NASA Astrophysics Data System (ADS)
Sonzogni, A. A.
2001-07-01
Experimental data on ground- and excited-state properties for all nuclei with mass number A = 144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work.
Nuclear Data Sheets for A = 251–259 (odd)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J.K.
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all known nuclei with mass numbers A = 251, 253, 255, 257, and 259.
Nuclear Data Sheets for A = 136
NASA Astrophysics Data System (ADS)
Sonzogni, A. A.
2002-04-01
Experimental data on ground-- and excited--state properties for all known nuclei with mass number A=136 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are presented. This work supersedes the 1994 evaluation by J.K. Tuli (1994Tu01).
Nuclear Data Sheets for A = 230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J. K.
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A=230. This evaluation includes the first experimental evidence of 230Am, produced through the 197Au(40Ar,3n)234Bk (α decay to 230Am) reaction, E(40Ar)=188.4 MeV (2003MoZX).
Nuclear Data Sheets for A = 245
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli,J.K.
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A = 245. This evaluation revises the earlier one by Y.A. Akovali (1992Ak05).
Nuclear Data Sheets for A = 68
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutchan, E. A.
2012-07-01
The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A = 68 mass chain have been reviewed. Nuclides ranging from Cr (Z = 24) to Br (Z = 35) are included. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. This work supersedes the previous evaluation of the data on these nuclides (2002Bu29).
Nuclear Data Sheets for A = 230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J.K.
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A=230. This evaluation includes the first experimental evidence of {sup 230}Am, produced through the {sup 197}Au({sup 40}Ar,3n){sup 234}Bk ({alpha} decay to {sup 230}Am) reaction, E({sup 40}Ar)=188.4 MeV (2003MoZX).
Nuclear Data Sheets for A = 69
NASA Astrophysics Data System (ADS)
Nesaraja, C. D.
2014-01-01
Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesaraja, C.D.
Experimental data on ground– and excited–state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05)
Nuclear Data Sheets for A = 138
NASA Astrophysics Data System (ADS)
Sonzogni, A. A.
2003-03-01
Experimental data on ground- and excited-state properties for all known nuclei with mass number A=138 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are given. This work supersedes the 1995 evaluation by J.K. Tuli (1995Tu01). Manuscripts published before December 2002 have been included in this work.
Nuclear Data Sheets for A = 143
NASA Astrophysics Data System (ADS)
Browne, E.; Tuli, J. K.
2012-03-01
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A = 143. The evaluation, which includes all data received by May 2011, supersedes the 2001 evaluation by J.K. Tuli, published in Nuclear Data Sheets94, 605 (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne E.; Tuli J.; Browne,E.
The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A = 143. The evaluation, which includes all data received by May 2011, supersedes the 2001 evaluation by J.K. Tuli, published in Nuclear Data Sheets94, 605 (2001).
Chemical purification of lanthanides for low-background experiments
NASA Astrophysics Data System (ADS)
Boiko, R. S.
2017-10-01
There are many potentially active isotopes among the lanthanide elements which are possible to use for low-background experiments to search for double β decay, dark matter, to investigate rare α and β decays. These kind of experiments require very low level of radioactive contamination, but commercially available compounds of lanthanides are always contamined by uranium, thorium, radium, potassium, etc. A simple chemical method based on liquid-liquid extraction has been applied for the purification of CeO2, Nd2O3 and Gd˙2O˙3 from radioactive traces. Detailed schemes of purification procedure are described. Measurements by using HPGe spectrometry demonstrate high efficiency in K, Ra, Th, U contaminations reduction on at least one order of magnitude.
Experimental study of the β decay of the very neutron-rich nucleus Ge 85
Korgul, A.; Rykaczewski, Krzysztof Piotr; Grzywacz, Robert Kazimierz; ...
2017-04-04
The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 33 85As 52 populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.
Simulation of decay processes and radiation transport times in radioactivity measurements
NASA Astrophysics Data System (ADS)
García-Toraño, E.; Peyres, V.; Bé, M.-M.; Dulieu, C.; Lépy, M.-C.; Salvat, F.
2017-04-01
The Fortran subroutine package PENNUC, which simulates random decay pathways of radioactive nuclides, is described. The decay scheme of the active nuclide is obtained from the NUCLEIDE database, whose web application has been complemented with the option of exporting nuclear decay data (possible nuclear transitions, branching ratios, type and energy of emitted particles) in a format that is readable by the simulation subroutines. In the case of beta emitters, the initial energy of the electron or positron is sampled from the theoretical Fermi spectrum. De-excitation of the atomic electron cloud following electron capture and internal conversion is described using transition probabilities from the LLNL Evaluated Atomic Data Library and empirical or calculated energies of released X rays and Auger electrons. The time evolution of radiation showers is determined by considering the lifetimes of nuclear and atomic levels, as well as radiation propagation times. Although PENNUC is designed to operate independently, here it is used in conjunction with the electron-photon transport code PENELOPE, and both together allow the simulation of experiments with radioactive sources in complex material structures consisting of homogeneous bodies limited by quadric surfaces. The reliability of these simulation tools is demonstrated through comparisons of simulated and measured energy spectra from radionuclides with complex multi-gamma spectra, nuclides with metastable levels in their decay pathways, nuclides with two daughters, and beta plus emitters.
β -delayed neutron emission from 85Ga
NASA Astrophysics Data System (ADS)
Miernik, K.; Rykaczewski, K. P.; Grzywacz, R.; Gross, C. J.; Madurga, M.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Korgul, A.; Mazzocchi, C.; Mendez, A. J.; Liu, Y.; Paulauskas, S. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.
2018-05-01
Decay of 85Ga was studied by means of β -neutron-γ spectroscopy. A pure beam of 85Ga was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and a high-resolution electromagnetic separator. The β -delayed neutron emission probability was measured for the first time, yielding 70(5)%. An upper limit of 0.1% for β -delayed two-neutron emission was also experimentally established for the first time. A detailed decay scheme including absolute γ -ray intensities was obtained. Results are compared with theoretical β -delayed emission models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich C. W.; Reich,C.W.
2012-01-01
The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A = 159 mass chain have been reviewed. Nuclides ranging from Pm (Z = 61) through Os (Z = 74) are included. These data are summarized and presented, together with adopted level schemes and properties. This work supersedes the previous evaluation of the data on these nuclides (2003He11).
Nuclear Data Sheets for A = 196
NASA Astrophysics Data System (ADS)
Xiaolong, Huang
2007-06-01
The 1998 version of nuclear data sheets for A = 196 has been revised and updated on the basis of the experimental results from various decay and reaction studies before January 2006. The experimental data for all known nuclei of A = 196 (Os,Ir,Pt,Au,Hg, Tl,Pb,Bi,Po,At,Rn) have been reevaluated. The experimental methods, references,Jπ arguments,and necessary comments are given in the text. Summary band structure drawings and level schemes from both radioactive decay and reaction studies are presented. Also of special interest are the new identification of superdeformed bands in 196Pb and 196Bi.
NASA Astrophysics Data System (ADS)
Singh, Balraj; Chen, Jun
2018-01-01
Experimental nuclear structure data for the known A=164 isobaric nuclides (Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir) have been evaluated, and presented together with Adopted properties of level energies, and associated γ rays. The decay data for these nuclides have also been evaluated, providing Adopted values of γ and β radiations, and log ft values. No excited states are known in 164Eu, 164Tb, and 164Ir. Information for 164Gd, 164Re and 164Os is limited due to insufficient experimental data. For radioactive nuclides, decay schemes of 164Sm, 164Gd and 164Re are not known, and those of 164W, 164Tb, 164Lu, 164Hf, 164Ta and 164W are incomplete. The decay schemes of 164Ho and the two activities of 164Tm seem fairly complete. The decay scheme of 164Yb presents a major problem that the Q(ε) value of 887 keV 29 recommended in 2017Wa10 is in disagreement with the population of levels at 928, 952 and 1060 keV in the daughter nucleus. This decay scheme, which so far has been mainly reported in a secondary reference (1982AdZZ) needs further investigation. Also the masses of 164Yb and 164Tm need either new measurements or a re-evaluation to resolve discrepancy of about 220 keV in the Q value of 164Yb decay to 164Tm. The reactions and decays for which no new experimental information has become available since the 2001 update have undergone revisions to incorporate conversion coefficients from BrIcc code, and evaluated Q values from 2017Wa10, but the essential content of such datasets may have remained the same as in previous evaluations. In this respect the present work greatly benefited from all the previous NDS evaluations (2001Si27,1992Sh07, 1986Sh03,1974Bu30), but at the same time data presented herein supersede all the previous published evaluations.
Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.
Recent advances in β-decay spectroscopy at CARIBU
NASA Astrophysics Data System (ADS)
Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.
2016-09-01
β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.
Kinetics analysis and quantitative calculations for the successive radioactive decay process
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang
2015-01-01
The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.
Investigation of 124Xe nuclear structure with the 8Pi spectrometer at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Radich, Allison; Garrett, P.; Jigmeddorj, B.; Michetti-Wilson, J.; Diaz Varela, A.; Hadinia, B.; Bianco, L.; Wong, J.; Chagnon-Lessard, S.; Dunlop, R.; Finlay, P.; Laffoley, A.; Leach, K. G.; Rand, E.; Sumithrarachchi, C.; Svennson, C. E.; Wood, J. L.; Yates, S. W.; Andreoiu, C.; Starosta, K.; Cross, D.; Garnsworthy, A. B.; Hackman, G.; Ball, G.; Triambak, S.
2013-10-01
The 124Xe nucleus has been thought to obey O(6) symmetry but a recent Coulomb excitation study has found that while O(5) may be preserved, O(6) appears to be badly broken. To further characterize the structure of this nucleus, a beta-decay experiment was performed at the TRIUMF-ISAC facility. A beam of radioactive 124Cs at a rate of 9.8 × 107 ions/s was implanted at the center of the 8Pi spectrometer where it underwent β + /EC decay into stable 124Xe. High-statistics gamma-gamma coincidence measurements have been analyzed to add to the level scheme of 124Xe, which has been extended considerably. The high statistics data set has revealed a new decay branch from a 124Cs high-spin isomer as well as several very-weak transitions between low-spin states in 124Xe. Branching ratios and B(E2) transition strengths have been calculated for the updated level scheme. The results will be important in determining collective properties and nuclear structure of the 124Xe.
Measurement of DT neutron-induced activity in glass-microshell laser fusion targets
NASA Astrophysics Data System (ADS)
Lane, S. M.; Campbell, E. M.; Bennett, C.
1980-10-01
Laser fusion targets consisting of DT gas contained in Teflon-coated glass microshells produce 14.1-MeV neutrons that can interact with the (Si-28) nuclei in the glass to produce radioactive (Al-28). Using a very efficient collection-detection scheme that could detect the decay of 10% of the (Al-28) created, these nuclei are identified by their 1.78-MeV gamma ray, which decayed with a 2.2-min half-life. From the number of (Al-28) nuclei created and the neutron yield the compressed glass areal density was found to be 0.0059 g/sq cm.
Nuclear Data Sheets for A = 161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich C. W.; Reich C.W.
2011-10-01
The experimental results from the various reaction and radioactive decay studies leading to nuclides in the A = 161 mass chain have been reviewed. Nuclides ranging from Sm (Z = 62) through Os (Z = 76) are included, with Os being a new entry based on a recently reported study. These data are summarized and presented, together with adopted level schemes and properties. This work supersedes the previous evaluation (2000Re14) of the data on these nuclides.
NASA Astrophysics Data System (ADS)
Larijani, Cyrus Kouroush
This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via gamma, alpha and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.
Teaching Radioactive Decay and Radiometric Dating: An Analog Activity Based on Fluid Dynamics
ERIC Educational Resources Information Center
Claiborne, Lily L.; Miller, Calvin F.
2012-01-01
We present a new laboratory activity for teaching radioactive decay by using hydrodynamic processes as an analog and an evaluation of its efficacy in the classroom. A fluid flowing from an upper beaker into a lower beaker (shampoo in this case) behaves mathematically identically to radioactive decay, mimicking the exponential decay process,…
Proton-proton correlations observed in two-proton radioactivity of 94Ag.
Mukha, Ivan; Roeckl, Ernst; Batist, Leonid; Blazhev, Andrey; Döring, Joachim; Grawe, Hubert; Grigorenko, Leonid; Huyse, Mark; Janas, Zenon; Kirchner, Reinhard; La Commara, Marco; Mazzocchi, Chiara; Tabor, Sam L; Van Duppen, Piet
2006-01-19
The stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref. 5). Here we report proton-proton correlations observed during the radioactive decay of a spinning long-lived state of the lightest known isotope of silver, 94Ag, which is known to undergo one-proton decay. We infer from these correlations that the long-lived state must also decay through simultaneous two-proton emission, making 94Ag the first nucleus to exhibit one- as well as two-proton radioactivity. We attribute the two-proton emission behaviour and the unexpectedly large probability for this decay mechanism to a very large deformation of the parent nucleus into a prolate (cigar-like) shape, which facilitates emission of protons either from the same or from opposite ends of the 'cigar'.
Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J
2012-09-01
The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Goode, D.J.; Konikow, Leonard F.
1989-01-01
The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.
Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat
2001-01-01
In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.
NASA Astrophysics Data System (ADS)
Moon, B.; Moon, C.-B.; Odahara, A.; Lozeva, R.; Söderström, P.-A.; Browne, F.; Yuan, C.; Yagi, A.; Hong, B.; Jung, H. S.; Lee, P.; Lee, C. S.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Sumikama, T.; Watanabe, H.; Kojouharov, I.; Isobe, T.; Baba, H.; Sakurai, H.; Daido, R.; Fang, Y.; Nishibata, H.; Patel, Z.; Rice, S.; Sinclair, L.; Wu, J.; Xu, Z. Y.; Yokoyama, R.; Kubo, T.; Inabe, N.; Suzuki, H.; Fukuda, N.; Kameda, D.; Takeda, H.; Ahn, D. S.; Shimizu, Y.; Murai, D.; Bello Garrote, F. L.; Daugas, J. M.; Didierjean, F.; Ideguchi, E.; Ishigaki, T.; Morimoto, S.; Niikura, M.; Nishizuka, I.; Komatsubara, T.; Kwon, Y. K.; Tshoo, K.
2017-07-01
We report for the first time the β -decay scheme of 140Te (Z =52 ) to 140I (Z =53 ), with a specific focus on the Gamow-Teller strength along N =87 isotones. These results were obtained in an experiment performed at the Radioactive Ion Beam Factory (RIBF), RIKEN, where the parent nuclide, 140Te, was produced through the in-flight fission of a 238U beam at 345 MeV per nucleon impinging on a 9Be target. Based on data from the high-efficiency γ -ray spectrometer, EUROBALL-RIKEN Cluster Array (EURICA), we constructed a decay scheme of 140I. The half-life of 140Te has been determined to be 350(5) ms. A level at 926 keV has been assigned as a (1+) state based on the logf t value of 4.89(6). This (1+) state, commonly observed in odd-odd nuclei, can be interpreted in terms of the π h11 /2ν h9 /2 configuration formed by the Gamow-Teller transition between a neutron in the h9 /2 orbital and a proton in the h11 /2 orbital. We observe a sharp contrast to this type of β -decay branching to the lower-lying 1+ states between 140I and 136I, where we see a large reduction as the number of neutrons increases. This is in contrast to the prediction by large-scale shell model calculations. To investigate this type of the suppression, results of the Nilsson model calculations will be discussed. Along the isotones with N =87 , we discuss a characteristic feature of the Gamow-Teller distributions at 1+ states with respect to the isospin difference.
Explicit solutions for exit-only radioactive decay chains
NASA Astrophysics Data System (ADS)
Yuan, Ding; Kernan, Warnick
2007-05-01
In this study, we extended Bateman's [Proc. Cambridge Philos. Soc. 15, 423 (1910)] original work for solving radioactive decay chains and explicitly derived analytic solutions for generic exit-only radioactive decay problems under given initial conditions. Instead of using the conventional Laplace transform for solving Bateman's equations, we used a much simpler algebraic approach. Finally, we discuss methods of breaking down certain classes of large decay chains into collections of simpler chains for easy handling.
Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios
Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less
Incorporating radioactive decay into charging and coagulation of multicomponent radioactive aerosols
Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...
2017-09-29
Compositional changes by the decay of radionuclides in radioactive aerosols can influence their charging state, coagulation frequency and size distribution throughout their atmospheric lifetime. The importance of such effects is unknown as they have not been considered in microphysical and global radioactivity transport studies to date. Here, we explore the effects of compositional changes on the charging efficiency and coagulation rates of aerosols using a set of kinetic equations that couple all relevant processes (decay, charging and coagulation) and their evolution over time. Compared to a coupled aggregation-tracer model for the prediction of the radioactive composition of particulates undergoing coagulation,more » our kinetic approach can provide similar results using much less central processing unit time. Altogether with other considerations, our approach is computational efficient enough to allow implementation in 3D atmospheric transport models. The decay of radionuclides and the production of decay products within radioactive aerosols may significantly affect the aerosol charging rates, and either hinder or promote the coagulation of multicomponent radioactive aerosols. Our results suggest that radiological phenomena occurring within radioactive aerosols, as well as subsequent effects on aerosol microphysics, should be considered in regional and global models to more accurately predict radioactivity transport in the atmosphere in case of a nuclear plant accident.« less
Fischbach, Ephraim; Jenkins, Jere
2013-08-27
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
Fischbach, Ephraim; Jenkins, Jere
2016-05-10
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
Fischbach, Ephraim; Jenkins, Jere
2014-02-04
A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.
García-Toraño, E
2018-04-01
The knowledge of the energies of the alpha particles emitted in the radioactive decay of a nuclide is a key factor in the construction of its decay scheme. Virtually all existing data are based on a few absolute measurements made by magnetic spectrometry (MS), to which most other MS measurements are traced. An alternative solution would be the use of time-of-flight detectors. This paper discusses the main aspects to be considered in the design of such detectors, and the performances that could be reasonably expected. Based on the concepts discussed here, it is estimated that an energy resolution about 2.5keV may be attainable with a good quality source. Copyright © 2017 Elsevier Ltd. All rights reserved.
Principles of gross alpha and beta radioactivity detection in water.
Semkow, T M; Parekh, P P
2001-11-01
A simultaneous detection of gross alpha and beta radioactivity was studied using gas proportional counting. This measurement is a part of a method mandated by US Environmental Protection Agency to screen for alpha and beta radioactivity in drinking water. Responses of a gas proportional detector to alpha and beta particles from several radionuclides were determined in drop and electroplated geometries. It is shown that, while the alpha radioactivity can be measured accurately in the presence of beta radioactivity, the opposite is not typically true due to alpha-to-beta crosstalk. The crosstalk, originating from the emission of conversion and Auger electrons as well as x rays, is shown to be dependent primarily on the particular alpha-decay scheme while the dependence on alpha energy is small but negligible. It was measured at 28-35% for 241Am, 22-24% for 230Th, and 4.9-6.5% for 239Pu. For 210Po, the crosstalk of 1.2-1.6% was observed mostly due to energy retardation. A method of reducing the crosstalk to a <3% level is proposed by absorbing the atomic electrons in a 6.2 mg cm(-2) Al absorber, at the same time decreasing the beta efficiency by 16-31%.
NASA Astrophysics Data System (ADS)
Kocher, D. C.; Smith, J. S.
Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.
Nuclear Data Sheets for A = 94
NASA Astrophysics Data System (ADS)
Abriola, D.; Sonzogni, A. A.
2006-09-01
Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 94 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. The Hager-Seltzer internal conversion coefficients are listed for gamma rays of known multipolarity. This work supersedes the 1992 evaluation by J.K. Tuli (1992Tu02). Since 1992, many articles have been published which were incorporated in this evaluation. In summary, high-spin data using large arrays of Ge detectors have been obtained for 94Kr (2000Rz02), 94Sr (1995Ha20), 94Zr (2002Fo03,2005Pa48), 94Nb (2000Ma63), 94Mo (1998Kh04), 94Tc (2000Gh01), 94Ru (1994Ju03,1994Ro08), 94Rh (1994Ar33), and 94Pd (2003Ma24). A new isomer was observed in 94Y (1999Ge01). The low-spin levels in 98Mo were systematically studied using a variety of experimental techniques (2003Fr02). Considerable effort was spent investigating the decay of 94Ag and the levels of 94Pd (2006Mu03,2005Mu15,2004BaZY,2004Pl01,2002La18), in particular, the (21+) level in 94Ag is the first level observed to undergo both single and double proton radioactivity.
Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.
2015-01-01
Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257
Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K
2015-07-01
The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.
Chemical Consequences of Radioactive Decay and their Biological Implications.
DeJesus, Onofre T
2017-11-10
The chemical effects of radioactive decay arise from (1) transmutation, (2) formation of charged daughter nuclei, (3) recoil of the daughter nuclei, (4) electron "shakeoff" phenomenon and (5) vacancy cascade in decays via electron capture and internal conversion. This review aims to reiterate what has been known for a long time regarding the chemical consequences of radioactive decay and gives a historical perspective to the observations that led to their elucidation. The energetics of the recoil process in each decay mode is discussed in relation to the chemical bond between the decaying nucleus and the parent molecule. Special attention is given to the biological effects of the Auger process following decay by electron capture and internal conversion because of their possible utility in internal radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Detection of neutrinos, antineutrinos, and neutrino-like particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischbach, Ephraim
An apparatus for detecting the presence of a nuclear reactor by the detection of antineutrinos from the reactor can include a radioactive sample having a measurable nuclear activity level and a decay rate capable of changing in response to the presence of antineutrinos, and a detector associated with the radioactive sample. The detector is responsive to at least one of a particle or radiation formed by decay of the radioactive sample. A processor associated with the detector can correlate rate of decay of the radioactive sample to a flux of the antineutrinos to detect the reactor.
ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.
ERIC Educational Resources Information Center
DETERLINE, WILLIAM A.; KLAUS, DAVID J.
THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND…
ALARA: The next link in a chain of activation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, P.P.H.; Henderson, D.L.
1996-12-31
The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols A. L.; Tuli J.; Nichols,A.L.
Experimental nuclear spectroscopic data for known nuclides of mass number 62 (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge) have been evaluated and presented together with adopted properties of levels and {gamma} rays. New high-spin data are available for {sup 62}Ga, and {sup 62}Zn. Results of in-beam {gamma}-ray studies for {sup 62}Cu producing high-spin states are in conflict in terms of gamma-ray placements and branching ratios. In the opinion of the evaluators, a detailed study of high-spin structures in {sup 62}Cu is needed to obtain a consistent and confident level scheme. Precise studies of superallowed {beta} decaymore » of {sup 62}Ga to {sup 62}Zn by several groups have extended the decay scheme. No significant new data, since the 2000 NDS for A = 62 (2000Hu18), have been reported for {sup 62}Co, {sup 62}Ni and {sup 62}Cu. No data are yet available for excited states in {sup 62}Ti and {sup 62}V, and those for {sup 62}Cr and {sup 62}Ge are scarce. The level lifetime data are available in very few cases. The radioactive decay schemes of {sup 62}Ti and {sup 62}Ge are unknown, and those for {sup 62}V, {sup 62}Cr and 92-ms {sup 62}Mn are scantily known. The data presented here supersede those in the earlier NDS publications.« less
Update and evaluation of decay data for spent nuclear fuel analyses
NASA Astrophysics Data System (ADS)
Simeonov, Teodosi; Wemple, Charles
2017-09-01
Studsvik's approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL) and processed (ESTAR) sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources). Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.
Radiochemistry in the twenty-first century: Strenghts, weaknesses, opportunities and threats
NASA Astrophysics Data System (ADS)
de Goeij, J. J. M.
2003-01-01
Strengths, weaknesses, opportunities and threats of radiochemistry and associated nuclear chemistry are discussed. For that purpose radiochemistry is subdivided into three categories. The first category covers fundamental aspects, e.g. nuclear reaction cross-sections, production routes with associated yields and radionuclidic impurities, decay schemes, radiochemical separations, recoil and hot-atom chemistry, isotope effects and fractionation, and interaction of radiation with matter and detection. The second category covers topics where radioactivity is inextricably involved, e.g. the nuclear fuel cycle, very heavy elements and other actinides, primordial and cosmogenic radioactivity, and radionuclide techniques for dating. The third category involves radioactivity as essential part of a technique. On one hand radioactivity is used here as source of ionising radiation for food conservation, polymerisation of plastics, sterilisation, radiotherapy and pain palliation. On the other hand it is used to get information on systems and materials, via radiotracer methods and nuclear activation techniques. In particular the latter field is experiencing strong competition with other, non-nuclear methods. In this frame it is indicated what is required to achieve a situation where nuclear analytical techniques may successfully be exploited to the full extent of their potentials, particularly in providing valuable and sometimes unique information.
10 CFR 35.92 - Decay-in-storage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... days for decay-in-storage before disposal without regard to its radioactivity if it— (1) Monitors byproduct material at the surface before disposal and determines that its radioactivity cannot be...
β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae
NASA Astrophysics Data System (ADS)
Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.
2008-10-01
We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.
Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki
2013-03-01
Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.
DECAY OF INCORPORATED RADIOACTIVE PHOSPHORUS DURING REPRODUCTION OF BACTERIOPHAGE T2
Stent, Gunther S.
1955-01-01
The multiplication of vegetative T2 bacteriophage in B/r bacteria has been followed by studying the lethal effects of decay of incorporated radiophosphorus P32 at various stages of the eclipse period. Experiment I. Non-radioactive B/r bacteria were infected with highly radioactive (i.e. P32-unstable) T2 and infection allowed to proceed at 37°C. for various numbers of minutes before freezing the infected cells and storing them in liquid nitrogen. The longer development had been allowed to proceed at 37°C. before freezing, the slower the inactivation of the frozen infective centers by P32 decay. Samples which were frozen after incubation for 9 minutes were completely stable. Experiment II. Radioactive B/r bacteria in radioactive growth medium were infected with non-radioactive (i.e. stable) T2 and incubated for various lengths of time before being frozen and stored in liquid nitrogen, like those of Experiment I. In this case, the infective centers were stable to P32 decay as long as they were frozen before the end of the eclipse period. The T2 progeny phages issuing from the infected bacteria were P32-unstable. Experiment III. Radioactive B/r bacteria in radioactive medium were infected with radioactive (i.e. P32-unstable) T2 and otherwise incubated and frozen like those of the first two experiments. In this case, the same progressive stabilization, of the infective centers towards inactivation by P32 decay was observed as that found in Experiment I. The ability to yield infective progeny of infected bacteria incubated for 10 minutes at 37°C. before freezing could no longer be destroyed by P32 decay. The progeny issuing from the infected cells were as unstable as the parental phage. These results could be explained by one of three general hypotheses. As vegetative phage begins to multiply, it is possible that: (a) there is a high probability that any part of the vegetative phage already duplicated can be saved after its destruction by P32 decay through a process analogous to multiplicity reactivation or, (b) there occurs a change in state of the deoxyribonucleic acid (DNA) preliminary to or in the course of its replication that renders it refractory to destruction by P32 decay, or, finally (c) there occurs a transfer of the genetic factors from the DNA of the infecting phage to another substance not sensitive to destruction by P32 decay. PMID:13242767
Nuclear Data Sheets for A = 210
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuzzoha Basunia, M.
2014-09-15
Evaluated spectroscopic data for {sup 210}Au, {sup 210}Hg, {sup 210}Tl, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 210}At, {sup 210}Rn, {sup 210}Fr, {sup 210}Ra, {sup 210}Ac, and {sup 210}Th and corresponding level schemes from radioactive decay and reaction studies are presented. This evaluation supersedes the previous evaluation by E. Browne (2003Br13). Highlights of this publication are the identification of new μs isomers of {sup 210}Hg by 2013Go10 and measurement of an excited level energy at 1709 keV 30 of {sup 210}Rn from {sup 214}Rn α decay: 68.6 μs by 2006Ku26 denoted as x+1664.6 in the Adopted Levels. Earlier experimental limitsmore » for x≤50 keV was proposed in 1979Po19 and 1982Po03 – (HI,xnγ)« less
Nuclear structure and β -decay schemes for Te nuclides beyond N =82
NASA Astrophysics Data System (ADS)
Moon, B.; Moon, C.-B.; Söderström, P.-A.; Odahara, A.; Lozeva, R.; Hong, B.; Browne, F.; Jung, H. S.; Lee, P.; Lee, C. S.; Yagi, A.; Yuan, C.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Sumikama, T.; Watanabe, H.; Kojouharov, I.; Isobe, T.; Baba, H.; Sakurai, H.; Daido, R.; Fang, Y.; Nishibata, H.; Patel, Z.; Rice, S.; Sinclair, L.; Wu, J.; Xu, Z. Y.; Yokoyama, R.; Kubo, T.; Inabe, N.; Suzuki, H.; Fukuda, N.; Kameda, D.; Takeda, H.; Ahn, D. S.; Shimizu, Y.; Murai, D.; Bello Garrote, F. L.; Daugas, J. M.; Didierjean, F.; Ideguchi, E.; Ishigaki, T.; Morimoto, S.; Niikura, M.; Nishizuka, I.; Komatsubara, T.; Kwon, Y. K.; Tshoo, K.
2017-04-01
We study for the first time the internal structure of 140Te through the β -delayed γ -ray spectroscopy of 140Sb. The very neutron-rich 140Sb nuclei with Z =51 and N =89 were produced by the in-flight fission of 238U beams at the Radioactive Isotope Beam Factory, RIKEN. The half-life and spin-parity of 140Sb are reported as 173 ±12 ms and 3-, respectively. In addition to the excited states of 140Te produced by the β -decay branch, the β -delayed one-neutron and two-neutron emission branches were also established. By identifying the first 2+ and 4+ excited states of 140Te, we found that Te isotopes persist in their vibrator character with E (4+) /E (2+) =2 . We discuss the distinctive features manifest in this region revealed in pairs of isotopes with the same neutron holes and particles with respect to N =82 .
Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos; Jakubek, Jan; Platkevic, Michal
The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less
ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION
Robinson, H.P.
1959-07-14
A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.
NASA Astrophysics Data System (ADS)
Tracy, James L., Jr.
A study of ground state binding energy values listed in the Atomic Mass Evaluation 2012 (AME2012) using an interpretive approach, as opposed to the exploratory methods of previous models, is presented. This model is based on a postulate requiring all protons to pair with available neutrons to form bound alpha clusters as the ground state for an N = Z core upon which excess neutrons are added. For each core, the trend of the binding energy as a function of excess neutrons in the isotopic chain can be fit with a three-term quadratic function. The quadratic parameter reveals a smooth decaying exponential function. By re-envisioning the determination of mass excess, the constant-term fit parameters, representing N = Z nuclei, reveal a near-symmetry around Z = 50. The linear fit parameters exhibit trends which are linear functions of core size. A neutron drip-line prediction is compared against current models. By considering the possibility of an alpha-cluster core, a new ground-state structure grouping scheme is presented; nucleon-nucleon pairing is shown to have a greater role in level filling. This model, referred to as the Alpha-Deuteron-Neutron Model, yields promising first results when considering root-mean-square variances from the AME2012. The beta-decay of the neutron-rich isotope 74Cu has been studied using three high-purity Germanium clover detectors at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. A high-resolution mass separator greatly improved the purity of the 74Cu beam by removing isobaric contaminants, thus allowing decay through its isobar chain to the stable 74Ge at the center of the LeRIBSS detector array without any decay chain member dominating. Using coincidence gating techniques, 121 gamma-rays associated with 74Cu were isolated from the collective singles spectrum. Eighty-seven of these were placed in an expanded level scheme, and updated beta-feeding level intensities and log( ft) values are presented based on multiple newly-placed excited states up to 6.8 MeV. The progression of simulated Total Absorption gamma-ray Spectroscopy (TAGS) based on known levels and beta feeding values from previous measurements to this evaluation are presented and demonstrate the need for a TAGS measurement of this isotope to gain a more complete understanding of its decay scheme.
Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi
2017-01-01
A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bogner, Donna, Ed.
1988-01-01
Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without…
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
Nuclear Data Sheets for A = 94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abriola, D.; Sonzogni, A.A.
Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 94 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. The Hager-Seltzer internal conversion coefficients are listed for gamma rays of known multipolarity. This work supersedes the 1992 evaluation by J.K. Tuli (1992Tu02). Since 1992, many articles have been published which were incorporated in this evaluation. In summary, high-spin data using large arrays of Ge detectors have beenmore » obtained for {sup 94}Kr (2000Rz02), {sup 94}Sr (1995Ha20), {sup 94}Zr (2002Fo03,2005Pa48), {sup 94}Nb (2000Ma63), {sup 94}Mo (1998Kh04), {sup 94}Tc (2000Gh01), {sup 94}Ru (1994Ju03,1994Ro08), {sup 94}Rh (1994Ar33), and {sup 94}Pd (2003Ma24). A new isomer was observed in {sup 91}999Ge01). The low-spin levels in {sup 98}Mo were systematically studied using a variety of experimental techniques (2003Fr02). Considerable effort was spent investigating the decay of {sup 94}Ag and the levels of {sup 94}Pd (2006Mu03,2005Mu15,2004BaZY,2004Pl01,2002La18), in particular, the (21+) level in {sup 94}Ag is the first level observed to undergo both single and double proton radioactivity.« less
In sæcula sæculorum: A lab activity to create with students a radioactive secular equilibrium model⋆
NASA Astrophysics Data System (ADS)
Santostasi, D.
2017-03-01
The teaching of radioactivity in the high school is often difficult to implement, especially from an experimental point of view. In this paper an activity based on a laboratory experiment on radioactivity is presented. The activity was proposed to high school students in their fourth year of studies attending the summer internship organized by the University of Pavia at the Department of Physics. The experiement concerns the radon decay chain, and in particular the measurement of the activity of 214Bi , both in absence and in presence of its progenitor 222Rn . This way it is possible to observe two different decay curves: the first provides a 214Bi decay constant in agreement with the theoretical one, whereas the trend of the second one can be understood only through the hypothesis of secular equilibrium with 222Rn . Using an engaging and interesting game with dice, a model of radioactive decay was developed and performed with students divided in small groups.
MEASUREMENT OF TIME INTERVALS FOR TIME CORRELATED RADIOACTIVE DECAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindeman, H.; Mornel, E.; Galil, U.
1960-11-01
The distribution of time intervals between successive counts was measured for radioactive decay in the thorium series. The measurements showed that the classical Marsden-Barratt law does not apply to this case of timecorrelated decay. They appeared, however, to be in agreement with the theory of Lindeman-Rosen, taking into account the fact that the counter receives only the radiation emitted in a solid angle near to 2 pi . (auth)
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
Radioactive liquid wastes discharged to ground in the 200 Areas during 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirabella, J.E.
An overall summary is presented giving the radioactive liquid wastes discharged to ground during 1976 and since startup (for both total and decayed depositions) within the Production and Waste Management Division control zone (200 Area plateau). Overall summaries are also presented for 200 East Area and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites within the Production and Waste Management Division during 1976 and from startup through December 31, 1976; an estimate of the decayed activities from startup through 1976; the location and reference drawings of eachmore » disposal site; and the usage dates of each disposal site. The estimates for the radioactivity discharged and for decayed activities dicharged from startup through December 31, 1976 are based upon Item 4 of the Bibliography. The volume of liquid discharged to the ponds also includes major nonradioactive streams. The wastes discharged during 1976 to each active disposal site are detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data. An estimate of the radioactivity discharged to each active site along with the remaining decayed activities is given.« less
Simplifying the Mathematical Treatment of Radioactive Decay
ERIC Educational Resources Information Center
Auty, Geoff
2011-01-01
Derivation of the law of radioactive decay is considered without prior knowledge of calculus or the exponential series. Calculus notation and exponential functions are used because ultimately they cannot be avoided, but they are introduced in a simple way and explained as needed. (Contains 10 figures, 1 box, and 1 table.)
An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach
NASA Astrophysics Data System (ADS)
Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo
2017-07-01
In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.
Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Bianco, L.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Triambak, S.; Wong, J.; Wood, J. L.; Yates, S. W.
2011-10-01
The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam γ spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics β decay using the 8π spectrometer at the TRIUMF radioactive beam facility. The decays of 112In and 112Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0+ or 2+ three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0+ and 2+ states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.
Exploring Radioactive Decay and Geochronology through Hydrostatic Principles
NASA Astrophysics Data System (ADS)
Claiborne, L. L.; Miller, C. F.
2008-12-01
One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the results and/or designing an experiment to address complex decay chains, where the daughter products are radioactive themselves. This permits them to investigate connections between 'activity' and equilibrium and to understand how disequilibrium can develop and be used for dating. In order to evaluate the success of the activity, each student participates in pre and post assessment including stating their confidence in their understanding of the concept.
The Weak Nuclear Force: Quantum Chameleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Radioactive decay is the transmutation of one subatomic particle into another. In most instances, what happens is that existing particles move to new configurations. However in radioactive decays using the weak force, a particular kind of particle disappears and is replaced by a completely different particle. In this video, Fermilab’s Dr. Don Lincoln talks about how it all works and even describes a type of decay that has never been observed and, if it were observed, it would require the textbooks be rewritten.
High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb
NASA Astrophysics Data System (ADS)
Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2013-10-01
A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.
Radioactive decay of the late-time light curves of GRB-SNe
NASA Astrophysics Data System (ADS)
Misra, Kuntal; Fruchte, Andrew Steven
2018-04-01
We present the late-time Hubble Space Telescope observations of two GRB associated supernovae, GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data upto ˜ 320 days after the burst, we constrain the late-time decay nature of these supernovae. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB supernovae, GRB 980425/SN 1998bw and the supernova associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co?56Fe radioactive decay rate (0.0098 mag day-1) indicating that there is some leakage of gamma-rays.
Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.
Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W
2018-06-01
Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nuclear Data Sheets for A = 70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürdal, G.; McCutchan, E. A.
2016-09-01
We evaluated spectroscopic data for all nuclei with mass number A = 70, and the corresponding level schemes from radioactive decay and reaction studies are presented. Since the previous evaluation, the half-life of 70Mn has been measured and excited states in 70Fe observed for the first time. Furthermore we studied the excited states in 70Ni extensively while Coulomb excitation and collinear laser spectroscopy measurements in 70Cu have allowed for firm Jπ assignments. Despite new measurements, there remain some discrepancies in half-lives of low lying states in 70Zn. New measurements have extended the knowledge of high-spin band structures in 70Ge andmore » 70As. Our evaluation supersedes the prior A = 70 evaluation of 2004Tu09.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, P S
2006-09-27
We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less
Purification of telluric acid for SNO+ neutrinoless double-beta decay search
NASA Astrophysics Data System (ADS)
Hans, S.; Rosero, R.; Hu, L.; Chkvorets, O.; Chan, W. T.; Guan, S.; Beriguete, W.; Wright, A.; Ford, R.; Chen, M. C.; Biller, S.; Yeh, M.
2015-09-01
Tellurium-130 has the highest natural abundance of any double-beta decay isotopes. Recently it has been developed as a promising candidate for loading in liquid scintillator to explore the Majorana or Dirac nature of the neutrino through a search for neutrinoless double beta decay (0νββ). To this end, procedures have been developed to transfer tellurium ions into the organic liquid by a water-based loading technology. However, traces of naturally occurring radioactivity and cosmic-ray induced isotopes introduced into the scintillator with tellurium could produce undesirable contaminations in the 130Te 0νββ region. Measurements using various elemental spikes prepared from different chemical forms indicate that the uses of self-scavenging as well as acid and thermal recrystallization prior to the preparation of a tellurium-loaded liquid scintillator can deplete U and Th and several cosmic-activated isotopes from Te feedstock by a factor of 102-103 in a single pass. The process is also found to improve the optical transmission in the blue region, sensible to the photomultiplier tube, by removing traces of colored impurities. In addition to the scintillator-based experiments, this cleansing scheme has potential applications to the production of radiopure tellurium crystals for other rare-event experiments.
A calculation model to half-life estimate of two-proton radioactive decay process
NASA Astrophysics Data System (ADS)
Tavares, O. A. P.; Medeiros, E. L.
2018-04-01
Partial half-life of the radioactive decay by the two-proton emission mode has been estimated for proton-rich nuclei of mass number 18 < A < 68 by a model based on the quantum mechanical tunneling mechanism through a potential barrier. The Coulomb, centrifugal and overlapping contributions to the barrier have been considered within the spherical nucleus approximation. The present calculation method has been shown to be adequate in reproducing the existing experimental half-life data for 19Mg, 45Fe, 48Ni, and 54Zn 2p-emitter nuclides within a factor six. For 67Kr parent nucleus the calculated partial 2p-decay half-life has been found to be ten times greater than the recent, unique measured value at RIKEN Nishina Center. Prediction for new, yet unmeasured cases of two-proton radioactivity are also reported.
Puzzling Two-Proton Decay of 67Kr
NASA Astrophysics Data System (ADS)
Wang, S. M.; Nazarewicz, W.
2018-05-01
Ground-state two-proton (2 p ) radioactivity is a rare decay mode found in a few very proton-rich isotopes. The 2 p decay lifetime and properties of emitted protons carry invaluable information on nuclear structure in the presence of a low-lying proton continuum. The recently measured 2 p decay of 67Kr turned out to be unexpectedly fast. Since 67Kr is expected to be a deformed system, we investigate the impact of deformation effects on the 2 p radioactivity. We apply the recently developed Gamow coupled-channel framework, which allows for a precise description of three-body systems in the presence of rotational and vibrational couplings. This is the first application of a three-body approach to a two-nucleon decay from a deformed nucleus. We show that deformation couplings significantly increase the 2 p decay width of 67Kr; this finding explains the puzzling experimental data. The calculated angular proton-proton correlations reflect a competition between 1 p and 2 p decay modes in this nucleus.
Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei
NASA Astrophysics Data System (ADS)
Shamami, S. Rahimi; Pahlavani, M. R.
2018-01-01
A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.
Aguilar-Arevalo, A.
2015-08-25
We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U ( 232Th) decay rate of 5 (15) kg -1 d -1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Simore » – 32P or 210Pb – 210Bi sequences of b decays. The decay rate of 32Si was found to be 80 +110 -65 (95% CI). An upper limit of ~35 kg -1 d -1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less
NASA Astrophysics Data System (ADS)
Kellett, Mark A.; Bersillon, Olivier
2017-09-01
The Decay Data Evaluation Project (DDEP), is an international collaboration of decay data evaluators formed with groups from France, Germany, USA, China, Romania, Russia, Spain and the UK, mainly from the metrology community. DDEP members have evaluated over 220 radionuclides, following an agreed upon methodology, including a peer review. Evaluations include all relevant parameters relating to the nuclear decay and the associated atomic processes. An important output of these evaluations are recommendations for new measurements, which can serve as a basis for future measurement programmes. Recently evaluated radionuclides include: 18F, 59Fe, 82Rb, 82Sr, 88Y, 90Y, 89Zr, 94mTc, 109Cd, 133Ba, 140Ba, 140La, 151Sm and 169Er. The DDEP recommended data have recently been incorporated into the JEFF-3.3 Radioactive Decay Data Library. Other sources of nuclear data include 900 or so radionuclides converted from the Evaluated Nuclear Structure Data File (ENSDF), 500 from two UK libraries (UKPADD6.12 and UKHEDD2.6), the IAEA Actinide Decay Data Library, with the remainder converted from the NUBASE evaluation of nuclear properties. Mean decay energies for a number of radionuclides determined from total absorption gamma-ray spectroscopy (TAGS) have also been included, as well as more recent European results from TAGS measurements performed at the University of Jyväskylä by groups from the University of Valencia, Spain and SUBATECH, the University of Nantes, France. The current status of the DDEP collaboration and the JEFF Radioactive Decay Data Library will be presented. Note to the reader: the pdf file has been changed on September 22, 2017.
ERIC Educational Resources Information Center
Brady, John B.
2009-01-01
Although an understanding of radiometric dating is central to the preparation of every geologist, many students struggle with the concepts and mathematics of radioactive decay. Physical demonstrations and hands-on experiments can be used to good effect in addressing this teaching conundrum. Water, heat, and electrons all move or flow in response…
NASA Astrophysics Data System (ADS)
Arcavi, Iair
2018-03-01
The kilonova associated with GW170817 displayed early blue emission, which has been interpreted as a signature of either radioactive decay in low-opacity ejecta, relativistic boosting of radioactive decay in high-velocity ejecta, the cooling of material heated by a wind or by a “cocoon” surrounding a jet, or a combination thereof. Distinguishing between these mechanisms is important for constraining the ejecta components and their parameters, which tie directly into the physics we can learn from these events. I compile published ultraviolet, optical, and infrared light curves of the GW170817 kilonova and examine whether the combined data set can be used to distinguish between early-emission models. The combined optical data show an early rise consistent with radioactive decay of low-opacity ejecta as the main emission source, but the subsequent decline is fit well by all models. A lack of constraints on the ultraviolet flux during the first few hours after discovery allows for both radioactive decay and other cooling mechanisms to explain the early bolometric light curve. This analysis demonstrates that early (few hours after merger) high-cadence optical and ultraviolet observations will be critical for determining the source of blue emission in future kilonovae.
Role of shell corrections in the phenomenon of cluster radioactivity
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Singh, Bir Bikram; Sharma, Manoj K.
2018-05-01
The detailed investigation has been carried out to explore the role of shell corrections in the decay of various radioactive parent nuclei in trans-lead region, specifically, which lead to doubly magic 208Pb daughter nucleus through emission of clusters such as 14C, 18,20O, 22,24,26Ne, 28,30 Mg and 34S i. The fragmentation potential comprises of binding energies (BE), Coulomb potential (Vc) and nuclear or proximity potential (VP) of the decaying fragments (or clusters). It is relevant to mention here that the contributions of VLDM (T=0) and δU (T=0) in the BE have been analysed within the Strutinsky renormanlization procedure. In the framework of quantum mechanical fragmentation theory (QMFT), we have investigated the above mentioned cluster decays with and without inclusion of shell corrections in the fragmentation potential for spherical as well as non-compact oriented nuclei. We find that the experimentally observed clusters 14C, 18,20O, 22,24,26 Ne, 28,30 Mg and 34Si having doubly magic 208 Pb daughter nucleus are not strongly minimized, they do so only after the inclusion of shell corrections in the fragmentation potential. The nuclear structure information carried by the shell corrections have been explored via these calculations, within the collective clusterisation process of QMFT, in the study of ground state decay of radioactive nuclei. The role of different parts of fragmentation potentials such as VLDM, δU, Vc and Vp is dually analysed for better understanding of radioactive cluster decay.
Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays
NASA Astrophysics Data System (ADS)
Shen, Ken J.; Schwab, Josiah
2017-01-01
In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.
Evaluation of pile repair splice design.
DOT National Transportation Integrated Search
2015-12-01
The Oregon Department of Transportation (ODOT) Major Bridge Maintenance Engineer has proposed an in-house pile repair scheme for decayed piles. This repair scheme involves removing decayed area within the pile leaving a 2 outer shell, filling it u...
Project Physics Text 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Nuclear physics fundamentals are presented in this sixth unit of the Project Physics text for use by senior high students. Included are discussions of radioactivity, taking into account Bacquerel's discovery, radioactive elements, properties of radiations, radioactive transformations, decay series, and half-lives. Isotopes are analyzed in…
Nuclear Data Sheets for A = 70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gürdal, G.; McCutchan, E.A.
2016-09-15
Spectroscopic data for all nuclei with mass number A = 70 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. Since the previous evaluation, the half-life of {sup 70}Mn has been measured and excited states in {sup 70}Fe observed for the first time. Excited states in {sup 70}Ni have been more extensively studied while Coulomb excitation and collinear laser spectroscopy measurements in {sup 70}Cu have allowed for firm Jπ assignments. Despite new measurements, there remain some discrepancies in half-lives of low lying states in {sup 70}Zn. New measurements have extended the knowledge ofmore » high-spin band structures in {sup 70}Ge and {sup 70}As. This evaluation supersedes the prior A = 70 evaluation of 2004Tu09.« less
Nuclide radioactive decay data uncertainties library
NASA Astrophysics Data System (ADS)
Barabanova, D. S.; Zherdev, G. M.
2017-01-01
The results of the developing the library of uncertainties of radioactive decay data in the ABBN data library format are described. Different evaluations of uncertainties were compared and their effects on the results of calculations of residual energy release were determined using the test problems and experiment. Tables were generated in the ABBN format with the data obtained on the basis of libraries in ENDF-6 format. 3821 isotopes from the ENDF/B-7 data library, 3852 isotopes from the JEFF-3.11 data library and 1264 isotopes from the JENDL-4.0 data library were processed. It was revealed that the differences in the evaluations accepted in different decay data libraries are not so big, although they sometimes exceed the uncertainties assigned to the data in the ENDF/B-7 and JEFF-3.11 libraries, which as a rule, they agree with each other. On the basis of developed method it is supposed to create a library of data uncertainties for radioactive decay within the constant data system in FSUE RFNC-VNIIEF with its further connection with CRYSTAL module.
NASA Astrophysics Data System (ADS)
Frisoni, Manuela
2016-03-01
ANITA-2000 is a code package for the activation characterization of materials exposed to neutron irradiation released by ENEA to OECD-NEADB and ORNL-RSICC. The main component of the package is the activation code ANITA-4M that computes the radioactive inventory of a material exposed to neutron irradiation. The code requires the decay data library (file fl1) containing the quantities describing the decay properties of the unstable nuclides and the library (file fl2) containing the gamma ray spectra emitted by the radioactive nuclei. The fl1 and fl2 files of the ANITA-2000 code package, originally based on the evaluated nuclear data library FENDL/D-2.0, were recently updated on the basis of the JEFF-3.1.1 Radioactive Decay Data Library. This paper presents the results of the validation of the new fl1 decay data library through the comparison of the ANITA-4M calculated values with the measured electron and photon decay heats and activities of fusion material samples irradiated at the 14 MeV Frascati Neutron Generator (FNG) of the NEA-Frascati Research Centre. Twelve material samples were considered, namely: Mo, Cu, Hf, Mg, Ni, Cd, Sn, Re, Ti, W, Ag and Al. The ratios between calculated and experimental values (C/E) are shown and discussed in this paper.
Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu
2008-01-01
Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.
α decay and cluster radioactivity of nuclei of interest to the synthesis of Z =119 , 120 isotopes
NASA Astrophysics Data System (ADS)
Poenaru, D. N.; Gherghescu, R. A.
2018-04-01
Super-heavy nuclei of interest for the forthcoming synthesis of the isotopes with Z =119 , 120 are investigated. One of the very interesting latest experiments was performed at the velocity filter SHIP (GSI Darmstadt) trying to produce 299120 in a fusion reaction 248Cm(54Cr,3 n )299120 . We report calculations of α -decay half-lives using four models: AKRA (Akrawy), ASAF (analytical superasymmetric fission), UNIV (universal formula), and semFIS (semi-empirical formula based on fission theory). The released energy, Q , is calculated using the theoretical model of atomic masses, WS4. For Sr,9492 cluster radioactivity of 120,302300 we predict a branching ratio relative to α decay of -0.10 and 0.49, respectively, meaning that it is worth trying to detect such kinds of decay modes in competition with α decay.
Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
CRAWFORD, CHARLES L.
2004-05-26
In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks.more » Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.« less
Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
NASA Astrophysics Data System (ADS)
De Cia, Annalisa; Gal-Yam, A.; Rubin, A.; Leloudas, G.; Vreeswijk, P.; Perley, D. A.; Quimby, R.; Yan, Lin; Sullivan, M.; Flörs, A.; Sollerman, J.; Bersier, D.; Cenko, S. B.; Gal-Yam, M.; Maguire, K.; Ofek, E. O.; Prentice, S.; Schulze, S.; Spyromilio, J.; Valenti, S.; Arcavi, I.; Corsi, A.; Howell, D. A.; Mazzali, P.; Kasliwal, M. M.; Taddia, F.; Yaron, O.
2018-06-01
We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2 mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame g band span ‑22 ≲ M g ≲ ‑20 mag, and these peaks are not powered by radioactive 56Ni, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the 56Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10 M ⊙ of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of 56Co, up to ∼400 days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.
ERIC Educational Resources Information Center
Onega, Ronald J.
1969-01-01
Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)
An Excel[TM] Model of a Radioactive Series
ERIC Educational Resources Information Center
Andrews, D. G. H.
2009-01-01
A computer model of the decay of a radioactive series, written in Visual Basic in Excel[TM], is presented. The model is based on the random selection of cells in an array. The results compare well with the theoretical equations. The model is a useful tool in teaching this aspect of radioactivity. (Contains 4 figures.)
Limitations of Poisson statistics in describing radioactive decay.
Sitek, Arkadiusz; Celler, Anna M
2015-12-01
The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Papanicolopoulos, Chrysanthos Dionisios
1987-11-01
The excited states of ^{185 }{rm Au} have been studied by the radioactive decay of {^ {185m,g}Hg.} Sources of {^{185m,g}Hg} were produced by the reaction ^{176 }Hf (^{16}O, 7n) ^{185}Hg using 140 MeV ^{16}O beams from the 25 MV folded tandem of the Holifield Heavy Ion Research Facility. Sources of ^{185}Hg were mass-separated on-line using the University Isotope Separator Oak Ridge (UNISOR) facility. Multiscaled spectra of rays, x rays and conversion electrons were obtained together with gamma- gamma - t, gamma- x - t, e ^{-} - gamma - t, and e^{-}- x - t coincidence data. A decay scheme consisting of 82 excited states and 182 transitions was constructed. Bands of states associated with the s_{1over 2}, d_{3over 2} , d_{5over 2}, h_{11over 2} proton -hole configurations and the h_{9over 2} and i_{13over 2} proton-particle (intruder) configurations were constructed. In addition, a number of EO transitions were located: these de-excite levels which are interpreted as resulting from shape coexistence in the ^ {184}Pt and ^{186 }Hg "particle" and "hole" cores. The h _{9over 2} band is compared with calculations made with the Lund model of Larsson et al.
Yumoto, Yasuhiro; Okada, Shigeru; Kinno, Ikuo; Nagamatsu, Tomohiro; Nouso, Kazuhiro; Nakayama, Eiichi
2016-05-01
The clearance of solid low-level radioactive laboratory waste (LLRW) after decay-in-storage (DIS) obtained from a research institute and thoroughly separated using the separation and classification protocols presented in this study was evaluated. The radioisotope (RI) content of incinerated LLRW from the specified RI research group (group A); the RI content of LLRW obtained in fiscal year 2000, which contained radionuclides with half-lives of less than 164 d (LLRW2); and the RI content of the LLRW reported in group A's disposal records were compared. The LLRW2 and LLRW of group A were incinerated after 2 y of decay-in-storage and immediately after storage, respectively. The highest ratio of the RI of incinerated LLRW to the value in the disposal records was 2.52 for ⁵¹Cr. The radioactivities of radionuclides in both the LLRW2 and LLRW for ³⁵S, ⁴⁵Ca, ⁵¹Cr, ¹²⁵I, ³²P, ³³P, and ⁹⁹mTc and the incinerated ash after 1 y later of decay-in-storage were below the clearance level defined by the RS-G-1.7 of the International Basic Safety Standard without contamination by ³H and ¹⁴C. These remains contained very small amounts of some long-half-life radionuclides of natural origin after 7 y of decay-in-storage. This LLRW separation protocol was effective for the separation of ³H and ¹⁴C. LLRW2 after 2 years of DIS and its incinerated ash after one year later of DIS were below the clearance level for radioactivity and radioactivity concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutter, J.D.; O`Hara, F.A.; Rodenburg, W.W.
A calorimeter is a device to measure evolved or adsorbed heat. For our purposes, the heat measured is that associated with radioactive decay and the unit of measurement is the watt. Each time an atom decays, energy is released and absorbed by the surroundings and heat generated. For each isotope, this heat is a constant related to the energy of the decay particles and the half-life of the isotope. A point which is often overlooked is that calorimetry is one of the oldest techniques known for measuring radioactivity. In 1903, Pierre Curie and A. Laborde used a twin microcalorimeter tomore » determine that one gram of radium generates about 100 calories per hour. Several months later, Curie and Dewar used liquid oxygen and hydrogen to show that the amount of energy developed by radium and other radioactive elements did not depend on temperature. At that time, this observation was extremely important. It indicated that the nature of radioactivity is entirely different and cannot be compared with any known phenomena. In all other thermal processes known in physics and chemistry, the rate at which heat is developed changes with temperature. In 1942, Monsanto was asked by General Leslie Groves, Head of the Manhattan Project, to accept the responsibility for the chemistry and metallurgy of radioactive polonium. Late in 1943, two Monsanto scientists began a study of the half-life of polonium-210 using calorimetry.« less
Measurement of Radon in Indoor Air.
ERIC Educational Resources Information Center
Downey, Daniel M.; Simolunas, Glenn
1988-01-01
Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)
10 CFR 35.92 - Decay-in-storage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1) Monitors...
10 CFR 35.92 - Decay-in-storage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1) Monitors...
NASA Astrophysics Data System (ADS)
Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba
2018-03-01
We present a half-life formalism for describing the disruption of gravitationally-bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.
NASA Astrophysics Data System (ADS)
Ibragimov, Timur; Leigh, Nathan W. C.; Ryu, Taeho; Panurach, Teresa; Perna, Rosalba
2018-07-01
We present a half-life formalism for describing the disruption of gravitationally bound few-body systems, with a focus on binary-binary scattering. For negative total encounter energies, the four-body problem has three possible decay products in the point-particle limit. For each decay product and a given set of initial conditions, we obtain directly from numerical scattering simulations the half-life for the distribution of disruption times. As in radioactive decay, the half-lives should provide a direct prediction for the relative fractions of each decay product. We test this prediction with simulated data and find good agreement with our hypothesis. We briefly discuss applications of this feature of the gravitational four-body problem to populations of black holes in globular clusters. This paper, the second in the series, builds on extending the remarkable similarity between gravitational chaos at the macroscopic scale and radioactive decay at the microscopic scale to larger-N systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, T.; Kimura, K.
1959-12-01
Dust filters were examined using a radioactive solidaerosol, decay product daughters of Rn/sup 220/. An examination with a thermal precipitator revealed that the major part of particles in the radioactive aerosol were smaller than 0.5 mu in diameter. Twenty-one kinds of filters were tested. The filtering efficiency was highest in asbestos fiber filters. A radioautographic examination revealed that the radioactive substance penetrated as deep as 1.4 to 1.5 mm into the filter layer. (auth)
NASA Astrophysics Data System (ADS)
Firestone, R. B.; Gilat, J.; Nitschke, J. M.; Wilmarth, P. A.; Vierinen, K. S.
1991-03-01
The electron-capture and β+-decay branchings (EC/β+) and delayed proton decays of A=142 isotopes with 61<=Z<=66 and A=140 isotopes with 63<=Z<=65 were investigated with the OASIS facility on-line at the Lawrence Berkeley Laboratory SuperHILAC. Electron capture and positron-decay emission probabilities have been determined for 142Pm and 142Sm decays, and extensive decay schemes have been constructed for 142Eug(2.34+/-0.12 s), 142Gd(70.2+/-0.6 s), 140Eu(1.51+/-0.02 s), and 140Gd(15.8+/-0.4 s). Decay schemes for the new isotopes 142Tbg(597+/-17 ms), 142Tbm(303+/-17 ms), 142Dy(2.3+/-0.3 s), 140Eum(125+/-2 ms), and 140Tb(2.4+/-0.2 s) are also presented. We have assigned γ rays to these isotopes on the basis of γγ and xγ coincidences, and from half-life determinations. Electron-capture and β+-decay branchings were measured for each decay, and β-delayed proton branchings were determined for 142Dy, 142Tb, and 140Tb decays. QEC values, derived from the measured EC/β+ branchings and the level schemes are compared with those from the Wapstra and Audi mass evaluation and the Liran and Zeldes mass calculation. The systematics of the N=77 isomer decays are discussed, and the intense 0+-->1+ and 1+-->0+ ground-state beta decays are compared with shell-model predictions for simple spin-flip transitions.
On the claim of modulations in radon decay and their association with solar rotation
NASA Astrophysics Data System (ADS)
Pommé, S.; Lutter, G.; Marouli, M.; Kossert, K.; Nähle, O.
2018-01-01
Claims were made by Sturrock et al. that radioactive decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. They analysed a series of measurements of gamma radiation associated with the emanation and decay of radon in a sealed container at the Geological Survey of Israel (GSI) laboratory. The integral count rates in the NaI detector showed strong variations in time of year and time of day. From time-series analysis, Sturrock et al. claim the presence of small oscillations at frequencies in a range between 7.4 a-1 and 12.5 a-1, which they speculatively associated with rotational influence on the solar neutrino flux. In this work, it is argued that the GSI radon measurements are unsuited for studying the variability of decay constants, because the data are strongly influenced by environmental conditions, such as solar irradiance and rainfall. At the JRC and PTB, decay rate measurements of the radon decay chain were performed with ionisation chambers, gamma-ray spectrometers and an alpha spectrometer. No deviation from the exponential-decay law was observed. The existence of cyclic variations in the decay constants is refuted, as well as the concept of measuring solar rotation through radioactive decay.
Johnson, T. D.; Singh, Balraj
2017-04-26
Evaluated experimental data are presented for 13 known mass 189 nuclides (Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po). Since the 2003Wu02 publication, structure and decay data from 25 new and primary publications have been incorporated in the current work, while adding a new 189Hf nuclide. New data have been added for all nuclides except 189Au and 189Hg. Moreover, several previous datasets were modified for β-decay Q values and conversion coefficients even when no new publications appeared since 2003Wu02. In spite of large amounts of data available for A=189 nuclides, several deficiencies remain, which aremore » pointed out below in the hope that further experimental work may improve our knowledge of structure of these nuclides. For 189Hf and 189Ta, ground-state half-lives, and their decay schemes are unknown. An isomer in 189Ta has recently been established but its decay characteristics are unknown, even though several gamma rays were connected with its decay. No excited states are known in 189W and only one in 189Po. The decay scheme of 189W is known poorly with most gamma rays left as unassigned. The decay schemes of 189Au and 189Pb g.s. suffer from incompleteness, while those for the g.s. and isomer of 189Tl are almost absent. The decay schemes of g.s. and isomer of 189Hg are very complex as apparent from the study by 1996Wo04. Evaluators feel that these two decay schemes could be improved with modern gamma-ray detector arrays. While several isomers are known in many of the A=189 nuclides, there is in general lack of information of level half-lives, thus limiting the knowledge of transition probabilities. High-spin structures, including SD bands in 189Hg and 189Tl, are known in 189Re, 189Ir, 189Pt, 189Au, 189Hg, 189Tl, 189Pb and 189Bi. Single-particle transfer data are available for 189Re, 189Os, and 189Pt; and two-neutron transfer data for 189Ir.« less
NASA Astrophysics Data System (ADS)
Johnson, T. D.; Singh, Balraj
2017-05-01
Evaluated experimental data are presented for 13 known mass 189 nuclides (Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po). Since the 2003Wu02 publication, structure and decay data from 25 new and primary publications have been incorporated in the current work, while adding a new 189Hf nuclide. New data have been added for all nuclides except 189Au and 189Hg. Moreover, several previous datasets were modified for β-decay Q values and conversion coefficients even when no new publications appeared since 2003Wu02. In spite of large amounts of data available for A=189 nuclides, several deficiencies remain, which are pointed out below in the hope that further experimental work may improve our knowledge of structure of these nuclides. For 189Hf and 189Ta, ground-state half-lives, and their decay schemes are unknown. An isomer in 189Ta has recently been established but its decay characteristics are unknown, even though several gamma rays were connected with its decay. No excited states are known in 189W and only one in 189Po. The decay scheme of 189W is known poorly with most gamma rays left as unassigned. The decay schemes of 189Au and 189Pb g.s. suffer from incompleteness, while those for the g.s. and isomer of 189Tl are almost absent. The decay schemes of g.s. and isomer of 189Hg are very complex as apparent from the study by 1996Wo04. Evaluators feel that these two decay schemes could be improved with modern gamma-ray detector arrays. While several isomers are known in many of the A=189 nuclides, there is in general lack of information of level half-lives, thus limiting the knowledge of transition probabilities. High-spin structures, including SD bands in 189Hg and 189Tl, are known in 189Re, 189Ir, 189Pt, 189Au, 189Hg, 189Tl, 189Pb and 189Bi. Single-particle transfer data are available for 189Re, 189Os, and 189Pt; and two-neutron transfer data for 189Ir.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T. D.; Singh, Balraj
Evaluated experimental data are presented for 13 known mass 189 nuclides (Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po). Since the 2003Wu02 publication, structure and decay data from 25 new and primary publications have been incorporated in the current work, while adding a new 189Hf nuclide. New data have been added for all nuclides except 189Au and 189Hg. Moreover, several previous datasets were modified for β-decay Q values and conversion coefficients even when no new publications appeared since 2003Wu02. In spite of large amounts of data available for A=189 nuclides, several deficiencies remain, which aremore » pointed out below in the hope that further experimental work may improve our knowledge of structure of these nuclides. For 189Hf and 189Ta, ground-state half-lives, and their decay schemes are unknown. An isomer in 189Ta has recently been established but its decay characteristics are unknown, even though several gamma rays were connected with its decay. No excited states are known in 189W and only one in 189Po. The decay scheme of 189W is known poorly with most gamma rays left as unassigned. The decay schemes of 189Au and 189Pb g.s. suffer from incompleteness, while those for the g.s. and isomer of 189Tl are almost absent. The decay schemes of g.s. and isomer of 189Hg are very complex as apparent from the study by 1996Wo04. Evaluators feel that these two decay schemes could be improved with modern gamma-ray detector arrays. While several isomers are known in many of the A=189 nuclides, there is in general lack of information of level half-lives, thus limiting the knowledge of transition probabilities. High-spin structures, including SD bands in 189Hg and 189Tl, are known in 189Re, 189Ir, 189Pt, 189Au, 189Hg, 189Tl, 189Pb and 189Bi. Single-particle transfer data are available for 189Re, 189Os, and 189Pt; and two-neutron transfer data for 189Ir.« less
Watanabe, Hiroshi; Maehara, Yoshiaki; Fujibuchi, Toshioh; Koizumi, Mitsue; Yamaguchi, Ichiro; Kida, Tetsuo; Ooyama, Masaya; Horitsugi, Genki; Hiraki, Hitoshi; Tsukamoto, Atsuko; Itami, Jyun
2015-08-01
In Japan, an amended law that mandates levels of unintended induced radioactivity has been in effect since 1 April 2012. According to the new regulation, if the concentration of induced radioactivity in affected parts is above the clearance level, the parts must be regarded as radioactive even if they weigh less than 1 kg. This regulation reform raises several new issues concerning medical linear accelerators, including how to determine the decay period for induced radioactivity before maintenance can be performed and how to identify what parts should be considered radioactive waste. The authors performed several risk communication (RC) activities aimed at improving the understanding of maintenance workers at medical accelerator manufacturers and establishing good guidelines by involving stakeholders. For this purpose, a working group was established and conducted RC activities, such as holding opinion exchange meetings between medical staff and maintenance workers and creating a booklet to answer questions from maintenance workers. To evaluate these activities, three questionnaire surveys were conducted between 2011 and 2014. According to the results of this study, the ratio of maintenance workers who accepted "The decay period is within one week" was approximately 60% at the third survey and significantly increased (P < 0.0001) during the survey period. Approximately 25% of the maintenance workers felt that not enough information was provided about the decay period, and approximately 63% thought that the information provided on the health effects of radiation was sufficient. These results suggest that the present RC was successful.
Measurement of the total activity concentrations of Libyan oil scale
NASA Astrophysics Data System (ADS)
Da Silva, F. C. A.; Bradley, D. A.; Regan, P. H.; Rozaila, Z. Siti
2017-08-01
Twenty-three oil scale samples obtained from the Libyan oil and gas industry production facilities onshore have been measured using high-resolution gamma-ray spectrometry with a shielded HPGe detector, the work being carried out within the Environmental Radioactivity Laboratory at the University of Surrey. The main objectives of this work were to determine the extent to which the predominant radionuclides associated with the uranium and thorium natural decay chains were in secular equilibrium with their decay progeny, also to compare differences between the total activity concentrations (TAC) in secular equilibrium and disequilibrium and to evaluate the measured activities for the predominant gamma-ray emitting decay radionuclides within the 232Th and 238U chains. The oil scale NORM samples did not exhibit radioactive equilibrium between the decay progeny and longer-lived parent radionuclides of the 238U and 232Th series.
Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity
NASA Astrophysics Data System (ADS)
Sarmiento, L. G.; Rudolph, D.
2016-07-01
With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.
NASA Astrophysics Data System (ADS)
Scholkmann, F.; Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.
2017-03-01
Recently we reported (Milián-Sánchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.
A semi-Lagrangian advection scheme for radioactive tracers in a regional spectral model
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-06-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu
This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to crossmore » section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.« less
Nuclear Decay Data in the MIRD Format
nuclear decay and decay scheme drawings will be produced in the Medical Internal Radiation Dose (MIRD National Laboratory Report BNL-NCS-52142, February 29, 1988) More information concerning medical
Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.
Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés
2015-11-17
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.
Using Melting Ice to Teach Radiometric Dating.
ERIC Educational Resources Information Center
Wise, Donald Underkofler
1990-01-01
Presented is an activity in which a mystery setting is used to motivate students to construct their own decay curves of melting ice used as an analogy to radioactive decay. Procedures, materials, apparatus, discussion topics, presentation, and thermodynamics are discussed. (CW)
Doubling Time for Nonexponential Families of Functions
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2010-01-01
One special characteristic of any exponential growth or decay function f(t) = Ab[superscript t] is its unique doubling time or half-life, each of which depends only on the base "b". The half-life is used to characterize the rate of decay of any radioactive substance or the rate at which the level of a medication in the bloodstream decays as it is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Balraj; Chen, Jun
2014-02-01
Evaluated experimental data are presented for 13 known nuclides of mass 85 (Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Since the previous 1990 evaluation of A=85, {sup 85}Zn, {sup 85}Ga, {sup 85}Ge and {sup 85}nuclides are newly added here. Excited state data for {sup 85}Se, {sup 85}Zr have become available from radioactive decay and in–beam γ–ray studies. New and improved high–spin data are available for {sup 85}Br, {sup 85}Kr, {sup 85}Rb, {sup 85}Y, {sup 85}Nb and {sup 85}Mo. New direct and precise measurement of atomic masses of {sup 85}Ge, {sup 85}As, {sup 85}Se, {supmore » 85}Br, {sup 85}Rb, {sup 85}Zr, {sup 85}Nb and {sup 85}Mo have greatly improved the landscape of β decay–Q values and separation energies in this mass region. In spite of extensive experimental work on the isobaric nuclei of this mass chain several deficiencies remain. No excited states are known in {sup 85}Zn, {sup 85}Ga, {sup 85}As. Only a few excited state are assigned in {sup 85}Ge from {sup 85}Ga β– decay. From radioactivity studies, the decay schemes of {sup 85}Zn and {sup 85}Mo are not known, and those for {sup 85}Ga, {sup 85}Ge, {sup 85}As and 10.9–s isomer of {sup 85}Zr are incomplete. Level lifetimes are not known for excited states in {sup 85}Se, {sup 85}Br, {sup 85}Nb and {sup 85}Mo. The {sup 85}Tc nuclide has not been detected in fragmentation experiments at GANIL, alluding to its unbound nature for proton emission. The {sup 85}Kr, {sup 85}Rb, {sup 85}Sr, and {sup 85}Y nuclides remain the most extensively studied from many different reactions and decays. The evaluation of A=85 nuclides has been done after a span of 23 years, thus includes an extensive amount of new data for almost each nuclide. This work supersedes the data for A=85 nuclides presented in earlier full NDS publication by J. Tepel in 1980Te04 and a later one published in an update mode by H. Sievers in 1991Si01.« less
Dissolution and clearance of titanium tritide particles in the lungs of F344/Crl rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Snipes, M.B.; Wang, Yansheng
1995-12-01
Metal tritides are compounds in which the radioactive isotope tritium, following adsorption onto the metal, forms a stable chemical compound with the metal. When particles of tritiated metals become airborne, they can be inhaled by workers. Because the particles may be retained in the lung for extended periods, the resulting dose will be greater than doses following exposure to tritium gas or tritium oxide (HTO). Particles of triated metals may be dispersed into the air during routine handling, disruption of contaminated metals, or as a result of spontaneous radioactive decay processes. Unlike metal hydrides and deuterides, tritides are radioactive, andmore » the decay of the tritium atoms affects the metal. Because helium is a product of the decay, helium bubbles form within the metal tritide matrix. The pressure from these bubbles leads to respirable particles breaking off from the tritide surface. Our results show that a substantial amount of titanium tritide remains in the rat lung 10 d after intratracheal instillation, confirming results previously obtain in an in vitro dissolution study.« less
Liquid xenon purification, de-radonation (and de-kryptonation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A.
We present measurements of radioactive contamination in the high-resistivity silicon charge-coupled devices (CCDs) used by the DAMIC experiment to search for dark matter particles. Novel analysis methods, which exploit the unique spatial resolution of CCDs, were developed to identify α and β particles. Uranium and thorium contamination in the CCD bulk was measured through α spectroscopy, with an upper limit on the 238U ( 232Th) decay rate of 5 (15) kg -1 d -1 at 95% CL. We also searched for pairs of spatially correlated electron tracks separated in time by up to tens of days, as expected from 32Simore » – 32P or 210Pb – 210Bi sequences of b decays. The decay rate of 32Si was found to be 80 +110 -65 (95% CI). An upper limit of ~35 kg -1 d -1 (95% CL) on the 210Pb decay rate was obtained independently by α spectroscopy and the β decay sequence search. Furthermore, these levels of radioactive contamination are sufficiently low for the successful operation of CCDs in the forthcoming 100 g DAMIC detector.« less
Dependence of two-proton radioactivity on nuclear pairing models
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Kortelainen, Markus; Pastore, Alessandro
2017-10-01
Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent three-body model. We focus on the 6Be nucleus assuming α +p +p configuration, and its decay process is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a major role in determining the decay width, which can be controlled only by the asymptotic strength of the pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as the reference quantities.
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Shell Evolution towards 78Ni: Low-Lying States in 77Cu
NASA Astrophysics Data System (ADS)
Sahin, E.; Bello Garrote, F. L.; Tsunoda, Y.; Otsuka, T.; de Angelis, G.; Görgen, A.; Niikura, M.; Nishimura, S.; Xu, Z. Y.; Baba, H.; Browne, F.; Delattre, M.-C.; Doornenbal, P.; Franchoo, S.; Gey, G.; Hadyńska-KlÈ©k, K.; Isobe, T.; John, P. R.; Jung, H. S.; Kojouharov, I.; Kubo, T.; Kurz, N.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Naqvi, F.; Nishibata, H.; Odahara, A.; Sakurai, H.; Schaffner, H.; Söderström, P.-A.; Sohler, D.; Stefan, I. G.; Sumikama, T.; Suzuki, D.; Taniuchi, R.; Taprogge, J.; Vajta, Z.; Watanabe, H.; Werner, V.; Wu, J.; Yagi, A.; Yalcinkaya, M.; Yoshinaga, K.
2017-06-01
The level structure of the neutron-rich 77Cu nucleus is investigated through β -delayed γ -ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of 77Ni are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in 77Cu are identified for the first time by correlating γ rays with the β decay of 77Ni, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near 78Ni and suggests a single-particle nature for both the 5 /21- and 3 /21- states in 77Cu, leading to doubly magic 78Ni.
Radiometric Dating in Geology.
ERIC Educational Resources Information Center
Pankhurst, R. J.
1980-01-01
Described are several aspects and methods of quantitatively measuring geologic time using a constant-rate natural process of radioactive decay. Topics include half lives and decay constants, radiogenic growth, potassium-argon dating, rubidium-strontium dating, and the role of geochronology in support of geological exploration. (DS)
NASA Astrophysics Data System (ADS)
Firestone, Richard B.; Chu, S. Y. Frank; Ekstrom, L. Peter; Wu, Shiu-Chin; Singh, Balraj
1997-10-01
The Isotopes Project is developing Internet home pages to provide data for radioactive decay, nuclear structure, nuclear astrophysics, spontaneous fission, thermal neutron capture, and atomic masses. These home pages can be accessed from the Table of Isotopes home page at http://isotopes.lbl.gov/isotopes/toi.html. Data from the Evaluated Nuclear Structure Data File (ENSDF) is now available on the WWW in Nuclear Data Sheet style tables, complete with comments and hypertext linked footnotes. Bibliographic information from the Nuclear Science Reference (NSR) file can be searched on the WWW by combinations of author, A, Z, reaction, and various keywords. Decay gamma-ray data from several databases can be searched by energy. The Table of Superdeformed Nuclear Bands and Fission Isomers is continously updated. Reaction rates from Hoffman and Woosley and from Thielemann, fission yields from England and Rider, thermal neutron cross-sections from BNL-325, atomic masses from Audi, and skeleton scheme drawings and nuclear charts from the Table of Isotopes are among the information available through these websites. The nuclear data home pages are accessed by over 3500 different users each month.
Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.
2012-01-01
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.
Precision Gamma-Ray Branching Ratios for Long-Lived Radioactive Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonchev, Anton
Many properties of the high-energy-density environments in nuclear weapons tests, advanced laser-fusion experiments, the interior of stars, and other astrophysical bodies must be inferred from the resulting long-lived radioactive nuclei that are produced. These radioactive nuclei are most easily and sensitively identified by studying the characteristic gamma rays emitted during decay. Measuring a number of decays via detection of the characteristic gamma-rays emitted during the gamma-decay (the gamma-ray branching ratio) of the long-lived fission products is one of the most straightforward and reliable ways to determine the number of fissions that occurred in a nuclear weapon test. The fission productsmore » 147Nd, 144Ce, 156Eu, and certain other long-lived isotopes play a crucial role in science-based stockpile stewardship, however, the large uncertainties (about 8%) on the branching ratios measured for these isotopes are currently limiting the usefulness of the existing data [1,2]. We performed highly accurate gamma-ray branching-ratio measurements for a group of high-atomic-number rare earth isotopes to greatly improve the precision and reliability with which the fission yield and reaction products in high-energy-density environments can be determined. We have developed techniques that take advantage of new radioactive-beam facilities, such as DOE's CARIBU located at Argonne National Laboratory, to produce radioactive samples and perform decay spectroscopy measurements. The absolute gamma-ray branching ratios for 147Nd and 144Ce are reduced <2% precision. In addition, high-energy monoenergetic neutron beams from the FN Tandem accelerator in TUNL at Duke University was used to produce 167Tm using the 169Tm(n,3n) reaction. Fourtime improved branching ratio of 167Tm is used now to measure reaction-in-flight (RIF) neutrons from a burning DT capsule at NIF [10]. This represents the first measurement of RIF neutrons in any laboratory fusion system, and the magnitude of the signal has important implications for fundamental plasma science and for weapons physics.« less
NASA Astrophysics Data System (ADS)
Gillmore, G.; Woods, M.
2009-04-01
Radon isotopes (222, 220, 219) are radioactive gases produced by the disintegration of radium isotopes 226, 224 and 223, which are decay products of uranium238, thorium232 and uranium235 respectively. All are found in the earth's crust. Solid elements, also radioactive, are produced by radon disintegration. Radon is classed as a rare gas in the periodic table of elements, along with helium, argon, neon, krypton and xenon. When disintegrating, radon emits alpha particles and generates solid decay products, which are also radioactive (polonium, bismuth, lead etc.). The potential danger of radon lies in its solid decay products rather than the gas itself. Whether or not they are attached aerosols, radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths according to their size. Radon today is considered to be the main source of human exposure to natural radiation. At the international level, radon accounts for 52% of global average exposure to natural radiation. Isotope 222 (48%) is far more significant than isotope 220 (4%), whilst isotope 219 is considered as negligible. Exposure to radon varies considerably from one region to another, depending on factors such as weather conditions, and underlying geology. Activity concentration can therefore vary by a factor of 10 or even a 100 from one period of time to the next and from one area to another. There are many ways of measuring the radon 222 activity concentration and the potential alpha energy concentration of its short-lived decay products. Measuring techniques fall into three categories: - spot measurement methods; continuous measurement; integrated measurement. The proposed ISO (International Organisation for Standardisation) document suggests guidelines for measuring radon222 activity concentration and the potential alpha energy concentration of its short-lived decay products in a free (environment) and confined (buildings) atmosphere. The target date for availability of this work item is 2011. The ISO document here highlighted is a working draft. ISO is a worldwide federation of national standards bodies. Keywords: radon; international standards; measurement techniques.
Nuclear Data Sheets for A = 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basunia, M.S.; Hurst, A.M.
2016-05-15
Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for {sup 26}O, {sup 26}F, {sup 26}Ne, {sup 26}Na, {sup 26}Mg, {sup 26}Al, {sup 26}Si, {sup 26}P, and {sup 26}S. This evaluation for A = 26 supersedes the earlier one by P. M. Endt (1998En04) and updates for some nuclides in ENSDF. Highlights of this evaluation are the following: This evaluation includes search results for {sup 26}S nuclide and its proton–decay mode (2011Fo08). An isomeric state (2.2 ms) in {sup 26}F has been discovered by 2013Le03. The state is proposed at 643.4 keV 1 frommore » γ–ray measurements. Internal-transition and beta-decay branches for the state are also determined. New excited levels in {sup 26}Ne have been identified from {sup 26}F β{sup −} decay (2.2 ms). For some {sup 26}Si resonance states conflicting spin-parity assignments exist in the literature. These are identified by footnotes. 2015Do07 ({sup 3}He,nγ) propose the first 0+ state above proton separation energy at an excitation energy of 5890 keV and suggested for additional independent measurements to confirm or refute the existence of 5946 keV 4. 2016Ch09 consider 5946 keV level as a distinct excited state in their reanalysis of the literature data with possible spin-parity assignment of 0+ or 4+ This evaluation also includes discovery of an isomeric state, at 164.1 keV 1, in {sup 26}P by 2014NiZZ.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... biological effectiveness due to the quality of radiation and its distribution in the body of reference man... radon-222 and its respective decay products formed after the radon is released from the facility are not... atom which spontaneously undergoes radioactive decay. (d) Residence means any home, house, apartment...
Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno
1994-01-01
In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.
A semi-Lagrangian advection scheme for radioactive tracers in the NCEP Regional Spectral Model (RSM)
NASA Astrophysics Data System (ADS)
Chang, E.-C.; Yoshimura, K.
2015-10-01
In this study, the non-iteration dimensional-split semi-Lagrangian (NDSL) advection scheme is applied to the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) to alleviate the Gibbs phenomenon. The Gibbs phenomenon is a problem wherein negative values of positive-definite quantities (e.g., moisture and tracers) are generated by the spectral space transformation in a spectral model system. To solve this problem, the spectral prognostic specific humidity and radioactive tracer advection scheme is replaced by the NDSL advection scheme, which considers advection of tracers in a grid system without spectral space transformations. A regional version of the NDSL is developed in this study and is applied to the RSM. Idealized experiments show that the regional version of the NDSL is successful. The model runs for an actual case study suggest that the NDSL can successfully advect radioactive tracers (iodine-131 and cesium-137) without noise from the Gibbs phenomenon. The NDSL can also remove negative specific humidity values produced in spectral calculations without losing detailed features.
Clues in the rare gas isotopes to early solar system history
NASA Technical Reports Server (NTRS)
Reynolds, J. H.
1977-01-01
The results of the radioactive dating and the discovery of gas-rich meteorites on the Moon surface are reviewed. Special attention is paid to the extinct radioactivity iodine-129. This radioactivity is produced by r-process of nucleosynthesis and it decays with a half-life of 17 m.y. It provides a clock sensitive to small changes in the early years of the solar system.
Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.
NASA Astrophysics Data System (ADS)
Gavazza, Sergio
Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.
Superallowed Fermi β decay studies at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Svensson, C. E.; Dunlop, R.; Finlay, P.; Ball, G. C.; Ettenauer, S.; Leslie, J. R.; Towner, I. S.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Djongolov, M.; Garnsworthy, A. B.; Garrett, P. E.; Green, K. L.; Glister, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2013-10-01
A program of high-precision superallowed Fermi β decay studies is being carried out at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. Recent high-precision branching ratio measurements for the superallowed decays of 74Rb and 26Alm, as well as a half-life measurement for 26Alm that is the most precise half-life measurement for any superallowed emitter to date, are reported. These results provide demanding tests of the theoretical isospin symmetry breaking corrections in superallowed Fermi β decays.
Surface alpha backgrounds from plate-out of radon progeny
NASA Astrophysics Data System (ADS)
Perumpilly, Gopakumar; Guiseppe, Vincente
2012-03-01
Low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. We have developed a model of the radon progeny implantation using Geant4 simulations based on the low energy nuclear recoil process. We explore the alpha decays from implanted progeny on a Ge crystal as potential backgrounds for a neutrinoless double-beta decay experiment. Results of the simulations validated with alpha spectrum measurement of plate-out samples will be presented.
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan
2017-12-01
Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dezerald, Lucile; Kohanoff, Jorge J.; Correa, Alfredo A.
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C–S–H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold thismore » radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca 2+ ions in C–S–H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Furthermore, cement appears as a suitable waste form for 90Sr storage.« less
Dezerald, Lucile; Kohanoff, Jorge J.; Correa, Alfredo A.; ...
2015-10-29
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C–S–H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold thismore » radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca 2+ ions in C–S–H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Furthermore, cement appears as a suitable waste form for 90Sr storage.« less
Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji
2009-12-20
A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
Code of Federal Regulations, 2010 CFR
2010-01-01
... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
NASA Astrophysics Data System (ADS)
Mattoon, C. M.; Sarazin, F.; Hackman, G.; Cunningham, E. S.; Austin, R. A. E.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Koopmans, K. A.; Leslie, J. R.; Phillips, A. A.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Svensson, C. E.; Waddington, J. C.; Walker, P. M.; Washbrook, B.; Zganjar, E.
2007-01-01
The β-decay of Na32 has been studied using β-γ coincidences. New transitions and levels are tentatively placed in the level scheme of Mg32 from an analysis of γ-γ and β-γ-γ coincidences. The observation of the indirect feeding of the 2321 keV state in Mg32 removes some restrictions previously placed on the spin assignment for this state. No evidence of a state at 2117 keV in Mg32 is found. Previously unobserved weak transitions up to 5.4 MeV were recorded but could not be placed in the decay scheme of Na32.
Beta-delayed neutron emission from 94Rb at CARIBU
NASA Astrophysics Data System (ADS)
Wilson, Gemma; Chowdhury, P.; Lister, C.; Brown, T.; Chillery, T.; Copp, P.; Doucet, E.; Carpenter, M.; Savard, G.; Zhu, S.; Mitchell, Aj
2017-09-01
Beta-delayed neutron emission studies are important in the astrophysical r-process, nuclear structure and for nuclear reactor safety and design. The probability of β-delayed neutron emission in 94Sr is 10.2(2)%. Many of the γ rays in 94Sr are misplaced, and an estimated 26% are thought to be missing. Recently, substantial γ strength from above the neutron separation energy in 94Sr has been reported. An experiment to understand this high-lying γ strength was performed with the X-Array (a high-efficiency HPGe clover array), SCANS (Small CLYC Array for Neutron Scattering) and the SATURN decay station (Scintillator And Tape Using Radioactive Nuclei) for γ, fast-neutron and β-particle detection, respectively. Data from β decay of 94Rb ions delivered from CARIBU were collected in a triggerless digital data acquisition system, with detected β, n, and γ events correlated offline. A new 94Sr level scheme will be presented, with confirmation of new levels and transitions, in addition to evidence of γ strength above the neutron separation energy. NNSA Stewardship Science Academic Alliance Program through USDOE under Grant DE-NA0002932; USDOE, Office of Nucl Phys, under Contract No. DE-FG02-96ER40978; Louisiana State Board of Regents RCS LEQSF(2016-19)-RD-A-09; DE-AC02-06CHI1357.
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics.
ERIC Educational Resources Information Center
Crippen, Kent J.; Curtright, Robert D.
1998-01-01
Describes four activities that use graphing calculators to model nuclear-decay phenomena. Students ultimately develop a notion about the radioactive waste produced by nuclear fission. These activities are in line with national educational standards and allow for the integration of science and mathematics. Contains 13 references. (Author/WRM)
Code of Federal Regulations, 2011 CFR
2011-07-01
... distribution in the body of reference man. The unit of the effective dose equivalent is the rem. For purposes of this subpart doses caused by radon-222 and its decay products formed after the radon is released... radioactive decay. [54 FR 51697, Dec. 15, 1989, as amended at 61 FR 68981, Dec. 30, 1996] ...
Production of 35S for a Liquid Semiconductor Betavoltaic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, David E.; Garnov, A. Y.; Robertson, J. D.
2009-10-01
The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductormore » media.« less
Measurement of radioactive contamination in the CCD’s of the DAMIC experiment
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D'Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.
2016-05-01
DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.
Segmented Ge detector rejection of internal beta activity produced by neutron irradiation
NASA Technical Reports Server (NTRS)
Varnell, L. S.; Callas, J. L.; Mahoney, W. A.; Pehl, R. H.; Landis, D. A.
1991-01-01
Future Ge spectrometers flown in space to observe cosmic gamma-ray sources will incorporate segmented detectors to reduce the background from radioactivity produced by energetic particle reactions. To demonstrate the effectiveness of a segmented Ge detector in rejecting background events due to the beta decay of internal radioactivity, a laboratory experiment has been carried out in which radioactivity was produced in the detector by neutron irradiation. A Cf-252 source of neutrons was used to produce, by neutron capture on Ge-74 (36.5 percent of natural Ge) in the detector itself, Ge-75 (t sub 1/2 = 82.78 min), which decays by beta emission with a maximum electron kinetic energy of 1188 keV. By requiring that an ionizing event deposit energy in two or more of the five segments of the detector, each about 1-cm thick, the beta particles, which have a range of about 1-mm, are rejected, while most external gamma rays incident on the detector are counted. Analysis of this experiment indicates that over 85 percent of the beta events from the decay of Ge-75 are rejected, which is in good agreement with Monte Carlo calculations.
Automatic measurements and computations for radiochemical analyses
Rosholt, J.N.; Dooley, J.R.
1960-01-01
In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.
Coosa River Storage Annex, Talladega, Alabama. Environmental Investigation Report. Volume 1 of 2
1992-09-01
radon and radon daughters using an alpha track detector; and the interior surfaces of six igloos were analyzed for the presence of polychlorinated...ATSDR, 1990]. Radon gas is a health hazard due to its radioactive transformation or decay into radioactive by- products or radon daughters . As radon
UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.
ERIC Educational Resources Information Center
Dhabanandana, Salag
This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…
Secondary wind transport of radioactive materials after the Fukushima accident
NASA Astrophysics Data System (ADS)
Yamauchi, M.
2012-01-01
Data from the radiation monitoring network surrounding the Fukushima Dai-ichi Nuclear Power Plant (FNPP) revealed that the radiation levels generally decayed faster at a highly-contaminated area than at neighboring moderately-contaminated areas during the first month after the Fukushima nuclear accident in March, 2011. Two possible mechanisms are considered: secondary transport of radioactive dust by wind or rain, and nonuniform radionuclide ratio of contamination between radioiodine (131I) and radiocesium (134Cs and 137Cs). The composition data from soil does not favor the latter scenario, except for the local coastal region south of the FNPP, while inter-regional transport from the highly-contaminated area to the moderately-contaminated areas explains both the general difference in the decay rate in the entire area and the relatively slow decay at a high-dose rate anomaly 40 km northwest of the FNPP.
Quantitative imaging of disease signatures through radioactive decay signal conversion
Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan
2013-01-01
In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701
Linear Transformation Method for Multinuclide Decay Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Yuan
2010-12-29
A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.
NASA Astrophysics Data System (ADS)
Abbaspour, S.; Mohammad Moosavi Nejad, S.
2018-05-01
Charged Higgs bosons are predicted by some non-minimal Higgs scenarios, such as models containing Higgs triplets and two-Higgs-doublet models, so that the experimental observation of these bosons would indicate physics beyond the Standard Model. In the present work, we introduce a channel to indirect search for the charged Higgses through the hadronic decay of polarized top quarks where a top quark decays into a charged Higgs H+ and a bottom-flavored meson B via the hadronization process of the produced bottom quark, t (↑) →H+ + b (→ B + jet). To obtain the energy spectrum of produced B-mesons we present, for the first time, an analytical expression for the O (αs) corrections to the differential decay width of the process t →H+ b in presence of a massive b-quark in the General-Mass Variable-Flavor-Number (GM-VFN) scheme. We find that the most reliable predictions for the B-hadron energy spectrum are made in the GM-VFN scheme, specifically, when the Type-II 2HDM scenario is concerned.
Radiation protection considerations along a radioactive ion beam transport line
NASA Astrophysics Data System (ADS)
Sarchiapone, Lucia; Zafiropoulos, Demetre
2016-09-01
The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.
Bongianni, Wayne L.
1992-01-01
A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.
(177)Lu: DDEP Evaluation of the decay scheme for an emerging radiopharmaceutical.
Kellett, M A
2016-03-01
A new decay scheme evaluation using the DDEP methodology for (177)Lu is presented. Recently measured half-life measurements have been incorporated, as well as newly available γ-ray emission probabilities. For the first time, a thorough investigation has been made of the γ-ray multipolarities. The complete data tables and detailed evaluator comments are available through the DDEP website. Copyright © 2015 Elsevier Ltd. All rights reserved.
Finding the Age of the Earth by Physics or by Faith?
ERIC Educational Resources Information Center
Brush, Stephen G.
1982-01-01
Refutes scientific creationists' arguments that the earth is less than 10,000 years old by presenting information related to the time scales for creation and evolution models, times from stellar distances, Kelvin's estimate of the earth's age, radioactive decay, radiometric dating, and the decay of the earth's magnetic field. (DC)
NASA Astrophysics Data System (ADS)
Winter, K.; Murdin, P.
2000-11-01
Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...
Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates
NASA Astrophysics Data System (ADS)
Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.
2013-09-01
In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.
Teleportation of a two-atom entangled state with a thermal cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Lihua; Jin Xingri; Zhang Shou
2005-08-15
We present a scheme to teleport an unknown atomic entangled state in driven cavity QED. In our scheme, the success probability can reach 1.0. In addition, the scheme is insensitive to the cavity decay and the thermal field.
Representative Atmospheric Plume Development for Elevated Releases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.
2014-02-01
An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a(×t)^(-b) for time t after the release event, then the equation has the form Df=e^(-λt)×a×t^(-b) for a radioactive isotope, where λ is the decay constant for the isotope.« less
NASA Astrophysics Data System (ADS)
Sasaki, Syota; Yamada, Tadashi; Yamada, Tomohito J.
2014-05-01
We aim to propose a kinematic-based methodology similar with runoff analysis for readily understandable radiological protection. A merit of this methodology is to produce sufficiently accurate effective doses by basic analysis. The great earthquake attacked the north-east area in Japan on March 11, 2011. The system of electrical facilities to control Fukushima Daiichi nuclear power plant was completely destroyed by the following tsunamis. From the damaged reactor containment vessels, an amount of radioactive isotopes had leaked and been diffused in the vicinity of the plant. Radiological internal exposure caused by ingestion of food containing radioactive isotopes has become an issue of great interest to the public, and has caused excessive anxiety because of a deficiency of fundamental knowledge concerning radioactivity. Concentrations of radioactivity in the human body and internal exposure have been studied extensively. Previous radiologic studies, for example, studies by International Commission on Radiological Protection(ICRP), employ a large-scale computational simulation including actual mechanism of metabolism in the human body. While computational simulation is a standard method for calculating exposure doses among radiology specialists, these methods, although exact, are too difficult for non-specialists to grasp the whole image owing to the sophistication. In this study, the human body is treated as a vessel. The number of radioactive atoms in the human body can be described by an equation of continuity, which is the only governing equation. Half-life, the period of time required for the amount of a substance decreases by half, is only parameter to calculate the number of radioactive isotopes in the human body. Half-life depends only on the kinds of nuclides, there are no arbitrary parameters. It is known that the number of radioactive isotopes decrease exponentially by radioactive decay (physical outflow). It is also known that radioactive isotopes decrease exponentially by excretion (biological outflow). The total outflow is the sum of physical outflow and biological outflow. As a result, the number of radioactive atoms in the human body also decreases exponentially. Half-life can be determined by outflow flux from the definition. Intensity of radioactivity is linear respect to the number of radioactive atoms, both are equivalent analytically. Internal total exposure can be calculated by the time integral of intensity of radioactivity. The absorbed energy into the human body per radioactive decay and the effective dose are calculated by aid of Fermi's theory of beta decay and special relativity. The effective doses calculated by the present method almost agree with those of a study by ICRP. The present method shows that standard limit in general foods for radioactive cesium enforced in Japan, 100 Bq/kg, is too excessive. When we eat foods which contain cesium-137 of 100 Bq/kg at 1 kg/d during 50 years, we receive the effective dose less than natural exposure. Similarly, it is shown that we cannot find significant health damage medically and statistically by ingestion of rice which is harvested from a paddy field deposited current (January, 2014) radioactive cesium.
Science with radioactive beams: the alchemist's dream
NASA Astrophysics Data System (ADS)
Gelletly, W.
2001-05-01
Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.
Direct Observation of Two Proton Radioactivity Using Digital Photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rykaczewski, Krzysztof Piotr; Pfutzner, M.; Dominik, Wojciech
2007-01-01
Recently the observation of a new type of spontaneous radioactive decay has been claimed in which two protons are simultaneously ejected by an atomic nucleus from the ground state1,2,3. Experimental data obtained for the extremely neutron-deficient nuclei 45Fe and 54Zn, were interpreted as the first evidence of such a decay mode which has been sought since 1960.4 However, the technique applied in those studies allowed only measurements of the decay time and the total energy released. Particles emitted in the decay were not identified and the conclusions had to be supported by theoretical arguments. Here we show for the firstmore » time, directly and unambiguously, that 45Fe indeed disintegrates by two-proton decay. Furthermore, we demonstrate that the decay branch of this isotope leads to various particle emission channels including two-proton and three-proton emission. To achieve this result we have developed a new type of detector V the Optical Time Projection Chamber (OTPC) in which digital photography is applied to nuclear physics for the first time. The detector records images of tracks from charged particles, allowing for their unambiguous identification and the reconstruction of decay events in three dimensions. This new and simple technique provides a powerful method to identify exotic decay channels involving emission of charged particles. It is expected that further studies with the OTPC device will yield important information on nuclei located at and beyond the proton drip-line, thus providing new material for testing and improving models of very unstable atomic nuclei.« less
18Ne Excited States Two-Proton Decay
NASA Astrophysics Data System (ADS)
de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.
2008-04-01
Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.
Surface charge accumulation of particles containing radionuclides in open air
Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less
Radioactive liquid wastes discharged to ground in the 200 Areas during 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J. D.; Poremba, B. E.
1979-03-26
This document is issued quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1978, cumulative data since plant startup are presented. Also, in this document is a listing of decayed activity to the various plant sites.
Code of Federal Regulations, 2014 CFR
2014-01-01
... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
Code of Federal Regulations, 2012 CFR
2012-01-01
... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
Code of Federal Regulations, 2013 CFR
2013-01-01
... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...
Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f
NASA Astrophysics Data System (ADS)
Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi
2018-03-01
We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, "lepton-specific" and "flipped" models). The input parameters are defined in four different renormalization schemes, where parameters that are not directly accessible by experiments are defined in the \\overline{MS} scheme. Numerical results are presented for the corrections to partial decay widths for various benchmark scenarios previously motivated in the literature, where we investigate the dependence on the \\overline{MS} renormalization scale and on the choice of the renormalization scheme in detail. We find that it is crucial to be precise with these issues in parameter analyses, since parameter conversions between different schemes can involve sizeable or large corrections, especially in scenarios that are close to experimental exclusion limits or theoretical bounds. It even turns out that some renormalization schemes are not applicable in specific regions of parameter space. Our investigation of differential distributions shows that corrections beyond the Standard Model are mostly constant offsets induced by the mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of h→4 f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover, the decay widths do not significantly depend on the specific type of those models. The calculations are implemented in the public Monte Carlo generator Prophecy4f and ready for application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firestone, R.B.; Gilat, J.; Nitschke, J.M.
The electron-capture and {beta}{sup +}-decay branchings (EC/{beta}{sup +}) and delayed proton decays of {ital A}=142 isotopes with 61{le}{ital Z}{le}66 and {ital A}=140 isotopes with 63{le}{ital Z}{le}65 were investigated with the OASIS facility on-line at the Lawrence Berkeley Laboratory SuperHILAC. Electron capture and positron-decay emission probabilities have been determined for {sup 142}Pm and {sup 142}Sm decays, and extensive decay schemes have been constructed for {sup 142}Eu{sup {ital g}}(2.34{plus minus}0.12 s), {sup 142}Gd(70.2{plus minus}0.6 s), {sup 140}Eu(1.51{plus minus}0.02 s), and {sup 140}Gd(15.8{plus minus}0.4 s). Decay schemes for the new isotopes {sup 142}Tb{sup {ital g}}(597{plus minus}17 ms), {sup 142}Tb{sup {ital m}}(303{plus minus}17 ms),more » {sup 142}Dy(2.3{plus minus}0.3 s), {sup 140}Eu{sup {ital m}}(125{plus minus}2 ms), and {sup 140}Tb(2.4{plus minus}0.2 s) are also presented. We have assigned {gamma} rays to these isotopes on the basis of {gamma}{gamma} and {ital x}{gamma} coincidences, and from half-life determinations. Electron-capture and {beta}{sup +}-decay branchings were measured for each decay, and {beta}-delayed proton branchings were determined for {sup 142}Dy, {sup 142}Tb, and {sup 140}Tb decays. {ital Q}{sub EC} values, derived from the measured EC/{beta}{sup +} branchings and the level schemes are compared with those from the Wapstra and Audi mass evaluation and the Liran and Zeldes mass calculation. The systematics of the {ital N}=77 isomer decays are discussed, and the intense 0{sup +}{r arrow}1{sup +} and 1{sup +}{r arrow}0{sup +} ground-state beta decays are compared with shell-model predictions for simple spin-flip transitions.« less
Modeling Radioactive Decay Chains with Branching Fraction Uncertainties
2013-03-01
moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix
Natural radioactivity of the tar-sand deposits of Ondo State, Southwestern Nigeria
NASA Astrophysics Data System (ADS)
Fasasi, M. K.; Oyawale, A. A.; Mokobia, C. E.; Tchokossa, P.; Ajayi, T. R.; Balogun, F. A.
2003-06-01
A combination of gamma spectrometry and energy dispersive X-ray fluorescence was used to determine the presence and level of radioactivity of radionuclides in bituminous sand and overburden obtained from bituminous sand deposits in Ondo State Nigeria for the purpose of providing baseline data and assessing its impact on the environment. The radionuclides identified with reliable regularity belong to the decay series of naturally occurring radionuclides headed by 238U and 232Th. The non-decay series of naturally occurring 40K was found to be below the limit of detection. The average specific activity concentration values obtained for 214 Bi, 208Tl, and 226Ra in the overburden are 165.64±2.91, 150.25±2.91 and 60.97±2.27 Bq kg -1, respectively. The measured activity in the bituminous sand layer is so low that it can be said to be non-radioactive. The result of the EDXRF supports the presence of radioelements in the overburden, which are likely to be embedded in accessory minerals like zircon and tourmaline. Thus, surface exploration technique using soil-gas radon measurement will not yield the desired result. Furthermore, the level of radioelements and associated decay daughter 222Rn is not expected to cause any health hazard.
Nuclear Data Sheets for A = 231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J.K.
Spectroscopic data for all nuclei with mass number A=231 have been evaluated, and the corresponding level schemes from radioactive decay and reaction studies are presented. Highlights of this evaluation include: A new interpretation of γ–ray spectroscopic results measured with the GAMMASPHERE spectrometer (2002AbZV, 2000JaZY, 1999Br17) has established the level structure of the ground state rotational band 1/2[400] up to spin/parity 45/2+ in {sup 231}Ac. Precise measurements of energies and cross sections of scattered tritons from the {sup 232}Th(d,t) reaction has produced or confirmed the identification of several rotational bands in {sup 231}Th. The alpha hindrance factors (HF) presented in thismore » evaluation were calculated using values of the radius parameter (r{sub 0}) interpolated from those for even–even adjacent nuclei given in 1998Ak04. The Limitation of Relative Statistical Weight (LWM) method (1985ZiZY) has been used for discrepant data throughout this evaluation.« less
Laser-induced caesium-137 decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmina, E V; Simakin, A V; Shafeev, G A
2014-08-31
Experimental data are presented on the laser-induced beta decay of caesium-137. We demonstrate that the exposure of a gold target to a copper vapour laser beam (wavelengths of 510.6 and 578.2 nm, pulse duration of 15 ns) for 2 h in an aqueous solution of a caesium-137 salt reduces the caesium-137 activity by 70%, as assessed from the gamma activity of the daughter nucleus {sup 137m}Ba, and discuss potential applications of laser-induced caesium-137 decay in radioactive waste disposal. (letters)
Electroplating method for producing ultralow-mass fissionable deposits
Ruddy, Francis H.
1989-01-01
A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit.
Radiation-induced microcrystal shape change as a mechanism of wasteform degradation
NASA Astrophysics Data System (ADS)
Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.
2018-04-01
Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.
Scheme Variations of the QCD Coupling and Hadronic τ Decays
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2016-10-01
The quantum chromodynamics (QCD) coupling αs is not a physical observable of the theory, since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by α^s, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling α^s is parametrized by a single parameter C , related to transformations of the QCD scale Λ . It is demonstrated that appropriate choices of C can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study e+e- scattering and decays of the τ lepton into hadrons, both being governed by the QCD Adler function.
Sudbrock, F; Schomäcker, K; Drzezga, A
2017-01-01
For planned and ongoing storage of liquid radioactive waste in a designated plant for a nuclear medicine therapy ward (decontamination system/decay system), detailed knowledge of basic parameters such as the amount of radioactivity and the necessary decay time in the plant is required. The design of the plant at the Department of Nuclear Medicine of the University of Cologne, built in 2001, was based on assumptions about the individual discharge of activity from patients, which we can now retrospectively validate. The decontamination factor of the plant is at present in the order of 10 -9 for 131 I. The annual discharges have been continuously reduced over the period of operation and are now in the region of a few kilobecquerels. This work emphasizes the high efficacy of the decontamination plant to reduce the amount of radioactivity released from the nuclear medicine ward into the environment to almost negligible levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vickers, Linda Diane
This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.
Low-lying isomeric states in Ga80 from the β- decay of Zn80
NASA Astrophysics Data System (ADS)
Licǎ, R.; Mǎrginean, N.; GhiÅ£ǎ, D. G.; Mach, H.; Fraile, L. M.; Simpson, G. S.; Aprahamian, A.; Bernards, C.; Briz, J. A.; Bucher, B.; Chiara, C. J.; Dlouhý, Z.; Gheorghe, I.; Hoff, P.; Jolie, J.; Köster, U.; Kurcewicz, W.; Mǎrginean, R.; Olaizola, B.; Paziy, V.; Régis, J. M.; Rudigier, M.; Sava, T.; Stǎnoiu, M.; Stroe, L.; Walters, W. B.
2014-07-01
A new level scheme of Ga80 has been determined. This nucleus was populated following the β- decay of Zn80 at ISOLDE, CERN. The proposed level scheme is significantly different compared to the previously reported one and contains 26 levels up to 3.4 MeV in excitation energy. The present study establishes that the previously identified 1.9-s β--decaying 6- isomer is the ground state of Ga80 and the 1.3-s β--decaying 3- isomer lies at an excitation energy of 22.4 keV. A new isomeric level was identified at 707.8 keV and its half-life was measured to be 18.3(5) ns, allowing the 685.4-keV transition de-exciting this state to be assigned an M2 multipolarity. The newly measured spectroscopic observables are compared with shell-model calculations using the jj44bpn and JUN45 interactions.
Gold coated lanthanide phosphate nanoparticles for targeted alpha generator radiotherapy.
McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose A; Wall, Jonathan S; Rondinone, Adam J; Kennel, Stephen J; Mirzadeh, Saed; Robertson, J David
2013-01-01
Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo α-generator targeted radiotherapies can deliver multiple α particles to a receptor site dramatically amplifying the radiation dose delivered to the target. The major challenge with α-generator radiotherapies is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-target tissue. The recoil energy of the (225)Ac daughters following α decay will sever any metal-ligand bond used to form the bioconjugate. This work demonstrates that an engineered multilayered nanoparticle-antibody conjugate can deliver multiple α radiations and contain the decay daughters of (225)Ac while targeting biologically relevant receptors in a female BALB/c mouse model. These multi-shell nanoparticles combine the radiation resistance of lanthanide phosphate to contain (225)Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established gold chemistry for attachment of targeting moieties.
Using Analogue Computers in Schools
ERIC Educational Resources Information Center
Hinson, D. J.
1974-01-01
Discusses the procedures of using operational amplifiers to conduct student projects and teach physical phenomena such as oscillation, radioactive decay, terminal velocity, projectile and ball bouncing. (CC)
Analysis of decay chains of superheavy nuclei produced in the 249Bk+48Ca and 243Am+48Ca reactions
NASA Astrophysics Data System (ADS)
Zlokazov, V. B.; Utyonkov, V. K.
2017-07-01
The analysis of decay chains starting at superheavy nuclei 293Ts and 289Mc is presented. The spectroscopic properties of nuclei identified during the experiments using the 249Bk+48Ca and 243Am+48Ca reactions studied at the gas-filled separators DGFRS, TASCA and BGS are considered. We present the analysis of decay data using widely adopted statistical methods and applying them to the short decay chains of parent odd-Z nuclei. We find out that the recently suggested method of analyzing decay chains by Forsberg et al may lead to questionable conclusions when applied for the analysis of radioactive decays. Our discussion demonstrates reasonable congruence of α-particle energies and decay times of nuclei assigned to isotopes 289Mc, 285Nh and 281Rg observed in both reactions.
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Sukumaran, Indu
2017-09-01
Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.
Verçosa, Cícero Jorge; Moraes Filho, Aroldo Vieira de; Castro, Ícaro Fillipe de Araújo; Santos, Robson Gomes Dos; Cunha, Kenya Silva; Silva, Daniela de Melo E; Garcia, Ana Cristina Lauer; Navoni, Julio Alejandro; Amaral, Viviane Souza do; Rohde, Claudia
2017-07-01
Natural radiation of geological origin is a common phenomenon in Brazil, a country where radioactive agents such as uranium may be often found. As an unstable atom, uranium undergoes radioactive decay with the generation of a series of decay by-products, including radon, which may be highly genotoxic and trigger several pathological processes, among which cancer. Because it is a gas, radon may move freely between cracks and gaps in the ground, seeping upwards into the buildings and in the environment. In this study, two Drosophila melanogaster Meigen (Diptera, Drosophilidae) strains called Oregon-R and Wild (collected in a non-radioactive environment) were exposed to atmospheric radiation in the Lajes Pintadas city, in the semiarid zone of northeastern Brazil. After six days of environmental exposure, the organisms presented genetic damage significantly higher than that of the negative control group. The genotoxic effects observed reinforce the findings of other studies carried out in the same region, which warn about the environmental risks related to natural radioactivity occurrence. The results also validate the use of the Comet assay in hemocytes of D. melanogaster as a sensitive test to detect genotoxicity caused by natural radiation, and the use of a recently collected D. melanogaster strain in the environmental of radon. Copyright © 2017. Published by Elsevier Inc.
Surface charge accumulation of particles containing radionuclides in open air.
Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nuclear Data Sheets for A = 84
NASA Astrophysics Data System (ADS)
Abriola, Daniel; Bostan, Melih; Erturk, Sefa; Fadil, Manssour; Galan, Monica; Juutinen, Sakari; Kibédi, Tibor; Kondev, Filip; Luca, Aurelian; Negret, Alexandru; Nica, Ninel; Pfeiffer, Bernd; Singh, Balraj; Sonzogni, Alejandro; Timar, Janos; Tuli, Jagdish; Venkova, Tsanka; Zuber, Kazimierz
2009-11-01
The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides 84Sr and 84Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for 84Ga and 84As are nonexistent, and those for 84Ge are scarce. The radioactive decay schemes of 84Ga, 84Ge, 84Se, 84Y (39.5 min), 84Y (4.6 s), 84Zr and 84Nb suffer from incompleteness and that for 84Mo decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 s) of 84Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of 84Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of 84Zr and 84Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, R.W.
1980-10-31
Nuclear spectroscopic studies included the decay of /sup 201/Po to /sup 201/Bi, decay of /sup 201/At, decay of /sup 187/Au, and g/sub 7/2/ intruder band in /sup 109/Ag. A systematic comparison was conducted of the Interacting Boson-Fermion Approximation model predictions with experiment on neutron-deficient odd-A gold isotopes. An international comparison of /sup 133/Ba ..gamma..-ray standards was completed. L/sub 1/, L/sub 2/, and L/sub 3/ subshells were studied, and the decay energy of /sup 207/Bi is being measured. Carrier-free /sup 18/F has been prepared in crown ether solution. (DLC)
Double β-decay nuclear matrix elements for the A=48 and A=58 systems
NASA Astrophysics Data System (ADS)
Skouras, L. D.; Vergados, J. D.
1983-11-01
The nuclear matrix elements entering the double β decays of the 48Ca-48Ti and 58Ni-58Fe systems have been calculated using a realistic two nucleon interaction and realistic shell model spaces. Effective transition operators corresponding to a variety of gauge theory models have been considered. The stability of such matrix elements against variations of the nuclear parameters is examined. Appropriate lepton violating parameters are extracted from the A=48 data and predictions are made for the lifetimes of the positron decays of the A=58 system. RADIOACTIVITY Double β decay. Gauge theories. Lepton nonconservation. Neutrino mass. Shell model calculations.
Systematic study of cluster radioactivity of superheavy nuclei
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Wang, Y. Z.
2018-01-01
The probable cluster radioactivity (CR) of 294118, 296120, and 298122 is studied by using the unified description (UD) formula, universal (UNIV) curve, Horoi formula, and universal decay law (UDL). The predictions by the former three models suggest that the probable emitted clusters are lighter nuclei, and the calculations within the UDL formula give a different prediction: that both the lighter clusters and heavier ones can be emitted from the parent nuclei. A further study on the competition between α decay and CR of Z =104 -124 isotopes is performed. The former three models predict that α decay is the dominant decay mode, but the UDL formula suggests that CR dominates over α decay for Z ≥118 nuclei and the isotopes of
Kossert, K; Cassette, Ph; Carles, A Grau; Jörg, G; Gostomski, Christroph Lierse V; Nähle, O; Wolf, Ch
2014-05-01
The triple-to-double coincidence ratio (TDCR) method is frequently used to measure the activity of radionuclides decaying by pure β emission or electron capture (EC). Some radionuclides with more complex decays have also been studied, but accurate calculations of decay branches which are accompanied by many coincident γ transitions have not yet been investigated. This paper describes recent extensions of the model to make efficiency computations for more complex decay schemes possible. In particular, the MICELLE2 program that applies a stochastic approach of the free parameter model was extended. With an improved code, efficiencies for β(-), β(+) and EC branches with up to seven coincident γ transitions can be calculated. Moreover, a new parametrization for the computation of electron stopping powers has been implemented to compute the ionization quenching function of 10 commercial scintillation cocktails. In order to demonstrate the capabilities of the TDCR method, the following radionuclides are discussed: (166m)Ho (complex β(-)/γ), (59)Fe (complex β(-)/γ), (64)Cu (β(-), β(+), EC and EC/γ) and (229)Th in equilibrium with its progenies (decay chain with many α, β and complex β(-)/γ transitions). © 2013 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chang, Qin; Li, Xiao-Nan; Sun, Jun-Feng; Yang, Yue-Ling
2016-10-01
In this paper, the contributions of weak annihilation and hard spectator scattering in B\\to ρ {K}* , {K}* {\\bar{K}}* , φ {K}* , ρ ρ and φ φ decays are investigated within the framework of quantum chromodynamics factorization. Using the experimental data available, we perform {χ }2 analyses of end-point parameters in four cases based on the topology-dependent and polarization-dependent parameterization schemes. The fitted results indicate that: (i) in the topology-dependent scheme, the relation ({ρ }Ai,{φ }Ai)\
Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł
2016-10-01
In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Astrophysics related programs at center for underground physics (CUP)
NASA Astrophysics Data System (ADS)
Kim, Yeongduk
2018-04-01
We are developing experimental programs related to particle astrophysics at the Center for Underground Physics (CUP); searching for neutrino-less double beta decay (0νββ) of 100Mo nuclei and sterile neutrinos in the mass range of eV using reactor neutrinos. Expected sensitivities of AMoRE double beta decay experiment and the results from recent NEOS experiment are described. Utilizing the facilities for ultra-low radioactivity measurement at the center, we are planning to measure the decay of 180mTa which is important to the nucleosynthesis of heavy nuclei.
2007-04-19
These levels are provided to assist in making decisions in case of a large accident. Assessment can be made based on what health effects can be...a beta particle to become polonium -214 (99.98% of decays), or it can emit an alpha particle to become thallium- 210 (0.02% of decays). Bismuth-214...lead- 210 , and polonium - 210 . A decay of bismuth-214 will eventually yield 5 alpha particles and 4 beta particles. Four radionuclides that occur in
ERIC Educational Resources Information Center
Cerny, Joseph; Poskanzer, Arthur M.
1978-01-01
Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, S.; Algora, A.; Tain, J. L.
The beta decays of Br-86 and Rb-91 have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla and further purified using the JYFLTRAP. Br-86 and Rb-91 are considered to be major contributors to the decay heat in reactors. In addition, Rb-91 was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decaywas well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemoniummore » effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.« less
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancholi, S. C.; Martin, M. J.
A review of information available on level schemes and decay characteristics for all nuclei with mass number A = 212 is presented. Experimental data and their evaluation, adopted values, comparison with theory, and arguments for spin and parity assignments are given. Inconsistencies and discrepancies in the level schemes are discussed.
Radioactive contamination of scintillators
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Tretyak, V. I.
2018-03-01
Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.
Birden, J.H.; Jordan, K.C.
1959-11-17
A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.
Management of Ir-192 Disused Sealed Sources with Long-Lived Radioactive Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellamano, Jose Claudio; Ferreira, Robson de Jesus; Potiens, Ademar Jose Jr.
2015-07-01
Iridium-192 sealed sources are the most widely used sealed source in industrial applications in Brazil. They are not recyclable and in the end of the useful life, they are discarded as radioactive waste. The recommended management strategy of this waste is decay in storage and disposal as exempt waste because the half-life is only 73.8 days. Presently, thousands of Ir- 192 sources are under storage waiting release. Surprisingly, sources that were under storage for more than ten years and for which no measurable contact dose rate was expected still present significant remaining radioactivity. The examination of the gamma spectra ofmore » these sources showed the presence of Co-60 and the gamma emission lines from the Ir-192m2 isomer, the metastable isotope with half-life of 241 years, which is also formed by the irradiation of natural iridium. The aim of the study reported in this paper is to characterize the Ir-192 disused sources under interim storage at the Radioactive Waste Management Department, considering the presence of minor contaminants in the irradiated iridium and the fraction of the total initial activity of the sources that is attributable to that metastable isotope. The radioactive inventories at the end of the irradiation and after the decay period were predicted using the Scale 6.0 code and the results were compared with activity measurements of the disused sources by gamma spectrometry. (authors)« less
Triangle mechanisms in the build up and decay of the N*(1875 )
NASA Astrophysics Data System (ADS)
Samart, Daris; Liang, Wei-Hong; Oset, Eulogio
2017-09-01
We studied the N*(1875 ) (3 /2-) resonance with a multichannel unitary scheme, considering the Δ π and Σ*K , with their interaction extracted from chiral Lagrangians, and then added two more channels, the N*(1535 ) π and N σ , which proceed via triangle diagrams involving the Σ*K and Δ π respectively in the intermediate states. The triangle diagram in the N*(1535 ) π case develops a singularity at the same energy as the resonance mass. We determined the couplings of the resonance to the different channels and the partial decay widths. We found a very large decay width to Σ*K , and also observed that, due to interference with other terms, the N σ channel has an important role in the π π mass distributions at low invariant masses, leading to an apparently large N σ decay width. We discuss justifying the convenience of an experimental reanalysis of this resonance, in light of the findings of the paper, using multichannel unitary schemes.
Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E
2012-08-01
Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
School Science Review, 1976
1976-01-01
Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)
Upgrade of the SPIRAL identification station for high-precision measurements of nuclear β decay
NASA Astrophysics Data System (ADS)
Grinyer, G. F.; Thomas, J. C.; Blank, B.; Bouzomita, H.; Austin, R. A. E.; Ball, G. C.; Bucaille, F.; Delahaye, P.; Finlay, P.; Frémont, G.; Gibelin, J.; Giovinazzo, J.; Grinyer, J.; Kurtukian-Nieto, T.; Laffoley, A. T.; Leach, K. G.; Lefèvre, A.; Legruel, F.; Lescalié, G.; Perez-Loureiro, D.
2014-03-01
The low-energy identification station at SPIRAL (Système de Production d'Ions Radioactifs Accélérés en Ligne) has been upgraded for studying the β decays of short-lived radioactive isotopes and to perform high-precision half-life and branching-ratio measurements for superallowed Fermi and isospin T=1/2 mirror β decays. These new capabilities, combined with an existing Paul trap setup for measurements of β-ν angular-correlation coefficients, provide a powerful facility for investigating fundamental properties of the electroweak interaction through nuclear β decays. A detailed description of the design study, construction, and first results obtained from an in-beam commissioning experiment on the β+ decays 14 O and 17F are presented.
Levels in 223Th populated by α decay of 227U
NASA Astrophysics Data System (ADS)
Kalaninová, Z.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Andel, B.; Kindler, B.; Laatiaoui, M.; Lommel, B.; Maurer, J.
2015-07-01
Levels in 223Th populated by the α decay of 227U were investigated using α -γ decay spectroscopy. The 227U isotope was produced in the fusion-evaporation reaction 22Ne +208Pb at the velocity filter separator for heavy-ion reaction products at Gesellschaft für Schwerionenforschung in Darmstadt (Germany). Several new excited levels and γ transitions were identified in 223Th . An improved α -decay scheme of 227U was suggested. The experimental α -decay energy spectrum of 227U was compared with the Monte Carlo simulation performed using the toolkit geant4.
Systematic investigation of cluster radioactivity for uranium isotopes
NASA Astrophysics Data System (ADS)
Seif, W. M.; Amer, Laila H.
2018-01-01
The most probable cluster decays that can be observed for 217-238U isotopes are investigated. We identified the more-probable decays that commonly manifest themselves via cold valleys in the driving potentials with respect to the mass number and the atomic number, individually. The calculations are performed using the Skyrme-SLy4 nucleon-nucleon interaction, within the frame work of the performed cluster model. Among the indicated favored decays that involve emitted light clusters heavier than α-particle, twenty six decay modes display calculated half-life less than 1022 years, with branching ratio larger than 10-14%. The estimated branching ratio for the α-decay of 237U, that did not observed yet, is B = 2.1 ×10-10% (Tα = 8.7 ×109 years). The indicated most probable decays that did not observed yet include the 22Ne decay of 232U, 25Ne and 32Si decays of 233U, 24Ne and 29Mg decays of 235U, and the 34Si and 30Mg decay modes of 238U, with 10-14 < B(%) <10-7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, M.K.; Skeel, W.L.; Jastram, P.S.
1960-06-01
The gamma rays following the electron-capture decay of 7.5 year Ba/sup 133/ were studied by means of a coincidence scintillation spectrometer. Gamma rays at 79, 79, 274, presence of a 56 kev gamma ray was confirmed. The resulting decay scheme with levels at 79, 158, 381, and 437 kev is in excellent agreement with previous work. Spin and parity assignments are made for these levels. (auth)
NNLO QCD corrections to associated W H production and H →b b ¯ decay
NASA Astrophysics Data System (ADS)
Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul
2018-04-01
We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.
Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay
NASA Astrophysics Data System (ADS)
Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Äysto, J.; Davinson, T.; Lotay, G.; Woods, P. J.; Pollacco, E.
2012-02-01
In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23Al, 27P, 31Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,γ)23Mg (crucial for the depletion of 22Na in novae), 26mAl(p,γ)27Si and 30P(p,γ)31S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.
Visualization of Radioisotope Detectability Over Time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, Brady
A radioactive isotope is an atom that has an unstable nucleus. The isotope can undergo radioactive decay, the process in which excessive nuclear energy is emitted from the nucleus in many different forms, such as gamma radiation, alpha particles, or beta particles. The important thing to note is that these emissions act as a signature for the isotope. Each radioisotope has a particular emission spectrum, emitting radiation at different energies and at different rates.
Decay heat uncertainty quantification of MYRRHA
NASA Astrophysics Data System (ADS)
Fiorito, Luca; Buss, Oliver; Hoefer, Axel; Stankovskiy, Alexey; Eynde, Gert Van den
2017-09-01
MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.
ERIC Educational Resources Information Center
Physics Education, 1982
1982-01-01
Describes: (1) an apparatus which provides a simple method for measuring Stefan's constant; (2) a simple phase shifting circuit; (3) a radioactive decay computer program (for ZX81); and (4) phase difference between transformer voltages. (Author/JN)
Gamma-Ray Spectroscopy at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Svensson, C. E.; Ball, G. C.; Hackman, G.; Zganjar, E. F.; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Chan, S.; Coombes, H.; Churchman, R.; Chakrawarthy, R. S.; Finlay, P.; Grinyer, G. F.; Hyland, B.; Illes, E.; Jones, G. A.; Kulp, W. D.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Regan, P. H.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Walker, P. M.; Williams, S. J.; Waddington, J. C.; Watters, L. M.; Wong, J.; Wood, J. L.
2006-03-01
The 8π spectrometer at TRIUMF-ISAC consists of 20 Compton-suppressed germanium detectors and various auxiliary devices. The Ge array, once used for studies of nuclei at high angular momentum, has been transformed into the world's most powerful device dedicated to radioactive-decay studies. Many improvements in the spectrometer have been made, including a high-throughput data acquisition system, installation of a moving tape collector, incorporation of an array of 20 plastic scintillators for β-particle tagging, 5 Si(Li) detectors for conversion electrons, and 10 BaF2 detectors for fast-lifetime measurements. Experiments can be performed where data from all detectors are collected simultaneously, resulting in a very detailed view of the nucleus through radioactive decay. A number of experimental programmes have been launched that take advantage of the versatility of the spectrometer, and the intense beams available at TRIUMF-ISAC.
NASA Astrophysics Data System (ADS)
Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.
2015-10-01
Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).
Radioxenon Production from an Underground Nuclear Detonation
NASA Astrophysics Data System (ADS)
Sun, Y.
2016-12-01
The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.
NASA Astrophysics Data System (ADS)
Mendoza, E.; Álvarez-Velarde, F.; Bécares, V.; Cano-Ott, D.; González-Romero, E.; Martínez, T.; Villamarín, D.
2017-10-01
We have measured with a LaCl3 detector the γ-ray spectrum emitted by a 235 U enriched UO2 fuel rod 10 s after being irradiated with thermal neutrons. The experimental results are compared with simulations performed with the fission product yield and radioactive decay data libraries present in the most recent releases of ENDF/B, JEFF and JENDL.
β decay studies of n-rich Cs isotopes with the ISOLDE Decay Station
NASA Astrophysics Data System (ADS)
Lică, R.; Benzoni, G.; Morales, A. I.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Madurga, M.; Sotty, C.; Vedia, V.; De Witte, H.; Benito, J.; Berry, T.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernández-Martínez, G.; Fynbo, H.; Greenlees, P.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Leoni, S.; Lund, M.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Regis, J. M.; Rotaru, F.; Saed-Sami, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.
2017-05-01
Neutron-rich Ba isotopes are expected to exhibit octupolar correlations, reaching their maximum in isotopes around mass A = 146. The odd-A neutron-rich members of this isotopic chain show typical patterns related to non-axially symmetric shapes, which are however less marked compared to even-A ones, pointing to a major contribution from vibrations. In the present paper we present results from a recent study focused on 148-150Cs β-decay performed at the ISOLDE Decay Station equipped with fast-timing detectors. A detailed analysis of the measured decay half-lives and decay scheme of 149Ba is presented, giving a first insight in the structure of this neutron-rich nucleus.
Detailed α -decay study of 180Tl
NASA Astrophysics Data System (ADS)
Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.
2017-11-01
A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.
Scheme for quantum state manipulation in coupled cavities
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.
First results on Ge resonant laser photoionization in hollow cathode lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpa, Daniele, E-mail: daniele.scarpa@lnl.infn.it; Andrighetto, Alberto; Barzakh, Anatoly
2016-02-15
In the framework of the research and development activities of the SPES project regarding the optimization of the radioactive beam production, a dedicated experimental study has been recently started in order to investigate the possibility of in-source ionization of germanium using a set of tunable dye lasers. Germanium is one of the beams to be accelerated by the SPES ISOL facility, which is under construction at Legnaro INFN Laboratories. The three-step, two color ionization schemes have been tested using a Ge hollow cathode lamp. The slow and the fast optogalvanic signals were detected and averaged by an oscilloscope as amore » proof of the laser ionization inside the lamp. As a result, several wavelength scans across the resonances of ionization schemes were collected with the fast optogalvanic signal. Some comparisons of ionization efficiency for different ionization schemes were made. Furthermore, saturation curves of the first excitation transitions have been obtained. This investigation method and the setup built in the laser laboratory of the SPES project can be applied for the photo-ionization scheme studies also for the other possible radioactive elements.« less
KEWPIE: A dynamical cascade code for decaying exited compound nuclei
NASA Astrophysics Data System (ADS)
Bouriquet, Bertrand; Abe, Yasuhisa; Boilley, David
2004-05-01
A new dynamical cascade code for decaying hot nuclei is proposed and specially adapted to the synthesis of super-heavy nuclei. For such a case, the interesting channel is of the tiny fraction that will decay through particles emission, thus the code avoids classical Monte-Carlo methods and proposes a new numerical scheme. The time dependence is explicitely taken into account in order to cope with the fact that fission decay rate might not be constant. The code allows to evaluate both statistical and dynamical observables. Results are successfully compared to experimental data.
NASA Astrophysics Data System (ADS)
Gedeon, M.; Vandersteen, K.; Rogiers, B.
2012-04-01
Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.
NASA Astrophysics Data System (ADS)
Hyland, B.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Achtzehn, T.; Albers, D.; Andreoiu, C.; Bricault, P.; Churchman, R.; Cross, D.; Dombsky, M.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Lassen, J.; Lavoie, J. P.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Schumaker, M. A.; Smith, M. B.; Towner, I. S.; Valiente-Dobón, J. J.; Wendt, K.; Zganjar, E. F.
2006-09-01
A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator radioactive ion beam facility. Nineteen γ rays emitted following β+ decay of Ga62 were identified, establishing the dominant superallowed branching ratio to be (99.861±0.011)%. Combined with recent half-life and Q-value measurements, this branching ratio yields a superallowed ft value of 3075.6±1.4s for Ga62 decay. These results demonstrate the feasibility of high-precision superallowed branching ratio measurements in the A≥62 mass region and provide the first stringent tests of the large isospin-symmetry-breaking effects predicted for these decays.
ERIC Educational Resources Information Center
Talbot, Chris; And Others
1991-01-01
Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…
Effect of enhanced ionizing radiation on the cloud electricity after the Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Yamauchi, Masatoshi; Takeda, Masahiko; Nagamachi, Shingo
2018-03-01
The vertical downward component of the DC atmospheric electric field, or potential gradient (PG), at Kakioka 150 km southwest of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) was analyzed before and after the FNPP1 accident to examine possible influence of floating radioactive particles on the PG under the highly electrified clouds. Using 1-min PG data from March 13 to April 30 (late April 2011 corresponding to the time when floating radioactive materials decreased significantly) from 2006 to 2015, time profiles to/from the PG peaks (<- 100 or >+ 100 V/m) for 2011 are compared with other years. The PG developed toward and decays from its negative peaks faster in the first 50 days after the FNPP1 accident than for the same period in other years, making the 10-min averaged PG values for the same negative PG peak higher (smaller in terms of absolute value) during the first 50 days after the FNPP1 accident than those in other years in the study period, while the distribution of peak PG values is similar between 2011 and the other years. The observed shortening of the timescale is symmetric between the rise and decay and is the most clear when the negative PG peak is about - 200 to - 400 V/m. For positive peaks, the change of the baseline resulting from the radioactive contamination on the ground in 2011 caused superficial difference on such time profiles. Otherwise, there are no significant difference between 2011 and the other years. Possible explanations based on increased ionizing radiation from floating radioactive particles, which are found to be concentrated at low altitudes (< 500 m according to radiosonde in-situ observations of gamma rays) where negative cloud charges normally exceed positive charges, are discussed. The scenarios discussed include enhanced electrostatic shielding and electric conductivity-led decay rate of cloud charges. The result opens up a new possibility of using PG as an independent monitor of radioactivity at some altitudes in case of nuclear accidents.
Flavor-changing Z decays: A window to ultraheavy quarks?
NASA Astrophysics Data System (ADS)
Ganapathi, V.; Weiler, T.; Laermann, E.; Schmitt, I.; Zerwas, P. M.
1983-02-01
We study flavor-changing Z decays into quarks, Z-->Q+q¯, in the standard SU(2)×U(1) theory with sequential generations. Such decays occur in higher-order electroweak interactions, with a probability growing as the fourth power of the mass of the heaviest (virtual) quark mediating the transition. With the possible exception of Z-->bs¯, these decay modes are generally very rare in the three-generation scheme. However, with four generations Z-->b'b¯ is observable if the t' mass is a few hundred GeV. Such decay modes could thus provide a glimpse of the ultraheavy-quark spectrum.
Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T
2012-07-01
In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.
Någren, K; Halldin, C; Swahn, C G; Suhara, T; Farde, L
1996-04-01
No-carrier-added racemic [11C]metaraminol was prepared by a selective condensation of [11C]nitroethane with 3-hydroxy-benzaldehyde using tetrabutylammonium fluoride in tetrahydrofuran (THF) as a catalyst, followed by a reduction with Raney nickel in formic acid. [11C]Metaraminol was produced in 30 to 45% decay-corrected yield from [11C]nitroethane (13 to 20% decay corrected from [11C]CO2) within 45 to 55 min total synthesis time. Reversed phase high-performance liquid chromatography (HPLC) was used for the separation of the racemic erythro- and threo-forms of [11C]metaraminol. The radiochemical purity was higher than 98%, and the specific radioactivity at the end of synthesis was 500 to 800 Ci/mmol (18 to 30 GBq/mumol). Positron emission tomography (PET) examination of racemic erythro-[11C]metaraminol in a Cynomolgus monkey showed a high uptake of radioactivity in the heart. Following pretreatment with the selective norepinephrine reuptake inhibitor desipramine, the radioactivity uptake in the myocardium was markedly reduced (80%), demonstrating the specificity of erythro-[11C]metaraminol for the norepinephrine reuptake system of the heart. Pretreatment with desipramine had no effect on radioactivity in lung. The metabolism was rapid for [11C]metaraminol. The amounts of the total radioactivity representing [11C]metaraminol in plasma, determined by HPLC, were 14% at 6 min and 8% at 34 min. The high specific uptake of racemic erythro-[11C]metaraminol indicates that enantiomerically pure (R,S)-[11C]metaraminol has potential for detailed mapping of the sympathetic innervation of the human myocardium.
The Mean Life Squared Relationship for Abundances of Extinct Radioactivities
NASA Technical Reports Server (NTRS)
Lodders, K.; Cameron, A. G. W.
2004-01-01
We discovered that the abundances of now extinct radioactivities (relative to stable reference isotopes) in meteorites vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons but to calcium-aluminum inclusions (CAIs). Certain meteorites contain excesses in isotopic abundances from the decay of radioactive isotopes with half-lives much less than the age of the solar system. These short-lived radioactivities are now extinct, but they were alive when meteorites assembled in the early solar system. The origin of these radioactivities and the processes which control their abundances in the solar nebula are still not well understood. Some clues may come from our finding that the meteoritic abundances of now extinct radioactivities (relative to stable reference isotopes) vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons, but not to CAIs. This points to at least two different processes establishing the abundances of short-lived isotopes found in the meteoritic record.
Standardization of 64Cu using an improved decay scheme
NASA Astrophysics Data System (ADS)
Amiot, M. N.; Bé, M. M.; Branger, T.; Cassette, P.; Lépy, M. C.; Ménesguen, Y.; Da Silva, I.
2012-08-01
A 64Cu solution was standardized by means of liquid scintillation counting. The activity of the solution was also determined with an ionization chamber whose response was simulated by using a Monte Carlo code. The photon emission intensities including K X-rays were determined to be I511=35.1 (3)%; I1346=0.472 (12)%, IKα=14.41 (15)%, IKβ=2.01 (3)%, respectively. 64Cu half-life was also determined as 12.718 (23) h. The new decay scheme used in the present work was established following the EURAMET 1085 exercise where a good agreement between activity measurement techniques was found.
Environmental Sensor Technologies and Procedures for Detecting and Identifying Indoor Air Pollution
1992-03-01
problem of radon or biological contaminants. Radon daughters --the radioactive decay products of radon gas-are most dangerous when they attach to a...entry points. Radon itself decays into radon daughters which are dangerous when they bond with dust particles that allow them to embed in the lining...because it contains respirable particles to which radon daughters can attach and embed in the lungs. The most direct way to check the ETS level is to
Generation of Werner states via collective decay of coherently driven atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Girish S.; Kapale, Kishore T.
2006-02-15
We show deterministic generation of Werner states as a steady state of the collective decay dynamics of a pair of neutral atoms coupled to a leaky cavity and strong coherent drive. We also show how the scheme can be extended to generate a 2N-particle analogue of the bipartite Werner states.
ERIC Educational Resources Information Center
Kay, Jack G.; And Others
1988-01-01
Describes two applications of the microcomputer for laboratory exercises. Explores radioactive decay using the Batemen equations on a Macintosh computer. Provides examples and screen dumps of data. Investigates polymer configurations using a Monte Carlo simulation on an IBM personal computer. (MVL)
NASA Technical Reports Server (NTRS)
Appelman, E. H.; Studier, M. H.
1969-01-01
Salts of heptavalent bromine were synthesized by a hot atom process, the beta decay of radioactive selenium-83 incorporated into a selenate. Formation of an unreactive perbromate ion led to preparation of macro amounts of perborate. A rubidium salt was isolated.
The Majorana Demonstrator radioassay program
Abgrall, N.; Arnquist, I. J.; Avignone, F. T.; ...
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements from gamma-ray counting,more » neutron activation and mass spectroscopy of the radioactive-isotope contamination for the materials studied for use in the detector are reported. In conclusion, we interpret these numbers in the context of the expected background for the experiment.« less
Formation of methyl formate in comets by irradiation of methanol-bearing ices
NASA Astrophysics Data System (ADS)
Modica, P.; Palumbo, M. E.; Strazzulla, G.
2012-12-01
Methyl formate is a complex organic molecule considered potentially relevant as precursor of biologically active molecules. It has been observed in several astrophysical environments, such as hot cores, hot corinos, and comets. The processes that drive the formation of molecules in cometary ices are poorly understood. In particular it is not yet clear if molecules are directly accreted from the pre-solar nebula to form comets or are formed after accretion. The present work analyzes the possible role of cosmic ion irradiation and radioactive decay in methyl formate formation in methanol-bearing ices. The results indicate that cosmic ion irradiation can account for about 12% of the methyl formate observed in comet Hale-Bopp, while radioactive decay can account for about 6% of this amount. The need of new data coming from earth based and space observational projects as well as from laboratory experiments is outlined.
DOE R&D Accomplishments Database
Davis, R. Jr.; Harmer, D. S.
1964-12-01
The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.
NASA Astrophysics Data System (ADS)
Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei
2018-05-01
Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.
Carbon-14 decay as a source of non-canonical bases in DNA.
Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Chris R; Marks, Nigel A
2014-01-01
Significant experimental effort has been applied to study radioactive beta-decay in biological systems. Atomic-scale knowledge of this transmutation process is lacking due to the absence of computer simulations. Carbon-14 is an important beta-emitter, being ubiquitous in the environment and an intrinsic part of the genetic code. Over a lifetime, around 50 billion (14)C decays occur within human DNA. We apply ab initio molecular dynamics to quantify (14)C-induced bond rupture in a variety of organic molecules, including DNA base pairs. We show that double bonds and ring structures confer radiation resistance. These features, present in the canonical bases of the DNA, enhance their resistance to (14)C-induced bond-breaking. In contrast, the sugar group of the DNA and RNA backbone is vulnerable to single-strand breaking. We also show that Carbon-14 decay provides a mechanism for creating mutagenic wobble-type mispairs. The observation that DNA has a resistance to natural radioactivity has not previously been recognized. We show that (14)C decay can be a source for generating non-canonical bases. Our findings raise questions such as how the genetic apparatus deals with the appearance of an extra nitrogen in the canonical bases. It is not obvious whether or not the DNA repair mechanism detects this modification nor how DNA replication is affected by a non-canonical nucleobase. Accordingly, (14)C may prove to be a source of genetic alteration that is impossible to avoid due to the universal presence of radiocarbon in the environment. © 2013.
Update of the α - n Yields for Reactor Fuel Materials for the Interest of Nuclear Safeguards
NASA Astrophysics Data System (ADS)
Simakov, S. P.; van den Berg, Q. Y.
2017-01-01
The neutron yields caused by spontaneous α-decay of actinides and subsequent (α,xn) reactions were re-evaluated for the reactor fuel materials UO2, UF6, PuO2 and PuF4. For this purpose, the most recent reference data for decay parameters, α-particle stopping powers and (α,xn) cross sections were collected, analysed and used in calculations. The input data and elaborated code were validated against available thick target neutron yields in pure and compound materials measured at accelerators or with radioactive sources. This paper provides the specific neutron yields and their uncertainties resultant from α-decay of actinides 241Am, 249Bk, 252Cf, 242,244Cm, 237Np, 238-242Pu, 232Th and 232-236,238U in oxide and fluoride compounds. The obtained results are an update of previous reference tables issued by the Los Alamos National Laboratory in 1991 which were used for the safeguarding of radioactive materials by passive non-destructive techniques. The comparison of the updated values with previous ones shows an agreement within one estimated uncertainty (≈ 10%) for oxides, and deviations of up to 50% for fluorides.
Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay
NASA Astrophysics Data System (ADS)
Lee, Chang-Hun; Mohapatra, Rabindra N.
2017-02-01
SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p → e +π0 may have a partial lifetime within the reach of currently planned experiments.
Structure of {sup 81}Ga populated from the {beta}{sup -} decay of {sup 81}Zn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paziy, V.; Mach, H.; Fraile, L. M.
2013-06-10
We report on the results of the {beta}-decay of {sup 81}Zn. The experiment was performed at the CERN ISOLDE facility in the framework of a systematic ultra-fast timing investigation of neutron-rich nuclei populated in the decay of Zn. The present analysis included {beta}-gated {gamma}-ray singles and {gamma}-{gamma} coincidences from the decay of {sup 81}Zn to {sup 81}Ga and leads to a new and much more extensive level scheme of {sup 81}Ga. A new half-life of {sup 81}Zn is provided.
Gauge-independent renormalization of the N2HDM
NASA Astrophysics Data System (ADS)
Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui
2017-12-01
The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.
1997-05-01
The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performancemore » considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.« less
Nuclear Data Sheets for A = 84
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abriola, Daniel; Bostan, Melih; Erturk, Sefa
The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent,more » and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abriola, D.; Sonzogni, A.; Bostan,M. Erturk,S.
The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent,more » and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abriola, D.; Bostan, M.; Erturk, S.
The evaluated spectroscopic data are presented for 12 known nuclides of mass 84 (Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo). Except for the stable nuclides {sup 84}Sr and {sup 84}Kr, extensive new data are available for all the other nuclides since the 1997 evaluation by J.K. Tuli (1997Tu02) of A = 84 nuclides. Many precise Penning-trap mass measurements since AME-2003 for A = 84 nuclides (2009Re03,2008Ha23,2008We10,2007Ke09,2006Ka48,2006De36,2006Ri15) have resulted in improved Q values and separation energies. However, many deficiencies still remain. Some examples are given below. Excited-state data for {sup 84}Ga and {sup 84}As are nonexistent,more » and those for {sup 84}Ge are scarce. The radioactive decay schemes of {sup 84}Ga, {sup 84}Ge, {sup 84}Se, {sup 84}Y (39.5 min), {sup 84}Y (4.6 s), {sup 84}Zr and {sup 84}Nb suffer from incompleteness and that for {sup 84}Mo decay is not known at all. The energy ordering of the two activities (39.5 min and 4.6 s) of {sup 84}Y is not well established, although, high-spin with tentative spin-parity of (6+) is adopted here as the ground state of {sup 84}Y based on weak arguments. From a conference report published in 2000, it is clear that extensive experiments were done to investigate decays of {sup 84}Zr and {sup 84}Y, but details of these studies never appeared in literature and none were made available to the evaluators when requested from original authors. This evaluation was carried out as part of ENSDF workshop for Nuclear Structure and Decay Data Evaluators, organized and hosted by the 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest, Romania during March 30, 2009 - April 3, 2009. Names of the evaluators principally responsible for evaluation of individual nuclides are given under the respective Adopted data sets.« less
Paul Trapping of Radioactive {sup 6}He{sup +} Ions and Direct Observation of Their {beta} Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flechard, X.; Lienard, E.; Mery, A.
2008-11-21
We demonstrate that abundant quantities of short-lived {beta} unstable ions can be trapped in a novel transparent Paul trap and that their decay products can directly be detected in coincidence. Low energy {sup 6}He{sup +} (807 ms half-life) ions were extracted from the SPIRAL source at GANIL, then decelerated, cooled, and bunched by means of the buffer gas cooling technique. More than 10{sup 8} ions have been stored over a measuring period of six days, and about 10{sup 5} decay coincidences between the beta particles and the {sup 6}Li{sup ++} recoiling ions have been recorded. The technique can be extendedmore » to other short-lived species, opening new possibilities for trap assisted decay experiments.« less
ERIC Educational Resources Information Center
Blain, Mary P., Ed.; Pintavalle, Steven J., Ed.
1985-01-01
Presents 10 activities in biology, chemistry, physical science, and general science. Activities focus on: alfalfa sprouts; soap test; density; skating on cold ice; Kirlian photography; titration analysis (with program listing); radioactive decay; and others. Each activity includes suggested grade level(s) and procedures. (DH)
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Demonstrations, procedures, games, teaching suggestions and information on a variety of physics topics are presented, including hydraulic rams, units and formulae, static electric motors, a computer graphics program, diffraction, adaptation of a basic meter, photoelasticity, photo-diodes, radioactive decay, and analog-digital conversions. (DC)
Comparison of Cf-252 thin-film sources prepared by evaporation or self-transfer
Algutifan, Noor J.; Sherman, Steven R.; Alexander, Charles W.
2014-11-29
Californium-252 (Z = 98) is valued as a potent neutron source due to its spontaneous fission decay path. Thin film sources containing Cf-252 were prepared by two techniques: evaporation and self-transfer. The sources were analyzed by alpha and gamma spectroscopy. Results indicate that self-transfer sources exhibit less alpha energy straggling and energy loss than evaporative sources. Fission fragments may also self-transfer, and sources made by self-transfer may need some decay time to reach radioactive equilibrium.
Orrell, John; Hoppe, Eric
2018-01-26
Working as part of a collaborative team, PNNL is bringing its signature capability in ultra-low-level detection to help search for a rare form of radioactive decay-never before detected-called "neutrinoless double beta decay" in germanium. If observed, it would demonstrate neutrinos are Majorana-type particles. This discovery would show neutrinos are unique among fundamental particles, having a property whereby the matter and anti-matter version of this particle are indistinguishable. Physicist John L. Orrell explains how they rely on the Shallow Underground Laboratory to conduct the research.
Automated QA/QC Check for Beta-Gamma Coincidence Detector
2007-09-01
of the ARSA, 222Rn gas can be introduced into the gas cell, along with the radioactive xenon isotopes. While this radon decays via alpha decay and...Explosion Monitoring Technologies 741 Figure 2. γ-singles spectrum from a 222Rn spike. The peaks are primarily from the radon daughter 214Pb with...National Laboratory (PNNL), can collect and detect several radioxenon isotopes. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe due to the
Protecting quantum Fisher information in curved space-time
NASA Astrophysics Data System (ADS)
Huang, Zhiming
2018-03-01
In this work, we investigate the quantum Fisher information (QFI) dynamics of a two-level atom interacting with quantized conformally coupled massless scalar fields in de Sitter-invariant vacuum. We first derive the master equation that governs its evolution. It is found that the QFI decays with evolution time. Furthermore, we propose two schemes to protect QFI by employing prior weak measurement (WM) and post measurement reversal (MR). We find that the first scheme can not always protect QFI and the second scheme has prominent advantage over the first scheme.
Teleportation of a Weak Coherent Cavity Field State
NASA Astrophysics Data System (ADS)
Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.
2016-07-01
In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.
Generalization of the event-based Carnevale-Hines integration scheme for integrate-and-fire models.
van Elburg, Ronald A J; van Ooyen, Arjen
2009-07-01
An event-based integration scheme for an integrate-and-fire neuron model with exponentially decaying excitatory synaptic currents and double exponential inhibitory synaptic currents has been introduced by Carnevale and Hines. However, the integration scheme imposes nonphysiological constraints on the time constants of the synaptic currents, which hamper its general applicability. This letter addresses this problem in two ways. First, we provide physical arguments demonstrating why these constraints on the time constants can be relaxed. Second, we give a formal proof showing which constraints can be abolished. As part of our formal proof, we introduce the generalized Carnevale-Hines lemma, a new tool for comparing double exponentials as they naturally occur in many cascaded decay systems, including receptor-neurotransmitter dissociation followed by channel closing. Through repeated application of the generalized lemma, we lift most of the original constraints on the time constants. Thus, we show that the Carnevale-Hines integration scheme for the integrate-and-fire model can be employed for simulating a much wider range of neuron and synapse types than was previously thought.
Background canceling surface alpha detector
MacArthur, D.W.; Allander, K.S.; Bounds, J.A.
1996-06-11
A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.
Background canceling surface alpha detector
MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.
1996-01-01
A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.
IUPAC Periodic Table of Isotopes for the Educational Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden N. E.; Holden,N.E.; Coplen,T.B.
2012-07-15
John Dalton first proposed the concept of atomic weights of the elements in the first decade of the nineteenth century. These atomic weights of the chemical elements were thought of as constants of nature, similar to the speed of light. Dmitri Mendeleev arranged the atomic weights of the elements in ascending order of value and used the systematic variation of their chemical properties to produce his Periodic Table of the Elements in 1869. Measurement of atomic weight values became an important chemical activity for a century and a half. Theodore Richards received a Noble Prize for his work in thismore » area. In 1913, Fredrick Soddy found a species of radium, which had an atomic weight value of 228, compared to the familiar radium gas value of 226. Soddy coined the term 'isotope' (Greek for 'in the same place') to account for this second atomic weight value in the radium position of the Periodic Table. Both of these isotopes of radium are radioactive. Radioactive isotopes are energetically unstable and will decay (disintegrate) over time. The time it takes for one half of a sample of a given radioactive isotope to decay is the half-life of that isotope. In addition to having different atomic weight values, radium-226 and radium-228 also have different half-life values. Around the same time as Soddy's work, J.J. Thomson (discoverer of the electron) identified two stable (non-radioactive) isotopes of the same element, neon. Over the next 40 years, the majority of the known chemical elements were found to have two or more stable (or long-lived radioactive isotopes that contribute significantly to the determination of the atomic weights of the elements).« less
Review of Monte Carlo simulations for backgrounds from radioactivity
NASA Astrophysics Data System (ADS)
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Production and sequential decay of charmed hyperons
NASA Astrophysics Data System (ADS)
Fäldt, Göran
2018-03-01
We investigate production and decay of the Λc+ hyperon. The production considered is through the e+e- annihilation channel, e+e-→Λc+Λ¯c - , with summation over the Λ¯c- antihyperon spin directions. It is in this situation that the Λc+ decay chain is identified. Two kinds of sequential decays are studied. The first one is the doubly weak decay B1→B2M2 , followed by B2→B3M3. The other one is the mixed weak-electromagnetic decay B1→B2M2, followed by B2→B3γ . In both schemes B denotes baryons and M mesons. We should also mention that the initial state of the Λc+ hyperon is polarized.
Hydrologic conditions at the Idaho National Engineering Laboratory, Idaho, emphasis; 1974-1978
Barraclough, Jack T.; Lewis, Barney D.; Jensen, Rodger G.
1981-01-01
Aqueous chemical and radioactive wastes have been discharged to shallow ponds and to shallow or deep wells on the Idaho National Engineering Laboratory (INEL) since 1952 and has affected the quality of the ground water in the underlying Snake River Plain aquifer. Ongoing studies conducted from 1974 through 1978 have shown the perpetuation of a perched ground-water zone in the basalt underlying the waste disposal ponds at the INEL 's Test Reactor Area and of several waste plumes in the regional aquifer created by deep well disposal at the Idaho Chemical Processing Plant (ICPP). The perched zone contains tritium, chromium-51, cobalt-60, strontium-90, and several nonradioactive chemicals. Tritium has formed the largest waste plume south of the ICPP, and accounts for 95 percent of the total radioacticity disposed of through the ICPP disposal well. Waste plumes with similar configurations and flowpaths contain sodium, chloride, and nitrate. Strontium-90, iodine-129, and cesium-137 are also discharged through the well but they are sorbed from solution as they move through the aquifer or are discharged in very small quantities. Strontium-90 and iodine-129 have formed small waste plumes and cesium-137 is not detectable in ground-water samples. Radionuclide plume size and concentrations therein are controlled by aquifer flow conditions, the quantity discharged, radioactive decay, sorption, dilution by dispersion, and perhaps other chemical reactions. Chemical wastes are subject to the same processes except for radioactive decay. (USGS)
Computers in the General Physics Laboratory.
ERIC Educational Resources Information Center
Preston, Daryl W.; Good, R. H.
1996-01-01
Provides ideas and outcomes for nine computer laboratory experiments using a commercial eight-bit analog to digital (ADC) interface. Experiments cover statistics; rotation; harmonic motion; voltage, current, and resistance; ADC conversions; temperature measurement; single slit diffraction; and radioactive decay. Includes necessary schematics. (MVL)
Computer Series, 13: Bits and Pieces, 11.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1982-01-01
Describes computer programs (with ordering information) on various topics including, among others, modeling of thermodynamics and economics of solar energy, radioactive decay simulation, stoichiometry drill/tutorial (in Spanish), computer-generated safety quiz, medical chemistry computer game, medical biochemistry question bank, generation of…
NASA Astrophysics Data System (ADS)
Wu, Xing-Gang; Shen, Jian-Ming; Du, Bo-Lun; Brodsky, Stanley J.
2018-05-01
As a basic requirement of the renormalization group invariance, any physical observable must be independent of the choice of both the renormalization scheme and the initial renormalization scale. In this paper, we show that by using the newly suggested C -scheme coupling, one can obtain a demonstration that the principle of maximum conformality prediction is scheme-independent to all-orders for any renormalization schemes, thus satisfying all of the conditions of the renormalization group invariance. We illustrate these features for the nonsinglet Adler function and for τ decay to ν + hadrons at the four-loop level.
Baker, John [Walnut Creek, CA; Archer, Daniel E [Knoxville, TN; Luke, Stanley John [Pleasanton, CA; Decman, Daniel J [Livermore, CA; White, Gregory K [Livermore, CA
2009-06-23
A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.
The EXPERT project: part of the Super-FRS Experiment Collaboration
NASA Astrophysics Data System (ADS)
Chudoba, V.; "EXPERT project,
NASA Astrophysics Data System (ADS)
Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.
Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.
Radiation and Thermal Ageing of Nuclear Waste Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J
2014-01-01
The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwanda, C.; Mandl, F.; Mitaroff, W.
2008-08-01
Using the previous Belle measurement of the inclusive photon energy in B{yields}X{sub s}{gamma} decays, we determine the first and second moments of this spectrum for minimum photon energies in the B meson rest frame ranging from 1.8 to 2.3 GeV. Combining these measurements with recent Belle data on the lepton energy and hadronic mass moments in B{yields}X{sub c}l{nu} decays, we perform fits to theoretical expressions derived in the 1S and kinetic mass schemes and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V{sub cb}, the b-quark mass, and other nonperturbative parameters. In the 1S scheme analysis we find |V{sub cb}|=(41.56{+-}0.68(fit){+-}0.08({tau}{submore » B}))x10{sup -3} and m{sub b}{sup 1S}=(4.723{+-}0.055) GeV. In the kinetic scheme, we obtain |V{sub cb}|=(41.58{+-}0.69(fit){+-}0.08({tau}{sub B}){+-}0.58(th))x10{sup -3} and m{sub b}{sup kin}=(4.543{+-}0.075) GeV.« less
Chen, Zhe (Jay); Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder
2011-01-01
Previous studies have shown that the procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations depends strongly on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al. (Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077–1998) was used to characterize the edema evolutions observed previously during clinical PIB for prostate cancer. The concept of biologically effective dose (BED), taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not taken into account appropriately, can increase the cell survival and decrease the probability of local control of PIB. The edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life for radioactive decay and decreasing energy of the photons energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (~21 keV compared to ~30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer. PMID:21772076
NASA Astrophysics Data System (ADS)
(Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder
2011-08-01
Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (~21 keV compared to ~30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer.
Neutron induced radio-isotopes and background for Ge double beta decay experiments
NASA Astrophysics Data System (ADS)
Chu, Pinghan; Majorana Collaboration
2015-10-01
Environmental neutrons, mostly produced by muons in the cosmic rays, might contribute backgrounds to the search for neutrinoless double beta decays. These neutrons can interact with materials and generate radio-isotopes, which can decay and produce radioactive backgrounds. Some of these neutron-induced isotopes have a signature of a time-delayed coincidence, allowing us to study these infrequent events. For example, such isotopes can decay by beta decay to metastable states and then decay by gamma decay to the ground state. Considering the time-delayed coincidence of these two processes, we can determine candidates for these neutron-induced isotopes in the data and estimate the flux of neutrons in the deep underground environment. In this report, we will list possible neutron-induced isotopes and the methodology to detect them, especially those that can affect the search for neutrinoless double beta decays in 76Ge. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program.
Radioisotope Dating with Accelerators.
ERIC Educational Resources Information Center
Muller, Richard A.
1979-01-01
Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)
The Analog Computer as a Teaching Tool in Physics
ERIC Educational Resources Information Center
Wylen, H. E.; Schwarz, W. M.
1973-01-01
Discusses use of two EAI semi-expanded TR-20 units to display solutions to differential equations for harmonic oscillators, quantum-mechanical particles, trajectories, radioactive decay series, and hysteresis curves. Suggests practical applications for both undergraduate physics laboratories and classroom demonstrations. (CC)
Thermal Neutron Capture onto the Stable Tungsten Isotopes
NASA Astrophysics Data System (ADS)
Hurst, A. M.; Firestone, R. B.; Sleaford, B. W.; Summers, N. C.; Revay, Zs.; Szentmiklósi, L.; Belgya, T.; Basunia, M. S.; Capote, R.; Choi, H.; Dashdorj, D.; Escher, J.; Krticka, M.; Nichols, A.
2012-02-01
Thermal neutron-capture measurements of the stable tungsten isotopes have been carried out using the guided thermal-neutron beam at the Budapest Reactor. Prompt singles spectra were collected and analyzed using the HYPERMET γ-ray analysis software package for the compound tungsten systems 183W, 184W, and 187W, prepared from isotopically-enriched samples of 182W, 183W, and 186W, respectively. These new data provide both confirmation and new insights into the decay schemes and structure of the tungsten isotopes reported in the Evaluated Gamma-ray Activation File based upon previous elemental analysis. The experimental data have also been compared to Monte Carlo simulations of γ-ray emission following the thermal neutron-capture process using the statistical-decay code DICEBOX. Together, the experimental cross sections and modeledfeeding contribution from the quasi continuum, have been used to determine the total radiative thermal neutron-capture cross sections for the tungsten isotopes and provide improved decay-scheme information for the structural- and neutron-data libraries.
Activation and Environmental Aspects of In-Vacuum Vessel Components of CFETR
NASA Astrophysics Data System (ADS)
Zhang, Xiaokang; Liu, Songlin; Zhu, Qingjun; Gao, Fangfang; Li, Jia
2016-11-01
The water-cooled ceramic breeder (WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor (CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional (3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×1019 Bq and the specific activity, the decay heat and the contact dose rate are 1.7 × 1013 Bq/kg, 3.05 MW, and 2.0 × 103 Sv/h respectively. After cooling for 100 years, 79% (4166.4 tons) radioactive wastes produced from the blanket, divertor, high temperature shield (HTS) and low temperature shield (LTS) need near surface disposal, while 21% (1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a relatively high level. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015BG108002, 2014GB122000, 2014GB119000), National Natural Science Foundation of China (No. 11175207)
1999-08-01
of 11ln-DTPA-hEGF in a compartment and a rate of elimination corresponding to the radioactive decay of the radionuclide, indium-1Il. = A0 /A, where I...on the growth rate of MDA-MB-468 or MCF-7 (1.5 X 104 EGFR/cell) cells was determined following treatment in vitro with 11 In-DTPA- hEGF, unlabelled...the nucleus within 24 hours. Chromatin contained 10% of internalized radioactivity. The growth rate of MDA-MB-468 cells was decreased 3-fold by
Radiological Air Sampling. Protocol Development for the Canadian Forces
2003-03-01
samplers trap these airborne radon daughters . Because radon is ubiquitous, all air samplers will catch these radioactive radon daughters in the...environment is complicated because all air sampler filters are radioactive because of the radon daughters . ’Actually, D will often depend on the isotope that...simply as "radon". 2 DRDC Ottawa TM 2003-149 -28 - 22 R_ 211p0 214pb 3.8 d 3.0 m 27 m 214Bi 210TI Radon Daughters 20 m ŕ.3 m (Uranium Decay Chain
Radioactive waste disposal via electric propulsion
NASA Technical Reports Server (NTRS)
Burns, R. E.
1975-01-01
It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.
Method for utilizing decay heat from radioactive nuclear wastes
Busey, H.M.
1974-10-14
Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.
Zagà, Vincenzo; Lygidakis, Charilaos; Chaouachi, Kamal; Gattavecchia, Enrico
2011-01-01
The alpha-radioactive polonium 210 (Po-210) is one of the most powerful carcinogenic agents of tobacco smoke and is responsible for the histotype shift of lung cancer from squamous cell type to adenocarcinoma. According to several studies, the principal source of Po-210 is the fertilizers used in tobacco plants, which are rich in polyphosphates containing radio (Ra-226) and its decay products, lead 210 (Pb-210) and Po-210. Tobacco leaves accumulate Pb-210 and Po-210 through their trichomes, and Pb-210 decays into Po-210 over time. With the combustion of the cigarette smoke becomes radioactive and Pb-210 and Po-210 reach the bronchopulmonary apparatus, especially in bifurcations of segmental bronchi. In this place, combined with other agents, it will manifest its carcinogenic activity, especially in patients with compromised mucous-ciliary clearance. Various studies have confirmed that the radiological risk from Po-210 in a smoker of 20 cigarettes per day for a year is equivalent to the one deriving from 300 chest X-rays, with an autonomous oncogenic capability of 4 lung cancers per 10000 smokers. Po-210 can also be found in passive smoke, since part of Po-210 spreads in the surrounding environment during tobacco combustion. Tobacco manufacturers have been aware of the alpha-radioactivity presence in tobacco smoke since the sixties.
Zagà, Vincenzo; Lygidakis, Charilaos; Chaouachi, Kamal; Gattavecchia, Enrico
2011-01-01
The alpha-radioactive polonium 210 (Po-210) is one of the most powerful carcinogenic agents of tobacco smoke and is responsible for the histotype shift of lung cancer from squamous cell type to adenocarcinoma. According to several studies, the principal source of Po-210 is the fertilizers used in tobacco plants, which are rich in polyphosphates containing radio (Ra-226) and its decay products, lead 210 (Pb-210) and Po-210. Tobacco leaves accumulate Pb-210 and Po-210 through their trichomes, and Pb-210 decays into Po-210 over time. With the combustion of the cigarette smoke becomes radioactive and Pb-210 and Po-210 reach the bronchopulmonary apparatus, especially in bifurcations of segmental bronchi. In this place, combined with other agents, it will manifest its carcinogenic activity, especially in patients with compromised mucous-ciliary clearance. Various studies have confirmed that the radiological risk from Po-210 in a smoker of 20 cigarettes per day for a year is equivalent to the one deriving from 300 chest X-rays, with an autonomous oncogenic capability of 4 lung cancers per 10000 smokers. Po-210 can also be found in passive smoke, since part of Po-210 spreads in the surrounding environment during tobacco combustion. Tobacco manufacturers have been aware of the alpha-radioactivity presence in tobacco smoke since the sixties. PMID:21772848
NASA Astrophysics Data System (ADS)
Simmons, T. N.; Mashburn, J. B.
A 30 MV peak output voltage will be produced. A substantial portion of the output energy will be lost as free electrons which produce hard X-rays. Many X-rays will have energies within the photoneutron giant resonance. A PBFA-2 shot will produce about 5 x 10 E14 photoneutrons. These photoneutron reactions will induce radioactivity in and about PBFA-2. Activation structural components in the center section will be limited by substituting aluminum for stainless steel in regions of high X-ray intensity. Air will be activated above and below the center section after shots; however, X-ray shielding will limit initial concentrations to five times health guidelines. The short half-lives of air radioactivity will permit reentry following simple decay without ventilation. Some radioactive material will be eroded by arcing, but the resulting contamination whould be small. Miniscule concentrations of radioactivity will be produced in the water surrounding the center section.
NASA Astrophysics Data System (ADS)
Ye, Liu; Hu, GuiYu; Li, AiXia
2011-01-01
We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.
Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi
2015-01-01
Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alikhanyan, A.I.; Kirillov-Ugryumov, V.G.; Kotenko, L.P.
1958-01-01
In consideration of the wide use of propane bubble cameras, investigations were made of the angular distribution of electrons from pi /sup +/ -- mu /sup +/--e/sup +/ decay in propane to determine the possibility of using propane in angular correlation measurements of processes simlar to mu --e decay. The scheme of the experiment made with a bubble chamber of (7.2 x 6.5 x 16)cm/ dmensions bombarded by a 175-Mev pi -meson beam from a phasotron is described. (R.V.J.)
Selected spectroscopic results on element 115 decay chains
Rudolph, D.; Forsberg, U.; Golubev, P.; ...
2014-08-24
We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.
Nuclear Forensics and Radiochemistry: Reaction Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundberg, Robert S.
In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.
Radiogenic nature of argon-40 in the oldest biotites of the Kola peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerling, E.K.; Gorokhovskii, B.M.
1986-07-01
It is shown by three graphical methods that ancient biotite aged 5.1.10/sup 9/ yr. and older does not contain excess /sup 40/Ar and that the whole /sup 40/Ar was formed via radioactive decay of /sup 40/K present in the minerals. It is suggested that due to variation in the force of gravitational interaction with the age of the universe, the K-decay of the /sup 40/K nucleus slowed down, which indeed is the cause of enhanced age of the Kola biotite.
NASA Astrophysics Data System (ADS)
Laffoley, A. T.; Dunlop, R.; Finlay, P.; Grinyer, G. F.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Blank, B.; Bouzomita, H.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Diaz Varela, A.; Djongolov, M.; Ettenauer, S.; Garnsworthy, A. B.; Garrett, P. E.; Giovinazzo, J.; Glister, J.; Green, K. L.; Hackman, G.; Hadinia, B.; Jamieson, D. S.; Ketelhut, S.; Leach, K. G.; Leslie, J. R.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Thomas, J. C.; Towner, I. S.; Triambak, S.; Unsworth, C.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.
2014-03-01
A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB) corrections in superallowed Fermi β decays.
Tests of a Fast Plastic Scintillator for High-Precision Half-Life Measurements
NASA Astrophysics Data System (ADS)
Laffoley, A. T.; Dunlop, R.; Finlay, P.; Leach, K. G.; Michetti-Wilson, J.; Rand, E. T.; Svensson, C. E.; Grinyer, G. F.; Thomas, J. C.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Orce, J. N.; Triambak, S.; Williams, S. J.; Andreoiu, C.; Cross, D.
2013-03-01
A fast plastic scintillator detector is evaluated for possible use in an ongoing program of high-precision half-life measurements of short lived β emitters. Using data taken at TRI-UMF's Isotope Separator and Accelerator Facility with a radioactive 26Na beam, a detailed investigation of potential systematic effects with this new detector setup is being performed. The technique will then be applied to other β-decay half-life measurements including the superallowed Fermi β emitters 10C, 14O, and T = 1/2 decay of 15O.
Two-neutron decay within RMF+BCS approach
NASA Astrophysics Data System (ADS)
Kumawat, M.; Singh, U. K.; Saxena, G.; Kaushik, M.; Jain, S. K.
2018-05-01
A theoretical global study has been done for identifying possible candidates of 2n-radioactivity for all even and odd nuclei under proton number Z ≤ 40 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We investigate two-and one-neutron separation energy, deformation, pairing energy, wave-function, potential and other ground state properties for our study of even and odd Z nuclei to find candidates of 2n-decay within Z ≤ 40. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.
Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters
NASA Astrophysics Data System (ADS)
Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.
2007-08-01
A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.
ERIC Educational Resources Information Center
McKenzie, D. P.
1983-01-01
The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)
A Californium-252 Neutron Source for Student Use
ERIC Educational Resources Information Center
Bowen, H. J.
1975-01-01
Describes an undergraduate chemistry experiment which utilizes small samples of Californium 252 as a neutron source for the activation of 12 other elements. The students prepare decay curves of the radioactive isotopes and perform nondestructive activation analyses for gram amounts of some elements. (MLH)
On the Effective Mass of the Electron Neutrino in Beta Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman
2002-12-20
In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less
NASA Astrophysics Data System (ADS)
Tolstov, Alexey; Nomoto, Ken'ichi; Blinnikov, Sergei; Sorokina, Elena; Quimby, Robert; Baklanov, Petr
2017-02-01
Being a superluminous supernova, PTF12dam can be explained by a 56Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of 56Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M⊙ ejecta and 20-40 M⊙ circumstellar medium. The ejected 56Ni mass is about 6 M⊙, which results from explosive nucleosynthesis with large explosion energy (2-3) × 1052 erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.
MPC and ALI: their basis and their comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, W.E. Jr.; Watson, E.C.
Radiation protection regulations in the United States have evolved from the recommendations of the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). In 1959, the ICRP issued Publication 2 which contained specific recommendations on dose rate limits, permissible body burdens, metabolic data for radionuclides, and maximum permissible concentrations (MPC) in air or water. Over the next 20 years, new information became available concerning the effects of radiation, the uptake and retention of radionuclides, and the radioactive decay schemes of parent radionuclides. To include this newer information, the ICRP issued Publication 30 inmore » 1978 to supersede Publication 2. One of the secondary limits defined in Publication 30 is the annual limit of intake (ALI). Radionuclide specific ALI values are intended to replace MPC values in determining whether or not ambient air and water concentrations are sufficiently low to maintain the dose to workers within accepted dose rate limits. In this paper, we discuss the derivation of MPC and ALI values, compare inhalation committed dose equivalent factors derived from ICRP Publications 2 and 30, and discuss the practical implications of using either MPC or ALI in determining compliance with occupational exposure limits. 6 references.« less
Nuclear Data Sheets for A = 239
Browne, E.; Tuli, J. K.
2014-11-18
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=239. In general, a relatively small amount of new data on this mass chain has been reported since the previous evaluation in 2003. However, special evaluations, such as ''Database of prompt gamma rays from slow neutron–capture from elemental analysis'' (2007ChZX), have provided additional precise data for levels in 29U. Also, new Coulomb excitation measurements in 239Pu have extended the knowledge of the 1/2[631] rotational band up to Jπ=(55/2+)Jπ=(55/2+), and that of the octupole vibrational band up to Jπ=(53/2-)Jπ=(53/2-). Formore » historical knowledge it is worth mentioning the report on the “Discovery of isotopes of the transuranium elements with 93 <= Z <= 98'' (2013Fr02), where the information for elements Np, Pu, Am, and Cf with mass number A=239 is presented. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r 0) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Nuclear Data Sheets for A = 239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J. K.
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=239. In general, a relatively small amount of new data on this mass chain has been reported since the previous evaluation in 2003. However, special evaluations, such as ''Database of prompt gamma rays from slow neutron–capture from elemental analysis'' (2007ChZX), have provided additional precise data for levels in 29U. Also, new Coulomb excitation measurements in 239Pu have extended the knowledge of the 1/2[631] rotational band up to Jπ=(55/2+)Jπ=(55/2+), and that of the octupole vibrational band up to Jπ=(53/2-)Jπ=(53/2-). Formore » historical knowledge it is worth mentioning the report on the “Discovery of isotopes of the transuranium elements with 93 <= Z <= 98'' (2013Fr02), where the information for elements Np, Pu, Am, and Cf with mass number A=239 is presented. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r 0) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Nuclear Data Sheets for A = 239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J.K.
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=239. In general, a relatively small amount of new data on this mass chain has been reported since the previous evaluation in 2003. However, special evaluations, such as “Database of prompt gamma rays from slow neutron–capture from elemental analysis” (2007ChZX), have provided additional precise data for levels in {sup 239}U. Also, new Coulomb excitation measurements in {sup 239}Pu have extended the knowledge of the 1/2[631] rotational band up to Jπ=(55/2+), and that of the octupole vibrational band up tomore » Jπ=(53/2−). For historical knowledge it is worth mentioning the report on the “Discovery of isotopes of the transuranium elements with 93 <= Z <= 98” (2013Fr02), where the information for elements Np, Pu, Am, and Cf with mass number A=239 is presented. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r{sub 0}) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Baolong; Department of Mathematics and Physics, Hefei University, Hefei 230022; Yang Zhen
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission
NASA Technical Reports Server (NTRS)
Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.
1975-01-01
In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.
Two-photon decay of K-shell vacancies in silver atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokler, P.H.; University of Giessen, Giessen; Schaeffer, H.W.
2004-09-01
The spectral distributions for the two-photon decay modes of singly K-shell ionized silver atoms are determined by x-ray-x-ray coincidence measurements. Ag K-shell vacancies were induced by nuclear electron capture decay of radioactive cadmium isotopes {sup 109}Cd and two-photon coincidences were taken back to back (180 deg.) and at a 90 deg. opening angle for the emission. Each of the two-photon transitions from the 2s, 3s, and 3d states exhibits unique angular and spectral distributions. The measurements agree nicely with relativistic self-consistent field calculations of Tong et al. Our results also confirm and extend the earlier experimental data of Ilakovac andmore » co-workers with improved accuracy.« less
Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon
2015-09-22
In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less
Internal γ Decay and the Superallowed Branching Ratio for the β+ Emitter Km38
NASA Astrophysics Data System (ADS)
Leach, K. G.; Svensson, C. E.; Ball, G. C.; Leslie, J. R.; Austin, R. A. E.; Bandyopadhyay, D.; Barton, C.; Bassiachvilli, E.; Ettenauer, S.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Melconian, D.; Morton, A. C.; Mythili, S.; Newman, O.; Pearson, C. J.; Pearson, M. R.; Phillips, A. A.; Savajols, H.; Schumaker, M. A.; Wong, J.
2008-05-01
The branching ratio for the superallowed β+ decay of Km38 was measured at TRIUMF’s ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of Km38 was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue β-decay branch to the first excited 0+ state in Ar38 was also performed and yielded an upper limit of ≤12ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for Km38 of 99.967(4)%, and increase the Km38 ft value by its entire quoted uncertainty to ft=3052.1(10)s. Implications for tests of the nuclear-structure dependent corrections in superallowed β decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element Vud are discussed.
Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naviliat-Cuncic, Oscar
2013-05-06
Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar ormore » tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.« less
Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro
2004-05-01
A delayed coincidence method, time-interval analysis (TIA), has been applied to successive alpha- alpha decay events on the millisecond time-scale. Such decay events are part of the (220)Rn-->(216)Po ( T(1/2) 145 ms) (Th-series) and (219)Rn-->(215)Po ( T(1/2) 1.78 ms) (Ac-series). By using TIA in addition to measurement of (226)Ra (U-series) from alpha-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject beta-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N(2) gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the (221)Fr-->(217)At ( T(1/2) 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the (225)Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples.
Tritium plume dynamics in the shallow unsaturated zone in an arid environment
Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.
2014-01-01
The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.
Chemical Dosing and First-Order Kinetics
ERIC Educational Resources Information Center
Hladky, Paul W.
2011-01-01
College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…
NASA Astrophysics Data System (ADS)
2008-07-01
Radioactivity: Olympic Games: dirty and decaying? Awards: SciCast rewards the best in scientific short films Conference: Teachers conference is big in Boston Workshop: Experts and teachers mingle in Mexico Awards: Olympiad holds lavish ceremony Cinema: Indiana Jones has a skull full of physics Conference: ESERA announces Turkish delight for 2009 Forthcoming Events
NASA Astrophysics Data System (ADS)
Zhang, Xu; Chen, Ye-Hong; Wu, Qi-Cheng; Shi, Zhi-Cheng; Song, Jie; Xia, Yan
2017-01-01
We present an efficient scheme to quickly generate three-qubit Greenberger-Horne-Zeilinger (GHZ) states by using three superconducting qubits (SQs) separated by two coplanar waveguide resonators (CPWRs) capacitively. The scheme is based on quantum Zeno dynamics and the approach of transitionless quantum driving to construct shortcuts to adiabatic passage. In order to highlight the advantages, we compare the present scheme with the traditional one with adiabatic passage. The comparison result shows the shortcut scheme is closely related to the adiabatic scheme but is better than it. Moreover, we discuss the influence of various decoherences with numerical simulation. The result proves that the present scheme is less sensitive to the energy relaxation, the decay of CPWRs and the deviations of the experimental parameters the same as the adiabatic passage. However, the shortcut scheme is effective and robust against the dephasing of SQs in comparison with the adiabatic scheme.
Role of higher-multipole deformations in exotic {sup 14}C cluster radioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
2011-06-15
We have studied nine cases of spontaneous emission of {sup 14}C clusters in the ground-state decays of the same number of parent nuclei from the trans-lead region, specifically from {sup 221}Fr to {sup 226}Th, using the preformed cluster model (PCM) of Gupta and collaborators, with choices of spherical, quadrupole deformation ({beta}{sub 2}) alone, and higher-multipole deformations ({beta}{sub 2}, {beta}{sub 3}, {beta}{sub 4}) with cold ''compact'' orientations {theta}{sup c} of decay products. The calculated {sup 14}C cluster decay half-life times are found to be in nice agreement with experimental data only for the case of higher-multipole deformations ({beta}{sub 2}-{beta}{sub 4}) andmore » {theta}{sup c} orientations of cold elongated configurations. In other words, compared to our earlier study of clusters heavier than {sup 14}C, where the inclusion of {beta}{sub 2} alone, with ''optimum'' orientations, was found to be enough to give the best comparison with data, here for {sup 14}C cluster decay the inclusion of higher-multipole deformations (up to hexadecapole), together with {theta}{sup c} orientations, is found to be essential on the basis of the PCM. Interestingly, whereas both the penetration probability and assault frequency work simply as scaling factors, the preformation probability is strongly influenced by the order of multipole deformations and orientations of nuclei. The possible role of Q value and angular-momentum effects are also considered in reference to {sup 14}C cluster radioactivity.« less
NASA Astrophysics Data System (ADS)
Jaboulay, Jean-Charles; Brun, Emeric; Hugot, François-Xavier; Huynh, Tan-Dat; Malouch, Fadhel; Mancusi, Davide; Tsilanizara, Aime
2017-09-01
After fission or fusion reactor shutdown the activated structure emits decay photons. For maintenance operations the radiation dose map must be established in the reactor building. Several calculation schemes have been developed to calculate the shutdown dose rate. These schemes are widely developed in fusion application and more precisely for the ITER tokamak. This paper presents the rigorous-two-steps scheme implemented at CEA. It is based on the TRIPOLI-4® Monte Carlo code and the inventory code MENDEL. The ITER shutdown dose rate benchmark has been carried out, results are in a good agreement with the other participant.
Nuclear Data Sheets for A = 148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nica, N.
2014-04-02
The experimental nuclear structure data available through October 2013 have been reviewed. A summary of information obtained in various reaction and decay experiments is presented, together with adopted level schemes.
Decay of the neutron-rich isotope 171Ho and the identification of 169Dy
NASA Astrophysics Data System (ADS)
Chasteler, R. M.; Nitschke, J. M.; Firestone, R. B.; Vierinen, K. S.; Wilmarth, P. A.
1990-10-01
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between 170Er ions and natW targets. On-line mass separation was used together with β- and γ-ray spectroscopy in these studies. At mass A=169, the heaviest known dysprosium isotope, 39(8) s,169Dy, was identified. It was observed to β- decay to the ground state of 169Ho or through a level at 1578 keV. In the A=171 mass chain, a partial decay scheme for 55(3)-s 171Ho was determined.
Nuclear Structure of 124Xe Studied with β+/EC-Decay
NASA Astrophysics Data System (ADS)
Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.
The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Dominik
2011-01-01
The purpose of this thesis is threefold: Firstly, new measurements of both the exclusive and semi-inclusive partial decay widths ofmore » $$B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$$ meson decays are presented. Secondly, the feasibility of extracting the unknown polarization components in $$B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$$ by partial reconstruction of this pseudo-scalar to vector-vector decay in a Monte Carlo driven analysis scheme is studied. Finally, based on the suggestions contributed by the theory community this study discusses how a measurement of the branching fraction of semi-inclusive decays $$B^{0}_{s} \\to D^{(*)+}_{s}D^{(*)-}_{s}$$ can contribute to gain insight about the relative decay width di erence in the B$$0\\atop{s}$$--B$$0\\atop{s}$$ meson system.« less
An overview of radioactive waste disposal procedures of a nuclear medicine department
Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.
2011-01-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225
An overview of radioactive waste disposal procedures of a nuclear medicine department.
Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S
2011-04-01
Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.
Quantum iSWAP gate in optical cavities with a cyclic three-level system
NASA Astrophysics Data System (ADS)
Yan, Guo-an; Qiao, Hao-xue; Lu, Hua
2018-04-01
In this paper we present a scheme to directly implement the iSWAP gate by passing a cyclic three-level system across a two-mode cavity quantum electrodynamics. In the scheme, a three-level Δ -type atom ensemble prepared in its ground state mediates the interaction between the two-cavity modes. For this theoretical model, we also analyze its performance under practical noise, including spontaneous emission and the decay of the cavity modes. It is shown that our scheme may have a high fidelity under the practical noise.
Chem I Supplement: Nuclear Synthesis and Identification of New Elements.
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1985-01-01
As background material for a paper on the transuranium elements (SE 537 837), this article reviews: (1) several descriptive terms; (2) nuclear reactions; (3) radioactive decay modes; (4) chemical background; and (5) experimental methods used in this field of research and more broadly in nuclear chemistry. (Author/JN)
NASA Technical Reports Server (NTRS)
Green, W. V.; Zukas, E. G.; Eash, D. T.
1971-01-01
Large controlled amounts of helium in uniform concentration in thick samples can be obtained through the radioactive decay of dissolved tritium gas to He3. The term, tritium trick, applies to the case when helium, added by this method, is used to simulate (n,alpha) production of helium in simulated hard flux radiation damage studies.
Radiological Dispersion Devices and Basic Radiation Science
ERIC Educational Resources Information Center
Bevelacqua, Joseph John
2010-01-01
Introductory physics courses present the basic concepts of radioactivity and an overview of nuclear physics that emphasizes the basic decay relationship and the various types of emitted radiation. Although this presentation provides insight into radiological science, it often fails to interest students to explore these concepts in a more rigorous…
Towards a Conceptual Diagnostic Survey in Nuclear Physics
ERIC Educational Resources Information Center
Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa
2011-01-01
Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…
Recent Developments in Young-Earth Creationist Geology
ERIC Educational Resources Information Center
Heaton, Timothy H.
2009-01-01
Young-earth creationism has undergone a shift in emphasis toward building of historical models that incorporate Biblical and scientific evidence and the acceptance of scientific conclusions that were formerly rejected. The RATE Group admitted that massive amounts of radioactive decay occurred during earth history but proposed a period of…
Radioactive Decay: Audio Data Collection
ERIC Educational Resources Information Center
Struthers, Allan
2009-01-01
Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…
Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research
NASA Astrophysics Data System (ADS)
Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.
2009-03-01
High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.
Nuclear science outreach program for high school girls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, D.E.; Stone, C.A.
1996-12-31
The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.
Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy
NASA Astrophysics Data System (ADS)
Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; Rosa, Rosanna De; Scarciglia, Fabio; Buttafuoco, Gabriele
2016-12-01
The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.
Nuclear Data Sheets for A = 42
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Singh, Balraj
The experimental data are evaluated for known nuclides of mass number A = 42 (Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr). Detailed evaluated level properties and related information are presented, including adopted values of level and γ–ray energies, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes earlier full evaluations of A = 42 published by B. Singh, J.A. Cameron – Nucl.Data Sheets 92, 1 (2001) and P.M. Endt – Nucl. Phys. A521, 1 (1990); Errata and Addenda Nucl. Phys. A529, 763 (1991); Errata Nucl. Phys. A564, 609 (1993)more » (also P.M. Endt – Nucl. Phys. A633, 1 (1998) update). No excited states are known in {sup 42}Al, {sup 42}P, {sup 42}V and {sup 42}Cr, and structure information for {sup 42}Si and {sup 42}S is quite limited. There are no decay schemes available for the decay of {sup 42}Al, {sup 42}Si, {sup 42}P, {sup 42}V and {sup 42}Cr, while the decay schemes of {sup 42}Cl and {sup 42}Ti are incomplete in view of scarcity of data, and large gap between their Q–values and the highest energy levels populated in corresponding daughter nuclei. Structures of {sup 42}Ca, {sup 42}K, {sup 42}Sc and {sup 42}Ar nuclides remain the most extensively studied via many different nuclear reactions and decays.« less
EMERALD-NORMAL; PWR activity release and dose. [IBM360,370; FORTRAN IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, S.G.; Brunot, W.K.
EMERALD-NORMAL is designed for the calculation of radiation releases and exposures resulting from normal operation of a large pressurized water reactor. The approach used is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay, and absorption of radioactivity in that volume. During the course of the analysis, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place in the plant. Some of this activity is thenmore » released to the atmosphere and to the discharge canal. The rates of transfer, leakage, production, cleanup, decay, and release are read as input to the program. Subroutines are also included which calculate the off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the forty isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD-NORMAL program can be used for most calculations involving the production and release of radioactive material. These include design, operation, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370; 576K bytes of memory.« less
Alekseev, I; Kuzmina, T
2016-04-01
A simple technique is proposed for the determination of the content of (241)Pu, which is based on disturbance of radioactive equilibrium in the genetically related (237)U←(241)Pu→(241)Am decay chain of radionuclides, with the subsequent use of 2πα-counting and precision gamma-spectroscopy for monitoring the process of restoration of that equilibrium. It has been shown that the data on dynamics of accumulation of the daughter (241)Am, which were obtained from the results of measurements of α- and γ-spectra of the samples, correspond to the estimates calculated for the chain of two genetically related radionuclides, the differences in the estimates of (241)Pu radioactivity not exceeding 2%. Combining the different methods of registration (2πα-counting, semiconductor alpha- and gamma-spectrometry) enables the proposed method to be efficiently applied both for calibration of (241)Pu-sources (from several hundreds of kBq and higher) and for radioisotopic analysis of plutonium mixtures. In doing so, there is a deep purification of (241)Pu from its daughter decay products required due to unavailability of commercial detectors that could make it possible, based only on analysis of alpha-spectra, to conduct quantitative analysis of the content of (238)Pu and (241)Am. Copyright © 2016 Elsevier Ltd. All rights reserved.
A 6He production facility and an electrostatic trap for measurement of the beta-neutrino correlation
NASA Astrophysics Data System (ADS)
Mukul, I.; Hass, M.; Heber, O.; Hirsh, T. Y.; Mishnayot, Y.; Rappaport, M. L.; Ron, G.; Shachar, Y.; Vaintraub, S.
2018-08-01
A novel experiment has been commissioned at the Weizmann Institute of Science for the study of weak interactions via a high-precision measurement of the beta-neutrinoangular correlation in the radioactive decay of short-lived 6He. The facility consists of a 14 MeV d + t neutron generator to produce atomic 6He, followed by ionization and bunching in an electron beam ion source, and injection into an electrostatic ion beam trap. This ion trap has been designed for efficient detection of the decay products from trapped light ions. The storage time in the trap for different stable ions was found to be in the range of 0.6 to 1.2 s at the chamber pressure of ∼7 × 10-10 mbar. We present the initial test results of the facility, and also demonstrate an important upgrade of an existing method (Stora et al., 2012) for production of light radioactive atoms, viz. 6He, for the precision measurement. The production rate of 6He atoms in the present setup has been estimated to be ∼ 1 . 45 × 10-4 atoms per neutron, and the system efficiency was found to be 4.0 ± 0.6%. An improvement to this setup is also presented for the enhanced production and diffusion of radioactive atoms for future use.
Chen, Ming-Kai; Menard, David H; Cheng, David W
2016-03-01
In pursuit of as-low-as-reasonably-achievable (ALARA) doses, this study investigated the minimal required radioactivity and corresponding imaging time for reliable semiquantification in PET/CT imaging. Using a phantom containing spheres of various diameters (3.4, 2.1, 1.5, 1.2, and 1.0 cm) filled with a fixed (18)F-FDG concentration of 165 kBq/mL and a background concentration of 23.3 kBq/mL, we performed PET/CT at multiple time points over 20 h of radioactive decay. The images were acquired for 10 min at a single bed position for each of 10 half-lives of decay using 3-dimensional list mode and were reconstructed into 1-, 2-, 3-, 4-, 5-, and 10-min acquisitions per bed position using an ordered-subsets expectation maximum algorithm with 24 subsets and 2 iterations and a gaussian 2-mm filter. SUVmax and SUVavg were measured for each sphere. The minimal required activity (±10%) for precise SUVmax semiquantification in the spheres was 1.8 kBq/mL for an acquisition of 10 min, 3.7 kBq/mL for 3-5 min, 7.9 kBq/mL for 2 min, and 17.4 kBq/mL for 1 min. The minimal required activity concentration-acquisition time product per bed position was 10-15 kBq/mL⋅min for reproducible SUV measurements within the spheres without overestimation. Using the total radioactivity and counting rate from the entire phantom, we found that the minimal required total activity-time product was 17 MBq⋅min and the minimal required counting rate-time product was 100 kcps⋅min. Our phantom study determined a threshold for minimal radioactivity and acquisition time for precise semiquantification in (18)F-FDG PET imaging that can serve as a guide in pursuit of achieving ALARA doses. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
High-precision branching-ratio measurement for the superallowed β+ emitter 26Alm
NASA Astrophysics Data System (ADS)
Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Ettenauer, S.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.
2012-05-01
A high-precision branching-ratio measurement for the superallowed β+ emitter 26Alm was performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ⩽12 ppm at 90% confidence level was found for the second forbidden β+ decay of 26Alm to the 21+ state at 1809 keV in 26Mg. An inclusive upper limit of ⩽15 ppm at 90% confidence level was found when considering all possible nonanalog β+/EC decay branches of 26Alm, resulting in a superallowed branching ratio of 100.0000-0.0015+0%.
Atmospheric emission of 137Cs82 from Beloyarsk nuclear power plant
NASA Astrophysics Data System (ADS)
Kolotkov, G. A.
2018-01-01
Citing Beloyarsk nuclear power plant (Russia) as an example, the problem of remote detection of radioactivity in the atmospheric pollution is examined. The comparative analysis of injected radionuclides into the atmosphere from the nuclear power plant with advanced fast neutron reactor is carried out. The main radionuclides throw out into the atmosphere from the nuclear power plant are beta-radionuclides. The secondary and tertiary spectra of beta-electrons decay for artificial radionuclide 137Cs82 is calculated, using Spencer-Fano’s equation. The averaged parameters of initial beta - electrons generated by 137Cs82 decay in the atmosphere is calculated.
High precision measurements of 26Naβ- decay
NASA Astrophysics Data System (ADS)
Grinyer, G. F.; Svensson, C. E.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A.; Ball, G. C.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hardy, J. C.; Hyland, B.; Iacob, V. E.; Koopmans, K. A.; Kulp, W. D.; Leslie, J. R.; MacDonald, J. A.; Morton, A. C.; Ormand, W. E.; Osborne, C. J.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Schwarzenberg, J.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Wood, J. L.; Zganjar, E. F.
2005-04-01
High-precision measurements of the half-life and β-branching ratios for the β- decay of 26Na to 26Mg have been measured in β-counting and γ-decay experiments, respectively. A 4π proportional counter and fast tape transport system were employed for the half-life measurement, whereas the γ rays emitted by the daughter nucleus 26Mg were detected with the 8π γ-ray spectrometer, both located at TRIUMF's isotope separator and accelerator radioactive beam facility. The half-life of 26Na was determined to be T1/2=1.07128±0.00013±0.00021s, where the first error is statistical and the second systematic. The logft values derived from these experiments are compared with theoretical values from a full sd-shell model calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machulin, I. N., E-mail: machulin@lngs.infn.it; Collaboration: Borexino Collaboration
2015-12-15
Academician M.A. Markov in the 1960s first proposed detecting the electron antineutrino in the reaction of inverse beta decay on a proton to study the processes inside the Earth. The radioactive isotopes {sup 238}U, {sup 232}Th, and {sup 40}K present in our planet decay with radiation of neutrinos (antineutrinos). Neutrinos that are produced reach the Earth’s surface practically without absorption and carry information about the internal structure of the planet. However, because of the smallness of the antineutrino fluxes and interaction cross sections with matter, antineutrinos of geological origin were first registered in only two experiments (Borexino and Kamland) inmore » recent years. The experimental observation of antineutrinos from the isotope decays in the depths of the Earth is the only way to study the radiation in our planetary interior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, J. M.; Gregorich, K. E.; Gothe, O. R.
In this study, forty-six decay chains, assigned to the decay of 288115, were produced using the 243Am ( 48Ca, 3n) 288115 reaction at the Lawrence Berkeley National Laboratory 88-in. cyclotron. The resulting series of α decays were studied using α-photon and α-x-ray spectroscopies. Multiple α-photon coincidences were observed in the element 115 decay chain members, particularly in the third- and fourth-generation decays (presumed to be 280Rg and 276Mt, respectively). Upon combining these data with those from 22 288115 decay chains observed in a similar experiment, updated level schemes in 276Mt and 272Bh (populated by the α decay of 280Rg andmore » 276Mt, respectively) are proposed. Additionally, photons were observed in the energy range expected for K x rays coincident with the α decay of both 280Rg and 276Mt. However, Compton scattering of higher-energy γ rays and discrete transitions are present in the K x-ray region preventing a definitive Z identification to be made based on observation of characteristic K x-ray energies.« less
PET Imaging: Basics and New Trends
NASA Astrophysics Data System (ADS)
Dahlbom, Magnus
Positron Emission Tomography or PET is a noninvasive molecular imaging method used both in research to study biology and disease, and clinically as a routine diagnostic imaging tool. In PET imaging, the subject is injected with a tracer labeled with a positron-emitting isotope and is then placed in a scanner to localize the radioactive tracer in the body. The localization of the tracer utilizes the unique decay characteristics of isotopes decaying by positron emission. In the PET scanner, a large number of scintillation detectors use coincidence detection of the annihilation radiation that is emitted as a result of the positron decay. By collecting a large number of these coincidence events, together with tomographic image reconstruction methods, the 3-D distribution of the radioactive tracer in the body can be reconstructed. Depending on the type of tracer used, the distribution will reflect a particular biological process, such as glucose metabolism when fluoro-deoxyglucose is used. PET has evolved from a relatively inefficient single-slice imaging system with relatively poor spatial resolution to an efficient, high-resolution imaging modality which can acquire a whole-body scan in a few minutes. This chapter will describe the basic physics and instrumentation used in PET. The various corrections that are necessary to apply to the acquired data in order to produce quantitative images are also described. Finally, some of the latest trends in instrumentation development are also discussed.
NASA Astrophysics Data System (ADS)
Inoyatov, A. Kh.; Perevoshchikov, L. L.; Kovalík, A.; Filosofov, D. V.; Gorozhankin, V. M.; Ryšavý, M.
2012-09-01
The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16 σ) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the "atomic structure effect" on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.
Attempts to Manipulate the Decay Time of Radioactive Nuclei
NASA Astrophysics Data System (ADS)
Fallin, B.; Grabow, B.; Tornow, W.
2008-04-01
It has been known for 20 years that electron screening strongly changes nuclear reaction cross sections at sub-Coulomb charged-particle projectile energies. The screening energy can be increased considerably if the target atoms are implanted in a metallic host and cooled to low temperature (T˜10 K). The large screening in metals derives from the Debye plasma model applied to the quasi-free metallic electrons. If ``time reversed,'' this model implies that the lifetime of radioactive nuclei placed in a metallic host can be manipulated by orders of magnitude. For α and β^+ decay one expects a shorter half-life, while for β^- decay and EC, a longer half-life is expected. The results of prior experiments testing this theory are controversial; about half of the published data confirm an effect, while the other half observe no effect. We will report on our experimental studies using ^64Cu and ^65Zn nuclei produced at TUNL via the ^63Cu(d,p) and ^65Cu(p,n) reactions, respectively. For ^64Cu, we detected the 511 keV annihilation γ rays and for ^65Zn the 1115.5 keV γ rays using HPGe detectors. In both cases we did not observe a half-life change outside experimental uncertainties between measurements at room temperature and those with the samples cooled to T=12 K.
Neutronic investigation and activation calculation for CFETR HCCB blankets
NASA Astrophysics Data System (ADS)
Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI
2017-12-01
The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.
NASA Astrophysics Data System (ADS)
Bajoga, A. D.; Alazemi, N.; Shams, H.; Regan, P. H.; Bradley, D. A.
2017-08-01
A study of natural radioactivity from 90 different soil samples from the state of Kuwait has been carried out to ascertain the NORM concentration values across the country. The calculated activity concentrations were determined from: (i) the decays of the 226Ra, 214Pb and 214Bi members of the 4n+2 decay chain headed by 238U and; (ii) the 228Ac, 212Pb and 208Tl members of the 4n chain headed by 232Th. The study also included evaluations for the 235U decay chain with the 186 keV doublet transition used together with the measured 4n+2 activity concentration values to determine the 235U/238U isotopic ratios for each sample. The values for the arithmetic mean activity concentrations for 90 separate locations across Kuwait as determined in the current work were 17.2, 14.1, and 368 Bq/kg, with standard deviations of 5.2, 3.7 and 90 Bq/kg for the 238U, 232Th and 40K activity concentrations respectively. Measured isotope ratios for 235U/238U give an arithmetic mean value for all of the samples of 0.045±0.003, consistent with that expected for natural uranium. These results indicate no evidence for a radiologically significant dispersion of additional depleted uranium across the entire State of Kuwait from the 1991 Gulf War.
Bakshi, A K; Prajith, Rama; Chinnaesakki, S; Pal, Rupali; Sathian, Deepa; Dhar, Ajay; Selvam, T Palani; Sapra, B K; Datta, D
2017-02-01
A comprehensive measurement of radioactivity concentrations of the primordial radionuclides 238 U, 232 Th and 40 K and their decay products in the soil samples collected from the sites of Indian research stations, Bharati and Maitri, at Antarctica was carried out using gamma spectrometric method. The activity concentrations in the soil samples of Bharati site were observed to be few times higher than of Maitri site. The major contributor to radioactivity content in the soil at Bharati site is 232 Th radionuclide in higher concentration. The gamma radiation levels based on the measured radioactivity of soil samples were calculated using the equation given in UNSCEAR 2000. The calculated radiation levels were compared with the measured values and found to correlate reasonably well. The study could be useful for the scientists working at Antarctica especially those at Indian station to take decision to avoid areas with higher radioactivity before erecting any facility for long term experiment or use. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Emergent Universe scheme and tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labraña, Pedro
We present an alternative scheme for an Emergent Universe scenario, developed previously in Phys. Rev. D 86, 083524 (2012), where the universe is initially in a static state supported by a scalar field located in a false vacuum. The universe begins to evolve when, by quantum tunneling, the scalar field decays into a state of true vacuum. The Emergent Universe models are interesting since they provide specific examples of non-singular inflationary universes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvi, Marco
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories andmore » by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.« less
NASA Astrophysics Data System (ADS)
Lassen, J.; Li, R.; Raeder, S.; Zhao, X.; Dekker, T.; Heggen, H.; Kunz, P.; P. Levy, C. D.; Mostanmand, M.; Teigelhöfer, A.; Ames, F.
2017-11-01
Developments at TRIUMF's isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.
NASA Astrophysics Data System (ADS)
Sharpey-Schafer, J. F.; Mullins, S. M.; Bark, R. A.; Gueorguieva, E.; Kau, J.; Komati, F.; Lawrie, J. J.; Maine, P.; Minkova, A.; Murray, S. H. T.; Ncapayi, N. J.; Vymers, P.
2008-05-01
The results of our measurements on the yrare states up to spin 20ℏ in 152,154,155Gd, using (α,xn) reactions and the AFRODITE γ-ray spectrometer, are presented. We find that in 155Gd the decay scheme is divided into levels feeding the [505]11/2- band, that is extruded by the prolate deformation from the h11/2 orbital, and levels feeding the i13/2[651]3/2+ intruder orbital and the h9/2[521]3/2- orbital. The decay scheme of 154Gd is very complex. We find no evidence for the existence of β-vibrational levels below 1.5 MeV. We discover that the level scheme can be best understood as a set of collective states built on the ground state configuration |01+> plus a ``congruent'' set of collective states based on the |02+> state at 681 keV. The data suggest that this second vacuum has reduced pairing. Our data do not support IBA and phonon interpretations of these transitional nuclei.
Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?
NASA Astrophysics Data System (ADS)
Shomer, Isaac
2010-02-01
The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )
David Jaffe
2017-12-09
"The Pesky Neutrino". In this lecture, Jaffe describes the past, present and possible future of the "pesky" neutrino, the existence of which was first hypothesized in 1930 to rescue energy conservation in the radioactive beta decay of nuclei. Recent evidence that neutrinos are massive is the only experimental evidence in particle physics that is inconsistent with the Standard Model.
Making a Fish Tank Cloud Chamber
ERIC Educational Resources Information Center
Green, Frances
2012-01-01
The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…
Teaching Elementary Particle Physics, Part II
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…
Dictionary/handbook of nuclear medicine and clinical imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iturralde, M.P.
This book covers the following topics: Fundamentals of English medical etymology, Abbreviations, acronyms, symbols, denotations, and signs commonly used or defined in the dictionary, Characteristics of the elements, Characteristics of practicable radioisotopes and of selected radionuclides commonly used in nuclear medicine, Properties and production of radionuclides, Radioactive decay, Radiopharmaceuticals, and Radiation dosimetry.
Nuclear Cartography: Patterns in Binding Energies and Subatomic Structure
ERIC Educational Resources Information Center
Simpson, E. C.; Shelley, M.
2017-01-01
Nuclear masses and binding energies are some of the first nuclear properties met in high school physics, and can be used to introduce radioactive decays, fusion, and fission. With relatively little extension, they can also illustrate fundamental concepts in nuclear physics, such as shell structure and pairing, and to discuss how the elements…
Spectroscopy of neutron-rich nuclei at REX-ISOLDE with MINIBALL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroell, Th.
2007-08-15
We report on 'safe' Coulomb excitation of neutron-rich nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma} rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented and compared to theoretical models.
Decay spectroscopy of element 115 daughters: Rg 280 → Mt 276 and Mt 276 → Bh 272
Gates, J. M.; Gregorich, K. E.; Gothe, O. R.; ...
2015-08-03
In this study, forty-six decay chains, assigned to the decay of 288115, were produced using the 243Am ( 48Ca, 3n) 288115 reaction at the Lawrence Berkeley National Laboratory 88-in. cyclotron. The resulting series of α decays were studied using α-photon and α-x-ray spectroscopies. Multiple α-photon coincidences were observed in the element 115 decay chain members, particularly in the third- and fourth-generation decays (presumed to be 280Rg and 276Mt, respectively). Upon combining these data with those from 22 288115 decay chains observed in a similar experiment, updated level schemes in 276Mt and 272Bh (populated by the α decay of 280Rg andmore » 276Mt, respectively) are proposed. Additionally, photons were observed in the energy range expected for K x rays coincident with the α decay of both 280Rg and 276Mt. However, Compton scattering of higher-energy γ rays and discrete transitions are present in the K x-ray region preventing a definitive Z identification to be made based on observation of characteristic K x-ray energies.« less
Radiography apparatus using gamma rays emitted by water activated by fusion neutrons
Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo
1996-11-05
Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.
Shielding concepts for low-background proportional counter arrays in surface laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Humble, Paul H.; Mace, Emily K.
2016-02-01
Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes – primarily and activity in the uranium and thorium decay chains – inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportionalmore » counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as 37Ar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstov, Alexey; Nomoto, Ken’ichi; Blinnikov, Sergei
2017-02-01
Being a superluminous supernova, PTF12dam can be explained by a {sup 56}Ni-powered model, a magnetar-powered model, or an interaction model. We propose that PTF12dam is a pulsational pair-instability supernova, where the outer envelope of a progenitor is ejected during the pulsations. Thus, it is powered by a double energy source: radioactive decay of {sup 56}Ni and a radiative shock in a dense circumstellar medium. To describe multicolor light curves and spectra, we use radiation-hydrodynamics calculations of the STELLA code. We found that light curves are well described in the model with 40 M {sub ⊙} ejecta and 20–40 M {submore » ⊙} circumstellar medium. The ejected {sup 56}Ni mass is about 6 M {sub ⊙}, which results from explosive nucleosynthesis with large explosion energy (2–3)×10{sup 52} erg. In comparison with alternative scenarios of pair-instability supernova and magnetar-powered supernova, in the interaction model, all the observed main photometric characteristics are well reproduced: multicolor light curves, color temperatures, and photospheric velocities.« less
Radiography apparatus using gamma rays emitted by water activated by fusion neutrons
Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo
1996-01-01
Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.
Zeno effect in spontaneous decay induced by coupling to an unstable level
NASA Astrophysics Data System (ADS)
Luis, Alfredo
2001-09-01
A metastable atomic level can be rendered unstable in a controllable way by coupling it to a decaying state. In this work we carry out a full dynamical analysis of the Zeno effect in this kind of unstable systems, comparing it to the inhibition of purely coherent Rabi oscillations. Simple and experimentally feasible measuring strategies involving three atomic levels are considered. It is shown that this induced decay is actually an example of a partial Zeno effect so that the observed evolution results from the competition of two Zeno effects. We also show that a three-level scheme can display both coherent, incoherent, and anti-Zeno effects.
Two-body open charm decays of Z{sup +}(4430)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xiang; Centro de Fisica Teorica, Departamento de Fisica, Universidade de Coimbra, P-3004-516, Coimbra; Zhang Bo
2008-06-01
The two-body open charm decays Z{sup +}(4430){yields}D{sup +}D*{sup 0}, D*{sup +}D{sup 0}, D*{sup +}D*{sup 0} occur through the rescattering mechanism and their branching ratios are strongly suppressed if Z{sup +}(4430) is a D{sub 1}D* molecular state. In contrast, Z{sup +}(4430) falls apart into these modes easily with large phase space and they become the main decay modes if Z{sup +}(4430) is a tetraquark state. Experimental search of these two-body open charm modes and the hidden charm mode {chi}{sub cJ}{rho} will help distinguish different theoretical schemes.
Influence of surface potential on the adhesive force of radioactive gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida
2013-08-23
Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less
Fast-Timing Study in the 78Ni Region: β-Decay of 81Zn
NASA Astrophysics Data System (ADS)
Paziy, V.; Mach, H.; Fraile, L. M.; Aprahamian, A.; Bernards, C.; Briz, J. A.; Bucher, B.; Chiara, C. J.; Dlouhý, Z.; Gheorghe, I.; Ghiţă, D.; Hoff, P.; Jolie, J.; Köster, U.; Kurcewicz, W.; Lică, R.; Mărginean, N.; Mărginean, R.; Olaizola, B.; Régis, J.-M.; Rudigier, M.; Sava, T.; Simpson, G. S.; Stănoiu, M.; Stroe, L.; Udías, J. M.; Walters, W. B.
The neutron-rich nucleus 81Ga was populated from the β-decay of 81Zn produced at the ISOLDE (CERN) facility. The analysis of β-gated γ-ray singles and γ-γ coincidences permits to extend significantly the level scheme of 81Ga as well as to provide a new half-life for 81Zn. A preliminary upper limit was obtained for the half-life of the first excited state in 81Ga.
Collett, B.; Bateman, F.; Bauder, W. K.; ...
2017-08-01
Here, we describe an apparatus used to measure the electron-antineutrino angular correlation coefficient in free neutron decay. This apparatus employs a novel measurement technique in which the angular correlation is converted into a proton time-of-flight asymmetry that is counted directly, avoiding the need for proton spectroscopy. We present details of the method, apparatus, detectors, data acquisition, and data reduction scheme, along with a discussion of the important systematic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collett, B.; Bateman, F.; Bauder, W. K.
Here, we describe an apparatus used to measure the electron-antineutrino angular correlation coefficient in free neutron decay. This apparatus employs a novel measurement technique in which the angular correlation is converted into a proton time-of-flight asymmetry that is counted directly, avoiding the need for proton spectroscopy. We present details of the method, apparatus, detectors, data acquisition, and data reduction scheme, along with a discussion of the important systematic effects.
Collett, B; Bateman, F; Bauder, W K; Byrne, J; Byron, W A; Chen, W; Darius, G; DeAngelis, C; Dewey, M S; Gentile, T R; Hassan, M T; Jones, G L; Komives, A; Laptev, A; Mendenhall, M P; Nico, J S; Noid, G; Park, H; Stephenson, E J; Stern, I; Stockton, K J S; Trull, C; Wietfeldt, F E; Yerozolimsky, B G
2017-08-01
We describe an apparatus used to measure the electron-antineutrino angular correlation coefficient in free neutron decay. The apparatus employs a novel measurement technique in which the angular correlation is converted into a proton time-of-flight asymmetry that is counted directly, avoiding the need for proton spectroscopy. Details of the method, apparatus, detectors, data acquisition, and data reduction scheme are presented, along with a discussion of the important systematic effects.
Seiler, Ralph L.
2007-01-01
Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.
INNOVATIVE EASY-TO-USE PASSIVE TECHNIQUE FOR 222RN AND 220RN DECAY PRODUCT DETECTION.
Mishra, Rosaline; Rout, R; Prajith, R; Jalalluddin, S; Sapra, B K; Mayya, Y S
2016-10-01
The decay products of radon and thoron are essentially the radioisotopes of polonium, bismuth and lead, and are solid particulates, which deposit in different parts of the respiratory tract upon inhalation, subsequently emitting high-energy alpha particles upon their radioactive decay. Development of passive deposition-based direct progeny sensors known as direct radon and thoron progeny sensors have provided an easy-to-use technique for time-integrated measurements of the decay products only. These dosemeters are apt for large-scale population dosimetry to assign inhalation doses to the public. The paper gives an insight into the technique, the calibration, comparison with the prevalently used active grab filter paper sampling technique, alpha track diameter analysis in these progeny sensors, progeny deposition velocity measurements carried out using these detector systems in the indoor as well as outdoor environment, and applications of these sensors for time-integrated unattached fraction estimation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pulse shape discrimination performance of inverted coaxial Ge detectors
NASA Astrophysics Data System (ADS)
Domula, A.; Hult, M.; Kermaïdic, Y.; Marissens, G.; Schwingenheuer, B.; Wester, T.; Zuber, K.
2018-05-01
We report on the characterization of two inverted coaxial Ge detectors in the context of being employed in future 76Ge neutrinoless double beta (0 νββ) decay experiments. It is an advantage that such detectors can be produced with bigger Ge mass as compared to the planar Broad Energy Ge (BEGe) or p-type Point Contact (PPC) detectors that are currently used in the GERDA and MAJORANA DEMONSTRATOR 0 νββ decay experiments respectively. This will result in a lower background for the search of 0 νββ decay due to a reduction of detector surface to volume ratio, cables, electronics and holders which are dominating nearby radioactive sources. The measured resolution near the 76Ge Q-value at 2039 keV is 2.3 keV FWHM and their pulse-shape discrimination of background events are similar to BEGe and PPC detectors. It is concluded that this type of Ge-detector is suitable for usage in 76Ge 0 νββ decay experiments.
Day, J.H.
1985-01-01
A method is presented for assaying radioactive sandstone deposits in situ by using a high-resolution borehole gamma-ray spectrometer. Gamma-ray photopeaks from the same spectrum acquired to analyze a sample are used to characterize gamma-ray attenuation properties, from which a calibration function is determined. Assay results are independent of differences between properties of field samples and those of laboratory or test-hole standards generally used to calibrate a borehole sonde. This assaying technique is also independent of the state of radioactive disequilibrium that usually exists in nature among members of the natural-decay chains. ?? 1985.
Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme
NASA Astrophysics Data System (ADS)
Bhavsar, Tanvi; Shah, Manan; Vinodkumar, P. C.
2018-03-01
Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J^{PC} = 1^{-} mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states.
Half-lives of 214Pb and 214Bi.
Martz, D E; Langner, G H; Johnson, P R
1991-10-01
New measurements on chemically separated samples of 214Bi have yielded a mean half-life value of 19.71 +/- 0.02 min, where the error quoted is twice the standard deviation of the mean based on 23 decay runs. This result provides strong support for the historic 19.72 +/- 0.04 min half-life value and essentially excludes the 19.9-min value, both reported in previous studies. New measurements of the decay rate of 222Rn progeny activity initially in radioactive equilibrium have yielded a value of 26.89 +/- 0.03 min for the half-life of 214Pb, where the error quoted is twice the standard deviation of the mean based on 12 decay runs. This value is 0.1 min longer than the currently accepted 214Pb half-value of 26.8 min.
Beta-decay spectroscopy of neutron-rich 84-86Ga isotopes
NASA Astrophysics Data System (ADS)
Naqvi, Farheen; Xu, Zhengyu; Werner, Volker; Niikura, Megumi; Nishimura, Shunji; Eurica Collaboration
2013-10-01
The low lying excited states in 84-86 Ge were studied via the beta-gamma spectroscopy of 84-86 Ga nuclei. The study focused on the beta-delayed neutron emission probabilities and the beta-decay lifetimes, relevant for the astrophysical r process path in the region. The neutron-rich Ga isotopes were produced by in-flight fragmentation of 238U beam on a 9Be target. The experiment was performed at the Radioactive Ion Beam Facility (RIBF) at RIKEN, Japan. The BigRIPS spectrometer was utilized to identify and separate the reaction residues and the ions of interest were implanted in a segmented Si detector array called WASABI. Gamma rays emitted after the beta decay were identified by the EURICA array. Results of the ongoing analysis will be presented. Work supported by DOE grant no. DE-FG02-91ER-40609.
Kolotkov, Gennady; Penin, Sergei
2013-01-01
The Fukushima nuclear accident showed the importance of timely monitoring and detection of radioactive emissions released from enterprises of the nuclear fuel cycle. Nuclear power plants (NPP) working continuously are a stationary source of gas-aerosol emissions which presented in a ground surface layer persistently. Following radioactive emission, untypical effects can be observed, for example: the occurrences of areas with increased ionization, and increased concentration of some gases caused by photochemical reactions. The gases themselves and their characteristic radiation can be markers of radioactivity and can be monitored by a passive method. Hydrogen atom (H) and hydroxyl radical (OH) are formed in a radioactive plume by radiolysis of water molecules and other hydrogen-containing air components by the high energy electrons from beta-decay of radionuclides. The hydrogen atom and hydroxyl radical can spontaneously radiate at 1420 MHz and 1665-1667 MHz respectively. The passive method of remote monitoring of radiation levels using radio-frequencies of H and OH from radioactive emissions of NPP is described. The model data is indicative of the monitoring of radiation levels using these frequencies. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
The Path of Carbon in Photosynthesis
DOE R&D Accomplishments Database
Calvin, M.; Benson, A. A.
1948-03-08
The dark fixation of carbon dioxide by green algae has been investigated and found to be closely related to photosynthesis fixation. By illumination in the absence of carbon dioxide followed by treatment with radioactive carbon dioxide in the dark, the amount fixed has been increased ten to twenty fold. This rate of maximum fixation approaches photosynthesis maximum rates. The majority of the radioactive products formed under these conditions have been identified and isolated and the distribution of labeled carbon determined. From these results a tentative scheme for the mechanism of photosynthesis is set forth.
The rare isotope beams production at the Texas A and M university Cyclotron Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabacaru, G.; May, D. P.; Chubarian, G.
2013-04-19
The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.
Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap
NASA Astrophysics Data System (ADS)
Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration
2016-09-01
TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.
Nuclear Data Sheets for A = 235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J.K.
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on {sup 235}U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2−, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the {sup 237}Np({sup 116}Sn, {sup 118}Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge tomore » mention the report on the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. {sup 235}Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r{sub 0}) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Nuclear Data Sheets for A = 235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, E.; Tuli, J. K.
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on ²³⁵U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2–, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the ²³⁷Np(¹¹⁶Sn, ¹¹⁸Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge to mention the report onmore » the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. ²³⁵Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r₀) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
Nuclear Data Sheets for A = 235
Browne, E.; Tuli, J. K.
2014-11-01
Spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented here for all nuclei with mass number A=235. The highlight of this evaluation consists of the precise and comprehensive Coulomb excitation study (2012Wa35) on ²³⁵U, which in addition to the 7/2[743] ground state rotational band, extended the 1/2[631], 5/2[622], 5/2[752], and 3/2[631] rotational bands up to Jπ=53/2+, 49/2+, 441/2–, and 43/2+, respectively. This evaluation presents a study (2010Hu02) of the ²³⁷Np(¹¹⁶Sn, ¹¹⁸Snγ) reaction where the ground state rotational band 5/2[642] was observed up to Jπ=(53/2+). It is worth for historical knowledge to mention the report onmore » the “Discovery of isotopes of the transuranium elements with 93≤Z≤98” (2013Fr02), where the information for elements Np, Pu, and Am with mass number A=235 is given. ²³⁵Cf has not been observed. The alpha hindrance factors (HF) presented in this evaluation were calculated using values of the radius parameter (r₀) interpolated from those for even–even adjacent nuclei given by 1998Ak04.« less
High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC
NASA Astrophysics Data System (ADS)
Ball, G. C.; Achtzehn, T.; Albers, D.; Khalili, J. S. Al; Andreoiu, C.; Andreyev, A.; Ashley, S. F.; Austin, R. A. E.; Becker, J. A.; Bricault, P.; Chan, S.; Chakrawarthy, R. S.; Churchman, R.; Coombes, H.; Cunningham, E. S.; Daoud, J.; Dombsky, M.; Drake, T. E.; Eshpeter, B.; Finlay, P.; Garrett, P. E.; Geppert, C.; Grinyer, G. F.; Hackman, G.; Hanemaayer, V.; Hyland, B.; Jones, G. A.; Koopmans, K. A.; Kulp, W. D.; Lassen, J.; Lavoie, J. P.; Leslie, J. R.; Litvinov, Y.; Macdonald, J. A.; Mattoon, C.; Melconian, D.; Morton, A. C.; Osborne, C. J.; Pearson, C. J.; Pearson, M.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Schumaker, M. A.; Schwarzenberg, J.; Scraggs, H. C.; Smith, M. B.; Svensson, C. E.; Valiente-Dobon, J. J.; Waddington, J. C.; Walker, P. M.; Wendt, K.; Williams, S. J.; Wood, J. L.; Zganjar, E. F.
2005-10-01
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.
Experiments on the origin of molecular chirality by parity non-conservation during beta-decay
NASA Technical Reports Server (NTRS)
Bonner, W. A.
1974-01-01
Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta-decay, and their resulting circularly polarized bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. The historical background to this subject is briefly reviewed. Our experiments involve subjecting a number of racemic and optically active amino acid samples to a beta-radiation source for a period of 1.34 years (total dose: 411 Mrads), then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography.
Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.
Eberl, Helmut; Ginina, Elena; Hidaka, Keisho
2017-01-01
We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.
Nuclear Data Sheets for A = 227
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondev, Filip; McCutchan, Elizabeth; Singh, Balraj, E-mail: balraj@mcmaster.ca
The evaluated spectroscopic data are presented for ten known nuclides of mass 227 (Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np). For {sup 227}Po, {sup 227}At, {sup 227}Rn, {sup 227}Pa, {sup 227}U and {sup 227}Np nuclei, only the ground-state information is available. Their decay characteristics are mostly unknown. Levels in {sup 227}Fr are known only from the decay of {sup 227}Rn to {sup 227}Fr. This decay scheme at present cannot be normalized to deduce γ intensities per 100 decays due to lack of knowledge about multipolarities of many low-energy transitions. The levels in {sup 227}Ra, {sup 227}Ac andmore » {sup 227}Th are known from several decays and reactions, including particle-transfer data for {sup 227}Ra and {sup 227}Ac. The decay scheme of {sup 227}Ra to {sup 227}Ac was last studied in 1971 using small Ge detectors. Improved γ-ray intensity data need to be obtained with a better γ-detection system. The datasets for {sup 227}Ac have undergone extensive revisions, including detailed data for 231Pa α decay from 1986BaYK report, and single-proton transfer data from 1986MaYU thesis. High-spin (J>13/2 or so) structures are known only for 227Th. Level lifetime data are quite scarce for all the nuclides in this mass chain, thus limiting the knowledge of reduced transition probabilities. Band structures for {sup 227}Fr, {sup 227}Ra, {sup 227}Ac and {sup 227}Th are known in detail, together with evidence of weak octupole deformation and consequent parity-doublet structures. This evaluation was carried out as part of a joint IAEA-ICTP workshop for Nuclear Structure and Decay Data, organized and hosted by the IAEA, Vienna and ICTP, Trieste, March 24–28, 2014. The evaluation work was coordinated by B. Singh (McMaster). This work supersedes previous A=227 evaluation (2001Br31) published by E. Browne which covered literature before May 2001.« less
Low background screening capability in the UK
NASA Astrophysics Data System (ADS)
Ghag, Chamkaur
2015-08-01
Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghag, Chamkaur
Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screeningmore » and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.« less
Probabilistic Cloning of two Single-Atom States via Thermal Cavity
NASA Astrophysics Data System (ADS)
Rui, Pin-Shu; Liu, Dao-Jun
2016-12-01
We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.
On the Modeling of Shells in Multibody Dynamics
NASA Technical Reports Server (NTRS)
Bauchau, Olivier A.; Choi, Jou-Young; Bottasso, Carlo L.
2000-01-01
Energy preserving/decaying schemes are presented for the simulation of the nonlinear multibody systems involving shell components. The proposed schemes are designed to meet four specific requirements: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipation. The kinematic nonlinearities associated with arbitrarily large displacements and rotations of shells are treated in a rigorous manner, and the material nonlinearities can be handled when the, constitutive laws stem from the existence of a strain energy density function. The efficiency and robustness of the proposed approach is illustrated with specific numerical examples that also demonstrate the need for integration schemes possessing high frequency numerical dissipation.
Scheme variations of the QCD coupling
NASA Astrophysics Data System (ADS)
Boito, Diogo; Jamin, Matthias; Miravitllas, Ramon
2017-03-01
The Quantum Chromodynamics (QCD) coupling αs is a central parameter in the Standard Model of particle physics. However, it depends on theoretical conventions related to renormalisation and hence is not an observable quantity. In order to capture this dependence in a transparent way, a novel definition of the QCD coupling, denoted by â, is introduced, whose running is explicitly renormalisation scheme invariant. The remaining renormalisation scheme dependence is related to transformations of the QCD scale Λ, and can be parametrised by a single parameter C. Hence, we call â the C-scheme coupling. The dependence on C can be exploited to study and improve perturbative predictions of physical observables. This is demonstrated for the QCD Adler function and hadronic decays of the τ lepton.
Consistent parameter fixing in the quark-meson model with vacuum fluctuations
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Buballa, Michael; Elkamhawy, Wael
2016-08-01
We revisit the renormalization prescription for the quark-meson model in an extended mean-field approximation, where vacuum quark fluctuations are included. At a given cutoff scale the model parameters are fixed by fitting vacuum quantities, typically including the sigma-meson mass mσ and the pion decay constant fπ. In most publications the latter is identified with the expectation value of the sigma field, while for mσ the curvature mass is taken. When quark loops are included, this prescription is however inconsistent, and the correct identification involves the renormalized pion decay constant and the sigma pole mass. In the present article we investigate the influence of the parameter-fixing scheme on the phase structure of the model at finite temperature and chemical potential. Despite large differences between the model parameters in the two schemes, we find that in homogeneous matter the effect on the phase diagram is relatively small. For inhomogeneous phases, on the other hand, the choice of the proper renormalization prescription is crucial. In particular, we show that if renormalization effects on the pion decay constant are not considered, the model does not even present a well-defined renormalized limit when the cutoff is sent to infinity.
Drum Centrifuge Study of the Transport of Leachates from Landfill Sites.
1988-05-05
Radioactive decay and 5 reactions within the liquid phase itself will also contribute to changes in solute concentration. Such changes may affect the...7]m p A.2 AmIDII II Tue 133 Or A Luomew TRACu It would be possible to use a model polutant which might be present in a Ypercentage of Department of
Radon, a radioactive gas, comes from the natural decay of uranium. It moves to the earth's surface through tiny openings and cracks in soil and rocks. In outdoor air, radon is diluted to such low concentrations that it is usually nothing to worry about. However, radon can accumul...
Symposium Commemorating the 25th Anniversary of the Discovery of Mendelevium
DOE R&D Accomplishments Database
Seaborg, G. T. (ed.)
1980-03-28
The Symposium honoring the 25th Anniversary of the discovery of mendelevium was held at the Lawrence Berkeley Laboratory on March 28, 1980. The following three papers were presented: Chemical Properties of Mendelevium; Nuclear Properties of Mendelevium; and Radioactive Decay of Md Isotopes. Besides these papers there were introductory remarks, reminiscences, and concluding remarks.
Magneto-optical trapping of potassium isotopes
NASA Astrophysics Data System (ADS)
Williamson, Robert Sylvester, III
1997-12-01
We have demonstrated a magneto-optical trap (scMOT) suitable for capturing radioactive potassium produced on- line with the UW-Madison 12MeV tandem electrostatic accelerator. To do this, we made and characterized the first scMOT for potassium, measured the potassium ultracold collision rate, and developed a numerical trap- loading rate model that makes useful quantitative predictions. We have created a cold beam of collimated potassium atoms using a pyramidal magneto-optical funnel and used it to load a long-lifetime scMOT operating at ultrahigh vacuum. We have also built a target that produces a beam of radioactive 37K and 38K and coupled it to the magneto-optical funnel and trap. Once a trap of radioactive 38K has been demonstrated, the primary goal of this project is to measure the beta-asymmetry parameter in the decay of 38K, performing a sensitive test of the Standard Model of weak interactions.
Nuclear astrophysics with radioactive ions at FAIR
NASA Astrophysics Data System (ADS)
Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.
2016-01-01
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
THORON-SCOUT - first diffusion based active Radon and Thoron monitor
NASA Astrophysics Data System (ADS)
Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.
2016-10-01
THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.
Harriet Brooks: Canada's First Woman Physicist
NASA Astrophysics Data System (ADS)
Rayner-Canham, Geoffrey
2004-03-01
During those early halcyon days of the study of radioactivity, one young Canadian woman, Harriet Brooks, joined Ernest Rutherford's group as his first research student. Later, she joined J.J. Thomson's group in Cambridge and, finally, Marie Curie's group in Paris. During her short research career, she made several important contributions to science. She investigated the nature of 'emanation' from radium; discovered that radioactive substances could undergo successive decay; and first reported the recoil of the radioactive atom. Much of this research was published under her name alone though Rutherford made extensive reference to her discoveries in his Bakerian lecture of 1904. Brooks life is of interest not only in what she accomplished, but also in the challenges she faced as a pioneering woman scientist in the early part of the twentieth century. In the presentation we will blend the account of her life and work with the societal context. This work was accomplished jointly with Marelene F. Rayner-Canham.
Isospin breaking effects in the anomalous processes with vector mesons
NASA Astrophysics Data System (ADS)
Hashimoto, Michio
1996-02-01
We introduce isospin/ SU(3) breaking terms in the anomalous WP coupling in the hidden local symmetry scheme without affecting the low-energy theorem. It is shown that the predictions from these terms coincide successfully with all the experimental data of anomalous decays. It is also predicted that the decay widths of ϱ0 → π0γ and f → η‧γ are 114 ± 7 keV and 0.55 ± 0.055 keV, respectively.
Higgs boson decay into b-quarks at NNLO accuracy
NASA Astrophysics Data System (ADS)
Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán
2015-04-01
We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.
Search for a Scalar Component in the Weak Interaction
NASA Astrophysics Data System (ADS)
Zakoucky, Dalibor; Baczyk, Pavel; Ban, Gilles; Beck, Marcus; Breitenfeldt, Martin; Couratin, Claire; Fabian, Xavier; Finlay, Paul; Flechard, Xavier; Friedag, Peter; Glück, Ferenc; Herlert, Alexander; Knecht, Andreas; Kozlov, Valentin; Lienard, Etienne; Porobic, Tomica; Soti, Gergelj; Tandecki, Michael; Vangorp, Simon; Weinheimer, Christian; Wursten, Elise; Severijns, Nathal
Weak interactions are described by the Standard Model which uses the basic assumption of a pure "V(ector)-A(xial vector)" character for the interaction. However, after more than half a century of model development and experimental testing of its fundamental ingredients, experimental limits for possible admixtures of scalar and/or tensor interactions are still as high as 7%. The WITCH project (Weak Interaction Trap for CHarged particles) at the isotope separator ISOLDE at CERN is trying to probe the structure of the weak interaction in specific low energy β-decays in order to look for possible scalar or tensor components or at least significantly improve the current experimental limits. This worldwide unique experimental setup consisting of a combination of two Penning ion traps and a retardation spectrometer allows to catch, trap and cool the radioactive nuclei provided by the ISOLDE separator, form a cooled and scattering-free radioactive source of β-decaying nuclei and let these nuclei decay at rest. The precise measurement of the shape of the energy spectrum of the recoiling nuclei, the shape of which is very sensitive to the character of the weak interaction, enables searching for a possible admixture of a scalar/tensor component in the dominant vector/axial vector mode. First online measurements with the isotope 35Ar were performed in 2011 and 2012. The current status of the experiment, the data analysis and results as well as extensive simulations will be presented and discussed.
NASA Astrophysics Data System (ADS)
Fang, Bao-Long; Yang, Zhen; Ye, Liu
2009-05-01
We propose a scheme for implementing a partial general quantum cloning machine with superconducting quantum-interference devices coupled to a nonresonant cavity. By regulating the time parameters, our system can perform optimal symmetric (asymmetric) universal quantum cloning, optimal symmetric (asymmetric) phase-covariant cloning, and optimal symmetric economical phase-covariant cloning. In the scheme the cavity is only virtually excited, thus, the cavity decay is suppressed during the cloning operations.
NASA Astrophysics Data System (ADS)
Grinyer, G. F.; Svensson, C. E.; Andreoiu, C.; Andreyev, A. N.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Chakrawarthy, R. S.; Finlay, P.; Garrett, P. E.; Hackman, G.; Hyland, B.; Kulp, W. D.; Leach, K. G.; Leslie, J. R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Williams, S. J.; Wong, J.; Wood, J. L.; Zganjar, E. F.
2007-09-01
A general technique that corrects γ-ray gated β decay-curve data for detector pulse pile-up is presented. The method includes corrections for non-zero time-resolution and energy-threshold effects in addition to a special treatment of saturating events due to cosmic rays. This technique is verified through a Monte Carlo simulation and experimental data using radioactive beams of Na26 implanted at the center of the 8π γ-ray spectrometer at the ISAC facility at TRIUMF in Vancouver, Canada. The β-decay half-life of Na26 obtained from counting 1809-keV γ-ray photopeaks emitted by the daughter Mg26 was determined to be T=1.07167±0.00055 s following a 27σ correction for detector pulse pile-up. This result is in excellent agreement with the result of a previous measurement that employed direct β counting and demonstrates the feasibility of high-precision β-decay half-life measurements through the use of high-purity germanium γ-ray detectors. The technique presented here, while motivated by superallowed-Fermi β decay studies, is general and can be used for all half-life determinations (e.g. α-, β-, X-ray, fission) in which a γ-ray photopeak is used to select the decays of a particular isotope.
Gamma Decay of Unbound Neutron-Hole States in 133Sn
NASA Astrophysics Data System (ADS)
Vaquero, V.; Jungclaus, A.; Doornenbal, P.; Wimmer, K.; Gargano, A.; Tostevin, J. A.; Chen, S.; Nácher, E.; Sahin, E.; Shiga, Y.; Steppenbeck, D.; Taniuchi, R.; Xu, Z. Y.; Ando, T.; Baba, H.; Garrote, F. L. Bello; Franchoo, S.; Hadynska-Klek, K.; Kusoglu, A.; Liu, J.; Lokotko, T.; Momiyama, S.; Motobayashi, T.; Nagamine, S.; Nakatsuka, N.; Niikura, M.; Orlandi, R.; Saito, T.; Sakurai, H.; Söderström, P. A.; Tveten, G. M.; Vajta, Zs.; Yalcinkaya, M.
2017-05-01
Excited states in the nucleus 133Sn, with one neutron outside the double magic 132Sn core, were populated following one-neutron knockout from a 134Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in 133Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of 133Sn is low, Sn=2.402 (4 ) MeV , this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of 132Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β -decay properties for astrophysical simulations may have to be reconsidered.
Gamma-ray spectroscopy in the decay of (83)Se to levels of (83)Br.
Krane, K S
2015-03-01
High-resolution γ ray spectroscopy experiments have been done to study the emissions from the radioactive decay of 22-min (83g)Se produced from neutron capture using samples of enriched (82)Se. Energy and intensity values have been obtained to roughly an order of magnitude greater precision than in previous studies. Based on energy sums, 2 new levels are proposed in the daughter (83)Br and one previously proposed level is shown to be doubtful. Some 25 new transitions appear to decay with the (83)Se halflife, about half of which can be accommodated among the previous or newly proposed levels. Several previous γ ray placements are shown to be inconsistent with the new determinations of the (83)Br energy levels, but cannot be accommodated anywhere else among the known levels. As a result of the missing γ ray placements, some of the β branchings in the decay to levels of (83)Br appear to be negative. Gamma rays from the 2.4-h decay of the daughter (83)Br to levels of (83)Kr have also been observed, along with decays of (81g)(,m)Se present as a small impurity in the enriched samples and also as a strong component in irradiated samples of natural Se. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gamma Decay of Unbound Neutron-Hole States in ^{133}Sn.
Vaquero, V; Jungclaus, A; Doornenbal, P; Wimmer, K; Gargano, A; Tostevin, J A; Chen, S; Nácher, E; Sahin, E; Shiga, Y; Steppenbeck, D; Taniuchi, R; Xu, Z Y; Ando, T; Baba, H; Garrote, F L Bello; Franchoo, S; Hadynska-Klek, K; Kusoglu, A; Liu, J; Lokotko, T; Momiyama, S; Motobayashi, T; Nagamine, S; Nakatsuka, N; Niikura, M; Orlandi, R; Saito, T; Sakurai, H; Söderström, P A; Tveten, G M; Vajta, Zs; Yalcinkaya, M
2017-05-19
Excited states in the nucleus ^{133}Sn, with one neutron outside the double magic ^{132}Sn core, were populated following one-neutron knockout from a ^{134}Sn beam on a carbon target at relativistic energies at the Radioactive Isotope Beam Factory at RIKEN. Besides the γ rays emitted in the decay of the known neutron single-particle states in ^{133}Sn additional γ strength in the energy range 3.5-5.5 MeV was observed for the first time. Since the neutron-separation energy of ^{133}Sn is low, S_{n}=2.402(4) MeV, this observation provides direct evidence for the radiative decay of neutron-unbound states in this nucleus. The ability of electromagnetic decay to compete successfully with neutron emission at energies as high as 3 MeV above threshold is attributed to a mismatch between the wave functions of the initial and final states in the latter case. These findings suggest that in the region southeast of ^{132}Sn nuclear structure effects may play a significant role in the neutron versus γ competition in the decay of unbound states. As a consequence, the common neglect of such effects in the evaluation of the neutron-emission probabilities in calculations of global β-decay properties for astrophysical simulations may have to be reconsidered.
A search for the top and b‧ quarks in hadronic Z 0 decays
NASA Astrophysics Data System (ADS)
Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beard, C.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Boerner, H.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burchart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Perez, A.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Von Der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; Van Den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration
1990-02-01
We report on a search for new quarks in hadronic Z° decays. From the event shape analysis of a data sample containing 2185 multihadronic annihilation events, we observe no evidence for the top or b' quarks. We derive limits for the top and b' quark masses under the assumption of various possible standard model and non-standard model decay schemes. Our search is sensitive to quark masses larger than 23 GeV/ c2; it yields the following lower limits at a 95% confidence level: 44.5 GeV/ c2 for the top quark mass and 45.2 GeV/ c2 for the b‧ quark mass.
Method of self-consistent evaluation of absolute emission probabilities of particles and gamma rays
NASA Astrophysics Data System (ADS)
Badikov, Sergei; Chechev, Valery
2017-09-01
In assumption of well installed decay scheme the method provides a) exact balance relationships, b) lower (compared to the traditional techniques) uncertainties of recommended absolute emission probabilities of particles and gamma rays, c) evaluation of correlations between the recommended emission probabilities (for the same and different decay modes). Application of the method for the decay data evaluation for even curium isotopes led to paradoxical results. The multidimensional confidence regions for the probabilities of the most intensive alpha transitions constructed on the basis of present and the ENDF/B-VII.1, JEFF-3.1, DDEP evaluations are inconsistent whereas the confidence intervals for the evaluated probabilities of single transitions agree with each other.
Beta-delayed proton emission from 20Mg
NASA Astrophysics Data System (ADS)
Lund, M. V.; Andreyev, A.; Borge, M. J. G.; Cederkäll, J.; De Witte, H.; Fraile, L. M.; Fynbo, H. O. U.; Greenlees, P. T.; Harkness-Brennan, L. J.; Howard, A. M.; Huyse, M.; Jonson, B.; Judson, D. S.; Kirsebom, O. S.; Konki, J.; Kurcewicz, J.; Lazarus, I.; Lica, R.; Lindberg, S.; Madurga, M.; Marginean, N.; Marginean, R.; Marroquin, I.; Mihai, C.; Munch, M.; Nacher, E.; Negret, A.; Nilsson, T.; Page, R. D.; Pascu, S.; Perea, A.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Riisager, K.; Rotaru, F.; Sotty, C.; Stanoiu, M.; Tengblad, O.; Turturica, A.; Van Duppen, P.; Vedia, V.; Wadsworth, R.; Warr, N.
2016-10-01
Beta-delayed proton emission from 20 Mg has been measured at ISOLDE, CERN, with the ISOLDE Decay Station (IDS) setup including both charged-particle and gamma-ray detection capabilities. A total of 27 delayed proton branches were measured including seven so far unobserved. An updated decay scheme, including three new resonances above the proton separation energy in 20 Na and more precise resonance energies, is presented. Beta-decay feeding to two resonances above the Isobaric Analogue State (IAS) in 20 Na is observed. This may allow studies of the 4032.9(2.4)keV resonance in 19 Ne through the beta decay of 20 Mg, which is important for the astrophysically relevant reaction 15O( α, γ)19Ne . Beta-delayed protons were used to obtain a more precise value for the half-life of 20 Mg, 91.4(1.0)ms.
Active control of the lifetime of excited resonance states by means of laser pulses.
García-Vela, A
2012-04-07
Quantum control of the lifetime of a system in an excited resonance state is investigated theoretically by creating coherent superpositions of overlapping resonances. This control scheme exploits the quantum interference occurring between the overlapping resonances, which can be controlled by varying the width of the laser pulse that creates the superposition state. The scheme is applied to a realistic model of the Br(2)(B)-Ne predissociation decay dynamics through a three-dimensional wave packet method. It is shown that extensive control of the system lifetime is achievable, both enhancing and damping it remarkably. An experimental realization of the control scheme is suggested.
Conservaton and retrieval of information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.
This is a summary of the findings of a Nordic working group formed in 1990 and given the task of establishing a basis for a common Nordic view of the need for information conservation for nuclear waste repositories by investigating the following: (1) the type of information that should be conserved; (2) the form in which the information should be kept; (3) the quality of the information as regards both type and form; and (4) the problems of future retrieval of information, including retrieval after very long periods of time. High-level waste from nuclear power generation will remain radioactive formore » very long times even though the major part of the radioactivity will have decayed within 1000 yr. Certain information about the waste must be kept for long time periods because future generations may-intentionally or inadvertently-come into contact with the radioactive waste. Current day waste management would benefit from an early identification of documents to be part of an archive for radioactive waste repositories. The same reasoning is valid for repositories for other toxic wastes.« less
Comprehending isospin breaking effects of X (3872 ) in a Friedrichs-model-like scheme
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Yong; Xiao, Zhiguang
2018-02-01
Recently, we have shown that the X (3872 ) state can be naturally generated as a bound state by incorporating the hadron interactions into the Godfrey-Isgur quark model using a Friedrichs-like model combined with the quark pair creation model, in which the wave function for the X (3872 ) as a combination of the bare c c ¯ state and the continuum states can also be obtained. Under this scheme, we now investigate the isospin-breaking effect of X (3872 ) in its decays to J /ψ π+π- and J /ψ π+π-π0. By coupling its dominant continuum parts to J /ψ ρ and J /ψ ω through the quark rearrangement process, one could obtain the reasonable ratio of B (X (3872 )→J /ψ π+π-π0)/B (X (3872 )→J /ψ π+π-)≃ (0.58 - 0.92 ) . It is also shown that the D ¯D* invariant mass distributions in the B →D ¯D*K decays could be understood qualitatively at the same time. This scheme may provide more insight into the enigmatic nature of the X (3872 ) state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpey-Schafer, J. F.; University of Zululand, Department of Physics and Engineering, P/B X1001, Kwa Dlangezwa, ZA-3886; iThemba Laboratory for Accelerator Based Sciences, PO Box 722, Somerset-West, ZA-7129
The results of our measurements on the yrare states up to spin 20({Dirac_h}/2{pi}) in {sup 152,154,155}Gd, using ({alpha},xn) reactions and the AFRODITE {gamma}-ray spectrometer, are presented. We find that in {sup 155}Gd the decay scheme is divided into levels feeding the [505]11/2{sup -} band, that is extruded by the prolate deformation from the h{sub 11/2} orbital, and levels feeding the i{sub 13/2}[651]3/2{sup +} intruder orbital and the h{sub 9/2}[521]3/2{sup -} orbital. The decay scheme of {sup 154}Gd is very complex. We find no evidence for the existence of {beta}-vibrational levels below 1.5 MeV. We discover that the level scheme canmore » be best understood as a set of collective states built on the ground state configuration |0{sub 1}{sup +}> plus a 'congruent' set of collective states based on the |0{sub 2}{sup +}> state at 681 keV. The data suggest that this second vacuum has reduced pairing. Our data do not support IBA and phonon interpretations of these transitional nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savard, G.; Department of Physics, University of Chicago, Chicago, Illinois 60637; Buchinger, F.
2005-09-02
The masses of the radioactive nuclei {sup 46}V and its decay daughter {sup 46}Ti have been measured with the Canadian Penning Trap on-line Penning trap mass spectrometer to a precision of 1x10{sup -8}. A Q{sub EC} value of 7052.90(40) keV for the superallowed beta decay of {sup 46}V is obtained from the difference of these two masses. With this precise Q value, the Ft value for this decay is determined with improved precision. An investigation of an earlier Q-value measurement for {sup 46}V uncovers a set of 7 measurements that cannot be reconciled with modern data and affects previous evaluationsmore » of V{sub ud} from superallowed Fermi decays. A new evaluation, adding our new data and removing the discredited subset, yields new values for G{sub V} and V{sub ud}. When combined with recent results for V{sub us}, this yields modified constraints for the unitarity of the Cabibbo-Kobayashi-Maskawa matrix and other extensions of the standard model.« less
First-forbidden β decay of ^17N and ^17Ne.
NASA Astrophysics Data System (ADS)
Millener, D. J.
1997-04-01
By measuring positrons in coincidence with 495-keV γ rays de-exciting the 1/2^+ first-excited state of ^17F, Borge et al.(M. J. B. Borge et al.), Phys. Lett. B 317, 25 (1993). have obtained a branch of 1.65(16)% for the first-forbidden β^+ decay of ^17Ne to the 1/2^+ state. This is a very interesting result because the measured branch is roughly a factor of two larger than expected on the basis of nuclear matrix elements which reproduce the corresponding β^- branch of 3.0%(A. R. Poletti and J. G. Pronko, Phys. Rev. C 8), 1285 (1973);D. E. Alburger and D. H. Wilkinson, Phys. Rev. C 13, 835 (1976). in the decay of ^17N. Recently, Ozawa et al.(A. Ozawa et al.), preprint RIKEN-AF-NP-238. have confirmed the magnitude of the β branch in ^17Ne decay, obtaining a value of 1.44(16)% by a method which utilizes a 32 MeV/A radioactive beam of ^17Ne. It is shown that differences, due to charge-dependent effects, in the ^17N and ^17Ne ground-state wave functions account for both β-decay branches.
NASA Astrophysics Data System (ADS)
Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Christiansen, Anders Vest; Christensen, Niels B.
2012-08-01
We present a new, efficient and accurate forward modelling and inversion scheme for magnetic resonance sounding (MRS) data. MRS, also called surface-nuclear magnetic resonance (surface-NMR), is the only non-invasive geophysical technique that directly detects free water in the subsurface. Based on the physical principle of NMR, protons of the water molecules in the subsurface are excited at a specific frequency, and the superposition of signals from all protons within the excited earth volume is measured to estimate the subsurface water content and other hydrological parameters. In this paper, a new inversion scheme is presented in which the entire data set is used, and multi-exponential behaviour of the NMR signal is approximated by the simple stretched-exponential approach. Compared to the mono-exponential interpretation of the decaying NMR signal, we introduce a single extra parameter, the stretching exponent, which helps describe the porosity in terms of a single relaxation time parameter, and helps to determine correct initial amplitude and relaxation time of the signal. Moreover, compared to a multi-exponential interpretation of the MRS data, the decay behaviour is approximated with considerably fewer parameters. The forward response is calculated in an efficient numerical manner in terms of magnetic field calculation, discretization and integration schemes, which allows fast computation while maintaining accuracy. A piecewise linear transmitter loop is considered for electromagnetic modelling of conductivities in the layered half-space providing electromagnetic modelling of arbitrary loop shapes. The decaying signal is integrated over time windows, called gates, which increases the signal-to-noise ratio, particularly at late times, and the data vector is described with a minimum number of samples, that is, gates. The accuracy of the forward response is investigated by comparing a MRS forward response with responses from three other approaches outlining significant differences between the three approaches. All together, a full MRS forward response is calculated in about 20 s and scales so that on 10 processors the calculation time is reduced to about 3-4 s. The proposed approach is examined through synthetic data and through a field example, which demonstrate the capability of the scheme. The results of the field example agree well the information from an in-site borehole.
Liquid discharges from the use of radionuclides in medicine (diagnosis).
Barquero, R; Agulla, M M; Ruiz, A
2008-10-01
The production and discharge of liquid radioactive wastes as excreta from patients undergoing Nuclear Medicine Diagnostic (NMD) in a hospital were studied. Instantaneous and accumulated activity, discharged from the hospital to the sewage system, has been estimated keeping in mind radionuclide decay. This study would enable estimation of the environmental impact due to NMD procedures. Annual accumulated activities of 2.2 GBq (131I), 1.847 GBq (99mTc), 0.743 GBq (123I), 0.337 GBq (67Ga), 0.169 GBq (111In) and 0.033 GBq (201Tl) result from our model when applied to a European hospital. A comparison is made with calculations by other authors that do not consider the radionuclide decay and who overestimate by two orders of magnitude. Doses to critical people as sewage treatment workers are also significantly reduced. So, our results stress the importance of including the decay in the calculations.
Exploring the hidden interior of the Earth with directional neutrino measurements.
Leyton, Michael; Dye, Stephen; Monroe, Jocelyn
2017-07-10
Roughly 40% of the Earth's total heat flow is powered by radioactive decays in the crust and mantle. Geo-neutrinos produced by these decays provide important clues about the origin, formation and thermal evolution of our planet, as well as the composition of its interior. Previous measurements of geo-neutrinos have all relied on the detection of inverse beta decay reactions, which are insensitive to the contribution from potassium and do not provide model-independent information about the spatial distribution of geo-neutrino sources within the Earth. Here we present a method for measuring previously unresolved components of Earth's radiogenic heating using neutrino-electron elastic scattering and low-background, direction-sensitive tracking detectors. We calculate the exposures needed to probe various contributions to the total geo-neutrino flux, specifically those associated to potassium, the mantle and the core. The measurements proposed here chart a course for pioneering exploration of the veiled inner workings of the Earth.
Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi
2012-01-01
DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year.
Nuclear diagnostic for fast alpha particles
Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.
1986-06-03
Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.
Nuclear diagnostic for fast alpha particles
Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.
1986-01-01
Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
NASA Astrophysics Data System (ADS)
Rubio, B.; Orrigo, S. E. A.; Kucuk, L.; Montaner-Pizá, A.; Fujita, Y.; Fujita, H.; Blank, B.; Gelletly, W.; Adachi, T.; Agramunt, J.; Algora, A.; Ascher, P.; Bilgier, B.; Cáceres, L.; Cakirli, R. B.; de France, G.; Ganioğlu, E.; Gerbaux, M.; Giovinazzo, J.; Grevy, S.; Kamalou, O.; Kozer, H. C.; Kurtukian-Nieto, T.; Marqués, F. M.; Molina, F.; Oktem, Y.; de Oliveira Santos, F.; Perrot, L.; Popescu, L.; Raabe, R.; Rogers, A. M.; Srivastava, P. C.; Susoy, G.; Suzuki, T.; Tamii, A.; Thomas, J. C.
2014-06-01
This paper concerns the experimental study of the β decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The β-delayed gammas, β-delayed protons and the exotic β-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the Tz = - 2 nucleus 56Zn has been studied in detail. Information from the β-delayed protons and β-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in 56Co, the mirror nucleus of 56Cu.
Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine
NASA Astrophysics Data System (ADS)
Lin, Jin-Zhong
2018-05-01
We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.
On high b diffusion imaging in the human brain: ruminations and experimental insights.
Mulkern, Robert V; Haker, Steven J; Maier, Stephan E
2009-10-01
Interest in the manner in which brain tissue signal decays with b factor in diffusion imaging schemes has grown in recent years following the observation that the decay curves depart from purely monoexponential decay behavior. Regardless of the model or fitting function proposed for characterizing sufficiently sampled decay curves (vide infra), the departure from monoexponentiality spells increased tissue characterization potential. The degree to which this potential can be harnessed to improve specificity, sensitivity and spatial localization of diseases in brain, and other tissues, largely remains to be explored. Furthermore, the degree to which currently popular diffusion tensor imaging methods, including visually impressive white matter fiber "tractography" results, have almost completely ignored the nonmonoexponential nature of the basic signal decay with b factor is worthy of communal introspection. Here we limit our attention to a review of the basic experimental features associated with brain water signal diffusion decay curves as measured over extended b-factor ranges, the simple few parameter fitting functions that have been proposed to characterize these decays and the more involved models, e.g.,"ruminations," which have been proposed to account for the nonmonoexponentiality to date.
On high b diffusion imaging in the human brain: ruminations and experimental insights✩
Mulkern, Robert V.; Haker, Steven J.; Maier, Stephan E.
2010-01-01
Interest in the manner in which brain tissue signal decays with b factor in diffusion imaging schemes has grown in recent years following the observation that the decay curves depart from purely monoexponential decay behavior. Regardless of the model or fitting function proposed for characterizing sufficiently sampled decay curves (vide infra), the departure from monoexponentiality spells increased tissue characterization potential. The degree to which this potential can be harnessed to improve specificity, sensitivity and spatial localization of diseases in brain, and other tissues, largely remains to be explored. Furthermore, the degree to which currently popular diffusion tensor imaging methods, including visually impressive white matter fiber “tractography” results, have almost completely ignored the nonmonoexponential nature of the basic signal decay with b factor is worthy of communal introspection. Here we limit our attention to a review of the basic experimental features associated with brain water signal diffusion decay curves as measured over extended b-factor ranges, the simple few parameter fitting functions that have been proposed to characterize these decays and the more involved models, e.g.,“ruminations,” which have been proposed to account for the nonmonoexponentiality to date. PMID:19520535
Failure of the gross theory of beta decay in neutron deficient nuclei
Firestone, R. B.; Schwengner, R.; Zuber, K.
2015-05-28
The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less
Cryptology Management in a Quantum Computing Era
2012-06-01
HOW IT WORKS (BLACK BOX) ...........................7 1. Schrodinger’s Cat Theory ......................7 2. Multiverse Theory...the macroscopic scale of an animal through the mechanism of a hammer activated by the decay of the radioactive substance. 2. Multiverse Theory...quantum mechanics is the multiverse theory. This theory states that at every decision, the universe splits into multiple copies; the number of copies is
Test of the electric charge conservation law with Borexino detector
NASA Astrophysics Data System (ADS)
Vishneva, A.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D' Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schonert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2016-02-01
The new limit on the electron lifetime is obtained from data of the Borexino experiment. The expected signal from the e → γν decay mode is a 256 keV photon detected in liquid scintillator. Because of the extremely low radioactive background level in the Borexino detector it was possible to improve the previous measurement by two orders of magnitude.
A radon daughter deposition model for low background experiments
NASA Astrophysics Data System (ADS)
Rielage, K.; Guiseppe, V. E.; Mastbaum, A.; Elliott, S. R.; Hime, A.
2009-05-01
The next generation low-background detectors operating underground, such as dark matter searches and neutrinoless double-beta decay, aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly ^222Rn) and its subsequent daughters present in an experiment are potential backgrounds, more troublesome is the deposition of radon daughters on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by daughters supported by the long half life (22 y) of ^210Pb on sensitive locations of a detector. An understanding of the potential surface contamination will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of daughters onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon daughters on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model will be presented.
Classification methodology for tritiated waste requiring interim storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cana, D.; Dall'ava, D.; Decanis, C.
2015-03-15
Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less
The Discovery of Artificial Radioactivity
NASA Astrophysics Data System (ADS)
Guerra, Francesco; Leone, Matteo; Robotti, Nadia
2012-03-01
We reconstruct Frédéric Joliot and Irène Curie's discovery of artificial radioactivity in January 1934 based in part on documents preserved in the Joliot-Curie Archives in Paris, France. We argue that their discovery followed from the convergence of two parallel lines of research, on the neutron and on the positron, that were focused on a well-defined experimental problem, the nuclear transmutation of aluminum and other light elements. We suggest that a key role was played by a suggestion that Francis Perrin made at the seventh Solvay Conference at the end of October 1933, that the alpha-particle bombardment of aluminum produces an intermediate unstable isotope of phosphorus, which then decays by positron emission. We also suggest that a further idea that Perrin published in December 1933, and the pioneering theory of beta decay that Enrico Fermi also first published in December 1933, established a new theoretical framework that stimulated Joliot to resume the researches that he and Curie had interrupted after the Solvay Conference, now for the first time using a Geiger-Müller counter to detect the positrons emitted when he bombarded aluminum with polonium alpha particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Fan, A.; Fiorillo, G.
Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less
The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials
NASA Astrophysics Data System (ADS)
Barabash, A. S.; Basharina-Freshville, A.; Birdsall, E.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; Caffrey, A. J.; Calvez, S.; Cascella, M.; Cebrián, S.; Cerna, C.; Cesar, J. P.; Chauveau, E.; Chopra, A.; Dafní, T.; De Capua, S.; Duchesneau, D.; Durand, D.; Egorov, V.; Eurin, G.; Evans, J. J.; Fajt, L.; Filosofov, D.; Flack, R.; Garrido, X.; Gómez, H.; Guillon, B.; Guzowski, P.; Holý, K.; Hodák, R.; Huber, A.; Hugon, C.; Iguaz, F. J.; Irastorza, I. G.; Jeremie, A.; Jullian, S.; Kauer, M.; Klimenko, A.; Kochetov, O.; Konovalov, S. I.; Kovalenko, V.; Lang, K.; Lemière, Y.; Le Noblet, T.; Liptak, Z.; Liu, X. R.; Loaiza, P.; Lutter, G.; Luzón, G.; Macko, M.; Mamedov, F.; Marquet, C.; Mauger, F.; Morgan, B.; Mott, J.; Nemchenok, I.; Nomachi, M.; Nova, F.; Ohsumi, H.; Oliviéro, G.; Ortiz de Solórzano, A.; Pahlka, R. B.; Pater, J.; Perrot, F.; Piquemal, F.; Povinec, P.; Přidal, P.; Ramachers, Y. A.; Remoto, A.; Richards, B.; Riddle, C. L.; Rukhadze, E.; Saakyan, R.; Salazar, R.; Sarazin, X.; Shitov, Yu.; Simard, L.; Šimkovic, F.; Smetana, A.; Smolek, K.; Smolnikov, A.; Söldner-Rembold, S.; Soulé, B.; Štekl, I.; Thomas, J.; Timkin, V.; Torre, S.; Tretyak, Vl. I.; Tretyak, V. I.; Umatov, V. I.; Vilela, C.; Vorobel, V.; Waters, D.; Žukauskas, A.
2017-06-01
The BiPo-3 detector, running at the Canfranc Underground Laboratory (Laboratorio Subterr&aposaneo de Canfranc, LSC, Spain) since 2013, is a low-radioactivity detector dedicated to measuring ultra low natural radionuclide contaminations of 208Tl (232Th chain) and 214Bi (238U chain) in thin materials. The total sensitive surface area of the detector is 3.6 m2. The detector has been developed to measure the radiopurity of the selenium double β-decay source foils of the SuperNEMO experiment. In this paper the design and performance of the detector, and results of the background measurements in 208Tl and 214Bi, are presented, and the validation of the BiPo-3 measurement with a calibrated aluminium foil is discussed. Results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils of the double β-decay SuperNEMO experiment are reported. The sensitivity of the BiPo-3 detector for the measurement of the SuperNEMO 82Se foils is Script A(208Tl) <2 μBq/kg (90% C.L.) and Script A(214Bi) <140 μBq/kg (90% C.L.) after 6 months of measurement.
X-Ray Illumination of the Ejecta of Supernova 1987A
NASA Technical Reports Server (NTRS)
Larsson, J.; Fransson, C.; Oestlin, G.; Groeningsson, P.; Jerkstrand, A.; Kozma, C.; Sollerman, J.; Challis, P.; Kirshner, R. P.; Chevalier, R. A.;
2011-01-01
When a massive star explodes as a supernova, substantial amounts of radioactive elements-primarily Ni-56, Ni-57 and Ti-44 are produced. After the initial from shock heating, the light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellan Cloud. From 1994 to 200l, the ejecta faded owing to radioactive decay of Ti-44 as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejects, enabling us to analyse the structure and chemistry of the vanished star.
Generation of steady entanglement via unilateral qubit driving in bad cavities.
Jin, Zhao; Su, Shi-Lei; Zhu, Ai-Dong; Wang, Hong-Fu; Shen, Li-Tuo; Zhang, Shou
2017-12-15
We propose a scheme for generating an entangled state for two atoms trapped in two separate cavities coupled to each other. The scheme is based on the competition between the unitary dynamics induced by the classical fields and the collective decays induced by the dissipation of two non-local bosonic modes. In this scheme, only one qubit is driven by external classical fields, whereas the other need not be manipulated via classical driving. This is meaningful for experimental implementation between separate nodes of a quantum network. The steady entanglement can be obtained regardless of the initial state, and the robustness of the scheme against parameter fluctuations is numerically demonstrated. We also give an analytical derivation of the stationary fidelity to enable a discussion of the validity of this regime. Furthermore, based on the dissipative entanglement preparation scheme, we construct a quantum state transfer setup with multiple nodes as a practical application.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Herbert M. Parker: Publications and contributions to radiological and health physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kathren, R.L.; Baalman, R.W.; Bair, W.J.
For more than a half century, Herbert M. Parker was a leading force in radiological physics. As a scientist, he was codeveloper of a systematic dosimetry scheme for implant therapy and the innovative proposer of radiological units with unambiguous physical and biological bases. He made seminal contributions to the development of scientifically based radiation protection standards and, as an administrator and manager as well as scientist, helped the Hanford Laboratories to achieve preeminance in several areas, including radiation biology, radioactive waste disposal, and environmental radioactivity. This volume brings together, sometimes from obscure sources, his works.
Activity computer program for calculating ion irradiation activation
NASA Astrophysics Data System (ADS)
Palmer, Ben; Connolly, Brian; Read, Mark
2017-07-01
A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.
The MAJORANA Demonstrator Radioassay Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Arnquist, Isaac J.; Avignone, F. T.
2016-05-03
The Majorana collaboration is constructing the Majorana Demonstrator at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope 76Ge, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are suffciently pure is described. The resulting measurements of the radioactiveisotopemore » contamination for a number of materials studied for use in the detector are reported.« less
SN 1985f - Death of a Wolf-Rayet star
NASA Technical Reports Server (NTRS)
Begelman, M. C.; Sarazin, C. L.
1986-01-01
The optical spectrum of SN 1985f has been analyzed, and the supernova ejecta is shown to contain approximately 5 or more solar masses of oxygen and very little hydrogen. It is suggested that the explosion resulted from the pair instability supernova of a WO Wolf-Rayet star of about 50 solar masses, and that the optical luminosity of the supernova is powered by the radioactive decay of Co-56 synthesized in the explosion. As calculated from the rate of the optical emission decay, the explosion occurred about 350 days before its discovery in February, 1985. It is believed that some of the oxygen-rich supernova remnants may also have been produced by explosions of WO stars.
The rate of decay of fresh fission products from a nuclear reactor
NASA Astrophysics Data System (ADS)
Dolan, David J.
Determining the rate of decay of fresh fission products from a nuclear reactor is complex because of the number of isotopes involved, different types of decay, half-lives of the isotopes, and some isotopes decay into other radioactive isotopes. Traditionally, a simplified rule of 7s and 10s is used to determine the dose rate from nuclear weapons and can be to estimate the dose rate from fresh fission products of a nuclear reactor. An experiment was designed to determine the dose rate with respect to time from fresh fission products of a nuclear reactor. The experiment exposed 0.5 grams of unenriched Uranium to a fast and thermal neutron flux from a TRIGA Research Reactor (Lakewood, CO) for ten minutes. The dose rate from the fission products was measured by four Mirion DMC 2000XB electronic personal dosimeters over a period of six days. The resulting dose rate following a rule of 10s: the dose rate of fresh fission products from a nuclear reactor decreases by a factor of 10 for every 10 units of time.
Search for new physics in a precise 20F beta spectrum shape measurement
NASA Astrophysics Data System (ADS)
George, Elizabeth; Voytas, Paul; Chuna, Thomas; Naviliat-Cuncic, Oscar; Gade, Alexandra; Hughes, Max; Huyan, Xueying; Liddick, Sean; Minamisono, Kei; Paulauskas, Stanley; Weisshaar, Dirk; Ban, Gilles; Flechard, Xavier; Lienard, Etienne
2015-10-01
We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. We aim to achieve a relative precision below 3%, representing an order of magnitude improvement compared to previous experiments. This level of precision will enable a test of the so-called strong form of the conserved vector current (CVC) hypothesis, and should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in a scintillation detector deep enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the beam implantation. Ancillary detectors are used to tag the 1.633-MeV γ-rays following the β decay for coincidence measurements in order to reduce backgrounds. We will give an overview and report on the status of the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.
The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less
Quantum-state-selective decay spectroscopy of 213Ra
NASA Astrophysics Data System (ADS)
Lorenz, Ch.; Sarmiento, L. G.; Rudolph, D.; Ward, D. E.; Block, M.; Heßberger, F. P.; Ackermann, D.; Andersson, L.-L.; Cortés, M. L.; Droese, C.; Dworschak, M.; Eibach, M.; Forsberg, U.; Golubev, P.; Hoischen, R.; Kojouharov, I.; Khuyagbaatar, J.; Nesterenko, D.; Ragnarsson, I.; Schaffner, H.; Schweikhard, L.; Stolze, S.; Wenzl, J.
2017-09-01
An experimental scheme combining the mass resolving power of a Penning trap with contemporary decay spectroscopy has been established at GSI Darmstadt. The Universal Linear Accelerator (UNILAC) at GSI Darmstadt provided a 48Ca beam impinging on a thin 170Er target foil. Subsequent to velocity filtering of reaction products in the Separator for Heavy Ion reaction Products (SHIP), the nuclear ground state of the 5 n evaporation channel 213Ra was mass-selected in SHIPTRAP, and the 213Ra ions were finally transferred into an array of silicon strip detectors surrounded by large composite germanium detectors. Based on comprehensive geant4 simulations and supported by theoretical calculations, the spectroscopic results call for a revision of the decay path of 213Ra, thereby exemplifying the potential of a combination of a mass-selective Penning trap device with a dedicated nuclear decay station and contemporary geant4 simulations.
Predicting the fate of sediment and pollutants in river floodplains.
Malmon, Daniel V; Dunne, Thomas; Reneau, Steven L
2002-05-01
Geological processes such as erosion and sedimentation redistribute toxic pollutants introduced to the landscape by mining, agriculture, weapons development, and other human activities. A significant portion of these contaminants is insoluble, adsorbing to soils and sediments after being released. Geologists have long understood that much of this sediment is stored in river floodplains, which are increasingly recognized as important nonpoint sources of pollution in rivers. However, the fate of contaminated sediment has generally been analyzed using hydrodynamic models of in-channel processes, ignoring particle exchange with the floodplain. Here, we present a stochastic theory of sediment redistribution in alluvial valley floors that tracks particle-bound pollutants and explicitly considers sediment storage within floodplains. We use the theory to model the future redistribution and radioactive decay of 137Cs currently stored on sediment in floodplains at the Los Alamos National Laboratory (LANL) in New Mexico. Model results indicate that floodplain storage significantly reduces the rate of sediment delivery from upper Los Alamos Canyon, allowing 50% of the 137Cs currently residing in the valley floor to decay radioactively before leaving LANL. A sensitivity analysis shows that the rate of sediment overturn in the valley (and hence, the total amount of radioactive 137Cs predicted to leave LANL) is significantly controlled by the rate of sediment exchange with the floodplain. Our results emphasize that flood plain sedimentation and erosion processes can strongly influence the redistribution of anthropogenic pollutants in fluvial environments. We introduce a new theoretical framework for examining this interaction, which can provide a scientific basis for decision-making in a wide range of river basin management scenarios.
EMERALD REV.1. PWR Accident Activity Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunot, W.K.; Fray, R.R.; Gillespie, S.G.
1975-10-01
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunot, W.K.; Fray, R.R.; Gillespie, S.G.
1974-03-01
The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chasteler, R.M.; Nitschke, J.M.; Firestone, R.B.
Neutron-rich rare-earth isotopes were produced in multinucleon transfer reactions between {sup 170}Er ions and {sup nat}W targets. On-line mass separation was used together with {beta}- and {gamma}-ray spectroscopy in these studies. At mass {ital A}=169, the heaviest known dysprosium isotope, 39(8) s,{sup 169}Dy, was identified. It was observed to {beta}{sup {minus}} decay to the ground state of {sup 169}Ho or through a level at 1578 keV. In the {ital A}=171 mass chain, a partial decay scheme for 55(3)-s {sup 171}Ho was determined.
Spectroscopy of excited states of unbound nuclei 30Ar and 29Cl
NASA Astrophysics Data System (ADS)
Xu, X.-D.; Mukha, I.; Grigorenko, L. V.; Scheidenberger, C.; Acosta, L.; Casarejos, E.; Chudoba, V.; Ciemny, A. A.; Dominik, W.; Duénas-Díaz, J.; Dunin, V.; Espino, J. M.; Estradé, A.; Farinon, F.; Fomichev, A.; Geissel, H.; Golubkova, T. A.; Gorshkov, A.; Janas, Z.; Kamiński, G.; Kiselev, O.; Knöbel, R.; Krupko, S.; Kuich, M.; Litvinov, Yu. A.; Marquinez-Durán, G.; Martel, I.; Mazzocchi, C.; Nociforo, C.; Ordúz, A. K.; Pfützner, M.; Pietri, S.; Pomorski, M.; Prochazka, A.; Rymzhanova, S.; Sánchez-Benítez, A. M.; Sharov, P.; Simon, H.; Sitar, B.; Slepnev, R.; Stanoiu, M.; Strmen, P.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Weick, H.; Winkler, M.; Winfield, J. S.
2018-03-01
Several states of proton-unbound isotopes 30Ar and 29Cl were investigated by measuring their in-flight decay products, 28S + proton + proton and 28S + proton, respectively. A refined analysis of 28S-proton angular correlations indicates that the ground state of 30Ar is located at 2 .45-0.10+0.05 MeV above the two-proton emission threshold. The investigation of the decay mechanism of the 30Ar ground state demonstrates that it has the transition dynamics. In the "transitional" region, the correlation patterns of the decay products present a surprisingly strong sensitivity to the two-proton decay energy of the 30Ar ground state and the one-proton decay energy as well as the one-proton decay width of the 29Cl ground state. The comparison of the experimental 28S-proton angular correlations with those resulting from Monte Carlo simulations of the detector response illustrates that other observed 30Ar excited states decay by sequential emission of protons via intermediate resonances in 29Cl. Based on the findings, the decay schemes of the observed states in 30Ar and 29Cl were constructed. For calibration purposes and for checking the performance of the experimental setup, decays of the previously known states of a two-proton emitter 19Mg were remeasured. Evidences for one new excited state in 19Mg and two unknown states in 18Na were found.
Rashba spin-orbit coupling for neutral atoms
NASA Astrophysics Data System (ADS)
Campbell, Daniel; Juzeliūnas, Gediminas; Spielman, Ian
2011-05-01
We theoretically describe a new class of atom-laser coupling schemes which lead to effective spin-orbit coupled Hamiltonians for ultra-cold neutral atoms. By properly setting the optical phases, a pair of degenerate spin states emerge as the lowest energy states in the spectrum, and are thus immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal states but we will specialize to the four-level case for this talk. Time permitting, we will describe a possible implementation of this scheme for 87Rb that adds a controllable Dresselhaus component to the effective Hamiltonian in a natural way. NSF through PFC at JQI, ARO with funds from Atomtronics MURI and DARPA OLE, STREP NAMEQUAM.
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
Double-beta decay investigation with highly pure enriched $$^{82}$$Se for the LUCIFER experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, J. W.; Bellini, F.; Benetti, P.
2015-12-13
The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of 82Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched 82Se is used as decay isotope. The radiopurity of the initial components employed for manufacturing crystals, that can be operated as bolometers, is crucial for achieving a null background level in the region of interest for double-beta decay investigations. In this work, we evaluated the radioactive content in 2.5 kg of 96.3 % enriched 82Se metal, measured with a high-purity germanium detector at themore » Gran Sasso deep underground laboratory. The limits on internal contaminations of primordial decay chain elements of 232Th, 238U and 235U are respectively: <61, <110 and <74 μBq/kg at 90 % C.L. The extremely low-background conditions in which the measurement was carried out and the high radiopurity of the 82Se allowed us to establish the most stringent lower limits on the half-lives of the double-beta decay of 82Se to 0+1, 2+2 and 2+1 excited states of 82Kr of 3.4•10 22, 1.3•10 22 and 1.0•10 22 y, respectively, with a 90 % C.L.« less
The nucleus is the target for radiation-induced chromosomal instability
NASA Technical Reports Server (NTRS)
Kaplan, M. I.; Morgan, W. F.
1998-01-01
We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.
Chung, Wei-Ju; Cui, Yujia; Huang, Feng-Yun J; Tu, Tzu-Hui; Yang, Tzu-Sen; Lo, Jem-Mau; Chiang, Chi-Shiun; Hsu, Ian C
2014-01-01
Radiation therapy for cancer patients works by ionizing damage to nuclear DNA, primarily by creating double-strand breaks (DSB). A major shortcoming of traditional radiation therapy is the set of side effect associated with its long-range interaction with nearby tissues. Low-energy Auger electrons have the advantage of an extremely short effective range, minimizing damage to healthy tissue. Consequently, the isotope ⁹⁹mTc, an Auger electron source, is currently being studied for its beneficial potential in cancer treatment. We examined the dose effect of a pyrene derivative ⁹⁹mTc complex on plasmid DNA by using gel electrophoresis in both aqueous and methanol solutions. In aqueous solutions, the average yield per decay for double-strand breaks is 0.011±0.005 at low dose range, decreasing to 0.0005±0.0003 in the presence of 1 M dimethyl sulfoxide (DMSO). The apparent yield per decay for single-strand breaks (SSB) is 0.04±0.02, decreasing to approximately a fifth with 1 M DMSO. In methanol, the average yield per decay of DSB is 0.54±0.06 and drops to undetectable levels in 2 M DMSO. The SSB yield per decay is 7.2±0.2, changing to 0.4±0.2 in the presence of 2 M DMSO. The 95% decrease in the yield of DSB in DMSO indicates that the main mechanism for DSB formation is through indirect effect, possibly by cooperative binding or clustering of intercalators. In the presence of non-radioactive ligands at a near saturation concentration, where radioactive Tc compounds do not form large clusters, the yield of SSB stays the same while the yield of DSB decreases to the value in DMSO. DSBs generated by ⁹⁹mTc conjugated to intercalators are primarily caused by indirect effects through clustering.
What is your Cosmic Connection to the Elements?
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim
2003-01-01
This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.
The data acquisition of OLGA II; An application of the PSI TANDEM system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, D.T.; Vermeulen, D.
1992-04-01
This paper describes the data acquisition of the on-line gas-chemistry apparatus (OLGA II). OLGA II is used to investigate the chemical behavior of volatile molecules of short lives isotopes. Special emphasis is given to the presentation of the PSI tandem data acquisition system used in these experiments. Time stamped event-by-event recording is used to follow radioactive decay chains.
Nuclear Explosion Monitoring Research and Development Roadmaps
2010-09-01
environment, a radionuclide event is the release of radioactive atoms. Radionuclide sources include nuclear explosions, normal or anomalous reactor ...isotopes (e.g., potassium, uranium, and thorium and their decay products) and isotopes produced from the interactions of cosmic rays with the...and reactor emissions. For example, the IMS detected a pair of xenon isotopes at a Japanese station shortly after the 2009 DPRK event. The ratio of
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Trace radioactive impurities in final construction materials for EXO-200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, D. S.; Auty, D. J.; Didberidze, T.
Here, we report results from a systematic measurement campaign conducted to identify low radioactivity materials for the construction of the EXO-200 double beta decay experiment. Partial results from this campaign have already been reported in a 2008 paper by the EXO collaboration. Here we release the remaining data, collected since 2007, to the public. The data reported were obtained using a variety of analytic techniques. The measurement sensitivities are among the best in the field. We concluded the construction of the EXO-200 detector and Phase-I data was taken from 2011 to 2014. The detector’s extremely low background implicitly verifies themore » measurements and the analysis assumptions made during construction and reported in this paper.« less
Trace radioactive impurities in final construction materials for EXO-200
Leonard, D. S.; Auty, D. J.; Didberidze, T.; ...
2017-05-01
Here, we report results from a systematic measurement campaign conducted to identify low radioactivity materials for the construction of the EXO-200 double beta decay experiment. Partial results from this campaign have already been reported in a 2008 paper by the EXO collaboration. Here we release the remaining data, collected since 2007, to the public. The data reported were obtained using a variety of analytic techniques. The measurement sensitivities are among the best in the field. We concluded the construction of the EXO-200 detector and Phase-I data was taken from 2011 to 2014. The detector’s extremely low background implicitly verifies themore » measurements and the analysis assumptions made during construction and reported in this paper.« less
Depleted uranium: an overview of its properties and health effects.
Shawky, S
2002-01-01
There has been much debate about the use of depleted uranium in the Gulf War and its health effects on United States and European war veterans. However, studies on the impact of this radioactive substance on the residents of the surrounding Gulf region are far from adequate. Depleted uranium introduces large quantities of radioactive material that is hazardous to biological organisms, continues to decay for millennia and is able to travel tens of kilometres in air. If depleted uranium were used in the Gulf War, its impact on the health of people in the area would have been considerable. This review of depleted uranium--its origin, properties, uses and effects on the human environment and health--aims to trigger further research on this subject.
Fallout traces of the Fukushima NPP accident in southern West Siberia (Novosibirsk, Russia).
Melgunov, M S; Pokhilenko, N P; Strakhovenko, V D; Sukhorukov, F V; Chuguevskii, A V
2012-05-01
The fallout of artificially produced radioactive isotopes has been recorded at a site in southern West Siberia (54°50'43.6″ N, 083°06'22.4″ E, Novosibirsk, Russia). The highest activities of (131)I, (134)Cs, and (136)Cs were found in fresh snow precipitated on 02 April 2011, at 0.83, 0.092, and 0.002 Bq L(-1) of meltwater, respectively. The (131)I/(134)Cs ratio decreased from 9.0 on 02 April to 1.2 on 27 April, which is consistent with the radioactive decay of (131)I. This fallout can only have originated from the accidental emission of Fukushima Nuclear Power Plant, Japan, in March 2011.
Reexamining the nuclear structure of 154Gd in the dynamic pairing plus quadrupole model
NASA Astrophysics Data System (ADS)
Gupta, J. B.; Hamilton, J. H.
2017-05-01
In a previous study of the collective multiphonon bands in 154Gd, using the microscopic dynamic pairing plus quadrupole model, data for eight K bands were analyzed. In the last four decades, its decay scheme is significantly revised and the nuclear theory has undergone a significant change. Special focus is on new weak intensity transitions in several bands and on the reassigned levels in its decay scheme. The present study represents a detailed revised analysis of the collective even parity bands below 2.1 MeV. Also, a discussion is given on the nature of the Kπ=0+ excited bands, validity of band mixing approach, and of the assumption of shape coexistence of β band with ground band. Comparison is made with the X (5) analytical symmetry and the algebraic interacting boson model predictions. Discussion of the 2 n transfer reactions is given. The validity of the multiphonon view of the Kπ=4+ and 22+ bands is also studied.
High-precision branching ratio measurement for the superallowed β+ emitter Ga62
NASA Astrophysics Data System (ADS)
Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Austin, R. A. E.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leach, K. G.; Mattoon, C. M.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Savajols, H.; Schumaker, M. A.; Wong, J.
2008-08-01
A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8π spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the γ rays emitted following Gamow-Teller and nonanalog Fermi β+ decays of Ga62, and the SCEPTAR plastic scintillator array was used to detect the emitted β particles. Thirty γ rays were identified following Ga62 decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for Ga62, this branching ratio yields an ft value of 3074.3±1.1 s, making Ga62 among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected F tmacr value allows the large nuclear-structure-dependent correction for Ga62 decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A⩾62 superallowed decays.
An astrophysical engine that stores gravitational work as nuclear Coulomb energy
NASA Astrophysics Data System (ADS)
Clayton, Donald
2014-03-01
I describe supernovae gravity machines that store large internal nuclear Coulomb energy, 0.80Z2A- 1 / 3MeV per nucleus. Excess of it is returned later by electron capture and positron emission. Decay energy manifests as (1) observable gamma-ray lines (2) light curves of supernovae (3) chemical energy of free carbon dissociated from CO molecules (4) huge abundances of radiogenic daughters. I illustrate by rapid silicon burning, a natural epoch in SN II. Gravitational work produces the high temperatures that photoeject nucleons and alpha particles from heavy nuclei. These are retained by other nuclei to balance photoejection rates (quasiequilibrium). The abundance distribution adjusts slowly as remaining abundance of Z = N 28Si decomposes, so p, n, α recaptures hug the Z = N line. This occurs in milliseconds, too rapidly for weak decay to alter bulk Z/N ratio. The figure displays those quasiequilibrium abundances color-coded to their decays. Z = N = 2k nuclei having k < 11 are stable, whereas k > 10 are radioactive owing to excess Coulomb energy. Weak decays radiate that excess energy weeks later to fuel the four macroscopic energetic phenomena cited. How startling to think of the Coulomb nuclear force as storing cosmic energy and its weak decay releasing macroscopic activation to SNII.
Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T
2011-10-01
Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.
Atomic mass measurements with radioactive beams and/or targets: Where to start
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haustein, P.E.
1989-01-01
Radioactive beams or radioactive targets (or both) can significantly increase the yields of exotic isotopes, allowing studies to be performed in regions which are currently inaccessible. An important goal to pursue with these exotic species is a broad program of nuclidic mass measurements. This is motivated by the observation that mass model predictions generally diverge from one another in regions far from beta-decay stability where well measured masses are sparse or nonexistent. Stringent tests of mass models are therefore possible and these can highlight important features in the mass models that affect the quality of their short-range and long-range extrapolationmore » properties. Selection of systems to study can be guided, in part, by a desire to probe those regions where distinctions among mass models are most apparent and where exotic isotope yields will be optimal. Several examples will be presented to highlight future opportunities in this area. 10 refs., 5 figs.« less
Robertson, John B.
1976-01-01
Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)
Enhancement of low-energy electron emission in 2D radioactive films
NASA Astrophysics Data System (ADS)
Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.
2015-09-01
High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.
Correlation-study about the ambient dose rate and the weather conditions
NASA Astrophysics Data System (ADS)
Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide
2016-04-01
The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.
Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-06-01
This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less
Robertson, J.B.
1974-01-01
Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Baeder, James D.
2014-01-21
A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less
Purification of lanthanides for double beta decay experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polischuk, O. G.; Barabash, A. S.; Belli, P.
2013-08-08
There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less
NASA Astrophysics Data System (ADS)
Carroll, Lewis
2014-02-01
We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.
NASA Astrophysics Data System (ADS)
Rotter, L. D.; Dennis, W. M.; Yen, W. M.
1990-07-01
Magnons near the Brillouin zone-edge were generated in antiferromagnetic MnF2:Er3+ at 1.9 K by exciting the intrinsic two-magnon absorption band using a pulsed far-infrared laser. The lowest Stark level of the Er3+ ground state was used as a 36-cm-1 magnon and phonon detector in a quantum-counter scheme. A simple set of rate equations was used to model the system. The decay time was found to be 2.9+/-0.6 μs for 55-cm-1, 3+/-2 μs for 47.6-cm-1 magnons, and 40+/-20 ns for 36-cm-1 phonons. The sum of the 36-cm-1 magnon decay rate and the Er3+-magnon decay rate was 0.9+/-0.2 μs-1. Possible mechanisms of magnon decay are discussed. The dominant mechanism is most likely thermal magnon-magnon scattering. No evidence of large-wave-vector magnon decay to 36-cm-1 phonons was found. We suggest that magnons do not decay to phonons until they scatter into the magnetoelastic modes. Implications with respect to recent magnon-transport experiments are discussed.
Nuclear Data Sheets for A = 152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, M.J.
2013-11-15
Detailed level schemes, decay schemes, and the experimental data on which they are based are presented for all nuclei with mass number A=152. The experimental data are evaluated; inconsistencies and discrepancies are noted; and adopted values for level and γ–ray energies, γ intensities, as well as for other nuclear properties are given. This evaluation replaces the A=152 evaluation published by Agda Artna–Cohen in Nuclear Data Sheets 79, 1 (1996) and the evaluation for 152Dy prepared by Balraj Singh and published in Nuclear Data Sheets 95, 995 (2002)
Non-resonant zeugmatography with muons (μ SI) and radioactive isotopes
NASA Astrophysics Data System (ADS)
Kaplan, N.; Kreitzman, S. R.; Schneider, J. W.; Brewer, J. H.; Hitti, B.
1994-12-01
The procedure of zeugmatographic imaging — hitherto implemented only with nuclear magnetic resonance to form the well known MRI technique — is examined with the aim of utilizing it also in combination with non resonant phenomena. It is shown that in principle, one may indeed use zeugmatographic schemes with Perturbed Angular Correlations (PAC) or with muon spin rotations ( μSR) to obtain image information from material bodies. The preliminary experimentation with zeugmatographic μ Spin Imaging scheme, ( μSI), will be described. Some μSI imaging results will be presented and the inherent limitations of the method will be discussed.
Microphysics in the Gamma-Ray Burst Central Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl
We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus andmore » outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.« less
β -delayed γ decay of P 26 : Possible evidence of a proton halo
Pérez-Loureiro, D.; Wrede, C.; Bennett, M. B.; ...
2016-06-01
Background: Measurements of β decay provide important nuclear structure information that can be used to probe isospin asymmetries and inform nuclear astrophysics studies. Purpose: To measure the β-delayed γ decay of 26P and compare the results with previous experimental results and shell-model calculations. Method: A 26P fast beam produced using nuclear fragmentation was implanted into a planar germanium detector. Its β-delayed γ-ray emission was measured with an array of 16 high-purity germanium detectors. Positrons emitted in the decay were detected in coincidence to reduce the background. Results: The absolute intensities of 26P β-delayed γ-rays were determined. A total of sixmore » new β-decay branches and 15 new γ-ray lines have been observed for the first time in 26P β-decay. A complete β-decay scheme was built for the allowed transitions to bound excited states of 26Si. ft values and Gamow-Teller strengths were also determined for these transitions and compared with shell model calculations and the mirror β-decay of 26Na, revealing significant mirror asymmetries. Conclusions: A very good agreement with theoretical predictions based on the USDB shell model is observed. The significant mirror asymmetry observed for the transition to the first excited state (δ=51(10)%) may be evidence for a proton halo in 26P.« less