  17. Organic compounds in produced waters from shale gas wells.

    PubMed

    Maguire-Boyle, Samuel J; Barron, Andrew R

    2014-01-01

    A detailed analysis is reported of the organic composition of produced water samples from typical shale gas wells in the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) formations. The quality of shale gas produced (and frac flowback) waters is a current environmental concern and disposal problem for producers. Re-use of produced water for hydraulic fracturing is being encouraged; however, knowledge of the organic impurities is important in determining the method of treatment. The metal content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Mineral elements are expected depending on the reservoir geology and salts used in hydraulic fracturing; however, significant levels of other transition metals and heavier main group elements are observed. The presence of scaling elements (Ca and Ba) is related to the pH of the water rather than total dissolved solids (TDS). Using gas chromatography mass spectrometry (GC/MS) analysis of the chloroform extracts of the produced water samples, a plethora of organic compounds were identified. In each water sample, the majority of organics are saturated (aliphatic), and only a small fraction comes under aromatic, resin, and asphaltene categories. Unlike coalbed methane produced water it appears that shale oil/gas produced water does not contain significant quantities of polyaromatic hydrocarbons reducing the potential health hazard. Marcellus and Barnett produced waters contain predominantly C6-C16 hydrocarbons, while the Eagle Ford produced water shows the highest concentration in the C17-C30 range. The structures of the saturated hydrocarbons identified generally follows the trend of linear > branched > cyclic. Heterocyclic compounds are identified with the largest fraction being fatty alcohols, esters, and ethers. However, the presence of various fatty acid phthalate esters in the Barnett and Marcellus produced waters can be related to their use in drilling fluids and breaker additives

  18. Chemical impurity produces extra compound eyes and heads in crickets

    SciTech Connect

    Walton, B.T.

    1981-04-03

    A chemical impurity isolated from commercially purchased acridine causes cricket embryos to develop extra compound eyes, branched antennae, extra antennae, and extra heads. Purified acridine does not produce similar duplications of cricket heads or head structures nor do the substituted acridines proflavine, acriflavine, or acridine orange. A dose-response relation exists such that the number and severity of abnormalities increase with increasing concentration of the teratogen.

  19. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  20. Organic compounds produced during the thermal decomposition of cotton fabrics.

    PubMed

    Moltó, Julia; Conesa, Juan A; Font, Rafael; Martin-Gullón, Ignacio

    2005-07-15

    Used cotton fabrics, which can be considered a biomass according to its origin, were descomposed thermically in a laboratory scale reactor through a set of runs carried out in inert and air atmospheres, with temperatures between 650 and 1050 degrees C. More than 90 compounds, including carbon oxides, light hydrocarbons, and PAHs, have been identified and quantified. In the gas phase some of the main components obtained were methane, ethene, and benzene. The main semivolatile compounds detected were styrene, phenol, naphthalene, acenaphthylene, and phenanthrene. Furthermore, analyses of PCDD/Fs in the material tested and in the semivolatile compounds produced during the combustion at 850 degrees C were also performed, obtaining values of 14.5 (sample) and 7.2 pg I-TEQ/g (combustion). The congener that mostly contributes to the total I-TEQ was 2,3,4,7,8-PeCDF. The results obtained show that this waste could be used as biomass, and in this way, it is a valid alternative to disposal in landfills.

  1. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    PubMed Central

    Lo Cantore, Pietro; Giorgio, Annalisa; Iacobellis, Nicola S.

    2015-01-01

    Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC–MS, methanethiol, dimethyl disulfide (DMDS), and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while DMDS toxicity was assessed till a quantity of 1.25 μg, below which it caused, together with 1-undecene (≥10 μg), broccoli growth increase. PMID:26500627

  2. Study of nonvolatile degradation compounds produced by radiosterilization of cefotaxime

    NASA Astrophysics Data System (ADS)

    Barbarin, N.; Tilquin, B.

    2001-01-01

    The effects of radiosterilization on the purity profile of cefotaxime were evaluated by a liquid chromatography-diode array method. Numerous new radiolytic compounds were detected in very small amount. They were quantified and it appeared that none was present above the level of 0.1% of the main compound and the total amount was only of 0.72%. Despite the low quantities present, some radiolytic compounds had UV spectra which could justify the apparition of a yellow coloration detected after irradiation. Others had UV spectra similar to that of cefotaxime, suggesting similarity in the molecular structures. Finally, some mechanisms of formation were proposed for four radiolytic compounds which were identified by mass spectrometry in a former study.

  3. Collapsing aged culture of the cyanobacterium Synechococcus elongatus produces compound(s) toxic to photosynthetic organisms.

    PubMed

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program.

  4. Collapsing Aged Culture of the Cyanobacterium Synechococcus elongatus Produces Compound(s) Toxic to Photosynthetic Organisms

    PubMed Central

    Cohen, Assaf; Sendersky, Eleonora; Carmeli, Shmuel; Schwarz, Rakefet

    2014-01-01

    Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program. PMID:24959874

  5. Importance of producing economic compounds to combat cancer.

    PubMed

    Muñoz-Rojas, Jesús

    2017-01-26

    The manuscript published by Microb Biotechnol, volume 10, highlights the relevance of the fungus Nigrospora sphaerica, an endophyte isolated from Catharanthus roseus, as an alternative source to obtain vinblastine, a compound used in chemotherapy schemes to treat several types of cancer. Authors showed that purification of vinblastine from extracts of the fungus has higher activity and yield in comparison with that obtained from the plant Catharanthus roseus. This work represents a biotechnological approach to obtain vinblastine with promising results to decrease the production cost.

  6. Catalytic decomposition of phosphorus compounds to produce phosphorus atoms

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu; Kanemitsu, Taijiro; Kuroda, Yuki

    2014-01-01

    Vacuum-ultraviolet laser-induced fluorescence identified atomic phosphorus in the gas phase when phosphine, triethylphosphine, or molecular phosphorus sublimated from solid red phosphorus was decomposed on heated metal wire surfaces. Atomic phosphorus was found to be one of the major products in all systems, and its density increased monotonically with wire temperature but showed saturation at high temperatures. A wire material dependence of density was observed for molecular phosphorus, suggesting that the decomposition of the compound is catalytic. Electron probe microanalyzer (EPMA) measurement showed that the wires are not phosphorized when heated in the presence of phosphine or molecular phosphorus.

  7. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  8. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  9. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  10. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    PubMed

    Troutt, William D; DiDonato, Matthew D

    2017-03-29

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  11. Organic Compounds in Produced Waters From Coalbed Methane Wells in the Powder River Basin, WY

    NASA Astrophysics Data System (ADS)

    Orem, W.; Lerch, H.; Rice, C.; Tatu, C.

    2003-12-01

    Coalbed methane (CBM) is a significant energy resource, accounting for about 7.5% of natural gas production in the USA. The Powder River Basin (PRB), WY is currently one of the most active CBM drilling sites in the USA. One aspect of concern in the exploitation of CBM resources is the large volumes of water recovered from wells along with the natural gas (so-called produced waters). CBM produced waters may contain coal-derived dissolved substances (inorganic and organic) of environmental concern, and a potential disposal problem for CBM producers. Studies of CBM produced water have mostly focused on inorganics. Dissolved organic compounds in CBM produced water may also present an environmental issue, but little information is available. As part of a larger study of the health and environmental effects of organic compounds derived from coal, we analyzed a number of produced water samples from CBM wells in the PRB, WY for dissolved organic substances. Our goals were results on coal-derived organic compounds in the environment to evaluate potential health and environmental impacts. In 2001, we sampled produced water from 13 CBM wells covering a broad area of the PRB in order to identify and quantify the organic compounds present. In 2002, produced water from 4 of the 2001 CBM wells and 8 new CBM wells were sampled for dissolved organic components. Produced water was collected directly from each well and filtered on site. Organic compounds were isolated from produced water samples by liquid/liquid extraction with methylene chloride and identified and quantified by gas chromatography/mass spectrometry (GC/MS). Organic compounds identified by GC/MS in extracts of the produced water samples, included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons, phthalates, aliphatic hydrocarbons, and fatty acids. However, most compounds had structures unidentified by GC/MS databases. Many of the identified organic compounds

  12. Novel antibiotic compounds produced by the insect pathogenic bacterium photorhabdus.

    PubMed

    Eleftherianos, Ioannis G

    2009-06-01

    Phototorhabdus is an insect pathogenic enterobacterium which maintains a mutualistic interaction with heterorhabditid nematodes. While the bacteria live in the nematode gut, the nematodes live in the soil and infect insect larvae, releasing their symbiotic bacteria into the insect blood. Here the bacteria reproduce and kill the insect by septicaemia. The nematodes then feed on the bacterial biomass and undergo several rounds of reproduction before emerging from the cadaver carrying their bacterial symbionts. Photorhabdus secretes a versatile armory of antimicrobial molecules into the insect corpse. These biocides exert a range of antimicrobial killing activities and serve a dual function. They minimize competition from non-symbiotic bacteria and prevent microbial putrefaction of the nematode-infected insect cadaver. The goal of this review is to describe current knowledge of the molecular mechanisms involved in the production of bacteriocins by Photorhabdus. Recent important advances in identifying novel potent antibiotic compounds from Photorhabdus and elucidating their complex mode of action in relation to pathogenicity and symbiosis associations are also discussed. The last part of this review focuses on the potential role Photorhabdus antibiotics may play in contributing to the discovery of novel pharmaceutical and agrochemical products. The present article is a short review of recent patents on Photohabdus.

  13. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  14. Compound cast product and method for producing a compound cast product

    DOEpatents

    Meyer, Thomas N.; Viswanathan, Srinath

    2002-09-17

    A compound cast product is formed in a casting mold (14) having a mold cavity (16) sized and shaped to form the cast product. A plurality of injectors (24) is supported from a bottom side (26) of the casting mold (14). The injectors (24) are in fluid communication with the mold cavity (16) through the bottom side (26) of the casting mold (14). A molten material holder furnace (12) is located beneath the casting mold (14). The holder furnace (12) defines molten material receiving chambers (36) configured to separately contain supplies of two different molten materials (37, 38). The holder furnace (12) is positioned such that the injectors (24) extend downward into the receiving chamber (36). The receiving chamber (36) is separated into at least two different flow circuits (51, 52). A first molten material (37) is received in a first flow circuit (51), and a second molten material (38) is received into a second flow circuit (52). The first and second molten materials (37, 38) are injected into the mold cavity (16) by the injectors (24) acting against the force of gravity. The injectors (24) are positioned such that the first and second molten materials (37, 38) are injected into different areas of the mold cavity (16). The molten materials (37, 38) are allowed to solidify and the resulting compound cast product is removed from the mold cavity (16).

  15. Volatile Compounds Produced in Sterile Fish Muscle (Sebastes melanops) by Pseudomonas perolens1

    PubMed Central

    Miller, A.; Scanlan, R. A.; Lee, J. S.; Libbey, L. M.; Morgan, M. E.

    1973-01-01

    Volatile compounds produced by Pseudomonas perolens ATCC 10757 in sterile fish muscle (Sebastes melanops) were identified by combined gas-liquid chromatography and mass spectrometry. Compounds positively identified included methyl mercaptan, dimethyl disulfide, dimethyl trisulfide, 3-methyl-1-butanol, butanone, and 2-methoxy-3-isopropylpyrazine. Compounds tentatively identified included 1-penten-3-ol and 2-methoxy-3-sec-butylpyrazine. The substituted pyrazine derivative 2-methoxy-3-isopropylpyrazine was primarily responsible for the musty, potato-like odor produced by P. perolens. PMID:4694344

  16. High-resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures.

    PubMed Central

    Lee, M L; Smith, D L; Freeman, L R

    1979-01-01

    Three different strains of bacteria isolated from spoiled, uncooked chicken were grown in pure culture on Trypticase soy agar supplemented with yeast extract. The volatile organic compounds produced by each culture were concentrated on a porous polymer precolumn and analyzed by high-resolution gas chromatographic mass spectrometry. Twenty different compounds were identified. Both qualitative and quantitative differences in the chromatographic profiles from each culture were found. PMID:104660

  17. Volatile compounds in samples of cork and also produced by selected fungi.

    PubMed

    Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V

    2011-06-22

    The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.

  18. Headspace flavour compounds produced by yeasts and lactobacilli during fermentation of preferments and bread doughs.

    PubMed

    Torner, M J; Martínez-Anaya, M A; Antuña, B; Benedito de Barber, C

    1992-01-01

    Production of volatile flavour compounds during fermentation with pure cultures of Saccharomyces cerevisiae and Candida guilliermondii, Lactobacillus brevis and Lactobacillus plantarum have been investigated, using wheat doughs and several preferements as substrates. For yeast, preferments consisted of 10% (w/v) glucose, maltose and sucrose solutions, whereas for lactobacilli they consisted of supplemented and unsupplemented (3% and 10% (w/v)) glucose solutions, and a 10% (w/v) wheat flour slurry. Seven volatile compounds (acetaldehyde, acetone, ethyl acetate, ethanol, hexanal+isobutyl alcohol, and propanol) were detected when using yeasts. All these compounds, except propanol, appeared for all the substrates assayed, with ethanol as the predominant component. Generally, S. cerevisiae produced higher amounts of the different components than C. guilliermondii. Both yeasts produced larger amounts of volatile flavour compounds during fermentation in glucose and sucrose solutions than in maltose or wheat dough. In general the yeasts examined produced more flavour components than the lactobacilli. For the lactobacilli the highest number of volatile flavour compounds were observed for substrates containing flour.

  19. Use of the Soft-agar Overlay Technique to Screen for Bacterially Produced Inhibitory Compounds.

    PubMed

    Hockett, Kevin L; Baltrus, David A

    2017-01-14

    The soft-agar overlay technique was originally developed over 70 years ago and has been widely used in several areas of microbiological research, including work with bacteriophages and bacteriocins, proteinaceous antibacterial agents. This approach is relatively inexpensive, with minimal resource requirements. This technique consists of spotting supernatant from a donor strain (potentially harboring a toxic compound(s)) onto a solidified soft agar overlay that is seeded with a bacterial test strain (potentially sensitive to the toxic compound(s)). We utilized this technique to screen a library of Pseudomonas syringae strains for intraspecific killing. By combining this approach with a precipitation step and targeted gene deletions, multiple toxic compounds produced by the same strain can be differentiated. The two antagonistic agents commonly recovered using this technique are bacteriophages and bacteriocins. These two agents can be differentiated using two simple additional tests. Performing a serial dilution on a supernatant containing bacteriophage will result in individual plaques becoming less in number with greater dilution, whereas serial dilution of a supernatant containing bacteriocin will result a clearing zone that becomes uniformly more turbid with greater dilution. Additionally, a bacteriophage will produce a clearing zone when spotted onto a fresh soft agar overlay seeded with the same strain, whereas a bacteriocin will not produce a clearing zone when transferred to a fresh soft agar lawn, owing to the dilution of the bacteriocin.

  20. Use of the Soft-agar Overlay Technique to Screen for Bacterially Produced Inhibitory Compounds

    PubMed Central

    Hockett, Kevin L.; Baltrus, David A.

    2017-01-01

    The soft-agar overlay technique was originally developed over 70 years ago and has been widely used in several areas of microbiological research, including work with bacteriophages and bacteriocins, proteinaceous antibacterial agents. This approach is relatively inexpensive, with minimal resource requirements. This technique consists of spotting supernatant from a donor strain (potentially harboring a toxic compound(s)) onto a solidified soft agar overlay that is seeded with a bacterial test strain (potentially sensitive to the toxic compound(s)). We utilized this technique to screen a library of Pseudomonas syringae strains for intraspecific killing. By combining this approach with a precipitation step and targeted gene deletions, multiple toxic compounds produced by the same strain can be differentiated. The two antagonistic agents commonly recovered using this technique are bacteriophages and bacteriocins. These two agents can be differentiated using two simple additional tests. Performing a serial dilution on a supernatant containing bacteriophage will result in individual plaques becoming less in number with greater dilution, whereas serial dilution of a supernatant containing bacteriocin will result a clearing zone that becomes uniformly more turbid with greater dilution. Additionally, a bacteriophage will produce a clearing zone when spotted onto a fresh soft agar overlay seeded with the same strain, whereas a bacteriocin will not produce a clearing zone when transferred to a fresh soft agar lawn, owing to the dilution of the bacteriocin. PMID:28117830

  1. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    SciTech Connect

    Escher, J E; Dietrich, F S

    2008-05-23

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  2. Identification of fruity aroma-producing compounds from Chryseobacterium sp. isolated from the Western Ghats, India.

    PubMed

    Kumar, P Anil; Srinivas, T N R; Prasad, A R; Shivaji, S

    2011-08-01

    A fruity aroma-producing strain WG4 was isolated from a water sample collected from the Western Ghats, India. The 16S rRNA gene sequence analysis of strain WG4 indicated that Chryseobacterium indologenes, a member of the family 'Flavobacteriaceae' is the closest related species with a pair-wise sequence similarity of 98.6%. Strain WG4 produces a fruity aroma when grown on nutrient or trypticase soy agar plates. The fruity aroma is more when the strain WG4 is grown on agar plates compared to their growth in broth. The aromatic compounds produced by the strain WG4 were identified as ester compounds and were confirmed as ethyl-2-methylbutyrate and ethyl-3-methylbutyrate based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis and using standard reference compounds. Even after repeated subcultures strain WG4 produced the same aroma in high intensity. Thus, strain WG4 could serve as a source for the production of these flavour compounds.

  3. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi.

    PubMed

    Yang, E J; Chang, H C

    2010-04-30

    The aim of this study was to purify and to identify an antifungal compound of Lactobacillus plantarum AF1, which was isolated from kimchi, and to determine if Lb. plantarum AF1 can prevent fungal growth in a particular food model system. The antifungal compound was purified using SPE and recycling prep-HPLC and its structure was elucidated using NMR and ESI-MS. The active compound from Lb. plantarum AF1 is C(12)H(22)N(2)O(2), 3,6-bis(2-methylpropyl)-2,5-piperazinedion has a molecular mass of 226. This is a new antifungal compound produced by lactic acid bacteria (LAB). To investigate the potential application of the antifungal compound to eliminate fungal spoilage in food and feed, soybean was used as a model. White mycelia and dark green spores of Aspergillus flavus ATCC 22546 were observed in the control soybeans after 1 to 2days incubation. However, fungal growth was not observed in the soybeans treated with a 4-fold concentrated supernatant of Lb. plantarum AF1 culture, even after 2days. The end products produced from kimchi LAB, like 3,6-bis(2-methylpropyl)-2,5-piperazinedion identified in this study, may be a promising alternative to chemical preservatives as a potential biopreservative which prevent fungal spoilage and mycotoxin formation in food and feed. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    PubMed

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens.

  5. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals

    PubMed Central

    Tapiolas, Dianne; Motti, Cherie A.; Foret, Sylvain; Tebben, Jan; Willis, Bette L.; Bourne, David G.

    2016-01-01

    Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR) and mass spectrometry (MS), identified the antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention. PMID:27602265

  6. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to <0.01 ??g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  7. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains.

    PubMed

    Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa

    2017-03-25

    The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs.

  8. Identification and antioxidant activity test of bioactive compound produced from ethanol extract of temukunci (Boesenbergia rotunda)

    NASA Astrophysics Data System (ADS)

    Atun, Sri; Handayani, Sri; Frindryani, Luthfi Fitri

    2017-08-01

    The aims of this study are to identify and to analyze antioxidant activity of bioactive compounds in ethanol extract of temukunci (Boesenbergia rotunda) rhizome. This research method was carried out by maceration of 3 kg dryed powder of B. rotunda in ethanol. The extract was concentrated using a vacuum evaporator. White crystals obtained from ethanol extract further recrystallized to produce as much as 80 mg of pure compound. Identification of pure compound was obtained using UV-Vis, IR, and 1H-NMR. The antioxidant activity of ethanol extracts, pure compounds, and ascorbic acid (positive control) were obtained using DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The UV-Vis spectra showed λmax 287.40 and 214.20 nm, the IR spectra showed absorption C=C aromatic group at 1571.66 cm-1, C=O carbonyl at 1639.37 cm-1 and CO at 1153.35 cm-1. 1H-NMR spectra showed a group monosubtituted benzene, benzene tetrasubstituted, proton of hydroxyl group, proton of methoxyl group, one proton oxyalkyl, and two protons alkyl. The spectroscopic data showed the compound is pinostrobin (5-hydroxy-7-metoxyiflavanone). The antioxidant activity (IC50) of the ethanol extracts from B. rotunda rhizome, pinostrobin, and ascorbic acid (positive control) were 92.6; 62.84; and 3.7 µg/mL repectively. The study showed that the ethanol extract of B. rotunda rhizome and bioactive compounds have high antioxidant activity, but their activity lower than ascorbic acid.

  9. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota.

    PubMed

    Verhulst, Niels O; Mbadi, Phoebe A; Kiss, Gabriella Bukovinszkiné; Mukabana, Wolfgang R; van Loon, Joop J A; Takken, Willem; Smallegange, Renate C

    2011-02-08

    Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas.

  10. Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM 9513(T).

    PubMed

    Kalinovskaya, Natalia I; Romanenko, Lyudmila A; Kalinovsky, Anatoly I

    2017-05-01

    Strain KMM 9513(T) was isolated from a sediment sample collected from the Sea of Japan seashore and selected due to its ability to inhibit indicator bacterial growth. The strain KMM 9513(T) has been recently described as a novel species Rheinheimera japonica. This study was undertaken to determine which substances produced by strain KMM 9513(T) could be responsible for its antimicrobial activity. Eight compounds were obtained from an ethyl acetate extract of R. japonica KMM 9513(T). The structures of five diketopiperazines (4-8) and diisobutyl-, dibutyl- and bis(2-ethylhexyl) phthalates (1-3) were established on the basis of detailed interpretation of NMR data, by Marfey method and optical rotation data. The structures of diketopiperazines were determined as cyclo-(L-valyl-L-proline), cyclo-(L-valyl-D-proline), cyclo-(L-phenylalanyl-L-proline), cyclo-(L-leucyl-L-proline), and cyclo-(L-phenylalanyl-D-proline). Compounds 1-3, 5 and 8 revealed antimicrobial activities against Bacillus subtilis and/or Enterococcus faecium and Staphylococcus aureus. In this paper, we describe the isolation and structural elucidation of the isolated compounds 1-8. This is the first report of the characterisation of low molecular weight antibacterial metabolites produced by a member of the genus Rheinheimera.

  11. Volatile compounds and sensory characteristics of various instant teas produced from black tea.

    PubMed

    Kraujalytė, Vilma; Pelvan, Ebru; Alasalvar, Cesarettin

    2016-03-01

    Various instant teas produced differently from black tea [freeze-dried instant tea (FDIT), spray-dried instant tea (SDIT), and decaffeinated instant tea (DCIT)], were compared for their differences in volatile compounds as well as descriptive sensory analysis (DSA). A total of 63 volatile compounds in all tea samples (eight aldehydes, ten alcohols, nine ketones, five esters, eight acids, ten terpenes/terpenoids, ten furans/furanones, two pyrroles, and one miscellaneous compound) were tentatively identified. Black tea, FDIT, SDIT, and DCIT contained 60, 55, 47, and 40 volatile compounds, respectively. Ten flavour attributes such as after taste, astringency, bitter, caramel-like, floral/sweet, green/grassy, hay-like, malty, roasty, and seaweed were identified. Intensities for a number of flavour attributes (except for caramel-like in SDIT and bitter and after taste in DCIT) were not significantly different (p>0.05) among tea samples. The present study suggests that instant teas can also be used as good alternative to black tea.

  12. [Equipment to find odour compounds, produced by bacteria in drinking water. I. Comparison of a bacteria produced odour compound with a chemical reference substance and a simple method for getting and concentrating biogenic odour compounds (author's transl)].

    PubMed

    Müller, G; Heller, F O

    1977-12-01

    An increase in using surface water and bank filtration processes as raw water for drinking water production sometimes gave rise to problems of bad taste and odour. Some of these odourous compounds may be produced by bacteria, especially Streptomyces species. They are able to pass active carbon filters and therefore are a problem as well in raw water as in treated water. Biogenic odourous compounds often are soluble in water, that means they are present without being fixed to the bacteria cell. Human nose is able to percieve even dilutions of about 10(-9). If a bacterial produced substance is compared with an equal smelling chemical substance such as Isoborneol, also diltuions of 10(-9) may be smelt. Gas-chromatography only detects concentrations up to 10(-5), so the nose is much more efficient.

  13. 75 FR 79320 - Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing Animals AGENCY: Food and Drug Administration, HHS... regulations regarding compounds of carcinogenic concern used in food-producing animals. Specifically, the...

  14. 77 FR 50591 - Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing Animals AGENCY: Food and Drug Administration, HHS... compounds of carcinogenic concern used in food- producing animals. Specifically, the Agency is clarifying...

  15. Isolation, Partial Purification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus.

    PubMed

    Ebrahimipour, Gholam Hossein; Khosravibabadi, Zahra; Sadeghi, Hossein; Aliahmadi, Atusa

    2014-09-01

    Antibiotics are usually assumed as secondary metabolites produced during the idiophase of microbial growth, which can kill or inhibit the growth of other microorganisms. Nowadays, indiscriminate use of antibiotics has resulted in resistant microorganisms. Therefore, screening researches on products with antimicrobial activities are necessary. To find new antibiotics to defend against pathogenic microorganisms resistant to common antibiotics, the bacterium isolated from skin of the frog called Rana ridibunda was studied for its antimicrobial activities. An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16SrDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined against laboratorial standard bacteria by disc diffusion and minimum inhibitory concentration (MIC) methods. To characterize the produced antimicrobial compound, the culture supernatant of the bacterium was washed by chloroform and dried at 40°C; then, the antimicrobial substance was extracted by methanol and acetone and detected by bioautography on silica gel plates. Dialysis tube was used to find the molecular weight of this substance. The isolated bacterium was identified as a new strain of Bacillus atrophaeus. The antimicrobial substance exhibited heat stability between 25ºC and 100ºC and was active in a broad pH range from 2.0 to 11.0. The bioautography assay showed that methanol was the optimum solvent for the extraction of antimicrobial substance. The dialysis tube indicated that the antimicrobial substance weight was less than 1 kDa and the compound did not precipitate with ammonium sulfate. This study showed that some properties of antimicrobial substances produced by the GA strain differed from other peptide antibiotics produced by the genus Bacillus such as bacitracin, which increases the likelihood of its novelty.

  16. Isolation, Partial Purification and Characterization of an Antimicrobial Compound, Produced by Bacillus atrophaeus

    PubMed Central

    Ebrahimipour, Gholam Hossein; Khosravibabadi, Zahra; Sadeghi, Hossein; Aliahmadi, Atusa

    2014-01-01

    Background: Antibiotics are usually assumed as secondary metabolites produced during the idiophase of microbial growth, which can kill or inhibit the growth of other microorganisms. Nowadays, indiscriminate use of antibiotics has resulted in resistant microorganisms. Therefore, screening researches on products with antimicrobial activities are necessary. Objectives: To find new antibiotics to defend against pathogenic microorganisms resistant to common antibiotics, the bacterium isolated from skin of the frog called Rana ridibunda was studied for its antimicrobial activities. Materials and Methods: An antibiotic-producing bacterium was isolated from the frog skin. The bacterium was identified based on 16SrDNA sequencing and biochemical and morphological characteristics. Antimicrobial activity of the culture supernatant was examined against laboratorial standard bacteria by disc diffusion and minimum inhibitory concentration (MIC) methods. To characterize the produced antimicrobial compound, the culture supernatant of the bacterium was washed by chloroform and dried at 40°C; then, the antimicrobial substance was extracted by methanol and acetone and detected by bioautography on silica gel plates. Dialysis tube was used to find the molecular weight of this substance. Results: The isolated bacterium was identified as a new strain of Bacillus atrophaeus. The antimicrobial substance exhibited heat stability between 25ºC and 100ºC and was active in a broad pH range from 2.0 to 11.0. The bioautography assay showed that methanol was the optimum solvent for the extraction of antimicrobial substance. The dialysis tube indicated that the antimicrobial substance weight was less than 1 kDa and the compound did not precipitate with ammonium sulfate. Conclusions: This study showed that some properties of antimicrobial substances produced by the GA strain differed from other peptide antibiotics produced by the genus Bacillus such as bacitracin, which increases the likelihood of

  17. Redox Characteristics of Thiol Compounds Using Radicals Produced by Water Vapor Radio Frequency Discharge

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Goto, Masaaki; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-08-01

    The redox reaction between cystein and cystine is observed using radicals produced in water vapor plasma for the control of plant growth. Cystein is oxidized to cystine using the OH radical in the higher-pressure regime and cystine is reduced to cystein by the H radical generated in the lower-pressure regime. Also, the oxidative stress reaction of plants is observed when water vapor plasma is irradiated onto seeds of plants such as radish sprouts. The mechanism of the control of plant growth is explained by the change in thiol compound quantity of the plant cells induced by the radical reaction.

  18. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species.

    PubMed

    Aharoni, Asaph; Giri, Ashok P; Verstappen, Francel W A; Bertea, Cinzia M; Sevenier, Robert; Sun, Zhongkui; Jongsma, Maarten A; Schwab, Wilfried; Bouwmeester, Harro J

    2004-11-01

    The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as alpha-pinene and beta-myrcene, and caused the loss of these

  19. Gain and Loss of Fruit Flavor Compounds Produced by Wild and Cultivated Strawberry Species

    PubMed Central

    Aharoni, Asaph; Giri, Ashok P.; Verstappen, Francel W.A.; Bertea, Cinzia M.; Sevenier, Robert; Sun, Zhongkui; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.

    2004-01-01

    The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are gained and lost during evolution and domestication are largely unknown. Here, we report on processes that may have been responsible for the evolution of diversity in strawberry (Fragaria spp) fruit flavor components. Whereas the terpenoid profile of cultivated strawberry species is dominated by the monoterpene linalool and the sesquiterpene nerolidol, fruit of wild strawberry species emit mainly olefinic monoterpenes and myrtenyl acetate, which are not found in the cultivated species. We used cDNA microarray analysis to identify the F. ananassa Nerolidol Synthase1 (FaNES1) gene in cultivated strawberry and showed that the recombinant FaNES1 enzyme produced in Escherichia coli cells is capable of generating both linalool and nerolidol when supplied with geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), respectively. Characterization of additional genes that are very similar to FaNES1 from both the wild and cultivated strawberry species (FaNES2 and F. vesca NES1) showed that only FaNES1 is exclusively present and highly expressed in the fruit of cultivated (octaploid) varieties. It encodes a protein truncated at its N terminus. Green fluorescent protein localization experiments suggest that a change in subcellular localization led to the FaNES1 enzyme encountering both GPP and FPP, allowing it to produce linalool and nerolidol. Conversely, an insertional mutation affected the expression of a terpene synthase gene that differs from that in the cultivated species (termed F. ananassa Pinene Synthase). It encodes an enzyme capable of catalyzing the biosynthesis of the typical wild species monoterpenes, such as α-pinene and β-myrcene, and caused the loss of these

  20. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    PubMed Central

    2011-01-01

    Background Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. Methods The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. Results The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Conclusions Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas. PMID:21303496

  1. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    PubMed

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition.

  2. Pilot scale test of a produced water-treatment system for initial removal of organic compounds

    SciTech Connect

    Sullivan, Enid J; Kwon, Soondong; Katz, Lynn; Kinney, Kerry

    2008-01-01

    A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ

  3. Intestinal Bacterial Communities That Produce Active Estrogen-Like Compounds Enterodiol and Enterolactone in Humans

    PubMed Central

    Clavel, Thomas; Henderson, Gemma; Alpert, Carl-Alfred; Philippe, Catherine; Rigottier-Gois, Lionel; Doré, Joël; Blaut, Michael

    2005-01-01

    Lignans are dietary diphenolic compounds which require activation by intestinal bacteria to exert possible beneficial health effects. The intestinal ecosystem plays a crucial role in lignan metabolism, but the organisms involved are poorly described. To characterize the bacterial communities responsible for secoisolariciresinol (SECO) activation, i.e., the communities that produce the enterolignans enterodiol (ED) and enterolactone (EL), a study with 24 human subjects was undertaken. SECO activation was detected in all tested fecal samples. The intestinal bacteria involved in ED production were part of the dominant microbiota (6 × 108 CFU g−1), as revealed by most-probable-number enumerations. Conversely, organisms that catalyzed the formation of EL occurred at a mean concentration of approximately 3 × 105 CFU g−1. Women tended to have higher concentrations of both ED- and EL-producing organisms than men. Significantly larger amounts of EL were produced by fecal dilutions from individuals with moderate to high concentrations of EL-producing bacteria. Two organisms able to demethylate and dehydroxylate SECO were isolated from human feces. Based on 16S rRNA gene sequence analyses, they were named Peptostreptococcus productus SECO-Mt75m3 and Eggerthella lenta SECO-Mt75m2. A new 16S rRNA-targeted oligonucleotide probe specific for P. productus and related species was designed and further used in fluorescent in situ hybridization experiments, along with five additional group-specific probes. Significantly higher proportions of P. productus and related species (P = 0.012), as well as bacteria belonging to the Atopobium group (P = 0.035), were typical of individuals with moderate to high concentrations of EL-producing communities. PMID:16204524

  4. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain.

    PubMed

    Dahlgren, Elin; Lindqvist, Dennis; Dahlgren, Henrik; Asplund, Lillemor; Lehtilä, Kari

    2016-02-01

    Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels.

  5. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum.

    PubMed

    Laursen, Tomas; Borch, Jonas; Knudsen, Camilla; Bavishi, Krutika; Torta, Federico; Martens, Helle Juel; Silvestro, Daniele; Hatzakis, Nikos S; Wenk, Markus R; Dafforn, Timothy R; Olsen, Carl Erik; Motawia, Mohammed Saddik; Hamberger, Björn; Møller, Birger Lindberg; Bassard, Jean-Etienne

    2016-11-18

    Metabolic highways may be orchestrated by the assembly of sequential enzymes into protein complexes, or metabolons, to facilitate efficient channeling of intermediates and to prevent undesired metabolic cross-talk while maintaining metabolic flexibility. Here we report the isolation of the dynamic metabolon that catalyzes the formation of the cyanogenic glucoside dhurrin, a defense compound produced in sorghum plants. The metabolon was reconstituted in liposomes, which demonstrated the importance of membrane surface charge and the presence of the glucosyltransferase for metabolic channeling. We used in planta fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to study functional and structural characteristics of the metabolon. Understanding the regulation of biosynthetic metabolons offers opportunities to optimize synthetic biology approaches for efficient production of high-value products in heterologous hosts. Copyright © 2016, American Association for the Advancement of Science.

  6. Stark broadening measurements in plasmas produced by laser ablation of hydrogen containing compounds

    NASA Astrophysics Data System (ADS)

    Burger, Miloš; Hermann, Jörg

    2016-08-01

    We present a method for the measurement of Stark broadening parameters of atomic and ionic spectral lines based on laser ablation of hydrogen containing compounds. Therefore, plume emission spectra, recorded with an echelle spectrometer coupled to a gated detector, were compared to the spectral radiance of a plasma in local thermal equilibrium. Producing material ablation with ultraviolet nanosecond laser pulses in argon at near atmospheric pressure, the recordings take advantage of the spatially uniform distributions of electron density and temperature within the ablated vapor. By changing the delay between laser pulse and detector gate, the electron density could be varied by more than two orders of magnitude while the temperature was altered in the range from 6,000 to 14,000 K. The Stark broadening parameters of transitions were derived from their simultaneous observation with the hydrogen Balmer alpha line. In addition, assuming a linear increase of Stark widths and shifts with electron density for non-hydrogenic lines, our measurements indicate a change of the Stark broadening-dependence of Hα over the considered electron density range. The presented results obtained for hydrated calcium sulfate (CaSO4ṡ2H2O) can be extended to any kind of hydrogen containing compounds.

  7. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    PubMed Central

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S.

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  8. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum.

    PubMed

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  9. Suitability of a cytotoxicity assay for detection of potentially harmful compounds produced by freshwater bloom-forming algae.

    PubMed

    Sorichetti, Ryan J; McLaughlin, Jace T; Creed, Irena F; Trick, Charles G

    2014-01-01

    Detecting harmful bioactive compounds produced by bloom-forming pelagic algae is important to assess potential risks to public health. We investigated the application of a cell-based bioassay: the rainbow trout gill-w1 cytotoxicity assay (RCA) that detects changes in cell metabolism. The RCA was used to evaluate the cytotoxic effects of (1) six natural freshwater lake samples from cyanobacteria-rich lakes in central Ontario, Canada; (2) analytical standards of toxins and noxious compounds likely to be produced by the algal communities in these lakes; and (3) complex mixtures of compounds produced by cyanobacterial and chrysophyte cultures. RCA provided a measure of lake water toxicity that could not be reproduced using toxin or noxious compound standards. RCA was not sensitive to toxins and only sensitive to noxious compounds at concentrations higher than reported environmental averages (EC50≥10(3)nM). Cultured algae produced bioactive compounds that had recognizable dose dependent and toxic effects as indicated by RCA. Toxicity of these bioactive compounds depended on taxa (cyanobacteria, not chrysophytes), growth stage (stationary phase more toxic than exponential phase), location (intracellular more toxic than extracellular) and iron status (cells in high-iron treatment more toxic than cells in low-iron treatment). The RCA provides a new avenue of exploration and potential for the detection of natural lake algal toxic and noxious compounds.

  10. Anthropogenic and naturally-produced organobrominated compounds in bluefin tuna from the Mediterranean Sea.

    PubMed

    Pena-Abaurrea, Miren; Weijs, Liesbeth; Ramos, Lourdes; Borghesi, Nicoletta; Corsolini, Simonetta; Neels, Hugo; Blust, Ronny; Covaci, Adrian

    2009-09-01

    Anthropogenic compounds, such as polybrominated diphenyl ethers (PBDEs), together with naturally-produced organobromines, such as methoxylated PBDEs (MeO-PBDEs), polybrominated hexahydroxanthene derivatives (PBHDs), 2,4,6-tribromoanisole (TBA) and a mixed halogenated monoterpene (MHC-1), were measured in muscle from 26 farmed and wild bluefin tuna (Thunnus thynnus) caught in the Mediterranean Sea. This species is ecological attractive because of the changes of geographic habitat throughout its long lifespan which affect its feeding. PBDE concentrations were similar between tuna samples of different groups (17-149 ng g(-1) lipid weight - lw in farmed tuna, 25-219 ng g(-1)lw in longline fished tuna and 26-126 ng g(-1)lw in net-fished tuna). However, higher concentrations of naturally-produced MeO-PBDEs and PBHDs were observed in the two types of wild tuna (longline fished and net-fished) compared to farmed tuna suggesting that wild tunas come easily in contact with sources of these compounds. In all cases PBHDs presented the highest contribution to the sum of organobromines (50% in farmed tuna and >90% in wild tuna). TBA was detected at low concentrations (<6 ng g(-1)lw), while MHC-1 was found at higher concentrations (up to 42 ng g(-1)lw) in farmed tuna. The estimated daily ingestion of PBDEs from tuna was 830 ng PBDEs day(-1), regardless of the origin of the tuna. While this value is approximately 600 times lower than the minimum risk level set by the US Department of Health and Human Services, it is approximately eight times higher than the total intake of PBDEs via diet, suggesting that consumption of tuna can add considerably to the total daily intake of PBDEs.

  11. Purification and characterization of two new cell-bound bioactive compounds produced by wild Lactococcus lactis strain.

    PubMed

    Saraiva, Margarete Alice Fontes; Brede, Dag Anders; Nes, Ingolf Figved; Baracat-Pereira, Maria Cristina; de Queiroz, Marisa Vieira; de Moraes, Célia Alencar

    2017-07-03

    Novel compounds and innovative methods are required considering that antibiotic resistance has reached a crisis point. In the study, two cell-bound antimicrobial compounds produced by Lactococcus lactis ID1.5 were isolated and partially characterized. Following purification by cationic exchange and a solid-phase C18 column, antimicrobial activity was recovered after three runs of RPC using 60% (v/v) and 100% (v/v) of 2-propanol for elution, suggesting that more than one antimicrobial compound were produced by L. lactis ID1.5, which were in this study called compounds AI and AII. The mass spectrum of AI and AII showed major intensity ions at m/z 1070.05 and 955.9 Da, respectively. The compound AI showed a spectrum of antimicrobial activity mainly against L. lactis species, while the organisms most sensitive to compound AII were Bacillus subtilis, Listeria innocua, Streptococcus pneumoniae and Pseudomonas aeruginosa. The antimicrobial activity of both compounds was suppressed by treatment with Tween 80. Nevertheless, both compounds showed high stability to heat and proteases treatments. The isolated compounds, AI and AII, showed distinct properties from other antimicrobial substances already reported as produced by L. lactis, and have a significant inhibitory effect against two clinically important respiratory pathogens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species

    PubMed Central

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species. PMID:28192487

  13. Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani.

    PubMed

    Elkahoui, Salem; Djébali, Naceur; Yaich, Najeh; Azaiez, Sana; Hammami, Majdi; Essid, Rym; Limam, Ferid

    2015-01-01

    Several volatile organic compounds (VOCs) producing endophyte bacteria were isolated from the leaves of olive trees and tested for their antifungal activity against several pathogenic fungi. An antagonistic strain called P2 showed 97 % of homology with Pseudomonas sp. strains on the basis of its 16S rDNA sequence and biochemical properties. P2 strain drastically inhibited the growth of Rhizoctonia solani mycelia (86 %) at 5 day-post-confrontation (dpc) and strongly reduced fungi infection on potato slices at 10(7) bacteria ml(-1) for 3 and 7 dpc. P2 strain was also positive for protease activity as well as siderophore production. Light microscopy analysis showed that treatment of R. solani mycelia with P2 strain induced thickening of the cell-wall, vesiculation of protoplasm and blockage of fungal hyphae branching. VOCs analysis using GC-MS allowed the detection of two major products with m/z of 93.9910 and 125.9630 corresponding to dimethyl disulfide and dimethyl trisulfide respectively. VOCs-producing P2 strain could be a promising agent in the protection of tuber crops against fungal diseases.

  14. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.

    PubMed

    Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan

    2017-01-01

    The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.

  15. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Astrophysics Data System (ADS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-11-01

    The infrared (IR) spectra of ultraviolet (UV) and thermally processed, methanol-containing interstellar/ cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=-N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to polyoxymethylene {POM, ( CH2O )n}, and (3) ketones {R-C(=O)-R'} and amides {H2NC(=O)-R}. Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and 13C isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the "XCN" band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  16. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  17. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.

    1996-01-01

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.

  18. Regeneration of insulin-producing pancreatic cells using a volatile bioactive compound and human teeth.

    PubMed

    Okada, Mio; Imai, Toshio; Yaegaki, Ken; Ishkitiev, Nikolay; Tanaka, Tomoko

    2014-10-30

    Transplantation of insulin (INS)-secreting cells differentiated in vitro from stem cells promises a safer and easier treatment of severe diabetes mellitus. A volatile bioactive compound, hydrogen sulfide (H2S), promotes cell differentiation; human tooth-pulp stem cells undergo hepatic differentiation. The aim of this study is to develop a novel protocol using H2S to enhance pancreatic differentiation from the CD117(+) cell fraction of human tooth pulp. During the differentiation, the cells were exposed to 0.1 ng ml(-1) H2S. Immunocytochemistry, RT-PCR, determination of INS c-peptide content and flow cytometry of pancreatically related markers were carried out. Expression of WNT and the PI3K/AKT signaling pathway were also determined by PCR array. After differentiation, INS, glucagon (GCG), somatostatin (SST) and pancreatic polypeptide (PPY) were positive when examined by immunofluorescence. INS and GCG were also determined flow-cytometrically. Only the cells expressing INS increased after H2S exposure. The number of cells expressing GCG was significantly decreased. Genes involved in canonical WNT and the WNT/calcium pathways were highly expressed after H2S exposure. H2S accelerated INS synthesis and secretion by regenerated INS-producing cells from human teeth. All signaling pathway functions of the PI3K-AKT pathway were extremely activated by H2S exposure. The matured INS-producing cells originating in human teeth were increased by H2S in order to control blood-glucose level.

  19. Characterization of an Antibacterial Compound, 2-Hydroxyl Indole-3-Propanamide, Produced by Lactic Acid Bacteria Isolated from Fermented Batter.

    PubMed

    Jeevaratnam, Kadirvelu; Vidhyasagar, Venkatasubramanian; Agaliya, Perumal Jayaprabha; Saraniya, Appukuttan; Umaiyaparvathy, Muthukandan

    2015-09-01

    Lactic acid bacteria are known to produce numerous antimicrobial compounds that are active against various pathogens. Here, we have purified and characterized a novel low-molecular-weight (LMW) antimicrobial compound produced by Lactobacillus and Pediococcus isolated from fermented idly and uttapam batter. The LMW compound was extracted from cell-free supernatant using ice-cold acetone, purified by gel permeation and hydrophobic interaction chromatography. It exhibited antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria sparing the probiotic strains like Lactobacillus rhamnosus. The molecular weight of the LMW compound was identified as 204 Da using LC-MS-ESI. In addition, the structure of the compound was predicted using spectroscopic methods like FTIR and NMR and identified as 2-hydroxyl indole-3-propanamide. The LMW compound was differentiated from its related compound, tryptophan, by Salkowski reaction and thin-layer chromatography. This novel LMW compound, 2-hydroxyl indole-3-propanamide, may have an effective application as an antibiotic which can spare prevailing probiotic organisms but target only the pathogenic strains.

  20. Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls.

    PubMed

    Hidalgo, Francisco J; Delgado, Rosa M; Zamora, Rosario

    2017-08-15

    The degradation of phenylalanine initiated by 2-pentenal, 2,4-heptadienal, 4-oxo-2-pentenal, 4,5-epoxy-2-heptenal, or 4,5-epoxy-2-decenal in the presence of phenolic compounds was studied to determine the structure-activity relationship of phenolic compounds on the protection of amino compounds against modifications produced by lipid-derived carbonyls. The obtained results showed that flavan-3-ols were the most efficient phenolic compounds followed by single m-diphenols. The effectiveness of these compounds was found to be related to their ability to trap rapidly the carbonyl compound, avoiding in this way the reaction of the carbonyl compound with the amino acid. The ability of flavan-3-ols for this reaction is suggested to be related to the high electronic density existing in some of the aromatic carbons of their ring A. This is the first report showing that carbonyl-phenol reactions involving lipid-derived reactive carbonyls can be produced more rapidly than carbonyl-amine reactions, therefore providing a satisfactory protection of amino compounds.

  1. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    PubMed Central

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  2. Current state and perspectives of producing biodiesel‐like compounds by biotechnology

    PubMed Central

    Uthoff, Stefan; Bröker, Daniel; Steinbüchel, Alexander

    2009-01-01

    Summary The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel‐like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally ‘green’ fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost‐intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by‐products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t‐butanol have been developed, which enhance by‐product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole‐cell catalysis for the production of fatty acid ethyl esters, which is also referred to as ‘microdiesel’, by recombinant microorganisms has recently been suggested. PMID:21255288

  3. Bioactive compounds produced by gut microbial tannase: implications for colorectal cancer development.

    PubMed

    López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2014-01-01

    The microorganisms in the human gastrointestinal tract have a profound influence on the transformation of food into metabolites which can impact human health. Gallic acid (GA) and pyrogallol (PG) are bioactive compounds displaying diverse biological properties, including carcinogenic inhibiting activities. However, its concentration in fruits and vegetables is generally low. These metabolites can be also generated as final products of tannin metabolism by microbes endowed with tannase, which opens up the possibility of their anti-cancer potential being increased. Patients with colorectal cancer (CRC) display an imbalanced gut microbiota respect to healthy population. The recent use of next generation sequencing technologies has greatly improved knowledge of the identity of bacterial species that colonize non-tumorous and tumorous tissues of CRC patients. This information provides a unique opportunity to shed light on the role played by gut microorganisms in the different stages of this disease. We here review the recently published gut microbiome associated to CRC patients and highlight tannase as an underlying gene function of bacterial species that selectively colonize tumorous tissues, but not adjacent non-malignant tissues. Given the anti-carcinogenic roles of GA and PG produced by gut tannin-degrading bacteria, we provide an overview of the possible consequences of this intriguing coincidence for CRC development.

  4. Current state and perspectives of producing biodiesel-like compounds by biotechnology.

    PubMed

    Uthoff, Stefan; Bröker, Daniel; Steinbüchel, Alexander

    2009-09-01

    The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel-like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally 'green' fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost-intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by-products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t-butanol have been developed, which enhance by-product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole-cell catalysis for the production of fatty acid ethyl esters, which is also referred to as 'microdiesel', by recombinant microorganisms has recently been suggested. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice Analogs Containing Methanol

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Chang, Sherwood; Scharberg, Maureen A.

    1995-01-01

    The InfraRed (IR) spectra of UltraViolet (UV) and thermally processed, methanol-containing interstellar / cometary ice analogs at temperatures from 12 to 300 K are presented. Infrared spectroscopy, H-1 and C-13 Nuclear Magnetic Resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry indicate that CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), HCO (the formyl radical), H2CO (formaldehyde), CH3CH2OH (ethanol), HC([double bond]O)NH2 (formamide), CH3C([double bond]O)NH2 (acetamide), and R[single bond]C[triple bond]N (nitriles) are formed. In addition, the organic materials remaining after photolyzed ice analogs have been warmed to room temperature contain (in rough order of decreasing abundance), (1) hexamethylenetetramine (HMT, C6H12N4), (2) ethers, alcohols, and compounds related to PolyOxyMethylene (POM, ([single bond]CH2O[single bond](sub n)), and (3) ketones (R[single bond]C([double bond]O)[single bond]R') and amides (H2NC([double bond]O)[single bond]R). Most of the carbon in these residues is thought to come from the methanol in the original ice. Deuterium and C-13 isotopic labeling demonstrates that methanol is definitely the source of carbon in HMT. High concentrations of HMT in interstellar and cometary ices could have important astrophysical consequences. The ultraviolet photolysis of HMT frozen in H2O ice readily produces the 'XCN' band observed in the spectra of protostellar objects and laboratory ices, as well as other nitriles. Thus, HMT may be a precursor of XCN and a source of CN in comets and the interstellar medium. Also, HMT is known to hydrolyze under acidic conditions to yield ammonia, formaldehyde, and amino acids. Thus, HMT may be a significant source of prebiogenic compounds on asteroidal parent bodies. A potential mechanism for the radiative formation of HMT in cosmic ices is outlined.

  6. A new polyether ladder compound produced by the dinoflagellate Karenia brevis.

    PubMed

    Bourdelais, Andrea J; Jacocks, Henry M; Wright, Jeffrey L C; Bigwarfe, Paul M; Baden, Daniel G

    2005-01-01

    A new ladder-frame polyether compound containing five fused ether rings was isolated from laboratory cultures of the marine dinoflagellate Karenia brevis. This compound, named brevenal, and its dimethyl acetal derivative both competitively displace brevetoxin from its binding site in rat brain synaptosomes. Significantly, these compounds are also nontoxic to fish and antagonize the toxic effects of brevetoxins in fish. The structure and biological activity of brevenal, as well as the dimethyl acetal derivative, are described in this paper.

  7. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens

    PubMed Central

    Tenorio-Salgado, Silvia; Tinoco, Raunel; Vazquez-Duhalt, Rafael; Caballero-Mellado, Jesus; Perez-Rueda, Ernesto

    2013-01-01

    It has been documented that bacteria from the Burkholderia genera produce different kinds of compounds that inhibit plant pathogens, however in Burkholderia tropica, an endophytic diazotrophic and phosphate-solubilizing bacterium isolated from a wide diversity of plants, the capacity to produce antifungal compounds has not been evaluated. In order to expand our knowledge about Burkholderia tropica as a potential biological control agent, we analyzed 15 different strains of this bacterium to evaluate their capacities to inhibit the growth of four phytopathogenic fungi, Colletotrichum gloeosporioides, Fusarium culmorum, Fusarium oxysporum and Sclerotium rolffsi. Diverse analytical techniques, including plant root protection and dish plate growth assays and gas chromatography-mass spectroscopy showed that the fungal growth inhibition was intimately associated with the volatile compounds produced by B. tropica and, in particular, two bacterial strains (MTo293 and TTe203) exhibited the highest radial mycelial growth inhibition. Morphological changes associated with these compounds, such as disruption of fungal hyphae, were identified by using photomicrographic analysis. By using gas chromatography-mass spectroscopy technique, 18 volatile compounds involved in the growth inhibition mechanism were identified, including α-pinene and limonene. In addition, we found a high proportion of bacterial strains that produced siderophores during growth with different carbon sources, such as alanine and glutamic acid; however, their roles in the antagonism mechanism remain unclear. PMID:23680857

  8. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

    PubMed Central

    Cordovez, Viviane; Carrion, Victor J.; Etalo, Desalegn W.; Mumm, Roland; Zhu, Hua; van Wezel, Gilles P.; Raaijmakers, Jos M.

    2015-01-01

    In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs). VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogs of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures. PMID:26500626

  9. Retinoid-like compounds produced by phytoplankton affect embryonic development of Xenopus laevis.

    PubMed

    Smutná, M; Priebojová, J; Večerková, J; Hilscherová, K

    2017-04-01

    Teratogenic effects, which were remarkably similar to those induced by retinoic acids, have been seen in wild frogs indicating possible source of retinoids in the environment. Recent studies indicate that some cyanobacterial species can contain teratogenic retinoic acids (RAs) and their analogues. Retinoids are known to regulate important processes such as differentiation, development, and embryogenesis. The study investigated the effects of exudates (extracellular compounds) of two cyanobacteria species with retinoic-like activity and one algae species on embryonic development of amphibians. The retinoid-like activity determined by in vitro reporter gene assay reached 528ng retinoid equivalents (REQ)/L and 1000ng REQ/L in exudates of Cylindrospermopsis raciborskii and Microcystis aeruginosa, respectively, while algal exudates showed no detectable activity. Total mean of retinoid-like copounds into exudate was 35.6ng ATRA/mil.cells for M.aeruginosa and 6.71ng ATRA/mil.cells for C.raciborskii, respectively. Toxicity tests with amphibian embryos up to 96h of development were carried out according to the standard guide for the Frog Embryo Teratogenesis Assay Xenopus. Lowest observed effect concentrations (LOEC) of malformations (2.5-2.6µg/L REQ) were two times lower than LOEC for ATRA (5µg/L). The exudates of both cyanobacteria were indeed provoking diverse teratogenic effects (e.g. tail, gut and eyes deformation) and interference with growth in frogs embryos, while such effects were not observed for the algae. Xenopus embryos were also exposed to all-trans retinoic acid (ATRA) in concentration range (1-40µg/L) equivalent to the REQs detected in cyanobacterial exudates. ATRA (10µg/L) caused similar teratogenic phenotypes at corresponding REQs as cyanobacterial exudates. The study confirms the ability of some species of cyanobacteria to produce retinoids naturally and excrete them directly into the environment at concentrations which might have adverse influence on

  10. Epicoccum nigrum P16, a Sugarcane Endophyte, Produces Antifungal Compounds and Induces Root Growth

    PubMed Central

    Fávaro, Léia Cecilia de Lima; Sebastianes, Fernanda Luiza de Souza; Araújo, Welington Luiz

    2012-01-01

    Background Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte

  11. Antibacterial compound produced by Pseudomonas aeruginosa strain UICC B-40, an endophytic bacterium isolated from Neesia altissima.

    PubMed

    Pratiwi, Rina Hidayati; Hidayat, Iman; Hanafi, Muhammad; Mangunwardoyo, Wibowo

    2017-04-01

    This study's aim was to determine the identity of antibacterial compounds produced by Pseudomonas aeruginosa strain UICC B-40 and describe the antibacterial compounds' mechanisms of action for damaging pathogenic bacteria cells. Isolation and identification of the compounds were carried out using thin layer chromatography (TLC), nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS) analyses. Antibacterial activity was assayed via minimum inhibitory concentration (MIC) and the antibacterial compound mechanism was observed morphologically through scanning electron microscopy (SEM). This study successfully identified the (2E,5E)-phenyltetradeca-2,5-dienoate antibacterial compound (molecular weight 300 g/mol), composed of a phenolic ester, fatty acid and long chain of aliphatic group structures. MIC values for this compound were determined at 62.5 μg/ml against Staphylococcus aureus strain ATCC 25923. The mechanism of the compound involved breaking down the bacterial cell walls through the lysis process. The (2E,5E)-phenyltetradeca-2,5-dienoate compound exhibited inhibitory activity on the growth of Gram-positive bacteria.

  12. Aroma-active compounds in jinhua ham produced with different fermentation periods.

    PubMed

    Liu, Xiao-Sheng; Liu, Jian-Bin; Yang, Zheng-Mao; Song, Huan-Lu; Liu, Ye; Zou, Ting-Ting

    2014-11-19

    The aroma-active compounds in Jinhua ham processed and stored for 9, 12, 15 and 18 months were extracted by dynamic headspace sampling (DHS) and solvent-assisted flavor evaporation (SAFE) and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS). In GC-O-MS, volatile compounds were identified based on their mass spectrum, linear retention index (LRI), odor properties, or reference compound comparisons. The results showed that a total number of 81 aroma-active compounds were identified by GC-O-MS. Among them, acids (such as acetic acid, butanoic acid and 3-methylbutanoic acid), saturated aldehydes (such as hexanal, heptanal, octanal and 3-methylbutanal), benzene derivatives (such as benzeneacetic acid), ester and lactone (such as γ-nonalactone and γ-decalactone) were identified as critical compounds in Jinhua ham aroma. The results also indicated that the type and content of the odorants increased significantly with the duration of the fermentation period.

  13. Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds.

    PubMed

    Suurnäkki, Suvi; Gomez-Saez, Gonzalo V; Rantala-Ylinen, Anne; Jokela, Jouni; Fewer, David P; Sivonen, Kaarina

    2015-01-01

    Geosmin and 2-methylisoborneol (MIB) are muddy/earthy off-flavor metabolites produced by a range of bacteria. Cyanobacteria are the major producers of the volatile metabolites geosmin and MIB which produce taste and odor problems in drinking water and fish worldwide. Here we detected geosmin and MIB by studying 100 cyanobacteria strains using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS). A total of 21 geosmin producers were identified from six cyanobacteria genera. Two of the geosmin producers also produced MIB. A PCR protocol for the detection of geoA and MIB synthase genes involved in the biosynthesis of geosmin and MIB was developed. The geoA and MIB synthase genes were detected in all strains shown to produce geosmin and MIB, respectively. Cyanobacterial geoA and MIB synthase sequences showed homology to terpene synthases genes of actinobacteria and proteobacteria. Additional off-flavor compounds, nor-carotenoids β-ionone and β-cyclocitral, were found from 55 strains among the 100 cyanobacterial strains studied; β-ionone was present in 45 and β-cyclocitral in 10 strains. Six of the cyanobacteria which contain off-flavor compounds also produced toxins, anatoxin-a or microcystins. The molecular method developed is a useful tool in monitoring potential cyanobacterial producers of geosmin and MIB.

  14. [Using compost of agricultural solid waste to produce organic-inorganic compound fertilizer].

    PubMed

    Yang, Bo-jing; Wang, Hong-tao

    2006-07-01

    Techniques of compound fertilizer production from solid waste compost were studied. Different ratio of water moisture, proportion between organic and inorganic and infection of different granularity to the effect of granulation is separately determined through experiments at the pilot scale in the field. The optimal parameters of the techniques are determined. The moisture content is 35%-40%; the rate of organic matter is 80%-90%; granularity is 20 mu. According the data of the organism's concentration, height and weight in crop, the crop was fertilized compound fertilizer is batter than chemical fertilizer. And the ability of increasing the production of the compound fertilizer was testified.

  15. A natural compound (reuterin) produced by Lactobacillus reuteri for hemoglobin polymerization as a blood substitute.

    PubMed

    Chen, Yi-Chien; Chang, Wen-Hsiang; Chang, Yen; Huang, Chun-Ming; Sung, Hsing-Wen

    2004-07-05

    Stroma-free hemoglobin (Hb) has been modified by pyridoxylation and followed by polymerization with glutaraldehyde as a blood substitute. Nevertheless, the reaction rate of pyridoxylated Hb (PLP-Hb) with glutaraldehyde is too fast to control its molecular weight distribution. Additionally, it was reported that glutaraldehyde is cytotoxic even at low doses. To overcome these problems, another aldehyde, beta-hydroxypropionaldehyde (beta-HPA), was used in the study to polymerize hemoglobin (PLP-Hb). beta-HPA is a natural compound (reuterin) produced by Lactobacillus reuteri. It was found that the maximum degree of PLP-Hb polymerization by reuterin (RR-PLP-Hb) was approximately 40% if the formation of high molecular (> 500 kDa) polymers should be prevented. In contrast, at the same reaction condition, the glutaraldehyde-polymerized PLP-Hb solution became gel-like, due to overpolymerization. This indicated that the rate of PLP-Hb polymerization by reuterin was significantly slower than that by glutaraldehyde. With increasing the reaction temperature, PLP-Hb concentration, or reuterin-to-PLP-Hb molar ratio, the time to reach the maximum degree of PLP-Hb polymerization by reuterin became significantly shorter. Removal of unpolymerized PLP-Hb from the RR-PLP-Hb solution can be effectively achieved by a gel-filtration column. The P(50) value of the unmodified Hb solution was 14 torr, while that of the RR-PLP-Hb solution was 20 torr, an indication of lower oxygen affinity. Additionally, the oxygen-Hb dissociation curves for both test solutions had a sigmodial shape and a nearly 100% saturation at 100 torr. In the in vivo study, it was found that the animals treated with the RR-PLP-Hb solution all survived and remained healthy more than 3 months. In contrast, only one out of six rats survived for the control group treated with the unmodified Hb solution. Furthermore, it was found that the RR-PLP-Hb solution resulted in a significantly longer circulation time ( approximately

  16. Full Genome of Phialocephala scopiformis DAOMC 229536, a Fungal Endophyte of Spruce Producing the Potent Anti-Insectan Compound Rugulosin

    PubMed Central

    Frasz, Samantha L.; Seifert, Keith A.; Miller, J. David; Mondo, Stephen J.; LaButti, Kurt; Lipzen, Anna; Dockter, Rhyan B.; Kennedy, Megan C.; Grigoriev, Igor V.; Spatafora, Joseph W.

    2016-01-01

    We present the full genome of Phialocephala scopiformis DAOMC 229536 (Helotiales, Ascomycota), a foliar endophyte of white spruce from eastern Quebec. DAOMC 229536 produces the anti-insectan compound rugulosin, which inhibits a devastating forestry pest, the spruce budworm. This genome will enable fungal genotyping and host-endophyte evolutionary genomics in inoculated trees. PMID:26950333

  17. A compound produced by Fruigivorous Tephritidae (Diptera) larvae promotes oviposition behavior by the biological control agent Diachasmimorpha longicaudata (Hymenoptera: Braconidae)

    USDA-ARS?s Scientific Manuscript database

    Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determi...

  18. Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers.

    PubMed

    Bruno, P; Caselli, M; de Gennaro, G; Solito, M; Tutino, M

    2007-01-01

    Nuisance caused by odors is one of the most important problems for waste management plants. To control an odor nuisance, it must first be quantified. The analytical difficulties in odor measurements are related to the high number of volatile components (belonging to several chemical classes), above all when the concentration is lower than the detection limit of the technique used for the measurement. In this work, 2-butanone, alpha-pinene, tetrachloroethylene, dimethyldisulfide, beta-pinene, limonene, phenol and benzoic acid are determined, because they are representative of some important classes of compounds with higher odor impact. The compounds are sampled with thermal desorbable radial diffusive samplers Radiello containing Tenax cartridges. The analytical repeatability and the complete thermal desorption of the cartridges were verified for each odor compound; the relative standard deviations for repeated samples and the recovery percentage were, respectively, less than 7% and about 97% for all compounds. The measurements of the linearity of sampling showed no systematic difference according to the collection period. The comparison between the odor threshold and the limit of detection demonstrated that this method is reliable for the recognition and quantification of odor compounds, allowing Public Administration to impose legal limits and the control agencies to verify them.

  19. A new antibacterial and antioxidant S07-2 compound produced by Bacillus subtilis B38.

    PubMed

    Tabbene, Olfa; Karkouch, Ines; Elkahoui, Salem; Cosette, Pascal; Mangoni, Maria-Luisa; Jouenne, Thierry; Limam, Ferid

    2010-02-01

    An antibacterial compound, S07-2, was purified to homogeneity by hydrophobic interaction, anion exchange, C18 reverse-phase and HS PEG HPLC. The molecular mass of S07-2 was 905.6 Da as determined by MS. The S07-2 compound was resistant to high temperatures (up to 100 degrees C) and could withstand a wide range of pH from 3 to 10. In addition, its antibacterial activity was preserved after treatment with proteases. Biochemical characterization revealed its cyclic peptide structure. This compound showed a bactericidal effect against important food-spoilage bacteria and food-borne pathogens including Listeria monocytogenes and Enterococcus faecalis with lethal concentration values of 62.5 microg mL(-1) and against Salmonella enteritidis at a concentration of 31.25 microg mL(-1). However, no cytotoxic effect against human erythrocytes was recorded. Furthermore, the S07-2 compound displayed a remarkable Fe(2+)-chelating activity (EC(50)=9.76 microg mL(-1)) and 1-diphenyl-2-picrylhydrazyl-scavenging capacity (IC(50)=65 microg mL(-1)). All these chemical and biological features make S07-2 a useful compound in the food industry as a natural preservative.

  20. Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains

    PubMed Central

    2013-01-01

    Background The emergence of multidrug-resistant bacteria is a world health problem. Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains, is one of the most important human pathogens associated with hospital and community-acquired infections. The aim of this work was to evaluate the antibacterial activity of a Pseudomonas aeruginosa-derived compound against MRSA strains. Methods Thirty clinical MRSA strains were isolated, and three standard MRSA strains were evaluated. The extracellular compounds were purified by vacuum liquid chromatography. Evaluation of antibacterial activity was performed by agar diffusion technique, determination of the minimal inhibitory concentration, curve of growth and viability and scanning electron microscopy. Interaction of an extracellular compound with silver nanoparticle was studied to evaluate antibacterial effect. Results The F3 (ethyl acetate) and F3d (dichloromethane- ethyl acetate) fractions demonstrated antibacterial activity against the MRSA strains. Phenazine-1-carboxamide was identified and purified from the F3d fraction and demonstrated slight antibacterial activity against MRSA, and synergic effect when combined with silver nanoparticles produced by Fusarium oxysporum. Organohalogen compound was purified from this fraction showing high antibacterial effect. Using scanning electron microscopy, we show that the F3d fraction caused morphological changes to the cell wall of the MRSA strains. Conclusions These results suggest that P. aeruginosa-produced compounds such as phenazines have inhibitory effects against MRSA and may be a good alternative treatment to control infections caused by MRSA. PMID:23773484

  1. Evaluation of acrodontiolamide, a chlorinated compound produced by Acrodontium salmoneum de Hoog for cytotoxicity and antimicrobial activity.

    PubMed

    Steiman, R; Benoit-Guyod, J L; Guiraud, P; Seigle-Murandi, F

    1995-10-01

    A new antifungal compound has been isolated from the culture medium of Acrodontium salmoneum de Hoog. Its structure was previously elucidated and was named acrodontiolamide. However, this compound is not characteristically produced by the genus Acrodontium, it is rather a feature of one isolate of A. Salmoneum coming from the soil of the grotto of La Pierre Saint Martin (France). Production, purification, cytotoxicity and antimicrobial activities of acrodontiolamide are described. Concerning microorganisms, inhibitory activity seems to be specifically restricted to phytopathogenic and entomapathogenic fungi. Acrodontiolamide is not cytotoxic to either normal human cultured cells or tumor cells.

  2. Volatile compounds produced by Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei in single starter culture fermentations of Ghanaian maize dough.

    PubMed

    Annan, N T; Poll, L; Sefa-Dedeh, S; Plahar, W A; Jakobsen, M

    2003-01-01

    To identify and compare the volatile compounds associated with maize dough samples prepared by spontaneous fermentation and by the use of added starter cultures in Ghana. The starter cultures examined were Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei. For identification of aroma volatiles, extracts by the Likens-Nickerson simultaneous distillation and extraction technique were analysed by gas chromatography-mass spectrometry (GC-MS) and using a trained panel of four judges by GC-Olfactometry (GC-sniffing). Compounds identified by GC-MS in maize dough samples after 72 h of fermentation included 20 alcohols, 22 carbonyls, 11 esters, seven acids, a furan and three phenolic compounds. Of the total 64 volatile compounds, 51 were detected by GC-sniffing as contributing to the aroma of the different fermented dough samples. Spontaneously fermented maize dough was characterized by higher levels of carbonyl compounds while fermentations with added L. fermentum recorded the highest concentration of acetic acid. S. cerevisiae produced higher amounts of fusel alcohols and increasing levels of esters with fermentation time and C. krusei showed similarity to L. fermentum with lower levels of most volatiles identified. The present study has given a detailed picture of the aroma compounds in fermented maize and demonstrated that the predominant micro-organisms in fermented maize dough can be used as starter cultures to modify the aroma of fermented maize dough. The study has documented the advantage of using starter cultures in African traditional food processing and provided a scientific background for introducing better controlled fermentations.

  3. Study of the volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates.

    PubMed

    Salgado, José Manuel; González-Barreiro, Carmen; Rodríguez-Solana, Raquel; Simal-Gándara, Jesús; Domínguez, José Manuel; Cortés, Sandra

    2012-11-01

    The volatile compounds produced by Debaryomyces hansenii NRRL Y-7426 during the fermentation of detoxified concentrated distilled grape marc hemicellulosic hydrolysates was analysed by GC-MS. Thirty-five compounds corresponding to ten groups of volatile compounds: terpenes, higher alcohols, C₆ alcohols, aldehydes, volatile acids, acetates, ethyl esters, volatile phenols, sulphur compounds and hydrocarbons were identified. The supplementation with commercial nutrients increased the concentration of 2-phenylethanol, a commercial flavour and fragrance compound, with a rose-like odour, employed in cosmetics and food industries; and other positive compounds to the aroma such as terpenes and ethyl esters. Non-supplemented media produced the highest content in higher alcohols, volatile acids, sulphur compounds and in the majority of hydrocarbons detected, meanwhile supplementation with vinasses hardly produced volatile compounds. Only four volatile compounds contributed directly to the aroma according to the OAVs values higher than 1. Finally, a PCA analysis allowed accounting for 100 % of the variance.

  4. Bioactive fruit and seed compounds produced by ziziphus jujube and related plant species

    USDA-ARS?s Scientific Manuscript database

    The jujube fruit is widely cultivated from China to Southwest Europe, India and the Middle East. Fresh, processed, and dried jujube fruit is used as a medical food, mostly in fresh form or as dried dates and confectionary recipes. Jujube fruit and seed extracts and pure compounds are reported to exh...

  5. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021.

    PubMed

    Ullah, Ihsan; Khan, Abdul Latif; Ali, Liaqat; Khan, Abdur Rahim; Waqas, Muhammad; Hussain, Javid; Lee, In-Jung; Shin, Jae-Ho

    2015-02-01

    The Photorhabdus temperata M1021 secretes toxic compounds that kill their insect hosts by arresting immune responses. Present study was aimed to purify the insecticidal and antimicrobial compound(s) from the culture extract of P. temperata M1021 through bioassay guided fractionation. An ethyl acetate (EtOAc) extract of the P. temperata M1021 exhibited 100% mortality in Galleria mellonella larvae within 72 h. In addition, EtOAc extract and bioactive compound 1 purified form the extract through to column chromatography, showed phenol oxidase inhibition up to 60% and 80% respectively. The analysis of (1)H and (13)C NMR spectra revealed the identity of pure compound as "benzaldehyde". The benzaldehyde showed insecticidal activity against G. mellonella in a dose-dependent manner and 100% insect mortality was observed at 108 h after injection of 8 mM benzaldehyde. In a PO inhibition assay, 4, 6, and 8 mM concentrations of benzaldehyde were found to inhibit PO activity about 15%, 42%, and 80% respectively. In addition, nodule formation was significantly (P < 0.05) inhibited by 4, 6, and 8 mM of benzaldehyde as compare to control. Moreover, benzaldehyde was found to have great antioxidant activity and maximum antioxidant activity was 52.9% at 8 mM benzaldehyde as compare to control. Antimicrobial activity was assessed by MIC values ranged from 6 mM 10 mM for bacterial strains and 8 mM to 10 mM for fungal strains. The results suggest that benzaldehyde could be applicable for developing novel insecticide for agriculture use.

  6. Atomic structure and magnetic properties of Cu 80Co 20 nanocrystalline compound produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.; Uimin, M. A.; Yermakov, A. Ye; Korobeinikov, A. Yu

    1999-10-01

    Direct observation of the atomic structure of the mechanically alloyed Cu 80Co 20 compounds has been made using the field ion microscope (FIM). Phase composition, defect structure and morphology of material on the atomic scale have been determined. It has been established that the studied material is chemically inhomogeneous, presenting a mixture of two main phases: heterogeneous solid solution of cobalt in copper, and pure cobalt. Phase volume ratios, particle and cluster sizes have been estimated. An evaluation of Co content in CuCo solid solution has been made. The width of interfaces in this mechanically alloyed material was revealed to be at least twice the width of phase boundaries in metals and alloys. Superparamagnetism of the compound studied at elevated temperatures and saturation magnetization deficit at low temperatures are discussed on the basis of the above-mentioned structural data.

  7. Inter- and intraspecific variation in defensive compounds produced by five neotropical stink bug species (Hemiptera: Pentatomidae).

    PubMed

    Pareja, Martín; Borges, Miguel; Laumann, Raúl A; Moraes, Maria C B

    2007-07-01

    The differences in composition of defensive secretions between nymphs, adult males and adult females of Chinavia impicticornis (=Acrosternum impicticorne), Chinavia ubica (=Acrosternum ubicum), Euschistus heros, Dichelops melacanthus and Piezodorus guildinii (Hemiptera, Pentatomidae) were analysed within and between species using compositional log-ratio statistics and canonical variates analysis. Differences in composition between nymphs, males and females were found for all species, as well as when all species were pooled. In particular, tetradecanal appears to be a predominantly nymphal compound in D. melacanthus, E. heros and P. guildinii. In the two Chinavia species 4-oxo-(E)-2-hexenal and an unknown compound were more dominant in nymphs. The interspecific analysis revealed a good separation of defensive compounds according to their taxonomic relationship. Thus, the two Chinavia species grouped together, with (E)-2-decenal and (E)-2-hexenyl acetate, contributing to this separation. The other three species also differed from each other, with (E)-2-octenal associated to D. melacanthus, (E)-2-hexenal to P. guildinii and (E,E)-2,4-decadienal and tetradecanal to E. heros. The pooled analysis of stage ignoring species revealed tetradecanal and 4-oxo-(E)-2-decenal (tentative identification) strongly associated to nymphs. Thus, there are predictable differences between stages, and many of the differences are conserved between species. Consideration of these differences could prove to be important in understanding stink bug-natural enemy interactions, and in optimising biocontrol efforts.

  8. Acute and Subacute Oral Toxicity Evaluation of Crude Antifungal Compounds Produced by Lactobacillus plantarum HD1 in Rats

    PubMed Central

    Son, Hee-Kyoung; Chang, Hae-Choon; Lee, Jae-Joon

    2015-01-01

    The aim of this study was to investigate the acute and subacute oral toxicity of crude antifungal compounds produced by Lactobacillus plantarum HD1 in Sprague-Dawley rats. In the acute toxicity study, the crude antifungal compounds (0.625, 1.25, 2.5, and 5.0 g/kg) did not produce mortality, significant changes in general behavior, or changes in the gross appearance of the organs. In the subacute toxicity study, the crude antifungal compounds were administered orally to rats at doses of 0, 0.5, 1.0, and 2.0 g/kg daily for 28 days. There were no test article-related deaths, abnormal clinical signs, or body weight changes. The study also showed no significant differences between the control and treated groups in hematological and serum biochemical parameters, histopathological examination, or any other findings. These results suggest that acute or subacute oral administration of crude antifungal compounds from L. plantarum HD1 is not toxic in rats. PMID:26451356

  9. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    DOEpatents

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2016-07-05

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  10. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    DOEpatents

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2017-05-02

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phoshpate and/or ribulose 5-phospate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  11. Proteolysis and formation of volatile compounds in cheese manufactured with a bacteriocin-producing adjunct culture.

    PubMed

    Oumer, B A; Gaya, P; Fernández-García, E; Marciaca, R; Garde, S; Medina, M; Nuñez, M

    2001-02-01

    Hispánico cheese, a semi-hard Spanish variety, was manufactured from a mixture of pasteurized cows' and ewes' milks (4:1) using a commercial mesophilic LD-type starter comprising Lactococcus lactis subsp. cremoris, Lc. lactis subsp. lactis, Lc. lactis subsp. lactis var diacetylactis and Leuconostoc mesenteroides subsp. cremoris. Varying amounts (0-1.0 g/kg) of an Enterococcus faecalis INIA 4 culture in milk were added as a bacteriocin-producing adjunct. Differences in pH between cheeses manufactured with and without the bacteriocin producer did not exceed 0.11 pH units. Starter lactococci lost viability more rapidly in cheeses made with the bacteriocin producer, which reached counts of up to 6 x 10(7) cfu/g during ripening. Aminopeptidase activity in 1-d-old cheese made from milk inoculated with 1.0 g bacteriocin-producing culture/kg was twice that in control cheese. Degrees of overall proteolysis and levels of total free amino acids in 45-d-old cheese made with 1.0 g bacteriocin-producing culture/kg were 1.80-fold and 2.17-fold those in control cheese of the same age. Inoculating milk with 1.0 g/kg bacteriocin-producing culture reduced the level of hydrophobic peptides in the resultant cheese, increased the concentrations of 3-methyl-1-butanal, diacetyl and acetoin, and resulted in the highest scores for flavour quality and flavour intensity throughout ripening.

  12. [Marine bacteria producing antibacterial compounds isolated from inter-tidal invertebrates].

    PubMed

    León, Jorge; Liza, Libia; Soto, Isela; Torres, Magali; Orosco, Andrés

    2010-06-01

    Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru) were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacterium, and the order Actinomycetae that inhibit human pathogens. The results indicate that the marine invertebrates would be sources of bacteria producing antibiotic substances.

  13. Iron-Binding Compounds from Agrobacterium spp.: Biological Control Strain Agrobacterium rhizogenes K84 Produces a Hydroxamate Siderophore

    PubMed Central

    Penyalver, Ramón; Oger, Philippe; López, María M.; Farrand, Stephen K.

    2001-01-01

    Iron-binding compounds were produced in various amounts in response to iron starvation by a collection of Agrobacterium strains belonging to the species A. tumefaciens, A. rhizogenes, and A. vitis. The crown gall biocontrol agent A. rhizogenes strain K84 produced a hydroxamate iron chelator in large amounts. Production of this compound, and also of a previously described antibiotic-like substance called ALS84, occurred only in cultures of strain K84 grown in iron-deficient medium. Similarly, sensitivity to ALS84 was expressed only when susceptible cells were tested in low-iron media. Five independent Tn5-induced mutants of strain K84 affected in the production of the hydroxamate iron chelator showed a similar reduction in the production of ALS84. One of these mutants, M8-10, was completely deficient in the production of both agents and grew poorly compared to the wild type under iron-limiting conditions. Thus, the hydroxamate compound has siderophore activity. A 9.1-kb fragment of chromosomal DNA containing the Tn5 insertion from this mutant was cloned and marker exchanged into wild-type strain K84. The homogenote lost the ability to produce the hydroxamate siderophore and also ALS84. A cosmid clone was isolated from a genomic library of strain K84 that restored to strain M8-10 the ability to produce of the siderophore and ALS84, as well as growth in iron-deficient medium. This cosmid clone contained the region in which Tn5 was located in the mutant. Sequence analysis showed that the Tn5 insert in this mutant was located in an open reading frame coding for a protein that has similarity to those of the gramicidin S synthetase repeat superfamily. Some such proteins are required for synthesis of hydroxamate siderophores by other bacteria. Southern analysis revealed that the biosynthetic gene from strain K84 is present only in isolates of A. rhizogenes that produce hydroxamate-type compounds under low-iron conditions. Based on physiological and genetic analyses showing

  14. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10.

    PubMed

    Weise, Teresa; Kai, Marco; Gummesson, Anja; Troeger, Armin; von Reuß, Stephan; Piepenborn, Silvia; Kosterka, Francine; Sklorz, Martin; Zimmermann, Ralf; Francke, Wittko; Piechulla, Birgit

    2012-01-01

    Xanthomonas campestris is a phytopathogenic bacterium and causes many diseases of agricultural relevance. Volatiles were shown to be important in inter- and intraorganismic attraction and defense reactions. Recently it became apparent that also bacteria emit a plethora of volatiles, which influence other organisms such as invertebrates, plants and fungi. As a first step to study volatile-based bacterial-plant interactions, the emission profile of Xanthomonas c. pv. vesicatoria 85-10 was determined by using GC/MS and PTR-MS techniques. More than 50 compounds were emitted by this species, the majority comprising ketones and methylketones. The structure of the dominant compound, 10-methylundecan-2-one, was assigned on the basis of its analytical data, obtained by GC/MS and verified by comparison of these data with those of a synthetic reference sample. Application of commercially available decan-2-one, undecan-2-one, dodecan-2-one, and the newly synthesized 10-methylundecan-2-one in bi-partite Petri dish bioassays revealed growth promotions in low quantities (0.01 to 10 μmol), whereas decan-2-one at 100 μmol caused growth inhibitions of the fungus Rhizoctonia solani. Volatile emission profiles of the bacteria were different for growth on media (nutrient broth) with or without glucose.

  15. Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate.

    PubMed

    Frisvad, Jens C; Houbraken, Jos; Popma, Suuske; Samson, Robert A

    2013-02-01

    Penicillium buchwaldii sp. nov. (type strain CBS 117181(T)  = IBT 6005(T)  = IMI 30428(T) ) and Penicillium spathulatum sp. nov. (CBS 117192(T)  = IBT 22220(T) ) are described as new species based on a polyphasic taxonomic approach. Isolates of P. buchwaldii typically have terverticillate conidiophores with echinulate thick-walled conidia and produce the extrolites asperphenamate, citreoisocoumarin, communesin A and B, asperentin and 5'-hydroxy-asperentin. Penicillium spathulatum is unique in having restricted colonies on Czapek yeast agar (CYA) with an olive grey reverse, good growth on CYA supplemented with 5% NaCl, terverticillate bi- and ter-ramulate conidiophores and consistently produces the extrolites benzomalvin A and D and asperphenamate. The two new species belong to Penicillium section Brevicompacta and are phylogenetically closely related to Penicillium tularense. With exception of Penicillium fennelliae, asperphenamate is also produced by all other species in section Brevicompacta (P. tularense, Penicillium brevicompactum, Penicillium bialowiezense, Penicillium olsonii, Penicillium astrolabium and Penicillium neocrassum). Both new species have a worldwide distribution. The new species were mainly isolated from indoor environments and food and feedstuffs. The fact that asperphenamate has been found in many widely different plants may indicate that endophytic fungi rather than the plants are the actual producers. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, Carlos E.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  17. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  18. Process for producing hydrogen from water using cobalt and barium compounds

    DOEpatents

    Bamberger, Carlos E.; Richardson, deceased, Donald M.

    1979-01-01

    A thermochemical process for producing hydrogen comprises the step of reacting CoO with BaO or Ba(OH).sub.2 in the presence of steam to produce H.sub.2 and novel double oxides of Ba and Co having the empirical formulas BaCoO.sub.2.33 and Ba.sub.2 CoO.sub.3.33. The double oxide can be reacted with H.sub.2 O to form Co.sub.3 O.sub.4 and Ba(OH).sub.2 which can be recycled to the original reaction. The Co.sub.3 O.sub.4 is converted to CoO by either of two procedures. In one embodiment Co.sub.3 O.sub.4 is heated, preferably in steam, to form CoO. In another embodiment Co.sub.3 O.sub.4 is reacted with aqueous HCl solution to produce CoCl.sub.2 and Cl.sub.2. The CoCl.sub.2 is reacted with H.sub.2 O to form CoO and HCl and the CoO is recycled to the initial reaction step. The Cl.sub.2 can be reacted with H.sub.2 O to produce HCl. HCl can be recycled for reaction with Co.sub.3 O.sub.4.

  19. Repellence produced by monoterpenes on Rhodnius prolixus (Hemiptera: Reduviidae) decreases after continuous exposure to these compounds.

    PubMed

    Lutz, Alejandra; Sfara, Valeria; Alzogaray, Raúl Adolfo

    2014-01-01

    Botanical monoterpenes are secondary metabolites present in essential oils produced by plants. Some of them are insect repellents. The bloodsucking bug Rhodnius prolixus Ståhl (Hemiptera: Reduviidae) is one of the main vectors of Chagas disease in the north of South America and some countries in Central America. In this study, we studied the repellence produced by two monoterpenes, menthyl acetate and geraniol, on fifth instar nymphs of R. prolixus. In the absence of other stimuli, both menthyl acetate and geraniol produced a repellent effect from 740 μg/cm(2) and 74 μg/cm(2), respectively. Pre-exposure to each monoterpene reduced the repellent activity produced by the same substance. Additionally, pre-exposure to one monoterpene decreased the behavioral response of the nymphs to the other one. The repellent effect of both monoterpenes also decreased when nymphs' antennae were previously treated with the nitric oxide donor S-nitroso-N-acetyl-cysteine. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. Bioactive Compounds Produced by Strains of Penicillium and Talaromyces of Marine Origin

    PubMed Central

    Nicoletti, Rosario; Trincone, Antonio

    2016-01-01

    In recent years, the search for novel natural compounds with bioactive properties has received a remarkable boost in view of their possible pharmaceutical exploitation. In this respect the sea is entitled to hold a prominent place, considering the potential of the manifold animals and plants interacting in this ecological context, which becomes even greater when their associated microbes are considered for bioprospecting. This is the case particularly of fungi, which have only recently started to be considered for their fundamental contribution to the biosynthetic potential of other more valued marine organisms. Also in this regard, strains of species which were previously considered typical terrestrial fungi, such as Penicillium and Talaromyces, disclose foreground relevance. This paper offers an overview of data published over the past 25 years concerning the production and biological activities of secondary metabolites of marine strains belonging to these genera, and their relevance as prospective drugs. PMID:26901206

  1. Genetic transformation of Brevibacterium linens strains producing high amounts of diverse sulphur compounds.

    PubMed

    Nardi, Michele; Sextius, Peggy; Bonnarme, Pascal; Spinnler, Henry Eric; Monnet, Veronique; Irlinger, Francoise

    2005-05-01

    By its numerous properties and importance in cheese technology (production of colour, flavour, bacteriocins and resistance to salt) Brevibacterium linens is a major cheese ripening bacteria. However, the genetic approach of such biological functions has been hindered, up to now, by the lack of tools necessary to realise genetic modifications in this species. Our objective was to demonstrate that it is possible to genetically modify several strains exhibiting interesting technological properties, especially the production of sulphur compounds. We worked with a phenotypically and genetically diverse collection of 11 strains. We genetically transformed several Brevi. linens with acceptable rates with plasmids classically used to transform lactic acid bacteria and other Gram+ bacteria. These results open up new prospects to investigate the most interesting Brevi. linens metabolic pathways both at the biochemical and genetic level.

  2. Broad spectrum anti-microbial compounds producing bacteria from coast of Qingdao bays.

    PubMed

    Khan, Muhammad Naseem; Li, Meng; Mirani, Zulfiqar Ali; Wang, Jingxue; Lin, Hong; Buzdar, Muhammad Aslam

    2015-03-01

    Anti-microbial resistance burden and hazard associated with chemical treatment of infections demanded for new anti-microbial natural products. Marine associated microorganisms are the enormous source of bioactive compounds. In this study we have isolated 272 marine bacteria among them 136 (50%) were antagonistic to at least one of the four pathogenic strains Listeria monocytogenes, Vibrio cholerae, E. coli and S. aureus. Only two strains exhibited antibacterial activity against all four test strains, which were identified by 16S rDNA sequencing as Bacillus sp. DK1-SA11 and Vibrio sp. DK6-SH8. Marine isolate DK1-SA11 has potential to resist boiling temperature and pH 2-12. Furthermore cell free extract (CFE) inhibited all test organisms including superbug MRSA and pathogenic yeast Candida albicans. Marine isolate Bacillus sp. DK1-SA11 could be a potential combatant for the battle of drugs and bugs.

  3. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Wang, You; Tang, Xuexi

    2012-09-01

    The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions. Extracts of Sargassum thunbergii (Mertens ex Roth) Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum (Turner) C. Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigma akashiwo (Hada) Hada, Skeletonema costatum (Grev.) Grev, and Prorocentrum micans Ehrenberg. Methanol extracts of S. thunbergii were further divided into petroleum ether, ethyl acetate, butanol, and distilled water phases by liquid-liquid fractionation. The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae. Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids, most of which were unsaturated fatty acids. In addition, pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L. Therefore, unsaturated fatty acids are a component of the allelochemicals in S. thunbergii tissue.

  4. Use of pervaporation process for the recovery of aroma compounds produced by P. fermentans in sugarcane molasses.

    PubMed

    Rossi, Suzan Cristina; Medeiros, Adriane Bianchi Pedroni; Weschenfelder, Thiago André; de Paula Scheer, Agnes; Soccol, Carlos Ricardo

    2017-03-17

    Natural fruity aroma was produced during submerged fermentation by Pichia fermentans using sugarcane molasses as a cultivation broth. The aroma compounds were recovered from the fermentation by a pervaporation process using a polydimethylsiloxane membrane (Pervap 4060-Sulzer). Isoamyl acetate, a characteristic compound associated with fruity aromas, was the major compound produced. The pervaporation module was fed at three different temperatures to test the best conditions to recover the natural fruity aroma. The total flux (J T), partial fluxes of each component (J i), and enrichment factors (β) were determined within the tested ranges. The process was performed at 45 °C, a feed flow of 1.5 mL/min and 0.1 kPa, for a duration of 13 h to concentrate the natural flavor. The pervaporation process can concentrate the isoamyl acetate from fermented broth from 9 to 61.8 mg/L in the first hour of pervaporation. As a single step of downstream operation, pervaporation was efficient for recovering and concentrating the natural fruity aroma. The obtained product was colorless and had a characteristic banana flavor.

  5. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria.

    PubMed

    Brosnan, Brid; Coffey, Aidan; Arendt, Elke K; Furey, Ambrose

    2012-07-01

    Fungal contamination of food causes health and economic concerns. Several species of lactic acid bacteria (LAB) have antifungal activity which may inhibit food spoilage fungi. LAB have GRAS (generally recognised as safe) status, allowing them to be safely integrated into food systems as natural food preservatives. A method is described herein that enables rapid screening of LAB cultures for 25 known antifungal compounds associated with LAB. This is the first chromatographic method developed which enables the rapid identification of a wide range of antifungal compounds by a single method with a short analysis time (23 min). Chromatographic separation was achieved on a Phenomenex Gemini C18 100A column (150 mm × 2.0 mm; 5 μm) by use of a mobile-phase gradient prepared from (A) water containing acetic acid (0.1%) and (B) acetonitrile containing acetic acid (0.1%), at a flow rate of 0.3 µL min(-1). The gradient involved a progressive ramp from 10-95% acetonitrile over 13 min. The LC was coupled to a hybrid LTQ Orbitrap XL fourier-transform mass spectrometer (FTMS) operated in negative ionisation mode. High mass accuracy data (<3 ppm) obtained by use of high resolution (30,000 K) enabled unequivocal identification of the target compounds. This method allows comprehensive profiling and comparison of different LAB strains and is also capable of the identification of additional compounds produced by these bacteria.

  6. Mechanism and applications of new fluorescent compounds produced by femtosecond laser surgery in biological tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Sun, Qiqi

    2017-02-01

    The single or multi-photon microscopy based on fluorescent labelling and staining is a sensitive and quantitative method that is widely used in molecular biology and medical research for a variety of experimental, analytical, and quality control applications. However, label-free method is highly desirable in biology and medicine when performing long term live imaging of biological system and obtaining instant tissue examination during surgery procedures. Recently, our group found that femtosecond laser surgery turned a variety of biological tissues and protein samples into highly fluorescent substances. The newly formed fluorescent compounds produced during the laser surgery can be excited via single- and two-photon processes over broad wavelength ranges. We developed a combined confocal and two-photon spectroscopic microscope to characterize the fluorescence from the new compound systematically. The structures of the femtosecond laser treated tissue were studied using Raman spectroscopy and transmission electron microscopy. Our study revealed the mechanisms of the fluorescence emission form the new compound. Furthermore, we demonstrated the applications of the fluorescent compounds for instant evaluation of femtosecond laser microsurgery, study of stem cell responses to muscle injury and neuro-regeneration after spinal cord injury.

  7. Extracellular compounds produced by bacterial consortium promoting elements mobilization from polymetallic Kupferschiefer black shale (Fore-Sudetic Monocline, Poland).

    PubMed

    Włodarczyk, Agnieszka; Stasiuk, Robert; Skłodowska, Aleksandra; Matlakowska, Renata

    2015-03-01

    Culture experiments employing Fe-deficient medium showed that a consortium of indigenous microorganisms isolated from Kupferschiefer black shale produced a mixture of extracellular compounds containing siderophores which could form complexes with a wide range of elements and were able to mediate element mobilization from polymetallic black shale. The mobilization of a diverse array of elements including a number of essential trace elements (Co, Cu, Mn, Mo, Zn) and toxic species (As) was shown. Since the bacteria used in this study were originally obtained from a subsurface copper deposit, these results highlight the potential importance of extracellular compounds in biogeochemical cycles of elements in underground environment and their ecological significance in promoting the uptake of essential trace metals and resistance to toxic elements.

  8. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound.

    PubMed

    Guo, Jie; Rao, Qunli; Xu, Zhenming

    2008-05-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m(2), heat deflection temperature of 175 degrees C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits.

  9. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS.

    PubMed

    Tait, Emma; Perry, John D; Stanforth, Stephen P; Dean, John R

    2014-04-01

    The analysis of volatile organic compounds (VOCs) as a tool for bacterial identification is reported. Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was applied to the analysis of bacterial VOCs with the aim of determining the impact of experimental parameters on the generated VOC profiles. The effect of culture medium, SPME fiber type and GC column were fully evaluated with the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and the Gram-positive species Staphylococcus aureus. Multivariate analysis, including cluster analysis and principal component analysis, was applied to VOC data to determine whether the parameters under investigation significantly affected bacterial VOC profiles. Culture medium, and to a lesser extent, SPME fiber type, were found to significantly alter detected bacterial VOC profiles. The detected VOCs varied little with the polarity of the GC column. The results indicate that the generated bacterial VOC profiles need careful evaluation if they are to be used for clinical diagnostics. The whole process is limited by the need to grow the bacteria in broth (18 h) before extraction and analysis (63 min).

  10. Anthropogenic and naturally-produced organobrominated compounds in marine mammals from Brazil.

    PubMed

    Dorneles, Paulo R; Lailson-Brito, José; Dirtu, Alin C; Weijs, Liesbeth; Azevedo, Alexandre F; Torres, João P M; Malm, Olaf; Neels, Hugo; Blust, Ronny; Das, Krishna; Covaci, Adrian

    2010-01-01

    Liver samples from 51 cetaceans, comprising 10 species, stranded between 1994 and 2006 in a highly industrialized and urbanized region in Southeast Brazil, were analyzed for polybrominated diphenyl ethers (PBDEs) and methoxylated-PBDEs (MeO-PBDEs). A concentration range of PBDEs (3-5960ng/g lw) similar to that observed in Northern Hemisphere dolphins was found. MeO-PBDE concentrations in continental shelf (CS) dolphins from Brazil are among the highest detected to date in cetaceans (up to 250microg/g lw). Higher SigmaMeO-PBDE concentrations were measured in CS and oceanic dolphins than in estuarine dolphins. The SigmaPBDE/SigmaMeO-PBDE ratio varied significantly ranging from a mean value of 7.12 to 0.08 and 0.01 for estuarine, CS and oceanic species, respectively. A positive correlation was observed between SigmaPBDE and year of stranding of male estuarine dolphins (Sotalia guianensis), which suggests temporal variation in the exposure. Placental transfer of organobrominated compounds was also evidenced in S. guianensis.

  11. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant

    PubMed Central

    Iijima, Yoko

    2014-01-01

    In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs. PMID:25257996

  12. Is the lower atmosphere a readily accessible reservoir of culturable, antimicrobial compound-producing Actinomycetales?

    PubMed Central

    Weber, Carolyn F.; Werth, Jason T.

    2015-01-01

    Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3–5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful. PMID:26300868

  13. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    PubMed Central

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-01-01

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

  14. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China.

    PubMed

    Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

    2016-06-15

    An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches.

  15. Polar, hydrophilic compounds in drinking water produced from surface water. Determination by liquid chromatography-mass spectrometry.

    PubMed

    Schröder, H F

    1991-08-21

    Drinking water produced from surface water may contain many polar, hydrophilic compounds in spite of different treatment steps such as soil filtration, ozone treatment and activated carbon filtration. Little is known about these compounds. The objectives of this work were the detection and identification by means of tandem mass spectrometry (MS-MS) coupled on-line by a thermospray interface with liquid chromatography. Quantification is possible if standard compounds are available. The different compounds in the water extracts were not only separated by means of an analytical column but also using MS-MS after loop injection bypassing the analytical column. Molecular weight information in the loop spectra (overview spectra) and collisionally induced dissociation (CID) made possible the identification of some of these compounds which cannot be eliminated in the drinking water treatment process. Identification was not only done by interpretation of the recorded daughter- and parent-ion spectra but also by comparing them with a laboratory-made daughter-ion library of polar, hydrophilic pollutants. Direct mixture analysis using MS-MS allows the detection and identification of some of the pollutants if they reach the drinking water in the course of the surface water treatment process because of their biochemical and chemical persistence and/or non-sorbability during the soil or activated carbon filtration process. The proposed method for the analysis of water for polar, non-volatile and/or thermolabile organic substances is a quick, specific and powerful technique which makes it possible to detect and identify these substances without any chromatographic separation or derivatization

  16. Effects of the natural compounds embelin and piperine on the biofilm-producing property of Streptococcus mutans

    PubMed Central

    Dwivedi, Deepak; Singh, Vinod

    2015-01-01

    We aimed to evaluate the effects of the natural compounds embelin and piperine on the biofilm-formation property of Streptococcus mutans. A total of 30 clinical isolates were identified as S. mutans and screened for biofilm formation using the microtiter plate method. The strongest biofilm producer (SM03) was used for identifying both minimum inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC). We subsequently used this concentration against each of the strong biofilm producer isolates at A492 < 0.5 optical density (OD). Of the 30 isolates screened for biofilm formation, 18 isolates showed strong biofilm formation, 09 isolates showed moderate formation, and 03 isolates showed poor/nonbiofilm formation. The MIC of embelin for the strongest biofilm producer (SM03) was 0.55 ± 0.02, whereas that of piperine was 0.33 ± 0.02. The MBIC of embelin was 0.0620 ± 0.03, whereas that of piperine was 0.0407 ± 0.03, which was lower than that of embelin. At OD492 < 0.5, the MBIC of both compounds significantly inhibited biofilm formation of all the 18 strong biofilm-forming isolates. The results of this study demonstrate a significant antibiofilm effect of the natural compounds embelin and piperine, which can contribute towards the development of a database for novel drug candidates for treating oral infections caused by S. mutans. PMID:26870681

  17. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  18. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  19. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes.

    PubMed

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  20. Compound

    NASA Astrophysics Data System (ADS)

    Suzumura, Akitoshi; Watanabe, Masaki; Nagasako, Naoyuki; Asahi, Ryoji

    2014-06-01

    Recently, Cu-based chalcogenides such as Cu3SbSe4, Cu2Se, and Cu2SnSe3 have attracted much attention because of their high thermoelectric performance and their common feature of very low thermal conductivity. However, for practical use, materials without toxic elements such as selenium are preferable. In this paper, we report Se-free Cu3SbS4 thermoelectric material and improvement of its figure of merit ( ZT) by chemical substitutions. Substitutions of 3 at.% Ag for Cu and 2 at.% Ge for Sb lead to significant reductions in the thermal conductivity by 37% and 22%, respectively. These substitutions do not sacrifice the power factor, thus resulting in enhancement of the ZT value. The sensitivity of the thermal conductivity to chemical substitutions in these compounds is discussed in terms of the calculated phonon dispersion and previously proposed models for Cu-based chalcogenides. To improve the power factor, we optimize the hole carrier concentration by substitution of Ge for Sb, achieving a power factor of 16 μW/cm K2 at 573 K, which is better than the best reported for Se-based Cu3SbSe4 compounds.

  1. The dynamics and excitation of circumnuclear disks in radio-active galaxies

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Brown, Michael; Jannuzi, Buell; McGregor, Peter; Floyd, David; Jones, Heath; Ferrarese, Laura

    2011-08-01

    Powerful radio-active galaxies may harbor a heavily obscured Active Galactic Nucleus (AGN), where the black hole is hidden by an optically and geometrically thick dust "torus". Near-IR spectroscopy with Adaptive Optics (AO) has shown that the ratio of atomic to molecular hydrogen varies greatly across the nuclear regions, thus allowing one to set limits of the size of the torus. AO IFU observations with Gemini and Keck will enable a study of a complete sample of early-type galaxies harboring radio AGNs, resulting in a complete picture of the kinematics and distribution of the gas around the nucleus, and trace the 2-D structure of the torus in these galaxies. The time is right to survey a complete sample of nearby radio-active galaxies to (1) characterize the dynamics of these circumnuclear disks as a function of galaxy mass and (2) outline the ecology of the gas flows that support them. %First we must see which of Brown et al's %complete sample of nearby radiogalaxies have emission As a first step, we need to determine which of our selected sample of 23 nearby radio-active galaxies have emission lines in J & H and are thus amenable to NIR IFU observations. This we propose to do with FLAMINGOS. To survey our sample for suitable objects for the Keck/Gemini follow-up will require approximately 22 nights distributed evenly over the next four observing semesters.%It will take 11 nights in 11B & 12B and

  2. An orally active angiotensin-(1-7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats.

    PubMed

    Bertagnolli, Mariane; Casali, Karina R; De Sousa, Frederico B; Rigatto, Katya; Becker, Lenice; Santos, Sergio H S; Dias, Lucinara D; Pinto, Graziela; Dartora, Daniela R; Schaan, Beatriz D; Milan, Ruben Dario Sinisterra; Irigoyen, Maria Claudia; Santos, Robson A S

    2014-01-01

    Low angiotensin-(1-7) (Ang-(1-7)) concentration is observed in some cardiovascular diseases and exercise training seems to restore its concentration in the heart. Recently, a novel formulation of an orally active Ang-(1-7) included in hydroxy-propyl-beta-cyclodextrin (HPB-CD) was developed and chronically administered in experimental models of cardiovascular diseases. The present study examined whether chronic administration of HPB-CD/Ang-(1-7) produces beneficial cardiovascular effects in spontaneously hypertensive rats (SHR), as well as to compare the results obtained with those produced by exercise training. Male SHR (15-week old) were divided in control (tap water) or treated with HPB-CD/Ang-(1-7) (corresponding to 30μgkg(-1)day(-1) of Ang-(1-7)) by gavage, concomitantly or not to exercise training (treadmill, 10 weeks). After chronic treatment, hemodynamic, morphometric and molecular analysis in the heart were performed. Chronic HPB-CD/Ang-(1-7) decreased arterial blood pressure (BP) and heart rate in SHR. The inclusion compound significantly improved left ventricular (LV) end-diastolic pressure, restored the maximum and minimum derivatives (dP/dT) and decreased cardiac hypertrophy index in SHR. Chronic treatment improved autonomic control by attenuating sympathetic modulation on heart and vessels and the SAP variability, as well as increasing parasympathetic modulation and HR variability. Overall results were similar to those obtained with exercise training. These results show that chronic treatment with the HPB-CD/Ang-(1-7) inclusion compound produced beneficial effects in SHR resembling the ones produced by exercise training. This observation reinforces the potential cardiovascular therapeutic effect of this novel peptide formulation.

  3. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  4. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa.

    PubMed

    Danner, Holger; Boeckler, G Andreas; Irmisch, Sandra; Yuan, Joshua S; Chen, Feng; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2011-06-01

    After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (-)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James

    2004-03-01

    Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.

  6. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.

    PubMed

    Gotor-Vila, A; Teixidó, N; Di Francesco, A; Usall, J; Ugolini, L; Torres, R; Mari, M

    2017-06-01

    The present work focuses on the antifungal effect of volatile organic compounds (VOCs) produced by Bacillus amyloliquefaciens CPA-8 against Monilinia laxa, M. fructicola and Botrytis cinera, three postharvest fruit pathogens of sweet cherry fruit. VOCs were evaluated with a double petri dish assay against mycelial and colony growth of target pathogens. For this purpose, CPA-8 was grown on different media and cultured for 24 and 48 h at 30 °C before assays. Data showed that mycelial growth inhibition was higher when CPA-8 was grown on Tryptone Soya Agar (TSA) while no differences were generally observed when CPA-8 was cultured for either, 24 and 48 h. Moreover, no effects were observed on colony growth. The main volatile compounds emitted by CPA-8 were identified by solid-phase microextraction (SPME)-gas chromatography as 1,3 pentadiene, acetoin (3-hydroxy-2-butanone) and thiophene. Pure compounds were also tested in vitro on mycelial growth inhibition and their EC50 values against the three pathogens were estimated. Thiophene was the most effective VOC, showing more than 82% suppression of mycelial growth at the highest concentration (1.35 μL/mL headspace) and EC50 values ranging from 0.06 to 6.67 μL/mL headspace. Finally, the effectiveness of thiophene and CPA-8 VOCs was evaluated against artificially inoculated cherry fruits. Among the target pathogens, M. fructicola was clearly controlled by CPA-8 with less than 25% of rotten fruits compared to the control (65% disease incidence) and for all pathogens, less than 37.5% of CPA-8 treated decayed fruits produced spores (disease sporulation). Otherwise, pure thiophene showed no effect against any pathogen on disease incidence and disease sporulation. The results indicated that VOCs produced by B. amyloliquefaciens CPA-8 could develop an additive antifungal effect against postharvest fruit pathogens on stone fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum.

    PubMed

    Raza, Waseem; Ling, Ning; Liu, Dongyang; Wei, Zhong; Huang, Qiwei; Shen, Qirong

    2016-11-01

    The volatile organic compounds (VOCs) produced by soil microbes have a significant role in the control of plant diseases and plant growth promotion. In this study, we examined the effect of VOCs produced by Pseudomonas fluorescens strain WR-1 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum. The VOCs produced by P. fluorescens WR-1 exhibited concentration dependent bacteriostatic effect on the growth of R. solanacearum on agar medium and in infested soil. The VOCs of P. fluorescens WR-1 also significantly inhibited the virulence traits of R. solanacearum. The proteomics analysis showed that the VOCs of P. fluorescens WR-1 downregulated cellular proteins of R. solanacearum related to the antioxidant activity, virulence, inclusion body proteins, carbohydrate and amino acid synthesis and metabolism, protein folding and translation, methylation and energy transfer, while the proteins involved in the ABC transporter system, detoxification of aldehydes and ketones, protein folding and translation were upregulated. This study revealed the significance of VOCs of P. fluorescens WR-1 to control the tomato wilt pathogen R. solanacearum. Investigation of the modes of action of biocontrol agents is important to better comprehend the interactions mediated by VOCs in nature to design better control strategies for plant pathogens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds.

    PubMed

    Grondin, Eric; Shum Cheong Sing, Alain; Caro, Yanis; Raherimandimby, Marson; Randrianierenana, Ando Lalaniaina; James, Steve; Nueno-Palop, Carmen; François, Jean Marie; Petit, Thomas

    2015-06-16

    In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile.

  9. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor albus Induces Bacterial Cell Death through DNA Damage

    PubMed Central

    Alpha, Cambria J.; Campos, Manuel; Jacobs-Wagner, Christine

    2014-01-01

    Muscodor albus belongs to a genus of endophytic fungi that inhibit and kill other fungi, bacteria, and insects through production of a complex mixture of volatile organic compounds (VOCs). This process of mycofumigation has found commercial application for control of human and plant pathogens, but the mechanism of the VOC toxicity is unknown. Here, the mode of action of these volatiles was investigated through a series of genetic screens and biochemical assays. A single-gene knockout screen revealed high sensitivity for Escherichia coli lacking enzymes in the pathways of DNA repair, DNA metabolic process, and response to stress when exposed to the VOCs of M. albus. Furthermore, the sensitivity of knockouts involved in the repair of specific DNA alkyl adducts suggests that the VOCs may induce alkylation. Evidence of DNA damage suggests that these adducts lead to breaks during DNA replication or transcription if not properly repaired. Additional cytotoxicity profiling indicated that during VOC exposure, E. coli became filamentous and demonstrated an increase in cellular membrane fluidity. The volatile nature of the toxic compounds produced by M. albus and their broad range of inhibition make this fungus an attractive biological agent. Understanding the antimicrobial effects and the VOC mode of action will inform the utility and safety of potential mycofumigation applications for M. albus. PMID:25452287

  10. Screening for Endophytic Fungi from Turmeric Plant (Curcuma longa L.) of Sukabumi and Cibinong with Potency as Antioxidant Compounds Producer.

    PubMed

    Bustanussalam; Rachman, Fauzy; Septiana, Eris; Lekatompessy, Sylvia J R; Widowati, Tiwit; Sukiman, Harmastini I; Simanjuntak, Partomuan

    2015-01-01

    Potency of medicinal plant is related to microorganisms lived in the plant tissue. Those microorganisms are known as endophytic microbes that live and form colonies in the plant tissue without harming its host. Each plant may contains several endophytic microbes that produce biological compounds or secondary metabolites due to co-evolution or genetic transfer from the host plant to endophytic microbes. Endophytic fungi research done for turmeric plant (Curcuma longa L.) gave 44 isolated fungi as results. Those 44 fungi isolated were fermented in Potato Dextrose Broth (PDB) media, filtered, extracted with ethylacetate and then were analyzed by Thin Layer Chromatography (TLC) method and tested for their antioxidant activity by radical scavenging method. The antioxidant activity of the ethylacetate filtrate extracts either from Sukabumi or Cibinong were higher than the biomass extracts. There were 6 fungi that showed antioxidant activities over 65%, i.e., with code name K.Cl.Sb.R9 (93.58%), K.Cl.Sb.A11 (81.49%), KCl.Sb.B1 (78.81%), KCl.Sb.R11 (71.67%) and K.Cl.Sb.A12 (67.76%) from Sukabumi and K.Cl.Cb.U1 (69.27%) from Cibinong. These results showed that bioproduction by endophytic microbes can gave potential antioxidant compounds.

  11. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo.

    PubMed

    Oliveira, R J; Mantovani, M S; Silva, A F da; Pesarini, J R; Mauro, M O; Ribeiro, L R

    2014-04-01

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.

  12. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

    PubMed Central

    Oliveira, R.J.; Mantovani, M.S.; da Silva, A.F.; Pesarini, J.R.; Mauro, M.O.; Ribeiro, L.R.

    2014-01-01

    The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero. PMID:24714812

  13. Active sites in char gasification. Quarterly technical progress report, 1 January 1984-31 March 1984. [Polymers of phenol-formaldehyde family; chars produced from model compounds

    SciTech Connect

    Calo, J.M.; Suubers, E.M.; Wojtowicz, M.; Lilly, W.

    1984-05-01

    This project is concerned with the study of the nature and behavior of active sites in gasification of chars produced from synthesized model compounds, primarily of the phenol-formaldehyde family of resins. The current technical progress report presents further developments on resin synthesis and characterization and the design of a pyro-gasifier reactor for transient kinetic studies of the chars produced from the model compounds. 7 references, 12 figures, 2 tables.

  14. Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans--a review.

    PubMed

    Alonso, Mariana B; Azevedo, Alexandre; Torres, João Paulo M; Dorneles, Paulo R; Eljarrat, Ethel; Barceló, Damià; Lailson-Brito, José; Malm, Olaf

    2014-05-15

    This paper reviews the available data on brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), as well as on the naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in cetacean tissues around the world. Levels and possible sources of both compound classes are discussed. Odontocete cetaceans accumulate higher PBDE concentrations than mysticete species. PBDE contamination was higher in cetaceans from the Northern hemisphere, whereas MeO-PBDE levels were higher in animals from the Southern hemisphere. Southern resident killer whales from NE Pacific presented the highest levels reported in biota, followed by bottlenose dolphins from North Atlantic (U.K. and U.S. coast). Many species presented PBDE concentrations above threshold levels for health effects in odontocetes. Time trend studies indicate that PBDE concentrations in odontocetes from Japan, China, U.S. and Canada coastal zones have increased significantly over the past 30 years. Studies from U.K. waters and NE Atlantic showed a decrease and/or stability of PBDE levels in cetacean tissues in recent decades. The highest MeO-PBDE concentrations were found in dolphins from Tanzania (Indian Ocean), bottlenose dolphins from Queensland, Australia (SW Pacific), and odontocetes from coastal and continental shelf waters off southeastern Brazil (SW Atlantic). The upwelling phenomenon and the presence of coral reef complexes in these tropical oceans may explain the large amounts of the naturally-produced organobromines. Considering that these bioaccumulative chemicals have properties that could cause many deleterious effects in those animals, future studies are required to evaluate the potential ecotoxicological risks. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hydrogen peroxide produced by a low-molecular-weight compound in milk with high electrical conductivity in dairy cows.

    PubMed

    Sakai, Senkiti; Satow, Takahiro; Imakawa, Kazuhiko; Nagaoka, Kentaro

    2010-12-01

    In dairy cows, hydrogen peroxide (H₂O₂) produced from a low-molecular-weight compound in milk from inflamed quarters was lower than that in milk from un-inflamed quarters. In milk of delivery grade, characteristics of H₂O₂ production in milk with high electrical conductivity (EC) were examined in this study. Milk samples were collected from a total of 230 cows at 1-month intervals, and the EC of skimmed milk was determined. Based on the highest and the lowest EC of a cow's quarter milk, the inter-quarter difference of ≥0.6 mS/cm (mean + t₀.₀₁ SE) was taken as a high EC. Milk with high EC was found in 52 quarters. In cows with milk of high EC, H₂O₂ production in milk with normal EC was higher than that in milk with high EC in the same animal but was lower than that in the control population. In milk with high EC, the decrease of H₂O₂ production correlated with the increase in EC. The production of H₂O₂ decreased in particular when the inter-quarter difference exceeded 0.8 mS/cm. In milk collected from the same quarter 1 month before, EC changed from normal to high, and H₂O₂ production decreased. In milk from the other three quarters, EC remained normal and H₂O₂ production remained unchanged. We concluded that milk with high EC appeared in low H₂O₂ -producing cows. The results suggest that the degree of decrease in H₂O₂ production reflects the extent of quarter abnormality. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Animal Science.

  16. Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.

    2015-05-01

    High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.

  17. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62.

    PubMed

    Huang, Jianfeng; Wei, Zhong; Tan, Shiyong; Mei, Xinlan; Shen, Qirong; Xu, Yangchun

    2014-11-05

    Ralstonia solanacearum (Smith) is an important soil-borne pathogen worldwide. We investigated the effects of a new bioorganic fertilizer, BIO62, which was made from organic fertilizer and antagonist Bacillus amyloliquefaciens HR62, on the control of bacterial wilt of tomato in greenhouse condition. The results showed that the application of BIO62 significantly decreased disease incidence by 65% and strongly reduced R. solanacearum populations both in the rhizosphere soil (8.04 log cfu g(-1) dry soil) and crown sections (5.63 log cfu g(-1) fresh plant section) at 28 days after pathogen challenge. Antibacterial compounds produced by HR62 were purified by silica gel, Sephadex LH-20, and HPLC and then identified using HPLC/electrospray ionization mass spectrometry analysis. Macrolactin A and 7-O-malonyl macrolactin A (molecular weights of 402 and 488 Da, respectively), along with surfactin B (molecular weights of 994, 1008, 1022, and 1036 Da), were observed to inhibit the growth of R. solanacearum.

  18. The characterization of polycyclic aromatic hydrocarbons produced in combustion and pyrolysis environments: Laboratory-generated products of model compounds

    NASA Astrophysics Data System (ADS)

    Marsh, Nathan Douglas

    Laboratory and computational techniques have been developed to characterize polycyclic aromatic hydrocarbons (PAH), presumed soot precursors and potentially harmful by-products of a variety of pyrolysis and combustion processes. Newly synthesized reference standards and the application of high-pressure liquid chromatography (HPLC) with ultraviolet-visible (UV) absorption spectroscopy have led to the unequivocal identification, among combustion and pyrolysis products, of several new PAH, many of which belong to the two newly recognized PAH classes, ethynyl-PAH and cyclopenta-fused PAH (CP-PAH). Empirical rules have also been formulated for the UV spectra of ethynyl- and CP-PAH; these rules allow preliminary identification of candidate compounds in combustion products, prior to labor-intensive synthetic procedures necessary for identity confirmation. Pyrolysis products have been analyzed in two sets of experiments: benzene droplet combustion and gas-phase catechol (ortho-dihydroxybenzene) pyrolysis. In the first, benzene droplets are ignited and then captured by a phase-discriminating sampling probe; gas-phase pyrolysis products transported into the liquid phase of the droplet are identified and quantified. In the second set of experiments, catechol is pyrolysed in a laminar-flow reactor, at 700--1000°C and 0.4--1 sec, producing a range of aromatic products; the 30 most abundant are quantified. Compositional analysis of the pyrolysis products by HPLC reveals a wide variety of PAH which have never before been identified as products of these fuels. In general, most products appear to be the result of multiple ring-buildup steps. The data reported here for catechol products represent one of the most extensive quantifications of aromatic products from any fuel, and the only one for catechol. Semiempirical quantum chemical computations have been performed in order to examine the potential energy surfaces and equilibrium distributions of several compounds. The observed

  19. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus.

    PubMed

    Krupke, Oliver Albert; Castle, Alan J; Rinker, Danny Lee

    2003-12-01

    Trichoderma harzianum is a ubiquitously distributed asexual soil fungus that produces a variety of antibiotic compounds. Colonisation of soil inhabited by competing microbiota is facilitated by the antibiotic activity of these compounds. In addition, T. harzianum produces hydrolytic enzymes that degrade the cell wall components of many microorganisms, which can then be used as a source of nutrients. Recently, biotypes of T. harzianum differing morphologically from those originally described by Rifai were isolated on commercial mushroom (Agaricus bisporus) farms. These 'aggressive' biotypes cause devastating crop loss on mushroom farms. The aggressive biotype in North America was originally known as 'Th4' but has been recently renamed Trichoderma aggressivum f. aggressivum. In contrast, 'non-aggressive' biotypes, have no noticeable effect on the crop, are similar to T. harzianum and are commonly found on mushroom farms. The mechanism of disease establishment is unknown. We have identified a metabolite produced by T. aggressivum isolates in vitro that inhibits growth of A. bisporus and other fungi. This antifungal compound is not produced by 'non-aggressive' T. harzianum isolates under the culture conditions tested and is identified as 3,4-dihydro-8-hydroxy-3-methylisocoumarin. Another compound was isolated from both liquid culture and infested compost. Although its chemical structure could not be precisely determined, this compound also inhibits A. bisporus growth, is predominant in infested compost and likely has a inhibitory effect on the mycelia present in mushroom compost, resulting in devastating crop loss.

  20. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  1. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  2. A COMPOUND PRODUCED BY FRUIGIVOROUS TEPHRITIDAE (DIPTERA) LARVAE PROMOTES OVIPOSITION BEHAVIOR BY THE BIOLOGICAL CONTROL AGENT Diachasmimorpha longicaudata (Ashmead) (HYMENOPTERA: BRACONIDAE)

    USDA-ARS?s Scientific Manuscript database

    Tephritid parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determined. We co...

  3. III-V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation.

    PubMed

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-02-25

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III-V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III-V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III-V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III-V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity.

  4. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature.

  5. III–V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-02-01

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III–V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III–V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III–V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III–V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity.

  6. III–V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation

    PubMed Central

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-01-01

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III–V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III–V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III–V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III–V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity. PMID:26911249

  7. Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina.

    PubMed

    Illakkiam, Devaraj; Ponraj, Paramasivan; Shankar, Manoharan; Muthusubramanian, Shanmugam; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2013-12-01

    Pseudomonas aeruginosa PGPR2 was found to protect mungbean plants from charcoal rot disease caused by Macrophomina phaseolina. Secondary metabolites from the culture supernatant of P. aeruginosa PGPR2 were extracted with ethyl acetate and the antifungal compound was purified by preparative HPLC using reverse phase chromatography. The purified compound showed antifungal activity against M. phaseolina and other phytopathogenic fungi (Fusarium sp., Rhizoctonia sp. Alternaria sp., and Aspergillus sp.). The structure of the purified compound was determined using (1)H, (13)C, 2D NMR spectra and liquid chromatography-mass spectrometry (LC-MS). Spectral data suggest that the antifungal compound is 3,4-dihydroxy-N-methyl-4-(4-oxochroman-2-yl)butanamide, with the chemical formula C14H17NO5 and a molecular mass of 279. Though chemically synthesized chromanone derivatives have been shown to have antifungal activity, we report for the first time, the microbial production of a chromanone derivative with antifungal activity. This ability of P. aeruginosa PGPR2 makes it a suitable strain for biocontrol.

  8. Contribution of phenolic compounds to food flavors: Strecker-type degradation of amines and amino acids produced by o- and p-diphenols.

    PubMed

    Delgado, Rosa M; Zamora, Rosario; Hidalgo, Francisco J

    2015-01-14

    The ability of 20 phenolic derivatives to produce the Strecker-type degradation of phenylalanine and phenylglycine methyl ester was studied to investigate both the direct degradation of amino acids and amines by phenolic compounds in the absence of added oxidants and the effect of the number and positions of hydroxyl groups in the aromatic ring of the phenolic compound in relation to its ability to produce carbonyl derivatives from amino compounds. The obtained results showed that polyphenols can produce the Strecker degradation of amino acids and amines in the absence of added oxidants. The only requisite for producing the reaction is the presence of two hydroxyl groups in ortho or para positions. However, the presence of two hydroxyl groups in meta position in an additional aromatic ring can inhibit the Strecker-degrading ability of the hydroxyl groups in ortho or para positions. A reaction pathway that explains all of these findings is proposed. In addition, the effect of reaction conditions on the obtained reaction yields was studied. Activation energies (Ea) for phenylacetaldehyde formation from phenylalanine in the presence of hydroquinone, 1,2,4-trihydroxybenzene, and benzoquinone were 32.9, 31.5, and 28.8 kJ/mol, respectively.

  9. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death.

    PubMed

    Magalhaes Moreira, Diogo Rodrigo; de Oliveira, Ana Daura Travassos; Teixeira de Moraes Gomes, Paulo André; de Simone, Carlos Alberto; Villela, Filipe Silva; Ferreira, Rafaela Salgado; da Silva, Aline Caroline; dos Santos, Thiago André Ramos; Brelaz de Castro, Maria Carolina Accioly; Pereira, Valéria Rego Alves; Leite, Ana Cristina Lima

    2014-03-21

    Chagas disease, caused by Trypanosoma cruzi, is a life-threatening infection leading to approximately 12,000 deaths per year. T. cruzi is susceptible to thiosemicarbazones, making this class of compounds appealing for drug development. Previously, the homologation of aryl thiosemicarbazones resulted in an increase in anti-T. cruzi activity in comparison to aryl thiosemicarbazones without a spacer group. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new aryl thiosemicarbazones (9a-x), designed as more conformationally restricted compounds. By varying substituents attached to the phenyl ring, substituents were observed to retain, enhance or greatly increase the anti-T. cruzi activity, in comparison to the nonsubstituted derivative. In most cases, hydrophobic and bulky substituents, such as bromo, biphenyl and phenoxyl groups, greatly increased antiparasitic activity. Specifically, thiosemicarbazones were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting mouse splenocytes viability. The most potent anti-T. cruzi thiosemicarbazones were evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these thiosemicarbazones induce apoptosis. In conclusion, the structural design executed within the series of aryl thiosemicarbazones (9a-x) led to the identification of new potent anti-T. cruzi agents, such as compounds (9h) and (9r), which greatly inhibited epimastigote proliferation, and demonstrated a toxicity for trypomastigotes, but not for splenocytes. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS).

    PubMed

    Storer, Malina K; Hibbard-Melles, Kim; Davis, Brett; Scotter, Jenny

    2011-10-01

    Selected ion flow tube-mass spectrometry has been used to measure the volatile compounds occurring in the headspace of urine samples inoculated with common urinary tract infection (UTI)-causing microbes Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterococcus faecalis, or Candida albicans. This technique has the potential to offer rapid and simple diagnosis of the causative agent of UTIs. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Search for Sugars and Related Compounds in Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Cooper, G. W.

    2015-01-01

    A large variety of organics of biological and prebiotic interests have been detected in meteorites, including one sugar and several sugar acids and sugar alcohols [1]. The presence of these compounds in meteorites, along with amino acids, amphiphiles, and nucleobases [2-4], indicates that molecules essential to life can be formed abiotically under astrophysical conditions. This hypothesis is supported by extensive laboratory studies involving the formation of complex organic molecules from the ultraviolet (UV) irradiation of astrophysical ice analogs (H2O, CO, CO2, CH3OH, CH4, NH3, etc.). These studies show that the organic residues recovered at room temperature contain many of the same compounds as those found in meteorites[3,58]. However, to the best of our knowledge, no systematic search for the presence of sugars and sugar derivatives in such laboratory residues have been reported to date. Only a limited number of small (greater than 4 C atoms) sugar-related compounds such as glycerol and glyceric acid [9], and more recently small (2-4 C atoms) aldehydes [10] have been detected in residues.

  12. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles.

    PubMed

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul

    2016-12-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect.

  13. Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain-many compounds method.

    PubMed

    Zhang, Qiang; Wang, Shi-Qiong; Tang, Hao-Yu; Li, Xiao-Jun; Zhang, Lu; Xiao, Jian; Gao, Yu-Qi; Zhang, An-Ling; Gao, Jin-Ming

    2013-11-27

    On the basis of the OSMAC (one strain-many compounds) strategy, 14 indole diketopiperazine (DKP) alkaloids, including spirotryprostatins (1-3), tryprostatins (4-6), and cyclotryprostatins (7-14), were isolated from the endophyte Aspergillus fumigatus associated with Melia azedarach L. Their structures were identified by nuclear magnetic resonance and electrospray ionization mass spectrometry data. All the indole DKPs were evaluated for plant growth regulation using the lettuce (Lactuca sativa) seedling growth bioassay, which showed the plant growth influence of the seedling. Among these compounds tested, a tryprostatin-type compound, brevianamide F (6), was identified as a new type of natural potential plant growth inhibitor with a response index (RI) higher than that of the positive control glyphosate, a broad-spectrum systemic herbicide. 6 can also inhibit turnip (Raphanus sativus) shoot and root elongation with RIs of -0.76 and -0.70, respectively, at 120 ppm, and it strongly inhibits amaranth (Amaranthus mangostanus) seedling growth with a high RI of -0.9 at 40 ppm. The structure-allelopathic activity relationship analysis of these isolated alkaloids indicates that tryprostatin-type alkaloids without the C5 prenyl and methoxy group give the most potent inhibition of seedling growth. Brevianamide F (6) could be used to develop a natural eco-friendly herbicide.

  14. Male-produced aggregation pheromone compounds from the eggplant flea beetle (Epitrix fuscula): identification, synthesis, and field biossays.

    PubMed

    Zilkowski, Bruce W; Bartelt, Robert J; Cossé, Allard A; Petroski, Richard J

    2006-11-01

    Volatiles from the eggplant flea beetle, Epitrix fuscula Crotch (Coleoptera: Chrysomelidae), feeding on host foliage, were investigated. Six male-specific compounds were detected and were identified through the use of mass spectrometry, nuclear magnetic resonance (NMR) spectrometry, chiral and achiral gas chromatography, high-performance liquid chromatography, electrophysiology (gas chromatography-electroantennography, GC-EAD), and microchemical tests. The two most abundant of the six compounds were (2E,4E,6Z)-2,4,6-nonatrienal (1) and (2E,4E,6E)-2,4,6-nonatrienal (2). The other four compounds, present in minor amounts, were identified as himachalene sesquiterpenes; two of these, 3 and 4, were hydrocarbons and two, 5 and 6, were alcohols. All four sesquiterpenes were previously encountered from male flea beetles of Aphthona spp. and Phyllotreta cruciferae. Synthetic 1 and 2 matched the natural products by GC retention times, mass spectra, and NMR spectra. Sesquiterpenes 3-6 similarly matched synthetic standards and natural samples from the previously studied species in all ways, including chirality. Both natural and synthetic 1 and 2 gave positive GC-EAD responses, as did sesquiterpenes 3, 5, and 6. Field trials were conducted with a mixture of 1 and 2, and the baited traps were significantly more attractive than control traps to both male and female E. fuscula. The E. fuscula pheromone has potential for monitoring or controlling these pests in eggplants.

  15. Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons.

    PubMed

    Manilla-Pérez, Efraín; Lange, Alvin Brian; Hetzler, Stephan; Steinbüchel, Alexander

    2010-05-01

    Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. Storage lipid compounds such as polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), or wax esters (WEs) constitute the main accumulated lipophilic substances by bacteria under such unbalanced growth conditions. The importance of these compounds as end-products or precursors to produce interesting biotechnologically relevant chemicals has already been recognized. In this review, we analyze the occurrence and accumulation of lipid storage in marine hydrocarbonoclastic bacteria. We further discuss briefly the production and export of lipophilic compounds by bacteria belonging to the Alcanivorax genus, which became a model strain of an unusual group of obligate hydrocarbonoclastic bacteria (OHCB) and discuss the possibility to produce neutral lipids using A. borkumensis SK2.

  16. Producing Novel Fibrinolytic Isoindolinone Derivatives in Marine Fungus Stachybotrys longispora FG216 by the Rational Supply of Amino Compounds According to Its Biosynthesis Pathway

    PubMed Central

    Yin, Ying; Fu, Qiang; Wu, Wenhui; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2017-01-01

    Many fungi in the Stachybotrys genus can produce various isoindolinone derivatives. These compounds are formed by a spontaneous reaction between a phthalic aldehyde precursor and an ammonium ion or amino compounds. In this study, we suggested the isoindolinone biosynthetic gene cluster in Stachybotrys by genome mining based on three reported core genes. Remarkably, there is an additional nitrate reductase (NR) gene copy in the proposed cluster. NR is the rate-limiting enzyme of nitrate reduction. Accordingly, this cluster was speculated to play a role in the balance of ammonium ion concentration in Stachybotrys. Ammonium ions can be replaced by different amino compounds to create structural diversity in the biosynthetic process of isoindolinone. We tested a rational supply of amino compounds ((±)-3-amino-2-piperidinone, glycine, and l-threonine) in the culture of an isoindolinone high-producing marine fungus, Stachybotrys longispora FG216. As a result, we obtained four new kinds of isoindolinone derivatives (FGFC4–GFC7) by this method. Furthermore, high yields of FGFC4–FGFC7 confirmed the outstanding production capacity of FG216. Among the four new isoindolinone derivatives, FGFC6 and FGFC7 showed promising fibrinolytic activities. The knowledge of biosynthesis pathways may be an important attribute for the discovery of novel bioactive marine natural products. PMID:28678182

  17. Producing Novel Fibrinolytic Isoindolinone Derivatives in Marine Fungus Stachybotrys longispora FG216 by the Rational Supply of Amino Compounds According to Its Biosynthesis Pathway.

    PubMed

    Yin, Ying; Fu, Qiang; Wu, Wenhui; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2017-07-05

    Many fungi in the Stachybotrys genus can produce various isoindolinone derivatives. These compounds are formed by a spontaneous reaction between a phthalic aldehyde precursor and an ammonium ion or amino compounds. In this study, we suggested the isoindolinone biosynthetic gene cluster in Stachybotrys by genome mining based on three reported core genes. Remarkably, there is an additional nitrate reductase (NR) gene copy in the proposed cluster. NR is the rate-limiting enzyme of nitrate reduction. Accordingly, this cluster was speculated to play a role in the balance of ammonium ion concentration in Stachybotrys. Ammonium ions can be replaced by different amino compounds to create structural diversity in the biosynthetic process of isoindolinone. We tested a rational supply of amino compounds ((±)-3-amino-2-piperidinone, glycine, and l-threonine) in the culture of an isoindolinone high-producing marine fungus, Stachybotrys longispora FG216. As a result, we obtained four new kinds of isoindolinone derivatives (FGFC4-GFC7) by this method. Furthermore, high yields of FGFC4-FGFC7 confirmed the outstanding production capacity of FG216. Among the four new isoindolinone derivatives, FGFC6 and FGFC7 showed promising fibrinolytic activities. The knowledge of biosynthesis pathways may be an important attribute for the discovery of novel bioactive marine natural products.

  18. A search for pure compounds suitable for use as matrix in spectroscopic studies of radiation-produced radical cations. III. A selection of compounds based on the thermochemistry of hydrogen and proton transfer reactions between neutral molecules and their cations

    NASA Astrophysics Data System (ADS)

    Van den Bosch, Ann; Ceulemans, Jan

    A systematic investigation is made of the thermochemistry of hydrogen and proton transfer between neutral molecules and their cations covering the entire organic chemistry, with the aim of selecting those compounds that are suitable for use as matrices in spectroscopic studies of radiation-produced radical cations. Compounds that are characterized by positive reaction enthalpies may be considered promising for use as matrices in such studies. Calculations are based on experimentally determined ionization energies and proton affinities and on carbon-hydrogen bond strengths that are arbitrarily taken as 418 kJ.mol -1 (100 kcal.mol -1). Effects of actual deviations from this value are considered. In the aliphatic series of compounds, reaction enthalpies depend strongly on functional groups present. Marked positive reaction enthalpies are obtained for alkenes, alkadienes, thioethers, mercaptans, iodoalkanes and tertiary amines. Non-aromatic cyclic compounds generally behave as their aliphatic counterparts. Thus, positive reaction enthalpies are generally obtained for unsaturated alicyclic hydrocarbons and cyclic thioethers. Positive reaction enthalpies are also obtained for piperidine, quinuclidine, manxine and derivatives. In the homocyclic aromatic series of compounds, reaction enthalpies are generally positive. Thus, positive reaction enthalpies are obtained for aromatic hydrocarbons, fluoro- and chlorobenzenes, aromatic amines (amino group attached directly to the ring) and halo- and methoxyanilines. In the heterocyclic aromatic series of compounds reaction enthalpies are generally negative. This is for instance the case for a large number of pyridine derivatives, di- and triazines and a number of bi- and tricyclic compounds. Positive reaction enthalpies are however obtained for furan and pyrrole.

  19. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    PubMed

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  20. Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds.

    PubMed

    Skoug, Eric J; Morelli, Donald T

    2011-12-02

    Fully dense crystalline solids with extremely low lattice thermal conductivity (κ(L)) are of practical importance for applications including thermoelectric energy conversion and thermal barrier coatings. Here we show that lone-pair electrons can give rise to minimum κ(L) in chalcogenide compounds that contain a nominally trivalent group VA element. Electrostatic repulsion between the lone-pair electrons and neighboring chalcogen ions creates anharmonicity in the lattice, the strength of which is determined by the morphology of the lone-pair orbital and the coordination number of the group VA atom.

  1. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    DOEpatents

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  2. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paul

    2016-04-01

    Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

  3. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.

    PubMed

    Lomarat, Pattamapan; Phanthong, Phanida; Wongsariya, Karn; Chomnawang, Mullika Traidej; Bunyapraphatsara, Nuntavan

    2013-05-01

    The outbreak of histamine fish poisoning has been being an issue in food safety and international trade. The growth of contaminated bacterial species including Morganella morganii which produce histidine decarboxylase causes histamine formation in fish during storage. Histamine, the main toxin, causes mild to severe allergic reaction. At present, there is no well-established solution for histamine fish poisoning. This study was performed to determine the antibacterial activity of essential oils from Thai spices against histamine-producing bacteria. Among the essential oils tested, clove, lemongrass and sweet basil oils were found to possess the antibacterial activity. Clove oil showed the strongest inhibitory activity against Morganella morganii, followed by lemongrass and sweet basil oils. The results indicated that clove, lemongrass and sweet basil oils could be useful for the control of histamine-producing bacteria. The attempt to identify the active components using preparative TLC and GC/MS found eugenol, citral and methyl chavicol as the active components of clove, lemongrass and sweet basil oils, respectively. The information from this study would be useful in the research and development for the control of histamine-producing bacteria in fish or seafood products to reduce the incidence of histamine fish poisoning.

  4. Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça.

    PubMed

    Castro Parente, Denise; Vidal, Esteban Espinosa; Leite, Fernanda Cristina Bezerra; de Barros Pita, Will; de Morais, Marcos Antonio

    2015-01-01

    The distilled spirit made from sugar cane juice, also known as cachaça, is a traditional Brazilian beverage that in recent years has increased its market share among international distilled beverages. Several volatile compounds produced by yeast cells during the fermentation process are responsible for the unique taste and aroma of this drink. The yeast Dekkera bruxellensis has acquired increasing importance in the fermented beverage production, as the different metabolites produced by this yeast may be either beneficial or harmful to the end-product. Since D. bruxellensis is often found in the fermentation processes carried out in ethanol fuel distillation in Brazil, we employed this yeast to analyse the physiological profile and production of aromatic compounds and to examine whether it is feasible to regard it as a cachaça-producing microorganism. The assays were performed on a small scale and simulated the conditions for the production of handmade cachaça. The results showed that the presence of aromatic and branched-chain amino acids in the medium has a strong influence on the metabolism and production of flavours by D. bruxellensis. The assimilation of these alternative nitrogen sources led to different fermentation yields and the production of flavouring compounds. The influence of the nitrogen source on the metabolism of fusel alcohols and esters in D. bruxellensis highlights the need for further studies of the nitrogen requirements to obtain the desired level of sensory compounds in the fermentation. Our results suggest that D. bruxellensis has the potential to play a role in the production of cachaça.

  5. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds

    PubMed Central

    Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N.

    2013-01-01

    The “small molecule universe” (SMU), the set of all synthetically feasible organic molecules of 500 Daltons molecular weight or less, is estimated to contain over 1060 structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a “representative universal library” spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds. PMID:23548177

  6. Stochastic voyages into uncharted chemical space produce a representative library of all possible drug-like compounds.

    PubMed

    Virshup, Aaron M; Contreras-García, Julia; Wipf, Peter; Yang, Weitao; Beratan, David N

    2013-05-15

    The "small molecule universe" (SMU), the set of all synthetically feasible organic molecules of 500 Da molecular weight or less, is estimated to contain over 10(60) structures, making exhaustive searches for structures of interest impractical. Here, we describe the construction of a "representative universal library" spanning the SMU that samples the full extent of feasible small molecule chemistries. This library was generated using the newly developed Algorithm for Chemical Space Exploration with Stochastic Search (ACSESS). ACSESS makes two important contributions to chemical space exploration: it allows the systematic search of the unexplored regions of the small molecule universe, and it facilitates the mining of chemical libraries that do not yet exist, providing a near-infinite source of diverse novel compounds.

  7. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea.

    PubMed

    Braña, Alfredo F; Braña, Afredo F; Fiedler, Hans-Peter; Nava, Herminio; González, Verónica; Sarmiento-Vizcaíno, Aida; Molina, Axayacatl; Acuña, José L; García, Luis A; Blanco, Gloria

    2015-04-01

    Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.

  8. Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester.

    PubMed

    Mechichi, T; Labat, M; Garcia, J L; Thomas, P; Patel, B K

    1999-10-01

    A strictly chemo-organotrophic, anaerobic bacterium was isolated from an olive mill wastewater treatment digester on syringate and designated strain SR1T. The cells were slightly curved rods, stained Gram-positive and possessed terminal spores. Strain SR1T utilized crotonate, methanol and a wide range of aromatic compounds including 3,4,5-trimethoxybenzoate (TMB), 3,4,5-trimethoxycinnamate (TMC), syringate, 3,4,5-trimethoxyphenylacetate (TMPA), 3,4,5-trimethoxyphenylpropionate (TMPP), ferulate, sinapate, vanillate, 3,4-dimethoxybenzoate, 2,3-dimethoxybenzoate, gallate, 2,4,6-trihydroxybenzoate (THB), pyrogallol, phloroglucinol and quercetin as carbon and energy sources. Acetate and butyrate were produced from aromatic compounds, methanol and crotonate whereas methanethiol (MT) was produced from methoxylated aromatic compounds and methanol. Strain SR1T had a G + C content of 38 mol% and grew optimally between 37 and 40 degrees C at pH 7.2 on a crotonate-containing medium. Phylogenetically, strain SR1T was a member of cluster XIVa of the Clostridiales group and shared a sequence similarity of 90% with Clostridum aminovalericum and Eubacterium fissicatena. Consequently, its precise neighbourliness to any one of them depended on the selection of strains of the cluster. On the basis of the phylogenetic and phenotypic evidence presented in this paper, the designation of strain SR1T as Sporobacterium olearium gen. nov., sp. nov. is proposed. The type strain is SR1T (= DSM 12504T).

  9. Phenolic compounds, organic acids and antioxidant activity of grape juices produced from new Brazilian varieties planted in the Northeast Region of Brazil.

    PubMed

    Lima, Marcos Dos Santos; Silani, Igor de Souza Veras; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Biasoto, Aline Camarão Telles; Pereira, Giuliano Elias; Bordignon-Luiz, Marilde T; Ninow, Jorge Luiz

    2014-10-15

    The phenolic compounds, organic acids and the antioxidant activity were determined for grape juice samples from new Brazilian varieties grown in the Sub-middle São Francisco Valley in the Northeast Region of Brazil. The results showed that the Brazilian grape juices have high antioxidant activity, which was significantly correlated with the phenolic compounds catechin, epicatechin gallate, procyanidin B1, rutin, gallic acid, caffeic acid, p-coumaric acid, pelargonidin-3-glucoside, cyanidin-3-glucoside, cyaniding-3,5-diglucoside and delphinidin-3-glucoside. The produced juice samples showed higher concentrations of trans-resveratrol than those observed in juices made from different varieties of grapes from traditional growing regions. Organic acids concentrations were similar to those of juices produced from other classical varieties. It was demonstrated that it is possible to prepare juices from grapes of new varieties grown in the Northeast of Brazil containing a high content of bioactive compounds and typical characteristics of the tropical viticulture practised in the Sub-middle São Francisco Valley. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Isospin influence on the decay modes of compound nuclei produced in the 78, 86Kr + 40, 48Ca at 10 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; Gnoffo, B.; De Filippo, E.; La Commara, M.; Russotto, P.; Trimarchi, M.; Vigilante, M.; Ademard, G.; Auditore, L.; Beck, C.; Bercenau, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neidre, N.; Lombardo, I.; Mazurek, K.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Spadaccini, G.; Trifirò, A.; Verde, G.

    2017-09-01

    The study of the decay modes competition of the compound systems produced in the collisions ^{78}{Kr} + ^{40}{Ca} and ^{86}{Kr} + ^{48}{Ca} at 10MeV/A is presented. In particular, the N / Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4 π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron-poor and neutron-rich systems.

  11. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti.

    PubMed

    Orozco-Mosqueda, Maria del Carmen; Macías-Rodríguez, Lourdes I; Santoyo, Gustavo; Farías-Rodríguez, Rodolfo; Valencia-Cantero, Eduardo

    2013-11-01

    Medicago truncatula represents a model plant species for understanding legume-bacteria interactions. M. truncatula roots form a specific root-nodule symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation generates high iron (Fe) demands for bacterial nitrogenase holoenzyme and plant leghemoglobin proteins. Leguminous plants acquire Fe via "Strategy I," which includes mechanisms such as rhizosphere acidification and enhanced ferric reductase activity. In the present work, we analyzed the effect of S. meliloti volatile organic compounds (VOCs) on the Fe-uptake mechanisms of M. truncatula seedlings under Fe-deficient and Fe-rich conditions. Axenic cultures showed that both plant and bacterium modified VOC synthesis in the presence of the respective symbiotic partner. Importantly, in both Fe-rich and -deficient experiments, bacterial VOCs increased the generation of plant biomass, rhizosphere acidification, ferric reductase activity, and chlorophyll content in plants. On the basis of our results, we propose that M. truncatula perceives its symbiont through VOC emissions, and in response, increases Fe-uptake mechanisms to facilitate symbiosis.

  12. Natural and anthropogenically-produced brominated compounds in endemic dolphins from Western South Atlantic: another risk to a vulnerable species.

    PubMed

    Alonso, Mariana B; Eljarrat, Ethel; Gorga, Marina; Secchi, Eduardo R; Bassoi, Manuela; Barbosa, Lupércio; Bertozzi, Carolina P; Marigo, Juliana; Cremer, Marta; Domit, Camila; Azevedo, Alexandre F; Dorneles, Paulo R; Torres, João Paulo M; Lailson-Brito, José; Malm, Olaf; Barceló, Damià

    2012-11-01

    Liver samples from 53 Franciscana dolphins along the Brazilian coast were analyzed for organobrominated compounds. Target substances included the following anthropogenic pollutants: polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), decabromodiphenylethane (DBDPE), as well as the naturally-generated methoxylated-PBDEs (MeO-PBDEs). PBDE concentrations ranged from 6 to 1797 ng/g lw (mean 166 ± 298 ng/g lw) and were similar to those observed in cetaceans from Northern Hemisphere. PBBs were found in all sampling locations (

  13. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    PubMed

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  14. Perfluorinated Compounds in Greenhouse and Open Agricultural Producing Areas of Three Provinces of China: Levels, Sources and Risk Assessment.

    PubMed

    Zhang, Yanwei; Tan, Dongfei; Geng, Yue; Wang, Lu; Peng, Yi; He, Zeying; Xu, Yaping; Liu, Xiaowei

    2016-12-10

    Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C₄-C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic acid (PFBA) was considered as a marker for source analysis. Bean vegetables contribute highly to the overall PFAA load in vegetables. A significant correlation was shown between irrigation water and agricultural products. The EDI (estimated daily intake) from vegetables should be of concern in China.

  15. Perfluorinated Compounds in Greenhouse and Open Agricultural Producing Areas of Three Provinces of China: Levels, Sources and Risk Assessment

    PubMed Central

    Zhang, Yanwei; Tan, Dongfei; Geng, Yue; Wang, Lu; Peng, Yi; He, Zeying; Xu, Yaping; Liu, Xiaowei

    2016-01-01

    Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C4–C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic acid (PFBA) was considered as a marker for source analysis. Bean vegetables contribute highly to the overall PFAA load in vegetables. A significant correlation was shown between irrigation water and agricultural products. The EDI (estimated daily intake) from vegetables should be of concern in China. PMID:27973400

  16. Real time PCR of Nor~1 (aflD) gene of aflatoxin producing fungi and its correlative quantization to aflatoxin levels in South African compound feeds.

    PubMed

    Iheanacho, H E; Dutton, M F; Steenkamp, P A; Steenkamp, L; Makun, H A; Swart, A; Mthombeni, J Q

    2014-02-01

    Aflatoxins (AFs) are naturally occurring secondary metabolites. This toxin is principally produced by Aspergillus flavus and Aspergillus parasiticus in compound feeds worldwide. Compound feeds are feeds blended from various raw materials and additives. Contaminations of these feeds by AFs and its possible transmission into edible materials like milk, egg and organs of the body, are a serious problem. Expression of the Nor~1 (aflD) gene is the main factor responsible for AFs production. For this reason, a study was carried out to establish a correlation between levels of AFs and determinant gene (Nor~1) in South African compound feeds. To achieve this, compound feeds (n=30) were analyzed for Nor~1 gene using real time polymerase chain reaction (RT-PCR), while AFs levels in similar samples were estimated using high-performance liquid chromatography (HPLC) after an immune-affinity clean-up extraction procedure. Results indicated that AFs levels in positive samples ranged from 0.7 to 33.0 ppb. These levels generally did not correlate (R(2)=0.093) with those of Nor~1 gene in similar samples. Consequently, Nor~1 gene levels established via RT-PCR cannot be used as a predicting model for AFs in compound feeds. Only four of the feeds analyzed, specifically poultry feeds, contained levels of AFs above the regulatory limits of 10 ppb established in South Africa (S.A.). This should be considered unsafe when consumed on a continuous basis and may pose some health related problems especially when AFs are found together with other significant mycotoxins such as ochratoxins (OTs) and/or fumonisins (FBs). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Compositional variation of sialon phase produced after carbothermal reduction and nitridation of vermiculite-polyacrylonitrile intercalation compound

    SciTech Connect

    Aviles, M.A.; Sanchez-Soto, P.J.; Justo, A.; Perez-Rodriguez, J.L. . Instituto de Ciencia de Materiales)

    1994-10-01

    Vermiculite (Al-Mg hydrated layer silicate) has been used as raw material for the synthesis of nitrogen ceramics in the Si-Al-Mg-O-N system in the presence of carbon. Successive intercalation of butylammonium cation and acrylonitrile, followed by polymerization and cyclization of the polymer and thermal treatment under nitrogen flow, have produced the carbothermal reduction and reactive nitridation of the precursor, yielding [beta]-Si[sub 3]N[sub 4] and [beta]-sialon as nitrided phases. Thermal evolution of the intercalated samples from 1,000 C to 1,500 C has been studied by XRD and IR spectroscopy. The composition variation of sialon phase was found to be a function of heating temperature and soaking time at 1,400 C. These facts were explained on the basis of a complex vapor-liquid-solid mechanism.

  18. Energetic consideration of compounds at Mg2Si-Ni electrode interlayer produced by spark-plasma sintering

    NASA Astrophysics Data System (ADS)

    Imai, Yoji; Sugawara, Hiroharu; Mori, Yoshihisa; Nakamura, Shigeyuki; Yamamoto, Atsushi; Takarabe, Ken-ichi

    2017-05-01

    In order to understand the presence of the MgNi2-type phase, the η-phase, and the ω-phase at the boundary layer produced by the simultaneous spark plasma sintering of mixed Ni and Mg2Si powders, we have calculated the electronic energies of these phases. The phase change of MgNi2 X Si2(1- X ) from the Cu2Mg-type to the MgNi2-type through the Fe2Tb-type structures with increases in X, as observed by Song and Varin [Metall. Mater. Trans. A 32, 5 (2001)], is well-reproduced by the present calculations. The stability of the η-phase (Mg6Ni16Si7) is also explained, but that of the ω-phase is not explained by the energetic calculations, even if the entropy effect of mixing is assumed.

  19. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  20. Cellular Lipid Composition Affects Sensitivity of Plant Pathogens to Fengycin, an Antifungal Compound Produced by Bacillus subtilis Strain CU12.

    PubMed

    Wise, Cody; Falardeau, Justin; Hagberg, Ingrid; Avis, Tyler J

    2014-10-01

    Fengycin is an antimicrobial cyclic lipopeptide produced by various Bacillus subtilis strains, including strain CU12. Direct effects of fengycin include membrane pore formation and efflux of cellular contents leading to cell death in sensitive microorganisms. In this study, four plant pathogens were studied in order to elucidate the role of membrane lipids in their relative sensitivity to fengycin. Inhibition of mycelial growth in these pathogens varied considerably. Analysis of membrane lipids in these microorganisms indicated that sensitivity correlated with low ergosterol content and shorter phospholipid fatty acyl chains. Sensitivity to fengycin also correlated with a lower anionic/zwitterionic phospholipid ratio. Our data suggest that decreased fluidity buffering capacity, as a result of low ergosterol content, and higher intrinsic fluidity afforded by short fatty acyl chain length may increase the sensitivity of microbial membranes to fengycin. Our results also suggest that lower content in anionic phospholipids may increase fengycin insertion into the membrane through reduced electrostatic repulsion with the negatively charged fengycin. The intrinsic membrane lipid composition may contribute, in part, to the observed level of antimicrobial activity of fengycin in various plant pathogens.

  1. Structure of Microcin B-Like Compounds Produced by Pseudomonas syringae and Species Specificity of Their Antibacterial Action

    PubMed Central

    Metelev, Mikhail; Serebryakova, Marina; Ghilarov, Dmitry; Zhao, Youfu

    2013-01-01

    Escherichia coli microcin B (Ec-McB) is a posttranslationally modified antibacterial peptide containing multiple oxazole and thiazole heterocycles and targeting the DNA gyrase. We have found operons homologous to the Ec-McB biosynthesis-immunity operon mcb in recently sequenced genomes of several pathovars of the plant pathogen Pseudomonas syringae, and we produced two variants of P. syringae microcin B (Ps-McB) in E. coli by heterologous expression. Like Ec-McB, both versions of Ps-McB target the DNA gyrase, but unlike Ec-McB, they are active against various species of the Pseudomonas genus, including human pathogen P. aeruginosa. Through analysis of Ec-McB/Ps-McB chimeras, we demonstrate that three centrally located unmodified amino acids of Ps-McB are sufficient to determine activity against Pseudomonas, likely by allowing specific recognition by a transport system that remains to be identified. The results open the way for construction of McB-based antibacterial molecules with extended spectra of biological activity. PMID:23852863

  2. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

    PubMed

    Raza, Waseem; Wang, Jichen; Wu, Yuncheng; Ling, Ning; Wei, Zhong; Huang, Qiwei; Shen, Qirong

    2016-09-01

    The production of volatile organic compounds (VOCs) by microbes is an important characteristic for their selection as biocontrol agents against plant pathogens. In this study, we identified the VOCs produced by the biocontrol strain Bacillus amyloliquefaciens T-5 and evaluated their impact on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. The results showed that the VOCs of strain T-5 significantly inhibited the growth of R. solanacearum in agar medium and in soil. In addition, VOCs significantly inhibited the motility traits, root colonization, biofilm formation, and production of antioxidant enzymes and exopolysaccharides by R. solanacearum. However, no effect of VOCs on the production of hydrolytic enzymes by R. solanacearum was observed. The strain T-5 produced VOCs, including benzenes, ketones, aldehydes, alkanes, acids, and one furan and naphthalene compound; among those, 13 VOCs showed 1-10 % antibacterial activity against R. solanacearum in their produced amounts by T-5; however, the consortium of all VOCs produced on agar medium, in sterilized soil, and in natural soil showed 75, 62, and 85 % growth inhibition of R. solanacearum, respectively. The real-time PCR analysis further confirmed the results when the expression of different virulence- and metabolism-related genes in R. solanacearum cells was decreased after exposure to the VOCs of strain T-5. The results of this study clearly revealed the significance of VOCs in the control of plant pathogens. This information would help to better comprehend the microbial interactions mediated by VOCs in nature and to develop safer strategies to control plant disease.

  3. Pollen types and levels of total phenolic compounds in propolis produced by Apis mellifera L. (Apidae) in an area of the Semiarid Region of Bahia, Brazil.

    PubMed

    Matos, Vanessa R; Alencar, Severino M; Santos, Francisco A R

    2014-03-01

    Twenty-two propolis samples produced by Apis mellifera L. in an area of the Semiarid region the the State of Bahia (Agreste of Alagoinhas), Brazil, were palynologically analyzed and quantified regarding their levels of total phenolic compounds. These samples were processed using the acetolysis technique with the changes suggested for use with propolis. We found 59 pollen types belonging to 19 families and 36 genera. The family Fabaceae was the most representative in this study with nine pollen types, followed by the family Asteraceae with seven types. The types Mikania and Mimosa pudica occurred in all samples analyzed. The types Mimosa pudica and Eucalyptus had frequency of occurrence above 50% in at least one sample. The highest similarity index (c. 72%) occurred between the samples ER1 and ER2, belonging to the municipality of Entre Rios. Samples from the municipality of Inhambupe displayed the highest (36.78±1.52 mg/g EqAG) and lowest (7.68 ± 2.58 mg/g EqAG) levels of total phenolic compounds. Through the Spearman Correlation Coefficient we noticed that there was a negative linear correlation between the types Mimosa pudica (rs = -0.0419) and Eucalyptus (rs = -0.7090) with the profile of the levels of total phenolic compounds of the samples.

  4. Oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by oxyl radicals produced by photolysis of azo compounds.

    PubMed

    Shao, Jie; Geacintov, Nicholas E; Shafirovich, Vladimir

    2010-05-17

    Oxidative damage to 8-oxo-7,8-dihydroguanine (8-oxoG) bases initiated by photolysis of the water-soluble radical generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) has been investigated by laser kinetic spectroscopy. In neutral oxygenated aqueous solutions, 355 nm photolysis of AAPH initiates efficient one-electron oxidation of the 8-oxodG nucleosides directly monitored by the appearance of the 8-oxodG(*+)/8-oxodG(-H)* radicals at 325 nm. The reaction kinetics consist of a mechanism that includes the transformation of the 2-amidinoprop-2-peroxyl radicals (ROO*) derived from photolysis of AAPH to more reactive 2-amidinoprop-2-oxyl radicals (RO*), which directly react with the 8-oxoG bases. The major pathways for the formation of end products of 8-oxoG oxidation include the combination of the 8-oxodG(*+)/8-oxodG(-H)* radicals with superoxide (O(2)(*-)) and ROO* radicals in approximately 1:1 ratios, as demonstrated by experiments with Cu,Zn superoxide dismutase, to form dehydroguanidinohydantoin (Gh(ox)) derivatives. This mechanism was confirmed by analysis of the end products produced by the oxidation of two substrates: (1) the 8-oxoG derivative 2',3',5'-tri-O-acetyl-7,8-dihydroguanosine (tri-O-Ac-8-oxoG) and (2) the 5'-d(CCATC[8-oxoG]CTACC) sequence. The major products isolated by HPLC and identified by mass spectrometry methods were the tri-O-Ac-Gh(ox) and 5'-d(CCATC[Gh(ox)]CTACC products.

  5. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

    PubMed

    Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2015-10-01

    An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi.

  6. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.

    PubMed

    Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A

    2014-05-01

    The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent.

  7. Analytical and sensorial characterization of the aroma of wines produced with sour rotten grapes using GC-O and GC-MS: identification of key aroma compounds.

    PubMed

    Barata, André; Campo, Eva; Malfeito-Ferreira, Manuel; Loureiro, Virgílio; Cacho, Juan; Ferreira, Vicente

    2011-03-23

    In the present work, the aroma profiles of wines elaborated from sound and sour rot-infected grapes as raw material have been studied by sensory analysis, gas chromatography-olfactometry (GC-O), and gas chromatography-mass spectrometry (GC-MS), with the aim of determining the odor volatiles most likely associated with this disease. The effect of sour rot was tested in monovarietal wines produced with the Portuguese red grape variety Trincadeira and in blends of Cabernet Sauvignon and sour rotten Trincadeira grapes. Wines produced from damaged berries exhibited clear honey-like notes not evoked by healthy samples. Ethyl phenylacetate (EPhA) and phenylacetic acid (PAA), both exhibiting sweet honey-like aromas, emerged as key aroma compounds of sour rotten wines. Their levels were 1 order of magnitude above those found in controls and reached 304 and 1668 μg L(-1) of EPhA and PAA, respectively, well above the corresponding odor thresholds. Levels of γ-nonalactone also increased by a factor 3 in sour rot samples. Results also suggest that sour rot exerts a great effect on the secondary metabolism of yeast, decreasing the levels of volatiles related to fatty acids and amino acid synthesis. The highest levels of γ-decalactone of up to 405 μg L(-1) were also found in all of the samples, suggesting that this could be a relevant aroma compound in Trincadeira wine aroma.

  8. Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin-Producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A

    2017-02-17

    Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates.

  9. Outbreak of Extended-Spectrum Beta-Lactamase Producing Enterobacter cloacae with High MICs of Quaternary Ammonium Compounds in a Hematology Ward Associated with Contaminated Sinks.

    PubMed

    Chapuis, Angélique; Amoureux, Lucie; Bador, Julien; Gavalas, Arthur; Siebor, Eliane; Chrétien, Marie-Lorraine; Caillot, Denis; Janin, Marion; de Curraize, Claire; Neuwirth, Catherine

    2016-01-01

    To investigate an outbreak of extended-spectrum beta-lactamase (ESBL) producing Enterobacter cloacae that occurred in the Hematology ward (24-bed unit) of the François Mitterrand University Hospital (Dijon, France) between January 2011 and December 2013. The outbreak involved 43 patients (10 infected and 33 colonized). We performed environmental analysis to detect multiresistant E. cloacae for comparison with clinical isolates (genotyping by pulsed-field gel electrophoresis and MLST as well as ESBL-typing) and determined the MICs of the quaternary ammonium compounds (QACs) alkyldimethylbenzylammonium chloride (ADBAC) and didecyldimethylammonium chloride (DDAC). A bleach-based cleaning-disinfection program was implemented in December 2012 after mechanical removal of the biofilm in all sinks. We have detected 17 ESBL-producing E. cloacae in patients sink drains, shower drains and medical sink drains. Sequencing of the bla genes performed on 60 strains recovered from patients and environment (n = 43 clinical and n = 17 environmental) revealed that bla CTX-M15 was predominant (37 isolates) followed by bla CTX-M9 plus bla SHV-12 (20 isolates). We observed a great diversity among the isolates: 14 pulsotypes (11 STs) in clinical isolates and 9 pulsotypes (7 STs) in environmental isolates. Six pulsotypes were identical between clinical and environmental isolates. MICs of the quaternary ammonium compounds widely used for disinfection were very high in clinical and environmental isolates. Immediately after the implementation of the disinfection program we noticed a substantial fall in cases number. Our findings demonstrate the role of drains as important reservoir of ESBL-producing E. cloacae and highlight the necessity to settle drains accessible to achieve correct cleaning as well as to use disinfectant with proved activity against nosocomial pathogens.

  10. Outbreak of Extended-Spectrum Beta-Lactamase Producing Enterobacter cloacae with High MICs of Quaternary Ammonium Compounds in a Hematology Ward Associated with Contaminated Sinks

    PubMed Central

    Chapuis, Angélique; Amoureux, Lucie; Bador, Julien; Gavalas, Arthur; Siebor, Eliane; Chrétien, Marie-Lorraine; Caillot, Denis; Janin, Marion; de Curraize, Claire; Neuwirth, Catherine

    2016-01-01

    Objective: To investigate an outbreak of extended-spectrum beta-lactamase (ESBL) producing Enterobacter cloacae that occurred in the Hematology ward (24-bed unit) of the François Mitterrand University Hospital (Dijon, France) between January 2011 and December 2013. The outbreak involved 43 patients (10 infected and 33 colonized). Design: We performed environmental analysis to detect multiresistant E. cloacae for comparison with clinical isolates (genotyping by pulsed-field gel electrophoresis and MLST as well as ESBL-typing) and determined the MICs of the quaternary ammonium compounds (QACs) alkyldimethylbenzylammonium chloride (ADBAC) and didecyldimethylammonium chloride (DDAC). A bleach-based cleaning-disinfection program was implemented in December 2012 after mechanical removal of the biofilm in all sinks. Results: We have detected 17 ESBL-producing E. cloacae in patients sink drains, shower drains and medical sink drains. Sequencing of the bla genes performed on 60 strains recovered from patients and environment (n = 43 clinical and n = 17 environmental) revealed that bla CTX−M15 was predominant (37 isolates) followed by bla CTX−M9 plus bla SHV−12 (20 isolates). We observed a great diversity among the isolates: 14 pulsotypes (11 STs) in clinical isolates and 9 pulsotypes (7 STs) in environmental isolates. Six pulsotypes were identical between clinical and environmental isolates. MICs of the quaternary ammonium compounds widely used for disinfection were very high in clinical and environmental isolates. Immediately after the implementation of the disinfection program we noticed a substantial fall in cases number. Our findings demonstrate the role of drains as important reservoir of ESBL-producing E. cloacae and highlight the necessity to settle drains accessible to achieve correct cleaning as well as to use disinfectant with proved activity against nosocomial pathogens. PMID:27462306

  11. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9

    PubMed Central

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-01-01

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1–11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

  12. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9.

    PubMed

    Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

    2016-04-22

    It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1-11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen.

  13. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum.

    PubMed

    Jogaiah, Sudisha; Shetty, Hunthrike Shekar; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-08-01

    Pearl millet (Pennisetum glaucum) stands sixth among the most important cereal crops grown in the semi-arid and arid regions of the world. The downy mildew disease caused by Sclerospora graminicola, an oomycete pathogen, has been recognized as a major biotic constraint in pearl millet production. On the other hand, basidiomycetes are known to produce a large number of antimicrobial metabolites, providing a good source of anti-oomycete agrochemicals. Here, we report the discovery and efficacy of a compound, named G_app7, purified from Ganoderma applanatum on inhibition of growth and development of S. graminicola, as well as the effects of seed treatment with G_app7 on protection of pearl millet from downy mildew. G_app7 consistently demonstrated remarkable effects against S. graminicola by recording significant inhibition of sporangium formation (41.4%), zoospore release (77.5%) and zoospore motility (91%). Analyses of G_app7 compound using two-dimensional nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry revealed its close resemblance to metominostrobin, a derivative of strobilurin group of fungicides. Furthermore, the G_app7 was shown to stably maintain the inhibitory effects at different temperatures between 25 and 80 °C. In addition, the anti-oomycete activity of G_app7 was fairly stable for a period of at least 12 months at 4 °C and was only completely lost after being autoclaved. Seed treatment with G_app7 resulted in a significant increase in disease protection (63%) under greenhouse conditions compared with water control. The identification and isolation of this novel and functional anti-oomycete compound from G. applanatum provide a considerable agrochemical importance for plant protection against downy mildew in an environmentally safe and economical manner.

  14. Isospin influence on the decay modes of compound systems produced in the 78,86Kr + 40,48Ca at 10 AMeV

    NASA Astrophysics Data System (ADS)

    Pirrone, S.; Politi, G.; Wieleczko, J. P.; De Filippo, E.; Gnoffo, B.; Russotto, P.; Trimarchi, M.; La Commara, M.; Vigilante, M.; Ademard, G.; Amorini, F.; Auditore, L.; Beck, C.; Berceanu, I.; Bonnet, E.; Borderie, B.; Cardella, G.; Chibihi, A.; Colonna, M.; D'Onofrio, A.; Frankland, J. D.; Geraci, E.; Henry, E.; La Guidara, E.; Lanzalone, G.; Lautesse, P.; Lebhertz, D.; Le Neindre, N.; Lombardo, I.; Mazurek, K.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Piasecki, E.; Porto, F.; Quattrocchi, L.; Quinlann, M.; Rizzo, F.; Schroeder, W. U.; Spadaccini, G.; Trifirò, A.; Toke, J.; Verde, G.

    2016-06-01

    The study of the decay modes competition of the compound systems produced in the collisions 78Kr+40Ca and 86Kr+48Ca at 10AMeV is presented. In particular, the N/Z entrance channel influence on the decay paths of the compound systems, directly connected to the isospin influence, is investigated. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS) in Catania by using the 4π multi-detector CHIMERA. Charge, mass, angular distributions and kinematical features of the reaction products were studied. The analysis shows some differences in the contribution arising from the various reaction mechanisms for the neutron poor and neutron rich systems. Comparison with theoretical statistical and dynamical models are presented for the two systems. Besides a study of the influence of the energy on the entrance channel is performed for the 78Kr+40Ca reaction, by comparing the results of this experiment to those obtained for the same system at 5.5 AMeV with the INDRA device at GANIL.

  15. Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development.

    PubMed

    Valdez-Morales, Maribel; Carlos, L Céspedes; Valverde, María Elena; Ramírez-Chávez, Enrique; Paredes-López, Octavio

    2016-12-01

    Huitlacoche mushroom (composed by the fruiting bodies growing on the maize ears from the basidiomycete Ustilago maydis) is a culinary delicacy with a great economic and nutraceutical value. In this work, phenolic content, antioxidant activity, ergosterol and fatty acids profile from huitlacoche produced in 15 creole and in one hybrid maize genotypes, and harvested at different stages of development were determined. The hybrid crop was studied in raw and cooked samples. Total phenolic content ranged from 415.6 to 921.8.0 mg gallic acid equivalents per 100 g of flour. Samples exhibited attractive antioxidant activities: 75 % of antiradical activity on average by DPPH methodology, and ORAC values up to 7661.3 μmol Trolox equivalents /100  g. Important quantities of ferulic acid, quercetin, ergosterol, linoleic and oleic acids were observed. Stage of development and cooking process had an effect on evaluated compounds, sometimes negative and sometimes positive. Results suggest that huitlacoche is an attractive food source of phenolics with excellent antioxidant potential and interesting lipidic compounds.

  16. Draft Genome Sequence of the Volatile Organic Compound-Producing Antarctic Bacterium Arthrobacter sp. Strain TB23, Able To Inhibit Cystic Fibrosis Pathogens Belonging to the Burkholderia cepacia Complex

    PubMed Central

    Fondi, Marco; Orlandini, Valerio; Maida, Isabel; Perrin, Elena; Papaleo, Maria Cristiana; Emiliani, Giovanni; de Pascale, Donatella; Parrilli, Ermenegilda; Tutino, Maria Luisa; Michaud, Luigi; Lo Giudice, Angelina

    2012-01-01

    Arthrobacter sp. strain TB23 was isolated from the Antarctic sponge Lissodendoryx nobilis. This bacterium is able to produce antimicrobial compounds and volatile organic compounds (VOCs) that inhibit the growth of other Antarctic bacteria and of cystic fibrosis opportunistic pathogens, respectively. Here we report the draft genome sequence of Arthrobacter sp. TB23. PMID:23105071

  17. HPTLC fingerprint profile, in vitro antioxidant and evaluation of antimicrobial compound produced from Brevibacillus brevis-EGS9 against multidrug resistant Staphylococcus aureus.

    PubMed

    Arumugam, T; Senthil Kumar, P; Gopinath, K P

    2017-01-01

    In the present study, in vitro antimicrobial activity of Brevibacillus brevis EGS9 against multi drug resistant Staphylococcus aureus (MDRSA) and to investigate the antimicrobial, antioxidant activity and HPTLC finger print profile of Brevibacillus brevis EGS9. Primary screening was done using by cross streak method against multi drug resistant Staphylococcus aureus. The bioactive metabolites were extracted from Brevibacillus brevis EGS9 using ethyl acetate extraction. Ethyl acetate extract showed significant antimicrobial activity against Escherichia coli (20.2 ± 0.1) mm, Candida albicans (19.2 ± 0.3) mm and Bacillus cereus (18.6 ± 0.2) mm respectively. Forty three UTI bacterial strains were isolated from mid-urine samples of 50 males and 50 females. Escherichia coli were more predominant (48%) followed by Klebsilla pneumonia (29%), Pseudomonas aeruginosa (17%), Staphylococcus aureus (4%) and Enterobacter faecalis (6%). The ethyl acetate extract was examined to evaluate antibacterial properties against isolated UTIs bacterial pathogens. The results were revealed that the maximum zone was measured in Escherichia coli (18.1 ± 0.4) mm and minimum zone of inhibition was shown against Pseudomonas aeruginosa (10.6 ± 0.3) mm. Based on the results obtained, the extract of Brevibacillus brevis EGS9 exhibited dose dependent manner of antioxidant activity. The DPPH scavenging activity of lowest concentration at 25 μg/ml and high concentration at 1000 μg/ml was measured at 2.4% and 39.5% respectively. HPTLC finger print profile was showed the active compounds present in crude extract, which may responsible for the antioxidant prospective. These results showed that, the significant antimicrobial properties against pathogen; this work will be helpful to explore the active compound identification in the field of pharmaceutical research and able to produce new drug molecules against pathogens.

  18. Polyphenol compounds and anti-inflammatory activities of Korean black raspberry ( Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed.

    PubMed

    Lim, Jae Woong; Hwang, Hyun Joo; Shin, Chul Soo

    2012-05-23

    Three types of Korean black raspberry wine were produced via alcoholic fermentation from juice, juice-pulp, and juice-pulp-seed, respectively. These wines were compared in terms of their anti-inflammatory activities and polyphenol contents. The total content of polyphenol compounds in wines was increased by 22.4% after supplementation with pulp and by 56.7% after supplementation with both pulp and seed. The reduction rate of NO evolution was highest in the order juice-pulp-seed wine, juice-pulp wine, and juice wine. Addition of the juice-pulp-seed wine at a level of 62.5-500 mg/L decreased the NO evolution rate by 40.5-94.2%. Eight fractions were obtained from juice-pulp-seed wine via ethyl acetate extraction and silica gel chromatography. Of these, the AF fraction, which exhibited the highest in vitro anti-inflammatory activity, exerted inhibitory effects on ear edema, writhing response, and vein membrane vascular permeability in mice. 3,4-Dihydroxybenzoic acid accounted for 37.6% of the total polyphenol content in the AF fraction.

  19. Phenylacetaldehyde O-methyloxime: a volatile compound produced by grapefruit leaves infected with the citrus canker pathogen, Xanthomonas axonopodis pv. citri.

    PubMed

    Zhang, Aijun; Hartung, John S

    2005-06-29

    An aldehyde oxime O-methyl ether, phenylacetaldehyde O-methyloxime, was detected using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) in the headspace above grapefruit leaves infected with Xanthomonas axonopodis pv. citri, the causal agent of citrus bacterial canker disease (CBCD). This disease is a major phytosanitary concern, and an eradication campaign against it is currently underway in Florida. Phenylacetaldehyde O-methyloxime has been reported to be produced by other plants and fragrant flowers, but it was not observed in the headspace above uninfected grapefruit leaves, the pathogenic bacterium X. axonopodis pv. citri itself, or grapefruit leaves infected with another closely related bacterial pathogen, X. axonopodis pv. citrumelo, which causes citrus bacterial spot, a disease of no phytosanitary significance. It was also not detected from CBCD infected fruits, including orange, lemon, grapefruit, and lime. We conclude that phenylacetaldehyde O-methyloxime may potentially be used to identify CBCD infestations. However, more intensive studies will be required to fully evaluate the potential of phenylacetaldehyde O-methyloxime as a diagnostic compound for CBCD. Using SPME and GC-MS to measure phenylacetaldehyde O-methyloxime may provide an easy and feasible tool to complement current methods used to detect X. axonopodis pv. citri in environmental samples.

  20. A new perspective on the radio active zone at the Galactic center - feedback from nuclear activities

    NASA Astrophysics Data System (ADS)

    Zhao, J.-H.; Morris, M. R.; Goss, W. M.

    2014-05-01

    Based on our deep image of Sgr A using broadband data observed with the VLA† at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ˜1 × 104 yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.

  1. A New Perspective on the Radio Active Zone at The Galactic Center - Feedback from Nuclear Activities

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hui; Morris, Mark R.; Goss, W. M.

    2013-11-01

    Based on our deep image of Sgr A using broadband data observed with the Jansky VLA at 6 cm, we present a new perspective of the radio bright zone at the Galactic center. We further show the radio detection of the X-ray Cannonball, a candidate neutron star associated with the Galactic center SNR Sgr A East. The radio image is compared with the Chandra X-ray image to show the detailed structure of the radio counterparts of the bipolar X-ray lobes. The bipolar lobes are likely produced by the winds from the activities within Sgr A West, which could be collimated by the inertia of gas in the CND, or by the momentum driving of Sgr A*; and the poloidal magnetic fields likely play an important role in the collimation. The less-collimated SE lobe, in comparison to the NW one, is perhaps due to the fact that the Sgr A East SN might have locally reconfigured the magnetic field toward negative galactic latitudes. In agreement with the X-ray observations, the time-scale of ~ $1\\times10^4$ yr estimated for the outermost radio ring appears to be comparable to the inferred age of the Sgr A East SNR.

  2. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B.

    PubMed

    Garateix, Anoland; Salceda, Emilio; Menéndez, Roberto; Regalado, Erik L; López, Omar; García, Teidy; Morales, Ruth A; Laguna, Abilio; Thomas, Olivier P; Soto, Enrique

    2011-01-24

    Acid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG) neurons obtained from Wistar rats. Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase), and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ < 400 ms) ASIC currents in DRG neurons obtained from Wistar rats, with a nonsignificant action on ASIC currents with a slow desensitizing time-course. The action of thalassiolin B shows no pH or voltage dependence nor is it modified by steady-state ASIC desensitization or voltage. The high concentration of thalassiolin B in the extract may account for the antinociceptive action of BM-21. To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.

  3. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B

    PubMed Central

    2011-01-01

    Background Acid-sensing ion channels (ASICs) have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG) neurons obtained from Wistar rats. Results Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase), and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ < 400 ms) ASIC currents in DRG neurons obtained from Wistar rats, with a nonsignificant action on ASIC currents with a slow desensitizing time-course. The action of thalassiolin B shows no pH or voltage dependence nor is it modified by steady-state ASIC desensitization or voltage. The high concentration of thalassiolin B in the extract may account for the antinociceptive action of BM-21. Conclusions To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic

  4. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig.

    PubMed

    Brown, D A; Scholfield, C N

    1984-09-01

    Membrane potential and input conductance were recorded in single neurones in slices of guinea-pig olfactory cortex in vitro. gamma-Aminobutyric acid (GABA) and GABA-mimetic compounds were applied by bath-perfusion. Potency was measured as the concentration required to double the input conductance. The potency of GABA was increased (i.e. the equi-effective concentrations were reduced) by 15.5 +/- 2.3 times (mean +/- s.e. mean) on reducing external [Na+] from 144 to 20 mmol l-1, by replacement with Mg2+. Corresponding potency changes for other agonists were + 10.8 +/- 2.5 for 3-aminopropanesulphonic acid (3-APS); 3.25 +/- 1.06 for isoguvacine and 2.43 +/- 0.69 for muscimol. Nipecotic acid (0.5 mM) produced the following increases in potency: GABA 2.68 +/- 0.02; 3-aminopropanesulphonic acid, 3.11 +/- 0.07; isoguvacine, 1.92 +/- 0.34; muscimol, 2.24 +/- 0.17. The concentration of GABA in the bathing fluid necessary to double input conductance increased with increasing depth of the recording site from the cut surface. The apparent potency fell 10 times for each 60 micron depth increment up to 150 micron. The recording depth also affected the apparent potency of muscimol and 3-APS but to a lesser extent. Reduction of external [Na+] reduced the depth-dependence of both GABA and 3-APS potency. No clear change in the duration of the recurrent inhibitory postsynaptic conductance could be detected in the presence of 0.5 mmol l-1 nipecotic acid. 6 It is suggested that agonist uptake by a Na+-dependent, nipecotic acid-sensitive mechanism severely attenuates the responses of olfactory neurones to exogenous GABA and to its analogues 3-APS, muscimol and isoguvacine, but has little immediate influence on the duration of the GABA-mediated inhibitory postsynaptic conductance.

  5. Efficacy of antimicrobial compounds on surface decontamination of seven shiga toxin-producing Escherichia coli (STEC) and Salmonella inoculated onto fresh beef

    USDA-ARS?s Scientific Manuscript database

    Several antimicrobial compounds have been implemented in commercial meat processing plants for decontamination of pathogens on beef carcasses, but there are many commercially available, novel antimicrobial compounds that may be more effective and suitable to be implemented in beef processing pathoge...

  6. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. Cl mass spectra of organic compounds produced by F− reactions

    PubMed Central

    Tiernan, T. O.; Chang, C.; Cheng, C. C.

    1980-01-01

    A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several

  7. The 3640-3510 BC rhyodacite eruption of Chachimbiro compound volcano, Ecuador: a violent directed blast produced by a satellite dome

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Hidalgo, Silvana; Robin, Claude; Beate, Bernardo; Quijozaca, Jenny

    2014-09-01

    Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ˜650-m-wide and ˜225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7-2.6 g cm-3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s-1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2 = 68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (˜14.4 and 8.0 km). The hot (˜936 °C) deep reservoir fed the central vent while the shallow reservoir (˜858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those

  8. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  9. Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances.

    PubMed

    do Nascimento, Adriana M; Soares, Mateus Gonçalves; da Silva Torchelsen, Fernanda K V; de Araujo, Jorge A Viana; Lage, Paula S; Duarte, Mariana C; Andrade, Pedro H R; Ribeiro, Tatiana G; Coelho, Eduardo A F; do Nascimento, Andréa M

    2015-11-01

    The purpose of this work was to evaluate the antileishmanial activity of endophytic fungi isolated from leaves of Vernonia polyanthes plant and their prospective use in the discovery of bioactive compounds. Sixteen endophytes were isolated by using potato dextrose agar medium and submitted to cultivation in rice medium. The fungal cultures were extracted with ethanol and used as crude extracts for testing their antileishmanial activity. The most active ethanol extract was obtained from P2-F3 strain, which was identified as Cochliobolus sativus by ITS rRNA gene sequence data. Followed by a bioassay-guided fractionation, the cochlioquinone A, isocochlioquinone A and anhydrocochlioquinone A compounds were isolated from the crude extracts and demonstrated to inhibit the parasites. From the present work, it is possible to conclude that endophytic fungi derived from medicinal plant V. polyanthes may be considered promising source for the discovery of bioactive compounds.

  10. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity.

    PubMed

    Rangel-Sánchez, Gerardo; Castro-Mercado, Elda; García-Pineda, Ernesto

    2014-02-15

    We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado.

  11. Effect of exposure time and organic matter on efficacy of antimicrobial compounds against Shiga Toxin-producing Escherichia coli and Salmonella

    USDA-ARS?s Scientific Manuscript database

    Several antimicrobial compounds are in commercial meat processing plants for the purpose of pathogens control on beef carcasses. However, the efficacy of the method used is influenced by a number of factors such as spray pressure, temperature, type of chemical and concentration, exposure time, metho...

  12. Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics.

    PubMed

    Karabagias, Ioannis K; Louppis, Artemis P; Karabournioti, Sofia; Kontakos, Stavros; Papastephanou, Chara; Kontominas, Michael G

    2017-02-15

    The objective of the present study was: i) to characterize Mediterranean citrus honeys based on conventional physicochemical parameter values, volatile compounds, and mineral content ii) to investigate the potential of above parameters to differentiate citrus honeys according to geographical origin using chemometrics. Thus, 37 citrus honey samples were collected during harvesting periods 2013 and 2014 from Greece, Egypt, Morocco, and Spain. Conventional physicochemical and CIELAB colour parameters were determined using official methods of analysis and the Commission Internationale de l' Eclairage recommendations, respectively. Minerals were determined using ICP-OES and volatiles using SPME-GC/MS. Results showed that honey samples analyzed, met the standard quality criteria set by the EU and were successfully classified according to geographical origin. Correct classification rates were 97.3% using 8 physicochemical parameter values, 86.5% using 15 volatile compound data and 83.8% using 13 minerals.

  13. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profiling.

    PubMed

    Lukić, Igor; Horvat, Ivana

    2017-03-01

    To differentiate monovarietal wines made from native and introduced varieties in Istria (Croatia), samples of Malvazija istarska, Chardonnay and Muscat yellow from two harvest years (2013 and 2014) were subjected to headspace solid-phase microextraction and gas chromatographic/mass spectrometric analysis (HS-SPME-GC/MS) of volatile aroma compounds. Significant effects of variety and harvest year were determined, but their interaction complicated the differentiation. Particular compounds were consistent as markers of variety in both years: nerol for Malvazija, ethyl cinnamate and a tentatively identified isomer of dimethylbenzaldehyde for Chardonnay, and terpenes for Muscat yellow. Wines from 2013 contained higher concentrations of the majority of important volatiles. A 100% correct differentiation of Malvazija istarska and Chardonnay wines according to both variety and harvest year was achieved by stepwise linear discriminant analysis.

  14. Differentiation of Commercial PDO Wines Produced in Istria (Croatia) According to Variety and Harvest Year Based on HS-SPME-GC/MS Volatile Aroma Compound Profiling

    PubMed Central

    Horvat, Ivana

    2017-01-01

    Summary To differentiate monovarietal wines made from native and introduced varieties in Istria (Croatia), samples of Malvazija istarska, Chardonnay and Muscat yellow from two harvest years (2013 and 2014) were subjected to headspace solid-phase microextraction and gas chromatographic/mass spectrometric analysis (HS-SPME-GC/MS) of volatile aroma compounds. Significant effects of variety and harvest year were determined, but their interaction complicated the differentiation. Particular compounds were consistent as markers of variety in both years: nerol for Malvazija, ethyl cinnamate and a tentatively identified isomer of dimethylbenzaldehyde for Chardonnay, and terpenes for Muscat yellow. Wines from 2013 contained higher concentrations of the majority of important volatiles. A 100% correct differentiation of Malvazija istarska and Chardonnay wines according to both variety and harvest year was achieved by stepwise linear discriminant analysis. PMID:28559738

  15. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf.

    PubMed

    Ahsan, Taswar; Chen, Jianguang; Zhao, Xiuxiang; Irfan, Muhammad; Wu, Yuanhua

    2017-12-01

    Streptomyces strain KX852460 having antifungal activity against Rhizoctonia solani AG-3 KX852461 that is the causal agent of target spot disease in tobacco leaf. The aim of the study was to determine the antifungal activity of Streptomyces strain KX852460 extract against R. solani AG-3 and to identify bioactive antifungal compounds produced by strain KX852460. Crude substance was produced by submerged fermentation process from Streptomyces strain KX852460. Various solvent was used to extract the culture filtrate. Among all, ethyl acetate extracted supernatant showed great potency against R. solani AG-3 KX852461. The active fractions were purified by silica gel column chromatography having 52 mm zone of inhibition against R. solani AG-3 KX852461. The purified fractions were identified by gas chromatography-mass spectrometry technique. Twenty-seven compounds were identified and most of the compounds were the derivatives of aromatic compounds. Eicosane (C20H42) and dibutyl phthalate (C16H22O4) were found antifungal compounds in this study. While morphinan, 7,8-didehydro-4,5-epoxy-17-methyl-3,6-bis[(trimethylsilyl)oxy]-, (5.Alpha. 6.Alpha)-(C23H35NO3Si2), cyclononasiloxane, octadecamethyl-(C18H54O9Si9) and benzoic acid, 2,5-bis(trimethylsiloxy) (C16H30O4Si3) were the major compounds with highest peak number. These results suggested that Streptomyces strain KX852460 had good general antifungal activity and might have potential biocontrol antagonist against R. solani AG-3 KX852461 to cure the target spot in tobacco leaf.

  16. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants.

    PubMed

    Rani, Kumkum; Zwanenburg, Binne; Sugimoto, Yukihiro; Yoneyama, Koichi; Bouwmeester, Harro J

    2008-07-01

    Parasitic plants cause devastating losses to crop yields in several parts of the world. The root parasites, Striga and Orobanche species, use chemical signalling molecules that are exuded by the roots of plants in extremely low concentrations, and that can induce germination of the seeds of these parasites, to detect the vicinity of a suitable host. The majority of the so far identified germination stimulants belong to the strigolactones. It was recently discovered that this class of compounds can also induce hyphal branching in the symbiotic arbuscular mycorrhizal fungi, a process involved in root colonisation. The elucidation of the structure of new strigolactones is hindered by their low abundance and instability. In the present paper, we have used existing knowledge on the structure of strigolactones and combined it with recently obtained insight in the biosynthetic origin of these signalling compounds. This enabled us to postulate structures for strigolactones that have been isolated but for which so far the structure has not been elucidated, but also to propose structures of strigolactones that may be discovered in the future. Considering the strongly increased importance of the strigolactones, we expect that more groups will look for these compounds and also in systems so far not exploited. This could lead to the discovery of new strigolactones for which we expect the present biogenetic considerations will facilitate identification and structure elucidation.

  17. Cultivation in space flight produces minimal alterations in the susceptibility of Bacillus subtilis cells to 72 different antibiotics and growth-inhibiting compounds.

    PubMed

    Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L

    2017-08-18

    Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences (P < 0.05, Student's t-test) in FL vs. GC samples: 6-mercaptopurine, cesium chloride, enoxacin, lomefloxacin, manganese (II) chloride, nalidixic acid, penimepicycline, rolitetracycline, and trifluoperazine. Testing of the same compounds by standard broth dilution assay did not reveal statistically significant differences in the IC50 values between FL and GC samples. The results indicate that the susceptibility of B. subtilis cells to a wide range of antibiotics and growth inhibitors is not dramatically altered by space flight.Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.

  18. Transglucosylation with 6'-chloro-6'-deoxysucrose and immobilized isomaltulose-producing microorganisms using 2,2-dimethyl-1,3-dioxolane-4-methanol and its related compounds as acceptors. Steric and chemical requirement of the glucosyl acceptor.

    PubMed

    Kakinuma, H; Tsuchiya, Y; Tanaka, M; Horito, S; Hashimoto, H

    1994-11-15

    Enantioselective and diastereoselective alpha-D-glucosylation of 2,3-O-isopropylidene-erythritol was observed in transglucosylation with a synthetic donor using three kinds of immobilized isomaltulose-producing microorganisms. Several related compounds, including an 2,3-O-isopropylidenated aldotetrose dimethyl dithioacetal and an aldotetronic acid ester were also glucosylated in moderate or good yield, depending on the microorganism utilized. Steric as well as functional group factors are discussed in relation to the substrate specificity of the glucosyl acceptor.

  19. Purification of an antifungal compound, cyclo(l-Pro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode.

    PubMed

    Nishanth Kumar, S; Mohandas, C; Nambisan, Bala

    2013-06-12

    Mold spoilage is the main cause of substantial economic loss in cereals and might also cause public health problems due to the production of mycotoxins. The aim of this study was to separate and purify and to identify antifungal compounds of bacterium associated with novel entomopathogenic nematode and check the antifungal property of identified compound in particular food model systems. The antifungal compound was purified using silica gel column chromatography, TLC and HPLC and its structure was elucidated using NMR (¹H NMR, ¹³C NMR, ¹H-¹H COSY, ¹H-¹³C HMBC), HRMS and Marfey's method. Based on the spectral data, the active compounds were identified as diketopiperazine [cyclo(l-Pro-d-Leu)]. The antifungal activity of cyclo(l-Pro-d-Leu) was studied by MIC and paper disk assay against Aspergillus flavus MTCC 277 and Aspergillus niger MTCC 282 and best MIC value of 8μg/ml was recorded against A. flavus. Cyclo(l-Pro-d-Leu) strongly inhibit mycelia growth of fungus and thereby affecting aflatoxin production. To investigate the potential application of the cyclo(l-Pro-d-Leu) and to eliminate fungal spoilage in food and feed, soybean and peanut were used as models. White mycelia and dark/pale green spores of A. flavus were observed in the control soybeans after 2-day incubation. However the fungal growth was not observed in soybeans treated with cyclo(l-Pro-d-Leu). Almost the same result was observed for peanuts treated with cyclo(l-Pro-d-Leu) for A. niger. The cyclo(l-Pro-d-Leu) was nontoxic to two normal human cell lines (FS normal fibroblast and L231 lung epithelial) up to 200μg/ml. Thus the diketopiperazine derivative identified in the study may be a promising alternative to chemical preservatives as a potential biopreservative which prevent fungal growth and mycotoxin formation in food and feed. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria

    PubMed Central

    Penesyan, Anahit; Tebben, Jan; Lee, Matthew; Thomas, Torsten; Kjelleberg, Staffan; Harder, Tilmann; Egan, Suhelen

    2011-01-01

    Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens. PMID:21892353

  1. Distribution of Off-Flavor Compounds and Isolation of Geosmin-Producing Bacteria in a Series of Water Recirculating Systems for Rainbow Trout Culture

    USDA-ARS?s Scientific Manuscript database

    Pre-harvest “off-flavor” in aquaculture products results in large economic losses to producers due to delayed harvest. The common off-flavors “earthy” and “musty” are due to the presence of geosmin and 2-methylisoborneol (MIB), respectively. Although certain species of cyanobacteria are responsibl...

  2. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo.

    PubMed Central

    Takeuchi, M.; Makita, Z.; Bucala, R.; Suzuki, T.; Koike, T.; Kameda, Y.

    2000-01-01

    BACKGROUND: The Maillard reaction that leads to the formation of advanced glycation end-products (AGE) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it was proposed that AGE were not only created by glucose, but also by dicarbonyl compounds derived from the Maillard reaction, autoxidation of sugars and other metabolic pathways of glucose. In this study, we developed four types of non-carboxymethyllysine (CML) anti-AGE antibodies that recognized proteins modified by incubation with short chain sugars and dicarbonyl compounds. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with glyceraldehyde, glycolaldehyde, methylglyoxal or glyoxal. After immunization of rabbits, four types of AGE-specific antisera were obtained that were specific for the AGE modification. To separate non-CML AGE antibodies (Ab) (non-CML AGE-Ab-2, -3, -4, and -5), these anti-AGE antisera were subjected to affinity chromatography on a matrix coupled with four kinds of AGE bovine serum albumin (BSA) or CML-BSA. These non-CML AGE antibodies were used to investigate the AGE content of serum obtained from diabetic patients on hemodialysis. RESULTS: Characterization of the four types of non-CML AGE antibodies obtained by immunoaffinity chromatography was performed by competitive ELISA and immunoblot analysis. Non-CML AGE-Ab-2 crossreacted with the protein modified by glyceraldehyde or glycolaldehyde. Non-CML AGE-Ab-3 and -Ab-4 specifically cross-reacted with protein modified by glycolaldehyde and methylglyoxal, respectively. NonCML AGE-Ab-5 cross-reacted with protein modified with glyoxal as well as methylglyoxal and glycolaldehyde. Three kinds of non-CML AGE (AGE-2, -4, and -5) were detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD; whereas, AGE-3 was detected as two peaks with apparent molecular weights of 200 and 0.85 k

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  4. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  5. Fermentative capabilities and volatile compounds produced by Kloeckera/Hanseniaspora and Saccharomyces yeast strains in pure and mixed cultures during Agave tequilana juice fermentation.

    PubMed

    González-Robles, Ivonne Wendolyne; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María

    2015-09-01

    The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds.

  6. Detection of persistent organic compounds from biomethanated distillery spent wash (BMDS) and their degradation by manganese peroxidase and laccase producing bacterial strains.

    PubMed

    Yadav, Sangeeta; Chandra, Ram

    2013-07-01

    Biomethanated distillery spent wash (BMDS) retains dark black colour with complex persistent organic pollutants even after anaerobic treatment. The specific ratio (4:3:1:1) of Proteus mirabilis (FJ581028), Bacillus sp. (FJ581030), Raoultella planticola (GU329705) and Enterobacter sakazakii (FJ581031) decolourised BMDS up to 76% within 192 hr along with degradation of persistent organic compounds in presence of glucose (1%) and peptone (0.1%). The colour removal ability was noted due to ligninolytic enzyme activity. Where the maximum manganese peroxidase was 1.93 U ml(-1) and laccase activity equalled 0.84 U ml(-1). The gas chromatography-mass spectrophotometry (GC-MS) analysis confirmed the direct correlation between colourant and persistent organic pollutants due to simultaneous reduction of colour and pollutants present in BMDS. The seed germination test showed reduction of 75% toxicity after bacterial treatment process.

  7. Removal of tetrafluoroborate ion from aqueous solution using magnesium-aluminum oxide produced by the thermal decomposition of a hydrotalcite-like compound.

    PubMed

    Yoshioka, Toshiaki; Kameda, Tomohito; Miyahara, Motoya; Uchida, Miho; Mizoguchi, Tadaaki; Okuwaki, Akitsugu

    2007-10-01

    Magnesium-aluminum oxide (Mg-Al oxide) prepared by the thermal decomposition of a hydrotalcite-like compound was found to have potential for treating NaBF(4) wastewater. The Mg-Al oxide removed the BF(4)(-) and F(-) and H(3)BO(3) from the NaBF(4) solution. With increasing Mg-Al oxide quantity and time, the BF(4)(-) concentration decreased and the degree of BF(4)(-), F(-), and boron removal increased. The decrease in the BF(4)(-) concentration resulted from uptake by the Mg-Al oxide and not hydrolysis. The Mg-Al oxide took up F(-) from the solution preferentially. The Mg-Al oxide also converted the H(3)BO(3) in the aqueous solution into H(2)BO(3)(-), which it took up.

  8. Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry.

    PubMed

    Chen, Juan; Tang, Junni; Shi, Hui; Tang, Cheng; Zhang, Rong

    2017-03-01

    The characteristics of volatile compounds from five different bacterial species, Escherichia coli O157:H7, Salmonella Enteritidis, Shigella flexneri, Staphylococcus aureus, and Listeria monocytogenes, growing, respectively, in trypticase soy broth were monitored by headspace solid-phase micro-extraction/gas chromatography-mass spectrometry. The results showed that most volatile organic compounds (VOCs) of five pathogens started to increase after the sixth to tenth hour. Methyl ketones and long chain alcohols were representative volatiles for three Gram-negative bacteria. The especially high production of indole was characterized to E. coli O157:H7. The production of 3-hydroxy-2-butanone was indicative of the presence of two Gram-positive bacteria. Both 3-methyl-butanoic acid and 3-methyl-butanal were unique biomarkers for S. aureus. The population dynamics of individual pathogen could be monitored using the accumulation of VOCs correlated with its growth. And these five pathogens could be distinguishable though principle component analysis of 18 volatile metabolites. Moreover, the mixed culture of S. aureus and E. coli O157:H7 was also investigated. The levels of 3-methyl-butanal and 3-methyl-butanoic acid were largely reduced; while the level of indole almost unchanged and correlated with E. coli O157:H7 growth very well. The characteristics of volatiles from the five foodborne pathogens could lay a fundamental basis for further research into pathogen contamination control by detecting volatile signatures of pathogens. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux < 3%). We present three new portable "Reactive Gas Standard ReGaS" reference gas generators for the realisation of the following substances: ReGaS1: Ammonia and nitrogen dioxide in the nmol/mol (ppb) range ReGaS2: Volatile organic compounds (VOCs), e.g. limonene, alpha-pinene, MVK, MEK in the nmol/mol (ppb) range ReGaS-3: Fluorinated gases (F-gases, i.e. containing fluorine atoms) in the pmol/mol (ppt) range These three mobile generators have been designed and manufactured at METAS in the framework of the three EMRP projects MetNH3, KEY-VOCs and HIGHGAS. The method is based on permeation and subsequent dynamic dilution: A permeation tube containing the pure substance (e.g. NH3) is stored in the permeation chamber at constant temperature, pressure and matrix gas flow (N2, purified air, synthetic air). Under such conditions the pure substance permeates at constant rate into the matrix gas and can be diluted thereafter to the desired amount fractions in one or two subsequent steps. The permeation rate (mass loss over time) of the permeation tube is precisely calibrated in a fully traceable magnetic suspension balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce

  10. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Devanathan, Gnanasekaran; Subramanian, Annamalai; Bulbule, Kesav A; Parthasarathy, Peethambaram; Takahashi, Shin; Tanabe, Shinsuke

    2012-10-15

    We determined the contamination status and accumulation profiles of polychlorinated biphenyls (PCBs), hydroxylated PCB congeners (OH-PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in serum from e-waste recycling workers and residents near a coastal area in India. Residue levels of penta- to octa-chlorinated PCBs, penta- to octa-chlorinated OH-PCBs, 6MeO-BDE47, 6OH-BDE47, and 2,4,6-tri-BPh in serum from residents living near the coastal area were significantly higher than those in serum from e-waste recycling workers. Residue levels of tri- to tetra-chlorinated PCBs, tri- to tetra-chlorinated OH-PCBs, PBDEs, octa-brominated OH-PBDEs, and tetra-BPhs in serum from e-waste recycling workers were higher than those in serum from residents living near the coastal area. Principal component analysis revealed that residents living near the coastal area and e-waste recycling workers had different serum profiles of chlorinated and brominated compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    SciTech Connect

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  12. Off-odor compounds produced in cork by isolated bacteria and fungi: a gas chromatography-mass spectrometry and gas chromatography-olfactometry study.

    PubMed

    Prat, Chantal; Trias, Rosalia; Culleré, Laura; Escudero, Ana; Anticó, Enriqueta; Bañeras, Lluís

    2009-08-26

    The risk of development of specific olfactory profiles in cork was evaluated after inoculation of cork granules and agglomerated and natural cork stoppers with isolated bacteria and fungi. The highest incidence of off-odor development was found in assays when fungi were inoculated. Cork granules with musty-earthy, musty-earthy-TCA, and vegetative deviations were inspected by gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). Sixteen odor zones were clearly recognized in the GC-O analyses. Among these, octanal, 2-methoxy-3,5-dimethylpyrazine (MDMP), Z-2-nonenal, 2-methylisoborneol, 2,4,6-trichloroanisole (TCA), geosmin, and guaiacol were the most significant odorants and helped in the discrimination of sensory deviations. Only TCA and guaiacol were detected above their respective detection limits by HS-SPME-GC-MS. The fungi Cryptococcus sp. isolate F020, Rhodotorula sp. isolate F025, Penicillium glabrum isolate F001, and Pennicillium variabile F003A and the bacterium Pseudomonas jessenii isolate A1 were found to produce TCA to a greater extent. Additionally, 13 of 38 isolated microorganisms (2 bacteria and 11 fungi) proved able to produce unpleasant musty-earthy or vegetative odors that were not related to a significant TCA accumulation.

  13. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  14. Novel preharvest strategies involving the use of experimental chlorate preparations and nitro-based compounds to prevent colonization of food-producing animals by foodborne pathogens.

    PubMed

    Anderson, R C; Harvey, R B; Byrd, J A; Callaway, T R; Genovese, K J; Edrington, T S; Jung, Y S; McReynolds, J L; Nisbet, D J

    2005-04-01

    Foodborne diseases caused by enterohemorrhagic Escherichia coli, Salmonella, and Campylobacter species are of public health and economic significance. Shedding of these pathogens during production and slaughter are risks for contamination of products for human consumption. Consequently, strategies are sought to prevent or reduce the carriage of these pathogens in food animals before slaughter. Experimental products containing chlorate salts have been proven efficacious in reducing concentrations of E. coli and Salmonella Typhimurium in the gut of cattle, sheep, swine, and poultry when administered as feed or water additives. Mechanistically, chlorate selectively targets bacteria expressing respiratory nitrate reductase activity, such as most members of the family Enterobacteriaceae, as this enzyme catalyzes the reduction of chlorate to lethal chlorite. Most beneficial gut bacteria lack respiratory nitrate reductase activity, and thus the technology appears compatible with many bacteria exhibiting competitive exclusion capabilities. More recently, select nitrocompounds have been investigated as potential feed additives, and although these nitrocompounds significantly reduce pathogens on their own, evidence indicates that they may most effectively be used to complement the bactericidal activity of chlorate. A particularly attractive aspect of the nitrocompound technology is that, as potent inhibitors of ruminal methanogenesis, they may allow producers the opportunity to recoup costs associated with their use. At present, neither chlorate nor the nitrocompounds have been approved as feed additives by the US Food and Drug Administration, and consequently they are not yet available for commercial use.

  15. Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations.

    PubMed

    Jiménez-Sánchez, Cecilia; Lozano-Sánchez, Jesús; Marti, Nuria; Saura, Domingo; Valero, Manuel; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2015-09-01

    Persimmon juice is emerging in the global juice market as a new wholesome commercial juice that could effectively complement a healthy diet, given the epidemiological evidence linking a diet rich in fruits and vegetables with reduced incidences of chronic diseases. However, little data are available on the persimmon-juice composition or on the effect of the technological treatment employed for its production. The present work performs a complete qualitative analytical characterization through high-performance liquid chromatography coupled to electrospray time-of-flight mass spectrometry (HPLC-DAD-ESI-TOF/MS) of the diverse persimmon juices produced under different technologies in a pilot plant (clarification, astringency removal, flash vacuum expansion, centrifugation and pasteurization) in order to evaluate the effect of the different production procedures on the polar chemical profile of persimmon juice. Persimmon-juice extracts have been found to be a source of sugars, protein derivatives, organic acids, vitamins, and polyphenols, including simple polyphenols (phenolic acids and flavonoids) and polymerized flavan-3-ols. A marked influence of processing on the composition of the juices has been noticed. Extracts 3 and 7 (undergoing the combinations of clarification and centrifugation, and astringency removal, centrifugation and pasteurization, respectively) contained more polyphenols, which may help reduce risk of chronic diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Identification of potent bactericidal compounds produced by escapin, an L-amino acid oxidase in the ink of the sea hare Aplysia californica.

    PubMed

    Ko, Ko-Chun; Wang, Binghe; Tai, Phang C; Derby, Charles D

    2008-12-01

    The ink of sea hares (Aplysia californica) contains escapin, an L-amino acid oxidase that metabolizes L-lysine, thereby producing a mixture that kills microbes and deters attacking predators. This secretion contains H2O2,ammonia, and an equilibrium mixture of "escapin intermediate product" (EIP-K) that includes alpha-keto-epsilon-aminocaproic acid and several other molecules. Components of the equilibrium mixture react nonenzymatically with H2O2 to form "escapin end product" (EEP-K), which contains delta-aminovaleric acid and delta-valerolactam. The proportions of the molecules in this equilibrium mixture change with pH, and this is biologically important because the secretion is pH 5 when released but becomes pH 8 when fully diluted in seawater. The goal of the current study was to identify which molecules in this equilibrium mixture are bactericidal. We show that a mixture of H2O2 and EIP-K, but not EEP-K, at low mM concentrations is synergistically responsible for most of the bactericidal activity of the secretion against Escherichia coli, Vibrio harveyi, Staphylococcus aureus,and Pseudomonas aeruginosa. Low pH enhances the bactericidal effect, and this does not result from stress associated with low pH itself. Sequential exposure to low mM concentrations of EIP-K and H2O2, in either order, does not kill E. coli. Reaction products formed when L-arginine is substituted for L-lysine have almost no bactericidal activity. Our results favor the idea that the bactericidal activity is due to unstable intermediates of the reaction of alpha-keto-epsilon-aminocaproic acid with H2O2.

  17. Oxidation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine by Oxyl Radicals Produced by Photolysis of Azo Compounds

    PubMed Central

    Shao, Jie; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2010-01-01

    Oxidative damage to 8-oxo-7,8-dihydroguanine (8-oxoG) bases initiated by photolysis of the water-soluble radical generator 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) has been investigated by laser kinetic spectroscopy. In neutral oxygenated aqueous solutions, 355 nm photolysis of AAPH initiates efficient one-electron oxidation of the 8-oxodG nucleosides directly monitored by the appearance of the 8-oxodG•+/8-oxodG(-H)• radicals at 325 nm. The reaction kinetics are consisted with a mechanism that includes the transformation of the 2-amidinoprop-2-peroxyl radicals (ROO•) derived from photolysis of AAPH to more reactive 2-amidinoprop-2-oxyl radicals (RO•), which directly react with the 8-oxoG bases. The major pathways for the formation of end products of 8-oxoG oxidation include the combination of the 8-oxodG•+/8-oxodG(-H)• radicals with superoxide (O2•−) and ROO• radicals in approximately 1:1 ratios, as demonstrated by experiments with Cu, Zn superoxide dismutase to form dehydroguanidinohydantoin (Ghox) derivatives. This mechanism was confirmed by analysis of the end products produced by the oxidation of two substrates: (1) the 8-oxoG derivative 2′,3′,5′-tri-O-acetylguanosine (tri-O-Ac-G), and (2) the 5′-d(CCATC[8-oxoG]CTACC) sequence. The major products isolated by HPLC and identified by mass spectrometry methods were the tri-O-Ac-Ghox and 5′-d(CCATC[Ghox]CTACC products. PMID:20408566

  18. Identification of Potent Bactericidal Compounds Produced by Escapin, an l-Amino Acid Oxidase in the Ink of the Sea Hare Aplysia californica▿ †

    PubMed Central

    Ko, Ko-Chun; Wang, Binghe; Tai, Phang C.; Derby, Charles D.

    2008-01-01

    The ink of sea hares (Aplysia californica) contains escapin, an l-amino acid oxidase that metabolizes l-lysine, thereby producing a mixture that kills microbes and deters attacking predators. This secretion contains H2O2, ammonia, and an equilibrium mixture of “escapin intermediate product” (EIP-K) that includes α-keto-ɛ-aminocaproic acid and several other molecules. Components of the equilibrium mixture react nonenzymatically with H2O2 to form “escapin end product” (EEP-K), which contains δ-aminovaleric acid and δ-valerolactam. The proportions of the molecules in this equilibrium mixture change with pH, and this is biologically important because the secretion is pH 5 when released but becomes pH 8 when fully diluted in seawater. The goal of the current study was to identify which molecules in this equilibrium mixture are bactericidal. We show that a mixture of H2O2 and EIP-K, but not EEP-K, at low mM concentrations is synergistically responsible for most of the bactericidal activity of the secretion against Escherichia coli, Vibrio harveyi, Staphylococcus aureus, and Pseudomonas aeruginosa. Low pH enhances the bactericidal effect, and this does not result from stress associated with low pH itself. Sequential exposure to low mM concentrations of EIP-K and H2O2, in either order, does not kill E. coli. Reaction products formed when l-arginine is substituted for l-lysine have almost no bactericidal activity. Our results favor the idea that the bactericidal activity is due to unstable intermediates of the reaction of α-keto-ɛ-aminocaproic acid with H2O2. PMID:18852282

  19. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  20. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.

    PubMed

    Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen

    2017-04-01

    Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.

  1. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    PubMed

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  2. Effect of high-pressure treatment and a bacteriocin-producing lactic culture on the odor and aroma of hispánico cheese: correlation of volatile compounds and sensory analysis.

    PubMed

    Avila, Marta; Garde, Sonia; Fernández-García, Estrella; Medina, Margarita; Nuñez, Manuel

    2006-01-25

    The effect on the volatile compounds and on the odor and aroma of Hispánico cheese of a high-pressure (HP) treatment (400 MPa for 5 min at 10 degrees C, applied to 15-day-old cheeses), by itself or combined with the addition of a bacteriocin-producing (BP) culture to milk, was investigated. HP-treated cheeses showed higher levels of hexanal, 3-hydroxy-2-pentanone, 2-hydroxy-3-pentanone, and hexane and lower levels of ethanal, ethanol, 1-propanol, ethyl acetate, ethyl butanoate, ethyl hexanoate, 2-pentanone, and butanoic acid than untreated cheeses. HP cheeses received higher "milky" odor descriptor scores and lower scores for odor quality and intensity and for "buttery", "yogurt-like", and "caramel" odor descriptors. Addition of the BP culture enhanced the formation of three aldehydes, three alcohols, three ethyl esters, and three ketones but decreased the levels of seven ketones and butanoic acid. BP cheeses received higher scores for aroma intensity and for "yogurt-like" and "cheesy" aroma descriptors. Principal component analysis showed the correlation between diketones and aroma descriptors "caramel", "buttery", and "milky" and between 3-methylbutanal and the odor and aroma intensity scores and aroma descriptors "sheepy" and "meat broth".

  3. AVERAGE HEATING RATE OF HOT ATMOSPHERES IN DISTANT CLUSTERS BY RADIO ACTIVE GALACTIC NUCLEUS: EVIDENCE FOR CONTINUOUS ACTIVE GALACTIC NUCLEUS HEATING

    SciTech Connect

    Ma, C.-J.; McNamara, B. R.; Schaffer, R.; Nulsen, P. E. J.; Vikhlinin, A.

    2011-10-20

    We examine atmospheric heating by radio active galactic nuclei (AGNs) in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree (400SD) X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within a projected radius of 250 kpc. The radio emission is presumably associated with the brightest cluster galaxy. The mechanical jet power for each radio source was determined using scaling relations between radio power and cavity (mechanical) power determined for nearby clusters, groups, and galaxies with hot atmospheres containing X-ray cavities. The average jet power of central radio AGNs is approximately 2 x 10{sup 44} erg s{sup -1}. We find no significant correlation between radio power, and hence mechanical jet power, and the X-ray luminosities of clusters in the redshift range 0.1-0.6. This implies that the mechanical heating rate per particle is higher in lower mass, lower X-ray luminosity clusters. The jet power averaged over the sample corresponds to an atmospheric heating of approximately 0.2 keV per particle within R{sub 500}. Assuming the current AGN heating rate does not evolve but remains constant to redshifts of 2, the heating rate per particle would rise by a factor of two. We find that the energy injected from radio AGNs contribute substantially to the excess entropy in hot atmospheres needed to break self-similarity in cluster scaling relations. The detection frequency of radio AGNs is inconsistent with the presence of strong cooling flows in 400SD clusters, but does not exclude weak cooling flows. It is unclear whether central AGNs in 400SD clusters are maintained by feedback at the base of a cooling flow. Atmospheric heating by radio AGNs may retard the development of strong cooling flows at early epochs.

  4. Freeze-drying of hemoglobin solutions without adjuvant and in presence of glucose, tris, and beta-alanine: a study by electron spin resonance of the oxidized compounds produced.

    PubMed

    Chaillot, B; Labrude, P; Vigneron, C; Simatos, D

    1981-06-01

    Hemoglobin cannot be freeze-dried without the presence of protective compounds. Carbohydrates are a well-known example of such compounds, but we have shown that some amine buffer and amino acids are also very effective. The mechanism of action of all these molecules is unknown. We report here experimental data showing that the protective effect is not the result of a direct bond between iron and the protective compound added.

  5. Method of preparing metallocene compounds

    DOEpatents

    Rosenblum, Myron; Matchett, Stephen A.

    1992-01-01

    This invention describes a novel method of preparing metallocene compounds. The invention is based on synthesis of novel bis cyclopentadienides that, under appropriate conditions, will either encapsulate a transition metal to produce a metallocene such as ferrocene, or ferrocene derivative, or will yield a polymeric metallocene. Compounds produced by this process are useful as catalysts in propulsion systems, or as anti-knock compounds in gasolines.

  6. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  7. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  8. Polybenzimidazole compounds

    SciTech Connect

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J; Jones, Michael G; Wertsching, Alan K; Luther, Thomas A; Trowbridge, Tammy L

    2011-11-22

    A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO--, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.

  9. Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments

    PubMed Central

    You, Zhong-Yuan; Wang, Ya-Hui; Zhang, Zhi-Gang; Xu, Min-Juan; Xie, Shu-Jie; Han, Tie-Sheng; Feng, Lei; Li, Xue-Gong; Xu, Jun

    2013-01-01

    The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif), and a mutated rpsL gene to confer streptomycin resistance (Str), was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1) and D (2), were isolated from the crude extracts of a selected Str-Rif double mutant (M6) of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26), and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds. PMID:24152563

  10. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  11. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  12. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  13. Antifungal compounds from cyanobacteria.

    PubMed

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  14. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  15. Perfluorinated Compounds

    EPA Science Inventory

    Perfluorinated compounds such as the perfluoroalkyl acids (PFAAs) and their derivatives are important man-made chemicals that have wide consumer and industrial applications. They are relatively contemporary chemicals, being in use only since the 1950s, and until recently, have be...

  16. Novel bioactive compounds from actinomycetes.

    PubMed

    Sanglier, J J; Wellington, E M; Behal, V; Fiedler, H P; Ellouz Ghorbel, R; Finance, C; Hacene, M; Kamoun, A; Kelly, C; Mercer, D K

    1993-10-01

    Actinomycetes form an enormous reservoir of secondary metabolites and enzymes. The potential for exploiting rare actinomycetes is highlighted by the discovery of novel compounds from strains of Spirillospora and Nocardioides. Novel compounds of well known classes of antibiotics, such as polyenes, continue to be discovered. For compounds containing a chromophore, the analysis by high-performance liquid chromatography coupled with a diode-array detector enables the elimination of producers of known compounds and facilitates the discovery of novel compounds or derivatives. The complexity of the regulatory mechanisms is illustrated by glutamine synthetase. The characterization of thermostable amylolytic, lignolytic, peroxidase and neuramidase activities, and the isolation of novel cellulolytic actinomycetes clearly demonstrate the potential of Actinomycetes as producers of enzymes.

  17. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  18. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  19. Biodegradation of nitroaromatic compounds.

    PubMed

    Spain, J C

    1995-01-01

    Nitroaromatic compounds are released into the biosphere almost exclusively from anthropogenic sources. Some compounds are produced by incomplete combustion of fossil fuels; others are used as synthetic intermediates, dyes, pesticides, and explosives. Recent research revealed a number of microbial systems capable of transforming or biodegrading nitroaromatic compounds. Anaerobic bacteria can reduce the nitro group via nitroso and hydroxylamino intermediates to the corresponding amines. Isolates of Desulfovibrio spp. can use nitroaromatic compounds as their source of nitrogen. They can also reduce 2,4,6-trinitrotoluene to 2,4,6-triaminotoluene. Several strains of Clostridium can catalyze a similar reduction and also seem to be able to degrade the molecule to small aliphatic acids. Anaerobic systems have been demonstrated to destroy munitions and pesticides in soil. Fungi can extensively degrade or mineralize a variety of nitroaromatic compounds. For example, Phanerochaete chrysosporium mineralizes 2,4-dinitrotoluene and 2,4,6-trinitrotoluene and shows promise as the basis for bioremediation strategies. The anaerobic bacteria and the fungi mentioned above mostly transform nitroaromatic compounds via fortuitous reactions. In contrast, a number of nitroaromatic compounds can serve as growth substrates for aerobic bacteria. Removal or productive metabolism of nitro groups can be accomplished by four different strategies. (a) Some bacteria can reduce the aromatic ring of dinitro and trinitro compounds by the addition of a hydride ion to form a hydride-Meisenheimer complex, which subsequently rearomatizes with the elimination of nitrite. (b) Monooxygenase enzymes can add a single oxygen atom and eliminate the nitro group from nitrophenols. (c) Dioxygenase enzymes can insert two hydroxyl groups into the aromatic ring and precipitate the spontaneous elimination of the nitro group from a variety of nitroaromatic compounds. (d) Reduction of the nitro group to the corresponding

  20. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  1. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  2. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  3. Toxic compounds in honey.

    PubMed

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food.

  4. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  5. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  6. Amino acid modifiers in guayule rubber compounds

    USDA-ARS?s Scientific Manuscript database

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  7. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-04

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  8. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  9. Compound Separation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Jet Propulsion Laboratory developed a new one-step liquid-liquid extraction technique which cuts processing time, reduces costs and eliminates much of the equipment required. Technique employs disposable extraction columns, originally developed as an aid to the Los Angeles Police Department, which allow more rapid detection of drugs as part of the department's drug abuse program. Applications include medical treatment, pharmaceutical preparation and forensic chemistry. NASA waived title to Caltech, and Analytichem International is producing Extubes under Caltech license.

  10. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  11. Antitumor Compounds from Marine Actinomycetes

    PubMed Central

    Olano, Carlos; Méndez, Carmen; Salas, José A.

    2009-01-01

    Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds. PMID:19597582

  12. Method for producing uranium atomic beam source

    DOEpatents

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  13. Methods of producing cesium-131

    DOEpatents

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  14. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-04

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.

  15. PROCESS OF PRODUCING A NIOBIUM-TIN COMPOUND

    DOEpatents

    Zegler, S.T.; Darby, J.B. Jr.

    1963-04-01

    This patent deals with a process of preparing pure Nb/sub 3/Sn. The process comprises heating powders of niobium and excess tin to 900 to 1000 deg C, whereby niobium reacts with the molten tin under the formation of Nb/sub 3/Sn; cooling and powdering the product and immersing the powder in concentrated hydrochloric acid for removal of excessive tin; separating the Nb/sub 3/Sn, rinsing and drying it and sintering it in an inert atmosphere at 900 to 1300 deg C. (AEC)

  16. Biologically produced volatile compounds: N2O emissions from soils

    NASA Technical Reports Server (NTRS)

    Banin, A.

    1985-01-01

    Tropospheric nitrous concentration has increased by 0.2 0.4% per year over the period 1975 to 1982, amounting to net addition to the atmosphere of 2.8 - 5.6 Tg N2O-N per year. This perturbation, if continued into the future, will affect stratospheric chemical cycles, and the thermal balance of the Earth. In turn it will have direct and indirect global effects on the biosphere. Though the budget and cycles of N2O on Earth are not yet fully resolved, accumulating information and recent modelling efforts permit a more complete evaluation and better definition of gaps in our knowledge.

  17. Terrestrial Microcosm Evaluation of Two Army Smoke-Producing Compounds.

    DTIC Science & Technology

    1988-01-29

    way ANCV, and linear regression tc test :-e rate of decline of C02-C soil respiration over time (b-parameter in tne selected model for each cart...surface area, x is the ieosition of phosphorus level), was fitted to the data. When the qudcratic terTm was rot sigrificant (p > 0.35), a linear model , y...sweetclover), and ele’ent P I’ , s, and 7b ta’e ,, :lants. ?ce-,-es cnse c, e . ,e,e L these effects data using either a quadratic or linear model

  18. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  19. Antibacterial and Antifungal Compounds from Marine Fungi

    PubMed Central

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616

  20. Antibacterial and antifungal compounds from marine fungi.

    PubMed

    Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui

    2015-06-02

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  1. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  2. High performance compound semiconductor SPAD arrays

    NASA Astrophysics Data System (ADS)

    Harmon, Eric S.; Naydenkov, Mikhail; Bowling, Jared

    2016-05-01

    Aggregated compound semiconductor single photon avalanche diode (SPAD) arrays are emerging as a viable alternative to the silicon photomultiplier (SiPM). Compound semiconductors have the potential to surpass SiPM performance, potentially achieving orders of magnitude lower dark count rates and improved radiation hardness. New planar processing techniques have been developed to enable compound semiconductor SPAD devices to be produced with pixel pitches of 11 - 25 microns, with thousands of SPADs per array.

  3. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  4. Basics of compounding with tars.

    PubMed

    Allen, Loyd V

    2013-01-01

    Tar has been used throughout history for numerous purposes; from sealing the hulls of ships to sealing roofs of dwellings and even for medical purposes. Produced by destructive distillation, commonly used tars are prepared from coal and wood. Coal tar, juniper tar, and pine tar are used for various medical purposes as described in the article. Also presented are the various characteristics and uses of each tar, along with commercial products and numerous compounding formulas. Techniques used to compound with tars are also presented.

  5. Two marine Agrobacterium producers of sesbanimide antibiotics.

    PubMed

    Acebal, C; Alcazar, R; Cañedo, L M; de la Calle, F; Rodriguez, P; Romero, F; Fernandez Puentes, J L

    1998-01-01

    Sesbanimides are cytotoxic compounds, originally isolated in 1983 from seeds of the leguminous plants Sesbania drummondii and Sesbania punicea. In this paper we describe the bacterial production of sesbanimides by two "marine Agrobacterium"; strain PH-103 which produces Sesbanimide-A and strain PH-A034C which produces Sesbanimide-C. The isolation and taxonomy of the producing microorganisms, fermentation and isolation of sesbanimides are reported.

  6. Antimicrobial Action of Compounds from Marine Seaweed.

    PubMed

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-03-09

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.

  7. Antimicrobial Action of Compounds from Marine Seaweed

    PubMed Central

    Pérez, María José; Falqué, Elena; Domínguez, Herminia

    2016-01-01

    Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637

  8. Veterinary Compounding: Regulation, Challenges, and Resources.

    PubMed

    Davidson, Gigi

    2017-01-10

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality.

  9. Veterinary Compounding: Regulation, Challenges, and Resources

    PubMed Central

    Davidson, Gigi

    2017-01-01

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality. PMID:28075379

  10. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  11. The natural production of organobromine compounds.

    PubMed

    Gribble, G W

    2000-03-01

    Organobromine chemicals are produced naturally by an array of biological and other chemical processes in our environment. Some of these compounds are identical to man-made organobromine compounds, such as methyl bromide, bromoform, and bromophenols, but many others are entirely new moleclar entities, often possessing extraordinary and important biological properties. Although only a few natural organobromine compounds had been discovered up to 1968, this number as of early 1999 is more than 1,600, and new examples are being discovered continually. Organobromine compounds are produced naturally by marine creatures (sponges, corals, sea slugs, tunicates, sea fans) and seaweed, plants, fungi, lichen, algae, bacteria, microbes, and some mammals. Many of these organobromine compounds are used in chemical defense, to facilitate food gathering, or as hormones.

  12. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  13. Antifouling Compounds from Marine Macroalgae.

    PubMed

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  14. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  15. Broad spectrum antibiotic compounds and use thereof

    DOEpatents

    Koglin, Alexander; Strieker, Matthias

    2016-07-05

    The discovery of a non-ribosomal peptide synthetase (NRPS) gene cluster in the genome of Clostridium thermocellum that produces a secondary metabolite that is assembled outside of the host membrane is described. Also described is the identification of homologous NRPS gene clusters from several additional microorganisms. The secondary metabolites produced by the NRPS gene clusters exhibit broad spectrum antibiotic activity. Thus, antibiotic compounds produced by the NRPS gene clusters, and analogs thereof, their use for inhibiting bacterial growth, and methods of making the antibiotic compounds are described.

  16. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  17. Dinitroso and polynitroso compounds

    PubMed Central

    Gowenlock, Brian G.; Richter-Addo, George B.

    2005-01-01

    The growing interest in the chemistry of C-nitroso compounds (RN=O; R = alkyl or aryl group) is due in part to the recognition of their participation in various metabolic processes of nitrogen-containing compounds. C-Nitroso compounds have a rich organic chemistry in their own right, displaying interesting intra- and intermolecular dimerization processes and addition reactions with unsaturated compounds. In addition, they have a fascinating coordination chemistry. While most of the attention has been directed towards C-nitroso compounds containing a single –NO moiety, there is an emerging area of research dealing with dinitroso and polynitroso compounds. In this critical review, we present and discuss the synthetic routes and properties of these relatively unexplored dinitroso and polynitroso compounds, and suggest areas of further development involving these compounds. (126 references.) PMID:16100619

  18. Saturn's Stratospheric Oxygen Compounds

    NASA Astrophysics Data System (ADS)

    Romani, Paul N.; Delgado Díaz, Héctor E.; Bjoraker, Gordon; Hesman, Brigette; Achterberg, Richard

    2016-10-01

    There are three known oxygenated species present in Saturn's upper atmosphere: H2O, CO and CO2. The ultimate source of the water must be external to Saturn as Saturn's cold tropopause effectively prevents any internal water from reaching the upper atmosphere. The carbon monoxide and dioxide source(s) could be internal, external, produced by the photochemical interaction of water with Saturn's stratospheric hydrocarbons or some combination of all of these. At this point it is not clear what the external source(s) are.Cassini's Composite InfraRed Spectrometer (CIRS) has detected emission lines of H2O and CO2 (Hesman et al., DPS 2015, 311.16 & Abbas et al. 2013, Ap. J. doi:10.1088/0004-637X/776/2/73) on Saturn. CIRS also retrieves the temperature of the stratosphere using CH4 lines at 7.7 microns. Using CIRS retrieved temperatures, the mole fraction of H2O at the 0.5-5 mbar level can be retrieved and the CO2 mole fraction at ~1-10 mbar. Coupled with ground based observations of CO (Cavalié et al., 2010, A&A, DOI: 10.1051/0004-6361/200912909) these observations provide a complete oxygen compound data set to test photochemical models.Preliminary results will be presented with an emphasis on upper limit analysis to determine the percentage of stratospheric CO and CO2 that can be produced photochemically from CIRS observational constraints on the H2O profile.

  19. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  20. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading

    Treesearch

    Junfeng Feng; Zhongzhi Yang; Chung-yun Hse; Qiuli Su; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The renewable phenolic compounds produced by directional liquefaction of biomass are a mixture of complete fragments decomposed from native lignin. These compounds are unstable and difficult to use directly as biofuel. Here, we report an efficient in situ catalytic hydrogenation method that can convert phenolic compounds into saturated cyclohexanes. The process has...

  1. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius.

    PubMed

    Noh, Kyeong-Hwan; Oh, Deok-Kun

    2009-11-01

    The rare ginsenosides compound K, compound Y, and compound Mc were produced from the major ginsenosides Rb(1), Rb(2), Rc, and Rd by a thermostable beta-glycosidase from Sulfolobus acidocaldarius via three pathways: Rb(1)-->Rd-->compound K, Rb(2)-->compound Y-->compound K, and Rc-->compound Mc. Each of the ginsenosides was identified by high-performance liquid chromatography using standards and liquid chromatography-mass spectrometry based on their molecular weights. The catalytic efficiency of the enzyme for ginsenosides followed the order Rb(1) (4.8)>Rc (4.5)>Rd (1.0)>Rb(2) (0.77 mM(-1) min(-1)). The enzyme converted 1 mg/ml reagent-grade Rb(1), Rb(2), and Rc to 0.53 mg/ml compound K, 0.56 mg/ml compound Y, and 0.70 mg/ml compound Mc, respectively, at pH 5.5 and 85 degrees C after 180 min, corresponding to mole conversion yields of 94, 80, and 100% (mol/mol), respectively. The enzyme converted the major ginsenosides Rb(1), Rb(2), Rc, and Rd in 10% (w/v) ginseng root extract to the rare ginsenosides with a mole yield of 99% after 24 h. These results suggest that beta-glycosidase from S. acidocaldarius can be used to produce compound K, compound Y, and compound Mc.

  2. Polymeric nanocomposites: compounding and performance.

    PubMed

    Utracki, L A

    2008-04-01

    Polymeric nanocomposites (PNC) are binary mixtures of strongly interacting, inorganic platelets dispersed in a polymeric matrix. For full exfoliation, the thermodynamic miscibility is required. There are three basic methods of organically-modified clay dispersion that might result in PNC: (1) in polymer solution (followed by solvent removal), (2) in a monomer (followed by polymerization), and (3) in molten polymer (compounding). Most commercial PNC are produced by the second method, but it is the third one that has the greatest promise for the plastics industry. Similarly as during the manufacture of polymer blends, the layered silicates must be compatibilized by intercalation with organic salts and/or addition of functionalized macromolecules. Compounding affects the kinetics of dispersion process, but rarely the miscibility. Melt compounding is carried out either in a single-screw (SSE) or a twin-screw extruder (TSE). Furthermore, an extensional flow mixer (EFM) might be attached to an extruder. Two versions of EFM were evaluated: (1) designed for polymer homogenization and blending, and (2) designed for dispersing nano-particles. In this review, the dispersion of organoclay in polystyrene (PS), polyamide-6 (PA-6) or in polypropylene (PP) is discussed. The PNC based on PS or PA-6 contained two components (polymer and organoclay), whereas those based on PP in addition had a compatibilizer mixture of two maleated polypropylenes. Better dispersion was found compounding PNC's in a SSE + EFM than in TSE with or without EFM. The mechanical performance (tensile, flexural and impact) was examined.

  3. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  6. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  7. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  8. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  9. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  10. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  11. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    PubMed

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  12. XAFS Model Compound Library

    DOE Data Explorer

    Newville, Matthew

    The XAFS Model Compound Library contains XAFS data on model compounds. The term "model" compounds refers to compounds of homogeneous and well-known crystallographic or molecular structure. Each data file in this library has an associated atoms.inp file that can be converted to a feff.inp file using the program ATOMS. (See the related Searchable Atoms.inp Archive at http://cars9.uchicago.edu/~newville/adb/) This Library exists because XAFS data on model compounds is useful for several reasons, including comparing to unknown data for "fingerprinting" and testing calculations and analysis methods. The collection here is currently limited, but is growing. The focus to date has been on inorganic compounds and minerals of interest to the geochemical community. [Copied, with editing, from http://cars9.uchicago.edu/~newville/ModelLib/

  13. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  14. Nitrodifluoraminoterphenyl compounds and processes

    DOEpatents

    Lerom, M.W.; Peters, H.M.

    1975-07-08

    This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)

  15. Exploring marine resources for bioactive compounds.

    PubMed

    Kiuru, Paula; DʼAuria, M Valeria; Muller, Christian D; Tammela, Päivi; Vuorela, Heikki; Yli-Kauhaluoma, Jari

    2014-09-01

    Biodiversity in the seas is only partly explored, although marine organisms are excellent sources for many industrial products. Through close co-operation between industrial and academic partners, it is possible to successfully collect, isolate and classify marine organisms, such as bacteria, fungi, micro- and macroalgae, cyanobacteria, and marine invertebrates from the oceans and seas globally. Extracts and purified compounds of these organisms can be studied for several therapeutically and industrially significant biological activities, including anticancer, anti-inflammatory, antiviral, antibacterial, and anticoagulant activities by applying a wide variety of screening tools, as well as for ion channel/receptor modulation and plant growth regulation. Chromatographic isolation of bioactive compounds will be followed by structural determination. Sustainable cultivation methods for promising organisms and biotechnological processes for selected compounds can be developed, as well as biosensors for monitoring the target compounds. The (semi)synthetic modification of marine-based bioactive compounds produces their new derivatives, structural analogs and mimetics that could serve as hit or lead compounds and be used to expand compound libraries based on marine natural products. The research innovations can be targeted for industrial product development in order to improve the growth and productivity of marine biotechnology. Marine research aims at a better understanding of environmentally conscious sourcing of marine biotechnology products and increased public awareness of marine biodiversity. Marine research is expected to offer novel marine-based lead compounds for industries and strengthen their product portfolios related to pharmaceutical, nutraceutical, cosmetic, agrochemical, food processing, material and biosensor applications.

  16. Design for Producibility. A Design Producibility Algorithm

    DTIC Science & Technology

    1990-03-01

    year. NOFORN, REL, ITAR ). Block 3. Tve of Report and Dates Covered. State whether report is interim, fihal, etc. If DOD See DoDD 5230.24, "Distribution...3.0 PRODUCIBILITY TOOLS 2 4.0 SCHEDULES/PHASES 3 4.1 PRIOR TO SRR 3 4.2 AT THE SRR 3 4.3 THE FLOW FROM SRR TO SDR 4 4.4 AT THE SDR 16 4.5 THE FLOW FROM... SDR TO CDR 16 4.6 AT THE PDR 23 4.7 BETWEEN PDR AND CDR 23 4.8 AT THE CDR 24 4.9 THE FLOW BEYOND CDR 24 5.0 PRODUCIBILITY SUCCESS MEASUREMENT 25 6.0

  17. Technology Roadmaps for Compound Semiconductors.

    PubMed

    Bennett, H S

    2000-01-01

    The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA's Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied.

  18. Technology Roadmaps for Compound Semiconductors

    PubMed Central

    Bennett, Herbert S.

    2000-01-01

    The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615

  19. Bioactive compounds from northern plants.

    PubMed

    Hohtola, Anja

    2010-01-01

    Northern conditions are characterised by long days with much light and low temperatures during the growing season. It has been chimed that herbs and berries grown in the north are stronger tasting compared to those of southern origin. The compounds imparting aroma and color to berries and herbs are secondary metabolites which in plants mostly act as chemical means of defense. Recently, the production of secondary metabolites using plant cells has been the subject of expanding research. Light intensity, photoperiod and temperature have been reported to influence the biosynthesis of many secondary metabolites. Native wild aromatic and medicinal plant species of different families are being studied to meet the needs of raw material for the expanding industry of e.g., health-promoting food products known as nutraceutics. There are already a large number of known secondary compounds produced by plants, but the recent advances in modern extraction and analysis should enable many more as yet unknown compounds to be found, characterised and utilised. Rose root (Rhodiola rosea) is a perennial herbaceous plant which inhabits mountain regions throughout Europe, Asia and east coastal regions of North America. The extract made from the rhizomes acts as a stimulant like the Ginseng root. Roseroot has been categorized as an adaptogen and is reported to have many pharmacological properties. The biologically active components of the extract are salitroside tyrosol and cinnamic acid glycosides (rosavin, rosarin, rosin). Round-leaved sundew (Drosera rotundifolia L.) has circumboreal distribution. It inhabits nutrient-poor, moist and sunny areas such as peat bogs and wetlands. Sundew leaves are collected from the wild-type for various medicinal preparations and can be utilized in treating e.g., as an important "cough-medicine" for different respiratory diseases. The antimicrobial activity of extracts of aerial parts against various bacteria has been investigated. Drosera produces

  20. New reactions of paraformaldehyde and formaldehyde with inorganic compounds

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Bercovici, T.; Hong, K.

    1974-01-01

    Both paraformaldehyde and formaldehyde undergo reactions in the presence of several inorganic compounds to generate a variety of interesting organic products that can be important in chemical evolutionary processes. Some examples are acrolein, acetaldehyde, methyl formate, methanol, glycolaldehyde and formic acid. The organic compounds are produced at temperatures as low as 56 C and in high yield (up to 75%). The quantity produced depends principally on the nature of the inorganic compound, the ratio of the inorganic compound to paraformaldehyde, temperature and reaction time. The percent distribution of product depends on some of the foregoing factors.

  1. New reactions of paraformaldehyde and formaldehyde with inorganic compounds

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Bercovici, T.; Hong, K.

    1974-01-01

    Both paraformaldehyde and formaldehyde undergo reactions in the presence of several inorganic compounds to generate a variety of interesting organic products that can be important in chemical evolutionary processes. Some examples are acrolein, acetaldehyde, methyl formate, methanol, glycolaldehyde and formic acid. The organic compounds are produced at temperatures as low as 56 C and in high yield (up to 75%). The quantity produced depends principally on the nature of the inorganic compound, the ratio of the inorganic compound to paraformaldehyde, temperature and reaction time. The percent distribution of product depends on some of the foregoing factors.

  2. Method of producing hydrogen

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  3. Method for producing thin film electrodes

    DOEpatents

    Narayanan, Manoj; Ma, Beihai; Balachandran, Uthamalingam; Dorris, Stephen

    2016-06-07

    The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO.sub.2 while simultaneously preventing formation of RuO.sub.2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO.sub.2.

  4. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  5. 7 CFR 1421.109 - Personal liability of the producer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... resulting from a commodity delivered to or removed by CCC containing mercurial compounds, toxin producing molds, or other substances poisonous or harmful to humans or animals or property. (n) If the...

  6. 7 CFR 1421.109 - Personal liability of the producer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... resulting from a commodity delivered to or removed by CCC containing mercurial compounds, toxin producing molds, or other substances poisonous or harmful to humans or animals or property. (n) If the...

  7. 7 CFR 1421.109 - Personal liability of the producer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... resulting from a commodity delivered to or removed by CCC containing mercurial compounds, toxin producing molds, or other substances poisonous or harmful to humans or animals or property. (n) If the...

  8. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  9. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  10. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  11. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  12. Phenolic compounds in Ross Sea water

    NASA Astrophysics Data System (ADS)

    Zangrando, Roberta; Barbaro, Elena; Gambaro, Andrea; Barbante, Carlo; Corami, Fabiana; Kehrwald, Natalie; Capodaglio, Gabriele

    2016-04-01

    Phenolic compounds are semi-volatile organic compounds produced during biomass burning and lignin degradation in water. In atmospheric and paleoclimatic ice cores studies, these compounds are used as biomarkers of wood combustion and supply information on the type of combusted biomass. Phenolic compounds are therefore indicators of paleoclimatic interest. Recent studies of Antarctic aerosols highlighted that phenolic compounds in Antarctica are not exclusively attributable to biomass burning but also derive from marine sources. In order to study the marine contribution to aerosols we developed an analytical method to determine the concentration of vanillic acid, vanillin, p-coumaric acid, syringic acid, isovanillic acid, homovanillic acid, syringaldehyde, acetosyringone and acetovanillone present in dissolved and particle phases in Sea Ross waters using HPLC-MS/MS. The analytical method was validated and used to quantify phenolic compounds in 28 sea water samples collected during a 2012 Ross Sea R/V cruise. The observed compounds were vanillic acid, vanillin, acetovanillone and p-coumaric acid with concentrations in the ng/L range. Higher concentrations of analytes were present in the dissolved phase than in the particle phase. Sample concentrations were greatest in the coastal, surficial and less saline Ross Sea waters near Victoria Land.

  13. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, Myron; Ruckman, Mark; Strongin, Daniel

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  14. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  15. Fungi producing significant mycotoxins.

    PubMed

    2012-01-01

    Mycotoxins are secondary metabolites of microfungi that are known to cause sickness or death in humans or animals. Although many such toxic metabolites are known, it is generally agreed that only a few are significant in causing disease: aflatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone, and ergot alkaloids. These toxins are produced by just a few species from the common genera Aspergillus, Penicillium, Fusarium, and Claviceps. All Aspergillus and Penicillium species either are commensals, growing in crops without obvious signs of pathogenicity, or invade crops after harvest and produce toxins during drying and storage. In contrast, the important Fusarium and Claviceps species infect crops before harvest. The most important Aspergillus species, occurring in warmer climates, are A. flavus and A. parasiticus, which produce aflatoxins in maize, groundnuts, tree nuts, and, less frequently, other commodities. The main ochratoxin A producers, A. ochraceus and A. carbonarius, commonly occur in grapes, dried vine fruits, wine, and coffee. Penicillium verrucosum also produces ochratoxin A but occurs only in cool temperate climates, where it infects small grains. F. verticillioides is ubiquitous in maize, with an endophytic nature, and produces fumonisins, which are generally more prevalent when crops are under drought stress or suffer excessive insect damage. It has recently been shown that Aspergillus niger also produces fumonisins, and several commodities may be affected. F. graminearum, which is the major producer of deoxynivalenol and zearalenone, is pathogenic on maize, wheat, and barley and produces these toxins whenever it infects these grains before harvest. Also included is a short section on Claviceps purpurea, which produces sclerotia among the seeds in grasses, including wheat, barley, and triticale. The main thrust of the chapter contains information on the identification of these fungi and their morphological characteristics, as well as factors

  16. [Laboratory of Biopolymer Compounds].

    PubMed

    Ostapchuk, A M

    2008-01-01

    General information is presented concerning the Laboratory of Biological Polymeric Compounds at the Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine; equipment, analytical and biophysical methods applied in the laboratory are listed.

  17. Heart testing compound

    DOEpatents

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  18. Polynitramino compounds outperform PETN.

    PubMed

    Joo, Young-Hyuk; Shreeve, Jean'ne M

    2010-01-07

    New polynitramino compounds were synthesized and fully characterized using IR and multinuclear ((1)H, (13)C, (15)N) NMR spectroscopy, and elemental analysis as well as single-crystal X-ray diffraction.

  19. Stabilized Lanthanum Sulphur Compounds

    NASA Technical Reports Server (NTRS)

    Reynolds, George H. (Inventor); Elsner, Norbert B. (Inventor); Shearer, Clyde H. (Inventor)

    1985-01-01

    Lanthanum sulfide is maintained in the stable cubic phase form over a temperature range of from 500 C to 1500 C by adding to it small amounts of calcium, barium. or strontium. This novel compound is an excellent thermoelectric material.

  20. Heart testing compound

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.

    1985-01-01

    The compound 15-(p-[.sup.125 I]-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  1. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  2. Compound composite odontoma

    PubMed Central

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas. PMID:27194882

  3. Compound composite odontoma.

    PubMed

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas.

  4. Thermodynamics of Organic Compounds

    DTIC Science & Technology

    1979-01-01

    General Techniques for Combustion of Liquid/Soli. Organic Compounds by Oxygen Bomb Calorimetry by Arthur J. Head, William D. Good, and Ccrnelius...Mosselman, Chap. 8; Combustion of Liquid/Solid Organic Compounds with Non-Metallic Hetero-Atoms by Arthur J. Head and William D. Good, Chap. 9; in...0 Box 95085 Washington, DC 20234 Los Angeles, CA 90045 National Bureau of Standards CINDAS Chemical Thermodynamics Division Purdue University

  5. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  6. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  7. Vehicle gas producers

    NASA Astrophysics Data System (ADS)

    Donath, E. E.

    1980-05-01

    The present petroleum supply situation with the possibility of unscheduled interruptions and the definite expectation of continued price increases calls for an investigation of the use of solid fuels for the propulsion of vehicles. The paper reviews the use of solid fuel gas producers with high thermal efficiency on motor vehicles, especially trucks and buses. Some economic comparisons are presented for pre-World War II conditions. Suggestions are made for possible future development of vehicle gas producers. The types of producers are described, along with their performance, special problems, and the importance of fuel properties.

  8. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper [Boulder, CO; Reedy, Robert [Golden, CO

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  9. Coal markets squeeze producers

    SciTech Connect

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  10. Nonpost mold cure compound

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiro

    1997-08-01

    The recent low price trend of electronic products has made IC manufacturing efficiency a top priority in the semiconductor industry. Post mold cure (PMC) process, which generally involves heating the packages in the oven at 175 C for 4 to 8 hours, takes up much longer time than most other assembly processes. If this PMC process can be reduced or eliminated, semiconductor makers will be rewarded with a much higher cost merit. We define the purpose of Non-PMC as 'to get high reliability with suitable physical and electrical properties without PMC'. We compared carious properties of molding compound before and after PMC. We found that curing reaction has almost complete through DSC and C-NMR measurement, but several properties have not stabilized yet, and that not all properties after PMC were better than before PMC. We developed new grade of molding compound considering these facts. And we found that main factors to accomplish non-PMC compound are curability and flowability, and more, increasing of fundamental properties. To accomplish non-PMC, at first, molding compound need to have very high curability. Generally speaking, too high curability causes low flowability, and causes incomplete filing, wire sweep, pad shift, and weak adhesion to inner parts of IC packages. To prevent these failures, various compound properties were studied, and we achieved in adding good flowability to very high curable molding compound. Finally, anti-popcorn property was improved by adding low moisture, high adhesion, high Tg, and high flexural strengths at high temperature. Through this study, we developed new compound grade for various package, especially large QFP using standard ECN resin.

  11. Design Producibility Assessment System

    DTIC Science & Technology

    1989-06-30

    68 7.11 Part Detail ............... 69 7.11 Continued.. .Part Detail ... .......... 70 iv TABLES Page TABLE 1. Producibility Rating Factors...design type. Instead, an empirical approach has been selected to calculate the MI. An examination of a large number of metal components suggest that...normally cause the 80% of the producibility problems. Table 1 shows a sample list of those factors. It is important to recognize however, that the list of

  12. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats

    PubMed Central

    Li, Shu-guang; Zhao, Lin; Han, Kui; Li, Peng-fei; Li, Zhi-feng; Hu, Wei; Liu, Hong; Wu, Zhi-hong; Li, Yue-zhong

    2014-01-01

    Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0–75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions. PMID:24308800

  13. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  14. Process for production of a borohydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  15. Basic studies on the pyrolysis of lignin compounds

    Treesearch

    Byung-ho Hwang

    2003-01-01

    By pyrolyzing lignin model compounds 1-lV at 315°C, an investigation was carried out with some results. In the pyrolysis of lignin model compound I and 11, 0.47 mol of guaiacol, 0.57 mol of dimethoxyphenol (DMP), and 0.12 and 0.23 mol of dimethoxyaceton ophenone (DMAP) were produced respectively. In the pyrolysis of lignin model compound lll and lV, 0.26 mol of...

  16. STATISTICAL DATA ON CHEMICAL COMPOUNDS.

    DTIC Science & Technology

    DATA STORAGE SYSTEMS, FEASIBILITY STUDIES, COMPUTERS, STATISTICAL DATA , DOCUMENTS, ARMY...CHEMICAL COMPOUNDS, INFORMATION RETRIEVAL), (*INFORMATION RETRIEVAL, CHEMICAL COMPOUNDS), MOLECULAR STRUCTURE, BIBLIOGRAPHIES, DATA PROCESSING

  17. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  18. Process for reducing aromatic compounds in ethylenediamine with calcium

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.

  19. Acoustic Correlates of Stress in English Adjective-Noun Compounds

    ERIC Educational Resources Information Center

    Morrill, Tuuli

    2012-01-01

    This study investigates the phonetic implementation of stress in American English compounds by measuring the interaction of stress cues with different intonation patterns. Participants in an experiment produced compounds and phrases such as "greenhouse" and "green house" in different prosodic positions and sentence types to elicit the contrast in…

  20. Acoustic Correlates of Stress in English Adjective-Noun Compounds

    ERIC Educational Resources Information Center

    Morrill, Tuuli

    2012-01-01

    This study investigates the phonetic implementation of stress in American English compounds by measuring the interaction of stress cues with different intonation patterns. Participants in an experiment produced compounds and phrases such as "greenhouse" and "green house" in different prosodic positions and sentence types to elicit the contrast in…

  1. Compound management beyond efficiency.

    PubMed

    Burr, Ian; Winchester, Toby; Keighley, Wilma; Sewing, Andreas

    2009-06-01

    Codeveloping alongside chemistry and in vitro screening, compound management was one of the first areas in research recognizing the need for efficient processes and workflows. Material management groups have centralized, automated, miniaturized and, importantly, found out what not to do with compounds. While driving down cost and improving quality in storage and processing, researchers still face the challenge of interfacing optimally with changing business processes, in screening groups, and with external vendors and focusing on biologicals in many companies. Here we review our strategy to provide a seamless link between compound acquisition and screening operations and the impact of material management on quality of the downstream processes. Although this is driven in part by new technologies and improved quality control within material management, redefining team structures and roles also drives job satisfaction and motivation in our teams with a subsequent positive impact on cycle times and customer feedback.

  2. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  3. Metalloid compounds as drugs

    PubMed Central

    Sekhon, B. S.

    2013-01-01

    The six elements commonly known as metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. Metalloid containing compounds have been used as antiprotozoal drugs. Boron-based drugs, the benzoxaboroles have been exploited as potential treatments for neglected tropical diseases. Arsenic has been used as a medicinal agent and arsphenamine was the main drug used to treat syphilis. Arsenic trioxide has been approved for the treatment of acute promyelocytic leukemia. Pentavalent antimonials have been the recommended drug for visceral leishmaniasis and cutaneous leishmaniasis. Tellurium (IV) compounds may have important roles in thiol redox biological activity in the human body, and ammonium trichloro (dioxoethylene-O, O’-)tellurate (AS101) may be a promising agent for the treatment of Parkinson’s disease. Organosilicon compounds have been shown to be effective in vitro multidrug-resistance reverting agents. PMID:24019824

  4. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  5. [Energies of organic compounds

    SciTech Connect

    1995-07-01

    The first part of our study of the enthalpy of reduction of carbonyl compounds has been completed and includes four aldehydes, acetone, a series of cyclic ketones and ethyl acetate. Results suggest that some of the literature data for these compounds are significantly in error. Equilibrium constants have been measured for the reaction of carbonyl compounds with water to give hydrates as well as with methanol to give either hemiacetals or acetals. They cover a wide range, and studies are underway to determine the reasons for the differences. Studies of the enthalpies of hydration of some alkenes which yield tertiary alcohols have been completed, as well as a study of the hydrolysis of lactones. The ``gauche effect`` has been studied, and has been shown to result from the formation of bent bonds when atoms of much different electronegativity are joined.

  6. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  7. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  8. Toxic organic compounds from energy production

    SciTech Connect

    Hites, R.A.

    1990-11-29

    The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. Current work focuses on the fate of combustion-produced polychlorinated dioxins and dibenzofurans. Studies have included: wet and dry deposition; photodegradation; sources of pollutants; liquid chromatography; and measurement of human exposure to environmental contaminants. Of particular was the correlation of lead to dioxins and dibenzofurans. 10 tabs., 33 refs.

  9. Liverworts-potential source of medicinal compounds.

    PubMed

    Asakawa, Y

    2008-01-01

    The bryophytes contain the Marchantiophyta (liverworts), Bryophyta (mosses) and Anthocerotophyta (hornworts) among which the Marchantiophyta contain cellular oil body and they produce a number of terpenoids, aromatic compounds and acetogenins, several of which show interesting biological activity such as allergenic contact dermatitis, insecticide, insect antifeedant, cytotoxic, piscicidal, muscle relaxing, plant growth regulatory, anti-HIV, DNA polymerase beta inhibitory, anti-obesity, neurotrophic, NO production inhibitory, antimicrobial and antifungal activities. The isolation and chemical structures of biologically active compounds and their total synthesis are reviewed.

  10. Natural compounds for pest and weed control.

    PubMed

    Petroski, Richard J; Stanley, David W

    2009-09-23

    The control of insect pests and invasive weeds has become more species-selective because of activity-guided isolation, structure elucidation, and total synthesis of naturally produced substances with important biological activities. Examples of isolated compounds include insect pheromones, antifeedants, and prostaglandins, as well as growth regulators for plants and insects. Synthetic analogues of natural substances have been prepared to explore the relationships between chemical structure and observed biological activity. Recent scientific advances have resulted from better methods for the chemical synthesis of target compounds and better analytical methods. The capability of analytical instrumentation continues to advance rapidly, enabling new insights.

  11. Biodegradation of perfluorinated compounds.

    PubMed

    Parsons, John R; Sáez, Monica; Dolfing, Jan; de Voogt, Pim

    2008-01-01

    The information available in the literature provides evidence for the biodegradation of some poly- and per-fluorinated compounds, but such biodegradation is incomplete and may not result in mineralization. Recent publications have demonstrated that 8:2 fluorotelomer alcohol, for example, can be degraded by bacteria from soil and wastewater treatment plants to perfluorooctanoic acid. Similarly, 2-N-ethyl(perfluorooctane sulfonamido)ethanol can be degraded by wastewater treatment sludge to perfluorooctanesulfonate. It is presently unclear whether these two products are degraded further. Therefore, the question remains as to whether there is a potential for defluorination and biodegradation of PFCs that contributes significantly to their environmental fate. The lack of mineralization observed is probably caused by the stability of the C-F bond, although there are examples of microbially catalyzed defluorination reactions. As is the case with reductive dechlorination or debromination, reductive defluorination is energetically favorable under anaerobic conditions and releases more energy than that available from sulfate reduction or methanogenesis. Consequently, we should consider the possibility that bacteria will adapt to utilize this source of energy, although evolving mechanisms to overcome the kinetic barriers to degradation of these compounds may take some time. The fact that such reactions are absent for some PFCs, to date, may be because too little time has passed for microorganisms to adapt to these potential substrates. Hence, the situation may be comparable to that of chlorinated organic compounds several decades ago. For many years, organochlorine compounds were considered to be catabolically recalcitrant; today, reductive chlorination reactions of many organochlorines, including PCBs and dioxins, are regularly observed in anaerobic environments. Hence, it is opportune and important to continue studying the potential degradation of perfluorinated compounds

  12. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  13. Prediction of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Burkhanov, Gennady S.; Kiselyova, N. N.

    2009-06-01

    The problems of predicting not yet synthesized intermetallic compounds are discussed. It is noted that the use of classical physicochemical analysis in the study of multicomponent metallic systems is faced with the complexity of presenting multidimensional phase diagrams. One way of predicting new intermetallics with specified properties is the use of modern processing technology with application of teaching of image recognition by the computer. The algorithms used most often in these methods are briefly considered and the efficiency of their use for predicting new compounds is demonstrated.

  14. Produce Sanitation System Evaluation

    DTIC Science & Technology

    2011-05-01

    SAFETY NAVAL VESSELS WASHERS(CLEANERS) FRUITS CLEANING WORKLOAD MONITORING LABOR SAVINGS NATURAL RESOURCES WATER ... fruits and vegetables (FF&V) aboard Navy vessels, The sink saves labor associated with the washing of produce in food service operations by...Systems  Equipment and Engineering Team (SEET). This system, produced by SteelKor, was designed to  clean and sanitize fresh  fruits  and vegetables

  15. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  16. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    PubMed

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  17. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

    PubMed Central

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  18. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  19. Compound floating pivot micromechanisms

    DOEpatents

    Garcia, Ernest J.

    2001-04-24

    A new class of tilting micromechanical mechanisms have been developed. These new mechanisms use compound floating pivot structures to attain far greater tilt angles than are practical using other micromechanical techniques. The new mechanisms are also capable of bi-directional tilt about multiple axes.

  20. Urinary Compounds in Autism

    ERIC Educational Resources Information Center

    Alcorn, A.; Berney, T.; Bretherton, K.; Mills, M.; Savery, D.; Shattock, P.

    2004-01-01

    Although earlier claims to identify specific compounds in the urine of people with autism had been discredited, it was subsequently suggested that there might be biochemical characteristics that were specific to early childhood, particularly in those who also did not have a severe degree of intellectual disability This study was to establish…

  1. Barium and Compounds

    Integrated Risk Information System (IRIS)

    Barium and Compounds ; CASRN 7440 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  2. Lead and compounds (inorganic)

    Integrated Risk Information System (IRIS)

    Lead and compounds ( inorganic ) ; CASRN 7439 - 92 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  3. Fun with Ionic Compounds

    ERIC Educational Resources Information Center

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  4. Selenium and Compounds

    Integrated Risk Information System (IRIS)

    Selenium and Compounds ; CASRN 7782 - 49 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  5. Fun with Ionic Compounds

    ERIC Educational Resources Information Center

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  6. Energies of organic compounds

    SciTech Connect

    Wiberg, K.B.

    1995-07-01

    The studies included hydrolysis of ketals, hydration of alkenes, barrier to rotation about C-O bonds in esters and acids, hydrolysis of lactones, reduction of ketones, non-bonded interactions, and enthalpies of vaporization of ketones, ketals, and other compounds.

  7. Boron and Compounds

    Integrated Risk Information System (IRIS)

    EPA 635 / 04 / 052 www.epa.gov / iris TOXICOLOGICAL REVIEW OF BORON AND COMPOUNDS ( CAS No . 7440 - 42 - 8 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2004 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed

  8. Zinc and Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 05 / 002 TOXICOLOGICAL REVIEW OF ZINC AND COMPOUNDS ( CAS No . 7440 - 66 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) July 2005 U.S . Environmental Protection Agency Washington D.C . DISCLAIMER This document has been reviewed in accordanc

  9. Beryllium and compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 98 / 008 TOXICOLOGICAL REVIEW OF BERYLLIUM AND COMPOUNDS ( CAS No . 7440 - 41 - 7 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) April 1998 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been reviewed in acco

  10. A stable argon compound

    PubMed

    Khriachtchev; Pettersson; Runeberg; Lundell; Rasanen

    2000-08-24

    The noble gases have a particularly stable electronic configuration, comprising fully filled s and p valence orbitals. This makes these elements relatively non-reactive, and they exist at room temperature as monatomic gases. Pauling predicted in 1933 that the heavier noble gases, whose valence electrons are screened by core electrons and thus less strongly bound, could form stable molecules. This prediction was verified in 1962 by the preparation of xenon hexafluoroplatinate, XePtF6, the first compound to contain a noble-gas atom. Since then, a range of different compounds containing radon, xenon and krypton have been theoretically anticipated and prepared. Although the lighter noble gases neon, helium and argon are also expected to be reactive under suitable conditions, they remain the last three long-lived elements of the periodic table for which no stable compound is known. Here we report that the photolysis of hydrogen fluoride in a solid argon matrix leads to the formation of argon fluorohydride (HArF), which we have identified by probing the shift in the position of vibrational bands on isotopic substitution using infrared spectroscopy. Extensive ab initio calculations indicate that HArF is intrinsically stable, owing to significant ionic and covalent contributions to its bonding, thus confirming computational predictions that argon should form a stable hydride species with properties similar to those of the analogous xenon and krypton compounds reported before.

  11. 8-fluoropurine compounds

    SciTech Connect

    Barrio, Jorge R.; Satyamurthy, Nagichettiar; Namavari, Mohammad; Phelps, Michael E.

    2001-01-01

    An efficient, regiocontrolled approach to the synthesis of 8-fluoropurines by direct fluorination of purines with dilute elemental fluorine, or acetyl hypofluorite, is provided. In a preferred embodiment, a purine compound is dissolved in a polar solvent and reacted with a dilute mixture of F.sub.2 in He or other inert gas.

  12. Urinary Compounds in Autism

    ERIC Educational Resources Information Center

    Alcorn, A.; Berney, T.; Bretherton, K.; Mills, M.; Savery, D.; Shattock, P.

    2004-01-01

    Although earlier claims to identify specific compounds in the urine of people with autism had been discredited, it was subsequently suggested that there might be biochemical characteristics that were specific to early childhood, particularly in those who also did not have a severe degree of intellectual disability This study was to establish…

  13. Aminopropyl thiophene compounds

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation of regional blood flow by radioimaging of the brain.

  14. Producing CD-ROMs.

    ERIC Educational Resources Information Center

    Hyams, Peter, Ed.

    1992-01-01

    This issue presents 11 articles that address issues relating to the production of CD-ROMs. Highlights include current uses of CD-ROM; standards; steps involved in producing CD-ROMs, including data capture, conversion, and tagging, product design, and indexing; authoring; selecting indexing and retrieval software; costs; multimedia CD-ROMs; and…

  15. Carbapenemase-Producing Enterobacteriaceae

    PubMed Central

    Doi, Yohei; Paterson, David L.

    2015-01-01

    Carbapenemase-producing Enterobacteriaceae (CPE) were almost nonexistent up to the 1990s, but are today encountered routinely in hospitals and other healthcare facilities in many countries including the United States. KPC-producing Klebsiella pneumoniae was the first to emerge and spread globally and is endemic in the United States, Israel, Greece, and Italy. Recently, NDM-producing Enterobacteriaceae and OXA-48-producing K. pneumoniae appear to be disseminating from South Asia and Northern Africa, respectively. They are almost always resistant to all β-lactams including carbapenems and many other classes. Mortality from invasive CPE infections reaches up to 40%. To obtain the maximal benefit from the limited options available, dosing of antimicrobial agents should be optimized based on pharmacokinetic data, especially for colistin and carbapenems. In addition, multiple observational studies have associated combination antimicrobial therapy with lower mortality compared with monotherapy for these infections. The outcomes appear to be especially favorable when patients are treated with a carbapenem and a second agent such as colistin, tigecycline, and gentamicin, but the best approach is yet to be defined. PMID:25643272

  16. PRODUCING HIGH CORN YIELDS.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Coll. of Agriculture.

    RESOURCE MATERIAL ON CORN PRODUCTION FOR HIGH SCHOOL VOCATIONAL AGRICULTURE AND ADULT FARMER CLASSES WAS DESIGNED BY A STATE LEVEL GROUP OF SUBJECT MATTER SPECIALISTS, TEACHER EDUCATORS, SUPERVISORS, AND TEACHERS TO HELP SOLVE PROBLEMS THAT CONFRONT CORN PRODUCERS AT PLANTING TIME. THE SUBJECT MATTER CONCERNS PLANTING TIME, DEPTH, ROW WIDTH,…

  17. Producer/Consumer Image

    ERIC Educational Resources Information Center

    Englander, Meryl E.; Marsh, John

    1977-01-01

    The work ethic and the success of a system based increasingly upon consumerism has created an image of man in which the quality of life is measured in terms of quantity and ownership of goods; in ethics and attitude, our system of education is creating an ideally receptive population for the producer-consumer society. (JD)

  18. Interventions for fresh produce

    USDA-ARS?s Scientific Manuscript database

    Environmental matrices such as soil, water, and dust harbor microorganisms. Many of the microorganisms found in the environment are essential for biogeochemical cycles and are essential for plant growth. The microbiome of the produce production environment might also contain foodborne pathogens and ...

  19. Computer Produced Media Guides.

    ERIC Educational Resources Information Center

    Jeffcott, Janet B.

    To increase access to the media collection at the Madison Area Technical College (Wisconsin) a computer-produced key work index was created using an International Business Machine (IBM) 360 model 40 computer and a duplicating facility with offset capability. A standard 80 column IBM card was used reserving columns 1-9 for the media item number,…

  20. Directionally Solidified Ceramics Produced

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali

    2000-01-01

    Produced Multiphase, interpenetrating structures are an alternative route to obtaining structural ceramic materials with adequate strength, toughness, and stability for high-temperature aerospace applications. The eutectic architecture, a continuous-reinforcing phase within a higher volume phase or matrix, can be described as a naturally occurring, in situ composite. The phases of a eutectic are thermodynamically compatible at high homologous temperatures. Strong and stable materials have been produced. Toughness, however, remains a technical obstacle. The potential for producing materials with enhanced toughness along with adequate strength and stability was demonstrated using the laser-heated float zone (LHFZ) growth method at the NASA Glenn Research Center at Lewis Field. LHFZ growth at Glenn provides a means to efficiently produce and record the underlying growth phenomena associated with two-phase structures. To initiate directional solidification, a seed of single-crystal sapphire (<0001> direction) was lowered onto the molten liquid until wetting occurred and then withdrawn at a constant rate. Neither the crystal nor the source rod was rotated. The materials produced were tested mechanically in tension, and the resulting microstructure was examined with a scanning electron microscope. Both the inherent properties of the constituent phases and the properties of the interface between them affect the mechanical behavior and the fracture surfaces. The following scanning electron micrographs show the microstructures of two different materials that were tested to failure in tension. In the left micrograph, the flat fracture surface is typical of a material that is strong but has low toughness. In the right micrograph, the crack is effectively deflected at the interface between the two phases, achieving higher toughness at moderately lower strength levels. Conducting mechanical tests to determine the high temperature properties of these materials is the next step

  1. Antinociceptive effect of a novel tosylpyrazole compound in mice.

    PubMed

    Oliveira, Sara M; Gewehr, Camila; Dalmolin, Gerusa D; Cechinel, Cleber A; Wentz, Alexandre; Lourega, Rogério V; Sehnem, Ronan C; Zanatta, Nilo; Martins, Marcos A P; Rubin, Maribel A; Bonacorso, Helio G; Ferreira, Juliano

    2009-02-01

    Pain is the most common complaint in the medical field and the identification of compounds that can effectively treat painful states without induction of side-effects remains a major challenge in biomedical research. The aim of the present study was to investigate the antinociceptive effect of a novel compound, 3-(4-fluorophenyl)-5-trifluoromethyl-1H-1-tosylpyrazole (compound A) in several models of pain in mice and compare with those produced by the known trifluoromethyl-containing pyrazole compound celecoxib. Compound A or celecoxib were administrated by oral (78-780 micromol/kg), intrathecal (9-22.5 nmol/site) or intracerebroventricular (9-22.5 nmol/site) routes. Oral administration of either compound A or celecoxib abolished the mechanical allodynia, but not the oedema caused by intraplantar injection of carrageenan. Similarly, compound A reduced the overt nociception, but not the oedema, produced by bradykinin or capsaicin. However, compound A (500 micromol/kg, orally) did not alter nociception nor oedema caused by intraplantar injection of prostaglandin E(2 )or glutamate, whereas celecoxib reduced only the nociception induced by the former. Moreover, oral and intrathecal administration of compound A or celecoxib also reduced the nociception induced by acetic acid. However, only celecoxib reduced the acetic acid-induced nociception when it was injected by the intracerebroventricular route. Finally, neither compound A nor celecoxib was able to produce antinociceptive effect in the tail-flick test or to alter the motor performance and the body temperature. Besides, compound A or celecoxib did not induce gastric lesion. Thus, compound A seems to be an interesting prototype for the development of novel analgesic drugs.

  2. Microbial production of scent and flavor compounds.

    PubMed

    Carroll, Austin L; Desai, Shuchi H; Atsumi, Shota

    2016-02-01

    Scents and flavors like those of fresh oranges are no longer limited to just the natural product. Fruit, flower, and essential oil scents have found place in cosmetics, soaps, candles, and food amongst many common household products. With their increasing global demand and difficulty in extractation from the natural source, alternative methods of their production are being sought. One sustainable method is to employ microorganisms for the production of these high value compounds. With the tools of metabolic engineering, microorganisms can be modified to produce compounds such as esters, terpenoids, aldehydes, and methyl ketones. Approaches and challenges for the production of these compounds from microbial hosts are discussed in this review. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. METHOD OF PRODUCING URANIUM

    DOEpatents

    Foster, L.S.; Magel, T.T.

    1958-05-13

    A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

  4. Toxicity of dipyridyl compounds and related compounds.

    PubMed

    Li, Shenggang; Crooks, Peter A; Wei, Xiaochen; de Leon, Jose

    2004-01-01

    Five dipyridyl isomers, 2,2'-, 2,3'-, 2,4'-, 3,3'-, and 4,4'-dipyridyl, are products resulting from the pyrolytic degradation of tobacco products and degradation of the herbicide paraquat, and therefore may be present in the environment. In this article, the toxicological properties of these dipyridyl isomers in humans and animals are reviewed. Epidemiological studies suggest that cancerous skin lesions in workers involved in the manufacturing of paraquat may be associated with exposure to dipyridyl compounds. Experimental animal studies suggest that dipyridyl isomers may have several toxicological effects. Three of the dipyridyl isomers (the 2,2', 2,4', and 4,4' isomers) appear to be inducers of some metabolic enzymes. The 2,2'-dipyridyl isomer, an iron chelator, appears to influence vasospasm in primate models of stroke. The cytotoxic effects of 2,2'-dipyridyl on several leukemia cell lines have been reported, and a potent teratogenic effect of 2,2'-dipyridyl has been observed in rats. Based on the results of paraquat studies in experimental animal models, it has been proposed that paraquat may have deleterious effects on dopaminergic neurons. These findings support the epidemiological evidence that paraquat exposure may be associated with the development of Parkinson's disease. Studies designed to determine an association between paraquat exposure and Parkinson's disease are complicated by the possibility that metabolic changes may influence the neurotoxicity of paraquat and/or its metabolites. Preliminary unpublished data in mice show that 300-mg/kg doses of 2,2'-dipyridyl are neurotoxic, and 300-mg/kg doses of 2,4'- and 4,4'-dipyridyls are lethal. These results are consistent with earlier studies in Sherman rats using high 2,2'- and 4,4'-dipyridyl doses. New studies are needed to further explore the toxicological properties of dipyridyls and their potential public health impact.

  5. Process for synthesizing compounds from elemental powders and product

    DOEpatents

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  9. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  10. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  11. METHOD OF PRODUCING NEUTRONS

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

  12. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  13. Organic compounds in hydraulic fracturing fluids and wastewaters: A review.

    PubMed

    Luek, Jenna L; Gonsior, Michael

    2017-10-15

    High volume hydraulic fracturing (HVHF) of shale to stimulate the release of natural gas produces a large quantity of wastewater in the form of flowback fluids and produced water. These wastewaters are highly variable in their composition and contain a mixture of fracturing fluid additives, geogenic inorganic and organic substances, and transformation products. The qualitative and quantitative analyses of organic compounds identified in HVHF fluids, flowback fluids, and produced waters are reviewed here to communicate knowledge gaps that exist in the composition of HVHF wastewaters. In general, analyses of organic compounds have focused on those amenable to gas chromatography, focusing on volatile and semi-volatile oil and gas compounds. Studies of more polar and non-volatile organic compounds have been limited by a lack of knowledge of what compounds may be present as well as quantitative methods and standards available for analyzing these complex mixtures. Liquid chromatography paired with high-resolution mass spectrometry has been used to investigate a number of additives and will be a key tool to further research on transformation products that are increasingly solubilized through physical, chemical, and biological processes in situ and during environmental contamination events. Diverse treatments have been tested and applied to HVHF wastewaters but limited information has been published on the quantitative removal of individual organic compounds. This review focuses on recently published information on organic compounds identified in flowback fluids and produced waters from HVHF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  15. Method of producing imines

    DOEpatents

    Sithambaram, Shanthakumar [Storrs, CT; Son, Young-Chan [Storrs, CT; Suib, Steven L [Storrs, CT

    2008-04-08

    A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.

  16. Method of producing imines

    DOEpatents

    Sithambaram, Shanthakumar; Son, Young-Chan; Suib, Steven L.

    2008-04-08

    A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.

  17. Exploring marine cyanobacteria for lead compounds of pharmaceutical importance.

    PubMed

    Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous

    2012-01-01

    The Ocean, which is called the "mother of origin of life," is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria.

  18. Exploring Marine Cyanobacteria for Lead Compounds of Pharmaceutical Importance

    PubMed Central

    Uzair, Bushra; Tabassum, Sobia; Rasheed, Madiha; Rehman, Saima Firdous

    2012-01-01

    The Ocean, which is called the “mother of origin of life,” is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria. PMID:22545008

  19. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  20. Oral compound nevus.

    PubMed

    Cardoso, Lyzete Berriel; Consalaro, Alberto; da Silva Santos, Paulo Sérgio; da Silva Sampieri, Marcelo Bonifácio; Tinoco-Araújo, José Endrigo

    2014-02-18

    The melanocytic nevus is a benign and focal proliferation of nevus cells that can be congenital or acquired. Intraoral lesions are uncommon, and the etiology and pathogenesis are poorly understood. The occurrence rate of oral compound nevus is about 5.9% to 16.5% of all oral melanocytic nevi. A 22-year-old male patient presented with a dark brown macule on the buccal mucosa of the maxilla in the region of tooth 26. The lesion was elliptical, 0.7 x 0.5 cm, well circumscribed, asymptomatic, and the evolution time was unknown. An excisional biopsy was performed and microscopic analysis revealed nests of nevus cells in the epithelium and underlying connective tissue that were compatible with melanocytic compound nevus. Owing to the clinical similarity between oral melanocytic nevus and oral melanoma, a histopathological analysis is mandatory for definitive diagnosis.

  1. The Modern Compound Bow.

    PubMed

    Sung, LokMan; Kesha, Kilak; Avedschmidt, Sarah; Root, Kelly; Hlavaty, Leigh

    2017-06-12

    Bows and arrows are ancient weapons that have risen and fallen as the preeminent armaments used by man. Because of the ubiquity of firearms, fatalities from archery injuries in the United States have radically declined. However, when deaths involving this weapon do present themselves, the paucity of reference materials can be a hurdle for forensic pathologists and other forensic scientists. This article will provide a brief history of the origins of the bow and the inception of the compound bow. Comparing and contrasting the structures comprising a traditional bow to those of the modern compound bow will provide insight into how these components function in unison to propel arrows. © 2017 American Academy of Forensic Sciences.

  2. Thermodynamics of Organic Compounds

    DTIC Science & Technology

    1981-01-01

    Organic Compounds by I A. Hossenlopp and D. W. Scott -- Journal of Chemical Thermodynamics , 13, No. 5, 405-414 (1981). t 1 I- i !I *1 I I ~ I [LI...National Bureau of Standards CINDAS Chemical Thermodynamics Division Purdue University Research Park Attn: Dr Stan Abramowitz Attn: Dr H H Li Mr David... Chemical Thermodynamics Division AFAOL/RJT (Dr 7 D Stull) Attn: Mr Donald D Wagman Wright-Patterson AFB, OH 45433 Washington, DC 20234 U.S. Army

  3. Growing Single Crystals of Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Lehoczky, Sandor L.; Frazier, Donald O.

    1987-01-01

    Defect reduced by preventing melt/furnace contact and suppressing convention. Large crystals of compound semiconductors with few defects grown by proposed new method. Such materials as gallium arsenide and cadmium telluride produced, with quality suitable for very-large-scale integrated circuits or for large focal-plane arrays of photodetectors. Method used on small scale in Earth gravity, but needs microgravity to provide crystals large enough for industrial use.

  4. Antitumor compounds from tunicates.

    PubMed

    Rinehart, K L

    2000-01-01

    Of the six marine-derived compounds that have reached clinical trials as antitumor agents three-didemnin B, Aplidine, and ecteinascidin 743-are derived from tunicates. Di-demnin B (DB), a cyclic depsipeptide from the compound tunicate Trididemnum solidum, was the first marine-derived compound to enter Phases I and II clinical trials. The Phase II studies, sponsored by the U. S. National Cancer Institute, indicated complete or partial remissions with non-Hodgkins lymphoma, but cardiotoxicity caused didemnin B to be dropped from further study. The closely related dehydrodidemnin B (DDB, Aplidine) was isolated in 1988 from a second colonial tunicate, Aplidium albicans, and spectroscopic studies assigned a structural formula in which a pyruvyl group in DDB replaced the lactyl group in DB and syntheses of DDB have been achieved. Aplidine is more active than DB and lacks DB's cardiotoxicity. It was introduced by PharmaMar into Phase I clinical trials in January 1999. The second family of tunicate-derived antitumor agents are the ecteinascidins (ETs), from the mangrove tunicate Ecteinascidia turbinata. The antitumor extracts of E. turbinata were first described in 1969, but the small amount of ETs in E. turbinata prevented their isolation for over a decade. The structures of ETs have been assigned mainly by spectroscopy. Phase II clinical trials with ET 743 are underway. Future supplies of ET's should be available from aquaculture or synthesis. Copyright 2000 John Wiley & Sons, Inc. Med Res Rev, 20, No. 1, 1-27, 2000

  5. Compound chondrules fused cold

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2015-07-01

    About 4-5% of chondrules are compound: two separate chondrules stuck together. This is commonly believed to be the result of the two component chondrules having collided shortly after forming, while still molten. This allows high velocity impacts to result in sticking. However, at T ∼ 1100 K, the temperature below which chondrules collide as solids (and hence usually bounce), coalescence times for droplets of appropriate composition are measured in tens of seconds. Even at 1025 K, at which temperature theory predicts that the chondrules must have collided extremely slowly to have stuck together, the coalescence time scale is still less than an hour. These coalescence time scales are too short for the collision of molten chondrules to explain the observed frequency of compound chondrules. We suggest instead a scenario where chondrules stuck together in slow collisions while fully solid; and the resulting chondrule pair was subsequently briefly heated to a temperature in the range of 900-1025 K. In that temperature window the coalescence time is finite but long, covering a span of hours to a decade. This is particularly interesting because those temperatures are precisely the critical window for thermally ionized MRI activity, so compound chondrules provide a possible probe into that vital regime.

  6. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  7. The Chemistry of Nitroxyl-Releasing Compounds

    PubMed Central

    DuMond, Jenna F.

    2011-01-01

    Abstract Nitroxyl (HNO) demonstrates a diverse and unique biological profile compared to nitric oxide, a redox-related compound. Although numerous studies support the use of HNO as a therapeutic agent, the inherent chemical reactivity of HNO requires the use of donor molecules. Two general chemical strategies currently exist for HNO generation from nitrogen-containing molecules: (i) the disproportionation of hydroxylamine derivatives containing good leaving groups attached to the nitrogen atom and (ii) the decomposition of nitroso compounds (X-N=O, where X represents a good leaving group). This review summarizes the synthesis and structure, the HNO-releasing mechanisms, kinetics and by-product formation, and alternative reactions of six major groups of HNO donors: Angeli's salt, Piloty's acid and its derivatives, cyanamide, diazenium diolate-derived compounds, acyl nitroso compounds, and acyloxy nitroso compounds. A large body of work exists defining these six groups of HNO donors and the overall chemistry of each donor requires consideration in light of its ability to produce HNO. The increasing interest in HNO biology and the potential of HNO-based therapeutics presents exciting opportunities to further develop HNO donors as both research tools and potential treatments. Antioxid. Redox Signal. 14, 1637–1648. PMID:21235345

  8. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  9. 7 CFR 1250.305 - Egg producer or producer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Egg producer or producer. 1250.305 Section 1250.305... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or...

  10. 7 CFR 1250.305 - Egg producer or producer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Egg producer or producer. 1250.305 Section 1250.305... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or...

  11. 7 CFR 1250.305 - Egg producer or producer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Egg producer or producer. 1250.305 Section 1250.305... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or...

  12. 7 CFR 1250.305 - Egg producer or producer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Egg producer or producer. 1250.305 Section 1250.305... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or...

  13. 7 CFR 1250.305 - Egg producer or producer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Egg producer or producer. 1250.305 Section 1250.305... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE EGG RESEARCH AND PROMOTION Egg Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or...

  14. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-09-01

    This patent relates to improvements in calutron devices and particularly describes a novel ion source. The unique feature of this source lies in the shaping of the ionizing electron stream to conform to the arc plasma boundary at the exit slit of the ionization chamber, thereby increasing the ion density produced at the plasma boundary. The particular structure consists of an electron source disposed at onc end of an elongated ionization chambcr and a coilimating electrode positioned to trim the electron stream to a crescent shape before entering the ionization chamber.

  15. ION PRODUCING MECHANISM

    DOEpatents

    Lawrence, E.O.

    1958-09-16

    Improvements are presented in calutron devices and, more specifically, dealswith an improved mounting arrangement fer the ion source of the calutron. An important feature of the invention resides in a pluraiity of insulators so mounted as to be accessible from the exterior of the calutron tank and supporting at their inner ends the ion source. These insutators are arranged in mutually parallel relation and also parallel to the flux of the nmgnetic field, whereby the strain of the supporting elements is reduced to a minimum. In addition the support assembly is secured to a removable wall portion of the task to facilitate withdrawal and examination of the ion producing mechanism.

  16. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  17. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  18. Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage.

    PubMed Central

    Freeman, L R; Silverman, G J; Angelini, P; Merritt, C; Esselen, W B

    1976-01-01

    Volatile components present at spoilage of refrigerated chicken breasts were identified using high-vacuum-low-temperature distillation techniques followed by analysis with combined temperature-programmed gas chromatography and mass spectrometry. A comparison was made of the compounds detected from both irradiated and non-irradiated muscle stored at 2 and 10 degrees C under both aerobic and anaerobic conditions. Isolates were randomly selected from the spoiled poultry, identified, and evaluated for their ability to produce volatile spoilage noted when grown on radiation-sterilized chicken. Several isolates that produced off-odors on sterile chicken breasts were examined. Twenty-two compounds were associated with spoilage. Some of the compounds found on both irradiated and unirradiated samples were considered to play only a minor role in the spoilage aroma or were present in low concentrations, since the aroma of spoiled irradiated chicken lacked the harsh odor notes typical of spoiled unirradiated chicken. Fifteen of the 22 compounds were considered to be unique to unirradiated, aerobically spoiled samples. Nine of these compounds, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, methyl acetate, ethyl acetate, heptadiene, methanol, and ethanol, were found on chicken spoiled at both 2 and 10 degrees C. xylene, benzaldehyde, and 2,3-dithiahexane were detected only in samples stored at 2 degrees C and methyl thiolacetate, 2-butanone, and ethyl propionate were associated with 10 degrees C spoilage. Fifty-eight isolates randomly selected from fresh, radiation-pasteurized, and unirradiated spoiled poultry were classified taxonomically, and 10 of them, which produced spoilage odors on sterilized chicken breasts, were selected for subsequent analysis of their volatiles. Isolates identified as Pseudomonas putrefaciens and Pseudomonas species that were members of groups I and II of Shewan's classification, as well as Flavobacterium and oxidative

  19. X-ray targeted bond or compound destruction

    SciTech Connect

    Pravica, Sr., Michael G.

    2016-11-01

    This document provides methods, systems, and devices for inducing a decomposition reaction by directing x-rays towards a location including a particular compound. The x-rays can have an irradiation energy that corresponds to a bond distance of a bond in the particular compound in order to break that bond and induce a decomposition of that particular compound. In some cases, the particular compound is a hazardous substance or part of a hazardous substance. In some cases, the particular compound is delivered to a desired location in an organism and x-rays induce a decomposition reaction that creates a therapeutic substance (e.g., a toxin that kills cancer cells) in the location of the organism. In some cases, the particular compound decomposes to produce a reactant in a reactor apparatus (e.g., fuel cell or semiconductor fabricator).

  20. Drugs producing vitamin deficiencies.

    PubMed

    Montenero, A S

    1980-01-01

    Many drugs produce vitamin deficiencies. They belong to the most important and common therapeutical classes: analgesics, antianemics, antibacterial and antiblastic agents, antibiotics, antidiabetics, antimalarials, antiphlogistics, antipyretics, diuretics, laxatives and purgatives, tranquilizers and anticonvulsives, radiomimetics, hormones and vitamins themselves. The vitamin deprivation processes may be produced by a variety of mechanisms and may involve all vitamins. Recent experiments indicate that there is a competition for binding sites on proteins between vitamin C and salicylate and between dicoumarol and vitamin K. Usually a drug exerts a "devitaminizing" action with respect to only one vitamin. However there are examples of multiple vitamin deficiencies induced by a single drug, like salicylate which deprives the organism of vitamins C, K and pantothenate. These deficiencies may develop either all at the same time or successively. A direct and concomitant vitamin depriving action occurs when an antibiotic blocks the production of vitamins by the enteric flora. A different mode of action occurs in the drug induced folic acid deficiency, which in turn induces a deficiency of vitamin B12. It has been reported that a vitamin deficiency may result from intake of high pharmacological doses of other vitamins. These data need confirmation in patients treated with high doses of nicotinic acid. The drug induced vitamin deficiencies are studied with the same methodology employed for avitaminoses in general; hence they can be diagnosed using the same criteria.

  1. INSENSITIVE HIGH-NITROGEN COMPOUNDS

    SciTech Connect

    D. CHAVEZ; ET AL

    2001-03-01

    The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be

  2. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  3. Neurotoxicity of organomercurial compounds.

    PubMed

    Sanfeliu, Coral; Sebastià, Jordi; Cristòfol, Rosa; Rodríguez-Farré, Eduard

    2003-01-01

    Mercury is a ubiquitous contaminant, and a range of chemical species is generated by human activity and natural environmental change. Elemental mercury and its inorganic and organic compounds have different toxic properties, but all them are considered hazardous in human exposure. In an equimolecular exposure basis, organomercurials with a short aliphatic chain are the most harmful compounds and they may cause irreversible damage to the nervous system. Methylmercury (CH(3)Hg(+)) is the most studied following the neurotoxic outbreaks identified as Minamata disease and the Iraq poisoning. The first description of the CNS pathology dates from 1954. Since then, the clinical neurology, the neuropathology and the mechanisms of neurotoxicity of organomercurials have been widely studied. The high thiol reactivity of CH(3)Hg(+), as well as all mercury compounds, has been suggested to be the basis of their harmful biological effects. However, there is clear selectivity of CH(3)Hg(+) for specific cell types and brain structures, which is not yet fully understood. The main mechanisms involved are inhibition of protein synthesis, microtubule disruption, increase of intracellular Ca(2+) with disturbance of neurotransmitter function, oxidative stress and triggering of excitotoxicity mechanisms. The effects are more damaging during CNS development, leading to alterations of the structure and functionality of the nervous system. The major source of CH(3)Hg(+) exposure is the consumption of fish and, therefore, its intake is practically unavoidable. The present concern is on the study of the effects of low level exposure to CH(3)Hg(+) on human neurodevelopment, with a view to establishing a safe daily intake. Recommendations are 0.4 micro g/kg body weight/day by the WHO and US FDA and, recently, 0.1 micro g/kg body weight/day by the US EPA. Unfortunately, these levels are easily attained with few meals of fish per week, depending on the source of the fish and its position in the

  4. Superconductivity in plutonium compounds

    NASA Astrophysics Data System (ADS)

    Sarrao, J. L.; Bauer, E. D.; Mitchell, J. N.; Tobash, P. H.; Thompson, J. D.

    2015-07-01

    Although the family of plutonium-based superconductors is relatively small, consisting of four compounds all of which crystallize in the tetragonal HoCoGa5 structure, these materials serve as an important bridge between the known Ce- and U-based heavy fermion superconductors and the high-temperature cuprate superconductors. Further, the partial localization of 5f electrons that characterizes the novel electronic properties of elemental plutonium appears to be central to the relatively high superconducting transition temperatures that are observed in PuCoGa5, PuRhGa5, PuCoIn5, and PuRhIn5.

  5. Immunomodulating compounds in Basidiomycetes

    PubMed Central

    Mizuno, Masashi; Nishitani, Yosuke

    2013-01-01

    Mushrooms are distinguished as important food containing immunomodulating and anticancer agents. These compounds belong mostly to polysaccharides especially β-d-glucans. Among them, β-1,3-glucan with side chain β-1,6-glucose residues have more important roles in immunomodulating and antitumor activities. In this review, we have introduced polysaccharide mainly from Lentinula edodes and Agaricus blazei Murill with immunomodulating and antitumor activities. In addition, the mechanism of activation of immune response and signal cascade are also reviewed. PMID:23704809

  6. Boronated porphyrin compounds

    DOEpatents

    Kahl, Stephen B.; Koo, Myoung-Seo

    1992-01-01

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  7. Boronated porphyrin compounds

    DOEpatents

    Kahl, S.B.; Koo, M.S.

    1992-09-22

    A compound is described having the structure ##STR1## where R preferably is ##STR2## and most preferably R.sup.3 is a closo-carborane and R.sup.2 is --H, an alkyl or aryl having 1 to about 7 carbon atoms, This invention was made with Government support under NIH Grant No. CA-37961 awarded by the Department of Health and Human Services and under the Associated Universities Inc. Contract No. De-AC02-76CH00016 with the U.S. Department of Energy. The Government has rights in this invention.

  8. Compound Semiconductor Characterization.

    DTIC Science & Technology

    1984-06-08

    Elsevier, New York, 1979). 12. I.R. Sites and 11.11. Wieder, [EEE Trans. Electron Devices, ED-27, 2277 (1980). 13. P.R. Jay and R.H. Wallis, IEEE...Orpington, U. K., 1980). 18. .. Hallais, A. Mircea -Roussel, J.P. Farges, and ;. Poiblaud, in Call im Arsenide and Related Compounds (St. Louis 1976...1979). 78 q 21. P.B. Klei~n, P.IK.R. Nordquist, and P.C. Siebenmann, J. Appl. Phys. 51, 4861 (1980). 22. A. Mircea -Roussel, G. Jacob, and J.P. Hallais

  9. Oligosilanylated Antimony Compounds

    PubMed Central

    2015-01-01

    By reactions of magnesium oligosilanides with SbCl3, a number of oligosilanylated antimony compounds were obtained. When oligosilanyl dianions were used, either the expected cyclic disilylated halostibine was obtained or alternatively the formation of a distibine was observed. Deliberate formation of the distibine from the disilylated halostibine was achieved by reductive coupling with C8K. Computational studies of Sb–Sb bond energies, barriers of pyramidal inversion at Sb, and the conformational behavior of distibines provided insight for the understanding of the spectroscopic properties. PMID:25937691

  10. Titanium alkoxide compound

    DOEpatents

    Boyle, Timothy J.

    2007-08-14

    A titanium alkoxide composition is provided, as represented by the chemical formula (OC.sub.6H.sub.5N).sub.2Ti(OC.sub.6H.sub.5NH.sub.2).sub.2. As prepared, the compound is a crystalline substance with a hexavalent titanium atom bonded to two OC.sub.6H.sub.5NH.sub.2 groups and two OC.sub.6H.sub.5N groups with a theoretical molecular weight of 480.38, comprising 60.01% C, 5.04% H and 11.66% N.

  11. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  12. APPARATUS FOR PRODUCING SHADOWGRAPHS

    DOEpatents

    Wilson, R.R.

    1959-08-11

    An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.

  13. ION PRODUCING MECHANISMS

    DOEpatents

    Brobeck, W.M.

    1959-02-10

    Ion generating means and means for producing ions of material for isotopic separation are discussed. One feature of the invention resides in providing a heater means located in the source block approximately equidistant from a charge reservoir and an arc chamber, whereby the heat distribution in the block is such as to avoid overheating and to maintain the temperature of the various critical localities of the unit at their optimum values. Another feature consists of a pair of plates disposed on either side of the arc chamber exit opening to define a narrow slit for the egression of the ion beam. When the adjacent edges of the plates have become worn, the plates may be detached and reversed to use the opposite edges thereof to define the exit opening.

  14. Fermentation method producing ethanol

    SciTech Connect

    Wang, D.I.C.; Dalal, R.

    1986-02-04

    This patent describes a process for preparing and isolating a mutant strain of Clostridium thermosaccharolyticum. The mutant strain is able to ferment hexose and pentose carbohydrates to produce ethanol and acetic acid in gram ratios of at least about 8:1. The process includes the steps of: 1.) exposing Clostridium thermosaccharolyticum cells to a mutagenic agent sufficient to effect mutation of the cells; 2.) culturing the mutated cells in a growth medium containing minimal carbon sources and pyruvate for a predetermined time period; 3.) enriching the growth medium with at least one antibiotic, the antibiotic killing the actively growing cells in the medium without substantially affecting the non-actively growing cells; and 4.) isolating a mutant Clostridium thermosaccharolyticium strain from the non-actively growing cells via the inability to utilize pyruvate as a carbon source.

  15. Special Risks of Pharmacy Compounding

    MedlinePlus

    ... Consumer Updates RSS Feed The Special Risks of Pharmacy Compounding Get Consumer Updates by E-mail Consumer ... page: A Troubling Trend What You Can Do Pharmacy compounding is a practice in which a licensed ...

  16. FLUOROCARBON N-F COMPOUNDS

    DTIC Science & Technology

    FLUORIDES, *FLUORINATED HYDROCARBONS, ALKYL RADICALS, CARBOXYLIC ACIDS, CATALYSTS , CESIUM COMPOUNDS, CHEMICAL EQUILIBRIUM, IMIDES, IMINES, MOLECULAR...STRUCTURE, NITRILES, NUCLEAR MAGNETIC RESONANCE, PROPENES, REACTION KINETICS, SUBSTITUTION REACTIONS , SULFUR COMPOUNDS, SYNTHESIS.

  17. Color Classification of Coordination Compounds.

    ERIC Educational Resources Information Center

    Poncini, Laurence; Wimmer, Franz L.

    1987-01-01

    Proposes that colored compounds be classified by reference to a standard color-order system incorporating a color dictionary. Argues that the colors of new compounds could be incorporated into the characterization process and into computer storage systems. (TW)

  18. Color Classification of Coordination Compounds.

    ERIC Educational Resources Information Center

    Poncini, Laurence; Wimmer, Franz L.

    1987-01-01

    Proposes that colored compounds be classified by reference to a standard color-order system incorporating a color dictionary. Argues that the colors of new compounds could be incorporated into the characterization process and into computer storage systems. (TW)

  19. Electrochemical method of producing nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Joan; Jang, Bor Z.

    2013-09-03

    A method of producing nano-scaled graphene platelets with an average thickness smaller than 30 nm from a layered graphite material. The method comprises (a) forming a carboxylic acid-intercalated graphite compound by an electrochemical reaction; (b) exposing the intercalated graphite compound to a thermal shock to produce exfoliated graphite; and (c) subjecting the exfoliated graphite to a mechanical shearing treatment to produce the nano-scaled graphene platelets. Preferred carboxylic acids are formic acid and acetic acid. The exfoliation step in the instant invention does not involve the evolution of undesirable species, such as NO.sub.x and SO.sub.x, which are common by-products of exfoliating conventional sulfuric or nitric acid-intercalated graphite compounds. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  20. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    PubMed

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  1. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  2. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    PubMed Central

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  3. Process for thermochemically producing hydrogen

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  4. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  5. Potential risks of pharmacy compounding.

    PubMed

    Gudeman, Jennifer; Jozwiakowski, Michael; Chollet, John; Randell, Michael

    2013-03-01

    Pharmacy compounding involves the preparation of customized medications that are not commercially available for individual patients with specialized medical needs. Traditional pharmacy compounding is appropriate when done on a small scale by pharmacists who prepare the medication based on an individual prescription. However, the regulatory oversight of pharmacy compounding is significantly less rigorous than that required for Food and Drug Administration (FDA)-approved drugs; as such, compounded drugs may pose additional risks to patients. FDA-approved drugs are made and tested in accordance with good manufacturing practice regulations (GMPs), which are federal statutes that govern the production and testing of pharmaceutical products. In contrast, compounded drugs are exempt from GMPs, and testing to assess product quality is inconsistent. Unlike FDA-approved drugs, pharmacy-compounded products are not clinically evaluated for safety or efficacy. In addition, compounded preparations do not have standard product labeling or prescribing information with instructions for safe use. Compounding pharmacies are not required to report adverse events to the FDA, which is mandatory for manufacturers of FDA-regulated medications. Some pharmacies engage in activities that extend beyond the boundaries of traditional pharmacy compounding, such as large-scale production of compounded medications without individual patient prescriptions, compounding drugs that have not been approved for use in the US, and creating copies of FDA-approved drugs. Compounding drugs in the absence of GMPs increases the potential for preparation errors. When compounding is performed on a large scale, such errors may adversely affect many patients. Published reports of independent testing by the FDA, state agencies, and others consistently show that compounded drugs fail to meet specifications at a considerably higher rate than FDA-approved drugs. Compounded sterile preparations pose the additional risk

  6. Antiviral Lead Compounds from Marine Sponges

    PubMed Central

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P.

    2010-01-01

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. PMID:21116410

  7. Producing VOT contrasts

    NASA Astrophysics Data System (ADS)

    Lofqvist, Anders

    2001-05-01

    The development of voice onset time (VOT) as an acoustic index for studying and classifying stop consonants also prompted a large number of studies examining laryngeal activity and interarticulator timing related to VOT. A collaboration between the Research Institute of Logopedics and Phoniatrics at the University of Tokyo and Haskins Laboratories resulted in a long line of studies using electromyographic and other techniques that provided much of the empirical foundations for what we know about laryngeal function in speech, in particular the production of voiced and voiceless consonants. This presentation will review the articulatory control of VOT differences. To make a consonant voiceless, a speaker uses a combination of glottal abduction and vocal fold tensing. The distinction between voiceless stops with long and short VOT is basically due to a difference in the timing between the glottal abduction gesture and the oral closing and opening gestures. Variations in the size of the glottal gesture also occur. More generally, variations in interarticulator timing between glottal and oral movements are used to produce the different stop categories that occur in the languages of the world. [Work supported by NIH.

  8. Heterogeneous Integration of Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Moutanabbir, Oussama; Gösele, Ulrich

    2010-08-01

    The ability to tailor compound semiconductors and to integrate them onto foreign substrates can lead to superior or novel functionalities with a potential impact on various areas in electronics, optoelectronics, spintronics, biosensing, and photovoltaics. This review provides a brief description of different approaches to achieve this heterogeneous integration, with an emphasis on the ion-cut process, also known commercially as the Smart-Cut™ process. This process combines semiconductor wafer bonding and undercutting using defect engineering by light ion implantation. Bulk-quality heterostructures frequently unattainable by direct epitaxial growth can be produced, provided that a list of technical criteria is fulfilled, thus offering an additional degree of freedom in the design and fabrication of heterogeneous and flexible devices. Ion cutting is a generic process that can be employed to split and transfer fine monocrystalline layers from various crystals. Materials and engineering issues as well as our current understanding of the underlying physics involved in its application to cleaving thin layers from freestanding GaN, InP, and GaAs wafers are presented.

  9. Intracranial compound odontome.

    PubMed

    de Faria, Paulo Rogério; Cardoso, Sérgio Vitorino; Rocha, Ademir; Gomes, Débora Cristiane; de Castro, Samuel Caputo; Loyola, Adriano Mota

    2009-10-01

    An exceedingly rare case of an extragnathic odontome is described arising within the brain. A 10-year-old boy complained of progressive frontal headache for 5 years. Axial computerized tomography the head revealed a solid, calcified lesion with well-defined borders localized in the sellar and suprasellar region composed of multiple calcified structures resembling teeth. The diagnosis was compound odontome. Physical examination and blood analysis revealed hypopituitarism. The patient was submitted for radical tumour resection. He developed persistent diabetes insipidus, hypothyroidism and adrenal insufficiency for which appropriate replacement therapy has been necessary. This case demonstrates that an odontogenic lesion may arise in brain tissues due to the embryological relationship between primordial stomodeum and Rathke's pouch. Its development could be associated with endocrine disturbances.

  10. [Energies of organic compounds

    SciTech Connect

    Wiberg, K.B.

    1991-12-31

    The enthalpy of reduction of lactones to the corresponding diols has been determined, allowing the enthaipies of formation of the lactones to be determined. Results of this study agree well with data obtained for enthalpies of hydrolysis of the lactones. We have begun the measurement of the enthalpies of reduction of norbornanones, and we have shown that it is possible to determine the difference in energy between the exo and endo forms of the product alcohols by measuring the equilibrium constant as a function of temperature. The study of the enthalpies of hydration of carbonyl compounds has continued, and the enthalpies of hydrolysis of the corresponding ketals is being determined. The study of the enthalpies of hydration of alkenes is nearly completed, and the rearrangement reactions which were uncovered are being investigated.

  11. Microbial degradation of explosives and related compounds.

    PubMed

    Gorontzy, T; Drzyzga, O; Kahl, M W; Bruns-Nagel, D; Breitung, J; von Loew, E; Blotevogel, K H

    1994-01-01

    The pollution of soil and water with explosives and related compounds caused by military activities has been known for a long time, but progress in understanding the environmental fate of such substances has only been made in the last few years. Microbial processes could be used for the remediation of explosives-contaminated soils and waste waters because it has been shown that a variety of different microorganisms are able to metabolize these chemical compounds. In some cases even a complete mineralization has been found, whereas in others only biotransformation reactions took place, producing more or less toxic and/or recalcitrant metabolites. Studies with pure cultures of bacteria and fungi have given detailed insights into the biodegradation pathways of at least some nitroorganic compounds. Additionally, some of the key enzymes have been isolated and purified or studied in crude extracts. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. This may be useful in developing microbiological methods for a safe and economic clean-up of soil and water contaminated with such compounds. It also shows the necessity of further investigations concerning the microbial metabolism of these substances.

  12. Fungal endophthalmitis associated with compounded products.

    PubMed

    Mikosz, Christina A; Smith, Rachel M; Kim, Moon; Tyson, Clara; Lee, Ellen H; Adams, Eleanor; Straif-Bourgeois, Susanne; Sowadsky, Rick; Arroyo, Shannon; Grant-Greene, Yoran; Duran, Julie; Vasquez, Yvonne; Robinson, Byron F; Harris, Julie R; Lockhart, Shawn R; Török, Thomas J; Mascola, Laurene; Park, Benjamin J

    2014-02-01

    Fungal endophthalmitis is a rare but serious infection. In March 2012, several cases of probable and laboratory-confirmed fungal endophthalmitis occurring after invasive ocular procedures were reported nationwide. We identified 47 cases in 9 states: 21 patients had been exposed to the intraocular dye Brilliant Blue G (BBG) during retinal surgery, and the other 26 had received an intravitreal injection containing triamcinolone acetonide. Both drugs were produced by Franck's Compounding Lab (Ocala, FL, USA). Fusarium incarnatum-equiseti species complex mold was identified in specimens from BBG-exposed case-patients and an unopened BBG vial. Bipolaris hawaiiensis mold was identified in specimens from triamcinolone-exposed case-patients. Exposure to either product was the only factor associated with case status. Of 40 case-patients for whom data were available, 39 (98%) lost vision. These concurrent outbreaks, associated with 1 compounding pharmacy, resulted in a product recall. Ensuring safety and integrity of compounded medications is critical for preventing further outbreaks associated with compounded products.

  13. Screening for bioactive compounds from algae.

    PubMed

    Plaza, M; Santoyo, S; Jaime, L; García-Blairsy Reina, G; Herrero, M; Señoráns, F J; Ibáñez, E

    2010-01-20

    In the present work, a comprehensive methodology to carry out the screening for novel natural functional compounds is presented. To do that, a new strategy has been developed including the use of unexplored natural sources (i.e., algae and microalgae) together with environmentally clean extraction techniques and advanced analytical tools. The developed procedure allows also estimating the functional activities of the different extracts obtained and even more important, to correlate these activities with their particular chemical composition. By applying this methodology it has been possible to carry out the screening for bioactive compounds in the algae Himanthalia elongata and the microalgae Synechocystis sp. Both algae produced active extracts in terms of both antioxidant and antimicrobial activity. The obtained pressurized liquid extracts were chemically characterized by GC-MS and HPLC-DAD. Different fatty acids and volatile compounds with antimicrobial activity were identified, such as phytol, fucosterol, neophytadiene or palmitic, palmitoleic and oleic acids. Based on the results obtained, ethanol was selected as the most appropriate solvent to extract this kind of compounds from the natural sources studied.

  14. Method for producing capsular polysaccharides

    NASA Technical Reports Server (NTRS)

    Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor); Richards, Gil F. (Inventor)

    1994-01-01

    Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.

  15. Compound Cycle Engine Program.

    DTIC Science & Technology

    1986-01-01

    the combustor replaced by a power producing diesel core. The turbomachinery maps were essentially lifted from existing turbine engines, with the study...additive samples for evaluation. Figure 11 shows a schematic of the Hohman wear rig and preliminary test results. The Stauffer STL plus 10 percent TAP ...Cruise Missile, and APU Propulsion Systems." AIAA Paper 86-1545, June 1986. 6. Larkin, T., Staton, D., and Mongia , H., "Rotorcraft Propulsion for Year 2000

  16. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  17. Metastable Equilibria Among Aqueous Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shock, E.; Shipp, J.; Yang, Z.; Gould, I. R.

    2011-12-01

    Metastable equilibrium states exist when reactions among a subset of compounds in a chemical system are reversible even though other irreversible reactions exist in the same system. The existence of metastable equilibrium among organic compounds was initially detected by comparing ratios of organic acid concentrations reported for oil-field brines (Shock, 1988, Geology 16, 886-890; Shock, 1989, Geology 17, 572-573), and calculating the same ratios for likely oxidation states determined by mineral assemblages and mixtures of hydrocarbons in coexisting petroleum (Shock, 1994, in: The Role of Organic Acids in Geological Processes, Springer). This led to the notion of extending the concept of metastable equilibrium states to explicitly account for petroleum compositions (Helgeson et al., 1993, GCA, 57, 3295-3339), which eventually yielded the concept of hydrolytic disproportionation of kerogens to produce petroleum and CO2(g) (Helgeson et al., 2009, GCA, 73, 594-695). Experimental tests of metastable equilibrium among organic compounds began with the identification of reversible reactions between alkanes and alkenes that are dependent on the H2 fugacity of the experimental system (Seewald, 1994, Nature 370, 285-287). These were followed with a comprehensive series of long-term experiments leading to the hypothesis that reversible reactions include alkanes, alkenes, alcohol, aldehydes, ketones and carboxylic acids (e.g., Seewald, 2001, GCA 65, 1641-1664; 2003, Nature 426, 327-333; McCollom & Seewald, 2003, GCA 67, 3645-3664). We have conducted sets of hydrothermal organic transformation experiments that test the extent to which these reactions are indeed reversible using aromatic and cyclic compounds. Results demonstrate reversibility for reactions among dibenzyl ketone, 1,3-diphenyl-2-propanol, 1,3-diphenylpropene and 1,3-diphenylpropane, as well as among methylcyclohexanes, methylcyclohexenes, methylcyclohexanols, methylcyclohexanones and methylcyclohexadienes. The

  18. Modelling the emplacement of compound lava flows

    NASA Astrophysics Data System (ADS)

    Blake, S.; Bruno, B. C.

    2000-12-01

    The physical variables controlling crust-dominated lava flow have been investigated using laboratory experiments in which molten polyglycol wax was extruded from a point source on to a horizontal plane under cold water. The wax initially spread axisymmetrically and a crust of solid wax grew. Eventually wax broke out from the flow's periphery, sending out a flow lobe which in turn cooled and produced another breakout. The process repeated itself many times, building a 'compound lava'. The time for the first breakout to form correlates well with the theoretically predicted time ( tc) required for cooling to form a crust thick enough for its strength to limit the flow's spreading rate. This time is proportional to the product of effusion rate ( Q) and initial magma viscosity ( μ) and inversely proportional to the square of the crust strength at the flow front. The number of flow units and the apparent fractal dimension of the flow perimeter increase with time normalised by tc. Our model illuminates the physical basis for the observation by Walker [G.P.L. Walker, Bull. Volcanol. 35 (1972) 579-590] that compound lava flows form by slow effusion of low viscosity magma, whereas faster effusion and higher viscosity favour lavas with fewer flow units. Because compound flows require t≫ tc, and given that tc∝ Qμ and the relationship between volume and effusion rate is V= Qt, simple and compound lava flows are predicted to fall in separate fields on a graph of μ against V/ Q2, all else being equal. Compound flows plot at small values of μ and large values of V/ Q2, with the position of the simple/compound boundary defined by field data implying a crust strength of order 10 4 Pa for basaltic to intermediate lavas. Whether a flow remains as a simple flow or matures into a compound flow field depends on the combined effect of viscosity, eruption rate and eruption duration (and hence volume) and these parameters need to be taken in to account when using morphology to infer

  19. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  20. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.