Missana, Tiziana; Alonso, Ursula; Turrero, Maria Jesús
2003-03-01
The possible mechanisms of colloid generation at the near field/far field interface of a radioactive repository have been investigated by means of novel column experiments simulating the granite/bentonite boundary, both in dynamic and in quasi-static water flow conditions. It has been shown that solid particles and colloids can be detached from the bulk and mobilised by the water flow. The higher the flow rate, the higher the concentration of particles found in the water, according to an erosion process. However, the gel formation and the intrinsic tactoid structure of the clay play an important role in the submicron particle generation even in the compacted clay and in a confined system. In fact, once a bentonite gel is formed, in the regions where the clay is contacted with water, clay colloids can be formed even in quasi-static flow conditions. The potential relevance of these colloids in radionuclide transport has been studied by evaluating their stability in different chemical environments. The coagulation kinetics of natural bentonite colloids was experimentally studied as a function of the ionic strength and pH, by means of time-resolved light scattering techniques. It has been shown that these colloids are very stable in low saline (approximately 1 x 10(-3) M) and alkaline (pH > or = 8) waters. Copyright 2002 Elsevier Science B.V.
METHOD FOR THE STUDY OF THE LIVER BLOOD FLOW USING GAMMA-EMITTING RADIONUCLIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptista, A.M.; Carvalho, J.S.
1959-10-31
A method is described for the evaluation of liver blood flow values by radioactivity measurements of gamma-emitting radionuclides, in colloid form, using a scintillation detector positioned over the liver region. It is shown that the disappearance rate constant of the nuclide from the blood can be calculated from the curves obtained. Advantages of the method, including the use of small amounts of radioactive materials, are discussed. (auth)
Pore water colloid properties in argillaceous sedimentary rocks.
Degueldre, Claude; Cloet, Veerle
2016-11-01
The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.
Colloids from the aqueous corrosion of uranium nuclear fuel
NASA Astrophysics Data System (ADS)
Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.
2005-12-01
Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.
Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel
2014-12-09
The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.
NASA Astrophysics Data System (ADS)
Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.
2015-12-01
Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.
APPARATUS AND TECHNIC FOR THE ADMINISTRATION OF INTRACAVITARY RADIOACTIVE ISOTOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, N.J.; Liegner, L.M.
1961-08-01
The method of administration of radioactive isotopes in the treatment of pleural effusions and ascites associated with cancer will vary according to the therapeutic technic. A procedure with a suitable apparatus that utilizes an economical and sterile disposable package is described. The radioactive isotope, whether colloidal chromic phosphate (P/sup 32/) or colloidal gold (Au/sup 198/), can be obtained in th e exact amount prescribed. The entire apparatus is assembled within a few minutes under sterile conditions. Before the hypodermic needles are inserted into the radioactive isotope vial, the air is removed from the tubing by the flow of saline inmore » each segment. Each section is then clamped. The shielded radioactive isotope is then placed on a table or stand and the rubber seal of the vial is swabbed with alcohol or iodine. The inflow needle is inserted just through the rubber stopper and the outflow needle is inserted to the bottom of the vial. This procedure is carried out without removing the vial from the lead container. (auth)« less
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Mal'kovsky, V. I.; Mokhov, A. V.
2016-05-01
The interaction of aluminophosphate glass with water at 95°C for 35 days results in glass heterogenization and in the appearance of a gel layer and various phases. The leaching rate of elements is low owing to the formation of a protective layer on the glass surface. It is shown that over 80% of uranium leached from the glass matrix occurs as colloids below 450 nm in size characterized by high migration ability in the geological environment. To determine the composition of these colloids is a primary task for further studies. Water vapor is a crystallization factor for glasses. The conditions as such may appear even at early stages of glass storage because of the failure of seals on containers of high-level radioactive wastes. The examination of water resistance of crystallized matrices and determination of the fraction of radionuclide in colloids are also subjects for further studies.
Influence of the acute alcoholism on the phagocytic function of the mononuclear phagocytic system
Sabino, KR; Petroianu, A; Alberti, LR
2011-01-01
Rationale:Alcoholics are more likely to have infections, mainly in the respiratory system. Alcohol seems to inhibit the immune system. Despite the extensive literature related to alcoholism, data related to the immune system are still not conclusive. Objective: The purpose of this study was to verify the influence of acute alcohol intake on colloid distribution in the organs of the mononuclear phagocyte system. Methods and Results: Thirteen male Swiss mice were divided into two groups: Group 1 (n = 5) – control, and Group 2 (n = 8) – animals that received 0.5 ml ethanol 50%, 30 minutes before the experiment. Colloidal sulphur labeled with ⁸⁸mTc was used to evaluate colloid distribution in the liver, spleen and lungs. Colloid clearance was assessed as well. A gamma camera was used to measure the radioactivity of these organs and of a blood clot. No difference was found in the presence of colloid in the organs of both groups. The liver showed the highest phagocytic intake, followed by the spleen and lungs (p = 0.021 for Group 1 and p = 0.003 for Group 2). A minimum amount of radiation remained in the blood of both groups. Discussion: According to the experiential conditions of this work, acute ingestion of alcohol did not interfere with the phagocytic function of the mononuclear phagocyte system in mice. PMID:22514578
Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus
2007-05-01
Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Philip; Levitt, Seymour H.
1963-06-15
Case histories of two patients treated with colloidal radiogold for diffuse reticulum cell sarcoma are presented. Further analysis of the method is suggested by the unusually long survival time of one of the patients. It was concluded that, although external radiotherapy remains the treatment of choice in localized reticulum cell sarcoma, intravenous colloidal radiogold may be a useful agent in lymphosarcomas with diffuse minute neoplastic liver and spleen involvements. Intravenous colloidal radiogold can produce bone marrow depression and thrombocytopenia which can lead to death. This factor tends to argue against therapeutic use of the agent. It is suggested that nomore » more than 50 mC Au/sup 198/ intravenously should be used for treatment of this disease. (R.M.G.)« less
Transport of Intrinsic Plutonium Colloids in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.
2011-12-01
Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the column at a flow rate of ~ 6 mL/hr. Despite that the Pu intrinsic colloids are positively charged while the alluvium grain surfaces are negatively charged under the current experimental conditions, about 30% of the Pu colloids population transported through the column and broke through earlier than trillium. Our previous experiments in the same column have shown a highly unretarded transport of the negatively charged pseudo Pu colloids (Pu sorbed onto smectite colloids) and complete retardation of the dissolved Pu. The enhanced transport of Pu colloids was explained by the effective pore volume concept. Combining the results of these two experiments, it is concluded that the intrinsic Pu colloids transported in the column by adsorbing onto the background clay colloids due to electrostatic repulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronskill, M.J.
The spatial distribution of radioactivity in the injection site, and its rate of clearance, have been measured in patients undergoing various types of interstitial radiocolloid lymphoscintigraphy using 99mTc-antimony sulfide colloid. The clearance of radioactivity from the injection site, and the expansion with time of the localized radioactivity vary considerably for different sites of injection. Maximum absorbed dose estimates of 45.6 rads to the center of the injection site (rectus sheath) and 21 rads to individual lymph nodes have been calculated for patients undergoing internal mammary lymphoscintigraphy with 450 mu Ci injected radioactivity. Absorbed dose estimates for finger web, toe web,more » and perianal injection sites are also presented.« less
Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S
2016-11-15
On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi's damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (10 6 ) order of magnitude distribution coefficient (K d ) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.
Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S.
2016-01-01
On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications. PMID:27845441
Microbial effects on colloidal agglomeration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hersman, L.
1995-11-01
Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared tomore » sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.« less
Colloid facilitated transport of lanthanides through discrete fractures in chalk
NASA Astrophysics Data System (ADS)
Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-04-01
Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of transport rates and calculation of overall tracer recovery. Preliminary results suggest that mobility of Ce as a solute is negligible, and in experiments conducted without bentonite colloids, the 2% of the Ce that was recovered during the experiments travelled as "intrinsic" colloids in the form of Ce2(CO3)3-6H2O precipitate. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and the carbonate precipitate colloids were injected. In addition, the maximum relative concentration (C/C0) of the Ce in the samples from the experiments conducted without bentonite colloids is about 0.002, whereas that of the experiments conducted in the presence of bentonite colloids reaches almost 0.2. This indicates that colloid presence does indeed markedly increase the mobility of radionuclides through fractured chalk matrices and should therefore be considered in models representing transport of radionuclide waste originating from nuclear repositories.
Colloid-facilitated transport of cesium in variably saturated Hanford sediments.
Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C
2005-05-15
Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.
Dar, Ume-Kalsoom; Khan, Irfanullah; Javed, Muhammad; Ali, Muhammad; Hyder, Syed Waqar; Murad, Sohail; Anwar, Jamil
2013-03-01
In this study, rhenium sulfide colloidal nanoparticles were developed as radiopharmaceutical for sentinel lymph node detection. We directly used rhenium sulfide as a starting material for the preparation of colloidal nanoparticles. UV-visible spectrophotometry was used for characterization of in house developed colloidal particles. The size distribution of radioactive particles was studied by using membrane filtration method. The percentage of radiolabeled colloidal nanoparticles was determined by paper chromatography (PC). The study also includes in vitro stability, protein binding in human blood and bioevaluation in a rabbit model. The results indicate that 77.27 ± 3.26 % particles of size less than 20nm (suitable for lymphoscintigraphy) were radiolabeled. (99m)Tc labeled rhenium sulfide labeling efficacy with the radiometal is 98.5 ± 0.5%, which remains considerably stable beyond 5h at room temperature. Furthermore, it was observed that 70.2 ± 1.3% radiolabeled colloid complex showed binding with the blood protein. Bioevaluation results show the remarkable achievement of our radiopharmaceutical. The in house prepared (99m)Tc labeled rhenium sulfide colloidal nanoparticles reached the sentinel node within 15 min of post injection. These results indicate that (99m)Tc labeled rhenium sulfide colloid nanoparticles kit produced by a novel procedure seems of significant potential as a feasible candidate for further development to be used in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipshultz, L.I.; Corriere, J.N. Jr.
Technetium-99m radioactive colloid particles were suspended in an iodine- 131 Hippuran radioactive fluid medium and placed into the bladders of six patients. Two normal patients and one with only one urinary tract infection voided the fluid and particles synchronously, while three with recurrent urinary tract infections eliminated the particles at a much slower rate than the fluid. A change in either the physical contour or secretory activity of the bladder urothelium is postulated as the cause of particle retention in these patients with chronic infections. (auth)
Challenges associated with the behaviour of radioactive particles in the environment.
Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos
2018-06-01
A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radionuclide esophageal transit: an evaluation of therapy in achalasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKinney, M.K.; Brady, C.E.; Weiland, F.L.
1983-09-01
We measured quantitative esophageal transit, expressed as percentage of esophageal retention, before and after pneumatic dilatation in two patients with achalasia. In the sitting position they ingested a 500 ml liquid meal containing 500 muCi technetium Tc 99m sulfur colloid. Radioactivity counts of the entire esophagus were plotted at five-minute intervals for 30 minutes. In five normal control subjects the esophagus essentially cleared in less than one minute. Both patients with achalasia had definite retention 30 minutes before dilatation and had quantitative improvement after dilatation. Radionuclide scintigraphic esophageal transit probably correlates better than other parameters with the physiologic degree ofmore » obstruction in achalasia.« less
Lee, Sang-Woo; Lee, Jaetae; Lee, Deog-Young; Chun, Kyung-Ah; Ahn, Byeong-Cheol; Kang, Young-Mo; Lee, Kyubo
2007-02-01
Malarial parasites injected by the mosquito rapidly target hepatocytes, and hepatomegaly is commonly observed during the progress of the disease in malaria patients. To evaluate the degree of hepatic damage and functional status of hepatocytes in malaria patients, we performed liver scintigraphy using (99m)Tc-galactosylated serum albumin (GSA) prospectively and the findings were compared with those of (99m)Tc-colloid scintigraphy, ultrasonography and clinical results in the same subject. Eight malaria patients (all male, mean age 22 years) confirmed to be infected with Plasmodium vivax underwent (99m)Tc-GSA liver scintigraphy, followed by liver ultrasonography and (99m)Tc-colloid scintigraphy using phytate within 3 days. For hepatocyte scintigraphy, anterior images of cardiac blood-pool and liver were continuously acquired for 30 min after injection of 185 MBq (99m)Tc-GSA (3 mg). In addition to visual interpretation of the images, quantitative measurement of hepatic function was performed with several functional parameters, such as hepatic uptake index (LHL15), blood clearance index (HH15) and modified receptor index (LHL/HH) calculated from the radioactivity of the liver and heart. (99m)Tc-colloid images were assessed and graded visually. Severity of hepatic dysfunction or reticuloendothelial system activation was classified as normal, mild, moderate and severe on GSA or colloid images. Hepatomegaly was observed in five and splenomegaly in seven of the eight patients. Serum levels of transaminase and alkaline phosphatase were mildly elevated in two. Visual assessment of GSA scintigraphy revealed normal findings in all subjects, except for mild increases in size. The mean values of LHL15, HH15 and LHL/HH were 0.928+/-0.014, 0.537+/-0.031 and 1.732+/-0.106, respectively. They were graded as normal in five, and near-normal to mild dysfunction in three subjects. In contrast, (99m)Tc-colloid scintigraphy revealed abnormal findings in all of the subjects, and graded as moderate in three or severe reticuloendothelial system activation in five subjects. Liver ultrasonographic findings were normal for all subjects except mild hepatomegaly. Malaria-induced injury of the hepatocyte is likely to be minimal whereas hepatomegaly is commonly seen during disease process. This suggests that hepatic damage in malarial infection is mainly due to involvement of the reticuloendothelial system. (99m)Tc-GSA scintigraphy can be used in differentiating hepatocellular damage from reticuloendothelial system involvement in patients with infectious disease showing hepatomegaly.
Jamre, Mina; Shamsaei, Mojtaba; Erfani, Mostafa; Sadjadi, Sodeh; Ghannadi Maragheh, Mohammad
2018-04-12
Radioembolization with radioactive microspheres has been an effective method for the treatment of liver lesions. The aim of this study was to prepare carrier-free 188 Re loaded poly (L-lactic acid) (PLLA) microspheres through 188 Re sulfide colloidal nanoparticles ( 188 Re-SC nanoparticles). The formation of 188 Re-SC nanoparticles was confirmed by ultraviolet-visible spectrophotometry. The labeling yield of 188 Re-SC nanoparticles was verified using the RTLC method. Effects of synthesis parameters on morphology and size of prepared 188 Re-sulfide colloidal-PLLA microspheres ( 188 Re-SC-PLLA microspheres) were studied by scanning electron microscopy. In vitro stability of 188 Re-SC-PLLA microspheres was investigated in normal saline at room temperature and in human serum at 37°C. In vivo distribution studies and gamma camera imaging were performed in healthy BALB/c mice. The microspheres could be prepared with sizes between 13 and 48 μm (modal value 29 μm) and radiolabeling efficiency >99%. After incubation, the microspheres were found stable in vitro up to 72 hours. The biodistribution after intravenous injection in healthy BALB/c mice showed high accumulation in lung as a first capture pathway organ for microsphere followed by great retention over 48 hours for these microspheres. These data show that 188 Re-SC-PLLA microspheres are suitable candidate for clinical studies. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zheng, Q.; Dickson, S.; Guo, Y.
2007-12-01
A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.
SERS Technique for Rapid Bacterial Screening
USDA-ARS?s Scientific Manuscript database
This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...
Liu, Haiyi; Sun, Jianfei; Wang, Haoyao; Wang, Peng; Song, Lina; Li, Yang; Chen, Bo; Zhang, Yu; Gu, Ning
2015-06-08
A kinetics-based method is proposed to quantitatively characterize the collective magnetization of colloidal magnetic nanoparticles. The method is based on the relationship between the magnetic force on a colloidal droplet and the movement of the droplet under a gradient magnetic field. Through computational analysis of the kinetic parameters, such as displacement, velocity, and acceleration, the magnetization of colloidal magnetic nanoparticles can be calculated. In our experiments, the values measured by using our method exhibited a better linear correlation with magnetothermal heating, than those obtained by using a vibrating sample magnetometer and magnetic balance. This finding indicates that this method may be more suitable to evaluate the collective magnetism of colloidal magnetic nanoparticles under low magnetic fields than the commonly used methods. Accurate evaluation of the magnetic properties of colloidal nanoparticles is of great importance for the standardization of magnetic nanomaterials and for their practical application in biomedicine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schaafsma, Boudewijn E.; Verbeek, Floris P.R.; Rietbergen, Daphne D.D.; van der Hiel, Bernies; van der Vorst, Joost R.; Liefers, Gerrit-Jan; Frangioni, John V.; van de Velde, Cornelis J.H.; van Leeuwen, Fijs W.B.; Vahrmeijer, Alexander L.
2013-01-01
Background Combining radioactive colloids and a near-infrared (NIR) fluorophore permit preoperative planning and intraoperative localization of deeply located sentinel lymph nodes (SLNs) with direct optical guidance by a single lymphatic tracer. The aim of this clinical trial was to evaluate and optimize a hybrid NIR fluorescence and radioactive tracer for SLN detection in breast cancer patients. Method Patients with breast cancer undergoing SLN biopsy were enrolled. The day before surgery, indocyanine green (ICG)-99mTc-Nanocolloid was injected periareolarly and a lymphoscintigram was acquired. Directly before surgery, blue dye was injected. Intraoperative SLN localization was performed by a gamma probe and the Mini-FLARETM NIR fluorescence imaging system. Patients were divided into two dose groups, with one group receiving twice the particle density of ICG and nanocolloid, but the same dose of radioactive 99mTechnetium. Results Thirty-two patients were enrolled in the trial. At least one SLN was identified pre- and intraoperatively. All 48 axillary SLNs could be detected by gamma tracing and NIR fluorescence imaging, but only 42 of them stained blue. NIR fluorescence permitted detection of lymphatic vessels draining to the SLN up to 29 hours after injection. Increasing the particle density by two-fold did not yield a difference in fluorescence intensity, median 255 (range 98 – 542) vs. median 284 (90 – 921; P = 0.590), or signal- to- background ratio, median 5.4 (range 3.0 – 15.4) vs. median 4.9 (3.5 – 16.3; P = 1.000), of the SLN. Conclusion The hybrid NIR fluorescence and radioactive tracer ICG-99mTc-Nanocolloid permitted accurate pre- and intraoperative detection of the SLNs in patients with breast cancer. PMID:23696463
Onetti, C M; Gutiérrez, E; Hliba, E; Aguirre, C R
1982-01-01
Synoviorthesis was performed in 217 joints from 111 patients suffering from different stages of rheumatoid arthritis (RA). 32P-colloidal chromic phosphate was employed, with an average dose from 6 mCi for large joints (knees) to 0.3 mCi for small peripheral joints such as average dose from 6 mCi for large joints (knees) to 0.3 mCi for small peripheral joints such as the MCP or PIP joints. Satisfactory clinical results were observed in 84% of the cases and no significant side effects resulted after a follow-up period from 1 to 10 years. Striking effects after treatment were observed through histopathological studies (light and electron microscopy) and the use of contrast arthrography. We concluded that radioactive synovectomy with 32P-chromate is a very useful method for the local treatment of RA.
Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.
Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D
2017-04-01
Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.
Ren, Huimin; Liu, Huijuan; Qu, Jiuhui; Berg, Michael; Qi, Weixiao; Xu, Wei
2010-01-01
The role of colloids in estuarine and marine systems has been studied extensively in recent years, whereas less is known about the polluted freshwater system. Yongdingxin River is one of the major recipients of industrial effluents in Tianjin. This article evaluates the role of colloids in controlling geochemical behavior of Cu, Zn, Fe, Mn, Hg and Cr at the confluences between Yongdingxin River and its major tributaries Beijing Drainage River, Jinzhong River and Beitang Drainage River. Based on the distribution of metal partitioning among particulate (>0.22mum), colloidal (1kDa to 0.22mum) and truly dissolved (<1kDa) fractions, the metals can be assigned to the following groups: Group 1 - organic colloidal pool-borne elements Cu and Cr; Group 2 - inorganic colloidal pool-borne metals Fe and Mn; Group 3 - Zn and Hg characterized by varying complexation patterns. The distribution of metal partitioning among particulate, colloidal and truly dissolved fractions was influenced by anthropogenic input. In addition, the theoretical concentrations of elements in case of conservative mixing between the waters of Yongdingxin River and the waters of its tributaries were compared with the measured values to evaluate the geochemical role of colloids. The result showed that all of the metals presented a non-conservative mixing behavior. Addition of colloids resulted in the removal of metals from the water column to bed sediment during river water mixing, which was furthermore confirmed by the similar partition coefficient of metal concentration between colloid and sediment. Copyright 2009 Elsevier Ltd. All rights reserved.
Gómez Ramírez, M; Rojas Avelizapa, L I; Rojas Avelizapa, N G; Cruz Camarillo, R
2004-02-01
A simple and sensitive method based on the use of colloidal chitin stained with Remazol Brilliant Blue R (RBB) is proposed to evaluate chitinase activity. If this colloidal-stained substrate is included as a carbon source in a liquid medium, this technique allows the selection or the comparison of chitinolytic microorganisms. The colloidal substrate is proportionally solubilized and the dye released is spectrophotometrically quantified at 595 nm. The procedures used for the staining and fixing of RBB in the colloidal chitin, and a comparison with the commercial substrate chitin-azure, are presented. The influence of several physicochemical and enzymatic parameters on the release of dyes is also shown. Both stained substrates were used for studying the effect of pH, substrate concentration, temperature and time on the chitinase reaction of Bacillus thuringiensis Bt-107.
Costa, R; Cottone, C; Cirrincione, M; Chinnici, M; Scaffidi, A
1990-01-31
The authors studied the action of clebopride on gastric emptying in subjects with non-ulcer dyspepsia by using radioactive isotopes. Eighteen subjects complaining of dyspeptic symptoms were studied in whom the tests undertaken had not shown organic lesions of the digestive tract. Tests with radioactive isotopes were performed before and after administration of clebopride (0.5 mg, three times daily for 15 days). In all patients gastric emptying time was normalized and gastric peristalsis became regular. In addition, in 85% of the patients, symptoms disappeared or were markedly reduced. Side effects requiring withdrawal of the drug were not observed. The above study, therefore, showed clebopride to be a useful drug for the treatment of non-ulcer dyspepsia, thus confirming data found in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasquez, T.E.; Lyons, K.P.; Raiszadeh, M.
1984-01-01
The therapeutic agent colloidal bismuth subcitrate (CBS) selectively binds to peptic ulcers. The authors have developed a method for labeling this agent with Tc-99m. Chromatographic quality control studies of the agent on silica gel coated strips (ITLC-SG) showed that more than 97% of Tc-99m was bound to CBS. During in-vitro stability testing, the radio-label was stable for a minimum of 6 hours. The chromatographic findings are in agreement with the in-vivo distribution of the agent which showed no significant radioactivity in thyroid, kidneys, liver, or bladder. The resulting Tc-99m-CBS solution is administered orally in drinking water. Preliminary animal studies havemore » been conducted on 5 adult 3 kg New Zealand rabbits sedated with 50 mg Ketamine I.M. The rabbits were intubated with I.V. tubing advanced to the stomach. They were given a gastric erosive suspension of 600-1000 mg/kg of pulverized ASA in 10 cc tap water. Four hours later they were given 3-4 mCi of the radiotracer in a 5 cc volume of water. Serial in-vivo images were obtained for 2 hours which included thyroid, abdomen, and urinary bladder. Next the stomachs were excised, opened along the greater curvature, imaged, vigorously washed and reimaged. All 5 rabbits showed avid localized binding of radiotracer which remained fixed even with vigorous washing. Areas of normal appearing mucosa were relatively devoid of radiotracer. This new compound may have significant clinical usefulness in the detection of peptic ulcer disease. In addition, such a non-invasive technique, carrying none of the risks or discomfort of endoscopy could also find application in the evaluation of the response to therapy.« less
Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.
Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina
2010-11-16
Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.
The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water
NASA Astrophysics Data System (ADS)
Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.
2014-12-01
Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.
Chakraborty, Sudipta; Vimalnath, K V; Sharma, Jyothi; Shetty, Priyalata; Sarma, H D; Chakravarty, Rubel; Prakash, Deep; Sinha, P K; Dash, Ashutosh
2018-06-15
Since the inception of radiation synovectomy, a host of radioactive colloids and microparticles incorporating suitable therapeutic radionuclides have been proposed for the treatment of arthritis. The present article reports the synthesis and evaluation of barium titanate microparticles as an innovative and effective carrier platform for lanthanide radionuclides in the preparation of therapeutic agents for treatment of arthritis. The material was synthesized by mechanochemical route and characterized by X-ray diffraction, scanning electron microscopy, surface area, and particle size distribution analyses. Loading of lanthanide radionuclides ( 166 Ho, 153 Sm, 177 Lu, and 169 Er) on the microparticles was achieved in high yield (> 95%) resulting in the formulation of loaded particulates with excellent radiochemical purities (> 99%). Radiolanthanide-loaded microparticles exhibited excellent in vitro stability in human serum. In vitro diethylene triamine pentaacetic acid challenge study indicated fairly strong chemical association of lanthanides with barium titanate microparticles. Long-term biodistribution studies carried out after administration of 177 Lu-loaded microparticles into one of the knee joints of normal Wistar rats revealed near-complete retention of the formulation (> 96% of the administered radioactivity) within the joint cavity even 14 days post-administration. The excellent localization of the loaded microparticles was further confirmed by sequential whole-body radio-luminescence imaging studies carried out using 166 Ho-loaded microparticles. Copyright © 2018 John Wiley & Sons, Ltd.
Ion beam analyses of radionuclide migration in heterogeneous rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel
2013-07-18
The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less
Submersible purification system for radioactive water
Abbott, Michael L.; Lewis, Donald R.
1989-01-01
A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.
Sampling colloids and colloid-associated contaminants in ground water
Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.
1993-01-01
It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in “background” wells, colloid-size distributions, ground-water geochemistry, and colloid surface characteristics.
Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidlin, S.M.; Marinelli, L.D.; Oshry, E.
1990-09-01
A case of metastatic adenocarcinoma of the thyroid is reported in which treatment by means of radioactive iodine has been successful. The patient was completely thyroidectomized for malignant adenoma in 1923, with neither thyrotoxicosis then nor hypothyroidism postoperatively; 15 years later there developed classic symptoms of hyperthyroidism and severe pain in the lower back. In October 1939 a pulsating tumor removed from the level of the 12th thoracic vertebra proved to be metastatic thyroid adenocarcinoma (histologically well differentiated, with small follicles and colloid). In the next two years hyperthyroidism increased and roentgenograms revealed new metastases in the lungs, upper partmore » of the right femur, second rib on the left side, left ilium, and skull. Roentgenologic irradiation of the metastases proved ineffectual. In March 1943 a tracer dose of radioactive iodine revealed iodine retention by all the known lesions and no evidence of residual thyroid tissue in the neck. Therapeutic amounts of radioactive iodine were administered orally between May and October 1943. Definite and lasting clinical improvement followed. In April 1944 and March 1945 additional I* was administered with a resultant disappearance of pain, increase in weight, and progressive change in all clinical criteria in the direction of hypothyroidism. Roentgenographic evidence pointed to an arrest if not a regression of the disease. No untoward effects followed this therapy. Radioactive iodine seems to be an effective therapeutic agent in the control of this type of tumor.« less
Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
2010-01-01
Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy. PMID:21080962
Spectrum of antimicrobial activity associated with ionic colloidal silver.
Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey
2013-03-01
Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.
Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.
Shira, Jason M; Williams, Barbara C; Flury, Markus; Czigány, Szabolcs; Tuller, Markus
2006-01-01
The suitability of passive capillary samplers (PCAPS) for collection of representative colloid samples under partially saturated conditions was evaluated by investigating the transport of negatively and positively charged colloids in fiberglass wicks. A synthetic pore water solution was used to suspend silica microspheres (330 nm in diameter) and ferrihydrite (172 nm in diameter) for transport experiments on fiberglass wicks. Breakthrough curves were collected for three unsaturated flow rates with silica microspheres and one unsaturated flow rate with ferrihydrite colloids. A moisture characteristic curve, relating tensiometer measurements of matric potential to moisture content, was developed for the fiberglass wick. Results indicate that retention of the silica and the ferrihydrite on the wick occurred; that is, the wicks did not facilitate quantitative sampling of the colloids. For silica microspheres, 90% of the colloids were transmitted through the wicks. For ferrihydrite, 80 to 90% of the colloids were transmitted. The mechanisms responsible for the retention of the colloids on the fiberglass wicks appeared to be physicochemical attachment and not thin-film, triple-phase entrapment, or mechanical straining. Visualization of pathways by iron staining indicates that flow is preferential at the center of twisted bundles of filaments. Although axial preferential flow in PCAPS may enhance their hydraulic suitability for sampling mobile colloids, we conclude that without specific preparation to reduce attachment or retention, fiberglass wicks should only be used for qualitative sampling of pore water colloids.
Ures, Ma Cristina; Savio, Eduardo; Malanga, Antonio; Fernández, Marcelo; Paolino, Andrea; Gaudiano, Javier
2002-01-01
Background Radiosynovectomy is a type of radiotherapy used to relieve pain and inflammation from rheumatoid arthritis. In this study, 188-Rhenium (188Re) colloids were characterized by physical and biological methodologies. This was used to assess which parameters of the kit formulation would be the basis in the development of a more effective radiopharmaceutical for synovectomy. Intraarticular injection in knees of rabbits assessed cavity leakage of activity. Methods The physical characteristics of tin (Sn) and sulphur (S) colloids were determined to assess the formulation with suitable properties. Particles were grouped in three ranges for analyzing their distribution according to their number, volume and surface. The ideal particle size range was considered to be from 2 to 10 microns. Membrane filtration and laser diffraction characterization methodologies were used. Results While membrane filtration could give misleading data, laser diffraction proportions more reliable results. The Sn colloid showed a better distribution of particle volume and surface than S colloid, in the 2 to 10 microns range. The 188Re-Sn colloid was obtained with a radiochemical purity higher than 95% after 30 minutes of autoclaving. While Sn colloid kit stability was verified for 60 days, the 188Re-Sn preparation was stable in the first 24 hrs. No significant intrabatch variability (n = 3) was detected. Biodistribution and scintigraphic studies in rabbits after intraarticular injection showed relevant activity only in knee, being 90% at 48 hours. Conclusion The 188Re-Sn colloid is easy to prepare, is stable for 24 hours and shows minimal cavity leakage after intraarticular injection into rabbit knees, suggesting this radiotherapeutical agent has suitable physical properties for evaluation for joint treatment in humans. PMID:12379158
Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja
2015-01-01
Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.
FACILITATED TRANSPORT OF INORGANIC CONTAMINANTS IN GROUNDWATER: PART II. COLLOIDAL TRANSPORT
This project consisted of both field and laboratory components. Field studies evaluated routine sampling procedures for determination of aqueous inorganicgeochemistry and assessment of contaminant transport by colloidal mobility. Research at three different metal-contaminated sit...
Satellite nuclear power station: An engineering analysis
NASA Technical Reports Server (NTRS)
Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.
1973-01-01
A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.
Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: mechanism involved.
Liu, Lu; Feng, Guo-Sheng; Gao, Hong; Tong, Guan-Sheng; Wang, Yu; Gao, Wen; Huang, Ying; Li, Cheng
2005-04-14
To study the effects of chromic-P32 phosphate (32P colloids) interstitial administration in Pc-3 implanted pancreatic carcinoma, and investigate its anticancer mechanism. Ninety-eight tumor bearing nude mice were killed at different time points after the injection of 32P colloids to the tumor core with observed radioactivity. The light microscopy, transmission electron microscopy (TEM) and immuno-histochemistry and flow cytometry were used to study the rates of tumor cell necrosis, proliferating cell nuclear antigen index, the micro vessel density (MVD). The changes of the biological response to the lymphatic transported 32P colloids in the inguinal lymph node (ILN) were dynamically observed, and the percentage of tumor cell apoptosis, and Apo2.7, caspase-3, Bcl-2, Bax-related gene expression were observed too. The half-life of effective medication is 13 d after injection of 32P colloids to the tumor stroma, in 1-6 groups, the tumor cell necrosis rates were 20%, 45%, 65%, 70%, 95% and 4%, respectively (F = 4.14-105.36, P<0.01). MVD were 38.5+/-4.0, 28.0+/-2.9, 17.0+/-2.9, 8.8+/-1.5, 5.7+/-2.3 and 65.0+/-5.2 (t = 11.9-26.1, P<0.01), respectively. Under TEM fairly differentiated Pc-3 cells were found. Thirty days after medication, tumors were shrunk and dried with scabs detached, and those in control group increased in size prominently with plenty of hypodermic blood vessels. In all animals the ILN were enlarged but in medicated animals they appeared later and smaller than those in control group. The extent of irradiative injury in ILN was positively correlated to the dosage of medication. Typical tumor cell apoptosis could be found under TEM in animals with intra-tumoral injection of low dosed 32P colloids. The peak of apoptosis occurred in 2.96 MBq group and 24 h after irradiation. In the course of irradiation-induced apoptosis, the value of Bcl-2/Bax was down regulated; Apo2.7 and caspase-3 protein expression were prominently increased dose dependently. 32P colloids intra-tumor injection having prominent anticancer effectiveness may reveal the ability of promoting cell differentiation. The low dose 32P colloids may induce human pancreatic carcinoma Pc-3 implanted tumor cell apoptosis; Apo2.7, caspase-3, Bcl-2 and Bax protein participated in regulating the process of irradiation induced cell apoptosis.
Investigations at Pinal Creek, Arizona, evaluated routine sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. Sampling variables included pump type and flow rate, collection under air or nitrogen,...
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Emerson, H. P.; Michael, D. P.; Reed, D. T.
2016-12-01
Bedded geologic salt formations have been shown to have many favorable properties for the disposal of radioactive waste (i.e., reducing conditions, fracture healing). Performance assessment (PA) modeling for a 10,000 year period for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM have predicted an extremely low risk of radioactive material reaching the surrounding environment after the 100 year period required for creep to seal the waste panels and access shafts. Human intrusion caused by drilling operations for oil and gas exploration is the main pathway of concern for environmental release of radioactive material due to pressurized brine pockets located within the salt formation below the repository. Our work focuses on the long-term capability of salt repositories and the associated geologic media to safely isolate stored radioactive waste from the surrounding environment, even in the event of a human intrusion scenario such as a direct brine release (DBR) due to a drilling operation intersecting a brine pocket. In particular, we are revisiting the degree of conservatism in the estimated sorption partition coefficients (Kds) used in the PA model based on complementary batch and column experimental methods (Dittrich and Reimus, 2016). The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected in the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will present (1) a conceptual overview of Kd use in the PA model, (2) background and evolution of the Kd ranges used, and (3) results from batch and column experiments and model predictions for Kds with WIPP-relevant geologic media. We will also briefly discuss the challenges of upscaling from lab experiments to field scale predictions, the presence of ligands (e.g., acetate, citrate, EDTA), the role of colloids and microbes, and the effect of engineered barrier materials (e.g., MgO) on sorption and transport conditions. References: Dittrich, T.M., Reimus, P.W. 2016. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. J Environ Manage 165, 124-132.
Self-Assembly at the Colloidal Scale
NASA Astrophysics Data System (ADS)
Zhong, Xiao
The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.
Wang, Ying; Latypov, Ramil F; Lomakin, Aleksey; Meyer, Julie A; Kerwin, Bruce A; Vunnum, Suresh; Benedek, George B
2014-05-05
Colloidal stability of antibody solutions, i.e., the propensity of the folded protein to precipitate, is an important consideration in formulation development of therapeutic monoclonal antibodies. In a protein solution, different pathways including crystallization, colloidal aggregation, and liquid-liquid phase separation (LLPS) can lead to the formation of precipitates. The kinetics of crystallization and aggregation are often slow and vary from protein to protein. Due to the diverse mechanisms of these protein condensation processes, it is a challenge to develop a standardized test for an early evaluation of the colloidal stability of antibody solutions. LLPS would normally occur in antibody solutions at sufficiently low temperature, provided that it is not preempted by freezing of the solution. Poly(ethylene glycol) (PEG) can be used to induce LLPS at temperatures above the freezing point. Here, we propose a colloidal stability test based on inducing LLPS in antibody solutions and measuring the antibody concentration of the dilute phase. We demonstrate experimentally that such a PEG-induced LLPS test can be used to compare colloidal stability of different antibodies in different solution conditions and can be readily applied to high-throughput screening. We have derived an equation for the effects of PEG concentration and molecular weight on the results of the LLPS test. Finally, this equation defines a binding energy in the condensed phase, which can be determined in the PEG-induced LLPS test. This binding energy is a measure of attractive interactions between antibody molecules and can be used for quantitative characterization of the colloidal stability of antibody solutions.
Cerebral aneurysms following radiotherapy for medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, P.J.; Sung, J.H.
1989-04-01
Three patients, two males and one female aged 21, 14, and 31 years, respectively, developed cerebral saccular aneurysms several years after undergoing radiotherapy for cerebellar medulloblastoma at 2, 5, and 14 years of age, respectively. Following surgery, all three received combined cobalt-60 irradiation and intrathecal colloidal radioactive gold (/sup 198/Au) therapy, and died from rupture of the aneurysm 19, 9, and 17 years after the radiotherapy, respectively. Autopsy examination revealed no recurrence of the medulloblastoma, but widespread radiation-induced vasculopathy was found at the base of the brain and in the spinal cord, and saccular aneurysms arose from the posterior cerebralmore » arteries at the basal cistern or choroidal fissure. The aneurysms differed from the ordinary saccular aneurysms of congenital type in their location and histological features. Their locations corresponded to the areas where intrathecally administered colloidal /sup 198/Au is likely to pool, and they originated directly from a segment of the artery rather than from a branching site as in congenital saccular aneurysms. It is, therefore, concluded that the aneurysms in these three patients were most likely radiation-induced.« less
NASA Astrophysics Data System (ADS)
Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc
2017-06-01
This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.
Treatment Processes for Removal of Wastewater Contaminants (WERF Report INFR8SG09)
This study investigated the nature of colloids associated with wastewater effluents. It also evaluated the association of emerging contaminants with these wastewater colloids. Two distinct emerging contaminants were investigated to gain general insight into the potential importan...
Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E
2014-09-02
During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.
NASA Astrophysics Data System (ADS)
Wieland, E.; Bradbury, M. H.; van Loon, L.
2003-01-01
The migration of radionuclides within a repository for radioactive waste is retarded due to interaction with the engineered barrier system. Sorption processes play a decisive role in the retardation of radionuclides in the repository environment, and thus, the development of sorption data bases (SDBs) is an important task and an integral part of performance assessment. The methodology applied in the development of a SDB for the cementitious near-field of a repository for long-lived intermediate-level waste is presented in this study. The development of such a SDB requires knowledge of the chemical conditions of the near-field and information on the uptake process of radionuclides by hardened cement paste. The principles upon which the selection of the “best available” laboratory sorption values is based are outlined. The influence of cellulose degradation products, cement additives and cement-derived colloids on the sorption behaviour of radionuclides is addressed in conjunction with the development of the SDB.
A review of light-scattering techniques for the study of colloids in natural waters
Rees, T.F.
1987-01-01
In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.
Munikamaiah, Ranganath L; Jain, Saket K; Pal, Kapil S; Gaikwad, Ajay
2018-03-01
Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles. Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine. Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group. The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis. The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.
Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience
Verbeek, Floris P.R.; Troyan, Susan L.; Mieog, J. Sven D.; Liefers, Gerrit-Jan; Moffitt, Lorissa A.; Rosenberg, Mireille; Hirshfield-Bartek, Judith; Gioux, Sylvain; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.; Frangioni, John V.
2014-01-01
NIR fluorescence imaging using indocyanine green (ICG) has the potential to improve the SLN procedure by facilitating percutaneous and intraoperative identification of lymphatic channels and SLNs. Previous studies suggested that a dose of 0.62 mg (1.6 ml of 0.5 mM) ICG is optimal for SLN mapping in breast cancer. The aim of this study was to evaluate the diagnostic accuracy of near-infrared (NIR) fluorescence for sentinel lymph node (SLN) mapping in breast cancer patients when used in conjunction with conventional techniques. Study subjects were 95 breast cancer patients planning to undergo SLN procedure at either the Dana-Farber/Harvard Cancer Center (Boston, MA, USA) or the Leiden University Medical Center (Leiden, the Netherlands) between July 2010 and January 2013. Subjects underwent the standard-of-care SLN procedure at each institution using 99Technetium-colloid in all subjects and patent blue in 27 (28%) of the subjects. NIR fluorescence-guided SLN detection was performed using the Mini-FLARE imaging system. SLN identification was successful in 94 of 95 subjects (99%) using NIR fluorescence imaging or a combination of both NIR fluorescence imaging and radioactive guidance. In 2 of 95 subjects, radioactive guidance was necessary for initial in vivo identification of SLNs. In 1 of 95 subjects, NIR fluorescence was necessary for initial in vivo identification of SLNs. A total of 177 SLNs (mean = 1.9, range = 1–5) were resected: 100% NIR fluorescent, 88% radioactive, and 78% (of 40 nodes) blue. In 2 of 95 subjects (2.1%), SLNs containing macrometastases were found only by NIR fluorescence, and in 1 patient this led to upstaging to N1. This study demonstrates the safe and accurate application of NIR fluorescence imaging for the identification of SLNs in breast cancer patients, but calls into question what technique should be used as the gold standard in future studies. PMID:24337507
Chitosan doped with nanoparticles of copper, nickel and cobalt.
Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian
2017-11-01
Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface chemical effects on colloid stability and transport through natural porous media
Puls, Robert W.; Paul, Cynthia J.; Clark, Donald A.
1993-01-01
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was retrieved from a sand and gravel aquifer on Cape Cod, MA. Previous studies have indicated enhanced stability and transport of iron oxide particles due to specific adsorption of some inorganic anions on the iron oxide surface. This phenomenon was further evaluated with an anionic surfactant, sodium dodecyl sulfate. Surfactants constitute a significant mass of the contaminant loading at the Cape Cod site and their presence may contribute to colloidal transport as a significant transport mechanism at the site. Other studies at the site have previously demonstrated the occurrence of this transport mechanism for iron phosphate particles. Photon correlation spectroscopy, micro-electrophoretic mobility, and scanning electron microscopy were used to evaluate particle stability, mobility and size. Adsorption of negatively charged organic and inorganic species onto the surface of the iron oxide particles was shown to significantly enhance particle stability and transport through alterations of the electrokinetic properties of the particle surface. Particle breakthrough generally occurred simultaneously with tritiated water, a conservative tracer. The extent of particle breakthrough was primarily dependent upon colloidal stability and surface charge.
Su, Yu-Ru; Tsai, Yi-Chin; Hsu, Chun-Hua; Chao, An-Chong; Lin, Cheng-Wei; Tsai, Min-Lang; Mi, Fwu-Long
2015-11-25
The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.
Bratskaya, S; Golikov, A; Lutsenko, T; Nesterova, O; Dudarchik, V
2008-09-01
Charge characteristics of humic and fulvic acids of a different origin (inshore soils, peat, marine sediments, and soil (lysimetric) waters) were evaluated by means of two alternative methods - colloid titration and potentiometric titration. In order to elucidate possible limitations of the colloid titration as an express method of analysis of low content of humic substances we monitored changes in acid-base properties and charge densities of humic substances with soil depth, fractionation, and origin. We have shown that both factors - strength of acidic groups and molecular weight distribution in humic and fulvic acids - can affect the reliability of colloid titration. Due to deviations from 1:1 stoichiometry in interactions of humic substances with polymeric cationic titrant, the colloid titration can underestimate total acidity (charge density) of humic substances with domination of weak acidic functional groups (pK>6) and high content of the fractions with molecular weight below 1kDa.
Yang, Fan; Gao, Yan; Sun, Lili; Zhang, Shuaishuai; Li, Jiaojiao; Zhang, Ying
2018-04-26
Biochar has attracted much attention, which owns many environmental and agronomic benefits, including carbon sequestration, improvement of soil quality, and immobilization of environmental contaminants. Biochar has been also investigated as an effective sorbent in recent publications. Generally, biochar particles can be divided into colloids and residues according to particle sizes, while understanding of adsorption capacities towards organic pollutants in each section is largely unknown, representing a critical knowledge gap in evaluations on the effectiveness of biochar for water treatment application. Scanning electron microscopy (SEM) images, X-ray diffraction (XRD), Raman spectra, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) method are used to examine the structures and surface properties of biochar colloids and residues derived from corn straws prepared at different pyrolysis temperatures. Also, their roles in atrazine (a typical organic pollutant) removal are investigated by batch adsorption experiments and fitted by different kinetic and thermodynamic models, respectively. The adsorption capacities of biochar colloids are much more than those of residues, resulting from the colloids containing abundant oxygen functional groups and mineral substances, and the adsorption capacities of biochar colloids and residues increase with the increase of pyrolysis temperatures. The highest adsorption performance of 139.33 mg g -1 can be obtained in biochar colloids prepared at 700 °C, suggesting the important functions of biochar colloids in the application of atrazine removal by biochar.
STRUCTURE-FUNCTION RELATIONSHIPS IN THE ADIPOSE CELL
Cushman, Samuel W.
1970-01-01
Pinocytic activity in the adipose cell has been examined by measuring the uptake of colloidal gold. Pinocytic activity occurs in the isolated adipose cell under all experimental conditions; a portion of the vesicular elements of the cell can be identified by electron microscopy as pinocytic in origin. The isolated adipose cell appears to take up serum albumin by pinocytosis. Pinocytic activity in the isolated adipose cell is enhanced by epinephrine, but not by insulin. The relationship between pinocytosis and the metabolic activity of the adipose cell has been studied by measuring simultaneously the uptake of radioactive colloidal gold, the incorporation of 14C-counts from U-glucose-14C into CO2, total lipid, triglyceride glycerol and triglyceride fatty acids, and the release of nonesterified fatty acids in the absence of hormones and in the presence of insulin or epinephrine. Correlations between hormone-produced alterations in lipid metabolism and in pinocytic activity suggest that intracellular nonesterified fatty acid levels are a factor in the regulation of both the cell's pinocytic activity and its metabolism and that pinocytosis in the adipose cell functions in the extracellular-intracellular transport of nonesterified fatty acids. PMID:5449179
Influence of phosphate glass recrystallization on the stability of a waste matrix to leaching
NASA Astrophysics Data System (ADS)
Yudintsev, S. V.; Pervukhina, A. M.; Mokhov, A. V.; Malkovsky, V. I.; Stefanovsky, S. V.
2017-04-01
In Russia, highly radioactive liquid wastes from recycling of spent fuel of nuclear reactors are solidified into Na-Al-P glass for underground storage. The properties of the matrix including the radionuclide fixation will change with time due to crystallization. This is supported by the results of study of the interaction between glassy matrices, products of their crystallization, and water. The concentration of Cs in a solution at the contact of a recrystallized sample increased by three orders of magnitude in comparison with an experiment with glass. This difference is nearly one order of magnitude for Sr, Ce, and Nd (simulators of actinides) and U due to their incorporation into phases with low solubility in water. Based on data on the compositional change of solutions after passing through filters of various diameters, it is concluded that Cs occurs in the dissolved state in runs with a glass and recrystallized matrix. At the same time, Sr, lanthanides, and U occur in the dissolved state and in the composition of colloids in runs with glass, and mostly in colloid particles after contact with the recrystallized sample. These results should be regarded for substantiation of safety for geological waste storage.
Colloidal chromic phosphate /sup 32/P synovectomy in antigen-induced arthritis in the rabbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howson, M.P.; Shepard, N.L.; Mitchell, N.S.
1988-04-01
Radioisotopes have been employed in the therapy of chronic arthritis, in particular, rheumatoid arthritis for many years. A variety of isotopes have been popularized, and in the last ten years a colloidal solution of radioactive chromic phosphate /sup 32/P has been in use apparently with equivalent efficacy to others such as /sup 169/erbium, /sup 90/yttrium, and /sup 165/dysprosium. No controlled studies on this modality have been reported and few animal studies were found. The efficacy of therapeutic doses of /sup 32/P as a medical synovectomy and its effect on rabbit joints with antigen-induced arthritis were observed in 62 arthritic kneemore » joints in 31 adult rabbits treated on one side with 0.1 microCi of /sup 32/P, the opposite serving as control. The animals were observed over a period of 11 months and examined by histologic and biochemical means. The synovium showed no evidence of radiation necrosis in treated joints. Cartilage of treated and control joints showed similar changes consistent with chronic arthritis, persistent synovitis, progressive chondrocyte degeneration, and decreased matrix metachromasia. The radiosynovectomy had neither removed synovium nor protected the cartilage. Its efficacy in humans is therefore questionable.« less
Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula
2013-04-01
Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.
Colloid-facilitated radionuclide transport: a regulatory perspective
NASA Astrophysics Data System (ADS)
Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.
2001-12-01
What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently investigating approaches to colloid modeling in order to help evaluate DOE's approach. One alternative approach uses DOE laboratory data to invoke kinetic controls on reversible radionuclide attachment to colloids. A kinetic approach in which desorption from colloids is slow may help assess whether DOE's instantaneous equilibrium approach for reversible attachment, as well as their application of irreversible attachment to only a small portion of the radionuclide inventory, are reasonable and conservative. An approach to examine microbial processes would also contribute to considerations of leaching of radionuclides and colloid formation. Reducing uncertainties in colloid transport processes should help in better understanding their importance to repository performance. This work is an independent product and does not necessarily reflect the views or regulatory position of the NRC. CNWRA participation was funded under contract No. NRC-02-97-009.
Spatially controlled carbon sponge for targeting internalized radioactive materials in human body.
Hong, Jin-Yong; Oh, Wan-Kyu; Shin, Keun-Young; Kwon, Oh Seok; Son, Suim; Jang, Jyongsik
2012-07-01
Carbon sponge, an adsorbent with spatially controlled structure is demonstrated for targeting internalized radiocesium and other radionuclides in human body. Three dimensionally ordered macroporous (3DOM) carbons derived from inverse opal replicas of colloidal-crystal template exhibit large surface area and high porosity, resulting in highly efficient adsorbents for radionuclides. It is also possible to enhance binding affinity and selectivity to radionuclide targets by decoration of 3DOM carbon surfaces with Prussian blue (PB) nanoparticles, and synthesized PB nanoparticles reveal low toxicity toward macrophage cells with potential advantages over oral administration. It is noteworthy that the maximum (133)Cs adsorption capacity of PB-decorated 3DOM carbons is 40.07 mmol g(-1) which is ca. 30 and 200 times higher than that of commercialized medicine Radiogardase(®) and bulk PB, respectively. Further, adsorption kinetics study indicates that the PB-decorated 3DOM carbons have the homogenous surface for (133)Cs ion adsorption and all sites have equal adsorption energies in terms of ion exchange between the cyano groups of the PB-decorated 3DOM carbons and radionuclides. As a concept of the oral-administrable "carbon sponge", the PB-decorated 3DOM carbons offer useful implications in the separation science of radioactive materials and important insight for designing novel materials for treatment of patients or suspected internal contamination with radioactive materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Organ distribution of technetium-99m-labeled Corynebacterium parvum in normal and tumor-bearing mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, R.F.; Singla, O.
1978-01-01
The distribution patterns were studied for /sup 99m/Tc-labeled Corynebacterium parvum in normal and tumor-bearing mice. C57BL/6 mice were given i.v., i.p., or s.c. injections of 250 ..mu..g of /sup 99m/Tc-labeled C. parvum and killed at 10 min, 1, 4, and 24 hr. After iv. administration, labeled organisms were distributed primarily to the liver, the lungs, and the blood (46% of injected dose), followed by the gastrointestinal tract, the spleen, and the kidneys (11%). Total recoverable radioactivity, which was defined as the percentage of injected dose that was recovered, ranged from 59% at 10 min to 15% at 24 hr. Inmore » contrast to this, /sup 99m/TcS colloid, an inert particulate material, was localized almost entirely in the liver, and the amount recoverable remained constant over 24 hr. One hr after i.p. administration of /sup 99m/Tc-labeled C. parvum, the gastrointestinal tract accounted for 27% of the injected radioactivity, followed by liver, blood, and spleen (12%). This was rapidly excreted between 4 and 24 hr, at which time only 12% of the injected dose was recovered. The skin accounted for 54.6% of the injected radioactivity 1 hr after s.c. injection, 6% 4 hr after s.c. injection, and 0.8% at 24 hr after s.c. injection.« less
Noninvasive treatment of keloid using customized Re-188 skin patch.
Bhusari, Priya; Shukla, Jaya; Kumar, Munish; Vatsa, Rakhee; Chhabra, Anupriya; Palarwar, Kanchan; Rathore, Yogesh; De, Dipanker; Kumaran, Sendhil; Handa, Sanjeev; Mittal, B R
2017-09-01
Keloids are developed as fibrotic scar at the site of surgery or trauma and often enlarge beyond the original scar margins. Re-188 colloid coated customized patch was superficially fixed onto the lesion for 3 hrs. The same patch was reapplied on the lesion on third day for 3 hrs. The patients were followed up at 1, 3,6 and 12 months post treatment. The size and elevation of the keloid lesion was reduced after treatment. The total radiation dose from the patch (day-1 and day-3) was 100 Gy/mCi of Re-188. The radioactive patch treatment of keloids is noninvasive, painless and safe with prolonged outcome. © 2017 Wiley Periodicals, Inc.
Rostad, C.E.; Rees, T.F.; Daniel, S.R.
1998-01-01
An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.
NASA Astrophysics Data System (ADS)
Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.
2018-02-01
In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.
Philippe, Allan; Schaumann, Gabriele E.
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail. PMID:24587393
Philippe, Allan; Schaumann, Gabriele E
2014-01-01
In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO₂ and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.
Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi
2017-01-01
A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanoparticles migration in fractured rocks and affects on contaminant migration
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula
2014-05-01
In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).
NASA Astrophysics Data System (ADS)
Liu, Y.; Meng, X.; Guo, Z.; Zhang, C.; Nguyen, T. H.; Hu, D.; Ji, J.; Yang, X.
2017-12-01
Colloidal attachment on charge heterogeneous grains has significant environmental implications for transport of hazardous colloids, such as pathogens, in the aquifer, where iron, manganese, and aluminium oxide minerals are the major source of surface charge heterogeneity of the aquifer grains. A patchwise surface charge model is often used to describe the surface charge heterogeneity of the grains. In the patchwise model, the colloidal attachment efficiency is linearly correlated with the fraction of the favorable patches (θ=λ(θf - θu)+θu). However, our previous microfluidic study showed that the attachment efficiency of oocysts of Cryptosporidium parvum, a waterborne protozoan parasite, was not linear correlated with the fraction of the favorable patches (λ). In this study, we developed a pore scale model to simulate colloidal transport and attachment on charge heterogeneous grains. The flow field was simulated using the LBM method and colloidal transport and attachment were simulated using the Lagrange particle tracking method. The pore scale model was calibrated with experimental results of colloidal and oocyst transport in microfluidic devices and was then used to simulate oocyst transport in charge heterogeneous porous media under a variety of environmental relative conditions, i.e. the fraction of favorable patchwise, ionic strength, and pH. The results of the pore scale simulations were used to evaluate the effect of surface charge heterogeneity on upscaling of oocyst transport from pore to continuum scale and to develop an applicable correlation between colloidal attachment efficiency and the fraction of the favorable patches.
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B
2016-11-14
Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.
Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Hebimana-Griffin, LeMoyne; Akers, Walter J.; Liang, Rongguang; Gruev, Viktor; Margenthaler, Julie; Achilefu, Samuel
2017-01-01
Background The inability to directly visualize the patient and surgical site limits the use of current near infrared fluorescence-guided surgery systems for real-time sentinel lymph node biopsy and tumor margin assessment. Methods We evaluated an optical see-through goggle augmented imaging and navigation system (GAINS) for near-infrared fluorescence-guided surgery. Tumor-bearing mice injected with a near infrared cancer-targeting agent underwent fluorescence-guided tumor resection. Female Yorkshire pigs received hind leg intradermal indocyanine green injection and underwent fluorescence-guided popliteal lymph node resection. Four breast cancer patients received 99mTc-sulfur colloid and indocyanine green retroareolarly, before undergoing sentinel lymph node biopsy using radioactive tracking and fluorescence imaging. Three other breast cancer patients received indocyanine green retroareolarly before undergoing standard-of-care partial mastectomy, followed by fluorescence imaging of resected tumor and tumor cavity for margin assessment. Results Using near-infrared fluorescence from the dyes, the optical see-through GAINS accurately identified all mouse tumors, pig lymphatics, and 4 pig popliteal lymph nodes with high signal-to-background ratio. In 4 human breast cancer patients, 11 sentinel lymph nodes were identified with a detection sensitivity of 86.67± 0.27% for radioactive tracking and 100% for GAINS. Tumor margin status was accurately predicted by GAINS in all three patients, including clear margins in patients 1 and 2 and positive margins in patient 3 as confirmed by paraffin embedded section histopathology. Conclusions The optical see-through GAINS prototype enhances near infrared fluorescence-guided surgery for sentinel lymph node biopsy and tumor margin assessment in breast cancer patients without disrupting the surgical workflow in the operating room. PMID:28213790
Mondal, Suman B; Gao, Shengkui; Zhu, Nan; Habimana-Griffin, LeMoyne; Akers, Walter J; Liang, Rongguang; Gruev, Viktor; Margenthaler, Julie; Achilefu, Samuel
2017-07-01
The inability to visualize the patient and surgical site directly, limits the use of current near infrared fluorescence-guided surgery systems for real-time sentinel lymph node biopsy and tumor margin assessment. We evaluated an optical see-through goggle augmented imaging and navigation system (GAINS) for near-infrared, fluorescence-guided surgery. Tumor-bearing mice injected with a near infrared cancer-targeting agent underwent fluorescence-guided, tumor resection. Female Yorkshire pigs received hind leg intradermal indocyanine green injection and underwent fluorescence-guided, popliteal lymph node resection. Four breast cancer patients received 99m Tc-sulfur colloid and indocyanine green retroareolarly before undergoing sentinel lymph node biopsy using radioactive tracking and fluorescence imaging. Three other breast cancer patients received indocyanine green retroareolarly before undergoing standard-of-care partial mastectomy, followed by fluorescence imaging of resected tumor and tumor cavity for margin assessment. Using near-infrared fluorescence from the dyes, the optical see-through GAINS accurately identified all mouse tumors, pig lymphatics, and four pig popliteal lymph nodes with high signal-to-background ratio. In 4 human breast cancer patients, 11 sentinel lymph nodes were identified with a detection sensitivity of 86.67 ± 0.27% for radioactive tracking and 100% for GAINS. Tumor margin status was accurately predicted by GAINS in all three patients, including clear margins in patients 1 and 2 and positive margins in patient 3 as confirmed by paraffin-embedded section histopathology. The optical see-through GAINS prototype enhances near infrared fluorescence-guided surgery for sentinel lymph node biopsy and tumor margin assessment in breast cancer patients without disrupting the surgical workflow in the operating room.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-05-27
The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×10 4 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×10 6 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent themore » majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment across a range of temperatures (25-200 °C) that represent hydrothermal conditions representative of the underground nuclear test cavities (when groundwater has re-saturated the nuclear melt glass and glass dissolution occurs). Colloid loads and Pu concentrations were monitored along with the mineralogy of both the colloids and the secondary mineral phases. The intent was to establish an upper limit for Pu concentrations at the NNSS, provide context regarding the Pu concentrations observed at the NNSS to date and the Pu concentrations that may be observed in the future. The results provide a conceptual model for the risks posed by Pu migration at the NNSS.« less
Savio, Eduardo; Ures, María Cristina; Zeledón, Patricia; Trindade, Victoria; Paolino, Andrea; Mockford, Virginia; Malanga, Antonio; Fernández, Marcelo; Gaudiano, Javier
2004-01-01
Background Radiosynovectomy is a therapy used to relieve pain and inflammation from rheumatoid arthritis and related diseases. In this study three 188Re particulate compounds were characterized according to their physico-chemical properties and their biological behavior in rabbits. The results were compared in order to establish which was the radiopharmaceutical that better fits the requirements of this kind of radiotherapy. Methods Three radiopharmaceutical formulations, tin colloid, hydroxyapatite particles (HA) and ferric hydroxide macroaggregates coated with tin colloid (FHMA), were physically characterized (number, volume and surface of the particles). For this purpose laser diffraction methodology was used. To evaluate cavity leakage of activity the following studies in New Zealand rabbits were performed: scintigraphic images for 48 hr after intraarticular injection of each radiopharmaceutical, biodistribution at 48 hr and urine samples collection during the first 24 hr post-radiopharmaceutical administration. Results Labeling procedures for 188Re-HA and 188Re-Sn-FHMA were labour intensive while 188Re-Sn was easily prepared. Furthermore, 188Re-Sn colloid offered the greatest surface area in the 2–10 microm range and was obtained with a radiochemical purity over 95%, while percentage of bound activity for 188Re-HA and 188Re-Sn-FHMA were 55% and 92% respectively. Stability was verified for the three radiopharmaceuticals for 24 hr. Scintigraphic studies and biodistribution in rabbits after intraarticular administration of the radiopharmaceuticals showed relevant activity only in the knee, this being over 90% of the residual activity in the whole body at 48 hr in every case. Renal elimination of 188Re-Sn colloid and 188Re-Sn-FHMA was detected by activity measurements in urine samples, during the first 12 hr post-radiopharmaceutical injection. The percentage of activity retained in the knee was 69.1% for 188Re-Sn colloid, 55.1% for 188Re-Sn-FHMA and 33.6% for 188Re-HA. Conclusion The 188Re-Sn colloid was easy to prepare, minimum facilities were required, was stable for 24 hr and showed minimal leakage from the joint after intraarticular injection into the rabbit's knee. Furthermore, 188Re-Sn colloid has greater retention in the knee when it is compared with the other radiopharmaceuticals, so it could provide the best therapeutic effect/absorbed dose ratio for the patient. PMID:15040807
Restrepo, John F; Garcia-Sucerquia, Jorge
2013-01-01
The number of colloidal particles per unit of volume that can be imaged correctly with digital lensless holographic microscopy (DLHM) is determined numerically. Typical in-line DLHM holograms with controlled concentration are modeled and reconstructed numerically. By quantifying the ratio of the retrieved particles from the reconstructed hologram to the number of the seeding particles in the modeled intensity, the limit of concentration of the colloidal suspensions up to which DLHM can operate successfully is found numerically. A new shadow density parameter for spherical illumination is defined. The limit of performance of DLHM is determined from a graph of the shadow density versus the efficiency of the microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stierhof, Y.D.; Humbel, B.M.; Schwarz, H.
1991-03-01
In order to exploit the recently introduced 1 nm gold colloids in routine electron microscopic labeling experiments, an efficient enhancement step for a better visualization of this small marker is a prerequisite. Efficiency and reproducibility of enhancement as well as growth homogeneity of gold particles were evaluated for three different silver intensifying solutions: silver lactate/hydroquinone/gum arabic, and the commercially available IntenSE M silver enhancement kit. The best results were obtained by using the silver lactate/hydroquinone/gum arabic mixture. The quality of enhancement of the IntenSE M kit was considerably increased by the addition of the protective colloid gum arabic.
Bubble colloidal AFM probes formed from ultrasonically generated bubbles.
Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz
2008-02-05
Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.
THE UPTAKE OF RADIOCOLLOIDS BY MACROPHAGES IN VITRO
Gosselin, Robert E.
1956-01-01
Macrophages isolated from the rabbit peritoneal cavity extract radioactive colloidal gold from solutions in vitro. This reaction (ultraphagocytosis) involves two phases: the reversible adsorption of gold on the cell surface and the subsequent irreversible removal of surface-bound colloid into the cell. The latter process (called ingestion) appears to proceed at a rate which is proportional at any moment to the amount of gold attached to the cell surface; the latter in turn can be related to the concentration in extracellular fluid by a simple adsorption isotherm. In terms of rate, therefore, ingestion is related to the extracellular gold concentration in the same way that many enzyme reactions are related to the substrate concentration. Although enzyme kinetics are useful in describing rates of ultraphagocytosis, there is no evidence that enzymes participate in either adsorption or ingestion or that metabolic energy is required of the macrophage. Exudative leucocytes of the heterophilic series show little or no interaction with these finely dispersed gold sols (mean particle diameter 6 to 9 millimicrons). 37°C. three parameters are sufficient to characterize the reaction between gold and a suspension of macrophages, namely an affinity constant (1/Ks), an adsorption maximum (L), and a rate constant of ingestion (k 3). Although numerical values differed markedly among cells of different exudates, all three parameters were estimated in three instances. In these suspensions between 2 and 20 per cent of the surface-bound gold was ingested each minute (37°C., pH 7.4). Under conditions of surface saturation, it was estimated that tens of thousands of gold particles were attached to the surface of an average macrophage; this amount of colloid, however, occupied less than 1 per cent of the geometric area of the cell surface. Although surface saturation imposed an upper limit on the rate of ingestion, no practical limit was noted in the capacity of macrophages to continue the reaction. Optical measurements imply that within the cell agglutination of colloidal gold began promptly after its ingestion. These data are compared with published kinetic studies on the phagocytosis of microscopic particulates and on the parasitism of bacteria by virus. PMID:13319653
COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flury, Markus
2003-09-14
Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring duringmore » leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel).« less
THE BIOLOGICAL REACTION TO IONIZING RADIATIONS. ATOMIC STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sears, T.P.
1963-03-01
Basic principles of nuclear physics are surveyed in relation to biological and medical aspects of ionizing radiation. A discussion is presented of the following theories of biological injury: the theory of point heat, the radiochemical theory, colloid, chemical theory, physiochemical theory, disruption of tissue molecules by breakage of valence bonds, and theory of chromosomal injury. The irradiation syndromes are discussed, including: radiation sickness, the neurological syndrome, the gastroenteric syndrome, and the bone marrow syndrome. It is concluded that definitive data on biological injury, genetic mutations, maximum permissible exposure, and the chronic effects of radioactive fallout are not sufficiently established atmore » this time to justify the apprehensive state now prevalent in America regarding radiation hazards. (BBB)« less
3-D Distribution of Retained Colloids in Unsaturated Porous Media
NASA Astrophysics Data System (ADS)
Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.
2013-12-01
It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).
From crystal chemistry to colloid stability
NASA Astrophysics Data System (ADS)
Gilbert, B.; Burrows, N.; Penn, R. L.
2008-12-01
Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.
Gudelis, A; Gvozdaite, R; Kubareviciene, V; Druteikiene, R; Lukosevicius, S; Sutas, A
2010-06-01
A shallow-land radioactive waste repository operated in boggy forest environment from 1963 to 1989. During the operation period, a considerable amount of technogenic radionuclides, in solidified state, was disposed into the vault established in the geological structure at the depth of up to 3m. Environmental monitoring activities started after the closure of the repository in 1989. Recent investigations revealed transfer of radiocarbon and plutonium to the groundwater in the prevailing flow direction. Activity concentration of (239,240)Pu in non-filtered fraction of the groundwater from observation well no. 4 determined by alpha-spectrometry was 6.4 x 10(-5) Bq l(-1) in 2005, and 3.2 x 10(-4) Bq l(-1) in 2006. Further analysis of colloid-facilitated transport of plutonium is planned. Variation of (14)C activity concentration in the same well was monitored in 2006. It varied from 0.2+/-0.1 Bq l(-1) in October to 2.8+/-0.6 Bq l(-1) in June and July. Results imply further research into radiocarbon transfer to atmosphere and selected plant species. Copyright (c) 2008 Elsevier Ltd. All rights reserved.
Knight, Linda C; Kantor, Steven; Doma, Siva; Parkman, Henry P; Maurer, Alan H
2007-11-01
A wide range of radiolabeled test meals have been used for gastric emptying scintigraphy. The purpose of this study was to test whether (99m)Tc-sulfur colloid-labeled liquid egg white is as stable as 2 fresh whole eggs labeled with (99m)Tc-sulfur colloid and whether the cooking method is important. Whole eggs and liquid egg white were mixed with (99m)Tc-sulfur colloid and cooked by either microwaving or frying on a griddle. The cooked eggs were tested for breakdown after 2 and 4 h of incubation in gastric fluid or HCl. Labeled liquid egg white, prepared by either method of cooking, exhibited less breakdown in gastric fluid than whole eggs. Whole eggs cooked in the microwave exhibited significantly more breakdown than liquid egg white. (99m)Tc-Sulfur colloid binds better to egg whites compared with whole eggs. These results emphasize the need to evaluate the stability of new radiolabeled test meal preparations, including the method of cooking.
Electrokinetic properties of polymer colloids
NASA Technical Reports Server (NTRS)
Micale, F. J.; Fuenmayor, D. Y.
1986-01-01
The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.
SEMIANNUAL PROGRESS REPORT FOR THE PERIOD ENDING DECEMBER 31, 1960
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-10-31
> ? : ? = 6 ; @ : = = : 9 A > ? > F : = , utions of potassium oleate; the optical rotary dispersion in the region 226 to 366 mu of tobacco mosaic virus, the protein subunits isolated therefrom, the rods synthesized from the protein the effect of metabolites on enzyme changes in single beating heart cells in culture; the relation of mitochondrial metabolism and glycolysis in dialyzed rat liver supernatant; the development of a system consisting of finely divided anthracene, a wetting agent, and an aqueous solution for determining alpha or beta emittingmore » isotopes in equipment designed for liquid scintillation counting; the effect of ionizing radiation on iron porphyrin compounds; the reaction of ferriprotoporphyrin with hydrogen peroxide in alkaline solution; the effects of tritiated compounds on Escherichia eoli; the effects of estrogen treatment on the physiology of the liver of the chicken embryo and chick: the effects of estrogens on levels of protein bound carbohydrates in embryo and chick serum; the toxic effects of chronic oral sodium chloride in irradiated rats; the toxicity of niobium chloride in mice and guinea pigs; the effects of x irradiation on the response of the guinea pig enterie ganglia and postganglionic nerve endings to drugs; the effects of x irradiation on conditioned avoidance responses in rats; the effects of whole- body irradiation of cats on the production of electrical changes in the brain; the effects of whole-body x irradiation on stimulation of rat brain; histological and physiological changes induced by radiation in epithelial cells of the villi of rat intestine; the effects of Sr/sup 90/ beads implanted within rat femur; the fate of lymphocytes after whole-body irradiation; the development of a technique for the irradiation of lymphocyies in freshly drawn blood; tracer studies on the rate of formation of cerebrospinal fluid; dysfunction of the central nervous system during concussion; development of analytical procedures for the spertrographic determination of zine, copper, magnesium, iron, and phosphorus in tissues; the preparation of heat denatured colloidal aggregates of albumin labeled with zi/sup 131/ and nonradioactive colloidal aggregates of albumin; measurements of the rate of blood clearance following intravenous injection of colloidal aggregates of heat denatured human serum albumin labeled with I/sup 131/ and colloidal Au/sup 198/ s; the development of a tracer method for estimating phagocytic and digestive functions of the reticuloendothelial system in man; tracer studies on liver blood flow and cellular function in patients with congestive heart failure; a comparison of results from renal function tests using conventional and Hippuran I/sup 131/ excretion in patients with mild to severe renal disease; tracer studies of liver blood flow in hepatobilary diseases; the development of tracer methods for the diagnosis of diseases of the liver, kidneys, and spleen; the development of a dye-impregnated plastic film system for use in the measurement of depth dose distribution of ionizing radiations; the evaluation of two types of chemical dosimeters for dosimetry of prompt and residual radiations from nuclear detonations; tracer studies on the concentration of phosphite ions in the blood during a prolonged intravenous infusion of calcium laciate; the metabolism of Sr/sup 85/ in patients with metabolic skeletal disorders: measurement of total-body radioactivity in normal individuals and in normal subjects after the administration of cobalt-60-labeled vitamin B/sup 12/; an evaluation of survival time curves in radiation mortality studies on mice; the effects of rate of radiation on the protection afforded mice by a combined dose of AET and 5-HT; the effect of radiation exposure on kidney function in rabbits as measured with iodopyracet labeled with I/sup 131/; the kinetics of reticuloendothelial phagoeytic response to intravenously administered colloidal gold-198 in rabbits; the« less
NASA Astrophysics Data System (ADS)
Lucchetti, G.; Carbone, C.; Consani, S.; Zotti, M.; Di Piazza, S.; Pozzolini, M.; Giovine, M.
2015-12-01
In Acid Mine Drainage (AMD) settings colloidal precipitates control the mobility of Potential Toxic Elements (PTEs). Mineral-contaminant relationships (i.e. adsorption, ion-exchange, desorption) are rarely pure abiotic processes. Microbes, mainly bacteria and microfungi, can catalyze several reactions modifying the element speciation, as well as the bioavailability of inorganic pollutants. Soil, sediments, and waters heavily polluted with PTEs through AMD processes are a potential reservoir of extremophile bacteria and fungi exploitable for biotechnological purposes. Two different AMD related colloids, an ochraceous precipitate (deposited in weakly acidic conditions, composed by nanocrystalline goethite) and a greenish-blue precipitate (deposited at near-neutral pH, composed by allophane + woodwardite) were sampled. The aims of this work were to a) characterize the mycobiota present in these colloidal minerals by evaluating the presence of alive fungal propagules and extracting bacteria DNA; b) verify the fungal strains tolerance, and bioaccumulation capability on greenish-blue and ZnSO4 enriched media; c) evaluate potential impact of bacteria in the system geochemistry. The preliminary results show an interesting and selected mycobiota able to survive under unfavourable environmental conditions. A significant number of fungal strains were isolated in pure culture. Among them, species belonging to Penicillium and Trichoderma genera were tested on both greenish-blue and ZnSO4 enriched media. The results show a significant tolerance and bioaccumulation capability to some PTEs. The same colloidal precipitates were processed to extract bacteria DNA by using a specific procedure developed for sediments. The results give a good yield of nucleic acids and a positive PCR amplification of 16S rDNA accomplished the first step for future metagenomic analyses.
99mTc-stannous colloid white cell scintigraphy in childhood inflammatory bowel disease.
Peacock, Kenneth; Porn, Ute; Howman-Giles, Robert; O'Loughlin, Edward; Uren, Roger; Gaskin, Kevin; Dorney, Stuart; Kamath, Ramanand
2004-02-01
99mTc-Labeled white cell scintigraphy (WCS) has been used for the investigation of inflammatory bowel disease (IBD) in adults, but data on children are limited. The most common agent used is (99m) Tc-hexamethylpropyleneamine oxime (HMPAO); however, this agent has limitations. In a retrospective study, we assessed the use of (99m)Tc-stannous colloid WCS for the initial evaluation of children with suspected IBD. Diagnostic, endoscopic, and contrast radiography results were retrospectively collected from the medical records. Two experienced nuclear physicians unaware of the patient data interpreted the WCS results, with agreement reached by consensus. Statistical analysis was performed on the ability of WCS to detect active disease and localize it topographically and on a comparison of diagnostic methods, using a combination of clinical features and endoscopy as the reference standard. Between 1996 and 1999, 64 patients (35 male and 29 female; mean age, 12.5 y; age range, 2-19 y) had WCS performed, with IBD subsequently diagnosed in 34 patients. (99m)Tc-Stannous colloid WCS had an 88% sensitivity, 90% specificity, and 8.8 likelihood ratio for initial investigation of IBD. Agreement was poor for topographic localization of disease. Small-bowel series had a 75% sensitivity, 50% specificity, and 1.5 likelihood ratio for detecting endoscopic disease of the terminal ileum and proximal colon. Our results confirm that WCS is a useful imaging technique for the initial evaluation of patients with suspected IBD. (99m)Tc-Stannous colloid had results at least comparable to those of other WCS agents, and in children, (99m)Tc-stannous colloid WCS should be preferred in view of lower cost, shorter preparation time, and the smaller blood volumes required.
Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics
NASA Astrophysics Data System (ADS)
Herring, A. R.; Henderson, J. R.
2007-01-01
Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.
NASA Astrophysics Data System (ADS)
Xie, Jinchuan; Lin, Jianfeng; Wang, Yu; Li, Mei; Zhang, Jihong; Zhou, Xiaohua; He, Yifeng
2015-01-01
The fate and transport of colloidal contaminants in natural media are complicated by physicochemical properties of the contaminants and heterogeneous characteristics of the media. Size and charge exclusion are two key microscopic mechanisms dominating macroscopic transport velocities. Faster velocities of colloid-associated actinides than that of 3H2O were consistently indicated in many studies. However, dissociation/dissolution of these sorbed actinides (e.g., Pu and Np), caused by their redox reactions on mineral surfaces, possibly occurred under certain chemical conditions. How this dissolution is related to transport velocities remains unanswered. In this study, aging of the colloid-associated Pu (pseudo-colloid) at room temperature and transport through the saturated coarse-grained granites were performed to study whether Pu could exhibit slower velocity than that of 3H2O (UPu/UT < 1). The results show that oxidative dissolution of Pu(IV) associated with the surfaces of colloidal granite particles took place during the aging period. The relative velocity of UPu/UT declined from 1.06 (unaged) to 0.745 (135 d) over time. Size exclusion limited to the uncharged nano-sized particles could not explain such observed UPu/UT < 1. Therefore, the decline in UPu/UT was ascribed to the presence of electrostatic attraction between the negatively charged wall of granite pore channels and the Pu(V)O2+, as evidenced by increasing Pu(V)O2+ concentrations in the suspensions aged in sealed vessels. As a result of this attraction, Pu(V)O2+ was excluded from the domain closer to the centerline of pore channels. This reveals that charge exclusion played a more important role in dominating UPu than the size exclusion under the specific conditions, where oxidative dissolution of colloid-associated Pu(IV) was observed in the aged suspensions.
An evaluation of acute toxicity of colloidal silver nanoparticles.
Maneewattanapinyo, Pattwat; Banlunara, Wijit; Thammacharoen, Chuchaat; Ekgasit, Sanong; Kaewamatawong, Theerayuth
2011-11-01
Tests for acute oral toxicity, eye irritation, corrosion and dermal toxicity of colloidal silver nanoparticles (AgNPs) were conducted in laboratory animals following OECD guidelines. Oral administration of AgNPs at a limited dose of 5,000 mg/kg produced neither mortality nor acute toxic signs throughout the observation period. Percentage of body weight gain of the mice showed no significant difference between control and treatment groups. In the hematological analysis, there was no significant difference between mice treated with AgNPs and controls. Blood chemistry analysis also showed no differences in any of the parameter examined. There was neither any gross lesion nor histopathological change observed in various organs. The results indicated that the LD(50) of colloidal AgNPs is greater than 5,000 mg/kg body weight. In acute eye irritation and corrosion study, no mortality and toxic signs were observed when various doses of colloidal AgNPs were instilled in guinea pig eyes during 72 hr observation period. However, the instillation of AgNPs at 5,000 ppm produced transient eye irritation during early 24 hr observation time. No any gross abnormality was noted in the skins of the guinea pigs exposed to various doses of colloidal AgNPs. In addition, no significant AgNPs exposure relating to dermal tissue changes was observed microscopically. In summary, these findings of all toxicity tests in this study suggest that colloidal AgNPs could be relatively safe when administered to oral, eye and skin of the animal models for short periods of time.
Rozman, Branka; Gosenca, Mirjam; Gasperlin, Mirjana; Padois, Karine; Falson, Franciose
2010-07-01
Colloidal silica is the thickener of interest for topical formulations and can therefore be used to optimize the viscosity of both hydrophilic and lipophilic microemulsions (MEs). To the best of our knowledge, no information is available about the effect of topically applied colloidal silica on skin penetration of drugs. So, our aim was to determine its influence on the effectiveness of ME in the simultaneous delivery of vitamins C and E to the skin. Two different aspects of silica possible function were investigated. Its effects on formulation characteristics were studied by determination of partition coefficient of the vitamins, their solubility and release profile. The direct impact of silica on the skin was further evaluated by transepidermal water loss measurements, scanning electron microscopy (SEM), and cell toxicity determination (MTT assay). The addition of colloidal silica to ME was shown to increase significantly the vitamins' solubility and their partition to the phase in which they were less soluble. Its presence also increased the amount of both vitamins in epidermis, which was confirmed by release studies. Furthermore, we demonstrated that colloidal silica interacts with excised skin. It decreased transepidermal water loss, probably by retaining water in the stratum corneum because of its massive accumulation in the upper layers, as revealed by SEM. The results confirmed that addition of colloidal silica in ME simultaneously loaded with vitamins C and E enhanced vitamins' skin bioavailability by its dual influence on delivery characteristics of ME as well as on skin properties.
Mesoscale Particle-Based Model of Electrophoresis
Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...
2015-07-31
Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.
Mesoscale Particle-Based Model of Electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.
Here, we develop and evaluate a semi-empirical particle-based model of electrophoresis using extensive mesoscale simulations. We parameterize the model using only measurable quantities from a broad set of colloidal suspensions with properties that span the experimentally relevant regime. With sufficient sampling, simulated diffusivities and electrophoretic velocities match predictions of the ubiquitous Stokes-Einstein and Henry equations, respectively. This agreement holds for non-polar and aqueous solvents or ionic liquid colloidal suspensions under a wide range of applied electric fields.
Morales-Covarrubias, María Soledad; García-Aguilar, Noemí; Bolan-Mejía, María Del; Puello-Cruz, Ana Carmela
2016-11-22
In shrimp aquaculture, reduction in the use of synthetic antibiotics is a priority due to the high incidence of resistant bacteria (Vibrio) in the white shrimp Litopenaeus vannamei. An increasing number of studies show bactericidal activity of natural treatments in aquaculture. The effectiveness of neem (Azadirachta indica) and oregano (Lippia berlandieri) aqueous extracts and colloidal silver against V. parahaemolyticus were evaluated in low salinity shrimp culture. Results show that aqueous extracts of oregano and neem each present a minimum inhibitory concentration (MIC) of 62.50 mg ml-1 and inhibitory halos of 12.0 to 19.0 mm. Colloidal silver gave a MIC of 2 mg ml-1, and the inhibitory halos were found to be between 11.8 and 18.8 mm, depending on treatment concentrations. An in vivo challenge test was conducted on white shrimp postlarvae cultured at low salinity (5 practical salinity units, PSU), and a significant increase (p < 0.05) in survival was demonstrated in the presence of the aqueous extracts (oregano 64%, neem 76% and colloidal silver 90%), when compared to the control (0%) in the challenge test. However, no significant differences were observed between treatments, suggesting that they all act as alternative bactericidal source agents against V. parahaemolyticus infections for L. vannamei postlarvae when cultured at 5 PSU.
Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
Ajmani, Gaurav S; Cho, Hyun-Hee; Abbott Chalew, Talia E; Schwab, Kellogg J; Jacangelo, Joseph G; Huang, Haiou
2014-08-01
Carbon nanotubes (CNTs) were investigated for their capability and mechanisms to simultaneously remove colloidal natural organic matter (NOM) and humic substances from natural surface water. Static removal testing was conducted via adsorption experiments while dynamic removal was evaluated by layering CNTs onto substrate membranes and filtering natural water through the CNT-layered membranes. Analyses of treated water samples showed that removal of humic substances occurred via adsorption under both static and dynamic conditions. Removal of colloidal NOM occurred at a moderate level of 36-66% in static conditions, independent of the specific surface area (SSA) of CNTs. Dynamic removal of colloidal NOM increased from approximately 15% with the unmodified membrane to 80-100% with the CNT-modified membranes. Depth filtration played an important role in colloidal NOM removal. A comparison of the static and dynamic removal of humic substances showed that equilibrium static removal was higher than dynamic (p < 0.01), but there was also a significant linear relationship between static and dynamic removal (p < 0.05). Accounting for contact time of CNTs with NOM during filtration, it appeared that CNT mat structure was an important determinant of removal efficiencies for colloidal NOM and humic substances during CNT membrane filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saito, Shuntaro; Hasegawa, Jun; Kobayashi, Naoki; Tomitsuka, Toshiaki; Uchiyama, Susumu; Fukui, Kiichi
2013-05-01
To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B 2) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. Similar B 2 values were obtained at 20°C and 40°C, implying little dependence on temperature. B 2 correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.
Tuoriniemi, Jani; Moreira, Beatriz; Safina, Gulnara
2016-10-04
The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (n eff ) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (d part ) and the particle number concentration (c p ) by fitting the measured n eff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The d part and c p determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the c p of submicrometer particles in dispersion.
Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro
In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.
Colloidal complexed silver and silver nanoparticles in extrapallial fluid of Mytilus edulis.
Zuykov, Michael; Pelletier, Emilien; Demers, Serge
2011-02-01
Metal transport in mollusk extrapallial fluid (EPF) that acts as a "bridge" between soft tissues and shell has surprisingly received little attention until now. Using ultrafiltration and radiotracer techniques we determined silver concentrations and speciation in the EPF of the blue mussel Mytilus edulis after short-term uptake and depuration laboratory experiments. Radiolabelled silver ((¹¹⁰m)Ag) was used in dissolved or nanoparticulate phases (AgNPs < 40 nm), with a similar low Ag concentration (total radioactive and cold Ag ~0.7 μg/L) in a way that mussels could uptake radiotracers only from seawater. Our results indicated that silver nanoparticles were transported to the EPF of blue mussels at a level similar to the Ag ionic form. Bulk activity of radiolabelled silver in the EPF represented only up to 7% of the bulk activity measured in the whole mussels. The EPF extracted from mussels exposed to both treatments exhibited an Ag colloidal complexed form based on EPF ultrafiltration through a 3 kDa filter. This original study brings new insights to internal circulation of nanoparticles in living organisms and contributes to the international effort in studying the potential impacts of engineered nanomaterials on marine bivalves which play an essential role in coastal ecosystems, and are important contributors to human food supply from the sea. © 2010 Elsevier Ltd. All rights reserved.
Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide
Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.
2013-01-01
The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.
Goethite colloid enhanced Pu transport through a single saturated fracture in granite.
Lin, Jianfeng; Dang, Haijun; Xie, Jinchuan; Li, Mei; Zhou, Guoqing; Zhang, Jihong; Zhang, Haitao; Yi, Xiaowei
2014-08-01
α-FeOOH, a stable iron oxide in nature, can strongly absorb the low-solubility plutonium (Pu) in aquifers. However, whether Pu transports though a single saturated fracture can be enhanced in the presence of α-FeOOH colloids remains unknown. Experimental studies were carried out to evaluate Pu mobilization at different water flow velocity, as affected by goethite colloids with various concentrations. Goethite nanorods were used to prepare (α-FeOOH)-associated Pu suspensions with α-FeOOH concentration of (0-150) mgL(-1). The work experimentally evidenced that α-FeOOH colloid does enhance transport of Pu through fractured granites. The fraction of mobile (239)Pu (RPu, m=41.5%) associated with the α-FeOOH of an extremely low colloid concentration (0.2mgL(-1)) is much larger than that in absence of α-FeOOH (RPu, m=6.98%). However, plutonium mobility began to decrease when α-FeOOH concentration was increased to 1.0mgL(-1). On the other hand, the fraction of mobile Pu increased gradually with the water flow velocity. Based on the experimental data, the mechanisms underlying the (α-FeOOH)-associated plutonium transport are comprehensively discussed in view of its dynamic deposition onto the granite surfaces, which is decided mainly by the relative interaction between the colloid particle and the immobile surface. This interaction is a balance of electrostatic force (may be repulsive or attractive), the van der Walls force, and the shear stress of flow. Copyright © 2014 Elsevier B.V. All rights reserved.
Role of air-water interfaces in colloid transport in porous media: A review
NASA Astrophysics Data System (ADS)
Flury, Markus; Aramrak, Surachet
2017-07-01
Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
NASA Astrophysics Data System (ADS)
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-10-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-01-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948
In-situ chemical barrier and method of making
Cantrell, K.J.; Kaplan, D.I.
1999-01-12
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete. 7 figs.
In-situ chemical barrier and method of making
Cantrell, Kirk J.; Kaplan, Daniel I.
1999-01-01
A chemical barrier is formed by injecting a suspension of solid particles or colloids into the subsurface. First, a stable colloid suspension is made including a surfactant and a non-Newtonian fluid. This stable colloid suspension is characterized by colloid concentration, colloid size, colloid material, solution ionic strength, and chemical composition. A second step involves injecting the optimized stable colloid suspension at a sufficiently high flow rate to move the colloids through the subsurface sediment, but not at such a high rate so as to induce resuspending indigenous soil particles in the aquifer. While injecting the stable colloid suspension, a withdrawal well may be used to draw the injected colloids in a direction perpendicular to the flow path of a contaminant plume. The withdrawal well, may then be used as an injection well, and a third well, in line with the first two wells, may then be used as a withdrawal well, thereby increasing the length of the colloid barrier. This process would continue until emplacement of the colloid barrier is complete.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Sankaran, Subramanian
2003-01-01
Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.
Colloid-facilitated metal transport in peat filters.
Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin
2010-06-01
The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.
Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam
2016-09-01
Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of manure-related DOM on sulfonamide transport in arable soils
NASA Astrophysics Data System (ADS)
Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina
2016-09-01
Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280 nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides.
Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico
NASA Astrophysics Data System (ADS)
Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.
2013-07-01
The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.
Does water content or flow rate control colloid transport in unsaturated porous media?
Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B
2014-04-01
Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.
Conflicting Expertise and Uncertainty: Quality Assurance in High-Level Radioactive Waste Management.
ERIC Educational Resources Information Center
Fitzgerald, Michael R.; McCabe, Amy Snyder
1991-01-01
Dynamics of a large, expensive, and controversial surface and underground evaluation of a radioactive waste management program at the Yucca Mountain power plant are reviewed. The use of private contractors in the quality assurance study complicates the evaluation. This case study illustrates high stakes evaluation problems. (SLD)
Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard
2015-09-07
Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
Radioiodine concentrated in a wetland.
Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H
2014-05-01
Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yifeng
2015-08-20
The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and asmore » a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.« less
Mesoscale Particle-Based Model of Electrophoretic Deposition
Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; ...
2016-12-20
In this paper, we present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increasesmore » and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. Finally, we find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.« less
Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A
2015-06-01
The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.
Local electrophoretic deposition using a nanopipette for micropillar fabrication
NASA Astrophysics Data System (ADS)
Iwata, Futoshi; Metoki, Junya
2017-12-01
A novel and simple technique was developed for the fabrication of micropillars using a nanopipette that is a tapered glass capillary with a micrometer-sized aperture at the tip. The nanopipette was filled with a colloidal solution that included metal nanoparticles. Its tip was put in contact with a substrate, and the substrate was moved downward for continuous deposition of the metal colloidal solution to form micropillars. To improve fabrication reproducibility, the amount of Au colloidal solution deposited was controlled by a feedback loop that maintained a predefined constant current during electrophoretic deposition. The stiffness of the fabricated micropillars was evaluated by applying a loading force using a microcantilever under scanning electron microscopy. The Young’s modulus of the fabricated pillars was measured to be in the range of 7.7-14.8 GPa, depending on the fabrication parameters of the predefined current and fabrication speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.
A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave themore » surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.« less
Impact of manure-related DOM on sulfonamide transport in arable soils.
Zhou, Dan; Thiele-Bruhn, Sören; Arenz-Leufen, Martina Gesine; Jacques, Diederik; Lichtner, Peter; Engelhardt, Irina
2016-09-01
Field application of livestock manure introduces colloids and veterinary antibiotics, e.g. sulfonamides (SAs), into farmland. The presence of manure colloids may potentially intensify the SAs-pollution to soils and groundwater by colloid-facilitated transport. Transport of three SAs, sulfadiazine (SDZ), sulfamethoxypyridazine (SMPD), and sulfamoxole (SMOX), was investigated in saturated soil columns with and without manure colloids from sows and farrows, weaners, and fattening pigs. Experimental results showed that colloid-facilitated transport of SMOX was significant in the presence of manure colloids from fattening pigs with low C/N ratio, high SUVA280nm and protein C, while manure colloids from sows and farrows and weaners had little effect on SMOX transport. In contrast, only retardation was observed for SDZ and SMPD when manure colloids were present. Breakthrough curves (BTCs) of colloids and SAs were replicated well by a newly developed numerical model that considers colloid-filtration theory, competitive kinetic sorption, and co-transport processes. Model results demonstrate that mobile colloids act as carriers for SMOX, while immobile colloids block SMOX from sorbing onto the soil. The low affinity of SMOX to sorb on immobile colloids prevents aggregation and also promotes SMOX's colloid-facilitated transport. Conversely, the high affinity of SDZ and SMPD to sorb on all types of immobile colloids retarded their transport. Thus, manure properties play a fundamental role in increasing the leaching risk of hydrophobic sulfonamides. Copyright © 2016 Elsevier B.V. All rights reserved.
Lindinger, Michael I; Ecker, Gayle L
2013-01-01
Horses lose considerably more electrolytes through sweating during prolonged exercise than can be readily replaced through feeds. The present study tested an oral electrolyte supplement (ES) designed to replace sweat electrolyte losses. We measured gastric emptying of 3 litres of ES (using gamma imaging of (99)Tc-sulfide colloid), the absorption of Na(+) and K(+) from the gastrointestinal tract using (24)Na(+) and (42)K(+), and the distribution of these ions in the body by measuring radioactivity within plasma and sweat during exercise. Three litres of ES emptied from the stomach as fast as water, with a half-time of 47 min, and appeared in plasma by 10 min after administration (n = 4 horses). Peak values of plasma (24)Na(+) and (42)K(+) radioactivity occurred at 20-40 min, and a more rapid disappearance of K(+) radioactivity from plasma was indicative of movement of K(+) into cells (n = 3 horses). In a randomized crossover experiment (n = 4 horses), 1 h after administration of placebo (water), 1 or 3 litres of ES containing (24)Na(+), horses exercised on a treadmill at 30% of peak oxygen uptake until voluntary fatigue. The (24)Na(+) appeared in sweat at 10 min of exercise, and when horses received 3 litres of ES the duration to voluntary fatigue was increased in all horses by 33 ± 10%. It is concluded that an oral ES designed to replace sweat ion losses was rapidly emptied from the gastrointestinal tract, rapidly absorbed in the upper intestinal tract and rapidly distributed within the body. The ES clearly served as a reservoir to replace sweat ion losses during exercise, and administration of ES prior to exercise resulted in increased duration of submaximal exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Richard J., E-mail: drrichardowen@tbwifi.c; Mercer, John R.; Al-Saif, Faisal
2009-05-15
The distribution of radiolabeled polyvinyl alcohol microspheres (PVAMs) when infused into the portal vein of domestic swine was investigated, with the purpose of assessing implications for pancreatic islet cell transplantation. PVAMs measuring 100-300 {mu}m (Contour SE) and labeled with {sup 99m}Tc were infused into the main portal vein of 12 swine, with intermittent portal venous pressure measurements. The infusion catheter was introduced antegradely via direct or indirect cannulation of the portal vein. The liver was subsequently divided into anatomical segments. Radioactivity (decay corrected) was measured for {sup 99m}Tc microsphere synthesis, dose preparation, gross organ activities, tissue samples, and blood. Particulatemore » labeling, catheter positioning, and infusion were successful in all cases. The number of particles used was (185,000 {+-} 24,000) with a volume of 1 ml. Mean portal pressure at 5 min was significantly higher than baseline, but without a significant difference at 15 min. Extrahepatic tissue and serum radioactivity was negligible. A significant difference in number of radioactive particles per gram was detected between segments 6/7 and segments 5/8. Intrasegmental activity was analyzed, and for segments 2/3 a significant difference in the percentage dose per gram across samples was demonstrated (P = 0.001). Effective and stable radiolabeling of PVAMs with {sup 99m}Tc-sulfur colloid was demonstrated. Portal venous infusion of 100- to 300-{mu}m particles showed entrapment in the sinusoidal hepatic system with transient portal pressure elevation. Preferential embolization into the right lateral and posterior segments occurs, suggesting that flow dynamics/catheter tip position plays a role in particle distribution.« less
Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.
2013-01-01
A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Roberts, K.; Kaplan, D.
Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release inmore » natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul W.
2012-08-30
In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither uranium nor neptunium adsorbed appreciably to FEBEX bentonite colloids in Grimsel groundwater (Huber et al., 2011). The Grimsel groundwater has a relatively high pH of {approx}9, so the lack of uranium and neptunium adsorption to clay is not surprising given the tendency for these actinides to form very stable negative or neutrally-charged uranyl- or calcium-uranyl-carbonate complexes at these pH, particularly in a water that is effectively saturated with respect to calcite. It was also observed in testing conducted at LANL earlier in 2012 that uranium did not adsorb measurably to Grimsel granodiorite in a synthetic Grimsel groundwater at pH {approx}8.5 (Kersting et al., 2012). Thus, the planned experimental work was not pursued because all the available information clearly pointed to an expected result that uranium transport would not be facilitated by clay colloids in the Grimsel system.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation. The...
NASA Technical Reports Server (NTRS)
Tong, Penger
1996-01-01
In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.
Phases transitions and interfaces in temperature-sensitive colloidal systems
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Schall, Peter
2013-03-01
Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.
Progress Report on FY15 Crystalline Experiments M4FT-15LL0807052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-08-13
Colloid-facilitated plutonium transport is expected to be the dominant mechanism in its migration through the environment. The forms of Pu colloids (intrinsic versus pseudo-colloid) and their stabilities control temporal and spatial scales of Pu transport in the environment. In the present study, we examine the stability of Pu intrinsic colloids freshly prepared in alkaline solution relative to Pu-montmorillonite pseudo-colloids using a dialysis device and modeling approaches. Intrinsic colloids prepared under alkaline conditions were found to be unstable over a timescale of months. The kinetics of multiple processes, including hydrolysis/precipitation of Pu(IV), dissolution of intrinsic colloids in the absence and presencemore » of the clay colloids, transport of dissolved Pu species across the dialysis membrane, and formation of pseudo-colloids were examined. The dissolution of intrinsic colloids was the rate-limiting process in most cases. The apparent intrinsic colloid dissolution rate constants range from 6×10 -7 to 1×10 - 6 mol·m -2·day -1 and 4×10 -6 to 8×10 -6 mol·m -2·day -1 at 25 and 80°C, respectively, while the apparent diffusion rate constants for Pu ions crossing the dialysis membrane are >200 times higher. Elevated temperatures enhance dissolution of Pu colloids and the activation energy for the process is estimated to be 28 kJ mol -1. The sorption of Pu to montmorillonite appears to be endothermic as the affinity of Pu for the clay increases with increasing temperature. Our results provide an in-depth understanding of how intrinsic and pseudo-colloids interact with each other kinetically. Although the fact that intrinsic colloids tend to dissolve in the presence of montmorillonite and transform into pseudo-colloids may limit the migration of intrinsic colloids, the thermodynamically more stable pseudo-colloids may play an important role in Pu transport in the environment over significant temporal and spatial scales.« less
Colloid transport in porous media: impact of hyper-saline solutions.
Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander
2011-05-01
The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya
2018-07-01
After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis and Characterization of Supramolecular Colloids.
Vilanova, Neus; De Feijter, Isja; Voets, Ilja K
2016-04-22
Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.
Cheese is a reliable alternative meal for solid-phase gastric emptying study.
Drubach, Laura A; Kourmouzi, Vasiliki; Fahey, Frederic H
2010-05-01
We evaluated the labeling stability of several alternative meals that could be used to perform solid-phase gastric emptying study. Cooked egg whites labeled with technetium-99m sulfur colloid served as a control. Packaged instant oatmeal and instant mashed potatoes were prepared by adding hot water. Cheddar cheese was melted. Peanut butter was added to bread. The different meals were mixed with technetium-99m sulfur colloid (2.2-3.7 MBq), chopped into small pieces and placed in a glass tube containing gastric juice. Four samples of each meal were analyzed after 1 and 4 h of agitation with a 3-D rotator (two samples per time point). The meal samples were washed with 2 ml of saline and filtered using a blood transfusion filter. The activity in each sample before and after filtering was assayed in a dose calibrator. The percentage of initial radioactivity remaining with the meal of admixture with gastric juice was measured and the average of the two samples was taken. The percentage of activity bound to the solid phase was 98.2+/-1.9, 95.6+/-1.1, 62.1+/-1.7, 41.8+/-0.6, and 74.5+/-3.8% at 1 h and 98.5+/-1.0, 95.8+/-2.6, 77.2+/-6.8, 55.5+/-3.4 and 40.2+/-22.1 at 4 h for egg whites, cheese, oatmeal, mashed potatoes and peanut butter respectively. For egg whites and cheese, there was no significant difference between the values at 1 and 4 h (P>0.8). Cheddar cheese provides an alternative meal for assessing solid gastric emptying in children comparable to egg whites. Oatmeal and mashed potatoes had low and variable labeling stability and are not recommended. In view of the significant proportion of pediatric patients who refuse to eat scrambled eggs or have allergy to eggs, the availability of other meal choices is essential. The versatility of cheddar cheese, which can be added to macaroni or as a topping on pizza, makes it a useful alternative to labeled eggs.
Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.
1991-01-01
A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.
Thermophoretic torque in colloidal particles with mass asymmetry
NASA Astrophysics Data System (ADS)
Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando
2018-05-01
We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.
Direct and inverted nematic dispersions for soft matter photonics.
Muševič, I; Skarabot, M; Humar, M
2011-07-20
General properties and recent developments in the field of nematic colloids and emulsions are discussed. The origin and nature of pair colloidal interactions in the nematic colloids are explained and an overview of the stable colloidal 2D crystalline structures and superstructures discovered so far is given. The nature and role of topological defects in the nematic colloids is discussed, with an emphasis on recently discovered entangled colloidal structures. Applications of inverted nematic emulsions and binding force mechanisms in nematic colloids for soft matter photonic devices are discussed.
Evaluation of the safety of mobile units for the conditioning of radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filss, Martin; Wallner, Christian
2013-07-01
In Germany mobile units are used to treat and condition radioactive waste. On behalf of the relevant authorities TUV SUD Industrie Service GmbH evaluates their safety. In this paper we outline the general procedure we apply and point out typical results. Generally, a generic safety case evaluates the effects of incidents and accidents and its consequences for the workers and the public. Special care is necessary to define the radioactive inventory, the nuclide composition and the mobility of the radioactive substances. A systems analysis is carried out. Typical aspects to be considered are the handling procedures, the measurement devices andmore » automatic actions. From the various possible malfunctions the critical ones have to be identified. Generally one or only a few scenarios have to be considered in detail. (authors)« less
Colloidal interactions and fouling of NF and RO membranes: a review.
Tang, Chuyang Y; Chong, T H; Fane, Anthony G
2011-05-11
Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter≪100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper. Copyright © 2010 Elsevier B.V. All rights reserved.
Magnuson, M L; Lytle, D A; Frietch, C M; Kelty, C A
2001-10-15
Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in water pipes. In this study, sedimentation field flow fractionation (SdFFF) is coupled on-line with multiangle laser light scattering (MALLS) detection to characterize these iron colloids formed following the oxygenation of iron(II) in the presence of phosphate. The SdFFF-MALLS data were used to calculate the hydrodynamic diameter, density, and particle size distribution of these submicrometer colloids. The system was first verified with standard polystyrene beads, and the results compared well with certified values. Iron(III) colloids were formed in the presence of phosphate at a variety of pH conditions. The colloids' hydrodynamic diameters, which ranged from 218 +/- 3 (pH 7) to 208 +/- 4 nm (pH 10), did not change significantly within the 95% confidence limit. Colloid density did increase significantly from 1.12 +/- 0.01 (pH 7) to 1.36 +/- 0.02 g/mL (pH 10). Iron(III) colloids formed at pH 10 in the presence of phosphate were compared to iron(III) colloids formed without phosphate and also to iron(III) colloids formed with silicate. The iron(III) colloids formed without phosphate or silicate were 0.46 g/mL more dense than any other colloids and were >6 times more narrowly distributed than the other colloids. The data suggest competitive incorporation of respective anions into the colloid during formation.
Active structuring of colloidal armour on liquid drops
NASA Astrophysics Data System (ADS)
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-06-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.
Active structuring of colloidal armour on liquid drops.
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal 'ribbons', electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of 'pupil'-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for 'smart armoured' droplets.
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.; Chapman, Walter G.
2013-09-01
In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.
Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.
Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo
2017-07-12
In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.
Colloid-Mediated Transport of PPCPs through Porous Media
NASA Astrophysics Data System (ADS)
Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie
2017-04-01
Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.
Radionuclide Esophageal Transit Scintigraphy in Primary Hypothyroidism.
Khan, Shoukat H; P, Madhu Vijay; Rather, Tanveer A; Laway, Bashir A
2017-01-30
Esophageal dysmotility is associated with gastrointestinal dysmotility in various systemic and neuroregulatory disorders. Hypothyroidism has been reported to be associated with impaired motor function in esophagus due to accumulation of glycosaminoglycan hyaluronic acid in its soft tissues, leading to changes in various contraction and relaxation parameters of esophagus, particularly in the lower esophageal sphincter. In this study we evaluated esophageal transit times in patients of primary hypothyroidism using the technique of radionuclide esophageal transit scintigraphy. Thirty-one patients of primary hypothyroidism and 15 euthyroid healthy controls were evaluated for esophageal transit time using 15-20 MBq of Technetium-99m sulfur colloid diluted in 10-15 mL of drinking water. Time activity curve was generated for each study and esophageal transit time was calculated as time taken for clearance of 90% radioactive bolus from the region of interest encompassing the esophagus. Esophageal transit time of more than 10 seconds was considered as prolonged. Patients of primary hypothyroidism had a significantly increased mean esophageal transit time of 19.35 ± 20.02 seconds in comparison to the mean time of 8.25 ± 1.71 seconds in healthy controls ( P < 0.05). Esophageal transit time improved and in some patients even normalized after treatment with thyroxine. A positive correlation ( r = 0.39, P < 0.05) albeit weak existed between the serum thyroid stimulating hormone and the observed esophageal transit time. A significant number of patients with primary hypothyroidism may have subclinical esophageal dysmotility with prolonged esophageal transit time which can be reversible by thyroxine treatment. Prolonged esophageal transit time in primary hypothyroidism may correlate with serum thyroid stimulating hormone levels.
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
NASA Astrophysics Data System (ADS)
McEnaney, Joshua M.
Colloidal nanosynthesis has become a powerful fundamental and practical science with increasing methodologies available for the formation of highly controllable, high surface area nanoparticles. By expanding these methodologies to targeted nanomaterials, we have been able to synthesize and characterize new catalytic nanoparticle systems, primarily for the catalysis of the hydrogen evolution reaction (HER) but also for CO2 photoreduction to carbonaceous fuels. Both of these reactions offer exciting potential routes toward a clean energy future if they can be produced and perform with enough cost efficiency. We begin with a discussion of the capabilities of colloidal nanosynthesis, followed by the intricacies of the HER and CO2 photoreduction. For the HER, replacing highly active noble metals with Earth-abundant, active, and stable materials is a major goal. The majority of this dissertation will focus on the discovery, characterization, and evaluation of new materials to satisfy this goal. For this, we will start by reporting on the synthesis and evaluation of new amorphous molybdenum phosphide and amorphous tungsten phosphide nanoparticles as HER catalysts. Each of the full HER evaluations will include linear scan voltammetry for testing the activity of each material, comparison versus a platinum standard electrode and a bare Ti foil substrate as controls, then sustained cyclic voltammetry as well as a galvanostatic hold for stability testing. We will then discuss the discovery of hollow nanospheres of FeP as an exceptionally active HER catalyst. This will be followed by the establishment of a synthetic route to colloidal transition metal silicide nanoparticles. Ni2Si, Pd2Si, and Cu3Si nanoparticles were all synthesized preliminarily tested for their ability to catalyze the HER. Next, we discuss phase control of cobalt sulfide nanomaterials and establish parameters in a non-polar synthesis to make each of three crystalline phases, and begin to compare them for the HER. After this, we will show specific colloidally controlled manipulations of TiO2truncated bipyramidal nanoparticles, including size control of Ag domains grown on TiO2and multilayered assemblies of TiO2 nanoparticles. Finally, we delve into the challenges and opportunities of CO2 photoreduction before concluding. Briefly, for CO2 reduction, activity has typically been low compared to the HER, product selectivity remains a major hurdle, and there is a lack of standardization in testing methods, though the infrastructures of first world countries are already built for carbon based fuels, and CO2 itself provides an excellent feedstock from a growing pollutant. We highlight colloidally synthesized SnO nanosheets with primarily exposed (001) facets as selective for ethanol production from CO2 and water, then directly compare CuPt alloy nanospheres against Pt nanospheres on a TiO2substrate for CO2 photoreduction to methane. Each of the chapters included will illustrate the powerful capabilities of colloidal nanosynthesis, as they can be applied to learn about and discover solutions to real world problems such as the development clean energy technologies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent... proposed ISFSI or MRS must be evaluated with respect to the potential impact on the environment of the...
Annual Radioactive Waste Tank Inspection Program 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNatt, F.G. Sr.
1995-04-01
Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1994 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.
Zhou, Zhengzhen; Guo, Laodong
2015-06-19
Colloidal retention characteristics, recovery and size distribution of model macromolecules and natural dissolved organic matter (DOM) were systematically examined using an asymmetrical flow field-flow fractionation (AFlFFF) system under various membrane size cutoffs and carrier solutions. Polystyrene sulfonate (PSS) standards with known molecular weights (MW) were used to determine their permeation and recovery rates by membranes with different nominal MW cutoffs (NMWCO) within the AFlFFF system. Based on a ≥90% recovery rate for PSS standards by the AFlFFF system, the actual NMWCOs were determined to be 1.9 kDa for the 0.3 kDa membrane, 2.7 kDa for the 1 kDa membrane, and 33 kDa for the 10 kDa membrane, respectively. After membrane calibration, natural DOM samples were analyzed with the AFlFFF system to determine their colloidal size distribution and the influence from membrane NMWCOs and carrier solutions. Size partitioning of DOM samples showed a predominant colloidal size fraction in the <5 nm or <10 kDa size range, consistent with the size characteristics of humic substances as the main terrestrial DOM component. Recovery of DOM by the AFlFFF system, as determined by UV-absorbance at 254 nm, decreased significantly with increasing membrane NMWCO, from 45% by the 0.3 kDa membrane to 2-3% by the 10 kDa membrane. Since natural DOM is mostly composed of lower MW substances (<10 kDa) and the actual membrane cutoffs are normally larger than their manufacturer ratings, a 0.3 kDa membrane (with an actual NMWCO of 1.9 kDa) is highly recommended for colloidal size characterization of natural DOM. Among the three carrier solutions, borate buffer seemed to provide the highest recovery and optimal separation of DOM. Rigorous calibration with macromolecular standards and optimization of system conditions are a prerequisite for quantifying colloidal size distribution using the flow field-flow fractionation technique. In addition, the coupling of AFlFFF with fluorescence EEMs could provide new insights into DOM heterogeneity in different colloidal size fractions. Copyright © 2015 Elsevier B.V. All rights reserved.
Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.
Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau
2017-09-01
Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.
Active structuring of colloidal armour on liquid drops
Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon
2013-01-01
Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716
Nematic Liquid-Crystal Colloids
Muševič, Igor
2017-01-01
This article provides a concise review of a new state of colloidal matter called nematic liquid-crystal colloids. These colloids are obtained by dispersing microparticles of different shapes in a nematic liquid crystal that acts as a solvent for the dispersed particles. The microparticles induce a local deformation of the liquid crystal, which then generates topological defects and long-range forces between the neighboring particles. The colloidal forces in nematic colloids are much stronger than the forces in ordinary colloids in isotropic solvents, exceeding thousands of kBT per micrometer-sized particle. Of special interest are the topological defects in nematic colloids, which appear in many fascinating forms, such as singular points, closed loops, multitudes of interlinked and knotted loops or soliton-like structures. The richness of the topological phenomena and the possibility to design and control topological defects with laser tweezers make colloids in nematic liquid crystals an excellent playground for testing the basic theorems of topology. PMID:29295574
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2015-08-04
In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.
Integration of colloids into a semi-flexible network of fibrin.
Bharadwaj, N Ashwin K; Kang, Jin Gu; Hatzell, Marta C; Schweizer, Kenneth S; Braun, Paul V; Ewoldt, Randy H
2017-02-15
Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 μm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.
NASA Astrophysics Data System (ADS)
Sirivithayapakorn, Sanya; Keller, Arturo
2003-12-01
We present results from pore-scale observations of colloid transport in an unsaturated physical micromodel. The experiments were conducted separately using three different sizes of carboxylate polystyrene latex spheres and Bacteriophage MS2 virus. The main focus was to investigate the pore-scale transport processes of colloids as they interact with the air-water interface (AWI) of trapped air bubbles in unsaturated porous media, as well as the release of colloids during imbibition. The colloids travel through the water phase but are attracted to the AWI by either collision or attractive forces and are accumulated at the AWI almost irreversibly, until the dissolution of the air bubble reduces or eliminates the AWI. Once the air bubbles are near the end of the dissolution process, the colloids can be transported by advective liquid flow, as colloidal clusters. The clusters can then attach to other AWI down-gradient or be trapped in pore throats that would have allowed them to pass through individually. We also observed small air bubbles with attached colloids that traveled through the porous medium during the gas dissolution process. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to help explain the observed results. The strength of the force that holds the colloids at the AWI was estimated, assuming that the capillary force is the major force that holds the colloids at the AWI. Our calculations indicate that the forces that hold the colloids at the AWI are larger than the energy barrier between the colloids. Therefore it is quite likely that the clusters of colloids are formed by the colloids attached at the AWI as they move closer at the end of the bubble dissolution process. Coagulation at the AWI may increase the overall filtration for colloids transported through the vadose zone. Just as important, colloids trapped in the AWI might be quite mobile when the air bubbles are released at the end of the dissolution process, resulting in increased breakthrough. These pore-scale mechanisms are likely to play a significant role in the macroscopic transport of colloids in unsaturated porous media.
Levels of radioactivity in Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Thani, A.A.; Abdul-Majid, S.; Mohammed, K.
The levels of natural and man-made radioactivity in soil and seabed were measured in Qatar to assess radiation exposure levels and to evaluate any radioactive contamination that may have reached the country from fallout or due to the Chernobyl accident radioactivity release. Qatar peninsula is located on the Arabian Gulf, 4500 km from Chernobyl, and has an area of {approximately}11,600 km{sup 2} and a population of {approximately}600,000.
Surface charge accumulation of particles containing radionuclides in open air
Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less
Influence of topical anesthesia on tear dynamics and ocular drug bioavailability in albino rabbits.
Patton, T F; Robinson, J R
1975-02-01
The bioavailability of topically applied ocular drugs is very poor, due largely to drug loss through drainage and tear turnover. The use of high viscosity solutions or solid matrixes to delay or eliminate drainage is the usual approach for decreasing drug loss but the alternative approach of chemically reducing tear turnover and/or solution drainage has not been investigated. By means of a simple isotopic dilution technique, using radioactive technetium sulfur colloid, the quantitative influence of topical anesthetics on tear production and instilled solution drainage was determined. The reduction in the rate of tear turnover and solution drainage varies for different anesthetics and is dose dependent. The implication of these results for some long accepted clinical procedures is discussed, and questions are raised regarding the present understanding of the mechanisms of tear production. Quantitation of precorneal drug loss through instilled solution drainage and tear turnover permits the establishment of a baseline for ocular drug bioavailability. Aqueous humor drug concentration versus time profiles of radioactive pilocarpine nitrate were obtained, both in the presence and absence of topical anesthesia. The results verify the importance of tear turnover and instilled solution drainage as a major route of drug loss in the eye. Moreover, the success of the present study in improving ocular drug bioavailability by the chemical approach of repressing solution drainage and tear turnover suggests that this approach is viable for improving drug bioavailability.
Kautenburger, Ralf; Beck, Horst Philipp
2007-08-03
For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Amr I.; Roberts, Peter M.
2006-05-01
It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.
Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela
2014-01-15
Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.
Shape recognition of microbial cells by colloidal cell imprints
NASA Astrophysics Data System (ADS)
Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.
2013-08-01
We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.
Colloid labelled with radionuclide and method
Atcher, R.W.; Hines, J.J.
1990-11-13
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings
Method of making colloid labeled with radionuclide
Atcher, Robert W.; Hines, John J.
1991-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Colloid labelled with radionuclide and method
Atcher, Robert W.; Hines, John J.
1990-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Liao, Peng; Yuan, Songhu; Wang, Dengjun
2016-10-18
Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.
Study of two different radioactive sources for prostate brachytherapy treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de
In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of anmore » adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)« less
Quantification of changes in metal loading from storm runoff, Merse River (Tuscany, Italy)
Kimball, B.A.; Bianchi, F.; Walton-Day, K.; Runkel, R.L.; Nannucci, M.; Salvadori, A.
2007-01-01
The Merse River in Tuscany is affected by mine drainage and the weathering of mine wastes along several kilometres of its catchment. The metal loading to the stream was quantified by defining detailed profiles of discharge and concentration, using tracer-dilution and synoptic-sampling techniques. During the course of a field experiment to evaluate metal loading to the Merse, such data were obtained for both storm and pre-storm conditions, providing a unique opportunity for comparison. Iron, Cu, and Mn were chosen to illustrate changes resulting from the storm. The total-recoverable load of Fe increased 21-fold, while loads of Cu and Mn increased by 8- and 7-fold, respectively, during the storm runoff. The increases most likely resulted from flushing particulates from near the stream, resuspension of colloidal material from the streambed, and increased ground-water inflow to the stream. The increases in Cu and Mn loads results from their association with colloids. It is possible that in-stream colloids had relatively more Cu than Mn, while near-stream colloids had relatively more Mn. Each of the metals also increased as a result of increased ground-water discharge during the storm. Despite great increases in load, the filterable concentrations of these metals did not increase substantially, remaining below chronic levels of toxicity. ?? 2007 Springer-Verlag.
ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, B.; Waltz, R.
2009-06-11
Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.
Colloidal paradigm in supercapattery electrode systems
NASA Astrophysics Data System (ADS)
Chen, Kunfeng; Xue, Dongfeng
2018-01-01
Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.
Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining
NASA Astrophysics Data System (ADS)
Wang, N.
2017-12-01
In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).
Effective Forces Between Colloidal Particles
NASA Technical Reports Server (NTRS)
Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel
1999-01-01
Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two- and three-body forces in the bulk as well as study the influence of soft walls. We qualitatively explain the effects of the walls on the forces and demonstrate that many-body effects are negligible in our system. With adjustments in the parameters, the DLVO pair-potential can describe the results quantitatively. Besides electrostatic interactions, entropic depletion effects that arise from (hard-core) exclusion play an important role in determining the behavior of multi-component colloidal suspensions. A standard theory for depletion forces is due to Asakura and Oosawa and is based on the ideal gas approximation. To go beyond this approximation, we have studied entropic forces in molecular dynamics simulations of systems of hard spheres (the effects of the solvent have been ignored). The effective depletion forces for these systems can be found either from equilibrium distribution functions or from direct momentum transfer calculations. Our results obtained by either method show qualitative differences from the Asakura-Oosawa forces, indicating a longer range, higher value at contact and most importantly a more complicated structure, comprising of several maxima and minima. Our calculations include the determination of effective forces between two spheres, a hard sphere and a wall, and the behavior of a hard sphere near a step-edge and a corner. We also demonstrate that such entropic forces do not necessarily satisfy pairwise additivity.
Protein Colloidal Aggregation Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.
Diamond family of colloidal supercrystals as phononic metamaterials
NASA Astrophysics Data System (ADS)
Aryana, Kiumars; Zanjani, Mehdi B.
2018-05-01
Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f < 0.45) include smaller bandgaps compared to those with medium filling factors (0.65 > f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.
Segets, Doris; Marczak, Renata; Schäfer, Stefan; Paula, Carolin; Gnichwitz, Jan-Frederik; Hirsch, Andreas; Peukert, Wolfgang
2011-06-28
The current work addresses the understanding of the stabilization of nanoparticles in suspension. Specifically, we study ZnO in ethanol for which the influence of particle size and reactant ratio as well as surface coverage on colloidal stability in dependence of the purification progress was investigated. The results revealed that the well-known ζ-potential determines not only the colloidal stability but also the surface coverage of acetate groups bound to the particle surface. The acetate groups act as molecular spacers between the nanoparticles and prevent agglomeration. Next to DLVO calculations based on the theory of Derjaguin, Landau, Verwey and Overbeek using a core-shell model we find that the stability is better understood in terms of dimensionless numbers which represent attractive forces as well as electrostatic repulsion, steric effects, transport properties, and particle concentration. Evaluating the colloidal stability in dependence of time by means of UV-vis absorption measurements a stability map for ZnO is derived. From this map it becomes clear that the dimensionless steric contribution to colloidal stability scales with a stability parameter including dimensionless repulsion and attraction as well as particle concentration and diffusivity of the particles according to a power law with an exponent of -0.5. Finally, we show that our approach is valid for other stabilizing molecules like cationic dendrons and is generally applicable for a wide range of other material systems within the limitations of vanishing van der Waals forces in refractive index matched situations, vanishing ζ-potential and systems without a stabilizing shell around the particle surface.
Characterisation of dry powder inhaler formulations using atomic force microscopy.
Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen
2015-10-15
Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Emoto, Akira; Kamei, Tadayoshi; Shioda, Tatsutoshi; Kawatsuki, Nobuhiro; Ono, Hiroshi
2009-06-01
We report the experimental results of two-dimensional patterning of colloidal crystals using edge-patterned cells. Solvent evaporation of a colloidal suspension from the edge of the cell induces self-organized crystallization of spherical colloidal particles. From a reservoir of colloidal suspension in the cell, different colloidal suspensions are injected repetitively. An edge-patterned substrate is introduced into the cell as an upper substrate. As a result, different colloidal crystals are alternately stacked in the lateral direction according to the edge pattern. The characteristics of cloning formation are specifically showed including deformations from the original pattern. This two-dimensional patterning of three-dimensional colloidal crystals by means of lateral autocloning is promising for the development of photonic crystal arrays for use in optic and photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Waste minimization for commercial radioactive materials users generating low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Characterization of magnetic colloids by means of magnetooptics.
Baraban, L; Erbe, A; Leiderer, P
2007-05-01
A new, efficient method for the characterization of magnetic colloids based on the Faraday effect is proposed. According to the main principles of this technique, it is possible to detect the stray magnetic field of the colloidal particles induced inside the magnetooptical layer. The magnetic properties of individual particles can be determined providing measurements in a wide range of magnetic fields. The magnetization curves of capped colloids and paramagnetic colloids were measured by means of the proposed approach. The registration of the magnetooptical signals from each colloidal particle in an ensemble permits the use of this technique for testing the magnetic monodispersity of colloidal suspensions.
NASA Astrophysics Data System (ADS)
Johnson, William P.; Tong, Meiping; Li, Xiqing
2007-12-01
This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under environmental conditions, where repulsion exists between colloids and surfaces. This failure cannot be blamed solely on the complexities of the subsurface, since colloid filtration theory (CFT) works well in the absence of colloid-collector repulsion despite its idealization of porous media as consisting of spherical grains completely surrounded by fluid envelopes. Rather, the failure of CFT stems from failure to incorporate the correct mechanisms of retention when repulsion exists. Recent observations implicate wedging in grain-to-grain contacts and retention in secondary energy minima as dominant mechanisms of colloid retention in the presence of an energy barrier. Mechanistic simulations in unit cells containing grain-to-grain contacts corroborate these mechanisms of colloid retention. The resulting concept for colloid retention in the presence of an energy barrier involves translation of colloids across the collector surfaces until they become wedged within grain-to-grain contacts, or are retained via secondary energy minima (without attachment) in zones where the balance of fluid drag, diffusion, gravitational, and colloid-collector interaction forces allow retention. The above findings highlight the pore domain geometry as a dominant governor of colloid retention in so far as the geometry gives rise to grain-to-grain contacts and zones of relatively low fluid drag.
Colloid mobilization and seasonal variability in a semiarid headwater stream
Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.
2017-01-01
Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the <0.45-µm fraction in the stream. Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
The role of silica colloids on facilitated cesium transport through glass bead columns and modeling
NASA Astrophysics Data System (ADS)
Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.
1998-05-01
Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.
Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing
NASA Astrophysics Data System (ADS)
Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.
2009-04-01
The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.
Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.
Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun
2011-11-01
Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion. Copyright © 2011 Elsevier B.V. All rights reserved.
Chemodynamics of aquatic metal complexes: from small ligands to colloids.
Van Leeuwen, Herman P; Buffle, Jacques
2009-10-01
Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.
NASA Astrophysics Data System (ADS)
Palanisamy, Duraivelan; den Otter, Wouter K.
2018-05-01
We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.
Size dependence in tunneling spectra of PbSe quantum-dot arrays.
Ou, Y C; Cheng, S F; Jian, W B
2009-07-15
Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.
Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking
Liang, Mengning; Harder, Ross; Robinson, Ian K.
2014-04-14
Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT) to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves butmore » also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.« less
Glass/Jamming Transition in Colloidal Aggregation
NASA Technical Reports Server (NTRS)
Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)
2000-01-01
We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.
Internal Structure and Preferential Protein Binding of Colloidal Aggregates.
Duan, Da; Torosyan, Hayarpi; Elnatan, Daniel; McLaughlin, Christopher K; Logie, Jennifer; Shoichet, Molly S; Agard, David A; Shoichet, Brian K
2017-01-20
Colloidal aggregates of small molecules are the most common artifact in early drug discovery, sequestering and inhibiting target proteins without specificity. Understanding their structure and mechanism has been crucial to developing tools to control for, and occasionally even exploit, these particles. Unfortunately, their polydispersity and transient stability have prevented exploration of certain elementary properties, such as how they pack. Dye-stabilized colloidal aggregates exhibit enhanced homogeneity and stability when compared to conventional colloidal aggregates, enabling investigation of some of these properties. By small-angle X-ray scattering and multiangle light scattering, pair distance distribution functions suggest that the dye-stabilized colloids are filled, not hollow, spheres. Stability of the coformulated colloids enabled investigation of their preference for binding DNA, peptides, or folded proteins, and their ability to purify one from the other. The coformulated colloids showed little ability to bind DNA. Correspondingly, the colloids preferentially sequestered protein from even a 1600-fold excess of peptides that are themselves the result of a digest of the same protein. This may reflect the avidity advantage that a protein has in a surface-to-surface interaction with the colloids. For the first time, colloids could be shown to have preferences of up to 90-fold for particular proteins over others. Loaded onto the colloids, bound enzyme could be spun down, resuspended, and released back into buffer, regaining most of its activity. Implications of these observations for colloid mechanisms and utility will be considered.
2001-01-24
Close-up view of the Binary Colloidal Alloy Test during an experiment run aboard the Russian Mir space station. BCAT is part of an extensive series of experiments plarned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals, which may have many unique properties that may form the basis of new classes of light switches, displays, and optical devices that can fuel the evolution of the next generation of computer and communication technologies. This Slow Growth hardware consisted of a 35-mm camera aimed toward a module which contained 10 separate colloid samples. To begin the experiment, one of the astronauts would mix the samples to disperse the colloidal particles. Then the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period. The investigation proved that gravity plays a central role in the formation and stability of these types of colloidal crystal structures. The investigation also helped identify the optimum conditions for the formation of colloidal crystals, which will be used for optimizing future microgravity experiments in the study of colloidal physics. Dr. David Weitz of the University of Pennsylvania and Dr. Peter Pusey of the University of Edinburgh, United Kingdom, are the principal investigators.
Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A
2016-12-01
Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake.
Xu, Huacheng; Xu, Mengwen; Li, Yani; Liu, Xin; Guo, Laodong; Jiang, Helong
2018-05-31
Stability of colloidal particles contributes to the turbidity in the water column, which significantly influences water quality and ecological functions in aquatic environments especially shallow lakes. Here we report characterization, origin and aggregation behavior of aquatic colloids, including natural colloidal particles (NCPs) and total inorganic colloidal particles (TICPs), in a highly turbid shallow lake, via field observations, simulation experiments, ultrafiltration, spectral and microscopic, and light scattering techniques. The colloidal particles were characterized with various shapes (spherical, polygonal and elliptical) and aluminum-, silicon-, and ferric-containing mineralogical structures, with a size range of 20-200 nm. The process of sediment re-suspension under environmentally relevant conditions contributed 78-80% of TICPs and 54-55% of NCPs in Lake Taihu, representing an important source of colloids in the water column. Both mono- and divalent electrolytes enhanced colloidal aggregation, while a reverse trend was observed in the presence of natural organic matter (NOM). The influence of NOM on colloidal stability was highly related to molecular weight (MW) properties with the high MW fraction exhibiting higher stability efficiency than the low MW counterparts. However, the MW-dependent aggregation behavior for NCPs was less significant than that for TICPs, implying that previous results on colloidal behavior using model inorganic colloids alone should be reevaluated. Further studies are needed to better understand the mobility/stability and transformation of aquatic colloids and their role in governing the fate and transport of pollutants in natural waters. Copyright © 2018. Published by Elsevier Ltd.
Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes
NASA Astrophysics Data System (ADS)
Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.
2010-12-01
Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental requirements. The critical limitations of UV-vis fluorescence imaging are the need for reliable fluorescent probes suited to the experimental objective, and the reliance on thin-bed (2D) transparent porous media. Autoradiographic techniques address some of these limitations permit imaging of key biogeochemical processes in opaque media using radioactive probes, without the need for specialised radiation sources. We present initial calibration data for the use of autoradiography to monitor transport parameters for radionuclides (99-technetium), and a novel application of a radioactive salt tracer as a probe for pore water content, in model porous media systems.
NASA Astrophysics Data System (ADS)
Choi, Seong-Ho; Park, Hyun Gyu
2005-04-01
PVP-protected silver colloids were prepared by γ-irradiation and chemical reduction method. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by γ-irradiation were recorded. The SERS spectra of sodium benzoate were successfully recorded in Ag colloids, whereas the Raman spectra did not appear without Ag colloids. The Raman spectra of 4-picoline were not detected without Ag colloids, while the SERS spectra of 4-picoline were increased by adding Ag colloids. The carboxylate group of sodium benzoate and N donor of 4-picoline were adsorbed on the surface of Ag nanoparticles.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
... DOE to carry out a high-level radioactive waste management demonstration project at the Western New... solidification of high-level radioactive waste for disposal in a Federal repository for permanent disposal. The... and other facilities where the solidified high-level radioactive waste was stored, the facilities used...
Bharali, P; Saikia, J P; Paul, S; Konwar, B K
2013-10-01
The antibacterial activity of silver nanoparticles and rhamnolipid are well known individually. In the present research, antibacterial and chemotactic activity due to colloidal silver nanoparticles (SNP), rhamnolipid (RL) and silver nanoparticles/rhamnolipid composite (SNPRL) were evaluated using Staphylococcus aureus (MTCC3160), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC8163) and Bacillus subtilis (MTCC441) as test strains. Further, the SNPRL nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The observation clearly indicates that SNPRL shows prominent antibacterial and chemotactic activity in comparison to all of its individual precursor components. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kȩdzierski, Marcin; Wajnryb, Eligiusz
2011-10-01
Self-diffusion of colloidal particles confined to a cylindrical microchannel is considered theoretically and numerically. Virial expansion of the self-diffusion coefficient is performed. Two-body and three-body hydrodynamic interactions are evaluated with high precision using the multipole method. The multipole expansion algorithm is also used to perform numerical simulations of the self-diffusion coefficient, valid for all possible particle packing fractions. Comparison with earlier results shows that the widely used method of reflections is insufficient for calculations of hydrodynamic interactions even for small packing fractions and small particles radii, contrary to the prevalent opinion.
Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.
Lee, Seyong; Han, Seunghee; Gill, Gary A
2011-06-01
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.
Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C
2012-03-06
Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids.
Colloid-facilitated mobilization of metals by freeze-thaw cycles.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2014-01-21
The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.
Iron-rich colloids as carriers of phosphorus in streams: A field-flow fractionation study.
Baken, Stijn; Regelink, Inge C; Comans, Rob N J; Smolders, Erik; Koopmans, Gerwin F
2016-08-01
Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of low concentrations of P-bearing colloids. Colloids from five streams draining catchments with contrasting properties were characterized by AF4-ICP-MS and by membrane filtration. All streams contain free humic substances (2-3 nm) and Fe-bearing colloids (3-1200 nm). Two soft water streams contain primary Fe oxyhydroxide-humic nanoparticles (3-6 nm) and aggregates thereof (up to 150 nm). In contrast, three harder water streams contain larger aggregates (40-1200 nm) which consist of diverse associations between Fe oxyhydroxides, humic substances, clay minerals, and possibly ferric phosphate minerals. Despite the diversity of colloids encountered in these contrasting streams, P is in most of the samples predominantly associated with Fe-bearing colloids (mostly Fe oxyhydroxides) at molar P:Fe ratios between 0.02 and 1.5. The molar P:Fe ratio of the waters explains the partitioning of P between colloids and truly dissolved species. Waters with a high P:Fe ratio predominantly contain truly dissolved species because the Fe-rich colloids are saturated with P, whereas waters with a low P:Fe ratio mostly contain colloidal P species. Overall, AF4-ICP-MS is a suitable technique to characterize the diverse P-binding colloids in natural waters. Such colloids may increase the mobility or decrease the bioavailability of P, and they therefore need to be considered when addressing the transport and environmental effects of P in catchments. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
2018-03-01
Like ordinary molecules are composed of atoms, colloidal molecules consist of several species of colloidal particles tightly bound together. If one of these components is self-propelled or swimming, novel “active colloidal molecules” emerge. Active colloidal molecules exist on various levels such as “homonuclear”, “heteronuclear” and “polymeric” and possess a dynamical function moving as propellers, spinners or rotors. Self-assembly of such active complexes has been studied a lot recently and this perspective article summarizes recent progress and gives an outlook to future developments in the rapidly expanding field of active colloidal molecules.
Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong
2018-03-24
Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
ERIC Educational Resources Information Center
Lamb, William G.
1985-01-01
Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)
Surface charge accumulation of particles containing radionuclides in open air.
Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microfluidic colloid filtration
Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias
2016-01-01
Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706
Tracking liquid in drying colloidal fluids with polarized light microscopy
NASA Astrophysics Data System (ADS)
Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook
2014-11-01
When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.
Chiral liquid crystal colloids
NASA Astrophysics Data System (ADS)
Yuan, Ye; Martinez, Angel; Senyuk, Bohdan; Tasinkevych, Mykola; Smalyukh, Ivan I.
2018-01-01
Colloidal particles disturb the alignment of rod-like molecules of liquid crystals, giving rise to long-range interactions that minimize the free energy of distorted regions. Particle shape and topology are known to guide this self-assembly process. However, how chirality of colloidal inclusions affects these long-range interactions is unclear. Here we study the effects of distortions caused by chiral springs and helices on the colloidal self-organization in a nematic liquid crystal using laser tweezers, particle tracking and optical imaging. We show that chirality of colloidal particles interacts with the nematic elasticity to predefine chiral or racemic colloidal superstructures in nematic colloids. These findings are consistent with numerical modelling based on the minimization of Landau-de Gennes free energy. Our study uncovers the role of chirality in defining the mesoscopic order of liquid crystal colloids, suggesting that this feature may be a potential tool to modulate the global orientated self-organization of these systems.
Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin
2015-01-01
Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121
Predicting colloid transport through saturated porous media: A critical review
NASA Astrophysics Data System (ADS)
Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.
2015-09-01
Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities include improving mechanistic descriptions, and subsequent correlation equations, for nanoparticle (i.e., Brownian particle) transport through soil, developing mechanistic descriptions of colloid retention in so-called "unfavorable" conditions via methods such as the "discrete heterogeneity" approach, and employing imaging techniques such as X-ray tomography to develop realistic expressions for grain topology and mineral distribution that can aid the development of these mechanistic approaches.
Comparative toxicity of oil, dispersant, and oil plus dispersant to several marine species.
Fuller, Chris; Bonner, James; Page, Cheryl; Ernest, Andrew; McDonald, Thomas; McDonald, Susanne
2004-12-01
Dispersants are a preapproved chemical response agent for oil spills off portions of the U.S. coastline, including the Texas-Louisiana coast. However, questions persist regarding potential environmental risks of dispersant applications in nearshore regions (within three nautical miles of the shoreline) that support dense populations of marine organisms and are prone to spills resulting from human activities. To address these questions, a study was conducted to evaluate the relative toxicity of test media prepared with dispersant, weathered crude oil, and weathered crude oil plus dispersant. Two fish species, Cyprinodon variegatus and Menidia beryllina, and one shrimp species, Americamysis bahia (formerly Mysidopsis bahia), were used to evaluate the relative toxicity of the different media under declining and continuous exposure regimes. Microbial toxicity was evaluated using the luminescent bacteria Vibrio fisheri. The data suggested that oil media prepared with a chemical dispersant was equal to or less toxic than the oil-only test medium. Data also indicated that continuous exposures to the test media were generally more toxic than declining exposures. The toxicity of unweathered crude oil with and without dispersant was also evaluated using Menidia beryllina under declining exposure conditions. Unweathered oil-only media were dominated by soluble hydrocarbon fractions and found to be more toxic than weathered oil-only media in which colloidal oil fractions dominated. Total concentrations of petroleum hydrocarbons in oil-plus-dispersant media prepared with weathered and unweathered crude oil were both dominated by colloidal oil and showed no significant difference in toxicity. Analysis of the toxicity data suggests that the observed toxicity was a function of the soluble crude oil components and not the colloidal oil.
Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility.
Missong, Anna; Holzmann, Stefan; Bol, Roland; Nischwitz, Volker; Puhlmann, Heike; V Wilpert, Klaus; Siemens, Jan; Klumpp, Erwin
2018-09-01
The leaching of P from the upper 20cm of forest topsoils influences nutrient (re-)cycling and the redistribution of available phosphate and organic P forms. However, the effective leaching of colloids and associated P forms from forest topsoils was so far sparsely investigated. We demonstrated through irrigation experiments with undisturbed mesocosm soil columns, that significant proportions of P leached from acidic forest topsoils were associated with natural colloids. These colloids had a maximum size of 400nm. By means of Field-flow fractionation the leached soil colloids could be separated into three size fractions. The size and composition was comparable to colloids present in acidic forest streams known from literature. The composition of leached colloids of the three size classes was dominated by organic carbon. Furthermore, these colloids contained large concentrations of P which amounted between 12 and 91% of the totally leached P depending on the type of the forest soil. The fraction of other elements leached with colloids ranged between 1% and 25% (Fe: 1-25%; C org : 3-17%; Al: <4%; Si, Ca, Mn: all <2%). The proportion of colloid-associated P decreased with increasing total P leaching. Leaching of total and colloid-associated P from the forest surface soil did not increase with increasing bulk soil P concentrations and were also not related to tree species. The present study highlighted that colloid-facilitated P leaching can be of higher relevance for the P leaching from forest surface soils than dissolved P and should not be neglected in soil water flux studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao
Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
Avalanches, plasticity, and ordering in colloidal crystals under compression.
McDermott, D; Reichhardt, C J Olson; Reichhardt, C
2016-06-01
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
Solvent coarsening around colloids driven by temperature gradients
NASA Astrophysics Data System (ADS)
Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna
2018-04-01
Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.
Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer
Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.
1999-01-01
Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reed, D. T.
2015-12-01
The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich, T.M., Reimus, P.W. 2015. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling. J Contam Hydrol 175-176: 44-59. Dittrich, T.M., Boukhalfa, H., Ware, S.D., Reimus, P.W. 2015. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioactiv 148: 170-182.
Teaching Radioactive Decay and Radiometric Dating: An Analog Activity Based on Fluid Dynamics
ERIC Educational Resources Information Center
Claiborne, Lily L.; Miller, Calvin F.
2012-01-01
We present a new laboratory activity for teaching radioactive decay by using hydrodynamic processes as an analog and an evaluation of its efficacy in the classroom. A fluid flowing from an upper beaker into a lower beaker (shampoo in this case) behaves mathematically identically to radioactive decay, mimicking the exponential decay process,…
Reconnaissance of radioactive rocks of Maine
Nelson, John M.; Narten, Perry F.
1951-01-01
The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.
Electrohydrodynamically patterned colloidal crystals
NASA Technical Reports Server (NTRS)
Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)
2003-01-01
A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.
Collection and analysis of colloidal particles transported in the Mississippi River, U.S.A.
Rees, T.F.; Ranville, J.F.
1990-01-01
Sediment transport has long been recognized as an important mechanism for the transport of contaminants in surface waters. Suspended sediment has traditionally been divided into three size classes: sand-sized (>63 ??m), silt-sized ( 63 ??m), silt-sized (< 63 ??m but settleable) and clay-sized (non-settleable). The first two classes are easily collected and characterized using screens (sand) and settling (silt). The clay-sized particles, more properly called colloids, are more difficult to collect and characterize, and until recently received little attention. From the hydrologic perspective, a colloid is a particle, droplet, or gas bubble with at least one dimension between 0.001 and 1 ??m. Because of their small size, colloids have large specific surface areas and high surface free energies which may facilitate sorption of hydrophobic materials. Understanding what types of colloids are present in a system, how contaminants of interest interact with these colloids, and what parameters control the transport of colloids in natural systems is critical if the relative importance of colloid-mediated transport is to be understood. This paper describes the collection, concentration and characterization of colloidal materials in the Mississippi River. Colloid concentrations, particle-size distributions, mineral composition and electrophoretic mobilities were determined. Techniques used are illustrated with samples collected at St. Louis, Missouri, U.S.A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, R.M.; McKinney, R.A.; Brown, W.A.
1996-08-01
In this study, the three phase distributions (i.e., dissolved, colloidal, and particulate) of approximately 75 PCB congeners were measured in a marine sediment core from New Bedford Harbor, M.A. These distributions are the first report of colloid-PCB interactions in an environmentally contaminated sediment. Colloids <1.2 {mu}m in size were isolated from interstitial waters using reverse-phase chromatography with size-selected C{sub 18}. Regardless of solubility or chlorination, the majority of PCBs were associated with the particulate phase. PCBs were distributed in filtered interstitial waters between colloidal and dissolved phases as a function of solubility and degree of chlorination. Interstitial dissolved PCB concentrationsmore » generally agreed with literature-reported solubilities. The magnitude of colloid-PCB interactions increased with decreasing PCB solubility and increasing PCB chlorination. Di- and trichlorinated PCBs were approximately 40% and 65% colloidally bound, respectively, while tetra-, penta-, hexa-, hepta-, and octachlorinated PCBs were about 80% colloidally bound. As core depth increased, the magnitude of PCB-colloid interactions also increased. The relationships of organic carbon-normalized colloidal partitioning coefficient(K{sub coc}) to K{sub ow} for several PCB congeners were not linear and suggest that interstitial waters were not equilibrated. 62 refs., 8 figs., 3 tabs.« less
Organic colloids and their influence on low-pressure membrane filtration.
Laabs, C; Amy, G; Jekel, M
2004-01-01
Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.
Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95
NASA Technical Reports Server (NTRS)
Hoffmann, Monica T.
2000-01-01
The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.
Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings
NASA Astrophysics Data System (ADS)
Wang, L.; Zuo, R.
2017-12-01
The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.
Colloid normalizes resuscitation ratio in pediatric burns.
Faraklas, Iris; Lam, Uyen; Cochran, Amalia; Stoddard, Gregory; Saffle, Jeffrey
2011-01-01
Fluid resuscitation of burned children is challenging because of their small size and intolerance to over- or underresuscitation. Our American Burn Association-verified regional burn center has used colloid "rescue" as part of our pediatric resuscitation protocol. With Institutional Review Board approval, the authors reviewed children with ≥15% TBSA burns admitted from January 1, 2004, to May 1, 2009. Resuscitation was based on the Parkland formula, which was adjusted to maintain urine output. Patients requiring progressive increases in crystalloid were placed on a colloid protocol. Results were expressed as an hourly resuscitation ratio (I/O ratio) of fluid infusion (ml/kg/%TBSA/hr) to urine output (ml/kg/hr). We reviewed 53 patients; 29 completed resuscitation using crystalloid alone (lactated Ringer's solution [LR]), and 24 received colloid supplementation albumin (ALB). Groups were comparable in age, gender, weight, and time from injury to admission. ALB patients had more inhalation injuries and larger total and full-thickness burns. LR patients maintained a median I/O of 0.17 (range, 0.08-0.31), whereas ALB patients demonstrated escalating ratios until the institution of albumin produced a precipitous return of I/O comparable with that of the LR group. Hospital stay was lower for LR patients than ALB patients (0.59 vs 1.06 days/%TBSA, P = .033). Twelve patients required extremity or torso escharotomy, but this did not differ between groups. There were no decompressive laparotomies. The median resuscitation volume for ALB group was greater than LR group (9.7 vs 6.2 ml/kg/%TBSA, P = .004). Measuring hourly I/O is a helpful means of evaluating fluid demands during burn shock resuscitation. The addition of colloid restores normal I/O in pediatric patients.
Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)
NASA Astrophysics Data System (ADS)
Reyes, H.; López-Pino, N.; Rizo, O. Díaz; Bernal, J. L.; D'Alessandro, K.; Padilla, F.; Corrales, Y.; Casanova, O. A.; Gelen, A.; Martínez, Y.; Aguilar, J.; Arado, J. O.; Maidana, N. L.
2009-06-01
Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of 210Pb, 234Th, 214Pb, 137Cs, 232Th and 40K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.
What happens when pharmaceuticals meet colloids.
Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin
2015-12-01
Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).
Colloidal mode of transport in the Potomac River watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, I.L.; Foster, G.D.
1995-12-31
Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in themore » Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.« less
Method for the preparation of metal colloids in inverse micelles and product preferred by the method
Wilcoxon, Jess P.
1992-01-01
A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.
Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.
Karathanasis, A D; Johnson, D M C; Matocha, C J
2005-01-01
Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.
Silica-coated titania and zirconia colloids for subsurface transport field experiments
Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.
2000-01-01
Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.
Kinetic control of the coverage of oil droplets by DNA-functionalized colloids
Joshi, Darshana; Bargteil, Dylan; Caciagli, Alessio; Burelbach, Jerome; Xing, Zhongyang; Nunes, André S.; Pinto, Diogo E. P.; Araújo, Nuno A. M.; Brujic, Jasna; Eiser, Erika
2016-01-01
We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a “frozen” degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi–two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity. PMID:27532053
Colloid transport in dual-permeability media
NASA Astrophysics Data System (ADS)
Leij, Feike J.; Bradford, Scott A.
2013-07-01
It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin
2017-02-01
Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suciu, B.
2016-09-01
In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.
Conception of the first magnetic resonance imaging contrast agents: a brief history.
de Haën, C
2001-08-01
About 20 years ago, a technological innovation process started that eventually led to the affirmation of magnetic resonance imaging (MRI) contrast agents, which are used today in about 25% of all MRI procedures, as medical diagnostic tools. The process began with exploration of various technical possibilities and the conception in the years 1981 to 1982 of two types of agents (soluble paramagnetic chelates and protection colloid-stabilized colloidal particle solutions of magnetite) that eventually found embodiments in commercially available products. The pioneering products that eventually reached the market were gadopentetate dimeglumine (Magnevist, Schering AG) and the ferumoxides (Endorem, Guerbet SA; or Ferridex , Berlex Laboratories Inc.). The history of the conception phase of the technology is reconstructed here, focusing on the social dynamics rather than on technological aspects. In the period 1981 to 1982, a number of independent inventors from industry and academia conceived of water-soluble paramagnetic chelates and protection colloid-stabilized colloidal solutions of small particles of magnetite, both of acceptable tolerability, as contrast agents for MRI. Priorities on patents conditioned the further course of events. The analyzed history helps in understanding the typical roles of different institutions in technological innovation. The foundation of MRI contrast agent technology in basic science clearly was laid in academia. During the conception of practical products, industry assumed a dominant role. Beginning with the radiological evaluation of candidate products, the collaboration between industry and academia became essential.
In Vitro and In Vivo Short-Term Pulmonary Toxicity of Differently Sized Colloidal Amorphous SiO2
Wiemann, Martin; Sauer, Ursula G.; Vennemann, Antje; Bäcker, Sandra; Keller, Johannes-Georg; Ma-Hock, Lan; Wohlleben, Wendel; Landsiedel, Robert
2018-01-01
In vitro prediction of inflammatory lung effects of well-dispersed nanomaterials is challenging. Here, the in vitro effects of four colloidal amorphous SiO2 nanomaterials that differed only by their primary particle size (9, 15, 30, and 55 nm) were analyzed using the rat NR8383 alveolar macrophage (AM) assay. Data were compared to effects of single doses of 15 nm and 55 nm SiO2 intratracheally instilled in rat lungs. In vitro, all four elicited the release of concentration-dependent lactate dehydrogenase, β-glucuronidase, and tumor necrosis factor alpha, and the two smaller materials also released H2O2. All effects were size-dependent. Since the colloidal SiO2 remained well-dispersed in serum-free in vitro conditions, effective particle concentrations reaching the cells were estimated using different models. Evaluating the effective concentration–based in vitro effects using the Decision-making framework for the grouping and testing of nanomaterials, all four nanomaterials were assigned as “active.” This assignment and the size dependency of effects were consistent with the outcomes of intratracheal instillation studies and available short-term rat inhalation data for 15 nm SiO2. The study confirms the applicability of the NR8383 AM assay to assessing colloidal SiO2 but underlines the need to estimate and consider the effective concentration of such well-dispersed test materials. PMID:29534009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, William; Wang, Shunzhi; Cho, David
2017-04-07
Nanoscale UiO-66 Zr6(OH)4O4(C8O4H4)6 has been synthesized with a series of carboxylic acid modulators, R-COOH (where R = H, CH3, CF3, and CHCl2). The phase purity and size of each MOF was confirmed by powder X-ray diffraction, BET surface area analysis, and scanning transmission electron microscopy (STEM). Size control of UiO-66 crystals from 20 nm to over 1 μm was achieved, and confirmed by STEM. The colloidal stability of each MOF was evaluated by dynamic light scattering and was found to be highly dependent on the modulator conditions utilized in the synthesis, with both lower pKa and higher acid concentration resultingmore » in more stable structures. Furthermore, STEM was carried out on both colloidally stable samples and those that exhibited a large degree of aggregation, which allowed for visualization of the different degrees of dispersion of the samples. The use of modulators at higher concentrations and with lower pKas leads to the formation of more defects, as a consequence of terephthalic acid ligands being replaced by modulator molecules, thereby enhancing the colloidal stability of the UiO-66 nanoparticles. These findings could have a significant impact on nanoscale MOF material syntheses and applications, especially in the areas of catalysis and drug delivery.« less
Brownian motion of a nano-colloidal particle: the role of the solvent.
Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón
2015-07-15
Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the explicit inclusion of the solvent in the description of Brownian motion allows us to better understand the behaviour of the memory kernel at those thermodynamic states near the critical region without any further approximation. This information is useful to elaborate more realistic descriptions of Brownian motion that take into account the particular details of the host medium.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping
2016-01-01
Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published by Elsevier Ltd.
Zhou, Jingjing; Liu, Dan; Zhang, Wenjing; Chen, Xuequn; Huan, Ying; Yu, Xipeng
2017-06-01
Changes to groundwater hydrodynamics and chemistry can lead to colloid release that can have a major impact on the groundwater environment. To analyze the effects of colloid release caused by artificial groundwater recharge, field and laboratory tests on colloid characterization and colloid release were conducted. The field tests were carried out at an artificial recharge test site in Shandong Province. In the field investigation, one recharge water sample and five groundwater samples were collected and filtered through three levels of ultrafiltration membranes, with pore sizes of 0.45 μm, 100 kDa, and 50 kDa. The field results indicated that the colloid mass concentrations in groundwater retained between membranes with pore sizes of 100 kDa-0.45 μm and 50 kDa-100 kDa were 19 and 62 mg/L, respectively. In recharge water, the colloid mass concentrations retained by 100-kDa-0.45-μm and 50-kDa-100-kDa membranes were 3 and 99 mg/L, respectively. Colloids detected on the ultrafiltration membranes were mainly inorganic between 100 kDa and 0.45 μm, and mainly organic between 50 and 100 kDa. Based on the field colloid investigation results, the organic colloid was chosen in the laboratory experiments to reveal its release behavior under different conditions. Porous media diameter, flux, ionic strength (IS), and ion valence were changed to determine their influences on organic colloid concentration outflow from undisturbed porous media. The experiment's results indicate that decreasing the diameter, and increasing the flux, ionic strength, and the number of divalent cations, can promote organic colloid release. The organic colloid release rate in the early stage was high and is thus likely to affect the quality of groundwater. The results provide a useful scientific basis for minimizing changes to hydrodynamic and hydrochemical conditions during artificial recharge, thus safeguarding groundwater quality.
Binary Colloidal Alloy Test Conducted on Mir
NASA Technical Reports Server (NTRS)
Hoffmann, Monica I.; Ansari, Rafat R.
1999-01-01
Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and the experiment was powered on, the hardware operated autonomously, taking photos of the colloidal samples over a 90-day period.
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027431 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)
2011-10-17
ISS029-E-027435 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.
Contributions of nanoscale roughness to anomalous colloid retention and stability behavior
USDA-ARS?s Scientific Manuscript database
Expressions were presented to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binary nanoscale roughness and chemical heterogeneity. The influence of heterogeneity type, roughness para...
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts.
Zheng, Yun; Geng, Hongbo; Zhang, Yufei; Chen, Libao; Li, Cheng Chao
2018-04-02
In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A
2016-05-15
The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aguilar
This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less
Colloid-borne forms of tetravalent actinides: A brief review
NASA Astrophysics Data System (ADS)
Zänker, Harald; Hennig, Christoph
2014-02-01
Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted.
Gonzalo, Soledad; Llaneza, Veronica; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael
2014-01-01
Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.
Electrokinetic Particle Aggregation and Flow Instabilities in Non-Dilute Colloidal Suspensions
NASA Astrophysics Data System (ADS)
Navaneetham, Guru; Posner, Jonathan
2007-11-01
An experimental investigation of electrokinetic particle aggregation and flow instabilities of non-dilute colloidal suspensions in microfabricated channels is presented. The addition of charged colloidal particles can alter the solution's conductivity, permittivity as well as the average particle electrophoretic mobility. In this work, a colloid volume fraction gradient is achieved at the intersection of a Y-shaped PDMS microchannel. The solution conductivity and the particle mobility as a function of the particle (500 nm polystyrene) volume fraction are presented. The critical conditions required for particle aggregation and flow instability are given along with a scaling analysis which shows that the flow becomes unstable at a critical electric Rayleigh number for a wide range of applied electric fields and colloid volume fractions. Electrokinetic particle aggregation and instabilities of non-dilute colloidal suspensions may be important for applications such as the electrophoretic deposition of particles to form micropatterned colloidal assemblies, electrorheological devices, and on-chip, electrokinetic manipulation of colloids.
Cuetos, Alejandro; Patti, Alessandro
2015-08-01
We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
Structure and stability of charged colloid-nanoparticle mixtures
NASA Astrophysics Data System (ADS)
Weight, Braden M.; Denton, Alan R.
2018-03-01
Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.
Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan
2018-03-27
Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.
Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael
2014-01-01
Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs. PMID:25340509
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.
Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R
2018-05-25
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
NASA Astrophysics Data System (ADS)
Bradford, S. A.
2016-12-01
The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
NASA Astrophysics Data System (ADS)
Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.
2018-05-01
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William
2015-10-01
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids. Published by Elsevier Ltd.
Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro
2009-03-01
The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.
Morrell, J M; Lagerqvist, A; Humblot, P; Johannisson, A
2016-04-06
Additional means are needed for evaluating the quality of stallion spermatozoa in semen doses for AI. Mitochondrial membrane potential (ΔΨm) has been linked to fertility in some species, but is rarely used in the evaluation of cooled stallion semen; metabolic activity may be associated with reactive oxygen species production (ROS). In the present study, ΔΨm and ROS production were measured in doses of cooled stallion semen. The effect of colloid centrifugation on these parameters was also investigated. In this case, colloid centrifugation involves centrifuging a sperm sample through a silane-coated silica colloid formulation to retrieve the most robust spermatozoa. High and low ΔΨm in cooled stallion semen varied between stallions and between ejaculates, but was not affected by single-layer centrifugation (SLC). The SLC-selected spermatozoa produced significantly less hydrogen peroxide than controls (P < 0.001), which could explain the increased longevity and retention of fertilising capacity seen in previous studies. For SLC samples, ΔΨm was positively associated with viable spermatozoa that were not producing reactive oxygen species (r = 0.49; P < 0.001) and negatively associated with ROS production (for superoxide: r = -0.4, P < 0.01; for hydrogen peroxide: r = -0.39, P < 0.05). There was no clear association between ΔΨm and ROS production in control samples.
Nguyen, Dinh Huong; Song, Gwang Seok; Lee, Dai Soo
2011-05-01
The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.
Strong collective attraction in colloidal clusters on a liquid-air interface.
Pergamenshchik, V M
2009-01-01
It is shown that in a cluster of many colloids, trapped at a liquid-air interface, the well-known vertical-force-induced pairwise logarithmic attraction changes to a strongly enhanced power-law attraction. In large two-dimensional clusters, the attraction energy scales as the inverse square of the distance between colloids. The enhancement is given by the ratio eta = (square of the capillary length) / (interface surface area per colloid) and can be as large as 10;{5} . This explains why a very small vertical force on colloids, which is too weak to bring two of them together, can stabilize many-body structures on a liquid-air interface. The profile of a cluster is shown to consist of a large slow collective envelope modulated by a fast low-amplitude perturbation due to individual colloids. A closed equation for the slow envelope, which incorporates an arbitrary power-law repulsion between colloids, is derived. For example, this equation is solved for a large circular cluster with the hard-core colloid repulsion. It is suggested that the predicted effect is responsible for mysterious stabilization of colloidal structures observed in experiments on a surface of isotropic liquid and nematic liquid crystal.
Effect of hydrofracking fluid on colloid transport in the unsaturated zone.
Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S
2014-07-15
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.
METALS IN GROUND WATER: SAMPLING ARTIFACTS AND REPRODUCIBILITY
Field studies evaluated sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. esearch at three different metal-contaminated sites has shown that 0.45 tm filtration has not removed potentially mobile ...
The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...
Contributions of nanoscale roughness to anomalous colloid retention and stability behavior
USDA-ARS?s Scientific Manuscript database
All natural surfaces exhibit nanoscale roughness (NR) and chemical heterogeneity (CH) to some extent. Expressions were developed to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binar...
NASA Astrophysics Data System (ADS)
Dahlqvist, Ralf; Benedetti, Marc F.; Andersson, Karen; Turner, David; Larsson, Tobias; Stolpe, Björn; Ingri, Johan
2004-10-01
A considerable amount of colloidally bound Ca has been detected in water samples from Amazonian rivers and the Kalix River, a sub-arctic boreal river. Fractionation experiments using several analytical techniques and processing tools were conducted in order to elucidate the matter. Results show that on average 84% of the total Ca concentration is present as free Ca. Particulate, colloidal and complexed Ca constitute the remaining 16%, of which the colloidal fraction is significant. Ultrafiltration experiments show that the colloidal fraction in the sampled Amazonian rivers and the Kalix River range between 1% and 25%. In both the Amazonian and the Kalix rivers the technique of cross-flow ultrafiltration was used to isolate particles and colloids. The difference in concentration measured with ICP-AES and a Ca ion-selective electrode in identical samples was used to define the free Ca concentration and thus indirectly the magnitude of the particulate, colloidal and complexed fractions. Results from the Kalix and Amazonian rivers are in excellent agreement. Furthermore, the results show that the colloidal concentrations of Ca can be greatly overestimated (up to 227%) when conventional analysis and calculation of ultrafiltration data is used due to retention of free Ca ions during the ultrafiltration process. Calculation methods for colloidal matter are presented in this work, using complementary data from ISE analysis. In the Kalix River temporal changes in the fractionation of Ca were studied before, during and after a spring-flood event. Changes in the size distribution of colloidally associated Ca was studied using FlFFF (Flow Field-Flow Fractionation) coupled on-line to a HR ICP-MS. The FlFFF-HR ICP-MS fractograms clearly show the colloidal component of Ca, supporting the ultrafiltration findings. During winter conditions the size distribution of colloidally associated Ca has a concentration maximum at ˜5 to 10 nm in diameter, shifting to smaller sizes (<5 nm) during and after the spring flood. This shift in size distribution follows a change in the river during this period from ironoxyhydroxy colloids being the most important colloidal carrier phase to humic substances during and after the spring flood. WHAM and NICA-Donnan models were used to calculate the amount of colloidally bound Ca. The results similar for both models, show that on average 16% of the Ca may be associated to a colloidal phase, which is in broad agreement with the measurements.
Chancellor Water Colloids: Characterization and Radionuclide Associated Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William; Boukhalfa, Hakim
2014-09-26
Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection, but then desorption decreased significantly in the third injection. This result suggests that the Pu(IV) nanocolloids probably at least partially dissolved during and after the first injection, resulting in enhanced desorption from the colloids during the second injection, but by the third injection the Pu started following the same trend that was observed for 137Cs. The experiments suggest a transport scale dependence in which mobile colloids and colloid-associated radionuclides observed at downstream points along a flow path have a greater tendency to remain mobile along the flow path than colloids and radionuclides observed at upstream points. This type of scale dependence may help explain observations of colloid-facilitated Pu transport over distances of up to 2 km at Pahute Mesa.« less
NASA Astrophysics Data System (ADS)
Wang, Qing; Cheng, Tao; Wu, Yang
2014-12-01
Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH 5 in the absence of HA due to low mobility of the colloids. At pH 9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH 5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.
Dynamics of Fractal Cluster Gels with Embedded Active Colloids
NASA Astrophysics Data System (ADS)
Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.
2017-08-01
We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
NASA Astrophysics Data System (ADS)
Yoon, J. S.; Culligan, P. J.; Germaine, J. T.
2003-12-01
Subsurface colloid behavior has recently drawn attention because colloids are suspected of enhancing contaminant transport in groundwater systems. To better understand the processes by which colloids move through the subsurface, and in particular the vadose zone, a new technique that enables real-time visualization of colloid particles as they move through a porous medium has been developed. This visualization technique involves the use of laser induced fluorescent particles and digital image processing to directly observe particles moving through a porous medium consisting of soda-lime glass beads and water in a transparent experimental box of 10.0cm\\x9D27.9cm\\x9D2.38cm. Colloid particles are simulated using commercially available micron sized particles that fluoresce under argon-ion laser light. The fluorescent light given off from the particles is captured through a camera filter, which lets through only the emitted wavelength of the colloid particles. The intensity of the emitted light is proportional to the colloid particle concentration. The images of colloid movement are captured by a MagnaFire digital camera; a cooled CCD digital camera produced by Optronics. This camera enables real-time capture of images to a computer, thereby allowing the images to be processed immediately. The images taken by the camera are analyzed by the ImagePro software from Media Cybernetics, which contains a range of counting, sizing, measuring, and image enhancement tools for image processing. Laboratory experiments using the new technique have demonstrated the existence of both irreversible and reversible sites for colloid entrapment during uniform saturated flow in a homogeneous porous medium. These tests have also shown a dependence of colloid entrapment on velocity. Models for colloid transport currently available in the literature have proven to be inadequate predictors for the experimental observations, despite the simplicity of the system studied. To further extend the work, the visualization technique has been developed for use on the geo-centrifuge. The advantage that the geo-centrifuge has for investigating subsurface colloid behavior, is the ability to simulate unsaturated transport mechanisms under well simulated field moisture profiles and in shortened periods of time. A series of tests to investigate colloid transport during uniform saturated flow is being used to examine basic scaling laws for colloid transport under enhanced gravity. The paper will describe the new visualization technique, its use in geo-centrifuge testing and observations on scaling relationships for colloid transport during geo-centrifuge experiments. Although the visualization technique has been developed for investigating subsurface colloid behavior, it does have application in other areas of investigation, including the investigation of microbial behavior in the subsurface.
Supracolloidal Architectures Self-Assembled in Microdroplets.
Xu, Xuejiao; Tian, Feng; Liu, Xin; Parker, Richard M; Lan, Yang; Wu, Yuchao; Yu, Ziyi; Scherman, Oren A; Abell, Chris
2015-10-26
We demonstrate a novel method for the formation of a library of structured colloidal assemblies by exploiting the supramolecular heteroternary host-guest interaction between cucurbit[8]uril (CB[8]) and methyl viologen- and naphthalene-functionalised particles. The approach is dependent upon compartmentalisation in microdroplets generated by a microfluidic platform. Though the distribution of colloidal particles encapsulated within each microdroplet followed a Poisson distribution, tuning the concentration of the initial colloidal particle suspensions provided some level of control over the structure of the formed colloidal assemblies. This ability to direct the assembly of complementarily-functionalised colloids through a supramolecular interaction, without the need for complex modification of the colloidal surface or external stimuli, presents an exciting new approach towards the design of structured colloidal materials with the potential to produce many challenging structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Properties of forced convection experimental with silicon carbide based nano-fluids
NASA Astrophysics Data System (ADS)
Soanker, Abhinay
With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids. The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.
Stable colloids in molten inorganic salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.
2017-02-15
A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solventsmore » with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.« less
Feedback Controlled Colloidal Assembly at Fluid Interfaces
NASA Astrophysics Data System (ADS)
Bevan, Michael
The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.
NASA Astrophysics Data System (ADS)
Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean
2013-04-01
Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid
Atcher, Robert W.; Hines, John J.
1992-01-01
A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.
Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.
Osmanlioglu, Ahmet Erdal
2014-05-01
In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.
Validation of the sentinel lymph node biopsy technique in head and neck cancers of the oral cavity.
Radkani, Pejman; Mesko, Thomas W; Paramo, Juan C
2013-12-01
The purpose of this study was to present our experience and validate the use of sentinel lymph node (SLN) mapping in patients with head and neck cancers. A retrospective review of a prospectively collected database of patients with a diagnosis of squamous cell carcinomas of the head and neck from 2008 to 2011 was done. The group consisted of a total of 20 patients. The first node(s) highlighted with blue, or identified as radioactive by Tc99-sulfur radioactive colloid, was (were) identified as the SLNs. In the first seven patients, formal modified neck dissection was performed. In the remaining 13 patients, only a SLN biopsy procedure was done. At least one SLN was identified in all 20 patients (100%). Only one patient (5%) had positive nodes. In this case, the SLN was also positive. In the remaining 19 cases, all lymph nodes were negative. After an average of 24 months of follow-up, there have been three local recurrences (15%) but no evidence of distant metastatic disease. SLN mapping in head and neck cancers is a feasible technique with a high identification rate and a low false-negative rate. Although the detection rate of regional metastatic disease compares favorably with published data as well as the disease-free and overall survival, further studies are warranted before considering this technique to be the "gold standard" in patients with oral squamous cell carcinoma and a negative neck by clinical examination and imaging studies.
Flow of colloid particle solution past macroscopic bodies and drag crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iordanskii, S. V., E-mail: iordansk@itp.ac.ru
2013-11-15
The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in themore » drag to the flows past macroscopic bodies and flows in pipes.« less
Light-emitting diodes based on colloidal silicon quantum dots
NASA Astrophysics Data System (ADS)
Zhao, Shuangyi; Liu, Xiangkai; Pi, Xiaodong; Yang, Deren
2018-06-01
Colloidal silicon quantum dots (Si QDs) hold great promise for the development of printed Si electronics. Given their novel electronic and optical properties, colloidal Si QDs have been intensively investigated for optoelectronic applications. Among all kinds of optoelectronic devices based on colloidal Si QDs, QD light-emitting diodes (LEDs) play an important role. It is encouraging that the performance of LEDs based on colloidal Si QDs has been significantly increasing in the past decade. In this review, we discuss the effects of the QD size, QD surface and device structure on the performance of colloidal Si-QD LEDs. The outlook on the further optimization of the device performance is presented at the end.
Synthesis and Characterization of Molybdenum Based Colloidal Particles.
Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein
1998-11-15
The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.
A Smoluchowski model of crystallization dynamics of small colloidal clusters
NASA Astrophysics Data System (ADS)
Beltran-Villegas, Daniel J.; Sehgal, Ray M.; Maroudas, Dimitrios; Ford, David M.; Bevan, Michael A.
2011-10-01
We investigate the dynamics of colloidal crystallization in a 32-particle system at a fixed value of interparticle depletion attraction that produces coexisting fluid and solid phases. Free energy landscapes (FELs) and diffusivity landscapes (DLs) are obtained as coefficients of 1D Smoluchowski equations using as order parameters either the radius of gyration or the average crystallinity. FELs and DLs are estimated by fitting the Smoluchowski equations to Brownian dynamics (BD) simulations using either linear fits to locally initiated trajectories or global fits to unbiased trajectories using Bayesian inference. The resulting FELs are compared to Monte Carlo Umbrella Sampling results. The accuracy of the FELs and DLs for modeling colloidal crystallization dynamics is evaluated by comparing mean first-passage times from BD simulations with analytical predictions using the FEL and DL models. While the 1D models accurately capture dynamics near the free energy minimum fluid and crystal configurations, predictions near the transition region are not quantitatively accurate. A preliminary investigation of ensemble averaged 2D order parameter trajectories suggests that 2D models are required to capture crystallization dynamics in the transition region.
Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.
Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi
2017-10-10
The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.
Natural radioactivity in groundwater--a review.
Dinh Chau, Nguyen; Dulinski, Marek; Jodlowski, Pawel; Nowak, Jakub; Rozanski, Kazimierz; Sleziak, Monika; Wachniew, Przemyslaw
2011-12-01
The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.
Autonomous colloidal crystallization in a galvanic microreactor
NASA Astrophysics Data System (ADS)
Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.
2012-10-01
We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.
Crystallization of DNA-coated colloids
Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.
2015-01-01
DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020
Micro-rheology on (polymer-grafted) colloids using optical tweezers.
Gutsche, C; Elmahdy, M M; Kegler, K; Semenov, I; Stangner, T; Otto, O; Ueberschär, O; Keyser, U F; Krueger, M; Rauscher, M; Weeber, R; Harting, J; Kim, Y W; Lobaskin, V; Netz, R R; Kremer, F
2011-05-11
Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.
Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples
NASA Technical Reports Server (NTRS)
Kurk, Michael A. (Andy)
2015-01-01
Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.
Environmental Radioactivity Study in Surface Sediments of Guacanayabo Gulf (Cuba)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes, H.; Rizo, O. Diaz; Bernal, J. L.
Sediment samples have been collected in the Guacanayabo gulf located in the southeast Cuba, to determinate the radioactivity levels of {sup 210}Pb, {sup 234}Th, {sup 214}Pb, {sup 137}Cs, {sup 232}Th and {sup 40}K using Low-Background Gamma Spectrometry and to evaluate its impact in the habitat of important marine species for fishery industry. The obtained results show the lowest radioactivity levels determined in Cuban marine environments. The species capture declination in the last years is not originated by radioactive pollution of the zone.
Fractal Aggregates in Tennis Ball Systems
ERIC Educational Resources Information Center
Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.
2009-01-01
We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…
The major hypothesis driving this research, that the transport of colloids in a contaminant plume is limited by the advance of the chemical agent causing colloid mobilization, was tested by (1) examining the dependence of colloid transport and mobilization on chemical perturbatio...
USDA-ARS?s Scientific Manuscript database
The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...
NASA Astrophysics Data System (ADS)
Leclercq, Loïc
2018-05-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization. These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry”.
Influence of internal viscoelastic modes on the Brownian motion of a λ-DNA coated colloid.
Yanagishima, Taiki; Laohakunakorn, Nadanai; Keyser, Ulrich F; Eiser, Erika; Tanaka, Hajime
2014-03-21
We study the influence of grafted polymers on the diffusive behaviour of a colloidal particle. Our work demonstrates how such additional degrees of freedom influence the Brownian motion of the particle, focusing on internal viscoelastic coupling between the polymer and colloid. Specifically, we study the mean-squared displacements (MSDs) of λ-DNA grafted colloids using Brownian dynamics simulation. Our simulations reveal the non-trivial effect of internal modes, which gives rise to a crossover from the short-time viscoelastic to long-time diffusional behaviour. We also show that basic features can be captured by a simple theoretical model considering the relative motion of a colloid to a part of the polymer corona. This model describes well a MSD calculated from an extremely long trajectory of a single λ-DNA coated colloid from experiment and allows characterisation of the λ-DNA hairs. Our study suggests that the access to the internal relaxation modes via the colloid trajectory offers a novel method for the characterisation of soft attachments to a colloid.
NASA Astrophysics Data System (ADS)
Gleber, S.-C.; Vogt, S.; Niemeyer, J.; Finney, L.; McNulty, I.; Thieme, J.
2011-09-01
A prominent feature of soil colloids is their huge specific surface. It determines colloidal properties such as adsorption capacity or diffusion. The colloidal interactions differ significantly from the behavior of the same materials in a bulk system. Interactions in the colloidal regime are crucial, for example, for the transport and release of nutrients and toxicants in soils, which then influences directly the growth of plants. However, there is still a need for more analytical resources to study those interactions. To reveal the correlation of the particular trace elements and their distribution in correlation to colloidal interactions as well as changing pH values, experiments at the hard x-ray fluorescence microprobe at beamline 2-ID-E of the Advanced Photon Source (APS), were performed with colloidal clay and soil samples in an aqueous environment as naturally relevant. To obtain further spatial information, stereo imaging has been used. To study the dynamical behavior of these colloidal suspensions at changing pH, a wet sample chamber allowing in situ manipulation was developed and utilized.
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
NASA Astrophysics Data System (ADS)
García-Ramos, J. V.; Sánchez-Cortés, S.
1997-03-01
Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.
Structural evolution of Colloidal Gels under Flow
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao; Jamali, Safa
Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.
Leclercq, Loïc
2018-01-01
The interactions between two or more molecules or colloidal particles can be used to obtain a variety of self-assembled systems called supramolecules or supracolloids. There is a clear, but neglected, convergence between these two fields. Indeed, the packing of molecules into colloidal or supracolloidal particles emerges as a smart solution to build an infinite variety of reversible systems with predictable properties. In this respect, the molecular building blocks are called “tectons” whereas “colloidal tectonics” describes the spontaneous formation of (supra)colloidal structures using tectonic subunits. As a consequence, a bottom-up edification is allowed from tectons into (supra)colloidal particles with higher degrees of organization (Graphical Abstract). These (supra)colloidal systems can be very useful to obtain catalysts with tunable amphiphilic properties. In this perspective, an overview of colloidal tectonics concept is presented as well as its use for the design of new, smart, and flexible catalytic systems. Finally, the advantages of these catalytic devices are discussed and the perspective of future developments is addressed especially in the context of “green chemistry.”
NASA Astrophysics Data System (ADS)
Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen
2016-05-01
To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.
Colloidal gold-modified optical fiber for chemical and biochemical sensing.
Cheng, Shu-Fang; Chau, Lai-Kwan
2003-01-01
A novel class of fiber-optic evanescent-wave sensor was constructed on the basis of modification of the unclad portion of an optical fiber with self-assembled gold colloids. The optical properties and, hence, the attenuated total reflection spectrum of self-assembled gold colloids on the optical fiber changes with different refractive index of the environment near the colloidal gold surface. With sucrose solutions of increasing refractive index, the sensor response decreases linearly. The colloidal gold surface was also functionalized with glycine, succinic acid, or biotin to enhance the selectivity of the sensor. Results show that the sensor response decreases linearly with increasing concentration of each analyte. When the colloidal gold surface was functionalized with biotin, the detection limit of the sensor for streptavidin was 9.8 x 10(-11) M. Using this approach, we demonstrate proof-of-concept of a class of refractive index sensor that is sensitive to the refractive index of the environment near the colloidal gold surface and, hence, is suitable for label-free detection of molecular or biomolecular binding at the surface of gold colloids.
pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes
2017-01-01
We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800
Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone
2014-01-01
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants. PMID:24905470
Schemel, L.E.; Kimball, B.A.; Bencala, K.E.
2000-01-01
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.
Liu, Bing; Wang, Lingling; Tong, Bei; Zhang, Yan; Sheng, Wei; Pan, Mingfei; Wang, Shuo
2016-11-15
In this study, the three nanomaterials: colloidal gold, nanogold-polyaniline-nanogold microspheres (GPGs) and colloidal carbon were respectively labeled with the antibody against salbutamol (SAL). We aimed to develop immunochromatographic strips with these nanomaterial labels and determine their performance in visual detection of SAL. For the colloidal gold-based strip, the detection limit of SAL was 1.0µgL(-1) in standard solution and 5.0µgkg(-1) in meat samples. For the GPG- and colloidal carbon-based strips, the limit of detection was 2.0µgL(-1) in standard solution and 10µgkg(-1) in meat samples. The results obtained using the test strips were found to be highly consistent with those obtained using a commercial kit, indicating the high accuracy of these strips. The three strips were also found to be stable up to 18 weeks under laboratory conditions. In terms of sensitivity, the colloidal gold-based strip was slightly better than the other two. For the GPG- and colloidal carbon-based strips, the difference between the results obtained for different batches was small (high consistency), and the stability was much better than that of the colloidal gold-based one. Our results indicate that colloidal carbon can be used as a label in immunochromatographic tests; it can also help reduce the cost involved and scale-up the production. The use of immunochromatographic test strips labeled with colloidal carbon can be a rapid and inexpensive method for SAL assays in on-site applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Rostad, C.E.; Leenheer, J.A.; Daniel, S.R.
1997-01-01
Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.Suspended material samples were collected at 16 sites along the Mississippi River and some of its tributaries during July-August 1991, October-November 1991, and April-May 1992, and separated into colloid and particulate fractions to determine the organic carbon content of these two fractions of suspended material. Sample collection involved centrifugation to isolate the suspended particulate fraction and ultrafiltration to isolate the colloid fraction. For the first time, particulate and colloid concentrations and organic carbon and nitrogen content were investigated along the entire reach of the Mississippi River from above Minneapolis, Minnesota, to below New Orleans, Louisiana. Organic carbon content of the colloid (15.2 percent) was much higher than organic carbon content of the particulate material (4.8 percent). Carbon/nitrogen ratios of colloid and particulate phases were more similar to ratios for microorganisms than to ratios for soils, humic materials, or plants.
NASA Astrophysics Data System (ADS)
Fitzsimmons, J. N.; Parker, C.; Sherrell, R. M.
2016-02-01
The physicochemical speciation of trace metals in seawater influences their cycling as essential micronutrients for microorganisms or as tracers of anthropogenic influences on the marine environment. While chemical speciation affects lability, the size of metal complexes influences their ability to be accessed biologically and also influences their fate in the aggregation pathway to marine particles. In this study, we show that multiple trace metals in shelf and open ocean waters off northern California (IRN-BRU cruise, July 2014) have colloidal-sized components. Colloidal fractions were operationally defined using two ultrafiltration methods: a 0.02 µm Anopore membrane and a 10 kDa ( 0.003 µm) cross flow filtration (CFF) system. Together these two methods distinguished small (0.003 - 0.02 µm) and large (0.02 µm - 0.2 µm) colloids. As has been found previously for seawater in other ocean regimes, dissolved Fe had a broad size distribution with 50% soluble (<10 kDa) complexes and both small and large colloidal species. Dissolved Mn had no measurable colloidal component, consistent with its predicted chemical speciation as free Mn(II). Dissolved Cu, which like Fe is thought to be nearly fully organically bound in seawater, was only 25% colloidal, and these colloids were all small. Surprisingly Cd, Ni, and Pb also showed colloidal components (8-20%, 25-40%, and 10-50%) despite their hypothesized low organic speciation. Zn and Pb were nearly completely sorbed onto the Anopore membrane, making CFF the only viable ultrafiltration method for those elements. Zn suffered incomplete recovery ( 50-75%) through the CFF system but showed 30-85% colloidal contribution; thus, verifying a Zn colloidal phase with these methods is challenging. Conclusions will reveal links between the physical and chemical speciation for these metals and what role these metal colloids might have on trace metal exchange between the ocean margin and offshore waters.
Fast microbial reduction of ferrihydrite colloids from a soil effluent
NASA Astrophysics Data System (ADS)
Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.
2012-01-01
Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite colloids from soil effluents can be considered as highly reactive electron acceptors in anoxic environments.
Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.
Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan
2010-08-15
For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.
Cationic nanoemulsions as potential carriers for intracellular delivery
Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S.
2014-01-01
Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness. PMID:25972740
Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; ...
2015-07-13
Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L –1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10 –10 M 241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k f) of 0.01–0.02 h –1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h –1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because of the ability of the fracture materials to rapidly strip Am from the bentonite colloids and the apparent lack of a strong binding site that would keep a fraction of the Am strongly-associated with the colloids.« less
Slapa, Rafal Z.; Piwowonski, Antoni; Jakubowski, Wieslaw S.; Bierca, Jacek; Szopinski, Kazimierz T.; Slowinska-Srzednicka, Jadwiga; Migda, Bartosz; Mlosek, R. Krzysztof
2012-01-01
Although elastography can enhance the differential diagnosis of thyroid nodules, its diagnostic performance is not ideal at present. Further improvements in the technique and creation of robust diagnostic criteria are necessary. The purpose of this study was to compare the usefulness of strain elastography and a new generation of elasticity imaging called supersonic shear wave elastography (SSWE) in differential evaluation of thyroid nodules. Six thyroid nodules in 4 patients were studied. SSWE yielded 1 true-positive and 5 true-negative results. Strain elastography yielded 5 false-positive results and 1 false-negative result. A novel finding appreciated with SSWE, were punctate foci of increased stiffness corresponding to microcalcifications in 4 nodules, some not visible on B-mode ultrasound, as opposed to soft, colloid-inspissated areas visible on B-mode ultrasound in 2 nodules. This preliminary paper indicates that SSWE may outperform strain elastography in differentiation of thyroid nodules with regard to their stiffness. SSWE showed the possibility of differentiation of high echogenic foci into microcalcifications and inspissated colloid, adding a new dimension to thyroid elastography. Further multicenter large-scale studies of thyroid nodules evaluating different elastographic methods are warranted. PMID:22685685
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
Robust technique using an imaging plate to detect environmental radioactivity.
Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Sakurai, Hideyuki; Sakae, Takeji
2013-04-01
The Fukushima Daiichi Nuclear Power Plant was severely damaged by the Great East Japan Earthquake on 11 March 2011. Consequently, a large amount of radioactive material was accidentally released. Recently, the focus has been on quantification of environmental radioactive material. However, conventional techniques require complicated and expensive measurement equipment. In this research, the authors developed a simple method to detect environmental radioactive material with an imaging plate (IP). Two specific measurement subjects were targeted: measurements for the depth distribution of radioactive material in soil and surface contamination of a building roof. For the measurement of depth distribution of radioactive material in soil, the authors ascertained that the concentration of environmental radioactivity was highest at 5 cm below the surface, and it decreased with depth. For the measurement of surface contamination of the building roof, the authors created a contamination map of the building roof. The detector developed could contact the ground directly, and unlike other survey meters, it was not influenced by peripheral radioactivity. In this study, the authors verified the feasibility of measurement of environmental radioactivity with an IP. Although the measured values of the IP were relative, further work is planned to perform evaluations of absolute quantities of radioactive material.
Surface preparation of substances for continuous convective assembly of fine particles
Rossi, Robert
2003-01-01
A method for producing periodic nanometer-scale arrays of metal or semiconductor junctions on a clean semiconductor substrate surface is provided comprising the steps of: etching the substrate surface to make it hydrophilic, forming, under an inert atmosphere, a crystalline colloid layer on the substrate surface, depositing a metal or semiconductor material through the colloid layer onto the surface of the substrate, and removing the colloid from the substrate surface. The colloid layer is grown on the clean semiconductor surface by withdrawing the semiconductor substrate from a sol of colloid particles.
Automated video-microscopic imaging and data acquisition system for colloid deposition measurements
Abdel-Fattah, Amr I.; Reimus, Paul W.
2004-12-28
A video microscopic visualization system and image processing and data extraction and processing method for in situ detailed quantification of the deposition of sub-micrometer particles onto an arbitrary surface and determination of their concentration across the bulk suspension. The extracted data includes (a) surface concentration and flux of deposited, attached and detached colloids, (b) surface concentration and flux of arriving and departing colloids, (c) distribution of colloids in the bulk suspension in the direction perpendicular to the deposition surface, and (d) spatial and temporal distributions of deposited colloids.
Ho, Hau My; Lin, Binhua; Rice, Stuart A
2006-11-14
We report the results of experimental determinations of the triplet correlation functions of quasi-two-dimensional one-component and binary colloid suspensions in which the colloid-colloid interaction is short ranged. The suspensions studied range in density from modestly dilute to solid. The triplet correlation function of the one-component colloid system reveals extensive ordering deep in the liquid phase. At the same density the ordering of the larger diameter component in a binary colloid system is greatly diminished by a very small amount of the smaller diameter component. The possible utilization of information contained in the triplet correlation function in the theory of melting of a quasi-two-dimensional system is briefly discussed.
Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Fukutani, Satoshi; Ikegami, Maiko; Shimomura, Ryohei
2018-03-29
We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.
Reference levels of background radioactivity for beach sands and soils in İnebolu/Kastamonu-Turkey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnaz, Aslı, E-mail: akurnaz@kastamonu.edu.tr; Türkdoğan, Savaş, E-mail: savas-turk-dogan@hotmail.com; Hançerlioğulları, Aybaba, E-mail: aybaba@kastamonu.edu.tr
This paper presents the measurement results of environmental radioactivity levels for İnebolu district (tourist area), Kastamonu-Turkey. The radioactivity concentrations of {sup 238}U, {sup 232}Th, {sup 40}K and the fission product {sup 137}Cs in soil samples collected from 13 region surroundings of study area and in 12 beach sand samples collected from along the coast of İnebolu were determined. To evaluate the radiological hazard of the natural radioactivity, based on the measured concentrations of these radionuclides, the mean absorbed gamma dose and the annual effective dose were evaluated separately, and found to be 112.90 nGy h-1 and 138.46 µSv y-1 for soilmore » samples and 75.19 nGy h-1 and 92.22 µSv y-1 for beach sand samples, respectively. The results show that İnebolu does not have high background.« less
Reference levels of background radioactivity for beach sands and soils in İnebolu/Kastamonu-Turkey
NASA Astrophysics Data System (ADS)
Kurnaz, Aslı; Türkdoǧan, Savaş; Hançerlioǧulları, Aybaba; ćetiner, M. Atıf
2016-03-01
This paper presents the measurement results of environmental radioactivity levels for İnebolu district (tourist area), Kastamonu-Turkey. The radioactivity concentrations of 238U, 232Th, 40K and the fission product 137Cs in soil samples collected from 13 region surroundings of study area and in 12 beach sand samples collected from along the coast of İnebolu were determined. To evaluate the radiological hazard of the natural radioactivity, based on the measured concentrations of these radionuclides, the mean absorbed gamma dose and the annual effective dose were evaluated separately, and found to be 112.90 nGy h-1 and 138.46 µSv y-1 for soil samples and 75.19 nGy h-1 and 92.22 µSv y-1 for beach sand samples, respectively. The results show that İnebolu does not have high background.
Taillefer, R; Douesnard, J M; Beauchamp, G; Guimond, J
1987-08-01
A Tc-99m albumin colloid (Tc-AC) kit has been introduced as an alternative to Tc-99m sulfur colloid (Tc-SC) for liver-spleen imaging. Since there is no need for boiling, the use of Tc-AC reduces preparation time and manipulation. Tc-SC is one of the most commonly used radiopharmaceuticals for the labeling of solid-phase markers in gastric emptying studies. In vitro studies were performed to evaluate the labeling efficiency and stability in hydrochloric acid and in human gastric juice of intracellularly labeled chicken liver and scrambled eggs labeled with Tc-SC and Tc-AC. Gastric emptying studies also were performed on 20 healthy volunteers with both Tc-SC and Tc-AC labeled scrambled egg sandwiches. There was no significant difference between Tc-SC and Tc-AC in the labeling efficiency of chicken liver (98% +/- 1% for Tc-SC, 96% +/- 2% for Tc-AC) and scrambled eggs (92% +/- 2% for Tc-SC, 91% +/- 3% for Tc-AC). However, both Tc-SC and Tc-AC labeled scrambled eggs showed a lower stability than chicken liver, particularly in human gastric juice. Gastric emptying curves from both meals in 20 normal subjects were also similar, with a mean half-emptying time of 85 +/- 13 minutes and 87 +/- 16 minutes for the meals containing Tc-SC and Tc-AC respectively. Tc-AC is a reliable alternative to Tc-SC as a radiotracer for solid-phase gastric emptying studies.
Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.
2014-01-01
The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327
An overview of inverted colloidal crystal systems for tissue engineering.
João, Carlos Filipe C; Vasconcelos, Joana Marta; Silva, Jorge Carvalho; Borges, João Paulo
2014-10-01
Scaffolding is at the heart of tissue engineering but the number of techniques available for turning biomaterials into scaffolds displaying the features required for a tissue engineering application is somewhat limited. Inverted colloidal crystals (ICCs) are inverse replicas of an ordered array of monodisperse colloidal particles, which organize themselves in packed long-range crystals. The literature on ICC systems has grown enormously in the past 20 years, driven by the need to find organized macroporous structures. Although replicating the structure of packed colloidal crystals (CCs) into solid structures has produced a wide range of advanced materials (e.g., photonic crystals, catalysts, and membranes) only in recent years have ICCs been evaluated as devices for medical/pharmaceutical and tissue engineering applications. The geometry, size, pore density, and interconnectivity are features of the scaffold that strongly affect the cell environment with consequences on cell adhesion, proliferation, and differentiation. ICC scaffolds are highly geometrically ordered structures with increased porosity and connectivity, which enhances oxygen and nutrient diffusion, providing optimum cellular development. In comparison to other types of scaffolds, ICCs have three major unique features: the isotropic three-dimensional environment, comprising highly uniform and size-controllable pores, and the presence of windows connecting adjacent pores. Thus far, this is the only technique that guarantees these features with a long-range order, between a few nanometers and thousands of micrometers. In this review, we present the current development status of ICC scaffolds for tissue engineering applications.
Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids.
Labille, Jérôme; Harns, Carrie; Bottero, Jean-Yves; Brant, Jonathan
2015-06-02
To better understand and predict the fate of engineered nanoparticles in the water column, we assessed the heteroaggregation of TiO2 nanoparticles with a smectite clay as analogues for natural colloids. Heteroaggregation was evaluated as a function of water salinity (10(-3) and 10(-1) M NaCl), pH (5 and 8), and selected nanoparticle concentration (0-4 mg/L). Time-resolved laser diffraction was used, coupled to an aggregation model, to identify the key mechanisms and variables that drive the heteroaggregation of the nanoparticles with colloids. Our data show that, at a relevant concentration, nanoparticle behavior is mainly driven by heteroaggregation with colloids, while homoaggregation remains negligible. The affinity of TiO2 nanoparticles for clay is driven by electrostatic interactions. Opposite surface charges and/or high ionic strength favored the formation of primary heteroaggregates via the attachment of nanoparticles to the clay. The initial shape and dispersion state of the clay as well as the nanoparticle/clay concentration ratio also affected the nature of the heteroaggregation mechanism. With dispersed clay platelets (10(-3) M NaCl), secondary heteroaggregation driven by bridging nanoparticles occurred at a nanoparticle/clay number ratio of greater than 0.5. In 10(-1) M NaCl, the clay was preaggregated into larger and more spherical units. This favored secondary heteroaggregation at lower nanoparticle concentration that correlated to the nanoparticle/clay surface area ratio. In this latter case, a nanoparticle to clay sticking efficiency could be determined.
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2016-03-01
Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.
Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.
2012-01-01
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822
A mass-balance model to separate and quantify colloidal and solute redistributions in soil
Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.
2011-01-01
Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.
Li, HaiMing; Wei, JinBu; Ge, YaChao; Wang, ZhanQuan; Wang, Ye; Li, YingLong
2016-11-01
This experiment was conducted with an indoor sand-column device, the migration of colloids with the presence of Na + and Ca 2+ and the migration of ammonia nitrogen with the presence of Na + , Ca 2+ or/and colloids was studied. The results showed that the migration of colloids was influenced by the ion valence state, different ions with different valence could block the migration of colloids. In addition, the blocking effect of bivalent ions was more obvious than that of monovalent ions. In the presence of Na + and Ca 2+ , the R d value of the ammonia-nitrogen migration process were 1.01 and 1.41, respectively, which indicated that bivalent ions have a greater blocking effect on ammonia-nitrogen migration than monovalent ions. Colloids could also block the ammonia-nitrogen migration, and R d value in the ammonia-nitrogen migration process was 1.17. Moreover, the presence of Na + /colloids and Ca 2+ /colloids could enhance the blocking effect on the ammonia-nitrogen migration, and resulting the R d values at 1.20 and 1.52, respectively. The cohesion of colloids caused by the compaction of its electric double layer with those ions added maybe the key causes of those blocking. Copyright © 2016 Elsevier B.V. All rights reserved.
Plutonium partitioning in three-phase systems with water, granite grains, and different colloids.
Xie, Jinchuan; Lin, Jianfeng; Zhou, Xiaohua; Li, Mei; Zhou, Guoqing
2014-01-01
Low-solubility contaminants with high affinity for colloid surfaces may form colloid-associated species. The mobile characteristics of this species are, however, ignored by the traditional sorption/distribution experiments in which colloidal species contributed to the immobile fraction of the contaminants retained on the solids as a result of centrifugation or ultrafiltration procedures. The mobility of the contaminants in subsurface environments might be underestimated accordingly. Our results show that colloidal species of (239)Pu in three-phase systems remained the highest percentages in comparison to both the dissolved species and the immobile species retained on the granite grains (solid phase), although the relative fraction of these three species depended on the colloid types. The real solid/liquid distribution coefficients (K s/d) experimentally determined were generally smaller than the traditional K s/d (i.e., the K s+c/d in this study) by ~1,000 mL/g for the three-phase systems with the mineral colloids (granite particle, soil colloid, or kaolinite colloid). For the humic acid system, the traditional K s/d was 140 mL/g, whereas the real K s/d was approximately zero. The deviations from the real solid/liquid K s/d were caused by the artificially increased immobile fraction of Pu. One has to be cautious in using K s/d-based transport models to predict the fate and transport of Pu in the environment.
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
NASA Astrophysics Data System (ADS)
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.
2017-03-01
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.
2017-01-01
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell. PMID:28256635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William
This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less
Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids
Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; ...
2017-03-03
Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO 2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO 2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV)more » colloid. A comparative study of nanostructured PuO 2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO 2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO 2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO 2 cores and hydrolyzed Pu(IV) moieties at the surface shell.« less
Plasma Synthesis and Sintering of Advanced Ceramics
1990-09-15
CONTENTS Page LIST OF TABLES iv OBJECTIVES 1 COLLOIDAL PLASMA PROCESSING: CONCEPTS 1 BACKGROUND 2 Ultrafine Particles 2 Colloidal Plasma 3 Particle...colloidal plasma processing of ceramics. COLLOIDAL PLASMA PROCESSING: CONCEPTS It is well known that ultrafine particles prepared in gas plasmas agglomerate...BACKGROUND Ultrafine Particles . There are well recognized advantages to using small particles in ceramic processing. The instantaneous densification
NASA Technical Reports Server (NTRS)
Xu, Shaohua; Wu, David; Arnsdorf, Morton; Johnson, Robert; Getz, Godfrey S.; Cabana, Veneracion G.
2005-01-01
Fiber formation from murine serum amyloid A1 (SAA) was compared to the linear aggregation and fiber formation of colloidal gold particles. Here we report the similarities of these processes. Upon incubation with acetic acid, SAA misfolds and adopts a new conformation, which we termed saa. saa apparently is less soluble than SAA in aqueous solution; it aggregates and forms nucleation units and then fibers. The fibers appear as a string of the nucleation units. Additionally, an external electric field promotes saa fiber formation. These properties of saa are reminiscent of colloidal gold formation from gold ions and one-dimensional aggregation of the gold colloids. Colloidal gold particles were also found to be capable of aggregating one-dimensionally under an electric field or in the presence of polylysine. These gold fibers resembled in structure that of saa fibers. In summary, protein aggregation and formation of fibers appear to follow the generalized principles derived in colloidal science for the aggregation of atoms and molecules, including polymers such as polypeptides. The analysis of colloidal gold formation and of one-dimensional aggregation provides a simple model system for the elucidation of some aspects of protein fiber formation.
Chemical factors influencing colloid-facilitated transport of contaminants in porous media
Roy, Sujoy B.; Dzombak, David A.
1997-01-01
The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows: (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).
Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem
2002-01-01
Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.
Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.
Tran, Emily L; Klein-BenDavid, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-11-17
Migration of colloids may facilitate the transport of radionuclides leaked from near surface waste sites and geological repositories. Intrinsic colloids are favorably formed by precipitation with carbonates in bicarbonate-rich environments, and their migration may be enhanced through fractured bedrock. The mobility of Ce(III) as an intrinsic colloid was studied in an artificial rainwater solution through a natural discrete chalk fracture. The results indicate that at variable injection concentrations (between 1 and 30 mg/L), nearly all of the recovered Ce takes the form of an intrinsic colloid of >0.45 μm diameter, including in those experiments in which the inlet solution was first filtered via 0.45 μm. In all experiments, these intrinsic colloids reached their maximum relative concentrations prior to that of the Br conservative tracer. Total Ce recovery from experiments using 0.45 μm filtered inlet solutions was only about 0.1%, and colloids of >0.45 μm constituted the majority of recovered Ce. About 1% of Ce was recovered when colloids of >0.45 μm were injected, indicating the enhanced mobility and recovery of Ce in the presence of bicarbonate.
Nucleation and growth of sodium colloids in NaCl under irradiation: theory and experiment
NASA Astrophysics Data System (ADS)
Dubinko, V. I.; Turkin, A. A.; Abyzov, A. S.; Sugonyako, A. V.; Vainshtein, D. I.; den Hartog, H. W.
2005-01-01
A mechanism of radiation-induced emission of Schottky defects from extended defects proposed originally for metals has recently been applied to ionic crystals, where it is based on interactions of excitons with extended defects such as dislocations and colloids. Exciton trapping and decay at colloids may result in the emission of F centers and consequent shrinkage of the colloid. In the present paper, the radiation-induced emission of F centers is taken into account in the modeling of nucleation and growth of sodium colloids and chlorine bubbles in NaCl exposed to electron or gamma irradiation. The evolution of colloid and bubble number densities and volume fractions with increasing irradiation dose is modeled in the framework of a modified rate theory and compared with experimental data. Experimental values of the colloid volume fractions and number densities have been estimated on the basis of latent heat of melting of metallic Na obtained with combined differential scanning calorimetry experiments and atomic force microscopy investigations of metallic clusters.
Depletion interaction between colloids mediated by an athermal polymer blend
NASA Astrophysics Data System (ADS)
Chervanyov, A. I.
2018-03-01
We calculate the immersion energy of a colloid and the potential of the depletion interaction (DI) acting between colloids immersed in an athermal polymer blend. The developed theory has no limitations with respect to the polymer-to-colloid size ratios and polymer densities, covering, in particular, dense polymer blends. We demonstrate that in addition to the standard compressibility-induced mechanism of the DI there exists the mechanism relying on the correlations between compositional fluctuations specific to polymer blends. We quantitatively investigate this "compositional" mechanism of the DI and demonstrate that it causes significant contributions to the effective force acting between colloids. Further we show that relative significance of the contributions to the colloid immersion energy and the depletion potential caused by the above compositional mechanism strongly depends on the mass fractions of the polymer species and their size ratio. We find out that these contributions strongly affect the range of the DI, thus causing a significant increase in the absolute value of the second virial coefficient of the effective potential acting between colloids.
Inertial and viscoelastic forces on rigid colloids in microfluidic channels.
Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash
2015-06-14
We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.
Physics of Colloids in Space-2 (PCS-2)
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian; Gasser, Urs; Manley, Suliana; Valentine, Megan; Prasad, Vikram; Rudhardt, Daniel; Bailey, Arthur; Dinsmore, Anthony; Segre, Phil; Doherty, Michael P.
2001-01-01
The Physics of Colloids-2 (PCS-2) experiment is aimed at investigating the basic physical properties of several types of colloidal suspensions. The three broad classes of colloidal systems of interest are binary colloids, colloid-polymer mixtures, and fractal gels. The objective is to understand their phase behavior as well as the kinetics of the phase transitions in the absence of gravity. The nucleation, growth, and morphology characteristics of the crystals and gels that form would be studied using confocal microscopy. These will be observed directly with excellent time resolution, and therefore extensive information about the different phases and their growth mechanisms will be gained. With the laser tweezers, it will be possible to measure the strength of these structures and to modify them in a controlled way, and the spectrophotometer will provide the possibility to probe their optical properties. We believe that this experiment will provide the basis for future 'colloid engineering' in which complicated structures with novel properties (e.g., photonic crystals) will be grown by controlled self-assembly.
Self-replication with magnetic dipolar colloids
NASA Astrophysics Data System (ADS)
Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica
2015-10-01
Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.
Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields
NASA Astrophysics Data System (ADS)
Fu, Jinxin; Ou-Yang, H. Daniel
2014-09-01
Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.
Interactions in charged colloidal suspensions: A molecular dynamics simulation study
NASA Astrophysics Data System (ADS)
Padidela, Uday Kumar; Behera, Raghu Nath
2017-07-01
Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.
NASA Astrophysics Data System (ADS)
Gen, Masao; Kakuta, Hideo; Kamimoto, Yoshihito; Wuled Lenggoro, I.
2011-06-01
A detection method based on the surface-enhanced Raman spectroscopy (SERS)-active substrate derived from aerosol nanoparticles and a colloidal suspension for detecting organic molecules of a model analyte (a pesticide) is proposed. This approach can detect the molecules of the derived from its solution with the concentration levels of ppb. For substrate fabrication, a gas-phase method is used to directly deposit Ag nanoparticles on to a silicon substrate having pyramidal structures. By mixing the target analyte with a suspension of Ag colloids purchased in advance, clotianidin analyte on Ag colloid can exist in junctions of co-aggregated Ag colloids. Using (i) a nanostructured substrate made from aerosol nanoparticles and (ii) colloidal suspension can increase the number of activity spots.
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.
Saraghi, Mana
2015-01-01
Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.
Evaluation of Terrorist Interest in Radioactive Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFee, J.N.; Langsted, J.M.; Young, M.E.
2006-07-01
Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in amore » terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the analysis is that environmental management generated radioactive wastes have substantially less impact than radioactive sources if dispersed by terrorist-induced explosion or fire. From a health standpoint, the impact is very small. However, there is no basis to conclude that wastes are totally unattractive for use in a disruptive or economic damage event. Waste managers should be cognizant of this potential and take measures to ensure security of stored waste and waste shipments. (authors)« less
Solidification of radioactive waste resins using cement mixed with organic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laili, Zalina, E-mail: liena@nm.gov.my; Waste and Environmental Technology Division, Malaysian Nuclear Agency; Yasir, Muhamad Samudi
2015-04-29
Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.
Incorporation of additives into polymers
McCleskey, T. Mark; Yates, Matthew Z.
2003-07-29
There has been invented a method for incorporating additives into polymers comprising: (a) forming an aqueous or alcohol-based colloidal system of the polymer; (b) emulsifying the colloidal system with a compressed fluid; and (c) contacting the colloidal polymer with the additive in the presence of the compressed fluid. The colloidal polymer can be contacted with the additive by having the additive in the compressed fluid used for emulsification or by adding the additive to the colloidal system before or after emulsification with the compressed fluid. The invention process can be carried out either as a batch process or as a continuous on-line process.
Imoto, Yukari; Yasutaka, Tetsuo; Someya, Masayuki; Higashino, Kazuo
2018-05-15
Soil leaching tests are commonly used to evaluate the leachability of hazardous materials, such as heavy metals, from the soil. Batch leaching tests often enhance soil colloidal mobility and may require solid-liquid separation procedures to remove excess soil particles. However, batch leaching test results depend on particles that can pass through a 0.45μm membrane filter and are influenced by test parameters such as centrifugal intensity and filtration volume per filter. To evaluate these parameters, we conducted batch leaching experiments using metal-contaminated soils and focused on the centrifugal intensity and filtration volume per filter used in solid-liquid separation methods currently employed in standard leaching tests. Our experiments showed that both centrifugal intensity and filtration volume per filter affected the reproducibility of batch leaching tests for some soil types. The results demonstrated that metal concentrations in the filtrates significantly differed according to the centrifugal intensity when it was 3000 g for 2h or less. Increased filtration volume per filter led to significant decreases in filtrate metal concentrations when filter cakes formed during filtration. Comparison of the filtration tests using 0.10 and 0.45μm membrane filters showed statistically significant differences in turbidity and metal concentration. These findings suggest that colloidal particles were not adequately removed from the extract and contributed substantially to the apparent metal concentrations in the leaching test of soil containing colloidal metals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The use of {sup 99m}Tc-Al{sub 2}O{sub 3} for detection of sentinel lymph nodes in breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinilkin, I., E-mail: sinilkinig@oncology.tomsk.ru; Chernov, V.; Medvedeva, A.
2016-08-02
Purpose: to study the feasibility of using the new radiopharmaceutical based on the technetium-99m-labeled gamma-alumina for identification of sentinel lymph nodes (SLNs) in breast cancer patients. The study included two groups of breast cancer patients who underwent single photon emission computed tomography (SPECT) and intraoperaive gamma probe identification of sentinel lymph nodes (SLNs). To identify SLNs, the day before surgery Group I patients (n = 34) were injected with radioactive {sup 99m}Tc-Al{sub 2}O{sub 3}, and Group II patients (n = 30) received {sup 99m}Tc-labeled phytate colloid. A total of 37 SLNs were detected in Group I patients. The number ofmore » identified SLNs per patient ranged from 1 to 2 (the average number of identified SLNs was 1.08). Axillary lymph nodes were the most common site of SLN localization. 18 hours after {sup 99m}Tc-Al{sub 2}O{sub 3} injection, the percentage of its accumulation in the SLN was 7–11% (of the counts in the injection site) by SPECT and 17–31% by gamma probe detection. In Group II SLNs were detected in 27 patients. 18 hours after injection of the phytate colloid the percentage of its accumulation in the SLN was 1.5–2% out of the counts in the injection site by SPECT and 4–7% by gamma probe. The new radiopharmaceutical based on the {sup 99m}Tc-Al{sub 2}O{sub 3} demonstrates high accumulation in SLNs without redistribution through the entire lymphatic basin. The sensitivity and specificity of {sup 99m}Tc-Al{sub 2}O{sub 3} were 100% for both SPECT and intraoperative gamma probe identification.« less
Green Rust: Structure, Redox Reaction Mechanisms, Transformation and Colloidal Behaviour
NASA Astrophysics Data System (ADS)
Stipp, S.; Skovbjerg, L.; Christiansen, B.; Hansson, E.; Utsunomiya, S.; Schild, D.; Geckeis, H.; Ewing, R.
2006-05-01
Green rust (GR) forms where pH is neutral to basic, iron concentration is high and oxidation potential provides a small amount of Fe(III). GR is best known from metallic iron corrosion but it has also been reported in soil. It typically forms nano-particles, so surface area is high. It has a layered structure and is reactive, adsorbing species on its surface, providing exchange of interlayer ions, and allowing reaction of redox active species. Corroding stainless-steel canisters in a concrete and steel radioactive waste repository would offer geochemical conditions for GR formation. We used surface-sensitive and high resolution techniques (atomic force microscopy, AFM, transmission electron microscopy, TEM, X-ray photoelectron spectroscopy, XPS) to supplement data from traditional methods (X-ray diffraction, XRD, and wet chemistry). The purpose was to refine structural and compositional parameters for green rust sulfate; to define trace component uptake mechanisms; and to assess potential mobility of GR colloids and thus, sorbed radionuclides. Green rust reduced dissolved Np(V), Cr(VI) and Se(VI), rapidly decreasing solution concentration. High resolution TEM and AFM images showed that chromate penetrates GR interlayers to a distance of about 100 nm from crystal edges. It reduces to Cr(III), blocking further movement and GR transforms topotactically to Cr- goethite, thus immobilising the contaminant in a phase significantly less soluble than pure goethite. Further oxidation results in dissolution of GR and growth of more Cr-goethite. In-situ AFM imaging showed that GR can nucleate and grow both in solution and on minerals typical of fractures in granite, i.e. graphite, muscovite, biotite, quartz and amorphous silica. Particles are more likely to stick to each other or to a substrate than to remain monodispersed.
Blanc, Frédérique; Salaun, Pierre Y; Couturier, Olivier; Querellou, Solène; Le Duc-Pennec, Alexandra; Mougin-Degraef, Marie; Bizais, Yves; Legendre, Jean M
2005-11-01
The reliability of solid phase gastric emptying measurements by scintigraphy requires a marker that remains within the solid component of the test meal, and which is not degraded by the gastric juice throughout the scintigraphic procedure. In Europe, foods are most often labelled with 99mTc rhenium sulfide macrocolloid (RSMC) but this solid phase marker was withdrawn from the market in January 2004. To test other potential solid phase markers and to compare them to the reference marker RSMC. These markers were rhenium sulfide nanocolloid (RSNC), tin fluoride colloid (TFC), phytates and two albumins (Alb and AlbC). All were radiolabelled with 99mTc. After quality control, each 99mTc marker was incorporated into the albumin of one egg. Then, egg white and yolk were mixed together, and a well-cooked omelette was prepared. Aliquots of the omelette were incubated with an acidic solution of pepsin at 37 degrees C which mimicked gastric juice. Unbound radioactivity in the supernatant fraction was measured at various times up to 3 h. The radiochemical purity was > 95% for all radiopharmaceuticals. During the in-vitro incubation, the percentage of 99mTc labelled colloids released from the omelette increased continuously: after 3 h, 5% for TFC and RSMC, 8% for phytates, and > 9% for the two albumins and RSNC. Considering quality controls and release of 99mTc during in-vitro incubation of the omelette, TFC showed the same behaviour as the reference marker RSMC. Thus, TFC seems to be the best candidate to replace RSMC for the radiolabelling of the solid phase of the gastric emptying test meal.
Isochoric structural recovery in molecular glasses and its analog in colloidal glasses
NASA Astrophysics Data System (ADS)
Banik, Sourya; McKenna, Gregory B.
2018-06-01
Concentrated colloidal dispersions have been regarded as models for molecular glasses. One of the many ways to compare the behavior in these two different systems is by comparing the structural recovery or the physical aging behavior. However, recent investigations from our group to examine structural recovery in thermosensitive colloidal dispersions have shown contrasting results between the colloidal and the molecular glasses. The differences in the behaviors of the two systems have led us to pose this question: Is structural recovery behavior in colloidal glasses truly distinct from that of molecular glasses or is the conventional experimental condition (isobaric temperature-jumps) in determining the structural recovery in molecular glasses different from the experimental condition in the colloidal experiments (concentration- or volume fraction-jumps); i.e., are colloidal glasses inherently different from molecular glasses or not? To address the question, we resort to model calculations of structural recovery in a molecular glass under constant volume (isochoric) conditions following temperature only- and simultaneous volume- and temperature-jumps, which are closer to the volume fraction-jump conditions used in the thermosensitive-colloidal experiments. The current model predictions are then compared with the signatures of structural recovery under the conventional isobaric state in a molecular glass and with structural recovery behavior in colloidal glasses following volume fraction-jumps. We show that the results obtained from the experiments conducted by our group were contrasting to classical molecular glass behavior because the basis of our comparisons were incorrect (the histories were not analogous). The present calculations (with analogous histories) are qualitatively closer to the colloidal behavior. The signatures of "intrinsic isotherms" and "asymmetry of approach" in the current isochoric model predictions are quite different from those in the classical isobaric conditions while the "memory" signatures remain essentially the same. While there are qualitative similarities between the current isochoric model predictions and results from colloidal glasses, it appears from the calculations that the origins of these are different. The isochoric histories in the molecular glasses have compensating effects of pressure and departure from equilibrium which determines the structure dependence on mobility of the molecules. On the other hand, in the colloids it simply appears that the volume fraction-jump conditions simply do not exhibit such structure mobility dependence. The determining interplay of thermodynamic phase variables in colloidal and molecular systems might be very different or at least their correlations are yet to be ascertained. This topic requires further investigation to bring the similarities and differences between molecular and colloidal glass formers into fuller clarity.
SITE TECHNOLOGY CAPSULE: FILTER FLOW TECHNOLOGY, INC. - COLLOID POLISHING FILTER METHOD
The Filter Flow Technology, Inc. (FFT) Coloid Polishing Filter Method (CPFM) was demonstrated at the U.S Department of Energy's (DOE) Rock Flats Plant (RFP) as part of the U.S. Environmental Protection Agency's (EPA) Superfund and Innovative Technology Evaluation (SITE) program. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Leyre; Cebrian, Virginia; Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid
Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also beenmore » characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent.« less
Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.
Filkins, J P; Yelich, M R
1982-02-01
Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.
A field study of colloid transport in surface and subsurface flows
NASA Astrophysics Data System (ADS)
Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan
2016-11-01
Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The <10 μm fine colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e.g., pesticides, phosphorus fertilizers) immediately before rainfall following a long no-rain period because their transport in association with colloids may occur rapidly over long distances via both surface runoff and subsurface flows with rainfall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand
Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied asmore » an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 'Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors' [2]. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods:? Point method? Range method. (authors)« less
NASA Astrophysics Data System (ADS)
Harada, T.; Kiyokawa, S.; Ikehara, M.
2016-12-01
Satsuma Iwo-Jima Island, with volcanic activities, is located about 40km south of Kyushu Island, Japan. This island is one of the best places to observe a shallow water hydrothermal system. Nagahama Bay, in the south of Satsuma Iwo-Jima Island, is partly separated from open sea. The seawater appears dark reddish brown color due to colloidal iron hydroxide by the mixing of volcanic fluids (pH=5.5, 50-60 degree Celsius) and oceanic water (Ninomiya & kiyokawa, 2009; Kiyokawa et al., 2012; Ueshiba & kiyokawa, 2012). Very high deposition rate (33 cm per year) of iron-rich sediments was observed in the bay (Kiyokawa et al., 2012). However, precipitation behavior of colloidal iron hydroxide has not been clarified. In this study, I report the results of analysis of deposition experiments of the colloidal particles at the Nagahama bay. Since the size of the colloidal particles is 1nm 1μm, single particle cannot be precipitated. This arise from precipitation of the particles in the viscous fluid is according to the Stokes' law. Colloidal iron hydroxide has the property of having the electric charges on the surface. The charge on the colloids is affected by pH of its surrounding seawater and can become more positively or negatively charged due to the gain or loss, respectively, of protons (H+) in the seawater. This property affects the stability of the colloidal dispersion. FE-SEM observation shows that the suspended particles consist of colloidal iron hydroxide (about 0.2μm), on the other hand, the iron-rich sediments are composed of bigger one (>1 μm). This indicates the colloidal iron hydroxide is precipitated by flocculation. We examined the precipitation amount of colloidal iron hydroxide under the various pH environments. The precipitation amount of pH=7.8 seawater 10% higher than that of pH=7.2. This result is roughly follows the theoretical value.
Trauscht, Jacob; Pazmino, Eddy; Johnson, William P
2015-09-01
Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.
[AgBr colloids prepared by electrolysis and their SERS activity research].
Si, Min-Zhen; Fang, Yan; Dong, Gang; Zhang, Peng-Xiang
2008-01-01
Ivory-white AgBr colloids were prepared by means of electrolysis. Two silver rods 1.0 cm in diameter and 10.0 cm long were respectively used as the negative and positive electrodes, the aqueous solution of hexadecyl trimethyl ammonium bromide was used as the electrolyte, and a 7 V direct current was applied on the silver rods for three hours. The obtained AgBr colloids were characterized by UV-Vis spectroscopy, transmission electron microscopy, and SERS using a 514. 5 nm laser line on Renishaw 2000 Raman spectrometer. These particles are about nanometer size and their shapes are as spherical or elliptic, with a slight degree of particle aggregation. The UV-Vis spectra exhibit a large plasmon resonance band at about 292.5 nm, similar to that reported in the literature. The AgBr colloids were very stable at room temperature for months. In order to test if these AgBr colloids can be used for SERS research, methyl orange, Sudan red and pyridine were used. It was found that AgBr colloids have SERS activity to these three molicules. For methyl orange, the intense Raman peaks are at 1 123, 1 146, 1 392, 1 448 and 1 594 cm(-1); for Sudan red, the intense Raman peaks are at 1 141, 1 179, 1 433 and 1 590 cm(-1); and for pyridine, the intense Raman peaks are at 1 003, 1 034 and 1 121 cm(-1). It is noticeable that SERS of methyl orange was observed on AgBr colloids, but not on the gray and yellow silver colloids prepared by traditional means. The possible reason was explained. One major advantage of this means is the absence of the spectral interference such as citrate, BH4- arising from reaction products of the colloids formation process. On AgBr colloids, one can get some molecular SERS impossible to get on the gray and yellow silver colloids.
NASA Astrophysics Data System (ADS)
Johnson, William; Farnsworth, Anna; Vanness, Kurt; Hilpert, Markus
2017-04-01
The key element of a mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment) is representation of the nano-scale surface heterogeneity (herein called discrete heterogeneity) that drives colloid attachment under unfavorable conditions. The observed modes of colloid attachment under unfavorable conditions emerge from simulations that incorporate discrete heterogeneity. Quantitative prediction of attachment (and detachment) requires capturing the sizes, spatial frequencies, and other properties of roughness asperities and charge heterodomains in discrete heterogeneity representations of different surfaces. The fact that a given discrete heterogeneity representation will interact differently with different-sized colloids as well as different ionic strengths for a given sized colloid allows backing out representative discrete heterogeneity via comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has been achieved on unfavorable smooth surfaces yielding quantitative prediction of attachment, and qualitative prediction of detachment in response to ionic strength or flow perturbations. Extending this treatment to rough surfaces, and representing the contributions of nanoscale roughness as well as charge heterogeneity is a focus of this talk. Another focus of this talk is the upscaling the pore scale simulations to produce contrasting breakthrough-elution behaviors at the continuum (column) scale that are observed, for example, for different-sized colloids, or same-sized colloids under different ionic strength conditions. The outcome of mechanistic pore scale simulations incorporating discrete heterogeneity and subsequent upscaling is that temporal processes such as blocking and ripening will emerge organically from these simulations, since these processes fundamentally stem from the limited sites available for attachment as represented in discrete heterogeneity.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
Passive colloids work together to become Active
NASA Astrophysics Data System (ADS)
Kandula, Hima Nagamanasa; Wang, Wei; Zhang, Jie; Wu, Huanxin; Han, Ming; Luijten, Erik; Granick, Steve
In recent years there is growing body of research to design self-propelled colloids to gain insights into non-equilibrium systems including living matter. While most active colloids developed hitherto entail prefabrication of Janus colloids and possess single fixed active site, we present one simple system where active colloids are formed in-situ naturally with multiple active sites and are reversible as well as reconfigurable. A binary mixture of Brownian colloids which have opposite polarizations when subjected to an AC electric field spontaneously assemble into clusters which are propelled by asymmetric induced charge electro osmosis. We find that tuning the relative sizes of the two species allows for the control over the number of active sites. More interestingly, the patches are dynamic enabling reconfiguration of the active cluster. Consequently, the clusters are active not only in motion but also in their structure.
Study of adsorption process of iron colloid substances on activated carbon by ultrasound
NASA Astrophysics Data System (ADS)
Machekhina, K. I.; Shiyan, L. N.; Yurmazova, T. A.; Voyno, D. A.
2015-04-01
The paper reports on the adsorption of iron colloid substances on activated carbon (PAC) Norit SA UF with using ultrasound. It is found that time of adsorption is equal to three hours. High-frequency electrical oscillation is 35 kHz. The adsorption capacity of activated carbon was determined and it is equal to about 0.25 mg iron colloid substances /mg PAC. The iron colloid substances size ranging from 30 to 360 nm was determined. The zeta potential of iron colloid substances which consists of iron (III) hydroxide, silicon compounds and natural organic substances is about (-38mV). The process of destruction iron colloid substances occurs with subsequent formation of a precipitate in the form of Fe(OH)3 as a result of the removal of organic substances from the model solution.
Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H
2004-04-01
Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.
NASA Astrophysics Data System (ADS)
Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn
2017-01-01
Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.
Physics of Colloids in Space: Flight Hardware Operations on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor
2002-01-01
The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.
NASA Astrophysics Data System (ADS)
Kalwarczyk, Tomasz; Sozanski, Krzysztof; Jakiela, Slawomir; Wisniewska, Agnieszka; Kalwarczyk, Ewelina; Kryszczuk, Katarzyna; Hou, Sen; Holyst, Robert
2014-08-01
We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data.We propose a scaling equation describing transport properties (diffusion and viscosity) in the solutions of colloidal particles. We apply the equation to 23 different systems including colloids and proteins differing in size (range of diameters: 4 nm to 1 μm), and volume fractions (10-3-0.56). In solutions under study colloids/proteins interact via steric, hydrodynamic, van der Waals and/or electrostatic interactions. We implement contribution of those interactions into the scaling law. Finally we use our scaling law together with the literature values of the barrier for nucleation to predict crystal nucleation rates of hard-sphere like colloids. The resulting crystal nucleation rates agree with existing experimental data. Electronic supplementary information (ESI) available: Experimental and some analysis details. See DOI: 10.1039/c4nr00647j
Influences on physicians' choices of intravenous colloids.
Miletin, Michael S; Stewart, Thomas E; Norton, Peter G
2002-07-01
Controversy over the optimal intravenous fluid for volume resuscitation continues unabated. Our objectives were to characterize the demographics of physicians who prescribe intravenous colloids and determine factors that enter into their decision to choose a colloid. Questionnaire with 61 items. Ten percent ( n = 364) of frequent intravenous fluid prescribers in the province of Ontario, Canada. The response rate was 74%. Colloid use in the past year was reported by 79% of the responding physicians. Important reasons for choosing a colloid included blood loss and manipulation of oncotic pressure. Physicians tended to prefer either albumin or pentastarch, but no important reasons were found for choosing between the two. Albumin with or without crystalloid was preferred in 5/13 scenarios by more than 50% of the respondents, whereas pentastarch was not favored by more than 50% of respondents in any scenario. Physicians practising in critical care areas and teaching hospitals generally preferred pentastarch to albumin. Physicians reporting pentastarch as representing greater than 90% of total colloid use were more likely to have been visited by a drug detailer for pentastarch than those who used less synthetic colloid (54 vs 22%, p < 0.001). The majority of physicians surveyed prescribe colloid products and the reported use of albumin and pentastarch has a bimodal distribution. Although albumin appeared to be preferred in more clinical niches, most physicians did not state reasons for choosing between products. Marketing, specialty, location of practice and clinical scenario appear to play significant roles in the utilization of colloid products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was amore » result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release.« less
NASA Astrophysics Data System (ADS)
Letzel, Alexander; Gökce, Bilal; Menzel, Andreas; Plech, Anton; Barcikowski, Stephan
2018-03-01
For a known material, the size distribution of a nanoparticle colloid is a crucial parameter that defines its properties. However, measured size distributions are not easy to interpret as one has to consider weighting (e.g. by light absorption, scattering intensity, volume, surface, number) and the way size information was gained. The radius of a suspended nanoparticle can be given as e.g. sphere equivalent, hydrodynamic, Feret or radius of gyration. In this study, gold nanoparticles in water are synthesized by pulsed-laser ablation (LAL) and fragmentation (LFL) in liquids and characterized by various techniques (scanning transmission electron microscopy (STEM), small-angle X-ray scattering (SAXS), analytical disc centrifugation (ADC), dynamic light scattering (DLS) and UV-vis spectroscopy with Mie-Gans Theory) to study the comparability of different analytical techniques and determine the method that is preferable for a given task related to laser-generated nanoparticles. In particular, laser-generated colloids are known to be bimodal and/or polydisperse, but bimodality is sometimes not analytically resolved in literature. In addition, frequently reported small size shifts of the primary particle mode around 10 nm needs evaluation of its statistical significance related to the analytical method. Closely related to earlier studies on SAXS, different colloids in defined proportions are mixed and their size as a function of the nominal mixing ratio is analyzed. It is found that the derived particle size is independent of the nominal mixing ratio if the colloid size fractions do not overlap considerably. Conversely, the obtained size for colloids with overlapping size fractions strongly depends on the nominal mixing ratio since most methods cannot distinguish between such fractions. Overall, SAXS and ADC are very accurate methods for particle size analysis. Further, the ability of different methods to determine the nominal mixing ratio of sizes fractions is studied experimentally.
Binodal Colloidal Aggregation Test - 4: Polydispersion
NASA Technical Reports Server (NTRS)
Chaikin, Paul M.
2008-01-01
Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
Quantification of hydrophobic interaction affinity of colloids
NASA Astrophysics Data System (ADS)
Saini, G.; Nasholm, N.; Wood, B. D.
2009-12-01
Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.
Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.
D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech
2014-07-15
Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamai, Tamir; Nassar, Mohamed K.; Nelson, Kirk E.; Ginn, Timothy R.
2017-04-01
Colloid filtration in porous media spans across many disciplines and includes scenarios such as in-situ bioremediation, colloid-facilitated transport, water treatment of suspended particles and pathogenic bacteria, and transport of natural and engineered nanoparticles in the environment. Transport and deposition of colloid particles in porous media are determined by a combination of complex processes and forces. Given the convoluted physical, chemical, and biological processes involved, and the complexity of porous media in natural settings, it should not come as surprise that colloid filtration theory does not always sufficiently predict colloidal transport, and that there is still a pressing need for improved predictive capabilities. Here, instead of developing the macroscopic equation from pore-scale models, we parametrize the different terms in the macroscopic collection equation through fitting it to experimental data, by optimizing the parameters in the different terms of the equation. This way we combine a mechanistically-based filtration-equation with empirical evidence. The impact of different properties of colloids and porous media are studied by comparing experimental properties with different terms of the correlation equation. This comparison enables insight about different processes that occur during colloid transport and retention under in porous media under favorable conditions, and provides directions for future theoretical developments.
Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.
Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning
2016-09-13
Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.
Anti-iridescent colloidal photonic nanostructure from thermal gradients and polymeric brush effects
NASA Astrophysics Data System (ADS)
Lee, Seung Yeol; Kim, Hyoungsoo; Kim, Shin-Hyun; Stone, Howard
2017-11-01
Colloidal nanostructures induced by self-assembly are important in reflective displays, plasmonic or photonic sensors, and color pigments. During the evaporation of droplets of colloidal suspension, due to the non-uniform evaporation rate along the droplet interface, a radially outward flow is created and it carries colloidal particles to the pinned contact line of the droplet. We document that the packing at the contact line is a face-center-cubic (fcc) colloidal nanostructure in a ring shape. The fcc structure of the colloidal nanoparticles exhibits angle-dependent color. In particular, we introduce a novel method to suppress the familiar coffee-ring effect and modify colloidal nanostructures to exhibit angle-independent optical properties. A suspension of polyethylene oxide (PEO)-coated silica nanoparticles dispersed in ethanol-water mixture is prepared. The droplet containing the nanoparticles dries on a heated substrate, which creates a thermal gradient along the interface of the droplet. This thermal gradient induces thermal-Marangoni stresses that suppress the coffee-ring effects. PEO adsorbed on the surface of silica nanoparticles produces an additional interaction between colloidal nanoparticles, which makes the final structure disordered. The disordered photonic nanostructures in our experiments exhibit angle-independent structural color. This technique can be applied to printing or optical filtering systems.
Transport of europium colloids in vadose zone lysimeters at the semiarid Hanford site.
Liu, Ziru; Flury, Markus; Zhang, Z Fred; Harsh, James B; Gee, Glendon W; Strickland, Chris E; Clayton, Ray E
2013-03-05
The objective of this study was to quantify transport of Eu colloids in the vadose zone at the semiarid Hanford site. Eu-hydroxy-carbonate colloids, Eu(OH)(CO3), were applied to the surface of field lysimeters, and migration of the colloids through the sediments was monitored using wick samplers. The lysimeters were exposed to natural precipitation (145-231 mm/year) or artificial irrigation (124-348 mm/year). Wick outflow was analyzed for Eu concentrations, supplemented by electron microscopy and energy-dispersive X-ray analysis. Small amounts of Eu colloids (<1%) were detected in the deepest wick sampler (2.14 m depth) 2.5 months after application and cumulative precipitation of only 20 mm. We observed rapid transport of Eu colloids under both natural precipitation and artificial irrigation; that is, the leading edge of the Eu colloids moved at a velocity of 3 cm/day within the first 2 months after application. Episodic infiltration (e.g., Chinook snowmelt events) caused peaks of Eu in the wick outflow. While a fraction of Eu moved consistent with long-term recharge estimates at the site, the main mass of Eu remained in the top 30 cm of the sediments. This study illustrates that, under field conditions, near-surface colloid mobilization and transport occurred in Hanford sediments.
NASA Astrophysics Data System (ADS)
Wu-Quan, Ding; Jia-Hong, He; Lei, Wang; Xin-Min, Liu; Hang, Li
The study of soil colloids is essential because the stability of soil colloidal particles are important processes of interest to researchers in environmental fields. The strong nonclassical polarization of the adsorbed cations (Na+ and K+) decreased the electric field and the electrostatic repulsion between adjacent colloidal particles. The decrease of the absolute values of surface potential was greater for K+ than for Na+. The lower the concentration of Na+ and K+ in soil colloids, the greater the electrostatic repulsion between adjacent colloidal particles. The net pressure and the electrostatic repulsion was greater for Na+ than for K+ at the same ion concentration. For K+ and Na+ concentrations higher than 50mmol L-1 or 100 mmol L-1, there was a net negative (or attractive) pressure between two adjacent soil particles. The increasing total average aggregation (TAA) rate of soil colloids with increasing Na+ and K+ concentrations exhibited two stages: the growth rates of TAA increased rapidly at first and then increased slowly and eventually almost negligibly. The critical coagulation concentrations of soil colloids in Na+ and K+ were 91.6mmol L-1 and 47.8mmol L-1, respectively, and these were similar to the concentrations at the net negative pressure.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
A new method to prepare colloids of size-controlled clusters from a matrix assembly cluster source
NASA Astrophysics Data System (ADS)
Cai, Rongsheng; Jian, Nan; Murphy, Shane; Bauer, Karl; Palmer, Richard E.
2017-05-01
A new method for the production of colloidal suspensions of physically deposited clusters is demonstrated. A cluster source has been used to deposit size-controlled clusters onto water-soluble polymer films, which are then dissolved to produce colloidal suspensions of clusters encapsulated with polymer molecules. This process has been demonstrated using different cluster materials (Au and Ag) and polymers (polyvinylpyrrolidone, polyvinyl alcohol, and polyethylene glycol). Scanning transmission electron microscopy of the clusters before and after colloidal dispersion confirms that the polymers act as stabilizing agents. We propose that this method is suitable for the production of biocompatible colloids of ultraprecise clusters.
Nanocrystal/sol-gel nanocomposites
Klimov, Victor L.; Petruska, Melissa A.
2010-05-25
The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.
The CPFM technology is designed to remove trace to moderate levels of nontritium radionuclides and heavy metal pollutants from water. The technology uses a proprietary compound that consists of inorganic, oxide-based granules. This mixed is designed to remove heavy metals and rad...
Grundy, Lorena S; Lee, Victoria E; Li, Nannan; Sosa, Chris; Mulhearn, William D; Liu, Rui; Register, Richard A; Nikoubashman, Arash; Prud'homme, Robert K; Panagiotopoulos, Athanassios Z; Priestley, Rodney D
2018-05-08
Colloids with internally structured geometries have shown great promise in applications ranging from biosensors to optics to drug delivery, where the internal particle structure is paramount to performance. The growing demand for such nanomaterials necessitates the development of a scalable processing platform for their production. Flash nanoprecipitation (FNP), a rapid and inherently scalable colloid precipitation technology, is used to prepare internally structured colloids from blends of block copolymers and homopolymers. As revealed by a combination of experiments and simulations, colloids prepared from different molecular weight diblock copolymers adopt either an ordered lamellar morphology consisting of concentric shells or a disordered lamellar morphology when chain dynamics are sufficiently slow to prevent defect annealing during solvent exchange. Blends of homopolymer and block copolymer in the feed stream generate more complex internally structured colloids, such as those with hierarchically structured Janus and patchy morphologies, due to additional phase separation and kinetic trapping effects. The ability of the FNP process to generate such a wide range of morphologies using a simple and scalable setup provides a pathway to manufacturing internally structured colloids on an industrial scale.
Widjaja, Felix F; Khairan, Paramita; Kamelia, Telly; Hasan, Irsan
2016-04-01
Large volume paracentesis may cause paracentesis induced circulatory dysfunction (PICD). Albumin is recommended to prevent this abnormality. Meanwhile, the price of albumin is too expensive and there should be another alternative that may prevent PICD. This report aimed to compare albumin to colloids in preventing PICD. Search strategy was done using PubMed, Scopus, Proquest, dan Academic Health Complete from EBSCO with keywords of "ascites", "albumin", "colloid", "dextran", "hydroxyethyl starch", "gelatin", and "paracentesis induced circulatory dysfunction". Articles was limited to randomized clinical trial and meta-analysis with clinical question of "In hepatic cirrhotic patient undergone large volume paracentesis, whether colloids were similar to albumin to prevent PICD". We found one meta-analysis and four randomized clinical trials (RCT). A meta analysis showed that albumin was still superior of which odds ratio 0.34 (0.23-0.51). Three RCTs showed the same results and one RCT showed albumin was not superior than colloids. We conclude that colloids could not constitute albumin to prevent PICD, but colloids still have a role in patient who undergone paracentesis less than five liters.
Composition inversion in mixtures of binary colloids and polymer
NASA Astrophysics Data System (ADS)
Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick
2018-05-01
Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.
NASA Astrophysics Data System (ADS)
Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.
2017-12-01
Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.
Colloids with high-definition surface structures
Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg
2007-01-01
Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149
Dynamic self-assembly and directed flow of rotating colloids in microchannels
NASA Astrophysics Data System (ADS)
Götze, Ingo O.; Gompper, Gerhard
2011-09-01
Nonequilibrium structure formation and dynamics in suspensions of superparamagnetic colloids driven by an external rotating magnetic field are studied by particle-based mesoscale hydrodynamics simulations in confined geometry. We address the fundamental question how the rotation of the colloids about their own axes can be converted into a translational motion by breaking the symmetry of the confining geometry. We study a two-dimensional system of colloids with short-range repulsive interactions, which mimics flow in shallow microchannels. In straight channels, we observe a two-way traffic but—for symmetry reasons—no net transport. However, by keeping some colloids fixed near one of the two walls, net transport can be achieved. This approach allows the control and switchability of the flow in complex microchannel networks. A minimal geometry that fulfills the requirement of broken symmetry are ring channels. We determine the translational velocity of the spinning colloids and study its dependence on the channel width for various median radii. We conclude that spinning colloids present a promising alternative for flow generation and control in microfluidic devices.
Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng
2016-11-15
Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Experimental evidence of colloids and nanoparticles presence from 25 waste leachates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr; Avellan, Astrid; Yan, Junfang
Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used tomore » easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form. The TEM–EDS method showed various particles, including manufactured nanoparticles (organic polymer, TiO{sub 2}, particles with Sr, La, Ce, Nd). All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones. The majority of the elements were in colloidal form for wastes of packaging (3), a steel slag, a sludge from hydrometallurgy, composts (2), a dredged sediment (#18), an As contaminated soil and two active landfill leachates. These results showed that cascade filtration and ICP elemental analysis seems valid methods in this field, and that electronic microscopy with elemental detection allows to identify particles. Particles can be formed from dissolved elements during TEM sample preparation and cross-checking with MF and UF composition by ICP is useful. The colloidal fraction of leachate of waste seems to be a significant source term, and should be taken into account in studies of emission and transfer of contaminants in the environment. Standardized cross-filtration method could be amended for the presence of colloids in waste leachates.« less
Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin
2011-08-01
There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.
Montazer, Majid; Alimohammadi, Farbod; Shamei, Ali; Rahimi, Mohammad Karim
2012-01-01
Colloidal nano silver was applied on the surface of cotton fabric and stabilized using 1,2,3,4-butanetetracarboxylic acid (BTCA). The two properties of antimicrobial activity and resistance against creasing were imparted to the samples of fabric as a result of the treatment with silver nano colloid and BTCA. The antimicrobial property of samples was evaluated using two pathogenic bacteria including Escherichia coli and Staphylococcus aureus as outstanding barometers in this field. The durability of applied nanoparticles, color variation, wettability and wrinkle recovery angle of the treated samples were investigated employing related credible standards. The presence of nano silver particles on the surface of treated cotton fabric was proved using EDS spectrum as well as the SEM images. Furthermore, the creation of cross-links was confirmed by the means of both ATR-FTIR and Raman spectra. In conclusion, it was observed that BTCA plays a prominent role in stabilizing silver nanoparticle. Besides, Wettability and winkle recovery angle of finished samples decreased and increased, respectively. In addition, it is noteworthy that no obvious color variation was observed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pala, Sravan Kumar
This research focused on the study of the core-shelled magnetic nanomaterials derived from a colloidal chemistry. The goals are four-fold: (1) synthesis of Fe3O4MNMs using colloidal chemistry. The Fe 3O4 MNMs were then grafted with extracts derived from natural products, namely Olecraceavar italica (broccoli), Boletus edulis (mushroom)and Solanum lycopersicum (tomato);(2)characterization of natural products by chromatography and mass spectrometry;(3) characterization of MNMs to determine their crystallinity, morphological and elemental composition by the state-of-the-art instruments; and (4) biological evaluation using Gram-negative and Gram-positive bacteria. The approach provides advantages to precisely control the composition and homogeneity. The second advantage of the colloidal chemistry is its user friendliness and feasibility. Due to the nature of the natural products, the compatibility of MNM is anticipated to be enhanced.In this chapter, the nanomaterials will be discussed from four perspectives,§1.1 Nanotechnology (§1.1), §1.2 Synthesis of nanomaterials; §1.3 The natural product extract,; §1.4 Characterization of nanomaterials; and §1.5Biological application of nanomaterials.Fig. 1 summarized the overarching goals of this study.
Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen
2018-05-04
The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fractal aggregates in tennis ball systems
NASA Astrophysics Data System (ADS)
Sabin, J.; Bandín, M.; Prieto, G.; Sarmiento, F.
2009-09-01
We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the images of the cluster of balls, following Forrest and Witten's pioneering studies on the aggregation of smoke particles, to estimate their fractal dimension.
Colloidal heat engines: a review.
Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A
2016-12-21
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering
Gu, Zhen; Jamal, Syed; Detamore, Michael S.
2013-01-01
Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275
Colloidal characterization of silicon nitride and silicon carbide
NASA Technical Reports Server (NTRS)
Feke, Donald L.
1986-01-01
The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.
Nonlinear machine learning and design of reconfigurable digital colloids.
Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L
2016-09-14
Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.
Colloidal layers in magnetic fields and under shear flow
NASA Astrophysics Data System (ADS)
Löwen, H.; Messina, R.; Hoffmann, N.; Likos, C. N.; Eisenmann, C.; Keim, P.; Gasser, U.; Maret, G.; Goldberg, R.; Palberg, T.
2005-11-01
The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction.
Bihari, Zsolt; Vultos, Filipe; Fernandes, Célia; Gano, Lurdes; Santos, Isabel; Correia, João D G; Buglyó, Péter
2016-07-01
Heterobimetallic complexes with the evolutionary, well-preserved, histidyl-alanyl-valinyl (HAV) sequence for cadherin targeting, an organometallic Ru core with anticancer activity and a radioactive moiety for imaging may hold potential as theranostic agents for cancer. Visible-light irradiation of the HAVAY-NH2 pentapeptide in the presence of [(η(5)-Cp)Ru(η(6)-naphthalene)](+) resulted in the formation of a full sandwich type complex, (η(6)-Tyr-RuCp)-HAVAY-NH2 in aqueous solution, where the metal ion is connected to the Tyr (Y) unit of the peptide. Conjugation of this complex to 2,2'-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-GA) and subsequent metalation of the resulting product with stable ((nat)Ga) and radioactive ((67)Ga) isotope yielded (nat)Ga/(67)Ga-NODA-GA-[(η(6)-Tyr-RuCp)-HAVAY-NH2]. The non-radioactive compounds were characterized by NMR spectroscopy and Mass Spectrometry. The cellular uptake and cytotoxicity of the radioactive and non-radioactive complexes, respectively, were evaluated in various human cancer cell lines characterized by different levels of N- or E-cadherins expression. Results from these studies indicate moderate cellular uptake of the radioactive complexes. However, the inhibition of the cell proliferation was not relevant. Copyright © 2016 Elsevier Inc. All rights reserved.
Imaging plant leaves to determine changes in radioactive contamination status in Fukushima, Japan.
Nakajima, Hiroo; Fujiwara, Mamoru; Tanihata, Isao; Saito, Tadashi; Matsuda, Norihiro; Todo, Takeshi
2014-05-01
The chemical composition of plant leaves often reflects environmental contamination. The authors analyzed images of plant leaves to investigate the regional radioactivity ecology resulting from the 2011 accident at the Fukushima No. 1 nuclear power plant, Japan. The present study is not an evaluation of the macro radiation dose per weight, which has been performed previously, but rather an image analysis of the radioactive dose per leaf, allowing the capture of various gradual changes in radioactive contamination as a function of elapsed time. In addition, the leaf analysis method has potential applications in the decontamination of food plants or other materials.
Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Bradford, Scott A.
2017-04-01
Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.
Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?
Goggin, Rachel; Jardeleza, Camille; Wormald, Peter-John; Vreugde, Sarah
2014-03-01
Colloidal silver is an alternative medicine consisting of silver particles suspended in water. After using this solution as a nasal spray, the symptoms of a previously recalcitrant Staphylococcus aureus (S. aureus)-infected chronic rhinosinusitis patient were observed to have improved markedly. The aim of this study was to determine whether colloidal silver has any direct bactericidal effects on these biofilms in vitro. S. aureus biofilms were grown from the ATCC 25923 reference strain on Minimum Biofilm Eradication Concentration (MBEC) device pegs, and treated with colloidal silver. Concentrations tested ranged from 10 to 150 μL colloidal silver diluted to 200 μL with sterile water in 50 μL cerebrospinal fluid (CSF) broth. Control pegs were exposed to equivalent volumes of CSF broth and sterile water. The sample size was 4 biomass values per treatment or control group. Confocal scanning laser microscopy and COMSTAT software were used to quantify biofilms 24 hours after treatment. Significant differences from control were found for all concentrations tested bar the lowest of 10 μL colloidal silver in 200 μL. At 20 μL colloidal silver, the reduction in biomass was 98.9% (mean difference between control and treatment = -4.0317 μm(3) /μm(2) , p < 0.0001). A maximum biomass reduction of 99.8% was reached at both 100 and 150 μL colloidal silver (mean differences = -4.0681 and -4.0675μm(3) /μm(2) , respectively, p < 0.0001). Colloidal silver directly attenuates in vitro S. aureus biofilms. © 2014 ARS-AAOA, LLC.
NASA Astrophysics Data System (ADS)
Hilpert, Markus; Johnson, William P.
2018-01-01
We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.
Partitioning of total mercury and methylmercury to the colloidal phase in freshwaters.
Babiarz, C L; Hurley, J P; Hoffmann, S R; Andren, A W; Shafer, M M; Armstrong, D E
2001-12-15
Using tangential flow ultrafiltration, total mercury (HgT) and methylmercury (MeHg) concentrations in the colloidal phase (0.4 microm-10 kDa) were determined for 15 freshwaters located in the upper Midwest (Minnesota, Michigan, and Wisconsin) and the Southern United States (Georgia and Florida). Unfiltered concentrations were typical of those reported for freshwater and ranged from 0.9 to 27.1 ng L(-1) HgT and from 0.08 to 0.86 ng L(-1) MeHg. For some rivers, HgT and MeHg in the colloidal phase comprised up to 72% of the respective unfiltered concentration. On average, however, HgT and MeHg concentrations were evenly distributed between the particulate (>0.4 microm), colloidal, and dissolved (<10 kDa) phases. The pool of Hg in the colloidal phase decreased with increasing specific conductance. Results from experiments on freshwaters with artificially elevated specific conductance suggest that HgT and MeHg may partition to different subfractions of colloidal material. The colloidal-phase HgT correlation with filtered organic carbon (OC(F)) was generally poor (r2 < 0.14; p > 0.07), but the regression of MeHg with OC(F) was strong, especially in the upper Midwest (r2 = 0.78; p < 0.01). On a mass basis, colloidal-phase Hg concentrations were similar to those of unimpacted sediments in the Midwest. Mercury to carbon ratios averaged 352 pg of HgT/mg of C and 25 pg of MeHg/mg of C and were not correlated to ionic strength. The log of the partition coefficient (log K(D)) for HgT and MeHg ranged from 3.7 to 6.4 and was typical of freshwater values determined using a 0.4 microm cutoff between the particulate phase and the dissolved phase. Log K(D) calculated using the <10 kDa fraction as "dissolved" ranged from 4.3 to 6.6 and had a smaller standard deviation about the mean. In addition, our data support the "particle concentration effect" (PCE) hypothesis that the association of Hg with colloids in the filter-passing fraction can lower the observed log K(D). The similarity between colloidal and particulate-phase partition coefficients suggests that colloidal mass and not preferential colloidal partitioning drives the PCE.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Gao, B.; Steenhuis, T. S.
2008-12-01
Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.
Colloidal gas aphron foams: A novel approach to a hydrogel based tissue engineered myocardial patch
NASA Astrophysics Data System (ADS)
Johnson, Elizabeth Edna
Cardiovascular disease currently affects an estimated 58 million Americans and is the leading cause of death in the US. Over 2.3 million Americans are currently living with heart failure a leading cause of which is acute myocardial infarction, during which a part of the heart muscle is damaged beyond repair. There is a great need to develop treatments for damaged heart tissue. One potential therapy involves replacement of nonfunctioning scar tissue with a patch of healthy, functioning tissue. A tissue engineered cardiac patch would be ideal for such an application. Tissue engineering techniques require the use of porous scaffolds, which serve as a 3-D template for initial cell attachment and grow-th leading to tissue formation. The scaffold must also have mechanical properties closely matching those of the tissues at the site of implantation. Our research presents a new approach to meet these design requirements. A unique interaction between poly(vinyl alcohol) and amino acids has been discovered by our lab, resulting in the production of novel gels. These unique synthetic hydrogels along with one natural hydrogel, alginate (derived from brown seaweed), have been coupled with a new approach to tissue scaffold fabrication using solid colloidal gas aphrons (CGAs). CGAs are colloidal foams containing uniform bubbles with diameters on the order of micrometers. Upon solidification the GCAs form a porous, 3-D network suitable for a tissue scaffold. The project encompasses four specific aims: (I) characterize hydrogel formation mechanism, (II) use colloidal gas aphrons to produce hydrogel scaffolds, (III) chemically and physically characterize scaffold materials and (IV) optimize and evaluate scaffold biocompatibility.
Colloidal alloys with preassembled clusters and spheres.
Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J
2017-06-01
Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Toshihiro, E-mail: nakamura@el.gunma-u.ac.jp; Watanabe, Kanta; Adachi, Sadao
2016-01-11
We reported the preparation of bright and multicolor luminescent colloidal Si nanocrystal (Si-nc) by pulsed UV laser irradiation to porous Si (PSi) in an organic solvent. The different-luminescence-color (different-sized) colloidal Si-nc was produced by the pulsed laser-induced fragmentation of different-sized porous nanostructures. The colloidal Si-nc samples were found to have higher photoluminescence quantum efficiencies (20%–23%) than the PSi samples (1%–3%). The brighter emission of the colloidal Si-nc was attributed to an enhanced radiative band-to-band transition rate due to the presence of a surface organic layer formed by UV laser-induced hydrosilylation.
Colloids and the Microcirculation.
He, Huaiwu; Liu, Dawei; Ince, Can
2018-05-01
Colloid solutions have been advocated for use in treating hypovolemia due to their expected effect on improving intravascular retention compared with crystalloid solutions. Because the ultimate desired effect of fluid resuscitation is the improvement of microcirculatory perfusion and tissue oxygenation, it is of interest to study the effects of colloids and crystalloids at the level of microcirculation under conditions of shock and fluid resuscitation, and to explore the potential benefits of using colloids in terms of recruiting the microcirculation under conditions of hypovolemia. This article reviews the physiochemical properties of the various types of colloid solutions (eg, gelatin, dextrans, hydroxyethyl starches, and albumin) and the effects that they have under various conditions of hypovolemia in experimental and clinical scenarios.
Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc
1997-01-01
This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.
Transport and Retention of Colloids in Porous Media: Does Shape Really Matter?
The effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were c...
[Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].
Afonina, I A; Kraeva, L A; Tseneva, G Ia
2010-01-01
It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.
Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi
2009-02-05
We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.
Active colloids in the context of chemical kinetics
NASA Astrophysics Data System (ADS)
Oshanin, G.; Popescu, M. N.; Dietrich, S.
2017-03-01
We study a mesoscopic model of a chemically active colloidal particle which on certain parts of its surface promotes chemical reactions in the surrounding solution. For reasons of simplicity and conceptual clarity, we focus on the case in which only electrically neutral species are present in the solution and on chemical reactions which are described by first order kinetics. Within a self-consistent approach we explicitly determine the steady state product and reactant number density fields around the colloid as functionals of the interaction potentials of the various molecular species in solution with the colloid. By using a reciprocal theorem, this allows us to compute and to interpret—in a transparent way in terms of the classical Smoluchowski theory of chemical kinetics—the external force needed to keep such a catalytically active colloid at rest (stall force) or, equivalently, the corresponding velocity of the colloid if it is free to move. We use the particular case of triangular-well interaction potentials as a benchmark example for applying the general theoretical framework developed here. For this latter case, we derive explicit expressions for the dependences of the quantities of interest on the diffusion coefficients of the chemical species, the reaction rate constant, the coverage by catalyst, the size of the colloid, as well as on the parameters of the interaction potentials. These expressions provide a detailed picture of the phenomenology associated with catalytically-active colloids and self-diffusiophoresis.
[MAXIMUM SINGLE DOSE OF COLLOIDAL SILVER NEGATIVELY AFFECTS ERYTHROPOIESIS IN VITRO].
Tishevskayal, N V; Zakharovl, Y M; Bolotovl, A A; Arkhipenko, Yu V; Sazontova, T G
2015-01-01
Erythroblastic islets (EI) of rat bone marrow were cultured for 24 h in the presence of silver nanoparticles (1.07 · 10(-4) mg/ml; 1.07 · 10(-3) mg/ml; and 1.07 · 10(-2) mg/mL). The colloidal silver at 1.07 · 10(-3) mg/ml concentration inhibited the formation of new Elby disrupting contacts of bone marrow macrophages with CFU-E (erythropoiesis de novo) by 65.3% (p < 0.05). Colloidal silver nanoparticles suppressed the reconstruction of erythropoiesis and inhibited the formation of new EI by disrupting contacts of CFU-E and central macrophages with matured erythroidal "crown" (erythropoiesis de repeto). The colloidal silver concentration of 1.07 · 10(-3) mg/ml in the culture medium also reduced the number of self-reconstructing EI by 67.5% (p <0.05), whereas 1.07 · 10(-2) mg/ml colloidal silver reduced this value by 93.7% (p < 0.05). Silver nanoparticles retarded maturation of erythroid cells at the stage of oxiphylic normoblast denucleation: 1.07 · 10(-3) mg/ml colloidal silver increased the number of mature El by 53% (p < 0.05). The retardation of erythropoiesis by colloidal silver in concentration equivalent to the maximum single dose is related to the effect of silver nanoparticles rather than glycerol present in the colloidal suspension.
Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise
2006-10-01
We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronn, L.J.; Paquelet, J.R.; Tetalman, M.R.
Imaging of the bone marrow by radionuclide scanning was performed using colloids, which are phagocytized by the reticuloendothelial cells of the marrow, or radioiron, which is incorporated into reticulocytes. The use of the former radiopharmaceutical is based on the assumption, generally valid except in aplastic states or after irradiation, that the distribution of hematopoietic and reticuloendothelial tissue in the marrow is similar. Regardless of the method used, active adult marrow is normally distributed only in the axial skeleton and proximal humeri and femurs. Marrow imaging has been used in the evaluation of myeloproliferative disorders, leukemia, lymphoma, aplastic states, malignancy metastaticmore » to marrow, and hemolytic anemia. We report a case of thalassemia major in which the diagnosis of intrathoracic extramedullary hematopoiesis was confirmed with the /sup 99m/Tc sulfur colloid bone marrow scan.« less
NASA Astrophysics Data System (ADS)
Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna
Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.
Malik, V.; Goodwill, J.; Mallapragada, S.; ...
2014-11-13
The rate of heating of a water-based colloid of uniformly sized 15 nm magnetic nanoparticles by high-amplitude and high-frequency ac magnetic field induced by the resonating LC circuit (nanoTherics Magnetherm) was measured. The results are analyzed in terms of specific energy absorption rate (SAR). Fitting field amplitude and frequency dependences of SAR to the linear response theory, magnetic moment per particles was extracted. The value of magnetic moment was independently evaluated from dc magnetization measurements (Quantum Design MPMS) of a frozen colloid by fitting field-dependent magnetization to Langevin function. The two methods produced similar results, which are compared to themore » theoretical expectation for this particle size. Additionally, analysis of SAR curves yielded effective relaxation time.« less
Lucero, María Luisa; Patterson, Andrew B
2012-06-01
This study evaluated the tissue distribution of total radioactivity in male albino, male pigmented, and time-mated female albino rats after oral administration of a single dose of [¹⁴C]-bilastine (20 mg/kg). Although only 1 animal was analyzed at each time point, there were apparent differences in bilastine distribution. Radioactivity was distributed to only a few tissues at low levels in male rats, whereas distribution was more extensive and at higher levels in female rats. This may be a simple sex-related difference. In each group and at each time point, concentrations of radioactivity were high in the liver and kidney, reflecting the role of these organs in the elimination process. In male albino rats, no radioactivity was measurable by 72 hours postdose. In male pigmented rats, only the eye and uveal tract had measurable levels of radioactivity at 24 hours. Measureable levels of radioactivity were retained in these tissues at the final sampling time point (336 hours postdose), indicating a degree of melanin-associated binding. In time-mated female rats, but not in albino or pigmented male rats, there was evidence of low-level passage of radioactivity across the placental barrier into fetal tissues as well as low-level transfer of radioactivity into the brain.
Fukuda, Tomokazu; Kino, Yasushi; Abe, Yasuyuki; Yamashiro, Hideaki; Kobayashi, Jin; Shimizu, Yoshinaka; Takahashi, Atsushi; Suzuki, Toshihiko; Chiba, Mirei; Takahashi, Shintaro; Inoue, Kazuya; Kuwahara, Yoshikazu; Morimoto, Motoko; Shinoda, Hisashi; Hiji, Masahiro; Sekine, Tsutomu; Fukumoto, Manabu; Isogai, Emiko
2015-01-01
The accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) released a large amount of radioactive substances into the environment. Furthermore, beef contaminated with radioactive cesium above the 500 Bq/kg safety standard was circulated in the food chain in 2011. Japanese consumers remain concerned about the safety of radioactively contaminated food. In our previous study, we detected a linear correlation between radioactive cesium ((137) Cs) activity in blood and muscle around 500 to 2500 Bq/kg in cattle. However, it was unclear whether the correlation was maintained at a lower radioactivity close to the current safety standard of 100 Bq/kg. In this study, we evaluated 17 cattle in the FNPP evacuation zone that had a (137) Cs blood level less than 10 Bq/kg. The results showed a linear correlation between blood (137) Cs and muscle (137) Cs (Y = 28.0X, R(2) = 0.590) at low radioactivity concentration, indicating that cesium radioactivity in the muscle can be estimated from blood radioactivity. This technique would be useful in detecting high-risk cattle before they enter the market, and will contribute to food safety. © 2014 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Varney, Michael C. M.
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to deviate from Stokes-like behavior at very low Reynolds numbers and is understood by accounting for periodic landscapes of elastic interaction potential between the particle and cholesteric host medium due to surface anchoring. This work extends our understanding of how colloids interact with liquid crystals and topological defects, and introduces a powerful method of colloidal manipulation with many potential applications.
Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger
2007-03-13
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.
SURFACE CHEMICAL EFFECTS ON COLLOID STABILITY AND TRANSPORT THROUGH NATURAL POROUS MEDIA
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...
Roles of Reversible and Irreversible Aggregation in Sugar Processing
USDA-ARS?s Scientific Manuscript database
Colloids (1-1000 nm particles) in sugar cane/beet juice originate from non-sucrose impurities (polyphenolic colorants, residual soil, polysaccharides) of the plant materials; additional colloids form during the high temperature processing. Colloids are reactive towards aggregation, sorption, desorp...
Agarwal, Gaurav; Rajan, Sendhil; Mayilvaganan, Sabaretnam; Mishra, Anjali; Krishnani, Narendra; Gambhir, Sanjay
2018-05-01
The current standard-of-care for surgical staging of the axilla in clinically node-negative (N0) early breast cancers is sentinel lymph node biopsy (SLNB), which requires expensive radiopharmaceuticals for efficacious results. In-house produced low-cost radiopharmaceuticals may be the solution and have shown efficacy in earlier observational/pilot studies. We compared SLNB using in-house prepared radiopharmaceutical ( 99m Tc-Antimony-colloid) versus commercially marketed radiopharmaceutical ( 99m Tc-Sulphur-colloid) in this prospective randomized study. 78 clinically N0 early breast cancer patients (T1/2, N0 stages), undergoing primary surgery were prospectively randomized 1:1 into two groups; to receive SLNB using methylene blue, and either 99m Tc-Antimony colloid (Group-1) or 99m Tc-Sulphur colloid (Group-2). Completion axillary dissection was done in all (validation SLNB). SLNB indices were compared between the groups. The groups were comparable with regard to age, stage, tumour size, hormone receptors and HER2neu status. Cost of the in-house prepared 99m Tc-antimony colloid was 16-times lesser compared to 99m Tc-sulphur colloid. SLN identification rates (IR) in Groups 1 and 2 were 100 and 97.4% respectively, (p > 0.05). False negative rates (FNR) in Group 1 and 2 were 6.3% (1/16 patients) and 7.7% (1/13 patients), respectively, (p > 0.05). There were no major allergic reactions in either group. In this prospective randomized trial on early breast cancer patients, accuracy of SLNB was comparable using in-house prepared, 99m Tc-antimony colloid and commercially marketed 99m Tc-sulphur colloid as radiopharmaceutical, while 99m Tc-antimony colloid was much cheaper than 99m Tc-sulphur colloid.
Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures
Conrad, Jacinta C.
2014-01-01
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow. PMID:24894062
Zhao, Wenqiang; Walker, Sharon L; Huang, Qiaoyun; Cai, Peng
2014-04-15
Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mohanty, Banalata
2006-01-01
Extracellular accumulations of two distinct types, colloid-filled follicles and fibrous-material-containing cysts, were observed in the pituitary gland of two species of Indian wild birds, Halcyon smyrnensis perpulchra and Lonchura striata striata. Colloid follicles were regular structures and distributed throughout the pars distalis (PD). The fibrous cysts were irregular structures, bigger than the colloid follicles and mostly observed towards the ventral margin of the PD. Sometimes disruption of the outer margin with depletion of fibrous material from the cavity was observed. Hormone-secreting cells of various types, anti-adrenocorticotropic-hormone-, anti-prolactin-, anti-growth-hormone- and anti-luteinizing-hormone-immunoreactive cells were encountered bordering both the colloid follicles and fibrous cysts. Neither the colloid nor the fibrous material showed any immunoreaction to any of the pituitary hormone antisera. On histochemical staining colloid was positive to periodic acid-Schiff (PAS) and fibrous materials stained with Alcian blue-PAS-orange G staining. Colloid depositions in the pituitary gland of these two wild birds were correlated to age, more in numbers in the adult birds than in the young ones. Fibrous-material-containing cysts were elucidated in the pituitary gland of adult birds only. These were more prevalent in the pituitary of reproductively active birds. Regular morphology of the colloid follicles, overall distribution in the adenohypophysis and dense nature of deposition of the colloid suggest the accumulation of this type may be the secretory products of both granulated and agranulated pituitary cell types. Absence of immunoreactivity of the colloid against pituitary hormone antisera points out that the storage form may differ chemically from the bioactive hormones. The spatial distribution of fibrous-material-containing cysts mostly towards the ventral PD, observations of immunoreactive cell fragmentations inside the cysts, and their disrupted margins suggest these structures may have some role in discharging the intraglandular degradation products. 2006 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshio; Matsudo, Hiromu; Li, Ting-ting; Shibuya, Kyosuke; Kubota, Yohsuke; Oikawa, Takahiro; Nakagawa, Tomohiko; Gonda, Kohsuke
2016-03-01
The present work proposes preparation methods for quantum dot/silica (QD/SiO2) core-shell particles that immobilize Au nanoparticles (QD/SiO2/Au). A colloid solution of QD/SiO2 core-shell particles with an average size of 47.0 ± 6.1 nm was prepared by a sol-gel reaction of tetraethyl orthosilicate in the presence of the QDs with an average size of 10.3 ± 2.1 nm. A colloid solution of Au nanoparticles with an average size of 17.9 ± 1.3 nm was prepared by reducing Au3+ ions with sodium citrate in water at 80 °C. Introduction of amino groups to QD/SiO2 particle surfaces was performed using (3-aminopropyl)-triethoxysilane (QD/SiO2-NH2). The QD/SiO2/Au particles were fabricated by mixing the Au particle colloid solution and the QD/SiO2-NH2 particle colloid solution. Values of radiant efficiency and computed tomography for the QD/SiO2/Au particle colloid solution were 2.23 × 107 (p/s/cm2/sr)/(μW/cm2) at a QD concentration of 8 × 10-7 M and 1180 ± 314 Hounsfield units and an Au concentration of 5.4 × 10-2 M. The QD/SiO2/Au particle colloid solution was injected into a mouse chest wall. Fluorescence emitted from the colloid solution could be detected on the skin covering the chest wall. The colloid solution could also be X-ray-imaged in the chest wall. Consequently, the QD/SiO2/Au particle colloid solution was found to have dual functions, i.e., fluorescence emission and X-ray absorption in vivo, which makes the colloid solution suitable to function as a contrast agent for dual imaging processes.
Development of a universal solvent for the decontamination of acidic liquid radioactive wastes
NASA Astrophysics Data System (ADS)
Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.
1999-01-01
A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.
Development of a Scalable Process Control System for Chemical Soil Washing to Remove Uranyl Oxide
2015-05-01
ICET also has a fully equipped counting laboratory for the evaluation of radioactive samples . Photographs of the 1-meter and 3-meter motorized...the leachate will be monitored using a gamma detector. There are numerous naturally occurring radioactive materials in soil . ICET has developed a...48.6% from 238U and 49.2% from 234U. The 238U in NU also contains daughters that are radioactive . This increases the activity of samples over long
ANTS (FORMICA RUFA) AS POSSIBLE INDICATORS FOR RADIOACTIVE FALLOUT (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, R.; Courtois, G.; Anguenot, F.
1963-01-01
A measurement of the radioactivity of anthills was made, and the results lead to the conclusion that the radioactivity is found in the ants and not in the anthills themselves. An examination of the gamma spectrum shows an apparent period of 38 days. It is suggested that the ants fix the fallout by a mechanism in direct connection with their habit of sampling the sugar excretion of tree aphis. The impontance of ants as fallout detectors cannot be evaluated as yet. (J.S.R.)
Colloidal assembly directed by virtual magnetic moulds
NASA Astrophysics Data System (ADS)
Demirörs, Ahmet F.; Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.
2013-11-01
Interest in assemblies of colloidal particles has long been motivated by their applications in photonics, electronics, sensors and microlenses. Existing assembly schemes can position colloids of one type relatively flexibly into a range of desired structures, but it remains challenging to produce multicomponent lattices, clusters with precisely controlled symmetries and three-dimensional assemblies. A few schemes can efficiently produce complex colloidal structures, but they require system-specific procedures. Here we show that magnetic field microgradients established in a paramagnetic fluid can serve as `virtual moulds' to act as templates for the assembly of large numbers (~108) of both non-magnetic and magnetic colloidal particles with micrometre precision and typical yields of 80 to 90 per cent. We illustrate the versatility of this approach by producing single-component and multicomponent colloidal arrays, complex three-dimensional structures and a variety of colloidal molecules from polymeric particles, silica particles and live bacteria and by showing that all of these structures can be made permanent. In addition, although our magnetic moulds currently resemble optical traps in that they are limited to the manipulation of micrometre-sized objects, they are massively parallel and can manipulate non-magnetic and magnetic objects simultaneously in two and three dimensions.
Inventions Utilizing Microfluidics and Colloidal Particles
NASA Technical Reports Server (NTRS)
Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.
2009-01-01
Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.
NASA Astrophysics Data System (ADS)
Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D.
2017-01-01
Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.
Peng, Chenhui; Turiv, Taras; Zhang, Rui; Guo, Yubing; Shiyanovskii, Sergij V; Wei, Qi-Huo; de Pablo, Juan; Lavrentovich, Oleg D
2017-01-11
Placing colloidal particles in predesigned sites represents a major challenge of the current state-of-the-art colloidal science. Nematic liquid crystals with spatially varying director patterns represent a promising approach to achieve a well-controlled placement of colloidal particles thanks to the elastic forces between the particles and the surrounding landscape of molecular orientation. Here we demonstrate how the spatially varying director field can be used to control placement of non-spherical particles of boomerang shape. The boomerang colloids create director distortions of a dipolar symmetry. When a boomerang particle is placed in a periodic splay-bend director pattern, it migrates towards the region of a maximum bend. The behavior is contrasted to that one of spherical particles with normal surface anchoring, which also produce dipolar director distortions, but prefer to compartmentalize into the regions with a maximum splay. The splay-bend periodic landscape thus allows one to spatially separate these two types of particles. By exploring overdamped dynamics of the colloids, we determine elastic driving forces responsible for the preferential placement. Control of colloidal locations through patterned molecular orientation can be explored for future applications in microfluidic, lab on a chip, sensing and sorting devices.
Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.
2006-01-01
The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haiping; Liao, Jianhua; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000
2014-03-01
Graphical abstract: - Highlights: • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids were prepared by hydrothermal methods. • The properties of TiO{sub 2} nanocrystal colloids can be tuned by tungsten doping. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher stability and dispersity. • W{sup 6+}-doped TiO{sub 2} nanocrystal colloids show higher photocatalytic activity. - Abstract: The effects of tungsten doping on the morphology, stability and photocatalytic activity of TiO{sub 2} nanocrystal colloids were investigated. The nanostructure, chemical state of Ti, W, O, and the properties of tungsten doped TiO{sub 2} samples were investigated carefully by TEM, XRD, XPS, UV–vis, PLmore » and photocatalytic degradation experiments. And the structure–activity relationship was discussed according to the analysis and measurement results. The analysis results reveal that the morphology, zeta potential and photocatalytic activity of TiO{sub 2} nanocrystals can be easily tuned by changing the tungsten doping concentration. The tungsten doped TiO{sub 2} colloid combines the characters of high dispersity and high photocatalytic activity.« less
Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections
NASA Astrophysics Data System (ADS)
Le, Anh-Tuan; Tam Le, Thi; Quy Nguyen, Van; Hoang Tran, Huy; Dang, Duc Anh; Tran, Quang Huy; Vu, Dinh Lam
2012-12-01
In this work we have demonstrated a powerful disinfectant ability of colloidal silver nanoparticles (NPs) for the prevention of gastrointestinal bacterial infections. The silver NPs colloid was synthesized by a UV-enhanced chemical precipitation. Two gastrointestinal bacterial strains of Escherichia coli (ATCC 43888-O157:k-:H7) and Vibrio cholerae (O1) were used to verify the antibacterial activity of the as-prepared silver NPs colloid by means of surface disinfection assay in agar plates and turbidity assay in liquid media. Transmission electron microscopy was also employed to analyze the ultrastructural changes of bacterial cells caused by silver NPs. Noticeably, our silver NPs colloid displayed a highly effective bactericidal effect against two tested gastrointestinal bacterial strains at a silver concentration as low as ˜3 mg l-1. More importantly, the silver NPs colloid showed an enhancement of antibacterial activity and long-lasting disinfectant effect as compared to conventional chloramin B (5%) disinfection agent. These advantages of the as-prepared colloidal silver NPs make them very promising for environmental treatments contaminated with gastrointestinal bacteria and other infectious pathogens. Moreover, the powerful disinfectant activity of silver-containing materials can also help in controlling and preventing further outbreak of diseases.
Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction
NASA Astrophysics Data System (ADS)
Harden, James L.; Guo, Hongyu; Bertrand, Martine; Shendruk, Tyler N.; Ramakrishnan, Subramanian; Leheny, Robert L.
2018-01-01
Colloidal suspensions transform between fluid and disordered solid states as parameters such as the colloid volume fraction and the strength and nature of the colloidal interactions are varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates both a scientific challenge and an opportunity for designing suspensions for specific applications. In this paper, we report a novel mechanism of gel formation in mixtures of weakly attractive nanocolloids with modest size ratio. Employing a combination of x-ray photon correlation spectroscopy, rheometry, and molecular dynamics simulations, we find that gels are stable at remarkably weaker attraction in mixtures with size ratio near two than in the corresponding monodisperse suspensions. In contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures is triggered by microphase demixing of the species into dense regions of immobile smaller colloids surrounded by clusters of mobile larger colloids that is not predicted by mean-field thermodynamic considerations. These results point to a new route for tailoring nanostructured colloidal solids through judicious combination of interparticle interaction and size distribution.
10 CFR 100.10 - Factors to be considered when evaluating sites.
Code of Federal Regulations, 2013 CFR
2013-01-01
... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...
10 CFR 100.10 - Factors to be considered when evaluating sites.
Code of Federal Regulations, 2012 CFR
2012-01-01
... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...
10 CFR 100.10 - Factors to be considered when evaluating sites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...
Colloid transport in model fracture filling materials
NASA Astrophysics Data System (ADS)
Wold, S.; Garcia-Garcia, S.; Jonsson, M.
2010-12-01
Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture minerals was studied prior to the transport experiments under the same conditions. By varying the amount of solid substrate, it was possible to determine an interaction constant from a linear expression. Complementary zeta potential measurements and scanning electron microscopy (SEM) imaging were performed to examine the mineral surfaces after exposure to colloids. In experiments with low flow rates the retention of the colloids in the transport experiments were attributed to the interaction constants including both physical filtration and sorption. At higher flow rate the interactions between colloids and mineral surfaces were also significant but not as pronounced. Immobilization and retardation of the colloids were reflected by the interaction constants, which included both an irreversible and a reversible component of physical filtration and sorption. References Darbha, G.K., Schaefer, T., Heberling, F., Lüttge, A. and Fisher, C. 2010. Retention of Latex Colloids on Calcite as a Function of Surface Roughness and Topography. Langmuir, 26(7), 4743-4752. Filby, A., Plaschke, M., Geckeis, H., Fanghänel, Th. 2008. Interaction of latex colloids with mineral surfaces and Grimsel granodiorite. J. Contam. Hydrol., 102, 273-284.
Colloidal Electrolytes and the Critical Micelle Concentration
ERIC Educational Resources Information Center
Knowlton, L. G.
1970-01-01
Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)
2017-05-12
were resolved by a technical approach that included three well-integrated experimental tasks follows: Task A: Quantify the impact of time- dependent ...aggregate breakdown and colloid dispersion depending on the extent of Fe(III) reduction and altered the pore structure and chemical reactivity of the porous...have significant effect on the transport of molecular and colloidal tracers (but not on the ionic tracer Br-) and colloid generation depending on
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Rigorous theoretical framework for particle sizing in turbid colloids using light refraction.
García-Valenzuela, Augusto; Barrera, Rubén G; Gutierrez-Reyes, Edahí
2008-11-24
Using a non-local effective-medium approach, we analyze the refraction of light in a colloidal medium. We discuss the theoretical grounds and all the necessary precautions to design and perform experiments to measure the effective refractive index in dilute colloids. As an application, we show that it is possible to retrieve the size of small dielectric particles in a colloid by measuring the complex effective refractive index and the volume fraction occupied by the particles.
Elasticity and critical bending moment of model colloidal aggregates.
Pantina, John P; Furst, Eric M
2005-04-08
The bending mechanics of singly bonded colloidal aggregates are measured using laser tweezers. We find that the colloidal bonds are capable of supporting significant torques, providing a direct measurement of the tangential interactions between particles. A critical bending moment marks the limit of linear bending elasticity, past which small-scale rearrangements occur. These mechanical properties underlie the rheology and dynamics of colloidal gels formed by diffusion-limited cluster aggregation, and give critical insight into the contact interactions between Brownian particles.
Accelerated stability assay (ASA) for colloidal systems.
Chong, Josephine Y T; Mulet, Xavier; Boyd, Ben J; Drummond, Calum J
2014-05-12
Assessment of the stability of colloidal systems, in particular lyotropic liquid crystalline dispersions, such as cubosomes and hexosomes, is typically performed qualitatively or with limited throughput on specialized instruments. Here, an accelerated stability assay for colloidal particles has been developed in 384-well plates with standard laboratory equipment. These protocols enable quantitative assessments of colloidal stability. To demonstrate the applicability of the assay, several steric stabilizers for cubic phase nanostructured particles (cubosomes) have been compared to the current "gold standard" Pluronic F127.
Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier
2017-03-01
Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.
Comparison of whole blood and plasma colloid osmotic pressure in healthy cats.
Jackson, Mary L; Kerl, Marie E; Tynan, Beth; Mann, F A
2014-01-01
To establish reference intervals for whole blood and plasma colloid osmotic pressure (COP) in healthy cats between the ages of 1 and 10 years using a cage-side colloid osmometer. Prospective, observational study. University veterinary teaching hospital. Sixty-three healthy cats. Phlebotomy. Whole blood COP mean was 24.4 (±2.78) mmHg and plasma COP mean was 24.3 (±2.59) mmHg. Reference interval for our study population of feline whole blood COP was 18.9 to 30.4 mmHg, and for our study population of feline plasma COP was 18.3 to 30.8 mmHg. Difference of paired whole blood COP and plasma COP was +0.23 ± 1.68 mmHg (P = 0.32). There was no significant difference when comparing COP from neutered male and neutered female cats. Total protein and albumin were significantly correlated with whole blood COP (total protein to whole blood COP P < 0.0001, r = 0.53; albumin to whole blood COP P <0.0001, r = 0.68) and plasma COP (total protein to plasma COP P = 0.0025, r = 0.41; albumin to plasma COP P < 0.0001, r = 0.66). No significant difference was found between mean whole blood and plasma COP in this study population of cats. Even though not statistically significant, evaluation of paired whole blood COP and plasma COP did reveal a slight difference; therefore, it seems prudent to maintain sample consistency for serial evaluations in cats. © Veterinary Emergency and Critical Care Society 2014.
Automated classification of radiology reports to facilitate retrospective study in radiology.
Zhou, Yihua; Amundson, Per K; Yu, Fang; Kessler, Marcus M; Benzinger, Tammie L S; Wippold, Franz J
2014-12-01
Retrospective research is an import tool in radiology. Identifying imaging examinations appropriate for a given research question from the unstructured radiology reports is extremely useful, but labor-intensive. Using the machine learning text-mining methods implemented in LingPipe [1], we evaluated the performance of the dynamic language model (DLM) and the Naïve Bayesian (NB) classifiers in classifying radiology reports to facilitate identification of radiological examinations for research projects. The training dataset consisted of 14,325 sentences from 11,432 radiology reports randomly selected from a database of 5,104,594 reports in all disciplines of radiology. The training sentences were categorized manually into six categories (Positive, Differential, Post Treatment, Negative, Normal, and History). A 10-fold cross-validation [2] was used to evaluate the performance of the models, which were tested in classification of radiology reports for cases of sellar or suprasellar masses and colloid cysts. The average accuracies for the DLM and NB classifiers were 88.5% with 95% confidence interval (CI) of 1.9% and 85.9% with 95% CI of 2.0%, respectively. The DLM performed slightly better and was used to classify 1,397 radiology reports containing the keywords "sellar or suprasellar mass", or "colloid cyst". The DLM model produced an accuracy of 88.2% with 95% CI of 2.1% for 959 reports that contain "sellar or suprasellar mass" and an accuracy of 86.3% with 95% CI of 2.5% for 437 reports of "colloid cyst". We conclude that automated classification of radiology reports using machine learning techniques can effectively facilitate the identification of cases suitable for retrospective research.
NASA Astrophysics Data System (ADS)
Tyffani, D. M.; Utomo, S. B.; Rahardjo, S. B.
2018-05-01
This research was aimed to find out how students’ need of chemistry module based REACT (Relating, Experiencing, Applying, Cooperating and Transferring) to improve students’ critical thinking ability. The subjects of this research was the studentsof XI grade in three school in even semester of academic year 2016-2017 that contained of 48 students of Senior High School 2 Bandar Lampung, 38 students of Senior High School 3 Bandar Lampung and 46 students of Senior High School 12 Bandar Lampung. The data was gathering used non-test method by using open questionnaire with 13 questions. The results showed that 84,84% of students stated that the development of chemistry module based REACT on colloid material is needed. The analysis of hand’s book was used aspects of critical thinking proposed by Facione (2011) are interpretation, analysis, evaluation, conclusion, and explanation. Based on the result of the analysis of hand’s book at Senior High School 12 Bandar Lampung for critical thinking in colloid material that indicate 50% indicator is appropriate, while for indicator of inference and explanation only 16,67% appropriate, then for indicator analysis and evaluation doesn’t have conformity. Based on the results of the analysis shows that the hand’s book used have not empowered critical thinking ability with maximum. The development of chemistry module on colloid material is needed to overcome the problem of hand’s book that hasn’t maximized critical thinking ability, then the development of module oriented to REACT learning model (Relating, Experiencing, Applying, Cooperating, and Transferring).
Impact of nZVI stability on mobility in porous media.
Kocur, Chris M; O'Carroll, Denis M; Sleep, Brent E
2013-02-01
Nano-scale zero valent iron (nZVI) has received significant attention because of its potential to rapidly reduce a number of priority source zone contaminants. In order to effectively deliver nZVI to the source zone the nZVI particles must be stable. Previous laboratory studies have demonstrated the mobility of polymer modified suspensions of low concentration nZVI. More recently studies have shown potential for higher concentration nZVI suspensions to be transmitted through porous media. However, with increasing nZVI concentration aggregation is accelerated, reducing the available time for injection before nZVI settles. In this study the colloidal stability and mobility of nZVI concurrently synthesized and stabilized in the presence of carboxy-methyl-cellulose (CMC) are evaluated in one-dimensional column experiments. Low pore water velocity nZVI injections (4, 2, and 0.25 m/day) conducted over periods as long as 80 h with no mixing of the influent reservoir were used to investigate the effects of prolonged aggregation and settling of colloids on transport. A numerical simulator, based on colloid filtration theory, but accounting for particle aggregation and settling was used to evaluate the contributions of aggregation and settling on nZVI mobility. Results suggest that the prediction of nZVI sticking efficiency in column experiments becomes increasingly influenced by aggregation and settling in the influent reservoir as the period of injection increases. Consideration of nZVI stability is required for the prediction of nZVI mobility at the field scale and for the design of successful nZVI remediation plans. Copyright © 2012 Elsevier B.V. All rights reserved.
Meng, Kai; Sun, Wenjing; Zhao, Peng; Zhang, Limei; Cai, Dongjie; Cheng, Ziqiang; Guo, Huijun; Liu, Jianzhu; Yang, Dubao; Wang, Shujing; Chai, Tongjie
2014-05-15
A one-step immunochromatographic assay using gold nanoparticles coated with polyclonal antibody (pAb) against Mycoplasma suis (M. suis) was developed in this study for the detection of M. suis in porcine plasma. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with pAb against M. suis. The pAb was produced by immunizing the BALB/c mice with recombinant MSG1 (rMSG1) protein from M. suis expressed in Escherichia coli. The optimal concentrations of the capture antibody and the coating antibody were 12 μg/ml and 1.5 mg/ml, respectively, and that of the blocking buffer was 1% bovine serum albumin. The lower detection limit of the immunochromatographic assay test was 100 ng/ml with visual detection under optimal conditions of analysis. Classical swine fever virus, porcine reproductive and respiratory syndrome virus, swine pneumonia mycoplasma, swine toxoplasma, and porcine parvovirus were used to evaluate the specificity of the immunochromatographic strips. No cross-reaction of the antibodies with other related swine pathogens was observed. This qualitative test based on the visual evaluation of the results did not require any equipment. The assay time for M. suis detection was less than 10 min, suitable for rapid detection at the grassroots level. The one-step colloidal gold immunochromatographic strips that we developed had high specificity and sensitivity. Therefore, this method would be feasible, convenient, rapid, and effective for detecting M. suis in porcine plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Evaluating the DLVO Model for Non-Aqueous Colloidal Suspensions
NASA Astrophysics Data System (ADS)
DeCarlo, Keith Joseph
Application of DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory for suspensions utilizing non-aqueous suspension mediums has been tested. Prediction of suspension stability using DLVO theory requires the calculation of the attractive and repulsive forces between the suspended colloids and that the only significant stabilization mechanism present is electrostatic stabilization which was tested. The van der Waals attractive potential was calculated for 12 different colloids in 11 suspending mediums in accord with Lifshitz's treatment and a new approximation proposing that the material bandgap energy can be used to approximate the Hamaker constant was developed. This treatment requires the complete knowledge of the permittivity as a function of frequency for all the components in the respective suspension. The permittivity data was simplified using a damped oscillator model described by Ninham and Parsegian. All permittivity data was compiled from the literature. Microwave data was tabulated by NIST, infrared parameters were determined from FTIR data, and the ultraviolet/visual parameters were determined via Cauchy plots or estimated by the bandgap. Using the bandgap to approximate the ultraviolet/visual parameters proved to be more accurate than other approximations when compared to the accepted values. It was found that the non-oxide and non-stoichiometric colloids tested had the largest associated van der Waals attractive force. The van der Waals potential calculated for oxide particles was found to follow a direct relationship with the ionic character of the bonding. Repulsive forces were calculated for 12 different colloids in 11 suspending mediums. The calculated repulsive potential generated is a function of both the magnitude of charge generated on each colloid (zeta-potential) and the size of the interacting double-layers. zeta-potential was measured for each suspension using a microelectrophoretic technique and the double-layer thickness was calculated. It was demonstrated that as the polarity of the suspending medium increased, the thickness of the double-layer also increased. A large double-layer thickness was found to directly correlate to the suspension stability. A large double-layer thickness results in a decreased slope of the charge degradation from the colloidal surface to the bulk suspension. This coupled with a large magnitude of surface charge increases the probability of dispersion. Through viscosity measurements, the stability mechanism of each suspension was determined by comparison of the viscosity at a shear rate of 1.0s -1 with the shear thinning exponent. It was determined that, of the suspension mediums tested, heptane, octanoic acid, and poly(ethylene glycol) introduce non-electrostatic stabilization mechanisms significant enough to invalidate the DLVO predictions for suspensions made using those mediums. Consistent with DLVO theory, the total interaction potential was calculated by summation of the repulsive and attractive potentials of each suspension (84 suspensions total) as a function of separation distance. Based upon the results of the summation, the suspension stability can be predicted. 64 of the 84 suspensions were determined to be unstable as the colloids agglomerated in the primary minimum, 11 suspensions were determined to be weakly flocculated, and nine suspensions were found to be stable. Viscosity was used to determine the critical value for the thermal energy barrier and to test the DLVO predictions. The critical value of the thermal energy barrier was found to be 2.0 x 10 -6J/m2. Therefore, for suspensions calculated to have a thermal energy barrier less than the critical value, the Brownian motion of the colloids in suspension at 298K were enough to overcome it, resulting in agglomeration at the primary minimum. For suspensions with a thermal barrier larger than 2.0 x 10-6J/m2, the interacting colloids moved into the secondary energy minimum. All suspensions tested in which the thermal energy barrier was less than 2.0 x 10-6J/m 2 had a specific viscosity at a shear rate of 1.0s-1 greater than the cut-off viscosity for stability. If the colloids moved into the secondary minimum, the resulting suspension was characterized as either being weakly flocculated or stable. Weakly flocculated suspensions had an equilibrium separation distance of colloids less than 40nm resulting in a viscosity at a shear rate of 1.0s-1 larger than the determined specific viscosity cut-off (1.1x 104), but a shear thinning exponent greater than 1.0. Stable suspensions were defined by the colloids as having an equilibrium separation distance greater than 40nm, resulting in viscosity values at a shear rate of 1.0s-1 smaller than that of the determined cut-off viscosity value.
Mechanical Failure in Colloidal Gels
NASA Astrophysics Data System (ADS)
Kodger, Thomas Edward
When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form them.
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction ismore » determined which is found to be equal to the lattice spacing of the crystal.« less