Science.gov

Sample records for radioactive organic wastes

  1. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  2. Radioactive Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes.

  3. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  4. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    SciTech Connect

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-07-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO{sub 2} was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  5. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    NASA Astrophysics Data System (ADS)

    Mabrouk, M.; Lemont, F.; Baronnet, J. M.

    2012-12-01

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  6. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  7. Volatile organic compounds in the unsaturated zone from radioactive wastes.

    PubMed

    Baker, Ronald J; Andraski, Brian J; Stonestrom, David A; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0-2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m yr. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  8. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  9. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    SciTech Connect

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  10. Design and Construction of Deinococcus Radiodurans for Biodegradation of Organic Toxins at Radioactive DOE Waste Sites

    SciTech Connect

    Michael J. Daly; Lawrence P. Wackett; James K. Fredrickson

    2001-04-22

    Seventy million cubic meters of ground and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the extremely radiation resistant bacterium Deinococcus radiodurans that is being engineered to express bioremediating functions. Research aimed at developing D. radiodurans for organic toxin degradation in highly radioactive waste sites containing radionuclides, heavy metals, and toxic organic compounds was started by this group.Work funded by the existing grant has already contributed to eleven papers on the fundamental biology of D. radiodurans and its design for bioremediation of highly radioactive waste environments

  11. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  12. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    SciTech Connect

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks.

  13. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  14. Understanding radioactive waste

    SciTech Connect

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  15. Radioactive Wastes. Revised.

    ERIC Educational Resources Information Center

    Fox, Charles H.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. This booklet deals with the handling, processing and disposal of radioactive wastes. Among the topics discussed are: The Nature of Radioactive Wastes; Waste Management; and Research and Development. There are…

  16. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  17. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  18. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. ORNL radioactive waste operations

    SciTech Connect

    Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

    1982-01-01

    Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

  20. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  1. Immobilization of low and intermediate level of organic radioactive wastes in cement matrices.

    PubMed

    Eskander, S B; Abdel Aziz, S M; El-Didamony, H; Sayed, M I

    2011-06-15

    The adequacy of cement-clay composite, for solidification/stabilization of organic radioactive spent liquid scintillator wastes and its resistance to frost attack were determined by a freezing/thawing (F/T) test. Frost resistance is assessed for the candidate cement-clay composite after 75 cycles of freezing and thawing by evaluating their mass durability index, compressive strength, apparent porosity, volume of open pores, water absorption, and bulk density. Infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), thermal gravimetric analysis (TGA) and scanning electron microscopy (SEM) were performed for the final waste form (FWF) before and after the F/T treatment to follow the changes that may take place in its microstructure during the hydration regime. The results were obtained indicate that the candidate composite exhibits acceptable resistance to freeze/thaw treatment and has adequate suitability to solidify and stabilize organic radioactive spent liquid scintillator wastes even at very exaggerating conditions (-50°C and +60°C).

  2. Feasibility study of the applicability of the activated sludge process to treatment of radioactive organic liquid waste

    SciTech Connect

    Koyama, Akio; Nishimaki, Kenzo

    1997-12-31

    The authors used an activated sludge process to treat radioactive organic liquid waste. Organic liquid waste is difficult to treat by conventional radioactive liquid treatment processes, but in order to reduce long-term irradiation of the public the removal of radionuclides from such waste is preferable to dilution. Activated sludge processes are widely used for the biological treatment of sewage and are considered appropriate means for treating radioactive organic liquid waste. In this process, the fate of radionuclides eluted by treated water or immobilized by activated sludge, is extremely important for public safety and for the treatment of radioactive organic liquid waste. The authors performed uptake and desorption behavior experiments on the three short half-life radionuclides {sup 134}Cs, {sup 57}Co and {sup 85}Sr, and used three nutritive types of artificial sewage as the feed solution. On the basis of the results, they discuss the uptake-desorption behavior of these radionuclides in an activated sludge process. The authors conclude that treatment of radioactive organic liquid waste by an activated sludge process is possible, but improvements must be made in the process if it is to be more effective.

  3. Radioactive waste shredding: Preliminary evaluation

    SciTech Connect

    Soelberg, N.R.; Reimann, G.A.

    1994-07-01

    The critical constraints for sizing solid radioactive and mixed wastes for subsequent thermal treatment were identified via a literature review and a survey of shredding equipment vendors. The types and amounts of DOE radioactive wastes that will require treatment to reduce the waste volume, destroy hazardous organics, or immobilize radionuclides and/or hazardous metals were considered. The preliminary steps of waste receipt, inspection, and separation were included because many potential waste treatment technologies have limits on feedstream chemical content, physical composition, and particle size. Most treatment processes and shredding operations require at least some degree of feed material characterization. Preliminary cost estimates show that pretreatment costs per unit of waste can be high and can vary significantly, depending on the processing rate and desired output particle size.

  4. Method for calcining radioactive wastes

    DOEpatents

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  5. Radioactive waste storage issues

    SciTech Connect

    Kunz, Daniel E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  6. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  7. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  8. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Johnson, B.M. Jr.; Barton, G.B.

    1961-11-14

    A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

  9. Radioactive waste processing apparatus

    DOEpatents

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  10. Low-Activity Radioactive Wastes

    EPA Pesticide Factsheets

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  11. Radioactive waste processing apparatus

    DOEpatents

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  12. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  13. (Immobilization of radioactive wastes)

    SciTech Connect

    Dole, L.R.

    1986-12-18

    The traveler participated as the co-chairman of the France/US Workshop in Cadarache, France, on the immobilization of radioactive wastes in cement-based materials. These meetings and site visits were conducted under the bilateral exchange agreement between the US-DOE and the Commissariate a l'Energie Atomique (CEA-France). Visits in France included the Cadarache, Valduc, Saclay, and Fontenay-aux-Roses Nuclear Research Centers. As a result of these discussions, an exchange of scientists between Saclay and ORNL was proposed. The traveler continued on to the FRG to visit a hazardous waste site remedial action project in Sprendlingen and the nuclear research and production facilities at the Karlsruhe Kernforschungszentrum (KfK) and the Alkem/Nukem/Transnuklear facilities at Hanau. Visits in the FRG were under the bilateral exchange agreement between the US-DOE and the Bundes Ministerium fur Forschung und Technologie (BMFT). The FRG supplied the traveler data on studies of super-compaction volume reduction efficiencies by KfK and Nukem. Also, Transnuklear is considering contributing two of their larger Konrad-certified packages to the MDU studies at ORNL. 1 tab.

  14. Design and construction of deinococcus radiodurans for biodegradation of organic toxins at radioactive DOE waste sites. 1998 annual progress report

    SciTech Connect

    Daly, M.J.; Wackett, L.P.; Minton, K.W.

    1998-06-01

    'A 1992 survey of DOE waste sites indicates that about 32% of soils and 45% of groundwaters at these sites contain radionuclides and metals plus an organic toxin class. The most commonly reported combinations of these hazardous compounds being radionuclides and metals (e.g., U, Pu, Cs, Pb, Cr, As) plus chlorinated hydrocarbons (e.g., trichloroethylene), fuel hydrocarbons (e.g., toluene), or polychlorinated biphenyls (e.g., Arochlor 1248). These wastes are some of the most hazardous pollutants and pose an increasing risk to human health as they leach into the environment. The objective of this research is to develop novel organisms, that are highly resistant to radiation and the toxic effects of metals and radionuclides, for in-situ bioremediation of organic toxins. Few organisms exist that are able to remediate such environmental organic pollutants, and among those that can, the bacteria belonging to the genus Pseudomonas are the most characterized. Unfortunately, these bacteria are very radiation sensitive. For example, Pseudomonas spp. is even more sensitive than Escherichia coli and, thus, is not suitable as a bioremediation host in environments subjected to radiation. By contrast, D. radiodurans, a natural soil bacterium, is the most radiation resistant organism yet discovered; it is several thousand times more resistant to ionizing radiation than Pseudomonas. The sophisticated gene transfer and expression systems the authors have developed for D. radiodurans over the last eight years make this organism an ideal candidate for high-level expression of genes that degrade organic toxins, in radioactive environments. The authors ultimate aim is to develop organisms and approaches that will be useful for remediating the large variety of toxic organic compounds found in DOE waste sites that are too radioactive to support other bioremediation organisms. This report summarizes work after the first 6 months of a 3-year project.'

  15. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  16. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  17. CRUCIBLE TESTING OF TANK 48 RADIOACTIVE WASTE SAMPLE USING FBSR TECHNOLOGY FOR ORGANIC DESTRUCTION

    SciTech Connect

    Hammond, C; William Pepper, W

    2008-09-19

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble

  18. Development of a New Thermal HF Plasma Reactor for the Destruction of Radioactive Organic Halogen Liquid Wastes

    SciTech Connect

    Bournonville, B.; Meillot, E.; Girold, C.

    2006-07-01

    A newly patented process employing thermal plasma for destruction of radioactive organic halogen liquid wastes is proposed. This studied safe system can destroy a great variety of wastes, even mixed together, using plasma torch as high temperature source. At the exit of the process, only non-toxic products are formed as atmospheric gases, liquid water and halogen sodium salt. The process has been built with the help of thermodynamic and kinetic simulations. A good atomic stoichiometry is necessary for avoiding the formation of solid carbon (soot) or toxic COCl{sub 2}. That why liquid water is added to the waste in the plasma flow. Then, an introduction of air cools and dilutes the formed gases and adds oxidant agent achieving oxidation of explosive H{sub 2} and toxic CO. Due to the high concentration of hydrochloric acid, an efficient wet treatment using soda traps it. Subsequently, the exhaust gases are only composed of Ar, O{sub 2}, N{sub 2}, CO{sub 2} and H{sub 2}O. In the first experimental step, pure organic molecules, mixed or not, without halogen have been destroyed. The experimental results show that all the compounds have been completely destroyed and only CO{sub 2} and H{sub 2}O have been formed without formation of any toxic compound or soot. After these encouraging results, chlorinated compounds as dichloromethane or chloroform have been destroyed by the process. In this case, the results are close to the previous one with an important formation of hydrochloric acid, as expected, which was well trapped by the soda to respect the French norm of rejection. A specific parameter study has been done with dichloromethane for optimising the operating condition to experimentally observe the influence of different parameters of the process as the stoichiometry ratio between waste and water, the air addition flow, the waste flow. The final aim of this study is to develop a clean process for treatment of radioactive organic halogen compounds. A small scale reactor

  19. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  20. Radioactive Waste Incineration: Status Report

    SciTech Connect

    Diederich, A.R.; Akins, M.J.

    2008-07-01

    Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

  1. Marine disposal of radioactive wastes

    NASA Astrophysics Data System (ADS)

    Woodhead, D. S.

    1980-03-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the absorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strengths and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area.

  2. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    SciTech Connect

    1994-12-31

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented.

  3. Sorting method for radioactive waste

    SciTech Connect

    Prisco, A.J.; Johnson, A.N.

    1988-08-09

    This paper describes a method for detecting radioactive components in dry active waste, comprising the steps of: providing a substantially airtight housing, withdrawing air from the housing, reducing the waste to pieces of substantially uniform size, providing a first conveyor in the housing, the first conveyor having a receiving portion and a discharge portion, discharging the pieces of reduced waste onto the first conveyor, flattening the pieces of reduced waste, detecting radiation emanating from the pieces of reduced waste from a position closely overlying the first conveyor, after the pieces are flattened, removing from the first conveyor the pieces of reduced waste from which radioactive radiation above a determined level is detected, providing a second conveyor in the housing, the second conveyor having a receiving portion and a discharge portion, disposing the second conveyor so that its receiving portion is below and spaced from the discharge portion of the first conveyor, discharging the pieces of reduced waste from the discharge portion of the first conveyor so that they fall onto the receiving portion of the second conveyor; the space between the last named discharge portion and the last named receiving portion being sufficiently great so that the pieces of reduced waste are substantially overturned and dispersed as they fall to the last named receiving portion.

  4. Radioactive waste: Politics and technology

    SciTech Connect

    Berkhout, F.

    1995-08-01

    This book presents an analysis of the divergent strategies used to forge radioactive waste policies in great Britain, Germany, and Sweden. Some basic knowledge of nuclear technology and its public policy development is needed. The book points out that developing institutional frameworks that permit agreement and consent is the principal challenge of radwaste management and places the problem of consent in an institutional framework.

  5. Radioactive Waste Material From Tapping Natural Resources ...

    EPA Pesticide Factsheets

    2016-02-23

    Rocks around oil and gas and mineral deposits may contain natural radioactivity. Drilling through these rocks and bringing them to the surface creates radioactive waste materials. Once desired minerals have been removed from ore, the radionuclides left in the waste are more concentrated. Scientists call this waste Technologically Enhanced Naturally Occurring Radioactive Material or simply TENORM.

  6. Public attitudes about radioactive waste

    SciTech Connect

    Bisconti, A.S.

    1992-12-31

    Public attitudes about radioactive waste are changeable. That is my conclusion from eight years of social science research which I have directed on this topic. The fact that public attitudes about radioactive waste are changeable is well-known to the hands-on practitioners who have opportunities to talk with the public and respond to their concerns-practitioners like Ginger King, who is sharing the podium with me today. The public`s changeability and open-mindedness are frequently overlooked in studies that focus narrowly on fear and dread. Such studies give the impression that the outlook for waste disposal solutions is dismal. I believe that impression is misleading, and I`d like to share research findings with you today that give a broader perspective.

  7. Radioactive Waste Management BasisApril 2006

    SciTech Connect

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  8. A literature review of methods of analysis of organic analytes in radioactive wastes with an emphasis on sources from the United Kingdom

    SciTech Connect

    Clauss, S.A.; Bean, R.M.

    1993-09-01

    This report, compiled by Pacific Northwest Laboratory (PNL), examines literature originating through the United Kingdom (UK) nuclear industry relating to the analyses of organic constituents of radioactive waste. Additionally, secondary references from the UK and other counties, including the United States, have been reviewed. The purpose of this literature review was to find analytical methods that would apply to the mixed-waste matrices found at Hanford.

  9. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    PubMed

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  10. Radioactive waste treatment technologies and environment

    SciTech Connect

    HORVATH, Jan; KRASNY, Dusan

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  11. Crystallization of sodium nitrate from radioactive waste

    SciTech Connect

    Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K.

    1997-07-01

    From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

  12. Packaging of radioactive wastes for sea disposal

    NASA Astrophysics Data System (ADS)

    The Convention on the Prevention of Marine Pollution by the Dumping of Wastes and Other Matter, known as the London Dumping Convention was adopted by an inter-governmental conference in London in 1972 and came into force in 1975. In 1977, the IAEA Board of Governors agreed that there is a continuing responsibility for the IAEA to contribute to the effectiveness of the London Dumping Conventions by providing guidance relevant to the various aspects of dumping radioactive wastes at sea. In the light of the above responsibilities, the IAEA organized a Technical Committee Meeting from 3 to 7 December 1979 to assess the current situation concerning the requirements and the practices of packaging radioactive wastes for dumping at sea with a view to providing further guidance on this subject. The results of this meeting are summarized.

  13. PROCESSING OF RADIOACTIVE WASTE

    DOEpatents

    Allemann, R.T.; Johnson, B.M. Jr.

    1961-10-31

    A process for concentrating fission-product-containing waste solutions from fuel element processing is described. The process comprises the addition of sugar to the solution, preferably after it is made alkaline; spraying the solution into a heated space whereby a dry powder is formed; heating the powder to at least 220 deg C in the presence of oxygen whereby the powder ignites, the sugar is converted to carbon, and the salts are decomposed by the carbon; melting the powder at between 800 and 900 deg C; and cooling the melt. (AEC) antidiuretic hormone from the blood by the liver. Data are summarized from the following: tracer studies on cardiovascular functions; the determination of serum protein-bound iodine; urinary estrogen excretion in patients with arvanced metastatic mammary carcinoma; the relationship between alheroclerosis aad lipoproteins; the physical chemistry of lipoproteins; and factors that modify the effects of densely ionizing radia

  14. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  15. Controlled Containment, Radioactive Waste Management in the Netherlands

    SciTech Connect

    Codee, H.

    2002-02-26

    All radioactive waste produced in The Netherlands is managed by COVRA, the central organization for radioactive waste. The Netherlands forms a good example of a country with a small nuclear power program which will end in the near future. However, radioisotope production, nuclear research and other industrial activities will continue to produce radioactive waste. For the small volume, but broad spectrum of radioactive waste, including TENORM, The Netherlands has developed a management system based on the principles to isolate, to control and to monitor the waste. Long term storage is an essential element of the management system and forms a necessary step in the strategy of controlled containment that will ultimately result in final removal of the waste. Since the waste will remain retrievable for long time new technologies and new disposal options can be applied when available and feasible.

  16. Geological problems in radioactive waste isolation

    SciTech Connect

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  17. Carbon isotopic evidence for biodegradation of organic contaminants in the shallow vadose zone of the radioactive waste management complex

    SciTech Connect

    Conrad, Mark E.; DePaolo, Donald J.

    2003-09-04

    Waste material buried in drums in the shallow subsurface at the Radioactive Waste Management Facility (RWMC) of the Idaho National Engineering and Environmental Laboratory (INEEL) contained significant amounts of organic compounds including lubricating oils and chlorinated solvents. CO{sub 2} concentrations in pore gas samples from monitoring wells in the vicinity of the disposal pits are 3 to 5 times higher than the concentrations in nearby background wells. The stable carbon isotope ratios ({delta}{sup 13}C values) of CO{sub 2} from the disposal pits averaged 2.4. less than CO{sub 2} from the background wells, indicating that the elevated CO{sub 2} concentrations around the pits were derived from source materials with {delta}{sup 13}C values in the range of -24{per_thousand} to -29{per_thousand}. These {delta}{sup 13}C values are typical of lubricating oils, but higher than most solvents. The radiocarbon ({sup 14}C) contents of CO{sub 2} across most of the site were significantly elevated above modern concentrations due to reactor blocks buried in a subsurface vault at the site. However, several samples collected from the high-CO{sub 2} zone on the far side of the RWMC from the reactor blocks had very low {sup 14}C contents (less than 0.13 times modern), confirming production from lubricating oils manufactured from fossil hydrocarbons. The magnitude of the CO{sub 2} anomaly observed at the site is consistent with intrinsic biodegradation rates on the order of 0.5 to 3.0 metric tons of carbon per year.

  18. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  19. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  20. Action plan for responses to abnormal conditions in Hanford Site radioactive waste tanks with high organic content. Revision 1

    SciTech Connect

    Fowler, K.D.

    1993-07-01

    This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.

  1. The Spanish General Radioactive Waste Management Plan

    SciTech Connect

    Espejo, J.M.; Abreu, A.

    2008-07-01

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and others are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is

  2. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  3. Canister arrangement for storing radioactive waste

    DOEpatents

    Lorenzo, Donald K.; Van Cleve, Jr., John E.

    1982-01-01

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  4. E-Alerts: Nuclear science and technology (radioactive wastes and radioactivity). E-mail newsletter

    SciTech Connect

    1999-05-01

    The newsletter discusses the following: Separation, processing, handling, storage, disposal, and reuse of radioactive wastes; Radioactive fallout; Fission products; Man-made or natural radioactivity; and Decommissioning.

  5. [Investigation of radioactivity measurement of medical radioactive waste].

    PubMed

    Koizumi, Kiyoshi; Masuda, Kazutaka; Kusakabe, Kiyoko; Kinoshita, Fujimi; Kobayashi, Kazumi; Yamamoto, Tetsuo; Kanaya, Shinichi; Kida, Tetsuo; Yanagisawa, Masamichi; Iwanaga, Tetsuo; Ikebuchi, Hideharu; Kusama, Keiji; Namiki, Nobuo; Okuma, Hiroshi; Fujimura, Yoko; Horikoshi, Akiko; Tanaka, Mamoru

    2004-11-01

    To explore the possibility of which medical radioactive wastes could be disposed as general wastes after keeping them a certain period of time and confirming that their radioactivity reach a background level (BGL), we made a survey of these wastes in several nuclear medicine facilities. The radioactive wastes were collected for one week, packed in a box according to its half-life, and measured its radioactivity by scintillation survey meter with time. Some wastes could reach a BGL within 10 times of half-life, but 19% of the short half-life group (group 1) including 99mTc and 123I, and 8% of the middle half-life group (group 2) including 67Ga, (111)In, and 201Tl did not reach a BGL within 20 times of half-life. A reason for delaying the time of reaching a BGL might be partially attributed to high initial radiation dose rate or heavy package weight. However, mixing with the nuclides of longer half-life was estimated to be the biggest factor affecting this result. When disposing medical radioactive wastes as general wastes, it is necessary to avoid mixing with radionuclide of longer half-life and confirm that it reaches a BGL by actual measurement.

  6. Technology applications for radioactive waste minimization

    SciTech Connect

    Devgun, J.S.

    1994-07-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry.

  7. Phosphate Bonded Solidification of Radioactive Incinerator Wastes

    SciTech Connect

    Walker, B. W.

    1999-04-13

    The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

  8. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  9. Low-level radioactive waste regulations

    SciTech Connect

    Autry, V.

    1994-12-31

    This speaker presents definitions of low-level radioactive waste according to the Federal Government, the Nuclear Regulatory Commission (NRC), and the South Carolina governing body. The classification of waste for near surface disposal and the various, NRC classes of waste are described.

  10. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  11. Development of characterization protocol for mixed liquid radioactive waste classification

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-01

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as `problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  12. 32-week holding-time study of SUMMA polished canisters and triple sorbent traps used to sample organic constituents in radioactive waste tank vapor headspace

    SciTech Connect

    Evans, J.C.; Huckaby, J.L.; Mitroshkov, A.V.; Julya, J.L.; Hayes, J.C.; Edwards, J.A.; Sasaki, L.M.

    1998-11-01

    Two sampling methods [SUMMA polished canisters and triple sorbent traps (TSTs)] were compared for long-term storage of trace organic vapor samples collected from the headspaces of high-level radioactive waste tanks at the US Department of Energy`s Hanford Site in Washington State. The two methods were found to provide generally equivalent results. Because safety, quality assurance, radiological controls, and somewhat complex sample custody arrangements frequently precluded rapid analysis, the long-term stability of the sampling media during storage needed to be addressed. Samples were analyzed with a gas chromatograph/mass spectrometer (GC/MS) using cryogenic preconcentration or thermal desorption sample introduction techniques. SUMMA canister samples were also analyzed for total non-methane organic compounds (TNMOC) by GC/flame ionization detector (FID) using EPA Compendium Method TO-12. The 31 target organic analytes studied represented compounds with widely varying polarities and volatilities. To verify the long-term stability of the sampling media, multiple samples were collected in parallel from a typical passively ventilated radioactive waste tank known to contain moderately high concentrations of both polar and nonpolar organic compounds. Two sets of sorbent trap samples were collected to compare the effects of storage under refrigerated and room temperature conditions. Analyses for organic analytes and TNMOC were conducted at increasing intervals over a 32-week period to determine whether any systematic degradation of sample integrity occurred.

  13. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  14. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  15. The safe disposal of radioactive wastes

    PubMed Central

    Kenny, A. W.

    1956-01-01

    A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534

  16. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  17. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  18. 32-Week Holding-Time Study of SUMMA Polished Canisters and Triple Sorbent Traps Used To Sample Organic Constituents in Radioactive Waste Tank Vapor Headspace

    SciTech Connect

    Evans, John C. ); Huckaby, James L. ); Mitroshkov, Alexandre V. ); Julya, Janet L. ); Hayes, James C. ); Edwards, Jeffrey A.; Sasaki, Leela M.

    1997-11-01

    Two sampling methods[SUMMA polished canisters and triple sorbent traps (TSTs)] were compared for long-term storage of trace organic vapor samples collected from the headspaces of high-level radioactive waste tanks at the U.S. Department of Energy's Hanford Site in Washington State. Because safety, quality assurance, radiological controls, the long-term stability of the sampling media during storage needed to be addressed. Samples were analyzed with a gas chromatograph/mass spectrometer (GC/MS) using cryogenic reconcentration or thermal desorption sample introduction techniques. SUMMA canister samples were also analyzed for total non-methane organic compounds (TNMOC) by GC/flame ionization detector (FID) using EPA Compendium Method TO-12 . To verify the long-term stability of the sampling media, multiple samples were collected in parallel from a typical passively ventilated radioactive waste tank known to contain moderately high concentrations of both polar and nonpolar organic compounds. Analyses for organic analytes and TNMOC were conducted at increasing intervals over a 32-week period to determine whether any systematic degradation of sample integrity occurred. Analytes collected in the SUMMA polished canisters generally showed good stability over the full 32 weeks with recoveries at the 80% level or better for all compounds studied. The TST data showed some loss (50-80% recovery) for a few high-volatility compounds even in the refrigerated samples; losses for unrefrigerated samples were far more pronounced with recoveries as low as 20% observed in a few cases.

  19. Radioactive waste disposal in the marine environment

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.

    In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.

  20. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  1. Hazardous chemical and radioactive wastes at Hanford

    SciTech Connect

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford`s 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location.

  2. Radioactive waste management in a hospital.

    PubMed

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  3. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  4. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  5. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  6. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  7. 40 CFR 227.30 - High-level radioactive waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste...

  8. Apparatus and method for radioactive waste screening

    DOEpatents

    Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

    2012-09-04

    An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

  9. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008

    SciTech Connect

    West, B.; Waltz, R.

    2009-06-11

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  10. Annual Radioactive Waste Tank Inspection Program - 2000

    SciTech Connect

    West, W.R.

    2001-04-17

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

  11. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  12. Radioactive tank waste remediation focus area

    SciTech Connect

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  13. Reduction of INTEC Analytical Radioactive Liquid Waste

    SciTech Connect

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  14. Reduction of INTEC Analytical Radioactive Liquid Wastes

    SciTech Connect

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  15. A model for evaluating radiological impacts on organisms other than man for use in post-closure assessments of geological repositories for radioactive wastes.

    PubMed

    Thorn, M C; Kelly, M; Rees, J H; Sánchez-Friera, P; Calvez, M

    2002-09-01

    Bioaccumulation and dosimetric models have been developed that allow the computation of dose rates to a wide variety of plants and animals in the context of the deep geological disposal of solid radioactive wastes. These dose rates can be compared with the threshold dose rates at which significant deleterious effects have been observed in field and laboratory observations. This provides a general indication of whether effects on ecosystems could be observable, but does not quantify the level of those effects. To address this latter issue, two indicator organisms were identified and exposure-response relationships were developed for endpoints of potential interest (mortality in conifers and the induction of skeletal malformations in rodents irradiated in utero). The bioaccumulation, dosimetry and exposure-response models were implemented and used to evaluate the potential significance of radionuclide releases from a proposed deep geological repository for radioactive wastes in France. This evaluation was undertaken in the context of a programme of assessment studies being performed by the Agence nationale pour la gestion des déchets radioactifs (ANDRA).

  16. Public involvement in radioactive waste management decisions

    SciTech Connect

    1994-04-01

    Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

  17. [The investigation of the composition of liquid radioactive waste].

    PubMed

    Suslov, A V; Suslova, I N; Bagiian, A; Leonov, V V; Kapustin, V K

    2008-01-01

    In investigation the process of composition sediment of liquid unorganic radioactive waste, that are forming in cistern-selectors at PNPI RAS, it was discovered apart from great quantity of ions of different metals and radionuclides considerable maintenance of organic material (to 30% and more from volume of sediment) unknown origin. A supposition was made about its microbiological origin. Investigation shows, that the main microorganisms, setting this sediment, are the bacterious of Pseudomonas kind, capable of effectively bind in process of grow the radionuclide 90Sr, that confirms the potential posibility of using this microorganisms for bioremediation of liquid low radioactive wastes (LRW).

  18. Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels

    SciTech Connect

    Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

    2003-02-25

    Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF

  19. Pump station for radioactive waste water

    SciTech Connect

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  20. Radioactive waste management in the former USSR

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  1. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    SciTech Connect

    Dziewinska, K.M.

    1998-09-28

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

  2. (Low-level radioactive waste management techniques)

    SciTech Connect

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.; Lingle, W.N.; Peters, M.S.; Darnell, G.R.; USDOE Oak Ridge Operations Office, TN; Du Pont de Nemours and Co., Aiken, SC . Savannah River Plant; Idaho National Engineering Lab., Idaho Falls, ID )

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  3. Radioactive waste disposal in thick unsaturated zones.

    PubMed

    Winogard, I J

    1981-06-26

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolatic is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere.

  4. Annual radioactive waste tank inspection program: 1995

    SciTech Connect

    McNatt, F.G. Sr.

    1996-04-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

  5. Annual radioactive waste tank inspection program - 1992

    SciTech Connect

    McNatt, F.G.

    1992-12-31

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1992 to evaluate these vessels and evaluations based on data accrued by inspections made since the tanks were constructed are the subject of this report.

  6. High-level radioactive wastes. Supplement 1

    SciTech Connect

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  7. Annual Radioactive Waste Tank Inspection Program - 1998

    SciTech Connect

    McNatt, F.G.

    1999-10-27

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Inspections made during 1998 to evaluate these vessels and auxiliary appurtenances, along with evaluations based on data accrued by inspections performed since the tanks were constructed, are the subject of this report.

  8. Membrane technologies for liquid radioactive waste treatment

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1999-01-01

    The paper deals with some problems concerning reduction of radioactivity of liquid low-level nuclear waste streams (LLLW). The membrane processes as ultrafiltration (UF), seeded ultrafiltration (SUF), reverse osmosis (RO) and membrane distillation (MD) were examined. Ultrafiltration enables the removal of particles with molecular weight above cut-off of UF membranes and can be only used as a pre-treatment stage. The improvement of removal is achieved by SUF, employing macromolecular ligands binding radioactive ions. The reduction of radioactivity in LLLW to very low level were achieved with RO membranes. The results of experiments led the authors to the design and construction of UF+2RO pilot plant. The development of membrane distillation improve the selectivity of membrane process in some cases. The possibility of utilisation of waste heat from cooling system of nuclear reactors as a preferable energy source can significantly reduce the cost of operation.

  9. Radioactive waste management in France and international cooperation

    SciTech Connect

    Marque, Y. )

    1991-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la gestion des Dechets Radioactifs. (ANDRA), which is a public body responsible mainly for siting, design, construction, and operation of the disposal facilities for every kind of radioactive waste produced in the country. Furthermore, ANDRA has to define and control the required quality of waste packages delivered for disposal. As far as disposal is concerned, it is customary in France to classify waste in two main categories. The first category includes all the so-called short-lived low-level waste (LLW) containing mainly radioactive substances have < 30-yr half-lives (beta-gamma emitters) and, in a few cases, a very small amount of long-half-life substances. The second category includes waste that contains a significant amount of long-lived substances such as transuranic nuclides. Throughout the world, public acceptance is at present the main issue in the siting of a disposal facility. Development of international cooperation is desirable in order to present a consistent international policy, whatever technical options may be chosen according to local considerations and possibilities. It can also be very fruitful to have bilateral collaboration where approaches in the two countries seem to be similar. International cooperation is already a matter of fact within the framework of international organizations such as the International Atomic Energy Agency, the Organization for Economic Cooperation and Development, and the Commission of European Communities.

  10. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  11. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  12. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  13. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  14. 40 CFR 147.3005 - Radioactive waste injection wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Radioactive waste injection wells. 147... the Navajo, Ute Mountain Ute, and All Other New Mexico Tribes § 147.3005 Radioactive waste injection... dispose of radioactive waste (as defined in 10 CFR part 20, appendix B, table II, but not including...

  15. Method of treating radioactively contaminated solvent waste

    SciTech Connect

    Jablonski, W.; Mallek, H.; Plum, W.

    1981-07-07

    A method of and apparatus for treating radioactively contaminated solvent waste are claimed. The solvent waste is supplied to material such as peat, vermiculite, diaton, etc. This material effects the distribution or dispersion of the solvent and absorbs the foreign substances found in the solvent waste. Air or an inert gas flows through the material in order to pick up the solvent portions which are volatile as a consequence of their vapor pressure. The thus formed gas mixture, which includes air or inert gas and solvent portions, is purified in a known manner by thermal, electrical, or catalytic combustion of the solvent portions.

  16. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so

  17. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's report on the Organic Geochemistry of Deep Groundwaters from the Palo Duro Basin, Texas

    SciTech Connect

    Fenster, D.F.; Brookins, D.G.; Harrison, W.; Seitz, M.G.; Lerman, A.; Stamoudis, V.C.

    1984-08-01

    This report summarizes Argonne's review of the Office of Nuclear Waste Isolation's (ONWI's) final report entitled The Organic Geochemistry of Deep Ground Waters from the Palo Duro Basin, Texas, dated September 1983. Recommendations are made for improving the ONWI report. The main recommendation is to make the text consistent with the title and with the objective of the project as stated in the introduction. Three alternatives are suggested to accomplish this.

  18. Handbook of high-level radioactive waste transportation

    SciTech Connect

    Sattler, L.R.

    1992-10-01

    The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

  19. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    SciTech Connect

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as /sup 14/CO/sub 2/, /sup 14/CH/sub 4/, HT, and CH/sub 3/T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables.

  20. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S.; Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  1. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    SciTech Connect

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. ); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. )

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  2. Radioactive Waste Streams: Waste Classification for Disposal

    DTIC Science & Technology

    2006-12-13

    created in a reactor by irradiating uranium. These elements include neptunium , plutonium, americium, and curium. Many emit alpha particles and have... neptunium , plutonium, americium, and curium. CRS-35 Appendix Table A-1. Uranium Mill Tailing Site Volume and Activity Site Disposal Cell Waste

  3. Control of radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F. ); Hrma, P. ); Bowan, B.W. II )

    1990-01-01

    Slurries of simulated high level radioactive waste and glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, their effect on glass production rate, and the development of leach resistance. Melting rates of waste batches have been increased by the addition of reducing agents (formic acid, sucrose) and nitrates. The rate increases are attributable in part to exothermic reactions which occur at critical stages in the vitrification process. Nitrates must be balanced by adequate reducing agents to avoid the formation of persistent foam, which would destabilize the melting process. The effect of foaming on waste glass production rates is analyzed, and melt rate limitations defined for waste-glass melters, based upon measurable thermophysical properties. Minimum melter residence times required to homogenize glass and assure glass quality are much smaller than those used in current practice. Thus, melter size can be reduced without adversely affecting glass quality. Physical chemistry and localized heat transfer of the waste-glass melting process are examined, to refine the available models for predicting and assuring glass production rate. It is concluded that the size of replacement melters and future waste processing facilities can be significantly decreased if minimum heat transfer requirements for effective melting are met by mechanical agitation. A new class of waste glass melters has been designed, and proof of concept tests completed on simulated High Level Radioactive Waste slurry. Melt rates have exceeded 155 kg m{sup {minus}2} h{sup {minus}1} with slurry feeds (32 lb ft{sup {minus}2} h{sup {minus}1}), and 229 kg kg m{sup {minus}2} h{sup {minus}1} with dry feed (47 lb ft{sup {minus}2} h{sup {minus}1}). This is about 8 times the melt rate possible in conventional waste- glass melters of the same size. 39 refs., 5 figs., 9 tabs.

  4. Ocean dumping of low-level radioactive waste

    SciTech Connect

    Hunsaker, C.T.

    1984-11-01

    Ocean dumping of low-level radioactive waste in the US is regulated by EPA, as authorized by the MPRSA. Other US laws and regulations applicable to ocean dumping of radioactive waste include the Hazardous Materials Transportation Act, The National Environmental Policy Act, The Atomic Energy Act, and the Energy Reorganization Act, along with internal orders for executive departments such as the US DOE. The major international agreement on ocean dumping is the Convention of the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Dumping Convention), which prohibits the disposal of high-level wastes and requires a special permit prior to ocean disposal of other wastes. Several international organization focus on radioactive waste management; the International Atomic Energy Agency and the Nuclear Energy Agency are the largest and most active. Because the US is a member of the IAEA and a party to the London Dumping Convention, EPA will have to make US regulations under MPRSA agree with international policy. 6 references, 1 figure.

  5. Low level radioactive waste transportation safety history

    SciTech Connect

    McClure, J.D.

    1997-09-01

    Historical information for 26 years of documented US transport experience with radioactive material (RAM) packages indicates that no significant releases of low level waste have taken place, although accidents involving transportation, handling or reported incident have been documented. This article uses information from the Radioactive Materials Incident Report (RMIR) data base, developed in 1981, to provide information on nuclear materials transportation accident/incident events that have occurred in the US 1971-96. Topic areas include the summary of RAM transportation accident/incident experience in the US and characteristics of LLW accidents where release of contents has occurred. 2 tabs.

  6. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  7. Microbial transformation of low-level radioactive waste

    SciTech Connect

    Francis, A.J.

    1980-06-01

    Microorganisms play a significant role in the transformation of the radioactive waste and waste forms disposed of at shallow-land burial sites. Microbial degradation products of organic wastes may influence the transport of buried radionuclides by leaching, solubilization, and formation of organoradionuclide complexes. The ability of indigenous microflora of the radioactive waste to degrade the organic compounds under aerobic and anaerobic conditions was examined. Leachate samples were extracted with methylene chloried and analyzed for organic compounds by gas chromatography and mass spectrometry. In general, several of the organic compounds in the leachates were degraded under aerobic conditions. Under anaerobic conditions, the degradation of the organics was very slow, and changes in concentrations of several acidic compounds were observed. Several low-molecular-weight organic acids are formed by breakdown of complex organic materials and are further metabolized by microorganisms; hence these compounds are in a dynamic state, being both synthesized and destroyed. Tributyl phosphate, a compound used in the extraction of metal ions from solutions of reactor products, was not degraded under anaerobic conditions.

  8. System for handling and storing radioactive waste

    DOEpatents

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  9. System for handling and storing radioactive waste

    DOEpatents

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  10. Membrane permeation employed for radioactive wastes treatment

    SciTech Connect

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1996-12-31

    In the paper certain aspects of development process aiming at reducing the radioactivity of liquid low-level waste streams (LLLW) are presented. The influence of gamma and electron radiation on ultrafiltration membranes has been studied and changes of their transport properties have been determined at different doses. Membrane processes: ultrafiltration (UF), seeded ultrafiltration (SUF), low-pressure reverse osmosis (LPRO) and membrane distillation (MD) have been examined. The UF/RO pilot plant for purification/concentration of low-level liquid waste is described. 4 refs., 2 figs.

  11. CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT

    SciTech Connect

    Marra, J.

    2010-05-05

    The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense

  12. Acid digestion of combustible radioactive wastes

    SciTech Connect

    Allen, C. R.; Lerch, R. E.; Crippen, M. D.; Cowan, R. G.

    1982-03-01

    The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic waste treatment, there was no detectable radionuclide carryover into the exhaust off-gas. The plutonium decontamination factor (DF) between the digester and the second off-gas tower was >1.5 x 10/sup 6/ and the overall DF from the digester to the off-gas stack was >1 x 10/sup 8/; (3) plutonium can be easily leached from undried digestion residue with dilute nitric acid (>99% recovery). Leachability is significantly reduced if the residue is dried (>450/sup 0/stack temp.) prior to leaching; (4) sulfuric acid recovery and recycle in the process is 100%; (5) nitric acid recovery is typically 35% to 40%. Losses are due to the formation of free nitrogen (N/sub 2/) during digestion, reaction with chlorides in waste (NO/sub 2/stack was > 1.5 x 10/sup 6/ andl), and other process losses; (6) noncombustible components comprised approximately 6% by volume of glovebox waste and contained 18% of the plutonium; (7) the acid digestion process can effectively handle a wide variety of waste forms. Some design changes are desirable in the head end to reduce manual labor, particularly if large quantities of specific waste forms will be processed; (8) with the exception of residue removal and drying equipment, all systems performed satisfactorily and only minor design and equipment changes would be recommended to improve performance; and(9) the RADTU program met all of its planned primary objectives and all but one of additional secondary objectives.

  13. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    SciTech Connect

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  14. Microbial effects on radioactive wastes at SLB sites

    SciTech Connect

    Colombo, P.

    1982-01-01

    The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or /sup 14/C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables.

  15. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    SciTech Connect

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  16. Risk-informed radioactive waste classification and reclassification.

    PubMed

    Croff, Allen G

    2006-11-01

    Radioactive waste classification systems have been developed to allow wastes having similar hazards to be grouped for purposes of storage, treatment, packaging, transportation, and/or disposal. As recommended in the National Council on Radiation Protection and Measurements' Report No. 139, Risk-Based Classification of Radioactive and Hazardous Chemical Wastes, a preferred classification system would be based primarily on the health risks to the public that arise from waste disposal and secondarily on other attributes such as the near-term practicalities of managing a waste, i.e., the waste classification system would be risk informed. The current U.S. radioactive waste classification system is not risk informed because key definitions--especially that of high-level waste--are based on the source of the waste instead of its inherent characteristics related to risk. A second important reason for concluding the existing U.S. radioactive waste classification system is not risk informed is there are no general principles or provisions for exempting materials from being classified as radioactive waste which would then allow management without regard to its radioactivity. This paper elaborates the current system for classifying and reclassifying radioactive wastes in the United States, analyzes the extent to which the system is risk informed and the ramifications of its not being so, and provides observations on potential future direction of efforts to address shortcomings in the U.S. radioactive waste classification system as of 2004.

  17. Annual radioactive waste tank inspection program -- 1993

    SciTech Connect

    McNatt, F.G. Sr.

    1994-05-01

    Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1993 to evaluate these vessels, and evaluations based on data accrued by inspections made since the tanks were constructed, are the subject of this report. The 1993 inspection program revealed that the condition of the Savannah River Site waste tanks had not changed significantly from that reported in the previous annual report. No new leaksites were observed. No evidence of corrosion or materials degradation was observed in the waste tanks. However, degradation was observed on covers of the concrete encasements for the out-of-service transfer lines to Tanks 1 through 8.

  18. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    SciTech Connect

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  19. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  20. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  1. Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66

    NASA Astrophysics Data System (ADS)

    Jakobsen, Søren; Gianolio, Diego; Wragg, David S.; Nilsen, Merete Hellner; Emerich, Hermann; Bordiga, Silvia; Lamberti, Carlo; Olsbye, Unni; Tilset, Mats; Lillerud, Karl Petter

    2012-09-01

    High-resolution synchrotron radiation x-ray powder diffraction (HR-XRPD) combined with Hf L3-edge extended x-ray absorption fine structure allowed us to determine the structure of a Hf-UiO-66 metal-organic framework (MOF) showing that it is isoreticular to Zr-UiO-66 MOF [Cavka , J. Am. Chem. Soc.JACSAT0002-786310.1021/ja8057953 130, 13850 (2008).]. Thermal gravimetric measurements (coupled with mass spectroscopy) and temperature-dependent synchrotron radiation XRPD proved the high thermal stability of the Hf-UiO-66 MOF. The Langmuir surface area (849 m2/g) combined with the high stability of the UiO-66 framework and with the high neutron absorption cross section of Hf suggest that among all microporous crystalline materials the Hf-UiO-66 MOF possesses the physical and chemical requirements for the interim storage of radioactive waste in a much safer way than is currently available. The first results proving the synthesis of a MOF material with UiO-66 topology realized by a B-containing linker are also reported, allowing a further improvement of the neutron shielding power of this class of materials.

  2. Low-level radioactive waste form qualification testing

    SciTech Connect

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  3. Transportation functions of the Civilian Radioactive Waste Management System

    SciTech Connect

    Shappert, L.B.; Attaway, C.R.; Pope, R.B. ); Best, R.E.; Danese, F.L. ); Dixon, L.D. , Martinez, GA ); Jones, R.H. , Los Gatos, CA ); Klimas, M.J. ); Peterson, R.W

    1992-03-01

    Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

  4. Operational experience acquired in radioactive waste compaction

    SciTech Connect

    Bauer, S.; Mohr, P.; Hempelmann, W.

    1993-12-31

    The low-level radioactive waste scrapping facility in the KfK decontamination division was commissioned in 1983. Non-combustible residues and removed system components of low activity, but which are to be handled and disposed of as radioactive waste are in drums, casks or containers delivered to the facility. The waste usually undergoes pretreatment in a crusher, with the volume being definitively reduced at a pressure of 690 bar in the high-pressure compactor. In 1990, the overhead-crane was refurbished for remote control handling in the scrapping caisson. The parts to undergo scrapping are unpacked in the material lock, and then go into the scrapping caisson. It is possible to use here various mechanical and thermal methods to dismantle the respective parts. But most of the parts to undergo scrapping are such as that it is possible to directly pretreat them in the crusher. The obtained scrap is loaded into 180-liter drums. Most of the machinery in the caisson is manually operated. The operating crew enters the caisson in fully ventilated protective overalls. The drums filled with the scrap then go to the high-pressure compactor in the caisson. The compacts are temporarily stored, until recalled depending on their height and filled into drums such as that optimal drum filling is guaranteed.

  5. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    SciTech Connect

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

  6. A history of ocean disposal of packaged low-level radioactive waste

    SciTech Connect

    Holcomb, W.F.

    1982-03-01

    Two methods are practiced throughout the world for the disposal of low-level radioactive wastes-ground burial and ocean dumping. Ocean dumping was used by the United States from 1946 to 1970; European nations have been ocean dumping since 1951, with the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development supervising the international ocean dumping operations since 1967. The European nations have dumped wastes containing over 700 000 Ci of radioactivity, whereas the United States has dumped wastes containing over 94 000 Ci. The Environmental Protection Agency (EPA) has surveyed some of the U. S. ocean dump sites and retrieved three drums of waste to assess the condition of the radioactive waste packaging. The NEA has published guidelines for packaging requirements for ocean disposal, and the EPA has a program to prepare regulations to complement the existing international and domestic broad-based regulations for packaging of radioactive wastes for ocean disposal.

  7. Radioactive waste disposal via electric propulsion

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1975-01-01

    It is shown that space transportation is a feasible method of removal of radioactive wastes from the biosphere. The high decay heat of the isotopes powers a thermionic generator which provides electrical power for ion thrust engines. The massive shields (used to protect ground and flight personnel) are removed in orbit for subsequent reuse; the metallic fuel provides a shield for the avionics that guides the orbital stage to solar system escape. Performance calculations indicate that 4000 kg. of actinides may be removed per Shuttle flight. Subsidiary problems - such as cooling during ascent - are discussed.

  8. Electronic Denitration Savannah River Site Radioactive Waste

    SciTech Connect

    Hobbs, D.T.

    1995-04-11

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations.

  9. Advanced radioactive waste assay methods: Final report

    SciTech Connect

    Cline, J.E.; Robertson, D.E.; DeGroot, S.E.

    1987-11-01

    This report describes an evaluation of advanced methodologies for the radioassay of low power-plant low-level radioactive waste for compliance with the 10CFR61 classification rules. The project evaluated current assay practices in ten operating plants and identified areas where advanced methods would apply, studied two direct-assay methodologies, demonstrated these two techniques on radwaste in four operating plants and on irradiated components in two plants, and developed techniques for obtaining small representative aliquots from larger samples and for enhancing the /sup 144/Ce activity analysis in samples of waste. The study demonstrated the accuracy, practicality, and ALARA aspects of advanced methods and indicates that cost savings, resulting from the accuracy improvement and reduction in sampling requirements can be significant. 24 refs., 60 figs., 67 tabs.

  10. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  11. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  12. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  13. Low and intermediate level radioactive waste processing in plasma reactor

    SciTech Connect

    Sauchyn, V.; Khvedchyn, I.; Van Oost, G.

    2013-07-01

    Methods of low and intermediate level radioactive waste processing comprise: cementation, bituminization, curing in polymer matrices, combustion and pyrolysis. All these methods are limited in their application in the field of chemical, morphological, and aggregate composition of material to be processed. The thermal plasma method is one of the universal methods of RAW processing. The use of electric-arc plasma with mean temperatures 2000 - 8000 K can effectively carry out the destruction of organic compounds into atoms and ions with very high speeds and high degree of conversion. Destruction of complex substances without oxygen leads to a decrease of the volume of exhaust gases and dimension of gas cleaning system. This paper presents the plasma reactor for thermal processing of low and intermediate level radioactive waste of mixed morphology. The equipment realizes plasma-pyrolytic conversion of wastes and results in a conditioned product in a single stage. As a result, the volume of conditioned waste is significantly reduced (more than 10 times). Waste is converted into an environmentally friendly form that suits long-term storage. The leaching rate of macro-components from the vitrified compound is less than 1.10{sup -7} g/(cm{sup 2}.day). (authors)

  14. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    SciTech Connect

    Deckers, Jan; Mols, Ludo

    2007-07-01

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  15. Issue briefs on low-level radioactive wastes

    SciTech Connect

    Not Available

    1981-01-01

    This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

  16. Closing Radioactive Waste Tanks in South Carolina

    SciTech Connect

    Newman, J.L.

    2000-08-29

    The Savannah River Site (SRS) is owned by the US Department of Energy (DOE) and is operated by the Westinghouse Savannah River Company (WSRC). Since the early 1950s, the primary mission of the site has been to produce nuclear materials for national defense. The chemical separations processes used to recover uranium and plutonium from production reactor fuel and target assemblies in the chemical separations area at SRS generated liquid high-level radioactive waste. This waste, which now amounts to approximately 34 million gallons, is stored in underground tanks in the F- and H-Areas near the center of the site. DOE is closing the High Level Waste (HLW) tank systems, which are permitted by SCDHEC under authority of the South Carolina Pollution Control Act (SCPCA) as wastewater treatment facilities, in accordance with South Carolina Regulation R.61-82, ''Proper Closeout of Wastewater Treatment Facilities''. To date, two HLW tank systems have been closed in place. Closure of these tanks is the first of its kind in the US. This paper describes the waste tank closure methodologies, standards and regulatory background.

  17. Area 5 Radioactive Waste Management Site Safety Assessment Document

    SciTech Connect

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization.

  18. The Management of the Radioactive Waste Generated by Cernavoda NPP, Romania, an Example of International Cooperation - 13449

    SciTech Connect

    Barariu, Gheorghe

    2013-07-01

    The design criteria and constraints for the development of the management strategy for radioactive waste generated from operating and decommissioning of CANDU Nuclear Units from Cernavoda NPP in Romania, present many specific aspects. The main characteristics of CANDU type waste are its high concentrations of tritium and radiocarbon. Also, the existing management strategy for radioactive waste at Cernavoda NPP provides no treatment or conditioning for radioactive waste disposal. These characteristics embodied a challenging effort, in order to select a proper strategy for radioactive waste management at present, when Romania is an EU member and a signatory country of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The helping of advanced countries in radioactive waste management, directly or into the frame of the international organizations, like IAEA, become solve the aforementioned challenges at adequate level. (authors)

  19. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  20. Dumping of low-level radioactive waste in the deep ocean

    SciTech Connect

    Templeton, W.L.

    1980-01-01

    Two international agreements relate to the dumping of packaged radioactive waste into the oceans - the Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter of 1972 (London Convention) and the Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste of 1977 under the Organization for Economic Co-operation and Development (OECD). The International Atomic Energy Agency was given the responsibility to define high-level radioactive wastes which are unsuitable for dumping in the oceans and to make recommendations for the dumping of other radioactive wastes. A revised Definition and Recommendations was submitted and accepted by the London Convention. This paper reviews the technical basis for the Definition and describes how it has been applied to the radiological assessment of the only operational dumping site in the North East Atlantic.

  1. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  2. Civilian radioactive waste management program plan. Revision 2

    SciTech Connect

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  3. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    SciTech Connect

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A.; Savkin, A.E.; Varlakov, A.P.; Karlin, S.V.; Stefanovsky, S.V.; Karlina, O.K.; Semenov, K.N.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.

  4. Control of high level radioactive waste-glass melters

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-01-01

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  5. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    SciTech Connect

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling.

  6. Research on uranium deposits as analogies of radioactive waste repositories

    SciTech Connect

    Hardy, C.J.

    1988-01-01

    The disposal of highly radioactive waste deep underground in suitable geological formations is proposed by many countries to protect public health and safety. The study of natural analogies of nuclear waste repositories is one method of validating mathematical models and assuring that a proposed repository site and design will be safe. Since 1981, the AAEC has studied the major uranium deposits in the Alligator Rivers region of the Northern Territory of Australia as natural analogues of radioactive waste repositories. Results have been obtained on the following: (1) the migration of uranium, thorium and radium isotopes, (2) the behavior of naturally occurring levels of selected fission products and transuranium nuclides, e.g. technetium-99, iodine-129 and plutonium-239; (3) the role of specific minerals in retarding migration, and (4) the importance of colloidal material, in the migration of thorium. The AAEC has initiated a wider international project entitled The Alligator Rivers Analogue Project which will enable participating organizations to obtain additional results and to apply them in modeling, planning and regulating waste repositories.

  7. Conversion of radioactive waste materials into solid form

    SciTech Connect

    Bustard, T.S.; Pohl, C.S.

    1980-10-28

    Radioactive waste materials are converted into solid form by mixing the radioactive waste with a novel polymeric formulation which, when solidified, forms a solid, substantially rigid matrix that contains and entraps the radioactive waste. The polymeric formulation comprises, in certain significant proportions by weight, urea-formaldehyde; methylated urea-formaldehyde; urea and a plasticizer. A defoaming agent may also be incorporated into the polymeric composition. In the practice of the invention, radioactive waste, in the form of a liquid or slurry, is mixed with the polymeric formulation, with this mixture then being treated with an acidic catalyzing agent, such as sulfuric acid. This mixture is then preferably passed to a disposable container so that, upon solidification, the radioactive waste, entrapped within the matrix formed by the polymeric formulation, may be safely and effectively stored or disposed of.

  8. Civilian Radioactive Waste Management System Requirements Document

    SciTech Connect

    C.A. Kouts

    2006-05-10

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further

  9. Efficiency of inductively torch plasma operating at atmospheric pressure on destruction of chlorinated liquid wastes- A path to the treatment of radioactive organic halogen liquid wastes

    NASA Astrophysics Data System (ADS)

    Kamgang-Youbi, G.; Poizot, K.; Lemont, F.

    2012-12-01

    The performance of a plasma reactor for the degradation of chlorinated hydrocarbon waste is reported. Chloroform was used as a target for a recently patented destruction process based using an inductive plasma torch. Liquid waste was directly injected axially into the argon plasma with a supplied power of ~4 kW in the presence of oxygen as oxidant and carrier gas. Decomposition was performed at CHCl3 feed rates up to 400 g·h-1 with different oxygen/waste molar ratios, chloroform destruction was obtained with at least 99% efficiency and the energy efficiency reached 100 g·kWh-1. The conversion end products were identified and assayed by online FTIR spectroscopy (CO2, HCl and H2O) and redox titration (Cl2). Considering phosgene as representative of toxic compounds, only very small quantities of toxics were released (< 1 g·h-1) even with high waste feed rates. The experimental results were very close to the equilibrium composition predicted by thermodynamic calculations. At the bottom of the reactor, the chlorinated acids were successfully trapped in a scrubber and transformed into mineral salts, hence, only CO2 and H2O have been found in the final off-gases composition.

  10. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    SciTech Connect

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  11. Taipower`s radioactive waste management program

    SciTech Connect

    Lee, B.C.C.

    1996-09-01

    Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words, by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.

  12. Biaxial casting apparatus for isolating radioactive waste

    SciTech Connect

    Manchale, F. Jr.; Manchak, F. III.

    1992-10-20

    This patent describes apparatus for isolating hazardous radioactive waste for disposal. It comprises: a bifurcated centrifugal casting mold having at least two separable mold parts, the mold being supported for rotation about a first axis; means for supporting a completed monolith in the apparatus with the mold parts removed therefrom; powered drive means for rotating the mold and the monolith about the first axis; mold removal means aligned along a second axis substantially perpendicular to the first axis for removing the separate parts of the bifurcated casting mold from a monolith while leaving the monolith supported in the apparatus for rotation about the first axis; means for injecting a charge of radiation shielding material into a pre-formed shell placed in the mold; and means for heating the interior of the shell during rotation of the mold about the first axis.

  13. TRUEX partitioning from radioactive ICPP sodium bearing waste

    SciTech Connect

    Herbst, R.S.; Brewer, K.N.; Tranter, T.J.; Todd, T.A.

    1995-03-01

    The Idaho Chemical Processing Plant (ICPP) located at the Idaho National Engineering Laboratory in Southeast Idaho is currently evaluating several treatment technologies applicable to waste streams generated over several decades of-nuclear fuel reprocessing. Liquid sodium bearing waste (SBW), generated primarily during decontamination activities, is one of the waste streams of interest. The TRansUranic EXtraction (TRUEX) process developed at Argonne National Laboratory is currently being evaluated to separate the actinides from SBW. On a mass basis, the amount of the radioactive species in SBW are low relative to inert matrix components. Thus, the advantage of separations is a dramatic decrease in resulting volumes of high activity waste (HAW) which must be dispositioned. Numerous studies conducted at the ICPP indicate the applicability of the TRUEX process has been demonstrated; however, these studies relied on a simulated SBW surrogate for the real waste. Consequently, a series of batch contacts were performed on samples of radioactive ICPP SBW taken from tank WM-185 to verify that actual waste would behave similarly to the simulated waste. The test results with SBW from tank WM-185 indicate the TRUEX solvent effectively extracts the actinides from the samples of actual waste. Gross alpha radioactivity, attributed predominantly to Pu and Am, was reduced from 3.14E+04 dps/mL to 1.46 dps/mL in three successive batch contacts with fresh TRUEX solvent. This reduction corresponds to a decontamination factor of DF = 20,000 or 99.995% removal of the gross a activity in the feed. The TRUEX solvent also extracted the matrix components Zr, Fe, and Hg to an appreciable extent (D{sub Zr} > 10, D{sub Fe} {approx} 2, D{sub Hg} {approx}6). Iron co-extracted with the actinides can be successfully scrubbed from the organic with 0.2 M HNO{sub 3}. Mercury can be selectively partitioned from the actinides with either sodium carbonate or nitric acid ({ge} 5 M HNO{sub 3}) solutions.

  14. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  15. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  16. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  17. Assessment of public perception of radioactive waste management in Korea.

    SciTech Connect

    Trone, Janis R.; Cho, SeongKyung; Whang, Jooho; Lee, Moo Yul

    2011-11-01

    The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

  18. Midwestern High-Level Radioactive Waste Transportation Project

    SciTech Connect

    Dantoin, T.S.

    1990-12-01

    For more than half a century, the Council of State Governments has served as a common ground for the states of the nation. The Council is a nonprofit, state-supported and -directed service organization that provides research and resources, identifies trends, supplies answers and creates a network for legislative, executive and judicial branch representatives. This List of Available Resources was prepared with the support of the US Department of Energy, Cooperative Agreement No. DE-FC02-89CH10402. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of DOE. The purpose of the agreement, and reports issued pursuant to it, is to identify and analyze regional issues pertaining to the transportation of high-level radioactive waste and to inform Midwestern state officials with respect to technical issues and regulatory concerns related to waste transportation.

  19. Declassification of radioactive liquid wastes generated in radio immune assay [corrected] (RIA) laboratories.

    PubMed

    Sancho, M; Arnal, J M; Villaescusa, J I; Campayo, J M; Verdú, G

    2005-01-01

    Radioactive liquid wastes of low-medium activity level are generated in radio immune assay (RIA) laboratories, which are also potentially infectious because of the pathogens from patient blood. The most common way of managing these wastes consists of a temporal storage, for partial radioactivity decay, followed by management by an authorised company. The object of this work is to study the viability of treating radioactive liquid wastes coming from RIA using membrane techniques in order to reduce their volume, which would mean an improvement from the radiological point of view and a decrease in management costs. This paper describes the results of some experiments carried out with RIA real wastes, by means of processes such as ultrafiltration and reverse osmosis. It has been proved that waste volume can be significantly reduced, obtaining a treated liquid that is free of pathogens and organic matter and with an activity level around the environmental background.

  20. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    SciTech Connect

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-04

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment.

  1. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  2. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  3. Radioactive Waste Management in Non-Nuclear Countries - 13070

    SciTech Connect

    Kubelka, Dragan; Trifunovic, Dejan

    2013-07-01

    This paper challenges internationally accepted concepts of dissemination of responsibilities between all stakeholders involved in national radioactive waste management infrastructure in the countries without nuclear power program. Mainly it concerns countries classified as class A and potentially B countries according to International Atomic Energy Agency. It will be shown that in such countries long term sustainability of national radioactive waste management infrastructure is very sensitive issue that can be addressed by involving regulatory body in more active way in the infrastructure. In that way countries can mitigate possible consequences on the very sensitive open market of radioactive waste management services, comprised mainly of radioactive waste generators, operators of end-life management facilities and regulatory body. (authors)

  4. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  5. Microbial degradation of low-level radioactive waste. Final report

    SciTech Connect

    Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

    1996-06-01

    The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

  6. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2016-07-12

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  7. Radioactive waste management and decommissioning of accelerator facilities.

    PubMed

    Ulrici, Luisa; Magistris, Matteo

    2009-11-01

    During the operation of high-energy accelerators, the interaction of radiation with matter can lead to the activation of the machine components and of the surrounding infrastructures. As a result of maintenance operation and during decommissioning of the installation, considerable amounts of radioactive waste are evacuated and shall be managed according to the radiation-protection legislation. This paper gives an overview of the current practices in radioactive waste management and decommissioning of accelerators.

  8. Bioremediation of organic pollutants in a radioactive wastewater

    SciTech Connect

    Oboirien, Bilainu; Molokwane, P.E.; Chirwa, Evans

    2007-07-01

    Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

  9. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  10. Soil gas surveying at low-level radioactive waste sites

    SciTech Connect

    Crockett, A.B.; Moor, K.S.; Hull, L.C.

    1989-11-01

    Soil gas sampling is a useful screening technique for determining whether volatile organic compounds are present at low-level radioactive waste burial sites. The technique was used at several DOE sites during the DOE Environmental Survey to determine the presence and extent of volatile organic compound contamination. The advantages of the soil gas sampling are that near real time data can be obtained, no excavation is required, safety concerns are relatively minor, costs are relatively low, and large amounts of data can be obtained rapidly on the contaminants that may pose the greatest threat to groundwater resources. The disadvantages are that the data are difficult to interpret and relate to soil concentrations and environmental standards. This paper discusses the experiences of INEL sampling and analysis personnel, the advantages and disadvantages of the technique, and makes recommendations for improving the sampling and analytical procedures.

  11. Office of Civilian Radioactive Waste Management annual report to Congress

    SciTech Connect

    1990-12-01

    This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

  12. Practice and assessment of sea dumping of radioactive wastes

    SciTech Connect

    Templeton, W.L.; Bewers, J.M.

    1985-08-01

    This paper discusses the practice and assessment of the ocean dumping of low-level radioactive wastes. It describes the international and multilateral regulatory framework, the sources, composition, packaging and rate of dumping and, in particular, the recent radiological assessment of the only operational disposal site in the northeast Atlantic. The paper concludes with a discussion of future ocean disposal practices for radioactive wastes, and the application of the approach to the dumping of non-radioactive contaminants in the ocean. 39 refs., 1 fig., 4 tabs.

  13. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  14. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  15. Radioactive waste disposal fees-Methodology for calculation

    NASA Astrophysics Data System (ADS)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  16. A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL

    SciTech Connect

    Arrenholz, D.A.; Knight, J.L.

    1991-08-01

    This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

  17. ICPP radioactive liquid and calcine waste technologies evaluation. Interim report

    SciTech Connect

    Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

    1994-06-01

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

  18. Criteria for the Certification of Non-Radioactive Hazardous Waste

    SciTech Connect

    Gagner, S D; Gaylord, R; Govers, R; Kennedy, W E; Hunnacek, M M; Kennedy, A M

    2003-04-10

    In 1991, in response to the Department of Energy (DOE) Moratorium on the shipment of hazardous waste from Radioactive Materials Management Areas (RMMAs), Lawrence Livermore National Laboratory (LLNL) developed a process to use a combination of generator knowledge and/or sampling and analyses to certify waste as non-radioactive. The analytical process used the minimum detectable activity (MDA) as the de minimus value. In the past twelve years, a great deal of operating experience has shown the LLNL certification process has serious limitations including: (1) Procedure-specified analytical methodologies have resulted in the inability to adopt new techniques and methods that are more rapid, safer, and produce less waste. (2) The characterization of materials as radioactive or non-radioactive is dependent on method-specific detection limits, not on an objective risk-based standard. (3) There are substantial differences in the limits for surface contamination, sewer discharges, and hazardous waste moratorium determinations, even though all of these methods are used to free-release materials from radiological controls. LLNL, in conjunction with the Chamberlain Group and Dade Moeller & Associates, Inc., is pursuing a risk-based approach to determine whether waste is non-radioactive, consistent with DOE guidance. This paper discusses the approach, which includes defining the radionuclides considered, establishing the exposure scenarios for the critical groups identified for each of three waste streams, defining the exposure pathways and key input data or assumptions, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting radiation doses for unit concentrations of radionuclides in each waste stream, presenting the authorized limits for each waste stream, and discussing the results. Analytical values which fall below these authorization limits will be considered non-radioactive, with any individual dose maintained below 1 mrem/yr.

  19. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  20. LANL Waste acceptance criteria, Chapter 3, radioactive liquid waste treatment facility

    SciTech Connect

    McClenahan, Robert L.

    2006-08-01

    The Radioactive Liquid Waste Treatment Facility (RLWTF) receives and treats aqueous radioactive wastewater generated at Los Alamos National Laboratory (LANL) to meet he discharge criteria specified in a National Pollution Discharge Elimination System (NPDES) permit. The majority of this wastewater is received at the RLWTF through a network of buried pipelines, known as the Radioactive Liquid Waste Collection System (RLWCS). Other wastewater is transported to the RLWTF by truck. The Waste Acceptance Criteria (WAC) outlined in this Chapter are applicable to all radioactive wastewaters which are conveyed to the Technical Area 50(T A-50), RL WTF by the RLWCS or by truck.

  1. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  2. Discussions about safety criteria and guidelines for radioactive waste management.

    PubMed

    Yamamoto, Masafumi

    2011-07-01

    In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.

  3. Monte Carlo simulations of radioactive waste embedded into polymer

    NASA Astrophysics Data System (ADS)

    Özdemir, Tonguç; Usanmaz, Ali

    2009-09-01

    Radioactive waste is generated from the nuclear applications and it should properly be managed according to the regulations set by the regulatory authority. Poly(carbonate urethane) and poly(bisphenol a- co-epichlorohydrin) are radiation-resistant polymers and they are possible candidate materials that can be used in the radioactive waste management. In this study, maximum allowable waste activity that can be embedded into these polymers and dose rate distribution of the waste drum (containing waste and the polymer matrix) were found via Monte Carlo simulations. The change of mechanical properties of above-mentioned polymers was simulated and their variations within the waste drum were determined for 15, 30 and 300 years after embedding.

  4. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all

  5. Earning public trust and confidence: Requisites for managing radioactive wastes. Final report

    SciTech Connect

    Not Available

    1993-11-01

    The Task Force on Radioactive Waste Management was created in April 1991 by former Secretary James D. Watkins, who asked the group to analyze the critical institutional question of how the Department of Energy (DOE) might strengthen public trust and confidence in the civilian radioactive waste management program. The panel met eight times over a period of 27 months and heard formal presentations from nearly 100 representatives of state and local governments, non-governmental organizations, and senior DOE Headquarters and Field Office managers. The group also commissioned a variety of studies from independent experts, contracted with the National Academy of Sciences and the National Academy of Public Administration to hold workshops on designing and leading trust-evoking organizations, and carried out one survey of parties affected by the Department`s radioactive waste management activities and a second one of DOE employees and contractors.

  6. Commercial low-level radioactive waste disposal in the US

    SciTech Connect

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  7. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J.; Knecht, Dieter A.; Todd, Terry A.; Burchfield, Larry A.; Anshits, Alexander G.; Vereshchagina, Tatiana; Tretyakov, Alexander A.; Aloy, Albert S.; Sapozhnikova, Natalia V.

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  8. Radioactive waste management information for 1996 and record-to-date

    SciTech Connect

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1997-07-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and status of radioactive waste for calendar year 1996. It also summarizes the radioactive waste data records compiled from 1952 to present for the Idaho National Engineering and Environmental Laboratory (INEEL). The data presented are from the INEEL Radioactive Waste Management Information System.

  9. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  10. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  11. Flowsheets and source terms for radioactive waste projections

    SciTech Connect

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

  12. Low-level radioactive waste disposal facility closure

    SciTech Connect

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. )

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  13. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  14. A methodology for evaluating the toxicity of radioactive waste and its application to the radioactive waste generated in Pennsylvania

    SciTech Connect

    Dornsife, W.P.

    1995-08-01

    Communicating with the public on the risks of low-level radioactive waste disposal is difficult due to the lack of comparisons that are understandable to the public. This paper presents a methodology for analyzing the intrinsic toxicity of radionuclides in waste and comparing it to that for soil or other wastes that may contain naturally-occurring radionuclides. The intrinsic toxicity of each radionuclide is normalized by dividing its specific activity in the waste by an appropriate ingestion risk standard, such as the U.S. EPA proposed drinking water limits. To illustrate the usefulness of this method, it was used to analyze Pennsylvania`s commercial low-level radioactive waste inventory. The results are presented along with an indication of the usefulness of this method for screening purposes to analyze and identify problematic constituents in various waste streams. 15 refs., 11 figs.

  15. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  16. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  17. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides

  18. A New Storage Facility for Institutional Radioactive Wastes at IPEN.

    PubMed

    Vicente, Roberto; Dellamano, José Claudio; Potiens, Ademar José

    2015-08-01

    IPEN, the Nuclear and Energy Research Institute in Sao Paulo, Brazil, has been managing the radioactive wastes generated in its own activities of research and radioisotope production as well as those received from many radioisotope users in the country since its start up in 1958. Final disposal options are presently unavailable for the wastes that cannot be managed by release after decay. Treated and untreated wastes including disused sealed radioactive sources and solid and liquid wastes containing radionuclides of the uranium and thorium series or fission and activation products are among the categories that are under safe and secure storage. This paper discusses the aspects considered in the design and describes the startup of a new storage facility for these wastes.

  19. 78 FR 7818 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... radioactive The total Amend to: 1) Remove Mexico. December 28, 2012; January waste as slightly quantity... the (ETI) facility, the Class A radioactive secondary waste will waste imported in either be...

  20. 77 FR 52072 - Request To Amend a License to Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... COMMISSION Request To Amend a License to Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public..., 2012 July 31, 2012 IW022/ radioactive total of 5,500 beneficial reuse 02 11005700. waste including tons... radioactive human-animal combinations. waste that is waste) Activity levels attributed to contaminated...

  1. The basics in transportation of low-level radioactive waste

    SciTech Connect

    Allred, W.E.

    1998-06-01

    This bulletin gives a basic understanding about issues and safety standards that are built into the transportation system for radioactive material and waste in the US. An excellent safety record has been established for the transport of commercial low-level radioactive waste, or for that matter, all radioactive materials. This excellent safety record is primarily because of people adhering to strict regulations governing the transportation of radioactive materials. This bulletin discusses the regulatory framework as well as the regulations that set the standards for packaging, hazard communications (communicating the potential hazard to workers and the public), training, inspections, routing, and emergency response. The excellent safety record is discussed in the last section of the bulletin.

  2. Radioactive waste disposal in simulated peat bog repositories

    SciTech Connect

    Schell, W.R.; Massey, C.D.

    1987-01-01

    The Low Level Radioactive Waste Policy Act of 1980 and the Low Level Radioactive Waste Policy Amendments Act of 1985 have required state governments to be responsible for providing low-level waste (LLW) disposal facilities in their respective areas. Questions are (a) is the technology sufficiently advanced to ensure that radioactive wastes can be stored for 300 to 1000 yr without entering into any uncontrolled area. (b) since actual experience does not exist for nuclear waste disposal over this time period, can the mathematical models developed be tested and verified using unequivocal data. (c) how can the public perception of the problem be addressed and the potential risk assessment of the hazards be communicated. To address the technical problems of nuclear waste disposal in the acid precipitation regions of the Northern Hemisphere, a project was initiated in 1984 to evaluate an alternative method of nuclear waste disposal that may not rely completely on engineered barriers to protect the public. Certain natural biogeochemical systems have been retaining deposited materials since the last Ice Age (12,000 to 15,000 yr). It is the authors belief that the biogeochemical system of wetlands and peat bogs may provide an example of an analogue for a nuclear waste repository system that can be tested and verified over a sufficient time period, at least for the LLW disposal problem.

  3. Radioactive waste minimization implications of clinically-indicated exsanguination procedures.

    PubMed

    Costello, R G; Emery, R J; Pakala, R B; Charlton, M A

    2000-09-01

    Exsanguination is a method of animal euthanasia approved for use in specific circumstances. Animals undergoing exsanguination are fully anesthetized, and the blood is removed resulting in hypovolemia. In situations where radioactive materials are used as part of a research protocol that remain predominantly suspended in the blood, the exsanguination procedure can result in a significant lowering of residual radioactivity content. This reduction can greatly affect the types of waste management and minimization options that can be subsequently applied. In this study, data were collected from 20 rabbits injected with approximately 29.6 MBq (0.8 mCi) of tritiated thymidine as part of a percutaneous transluminal carotid artery angioplasty study. Residual concentrations of radioactivity were consistently reduced by an average of 88%. The reduction was very significant in this instance, since the residual activities were below the established exemption limit of 1.85 kBq g(-1) (0.05 microCi g(-1)) for disposal of these wastes as non-radioactive. Although the exsanguination procedure can result in significant waste minimization opportunities in certain circumstances, this should not be the rationale for its use. Rather, the method of euthanasia should be based exclusively on sound animal care and use principles, and waste management strategies should then be made following that decision. Health Phys. 79(3):291-293; 2000 Key words: waste, low-level; waste management; radiation protection; blood

  4. Decontamination processes for low level radioactive waste metal objects

    SciTech Connect

    Longnecker, E.F.; Ichikawa, Sekigo; Kanamori, Osamu

    1996-12-31

    Disposal and safe storage of contaminated nuclear waste is a problem of international scope. Although the greatest volume of such waste is concentrated in the USA and former Soviet Union, Western Europe and Japan have contaminated nuclear waste requiring attention. Japan`s radioactive nuclear waste is principally generated at nuclear power plants since it has no nuclear weapons production. However, their waste reduction, storage and disposal problems may be comparable to that of the USA on an inhabited area basis when consideration is given to population density where Japan`s population, half that of the USA, lives in an area slightly smaller than that of California`s. If everyone`s backyard was in California, the USA might have insoluble radioactive waste reduction, storage and disposal problems. Viewing Japan`s contaminated nuclear waste as a national problem requiring solutions, as well as an economic opportunity, Morikawa began research and development for decontaminating low level radioactive nuclear waste seven years ago. As engineers and manufacturers of special machinery for many years Morikawa brings special electro/mechanical/pneumatic Skills and knowledge to solving these unique problems. Genden Engineering Services and Construction Company (GESC), an affiliate of Japan Atomic Power Company, recently joined with Morikawa in this R&D effort to decontaminate low level radioactive nuclear waste (LLW) and to substantially reduce the volume of such nuclear waste requiring long term storage. This paper will present equipment with both mechanical and chemical processes developed over these several years by Morikawa and most recently in cooperation with GESC.

  5. Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia

    SciTech Connect

    Sueiae, S.; Fabjan, M.; Hrastar, U.; Mali, T.; Steinkuhler, C.; Lenie, K.

    2008-07-01

    The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment of institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software

  6. [Problems of safety regulation under radioactive waste management in Russia].

    PubMed

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  7. Radioactive waste and contamination in the former Soviet Union

    SciTech Connect

    Suokko, K.; Reicher, D. )

    1993-04-01

    Decades of disregard for the hazards of radioactive waste have created contamination problems throughout the former Soviet Union rivaled only by the Chernobyl disaster. Although many civilian activities have contributed to radioactive waste problems, the nuclear weapons program has been by far the greatest culprit. For decades, three major weapons production facilities located east of the Ural Mountains operated in complete secrecy and outside of environmental controls. Referred to until recently only by their postal abbreviations, the cities of Chelyabinsk-65, Tomsk-7, and Krasnoyarsk-26 were open only to people who worked in them. The mismanagement of waste at these sites has led to catastrophic accidents and serious releases of radioactive materials. Lack of public disclosure, meanwhile, has often prevented proper medical treatment and caused delays in cleanup and containment. 5 refs.

  8. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  9. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    SciTech Connect

    Penzin, R.A.; Sarychev, G.A.

    2012-07-01

    the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those

  10. Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes

    SciTech Connect

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    1999-10-07

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  11. Radioactive waste management in the former USSR. Volume 3

    SciTech Connect

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  12. Argonne-West facility requirements for a radioactive waste treatment demonstration

    SciTech Connect

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-03-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne`s Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne`s TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment.

  13. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  14. The Constitution, waste facility performance standards, and radioactive waste classification: Is equal protection possible?

    SciTech Connect

    Eye, R.V.

    1993-03-01

    The process for disposal of so-called low-level radioactive waste is deadlocked at present. Supporters of the proposed near-surface facilities assert that their designs will meet minimum legal and regulatory standards currently in effect. Among opponents there is an overarching concern that the proposed waste management facilities will not isolate radiation from the biosphere for an adequate length of time. This clash between legal acceptability and a perceived need to protect the environment and public health by requiring more than the law demand sis one of the underlying reasons why the process is deadlocked. Perhaps the most exhaustive public hearing yet conducted on low-level radioactive waste management has recently concluded in Illinois. The Illinois Low-Level Radioactive Waste Disposal Facility Sitting Commission conducted 71 days of fact-finding hearings on the safety and suitability of a site near Martinsville, Illinois, to serve as a location for disposition of low-level radioactive waste. Ultimately, the siting commission rejected the proposed facility site for several reasons. However, almost all the reasons were related, to the prospect that, as currently conceived, the concrete barrier/shallow-land burial method will not isolate radioactive waste from the biosphere. This paper reviews the relevant legal framework of the radioactive waste classification system and will argue that it is inadequate for long-lived radionuclides. Next, the paper will present a case for altering the classification system based on high-level waste regulatory considerations.

  15. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    SciTech Connect

    Osmanlioglu, Ahmet Erdal

    2012-07-01

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of {sup 137}Cs, {sup 134}Cs and {sup 60}Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m{sup 3} and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m{sup 3}. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the {sup 137}Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this

  16. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    SciTech Connect

    Marra, S.L.; Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  17. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  18. Method of encapsulating solid radioactive waste material for storage

    DOEpatents

    Bunnell, Lee Roy; Bates, J. Lambert

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation.

  19. Low temperature hydrothermal destruction of organics in Hanford tank wastes

    SciTech Connect

    Orth, R.J.; Elmore, M.R.; Zacher, A.H.; Neuenschwander, G.G.; Schmidt, A.J.; Jones, E.O.; Hart, T.R.; Poshusta, J.C.

    1994-08-01

    The objective of this work is to evaluate and develop a low temperature hydrothermal process (HTP) for the destruction of organics that are present wastes temporarily stored in underground tanks at the Hanford Site. Organic compounds contribute to tank waste safety issues, such as hydrogen generation. Some organic compounds act as complexants, promoting the solubility of radioactive constituents such as {sup 90}Sr and {sup 241}Am, which is undesirable for waste pretreatment processing. HTP is thermal-chemical autogenous processing method that is typically operated between 250{degrees}C and 375{degrees}C and approximately 200 atm. Testing with simulated tank waste, containing a variety of organics has been performed. The distribution of strontium, cesium and bulk metals between the supernatant and solid phases as a function of the total organic content of the waste simulant will be presented. Test results using simulant will be compared with similar tests conducted using actual radioactive waste.

  20. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  1. GIVE THE PUBLIC SOMETHING, SOMETHING MORE INTERESTING THAN RADIOACTIVE WASTE

    SciTech Connect

    Codee, Hans D.K.

    2003-02-27

    In the Netherlands the policy to manage radioactive waste is somewhat different from that in other countries, although the practical outcome is not much different. Long-term, i.e. at least 100 years, storage in above ground engineered structures of all waste types is the first element in the Dutch policy. Second element, but equally important, is that deep geologic disposal is foreseen after the storage period. This policy was brought out in the early eighties and was communicated to the public as a practical, logical and feasible management system for the Dutch situation. Strong opposition existed at that time to deep disposal in salt domes in the Netherlands. Above ground storage at principle was not rejected because the need to do something was obvious. Volunteers for a long term storage site did not automatically emerge. A site selection procedure was followed and resulted in the present site at Vlissingen-Oost. The waste management organization, COVRA, was not really welcomed here , but was tolerated. In the nineties facilities for low and medium level waste were erected and commissioned. In the design of the facilities much attention was given to emotional factors. The first ten operational years were needed to gain trust from the local population. Impeccable conduct and behavior was necessary as well as honesty and full openness to the public Now, after some ten years, the COVRA facilities are accepted. And a new phase is entered with the commissioning of the storage facility for high level waste, the HABOG facility. A visit to that facility will not be very spectacular, activities take place only during loading and unloading. Furthermore it is a facility for waste, so unwanted material will be brought into the community. In order to give the public something more interesting the building itself is transformed into a piece of art and in the inside a special work of art will be displayed. Together with that the attitude of the company will change. We are

  2. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  3. 78 FR 53793 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... XW012/04 radioactive tons of low- Consignee(s).'' No other 11005699 waste). level waste). changes to the existing license which authorizes the export of non-conforming waste and/or waste resulting from...

  4. LLNL radioactive waste management plan as per DOE Order 5820. 2

    SciTech Connect

    Not Available

    1984-12-10

    The following aspects of LLNL's radioactive waste management plan are discussed: program administration; description of waste generating processes; radioactive waste collection, treatment, and disposal; sanitary waste management; site 300 operations; schedules and major milestones for waste management activities; and environmental monitoring programs (sampling and analysis).

  5. [Radioactive waste due to electric power and mineral fertiliser production].

    PubMed

    Marović, Gordana; Sencar, Jasminka; Bronzović, Maja; Franić, Zdenko; Kovac, Jadranka

    2006-09-01

    Radiation Protection Unit of the Institute for Medical Research and Occupational Health in Zagreb has been conducting systematic investigations of radioactive contamination of the Croatian environment by anthropogenic fission products as well as by naturally occurring radioactive material (NORM) since 1963. Several critical sites in Croatia were identified for NORM, that is, for slag and ash repositories from coal-fired power plants and phosphogypsum repository from a mineral fertilizer production plant. As the coals and phosphate ores contain naturally occurring radionuclides, especially the members of the uranium and thorium radioactive chains, utilising these materials in various industries only enhances their natural radioactivity in residual waste. Consequently, the resulting activity concentrations of natural radionuclides in waste material could be several times higher than in the adjacent soil. These deposited materials pose permanent risk of radiation exposure due to the long physical half-life of natural radionuclides (e.g., T 1/2 = 1600 years for 226Ra). Results of scientific investigations related to natural radioactivity are used in the recovery of slag and ash repositories and landfills, as well as in establishing regulatory criteria targeting import of coal and phosphate ores. In consequence, recently measured activity concentrations of natural radioactivity in imported materials used nowadays in coal-fired power plants are significantly lower than in previously used raw materials. Therefore, slag and ash can be used as additive materials in cement production.

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  8. Commercial low-level radioactive waste transportation liability and radiological risk

    SciTech Connect

    Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

    1992-08-01

    This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

  9. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  10. High level radioactive waste glass production and product description

    SciTech Connect

    Sproull, J.F.; Marra, S.L.; Jantzen, C.M.

    1993-12-01

    This report examines borosilicate glass as a means of immobilizing high-level radioactive wastes. Borosilicate glass will encapsulate most of the defense and some of the commercial HLW in the US. The resulting waste forms must meet the requirements of the WA-SRD and the WAPS, which include a short term PCT durability test. The waste form producer must report the composition(s) of the borosilicate waste glass(es) produced but can choose the composition(s) to meet site-specific requirements. Although the waste form composition is the primary determinant of durability, the redox state of the glass; the existence, content, and composition of crystals; and the presence of glass-in-glass phase separation can affect durability. The waste glass should be formulated to avoid phase separation regions. The ultimate result of this effort will be a waste form which is much more stable and potentially less mobile than the liquid high level radioactive waste is currently.

  11. Remote automated material handling of radioactive waste containers

    SciTech Connect

    Greager, T.M.

    1994-09-01

    To enhance personnel safety, improve productivity, and reduce costs, the design team incorporated a remote, automated stacker/retriever, automatic inspection, and automated guidance vehicle for material handling at the Enhanced Radioactive and Mixed Waste Storage Facility - Phase V (Phase V Storage Facility) on the Hanford Site in south-central Washington State. The Phase V Storage Facility, scheduled to begin operation in mid-1997, is the first low-cost facility of its kind to use this technology for handling drums. Since 1970, the Hanford Site`s suspect transuranic (TRU) wastes and, more recently, mixed wastes (both low-level and TRU) have been accumulating in storage awaiting treatment and disposal. Currently, the Hanford Site is only capable of onsite disposal of radioactive low-level waste (LLW). Nonradioactive hazardous wastes must be shipped off site for treatment. The Waste Receiving and Processing (WRAP) facilities will provide the primary treatment capability for solid-waste storage at the Hanford Site. The Phase V Storage Facility, which accommodates 27,000 drum equivalents of contact-handled waste, will provide the following critical functions for the efficient operation of the WRAP facilities: (1) Shipping/Receiving; (2) Head Space Gas Sampling; (3) Inventory Control; (4) Storage; (5) Automated/Manual Material Handling.

  12. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    SciTech Connect

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification.

  13. Anaerobic digestion of low-level radioactive cellulosic and animal wastes

    SciTech Connect

    Donaldson, T.L.; Strandberg, G.W.; Patton, B.D.; Harrington, F.E.

    1983-02-01

    A preliminary process design and a cost estimate have been made for a volume reduction plant for low-level, solid radioactive wastes generated at ORNL. The process is based on extension of existing anaerobic digestion technology and on laboratory studies indicating the feasibiity of this technology for digestion of the organic portion of low-level, solid radioactive wastes. A gaseous effluent (CO/sub 2/ and CH/sub 4/) is vented in the process, and a liquid ffluent containing undigested solids is filtered to remove solids, which are buried. The liquid is discharged to the low-level liquid waste system at ORNL. Overall volume reduction of solid waste by this process is estimated to be approximately 20:1. Costs appear to be comparable to costs for compaction. The process design is conservative, and several potential improvements which could increase efficiency are discussed in this report.

  14. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    L. Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  15. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Lisa Harvego; Brion Bennett

    2011-11-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  16. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Not Listed

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  17. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Lisa Harvego; Brion Bennett

    2011-09-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  18. Disposal of Radioactive Waste at Hanford Creates Problems

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  19. International Surveillance Mechanism for Sea Dumping of Radioactive Waste

    ERIC Educational Resources Information Center

    OECD Observer, 1977

    1977-01-01

    The OECD consultation and surveillance mechanism is discussed in detail in this article. Four phases are identified and examined: (1) Notification, (2) Consultation, (3) Supervision, (4) Post-operation. This system is designed to provide the safest possible conditions for sea dumping of radioactive wastes. (MA)

  20. Radioactive Waste...The Problem and Some Possible Solutions

    ERIC Educational Resources Information Center

    Olivier, Jean-Pierre

    1977-01-01

    Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)

  1. Driving Forces and Priorities in the Hungarian Radioactive Waste Management

    SciTech Connect

    Takats, F.; Ormai, P.

    2002-02-26

    Hungary, being a candidate state to the European Union, pays particular attention to the measures that are typically considered as good practice within the EU when developing and implementing its national program for the safe management of spent fuel and radioactive waste. The Public Agency for Radioactive Waste Management (PURAM) has been designated to carry out the multilevel tasks in the field of radioactive waste management. In accordance with changes in infrastructure, Hungary is about to make significant strategic and technical decisions. There are several technical priorities for the coming years, such as improving the existing L/ILW repository, construction of a new repository for L/ILW, extension of the interim storage facility for spent fuel and setting up a revised back-end policy. Preparations for decommissioning of the nuclear facilities have to be developed as well. The paper outlines the main problem areas as well as the approach to managing radioactive wastes. It will be concluded that priorities can be set, but key dates and deadlines will always contain an element of uncertainty due to public and political acceptance problems.

  2. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  3. Method of storing radioactive wastes using modified tobermorite

    DOEpatents

    Komarneni, Sridhar; Roy, Della M.

    1985-01-01

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatable with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  4. Mitigation of plant penetration into radioactive waste utilizing herbicides

    SciTech Connect

    Cox, G.R.

    1982-01-01

    This paper describes the use of herbicides as an effective method of precluding plant root penetration into buried radioactive wastes. The discussed surface applications are selective herbicides to control broadleaf vegetation in grasses; nonselective herbicides, which control all vegetation; and slow-release forms of these herbicides to prolong effectiveness.

  5. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  6. Removal of iodide ion from simulated radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kodama, H.

    1999-01-01

    The previous study reported that BiPbO2(NO3) is one of the most promising candidate materials for removing and immobilizing radioactive iodide. In that case, the solution contained only dissolved NaI and did not contain competing anions. This paper reports the reactivity of BiPbO2(NO3) with iodide ions in simulated radioactive liquid waste. This liquid contains many components, especially highly concentrated NaNO2, Na2CO3 and NaNO3. The obtained results show that BiPbO2(NO3) is useful for removing iodide ion from the simulated radioactive liquid waste but that there is a problem which should be resolved in the future. The problem is that a competing anion, HCO3 -, interferes with the exchange reaction, and only the surfaces of the BiPbO2(NO3) crystals are used for the reaction.

  7. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    SciTech Connect

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-06-01

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

  8. 76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... COMMISSION Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management AGENCY... Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy... are also needed to safely manage Low-Level Radioactive Waste. The public comment period closed...

  9. 77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Low-Level Radioactive Waste Management and Volume Reduction AGENCY: Nuclear Regulatory Commission... Commission) is revising its 1981 Policy Statement on Low-Level Radioactive Waste (LLRW) Volume Reduction..., ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No. ML090410531), and referenced the...

  10. 77 FR 20077 - Request for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... 500 Return for storage Mexico. Inc., February 14, 2012, radioactive waste tons of or disposal by a February 16, 2012, XW019, in the form of ash radioactive waste licensed facility 11005986. and...

  11. 77 FR 52073 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... to a maximum Non-conforming Canada. 27, 2012, July 31, 2012, XW012/ radioactive total of 5,500 materials and/or 02, 11005699. waste including tons or about radioactive various 1,000 tons waste that...

  12. Radioactive Waste Management Information for 1991 and Record-to-Date

    SciTech Connect

    Litteer, D.L.; Peterson, C.N.; Sims, A.M.

    1993-04-01

    This document presents detailed data, bar graphs, and pie charts on volume, radioactivity, isotopic identity, origin, and decay status of radioactive waste for the calendar year 1991. It also summarizes the radiative waste data records compiled from 1952 to present for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Radioactive Waste Management Information System.

  13. Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2

    SciTech Connect

    1995-06-21

    The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

  14. The problem of burying radioactive wastes containing transplutonium elements (TPE)

    SciTech Connect

    Bryzgalova, R.V.; Krivokhatskii, A.S.; Rogozin, Y.M.; Sinitsyna, G.S.

    1986-09-01

    This paper discusses the problem of burying radioactive wastes containing TPE. The most acceptable and developed method at present is that of disposal into continental, deep-lying, geological formatins. Based on an analysis of estimates of the thermal conditions on burying highly active wastes, including TPE concentrates, data on the filtration and sorption characteristics of rocks, estimates of the diffusion of radionuclide species capable of migrating, and taking into account the retention powers of rocks it is concluded that it is possible to bury such wastes in weakly permeable geological formations possessing shielding characteristics which ensure reliability and safety in burial.

  15. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  16. Integrated approach to hazardous and radioactive waste remediation

    SciTech Connect

    Hyde, R.A.; Reece, W.J.

    1994-11-01

    The US Department of Energy Office of Technology Development is supporting the demonstration, and evaluation of a suite of waste retrieval technologies. An integration of leading-edge technologies with commercially available baseline technologies will form a comprehensive system for effective and efficient remediation of buried waste throughout the complex of DOE nuclear facilities. This paper discusses the complexity of systems integration, addressing organizational and engineering aspects of integration as well as the impact of human operators, and the importance of using integrated systems in remediating buried hazardous and radioactive waste.

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic

  18. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  19. A risk analysis model for radioactive wastes.

    PubMed

    Külahcı, Fatih

    2011-07-15

    Hazardous wastes affect natural environmental systems to a significant extend, and therefore, it is necessary to control their harm through risk analysis. Herein, an effective risk methodology is proposed by considering their uncertain behaviors on stochastic, statistical and probabilistic bases. The basic element is attachment of a convenient probability distribution function (pdf) to a given waste quality measurement sequence. In this paper, (40)K contaminant measurements are adapted for risk assessment application after derivation of necessary fundamental formulations. The spatial contaminant distribution of (40)K is presented in the forms of maps and three-dimensional surfaces.

  20. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  1. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    SciTech Connect

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-03-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative `incineration` was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material.

  2. Radioactive waste reality as revealed by neutron measurements

    SciTech Connect

    Schultz, F.J.

    1995-12-31

    To comprehend certain aspects of the contents of a radioactive waste container is not a trivial matter, especially if one is not allowed to open the container and peer inside. One of the suite of tools available to a practioner in the art of nondestructive assay is based upon neutron measurements. Neutrons, both naturally occuring and induced, are penertrating radiations that can be detected external to the waste container. The practioner should be skilled in applying the proper technique(s) to selected waste types. Available techniques include active and passive neutron measurements, each with their own strengths and weaknesses. The waste material itself can compromise the assay results by occluding a portion of the mass of fissile material present, or by multiplying the number of neutrons produced by a spontaneously fissioning mass. This paper will discuss the difficult, but albeit necessary marriage, between radiioactive waste types and alternative neutron measurement techniques.

  3. Characteristics of low-level radioactive decontamination waste

    SciTech Connect

    Akers, D.W.; McConnell, J.W. Jr.; Morcos, N. )

    1993-02-01

    This document addresses the work performed during fiscal year 1992 at the Idaho National Engineering Laboratory by the Low-Level Radioactive Waste -- Decontamination Waste Program (FIN A6359), which is funded by the US Nuclear Regulatory Commission. The program evaluates the physical stability and leachability of solidified waste streams generated in the decontamination process of primary coolant systems in operating nuclear power stations. The data in this document include the chemical composition and characterization of waste streams from Peach Bottom Atomic Power Station Unit 3 and from Nine Mile Point Nuclear Plant Unit 1. The results of compressive strength testing on immersed and unimmersed solidified waste-form specimens from peach Bottom, and the results of leachate analysis are addressed. Cumulative fractional release rates and leachability indexes of those specimens were calculated and are included in this report.

  4. RETENTION OF SULFATE IN HIGH LEVEL RADIOACTIVE WASTE GLASS

    SciTech Connect

    Fox, K.

    2010-09-07

    High level radioactive wastes are being vitrified at the Savannah River Site for long term disposal. Many of the wastes contain sulfate at concentrations that can be difficult to retain in borosilicate glass. This study involves efforts to optimize the composition of a glass frit for combination with the waste to improve sulfate retention while meeting other process and product performance constraints. The fabrication and characterization of several series of simulated waste glasses are described. The experiments are detailed chronologically, to provide insight into part of the engineering studies used in developing frit compositions for an operating high level waste vitrification facility. The results lead to the recommendation of a specific frit composition and a concentration limit for sulfate in the glass for the next batch of sludge to be processed at Savannah River.

  5. First use of in situ vitrification on radioactive wastes

    SciTech Connect

    Bowlds, L.

    1992-03-01

    A high-temperature method for containing hazardous wastes, which was first developed in the 1980s, is being adapted for the in situ treatment of buried radioactive wastes by the US DOE's Idaho National Engineering Laboratory (INEL), following its recent report on successful preliminary tests. The method, called in situ vitrification (ISV), is an electrically induced thermal process that melts and fuses soil and wastes into a glass-like material at least as strong as natural obsidian or granite. Gases released during the process are captured and treated by an off-gas treatment system. After the wastes are vitrified, they could be left in place, or the mass could be broken up and transported to a disposal site. The glass-like substance would be chemically and physically similar to obsidian and from 4 to 10 times more durable than typical borosilicate glasses used to immobolize high-level nuclear wastes.

  6. Radioactive waste acceptance team and generator interface yields successful implementation of waste acceptance criteria

    SciTech Connect

    Rowe, J.G.; Griffin, W.A.; Rast, D.M.

    1996-02-01

    The Fernald Environmental Management Project has developed a successful Low Level Waste Shipping Program in compliance with the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325, Revision 1. This shipping program is responsible for the successful disposal of more than 4 million cubic feet of Low Level Waste over the past decade. The success of the Fernald Low Level Waste Shipping Program is due to the generator program staff working closely with the DOE-NV Radioactive Waste Acceptance Program Team to achieve win/win situations. The teamwork is the direct result of dedicated, proactive professionals working together toward a common objective: the safe disposition of low level radioactive waste. The growth and development of this program has many lessons learned to share with the low level waste generating community. The recognition of reciprocal interests enables consistently high annual volumes of Fernald waste disposal at the Nevada Test Site without incident. The large volumes successfully disposed serve testimony to the success of the program which is equally important to all Nevada Test Site and Fernald stakeholders. The Fernald approach to success is currently being shared with other low-level waste generators through DOE-NV sponsored outreach programs. This paper introduces examples of Fernald Environmental Restoration Management Corporation contributions to the DOE-NV Radioactive Waste Acceptance Program outreach initiatives. These practices are applicable to other low level waste disposal programs whether federal, commercial, domestic or international.

  7. Systematic approach to radioactive waste characterization at Belgoprocess

    SciTech Connect

    Huys, T.; Gielen, P.

    2007-07-01

    Belgoprocess is capable of processing almost every type of low and medium level radioactive waste and thereby covering a large segment from the back-end of the nuclear fuel cycle. Waste from numerous producers is treated and conditioned into a stable end product. Such processes lead inevitably to the generation of a large number of different waste streams. Each of these streams is uniquely defined by its radiological and physicochemical characteristics. From regulatory point of view and in order to select appropriate processing and conditioning techniques it is essential to characterize each of these waste streams. Because of the labour-intensive nature of the work and to keep a trustworthy traceability, Belgoprocess has decided to automate this task as far as possible. Therefore it has developed a system that seamlessly integrates waste-accounting and radiological characterization into one system. The use of generic methodologies, isotope vectors and a measurement database makes it possible to characterize most waste packages without elaborate knowledge of radiological characterization. A nuclear engineer develops generic methodologies and defines isotope vectors and appropriate measurements. These combinations are documented in procedures and used by the waste-accounting team to characterize the waste packages. The whole system is designed and programmed in such a way that it offers maximum flexibility and traceability. For example, changes in characterization of the previously processed and conditioned waste will propagate through the system until the changes reach the end product. This kind of systematic approach to radioactive waste characterization is found to be very fruitful. (authors)

  8. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    SciTech Connect

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  9. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect

    1996-01-01

    The report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. The study focused on three specific models: MEPAS version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. The approach to model review advocated in the study is directed to technical staff responsible for identifying, selecting and applying multimedia models for use at sites containing radioactive and hazardous materials. In the report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted.

  10. Process for disposing of radioactive wastes

    SciTech Connect

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing or melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.

  11. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  12. A Stochastic Problem Arising in the Storage of Radioactive Waste

    SciTech Connect

    Williams, M.M.R.

    2004-07-15

    Nuclear waste drums can contain a collection of radioactive components of uncertain activity and randomly dispersed in position. This implies that the dose-rate at the surface of different drums in a large assembly of similar drums can have significant variations according to the physical makeup and configuration of the waste components. The present paper addresses this problem by treating the drum, and its waste, as a stochastic medium. It is assumed that the sources in the drum contribute a dose-rate to some external point. The strengths and positions are chosen by random numbers, the dose-rate is calculated and, from several thousand realizations, a probability distribution for the dose-rate is obtained. It is shown that a very close approximation to the dose-rate probability function is the log-normal distribution. This allows some useful statistical indicators, which are of environmental importance, to be calculated with little effort.As an example of a practical situation met in the storage of radioactive waste containers, we study the problem of 'hotspots'. These arise in drums in which most of the activity is concentrated on one radioactive component and hence can lead to the possibility of large surface dose-rates. It is shown how the dose-rate, the variance, and some other statistical indicators depend on the relative activities on the sources. The results highlight the importance of such hotspots and the need to quantify their effect.

  13. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    SciTech Connect

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed

  14. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.

    2006-11-15

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  15. Confinement matrices for low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.

    2012-02-01

    Mining of uranium for nuclear fuel production inevitably leads to the exhaustion of natural uranium resources and an increase in market price of uranium. As an alternative, it is possible to provide nuclear power plants with reprocessed spent nuclear fuel (SNF), which retains 90% of its energy resource. The main obstacle to this solution is related to the formation in the course of the reprocessing of SNF of a large volume of liquid waste, and the necessity to concentrate, solidify, and dispose of this waste. Radioactive waste is classified into three categories: low-, intermediate-, and high-level (LLW, ILW, and HLW); 95, 4.4, and 0.6% of the total waste are LLW, ILW, and HLW, respectively. Despite its small relative volume, the radioactivity of HLW is approximately equal to the combined radioactivity of LLW + ILW (LILW). The main hazard of HLW is related to its extremely high radioactivity, the occurrence of long-living radionuclides, heat release, and the necessity to confine HLW for an effectively unlimited time period. The problems of handling LILW are caused by the enormous volume of such waste. The available technology for LILW confinement is considered, and conclusion is drawn that its concentration, vitrification, and disposal in shallow-seated repositories is a necessary condition of large-scale reprocessing of SNF derived from VVER-1000 reactors. The significantly reduced volume of the vitrified LILW and its very low dissolution rate at low temperatures makes borosilicate glass an ideal confinement matrix for immobilization of LILW. At the same time, the high corrosion rate of the glass matrix at elevated temperatures casts doubt on its efficient use for immobilization of heat-releasing HLW. The higher cost of LILW vitrification compared to cementation and bitumen impregnation is compensated for by reduced expenditure for construction of additional engineering barriers, as well as by substantial decrease in LLW and ILW volume, localization of shallow

  16. Geochemistry of trench leachates at low-level radioactive waste burial sites

    SciTech Connect

    Dayal, R.; Pietrzak, R.F.; Clinton, J.

    1984-01-01

    Trench leachates from the low-level radioactive waste burial sites at Maxey Flats, Kentucky and Barnwell, South Carolina were sampled and analyzed for dissolved inorganic, organic, and radionuclide constituents. Relative to local groundwaters, the trench leachates exhibit significant modifications in major ion and radionuclide compositions. The formation and composition of the leachates can be attributed to site-specific hydrological and geochemical factors. Leaching and microbial degradation of waste materials are considered to be the important geochemical processes controlling the leachate compositions. Elevated concentrations of Na, K, Ca, Mg, Cl, dissolved organic and inorganic carbon, and various anthropogenic radionuclides reflect leaching of waste materials. Anoxic conditions as characterized by depletion of dissolved oxygen and sulphate, and high contents of alkalinity and ammonia reflect microbial decomposition of organic waste materials. Because of relatively stagnant water accumulations, the extent of modification is much greater in the Maxey Flats leachates as compared with those from Barnwell. 8 references, 2 figures, 2 tables.

  17. 78 FR 53793 - Request To Amend a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public....'' No IW022/04 radioactive tons of low- other changes to the existing 11005700 waste). level waste). license which authorizes the import of low-level waste for recycling and processing for volume...

  18. Functional design criteria radioactive liquid waste line replacement, Project W-087. Revision 3

    SciTech Connect

    McVey, C.B.

    1994-10-13

    This document provides the functional design criteria for the 222-S Laboratory radioactive waste drain piping and transfer pipeline replacement. The project will replace the radioactive waste drain piping from the hot cells in 222-S to the 219-S Waste Handling Facility and provide a new waste transfer route from 219-S to the 244-S Catch Station in Tank Farms.

  19. Characterizations of the radioactive waste by the remotely-controlled collimated spectrometric system

    SciTech Connect

    Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.; Ivanov, Oleg P.

    2015-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system was used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)

  20. Radioactive waste management approaches for developed countries

    SciTech Connect

    Patricia Paviet-Hartmann; Anthony Hechanova; Catherine Riddle

    2013-07-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (70% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  1. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  2. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  3. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  4. Properties of radioactive wastes and waste containers. [Marlex CL-100

    SciTech Connect

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables.

  5. Programmatic assessment of radioactive waste management: nuclear fuel and waste programs

    SciTech Connect

    Not Available

    1980-06-01

    Gilbert/Commonwealth (G/C) has performed an assessment of the waste management operations at Oak Ridge National Laboratory (ORNL). The objective of this study was to review radioactive waste management as practiced at ORNL and to recommend improvements or alternatives for further study. The study involved: (1) an on-site survey of ORNL radioactive waste management operations; (2) a review of radioactive waste source data, records, and regulatory requirements; (3) an assessment of existing and planned treatment, storage, and control facilities; and (4) identification of alternatives for improving waste management operations. Information for this study was obtained from both personal interviews and written reports. The ORNL waste management operations have maintained radioactive releases to the environment well below regulatory requirements and have been successful, in recent years, in consistently reducing emissions. This has been accomplished primarily by upgrading equipment and procedures. However, this upgrading must be an on-going activity because of: (1) the changing nature of ORNL activities; (2) an increase in radioactive burden on-site; (3) the age of existing facilities and equipment; and (4) changes to regulatory requirements. As a result of reviewing ORNL operations, specific suggestions are offered for resolving isolated problems. However, these suggestions should be considered in the context of a comprehensive plan for the management of radioactive wastes at ORNL. Three areas were determined to warrant more detailed, consolidated studies: (1) waste management program planning; (2) development of a centralized computer based data acquisition system; and (3) a review for maintaining exposures to on-site personnel as low as reasonably achievable (ALARA).

  6. Managing the uncertainties of low-level radioactive waste disposal.

    PubMed

    Bullard, C W; Weger, H T; Wagner, J

    1998-08-01

    The disposal of low-level radioactive waste (LLRW) entails financial and safety risks not common to most market commodities. This manifests debilitating uncertainty regarding future waste volume and disposal technology performance in the market for waste disposal services. Dealing with the publicly perceived risks of LLRW disposal increases the total cost of the technology by an order of magnitude, relative to traditional shallow land burial. Therefore, this analysis first examines five proposed disposal facility designs and quantifies the costs associated with these two important sources of uncertainty. Based upon this analysis, a marketable disposal permit mechanism is proposed and analyzed for the purpose of reducing market uncertainty and thereby facilitating a market solution to the waste disposal problem. In addition to quantifying the costs, the results illustrate the ways in which the design of a technology is influenced by its institutional environment, and vice versa.

  7. THE USE OF POLYMERS IN RADIOACTIVE WASTE PROCESSING SYSTEMS

    SciTech Connect

    Skidmore, E.; Fondeur, F.

    2013-04-15

    The Savannah River Site (SRS), one of the largest U.S. Department of Energy (DOE) sites, has operated since the early 1950s. The early mission of the site was to produce critical nuclear materials for national defense. Many facilities have been constructed at the SRS over the years to process, stabilize and/or store radioactive waste and related materials. The primary materials of construction used in such facilities are inorganic (metals, concrete), but polymeric materials are inevitably used in various applications. The effects of aging, radiation, chemicals, heat and other environmental variables must therefore be understood to maximize service life of polymeric components. In particular, the potential for dose rate effects and synergistic effects on polymeric materials in multivariable environments can complicate compatibility reviews and life predictions. The selection and performance of polymeric materials in radioactive waste processing systems at the SRS are discussed.

  8. Ocean dumping of low-level radioactive wastes

    SciTech Connect

    Templeton, W.L.

    1982-10-01

    Scientific bases, developed internationally over the last 20 years, to control and restrict to acceptable levels the resultant radiation doses that potentially could occur from the dumping of low-level radioactive wastes in the deep oceans were presented. The author concluded that present evaluations of the disposal of radioactive wastes into the oceans, coastal and deep ocean, indicate that these are being conducted within the ICRP recommended dose limits. However, there are presently no international institutions or mechanisms to deal with the long-term radiation exposure at low-levels to large numbers of people on a regional basis if not a global level. Recommendations were made to deal with these aspects through the established mechanisms of NEA/OECD and the London Dumping Convention, in cooperation with ICRP, UNSCEAR and the IAEA. (PSB)

  9. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    SciTech Connect

    Anderson, J.D.; Hagel, D.L.

    1995-08-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  10. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    SciTech Connect

    Anderson, J.D.; Hagel, D.L.

    1994-09-01

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

  11. Greater-confinement disposal of low-level radioactive wastes

    SciTech Connect

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive wastes include a broad spectrum of wastes that have different radionuclide concentrations, half-lives, and physical and chemical properties. Standard shallow-land burial practice can provide adequate protection of public health and safety for most low-level wastes, but a small volume fraction (about 1%) containing most of the activity inventory (approx.90%) requires specific measures known as ''greater-confinement disposal'' (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics. This paper presents an overview of the factors that must be considered in planning the application of methods proposed for providing greater confinement of low-level wastes. 27 refs.

  12. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    SciTech Connect

    Dominick, J L

    2001-12-18

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification.

  13. High level radioactive waste management facility design criteria

    SciTech Connect

    Sheikh, N.A.; Salaymeh, S.R.

    1993-10-01

    This paper discusses the engineering systems for the structural design of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). At the DWPF, high level radioactive liquids will be mixed with glass particles and heated in a melter. This molten glass will then be poured into stainless steel canisters where it will harden. This process will transform the high level waste into a more stable, manageable substance. This paper discuss the structural design requirements for this unique one of a kind facility. A special emphasis will be concentrated on the design criteria pertaining to earthquake, wind and tornado, and flooding.

  14. Office of Civilian Radioactive Waste Management annual report to Congress

    SciTech Connect

    1989-12-01

    This sixth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal year 1988. An epilogue chapter reports significant events from the end of the fiscal year on September 30, 1988 through March 1989. The Nuclear Waste Policy Amendments Act (NWPA) of 1987 made significant changes to the NWPA relating to repository siting and monitored retrievable storage and added new provisions for the establishment of several institutional entities with which OCRWM will interact. Therefore, a dominant theme throughout this report is the implementation of the policy focus and specific provisions of the Amendments Act. 50 refs., 8 figs., 4 tabs.

  15. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  16. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  17. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    SciTech Connect

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  18. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  19. Biochemical process of low level radioactive liquid simulation waste containing detergent

    SciTech Connect

    Kundari, Noor Anis Putra, Sugili; Mukaromah, Umi

    2015-12-29

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0

  20. Electric controlled air incinerator for radioactive wastes

    DOEpatents

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  1. [Board on Radioactive Waste Managements action on progress toward objectives

    SciTech Connect

    Not Available

    1994-11-28

    This report is a progress report to the US DOE from the Board on Radioactive Waste Management (BRWM), which summarizes the activities of the board during the period December 1, 1993 to May 2, 1994. The report summarizes the meetings of the board as a whole, of various of its subcommittees, and of activities it has undertaken to further its original mission. This board is associated with the National Research Council to give advice to US DOE.

  2. Remote radioactive waste drum inspection with an autonomous mobile robot

    SciTech Connect

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions.

  3. Remote radioactive waste drum inspection with an autonomous mobile robot

    SciTech Connect

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-11-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions.

  4. Status of low-level radioactive waste management in Korea

    SciTech Connect

    Lee, K.J.

    1993-03-01

    The Republic of Korea has accomplished dramatic economic growth over the past three decades; demand for electricity has rapidly grown more than 15% per year. Since the first nuclear power plant, Kori-1 [587 MWe, pressurized water reactor (PWR)], went into commercial operation in 1978, the nuclear power program has continuously expanded and played a key role in meeting the national electricity demand. Nowadays, Korea has nine nuclear power plants [eight PWRs and one Canadian natural uranium reactor (CANDU)] in operation with total generating capacity of 7,616 MWe. The nuclear share of total electrical capacity is about 36%; however, about 50% of actual electricity production is provided by these nine nuclear power plants. In addition, two PWRs are under construction, five units (three CANDUs and two PWRs) are under design, and three more CANDUs and eight more PWRs are planned to be completed by 2006. With this ambitious nuclear program, the total nuclear generating capacity will reach about 23,000 MWe and the nuclear share will be about 40% of the total generating capacity in the year 2006. In order to expand the nuclear power program this ambitiously, enormous amounts of work still have to be done. One major area is radioactive waste management. This paper reviews the status of low-level radioactive waste management in Korea. First, the current and future generation of low-level radioactive wastes are estimated. Also included are the status and plan for the construction of a repository for low-level radioactive wastes, which is one of the hot issues in Korea. Then, the nuclear regulatory system is briefly mentioned. Finally, the research and development activities for LLW management are briefly discussed.

  5. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect

    Freer, J.; Freer, E.; Bond, A.

    1996-07-01

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

  6. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  7. 76 FR 53980 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... application No. docket No. GE Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling... sources. or storage and radioactive Combined total disposition. sealed sources. activity level for...

  8. 78 FR 9746 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... Class A appropriate varying combinations radioactive disposition. Amend which was imported mixed waste... End use Recipient application No.; docket No. country Diversified Scientific Class A radioactive Up...

  9. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  10. Reductive capacity measurement of waste forms for secondary radioactive wastes

    SciTech Connect

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  11. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  12. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization

    SciTech Connect

    Darsh T. Wasan

    2002-02-20

    Radioactive waste treatment processes usually involve concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like sludge chemical processing and melter operations. Hence, the objective of this research was to study the mechanisms that produce foaming during nuclear waste treatment, to identify key parameters which aggravate foaming, and to identify effective ways to eliminate or mitigate foaming. Experimental and theoretical investigations of the surface phenomenon, suspension rheology, and bubble generation and interactions that lead to the formation of foam during waste processing were pursued under this EMSP project. Advanced experimental techniques including a novel capillary force balance in conjunction with the combined differential and common interferometry were developed to characterize particle-particle interactions at the foam lamella surfaces as well as inside the foam lamella. Laboratory tests were conducted using a non-radioactive simulant slurry containing high levels of noble metals and mercury similar to the High-Level Waste. We concluded that foaminess of the simulant sludge was due to the presence of colloidal particles such as aluminum, iron, and manganese. We have established the two major mechanisms of formation and stabilization of foams containing such colloidal particles: (1) structural and depletion forces; and (2) steric stabilization due to the adsorbed particles at the surfaces of the foam lamella. Based on this mechanistic understanding of foam generation and stability, an improved antifoam agent was developed by us, since commercial antifoam agents were found to be ineffective in the aggressive physical and chemical environment present in the sludge processing. The improved antifoamer was subsequently tested in a pilot plant at the Savannah River Site (SRS) and was found to be effective. Also, in the SRTC experiment, the irradiated

  13. The Morsleben repository -- Waste acceptance requirements and radioactive wastes to be disposed of

    SciTech Connect

    Noack, W.; Kugel, K.; Brennecke, P.

    1995-12-31

    In the Federal Republic of Germany it is intended to dispose of all kinds of radioactive waste in deep geological formations. The Morsleben repository is used for the disposal of low and intermediate level radioactive waste mainly containing radionuclides with short half lives. This facility constructed and operated in the days of the former GDR is operated by the Federal Office for Radiation Protection. New safety assessments have been performed with regard to further operation since 1990. The safety assessment concerning normal operation and assumed incidents, radiological long-term safety and nuclear critically safety, was based on a broader data base and more realistic scenarios and models compared to previous safety assessments. Consequently, the existing waste acceptance requirements being a part of the operation license were specified in detail. On the basis of the effective waste acceptance requirements about 15,800 m{sup 3} radioactive wastes have been emplaced in the Morsleben repository corresponding to a total activity of 6.5 {times} 10{sup 14}Bq. During the validity of the existing license for continuous operation up to June 2000 it is planned to dispose of 40,000 m{sup 3} radioactive waste.

  14. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    SciTech Connect

    Ikeda, Brian M.

    2013-07-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  15. A Challenge for Radioactive Waste Management: Memory Preservation

    SciTech Connect

    Charton, P.; Ouzounian, G.

    2008-07-01

    ANDRA, the French National Radioactive Waste Management Agency, is responsible for managing all radioactive waste in France over the long term. In the case of short-lived waste for which disposal facilities have a life expectancy of a few centuries, the Agency has set up a system for preserving the memory of those sites. Based on the historical analysis on a comparable timescale and on an appraisal of information-conservation means, a series of regulatory as well as technical provisions was made in order to ensure that sound information be transmitted to future generations. Requirements associated to the provisions deal mostly with legibility and a clear understanding of the information that must be decrypted and understood at least during the lifetime of the facilities (i.e., a few centuries). It must therefore be preserved throughout the same period. Responses to the requirements will be presented notably on various information-recording media, together with the information-diffusion strategy to the different authorities and structures within French society. A concrete illustration of the achievements made so far is the Centre de la Manche Disposal Facility, which was closed down in 1994 and is currently in its post-closure monitoring phase since 2003. In the case of deep geological repositories for long-lived radioactive waste, preserving memory takes a different aspect. First of all, timescales are much longer and are counted in hundreds of thousands of years. It is therefore much more difficult to consider how to maintain the richness of the information over such time periods than it is for short-lived waste. Both the nature and the form of the information to be transmitted must be revised. It would be risky indeed to base memory preservation over the long term on similar mechanisms beyond 1,000 years. Based on the heritage of a much more ancient history, we must seek to find appropriate means in order to develop surface markers and even more to ensure their

  16. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  17. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  18. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  19. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  20. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  1. 10 CFR 72.108 - Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Spent fuel, high-level radioactive waste, or reactor... RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors § 72.108 Spent fuel, high-level radioactive waste, or reactor-related greater than Class C waste transportation....

  2. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste,...

  3. A MODULAR STORE FOR DRUMS OF RADIOACTIVE WASTE

    SciTech Connect

    Sims, J.; Holden, G.

    2003-02-27

    Currently, the United Kingdom has no facility for the disposal of any waste above the low level category, indicating that all intermediate and high level waste, apart from spent fuel, has to be stored on the site of origin. To meet this storage requirement, nuclear sites are resorting to converting existing buildings or contemplating the construction of dedicated facilities, resulting in considerable cost implications. These financing aspects not only concern the construction strategy but also impinge on the ultimate decommissioning costs associated with each particular nuclear site. This paper reports on an investigation to apply the commercially available interlocking hollow block system to the design of a store for drums of radioactive waste. This block system can be quickly, and cost effectively, erected and filled with a choice of dense material. Later, the store can be dismantled with a minimum of disposable radioactive waste and the complete facility re - erected at another location if required, considerably reducing both capital construction and decommissioning costs. The investigation also encompassed a detailed review of the equipment required to place the drums of waste into the store, resulting in a scheme for a remotely operated vehicle that did not rely on umbilical control cables. The drum handler design included for 100% redundancy of all functions, meaning that whichever component failed, the handler was always recoverable to effect the necessary repair. The ultimate aim of the waste drum store review was to produce a facility that was as safe as a conventionally constructed unit, but at a lower overall building and decommissioning cost.

  4. Hydrogeological influences on radionuclide migration from the major radioactive waste burial sites at Chernobyl (A review)

    SciTech Connect

    Dgepo, S.P.; Skalsky, A.S.; Bugai, D.A.; Marchuk, V.V.; Waters, R.D.

    1994-03-01

    This paper summarizes the recent hydrogeological investigations of several research organizations on waste confinement at the major radioactive waste (RW) burial sites immediately adjacent to the Chernobyl Nuclear Power Plant (Ch. NPP). Hydrogeological conditions and radiologic ground-water contamination levels are described. Ongoing ground-water monitoring practices are evaluated. The chemical and physical characteristics of the radionuclides within the burial sites are considered. Ground water and radionuclide transport modeling studies related to problems of the RW disposal sites are also reviewed. Current concerns on future impacts of the RW burial sites on the hydrological environment and water resources of the Ch.NPP area are discussed.

  5. Gamma monitor for assay of radioactive solid-waste shipments

    SciTech Connect

    Crawford, J H

    1982-06-01

    A gamma waste monitor has been developed and evaluated at the Savannah River Plant (SRP). The purpose of the monitor is to improve estimates of the radionuclides in solid wastes arriving at the plant's burial ground. This monitor, a computer-based spectrometer, quantitatively measures many radionuclides in SRP waste, including waste in heavily shielded shipping casks. Radionuclides emitting gamma rays of sufficient energy to penetrate the shipping container walls can be measured directly. Other radionuclides that are beta emitters or which emit gamma photons too weak to penetrate the walls of the waste containers can often be estimated by their association with measurable gamma photons. Development of the monitor was initiated to find a more accurate method of estimating the quantities of radioactive materials accumulated in the burial ground and to ensure compliance with burial limits imposed by SRP technical standards. Another benefit from the monitor is that it provides specific radionuclide data which are essential to environmental impact evaluations and decommissioning planning. The gamma waste monitor is described. (WHK)

  6. 78 FR 45578 - Application For a License to Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... quantity Storage or Canada. June 4, 2013, June 5, 2013, radioactive waste authorized for disposal by the XW021, 11006101. as contaminated export will not original secondary waste exceed quantities...

  7. 78 FR 26812 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... (Class to a maximum additional Atomic 2013; XW012/03; 11005699. A radioactive total of 5,500 Energy of Canada waste). tons of low- Limited facilities as level waste). ``Ultimate Foreign Consignee(s).''...

  8. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE)...

  9. 78 FR 9747 - Request To Amend A License To Import; Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... COMMISSION Request To Amend A License To Import; Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... radioactive Up to 378,000 Volume reduction...... Canada Services, Inc.; January 10, mixed waste kilograms... other contaminants, free release to ship including on shipping the Canadian waste to...

  10. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE)...

  11. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE)...

  12. 78 FR 26813 - Request To Amend a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public... the licensee name 2013, IW022/03, 11005700. A radioactive total of 5,500 from ``Perma-Fix waste). tons of low- Environmental level waste). Services, Inc.'' to ``Perma-Fix Northwest, Inc.'', and (2)...

  13. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE)...

  14. 25 CFR 170.903 - Who notifies tribes of the transport of radioactive waste?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Who notifies tribes of the transport of radioactive waste... INDIAN RESERVATION ROADS PROGRAM Miscellaneous Provisions Hazardous and Nuclear Waste Transportation § 170.903 Who notifies tribes of the transport of radioactive waste? The Department of Energy (DOE)...

  15. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect

    B. C. Rogers; P. L. Walter; R. D. Baird

    1999-08-01

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  16. Potential areas for the near surface disposal of radioactive waste in Pahang

    NASA Astrophysics Data System (ADS)

    Harun, Nazran; Yaacob, Wan Zuhairi Wan; Simon, Norbert

    2016-11-01

    Radioactive material has been used in Malaysia since the 1960's. The low level radioactive wastes are generated every year and stored in Nuclear Malaysia. The storage capacities are expected to reach its maximum capacity by the year 2025. Disposal of the radioactive waste is considered as one of the best options for future radioactive and nuclear material generated in Malaysia, hence the necessary site selection. The selection process used the IAEA document as the main reference, supported by site selection procedure applied by various countries. ArcGIS software was used to simulate the selection of the near surface radioactive waste disposal. This paper suggested the best four potential areas for the near surface radioactive waste disposal in Pahang state, Malaysia, the Sg. Lembing, Gambang, Felda Lepar Utara and Cheneh areas. These areas are located within 100 km from the potential radioactive waste producer (Lynas).

  17. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  18. Guidance document for prepermit bioassay testing of low-level radioactive waste

    SciTech Connect

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  19. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  20. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  1. Biogeochemical Changes at Early Stage After the Closure of Radioactive Waste Geological Repository in South Korea

    SciTech Connect

    Choung, Sungwook; Um, Wooyong; Choi, Seho; Francis, Arokiasamy J.; Kim, Sungpyo; Park, Jin beak; Kim, Suk-Hoon

    2014-09-01

    Permanent disposal of low- and intermediate-level radioactive wastes in the subterranean environment has been the preferred method of many countries, including Korea. A safety issue after the closure of a geological repository is that biodegradation of organic materials due to microbial activities generates gases that lead to overpressure of the waste containers in the repository and its disintegration with the release of radionuclides. As part of an ongoing large-scale in situ experiment using organic wastes and groundwater to simulate geological radioactive waste repository conditions, we investigated the geochemical alteration and microbial activities at an early stage (~63 days) intended to be representative of the initial period after repository closure. The increased numbers of both aerobes and facultative anaerobes in waste effluents indicate that oxygen content could be the most significant parameter to control biogeochemical conditions at very early periods of reaction (<35 days). Accordingly, the values of dissolved oxygen and redox potential were decreased. The activation of anaerobes after 35 days was supported by the increased concentration to ~50 mg L-1 of ethanol. These results suggest that the biogeochemical conditions were rapidly altered to more reducing and anaerobic conditions within the initial 2 months after repository closure. Although no gases were detected during the study, activated anaerobic microbes will play more important role in gas generation over the long term.

  2. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  3. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  4. Potential for radioactive patient excreta in hospital trash and medical waste

    SciTech Connect

    Evdokimoff, V.; Cash, C.; Buckley, K.

    1994-02-01

    Radioactive excreta from nuclear medicine patients can enter solid waste as common trash and medical biohazardous waste. Many landfills and transfer stations now survey these waste streams with scintillation detectors which may result in rejection of a hospital`s waste. Our survey indicated that on the average either or both of Boston University Medical Center Hospital`s waste streams can contain detectable radioactive excreta on a weekly basis. To avoid potential problems, radiation detectors were installed in areas where housekeepers carting trash and medical waste must pass through to ensure no radioactivity leaves the institution. 3 refs.

  5. Building of multilevel stakeholder consensus in radioactive waste repository siting

    SciTech Connect

    Dreimanis, A.

    2007-07-01

    This report considers the problem of multilevel consensus building for siting and construction of shared multinational/regional repositories for radioactive waste (RW) deep disposal. In the siting of a multinational repository there appears an essential innovative component of stakeholder consensus building, namely: to reach consent - political, social, economic, ecological - among international partners, in addition to solving the whole set of intra-national consensus building items. An entire partnering country is considered as a higher-level stakeholder - the national stakeholder, represented by the national government, being faced to simultaneous seeking an upward (international) and a downward (intra-national) consensus in a psychologically stressed environment, possibly being characterized by diverse political, economic and social interests. The following theses as a possible interdisciplinary approach towards building of shared understanding and stakeholder consensus on the international scale of RW disposal are forwarded and developed: a) building of international stakeholder consensus would be promoted by activating and diversifying on the international scale multilateral interactions between intra- and international stakeholders, including web-based networks of the RW disposal site investigations and decision-making, as well as networks for international cooperation among government authorities in nuclear safety, b) gradual progress in intergovernmental consensus and reaching multilateral agreements on shared deep repositories will be the result of democratic dialogue, via observing the whole set of various interests and common resolving of emerged controversies by using advanced synergetic approaches of conflict resolution, c) cross-cultural thinking and world perception, mental flexibility, creativity and knowledge are considered as basic prerogatives for gaining a higher level of mutual understanding and consensus for seeking further consensus, for

  6. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  7. Regulatory Approaches for Solid Radioactive Waste Storage in Russia

    SciTech Connect

    Griffith, A.; Testov, S.; Diaschev, A.; Nazarian, A.; Ustyuzhanin, A.

    2003-02-26

    The Russian Navy under the Arctic Military Environmental Cooperation (AMEC) Program has designated the Polyarninsky Shipyard as the regional recipient for solid radioactive waste (SRW) pretreatment and storage facilities. Waste storage technologies include containers and lightweight modular storage buildings. The prime focus of this paper is solid radioactive waste storage options based on the AMEC mission and Russian regulatory standards. The storage capability at the Polyarninsky Shipyard in support of Mobile Pretreatment Facility (MPF) operations under the AMEC Program will allow the Russian Navy to accumulate/stage the SRW after treatment at the MPF. It is anticipated that the MPF will operate for 20 years. This paper presents the results of a regulatory analysis performed to support an AMEC program decision on the type of facility to be used for storage of SRW. The objectives the study were to: analyze whether a modular storage building (MSB), referred in the standards as a lightweight building, would comply with the Russian SRW storage building standard, OST 95 10517-95; analyze the Russian SRW storage pad standard OST 95 10516-95; and compare the two standards, OST 95 10517-95 for storage buildings and OST 95 10516-95 for storage pads.

  8. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y.; Stepanyan, A.

    2012-07-01

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal

  9. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    PubMed

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste.

  10. Fifty years of federal radioactive waste management: Policies and practices

    SciTech Connect

    Bradley, R.G.

    1997-04-01

    This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

  11. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  12. Critical (public) masses: a case study of a radioactive waste site. [Weldon Springs

    SciTech Connect

    Williams, R.G.; Payne, B.A.

    1985-01-01

    Increasing public sensitivity to radioactive and other hazardous waste issues often results in opposition that ranges from presentations by individuals at various public meetings to organizations initiating legal action in the courts. Organized opposition to proposed plans by the US Department of Energy (DOE) for a Surplus Facilities Management Program site near Weldon Spring, Missouri, has emerged during the two years that DOE has been involved in developing plans for this waste management site. An important aspect in the development of the major interest group in this case was the reliance on extra-local expertise at both the state and national levels. The group received organizational strategies, information on radioactive waste, legal advice, and direction from state and local environmental interest groups and various state agencies. In this paper, we present the historical development of organized public response and agency response to DOE's plans for the Weldon Spring site. The role of the interest group has emerged as one of a watchdog, scrutinizing and evaluating data, publications, and plans. Other organizations now rely on the group as a clearinghouse for information. This case is of particular importance to other waste management projects because it demonstrates the effective use of networking between various interest groups and agencies from the local to the national level. We believe that the emergence of such groups and their ties with a variety of extra-local organizations will be the rule rather than the exception in future waste projects. Agency personnel and project sponsors will find that an interactive, cooperative approach with such groups is an effective way to resolve waste issues.

  13. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    SciTech Connect

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids.

  14. FINAL DISPOSAL OF RADIOACTIVE WASTE IN GERMANY: PLAN APPROVAL PROCESS OF KONRAD MINE AND ACCEPTANCE REQUIREMENTS

    SciTech Connect

    Bandt, Gabriele; Posnatzki, Britta; Beckers, Klaus-Arno

    2003-02-27

    Currently no final repository for any type of radioactive waste is operated in Germany. Preliminary Final Storage Acceptance Requirements for radioactive waste packages were published in 1995. Up to now these are the basis for treatment of radioactive waste in Germany. After licensing of the final repository these preliminary waste acceptance requirements are completed with licensing conditions. Some of these conditions affect the preliminary waste acceptance requirements, e. g. behavior of chemo-toxic substances in case of accidents in the final repository or the allowed maximum concentration of fissile material. The presented examples of radioactive waste conditioning campaigns demonstrate that no difficulties are expected in management, characterization and quality assurance of radioactive wastes due to the licensing conditions.

  15. Engineering Deinococcus geothermailis for Bioremediation of High-Temperature Radioactive Waste Environments

    SciTech Connect

    Brim, Hassan; Venkateswaran, Amudhan; Kostandarithes, Heather M.; Fredrickson, Jim K.; Daly, Michael J.

    2003-08-01

    Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes.

  16. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    SciTech Connect

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites.

  17. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  18. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect

    Perkins, B.L.

    1982-01-01

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  19. Vapor sampling of the headspace of radioactive waste storage tanks

    SciTech Connect

    Reynolds, D.A., Westinghouse Hanford

    1996-05-22

    This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

  20. Performance assessment for low-level radioactive waste disposal

    SciTech Connect

    Cook, J.R.; Hsu, R.H.; Wilhite, E.L.; Yu, A.D.

    1996-09-01

    In October 1994 the Savannah River Site became the first US DOE complex to use concrete vaults to dispose of low-level radioactive solid waste and better prevent soil and groundwater contamination. This article describes the design and gives a performance assessment of the vaults. Topics include the following: Performance objectives; scope; the performance assessment process-assemble a multidisciplinary working group; collect available data; define credible pathways/scenarios; develop conceptual models; conduct screening and detailed model calculations; assess sensitivity/uncertainty; integrate and interpret results; report. 9 figs., 3 tabs.

  1. Design of microwave vitrification systems for radioactive waste

    SciTech Connect

    White, T.L.; Wilson, C.T.; Schaich, C.R.; Bostick, T.L.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ``microwave melter`` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  2. Design of microwave vitrification systems for radioactive waste

    SciTech Connect

    White, T.L.; Wilson, C.T.; Schaick, C.R.; Bostick, W.D.

    1996-04-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or `microwave melter` is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge.

  3. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    SciTech Connect

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-07-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  4. Innovative Conditioning Procedures for the Generation of Radioactive Waste Products which are Stable for Intermediate Storage or Repository-Independent in Final Storage

    SciTech Connect

    Steinmetz, H.J.; Heimbach, H.; Odoj, R.; Pruesse, R.; Wartenberg, W.

    2006-07-01

    The German Federal Government aims at a future final storage site for all kinds of radioactive waste within 30 years. Existing and newly-produced radioactive waste therefore has to be stored in interim storage facilities over very long periods of time. At present, most German radioactive waste or waste packages are produced and qualified according to the acceptance criteria of the projected final repository KONRAD. [1] Nevertheless, conditioning strategies for crude radioactive waste have to take into account the open question of the future repository site as well as requirements for long-term interim storage. The Quality Control Group for Radioactive Waste (in German: Produktkontrollstelle fuer radioaktive Abfaelle - PKS) works as an independent expert organisation for the quality checking of radioactive waste packages as well as evaluating conditioning procedures for waste containers suitable for final storage on behalf of the Federal Office for Radiation Protection (in German: Bundesamt fuer Strahlenschutz - BfS). The Institute for Safety Research and Reactor Technology (in German: Institut fuer Sicherheitsforschung and Reaktortechnik - ISR) of the Research Centre Juelich investigates scientific/technical problems of nuclear disposal, especially in the field of waste treatment. In this context, ISR and PKS investigated and/or evaluated innovative procedures, by means of which radioactive waste flows may be minimized and rendered inert. QSA Global (formerly: AEA Technology QSA) conditions radioactive waste of German users from the fields of medicine, research and industry as well as from its own radioactive source production and operates an intermediate storage facility for radioactive waste containers. This poster deals with the characteristics and possible applications of new waste fixation media on the basis of organic and inorganic mineral polymers; with the approach of producing inherently safe waste forms for various geological formations. Plasma technology

  5. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used.

  6. Management of radioactive waste from nuclear power plants

    SciTech Connect

    Not Available

    1993-09-01

    Even thought risk assessment is an essential consideration in all projects involving radioactive or hazardous waste, its public role is often unclear, and it is not fully utilized in the decision-making process for public acceptance of such facilities. Risk assessment should be an integral part of such projects and should play an important role from beginning to end, i.e., from planning stages to the closing of a disposal facility. A conceptual model that incorporates all potential pathways of exposure and is based on site-specific conditions is key to a successful risk assessment. A baseline comparison with existing standards determines, along with other factors, whether the disposal site is safe. Risk assessment also plays a role in setting priorities between sites during cleanup actions and in setting cleanup standards for certain contaminants at a site. The applicable technologies and waste disposal designs can be screened through risk assessment.

  7. Investigation of Shielding Material in Radioactive Waste Management - 13009

    SciTech Connect

    OSMANLIOGLU, Ahmet Erdal

    2013-07-01

    In this study, various waste packages have been prepared by using different materials. Experimental work has been performed on radiation shielding for gamma and neutron radiation. Various materials were evaluated (e.g. concrete, boron, etc.) related to different application areas in radioactive waste management. Effects of addition boric compound mixtures on shielding properties of concrete have been investigated for neutron radiation. The effect of the mixture addition on the shielding properties of concrete was investigated. The results show that negative effects of boric compounds on the strength of concrete decreasing by increasing boric amounts. Shielding efficiency of prepared mixture added concrete up to 80% better than ordinary concretes for neutron radiation. The attenuation was determined theoretically by calculation and practically by using neutron dose rate measurements. In addition of dose rate measurements, strength tests were applied on test shielding materials. (authors)

  8. Risk methodology for geologic disposal of radioactive waste

    SciTech Connect

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R. ); Guzowski, R.V. )

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs.

  9. Site characterization for LIL radioactive waste disposal in Romania

    SciTech Connect

    Diaconu, D. R.; Birdsell, K. H.; Witkowski, M. S.

    2001-01-01

    Recent studies in radioactive waste management in Romania have focussed mainly on the disposal of low and intermediate level waste from the operation of the new nuclear power plant at Cernavoda. Following extensive geological, hydrological, seismological, physical and chemical investigations, a disposal site at Saligny has been selected. This paper presents description of the site at Saligny as well as the most important results of the site characterisation. These are reflected in the three-dimensional, stratigraphical representation of the loess and clay layers and in representative parameter values for the main layers. Based on these data, the simulation of the background, unsaturated-zone water flow at the Saligny site, calculated by the FEHM code, is in a good agreement with the measured moisture profile.

  10. Evaluation of Incident Risks in a Repository for Radioactive Waste

    SciTech Connect

    Grundler, D.; Mariae, D.; Muller, W.; Boetsch, W.; Thiel, J.

    2008-07-01

    A probabilistic safety assessment of the operation phase of a repository for radioactive waste requires the knowledge of incident risks. These are evaluated from generic observations. The present method accounts for the uncertainty (1) of whether an incident occurs, (2) of the incident rate, (3) of the duration of generic observation, and (4) of the duration of operation phase of the repository. It yields a mean risk and its standard deviation from a minimum of generic data, comprising only the number of observed incidents and the duration of the observation, as more comprehensive generic data are seldom available. It was shown that incidents sharing a common generic observation must be either merged together to a total incident or the generic observation must be split up in sub-observations, one for each such incident. The method was tested on the example of the German Konrad repository for low-level waste in a deep geological formation. (authors)

  11. Update on Radioactive Waste Management in the UK

    SciTech Connect

    Dalton, John; McCall, Ann

    2003-02-24

    This paper provides a brief background to the current position in the United Kingdom (UK) and provides an update on the various developments and initiatives within the field of radioactive waste management that have been taking place during 2002/03. These include: The UK Government's Department of Trade and Industry (DTi) review of UK energy policy; The UK Government's (Department of Environment, Food and Rural Affairs (Defra) and Devolved Administrations*) consultation program; The UK Government's DTi White Paper, 'Managing the Nuclear Legacy: A Strategy for Action'; Proposals for improved regulation of Intermediate Level Waste (ILW) conditioning and packaging. These various initiatives relate, in Nirex's opinion, to the three sectors of the industry and this paper will provide a comment on these initiatives in light of the lessons that Nirex has learnt from past events and suggest some conclusions for the future.

  12. [The main directions of improving the system of state accounting and control of radioactive substances and radioactive waste products].

    PubMed

    2012-01-01

    This paper describes a modification of the basic directions of state accounting and control of radioactive substances and radioactive waste products, whose implementation will significantly improve the efficiency of its operation at the regional level. Selected areas are designed to improve accounting and control system for the submission of the enterprises established by the reporting forms, the quality of the information contained in them, as well as structures of information and process for collecting, analyzing and data processing concerning radioactive substances and waste products.

  13. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    SciTech Connect

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  14. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  15. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  16. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  17. Current Status of the United Kingdom Programme for Long-Term Radioactive Waste Management

    SciTech Connect

    Murray, C. H.; Hooper, A. J.; Mathieson, J.

    2002-02-27

    In 1997, the UK programme for the deep disposal of radioactive waste was ''stopped dead in its tracks'' with the refusal by the Secretary of State for the Environment to allow Nirex to go ahead with its plans for an underground Rock Characterisation Facility at Sellafield in north-west England. Since that time a House of Lords' Select Committee has held an inquiry into what went wrong and what the way ahead should be. In addition, Nirex and the nuclear industry players have also been analyzing the past with a view to learning from the experience in taking things forward. In Nirex's view this is essentially an ethical issue; the waste exists and we should deal with it in this generation. Three areas need to be better addressed if a successful program of management of the nation's radioactive waste is to be achieved: the process of how policy development and implementation can be achieved; the structure of the nuclear industry and its relationship to the waste management organization; and the behavior of the players in their interaction with stakeholders. All three are underpinned by the need for transparency. In recognition that developing a policy for managing radioactive waste has to be achieved with the support of all stakeholders, the Government instigated a consultation exercise in September 2001. The initial phase of this initiative is essentially a consultation about consultation and is intended to decide on how the next stages of a six year policy development program should be addressed. In addition to this exercise, the Government is undertaking a fundamental review of the structuring of the United Kingdom Atomic Energy Authority (UKAEA) and British Nuclear Fuels plc (BNFL). They are both shareholders in Nirex and in November 2001 the Government announced the setting up of a Liabilities Management Authority (LMA) to manage the long-term nuclear liabilities that are publicly owned, particularly through those organizations. The future of Nirex will be

  18. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  19. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  20. 10 CFR 72.128 - Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Criteria for spent fuel, high-level radioactive waste, reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS...

  1. Modified microspheres for cleaning liquid wastes from radioactive nuclides

    SciTech Connect

    Danilin, Lev; Drozhzhin, Valery

    2007-07-01

    An effective solution of nuclear industry problems related to deactivation of technological and natural waters polluted with toxic and radioactive elements is the development of inorganic sorbents capable of not only withdrawing radioactive nuclides, but also of providing their subsequent conservation under conditions of long-term storage. A successful technical approach to creation of sorbents can be the use of hollow aluminosilicate microspheres. Such microspheres are formed from mineral additives during coal burning in furnaces of boiler units of electric power stations. Despite some reduction in exchange capacity per a mass unit of sorbents the latter have high kinetic characteristics that makes it possible to carry out the sorption process both in static and dynamic modes. Taking into account large industrial resources of microspheres as by-products of electric power stations, a comparative simplicity of the modification process, as well as good kinetic and capacitor characteristics, this class of sorbents can be considered promising enough for solving the problems of cleaning liquid radioactive wastes of various pollution levels. (authors)

  2. Processing of solid low level alpha suspected radioactive waste

    SciTech Connect

    Maes, Michael; Huys, Thomas; Rommes, Jeroen; Tuerlinckx, Robin; Bloemen, Raf

    2013-07-01

    Incineration of low active waste is the most efficient way to obtain high volume reduction factors. Although the initial scenario for processing low active alpha suspected waste (α- activity ≤ 400 MBq/m{sup 3}) in Belgium was supercompaction, incineration was eventually chosen for various benefits concerning volume reduction as well as the elimination of organic compounds improving the long term performance. This specific type of waste is often contaminated with for example mercury, requiring special attention in the treatment of both off-gas en waste water. In this paper it is shown that the CILVA incinerator of Belgoprocess N.V. has a high efficiency to combine both incineration and supercompaction of such types of waste. (authors)

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  4. Office of Civilian Radioactive Waste Management annual report to Congress

    SciTech Connect

    1988-08-01

    This is the fifth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM). The report covers the activities and expenditures of OCRWM during fiscal year 1987, which ended on September 30, 1987. The activities and accomplishments of OCRWM during fiscal year 1987 are discussed in chapters 1 through 9 of this report. The audited financial statements of the Nuclear Waste Fund are provided in chapter 10. Since the close of the fiscal year, a number of significant events have occurred. Foremost among them was the passage of the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act) on December 21, 1987, nearly 3 months after the end of the fiscal year covered by this report. As a result, some of the plans and activities discussed in chapters 1 through 9 are currently undergoing significant change or are being discontinued. Most prominent among the provisions of the Amendments Act is the designation of Yucca Mountain, Nevada, as the only candidate first repository site to be characterized. Therefore, the site characterization plans for Deaf Smith, Texas, and Hanford, Washington, discussed in chapter 3, will not be issued. The refocusing of the waste management program under the Amendments Act is highlighted in the epilogue, chapter 11. 68 refs., 7 figs., 7 tabs.

  5. Management of low-level radioactive wastes around the world

    SciTech Connect

    Lakey, L.T.; Harmon, K.M.; Colombo, P.

    1985-04-01

    This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

  6. Information model of data base of system for tracking burial of radioactive wastes

    SciTech Connect

    Kozlov, A.A.

    1994-03-01

    In recent years, agencies have worked out directives on an order for inventory-taking, recording mines sites and enterprises, transportation, processing, use collection, storage, and burial of radioactive substances and sources of ionizing radiation. ONe stage in solving this problem concerns management of radioactive wastes: making allowance for them during collection, processing, and burial, which at the present scientific and technical level requires an integrated data base capable of storing and processing large arrays of primary data. The main task in the conceptual design of the data base is to analyze the overall information requirements and to form the initial version of the information model. An analysis of the universe of discourse reflecting the enrichment process with radioactive wastes from the time they are formed in organizations until they are stored in repositories (REPOS), given, has made it possible to specify the following sets data elements, categorized by their essential nature, to give them the labels SUPPLIER, PERSONNEL, INSTRUMENT, WASTES, TRANSPORT, FACILITY, END PRODUCT, REPOSITORY, and PREMISES. Each entity is determined by an ensemble of properties (attributes).

  7. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect

    Witherspoon, P.A.

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  8. Ion exchangers in radioactive waste management: natural Iranian zeolites.

    PubMed

    Nilchi, A; Maalek, B; Khanchi, A; Ghanadi Maragheh, M; Bagheri, A; Savoji, K

    2006-01-01

    Five samples of natural zeolites from different parts of Iran were chosen for this study. In order to characterize and determine their structures, X-ray diffraction and infrared spectrometry were carried out for each sample. The selective absorption properties of each zeolite were found by calculating the distribution coefficient (K(d)) of various simulated wastes which were prepared by spiking the radionuclides with (131)I, (99)Mo, (153)Sm, (140)La and (147)Nd. All the zeolite samples used in this study had extremely high absorption value towards (140)La; clinoptolite from Mianeh and analsite from Ghalehkhargoshi showed good absorption for (147)Nd; clinoptolite from Semnan and clinoptolite from Firozkoh showed high absorption for (153)Sm; mesolite from Arababad Tabas showed good absorption for (99)Mo; and finally mesolite from Arababad Tabas, clinoptolite from Semnan and clinoptolite from Firozkoh could be used to selectively absorb (131)I from the stimulated waste which was prepared. The natural zeolites chosen for these studies show a similar pattern to those synthetic ion exchangers in the literature and in some cases an extremely high selectivity towards certain radioactive elements. Hence the binary separation of radioactive elements could easily be carried out. Furthermore, these zeolites, which are naturally occurring ion exchangers, are viable economically and extremely useful alternatives in this industry.

  9. Current status of the radioactive waste management programme in Spain

    SciTech Connect

    Lang-Lenton Leon, Jorge; Garcia Neri, Emilio

    2007-07-01

    Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as 'master plan' of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the most relevant events especially focused on optimizing the existing capacity and the start-up of a purpose -built disposal area for VLLW. Concerning the HLW programme, two aspects may be distinguished in the direct management of spent fuel: temporary storage and long-term management. In this regards, a major challenge has been the decision adopted by the Spanish Government to set up a Inter-ministerial Committee for the establishment of the criteria that must be met by the site of the Centralized Intermediate Storage (CTS) facility as the first and necessary step for the process. Also the developments of the long-term management programme will be presented in the frame of the ENRESA's R and D programme. Finally, in the field of decommissioning they will be presented the PIMIC project at the CIEMAT centre and the activities in course for the decommissioning of Jose Cabrera NPP. (authors)

  10. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    SciTech Connect

    Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; Scrimshire, Alex; Jaganathan, Balaasaran; Rohini, Jijy; Marra, James C.; Fox, Kevin M.; Pierce, Eric M.; Workman, Phyllis; Vienna, John D.

    2016-11-10

    In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42-) and total cation field strength index of the glass, Σ(z/a2), with a high goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.

  11. Corrosion study for a radioactive waste vitrification facility

    SciTech Connect

    Imrich, K.J.; Jenkins, C.F.

    1993-10-01

    A corrosion monitoring program was setup in a scale demonstration melter system to evaluate the performance of materials selected for use in the Defense Waste Processing Facility (DWPF) at the DOE`s Savannah River Site. The system is a 1/10 scale prototypic version of the DWPF. In DWPF, high activity radioactive waste will be vitrified and encapsulated for long term storage. During this study twenty-six different alloys, including DWPF reference materials of construction and alternate higher alloy materials, were subjected to process conditions and environments characteristic of the DWPF except for radioactivity. The materials were exposed to low pH, elevated temperature (to 1200{degree}C) environments containing abrasive slurries, molten glass, mercury, halides and sulfides. General corrosion rates, pitting susceptibility and stress corrosion cracking of the materials were investigated. Extensive data were obtained for many of the reference materials. Performance in the Feed Preparation System was very good, whereas coupons from the Quencher Inlet region of the Melter Off-Gas System experienced localized attack.

  12. Three multimedia models used at hazardous and radioactive waste sites

    SciTech Connect

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.

  13. Modelling the sulfate capacity of simulated radioactive waste borosilicate glasses

    DOE PAGES

    Bingham, Paul A.; Vaishnav, Shuchi; Forder, Sue D.; ...

    2016-11-10

    In this paper, the capacity of simulated high-level radioactive waste borosilicate glasses to incorporate sulfate has been studied as a function of glass composition. Combined Raman, 57Fe Mössbauer and literature evidence supports the attribution of coordination numbers and oxidation states of constituent cations for the purposes of modelling, and results confirm the validity of correlating sulfate incorporation in multicomponent borosilicate radioactive waste glasses with different models. A strong compositional dependency is observed and this can be described by an inverse linear relationship between incorporated sulfate (mol% SO42-) and total cation field strength index of the glass, Σ(z/a2), with a highmore » goodness-of-fit (R2 ≈ 0.950). Similar relationships are also obtained if theoretical optical basicity, Λth (R2 ≈ 0.930) or non-bridging oxygen per tetrahedron ratio, NBO/T (R2 ≈ 0.919), are used. Finally, results support the application of these models, and in particular Σ(z/a2), as predictive tools to aid the development of new glass compositions with enhanced sulfate capacities.« less

  14. IGRIS for characterizing low-level radioactive waste

    SciTech Connect

    Peters, C.W.; Swanson, P.J.

    1993-03-01

    A recently developed neutron diagnostic probe system has the potential to noninvasively characterize low-level radioactive waste in bulk soil samples, containers such as 55-gallon barrels, and in pipes, valves, etc. The probe interrogates the target with a low-intensity beam of 14-MeV neutrons produced from the deuterium-tritium reaction in a specially designed sealed-tube neutron-generator (STNG) that incorporates an alpha detector to detect the alpha particle associated with each neutron. These neutrons interact with the nuclei in the target to produce inelastic-, capture-, and decay-gamma rays that are detected by gamma-ray detectors. Time-of-flight methods are used to separate the inelastic-gamma rays from other gamma rays and to determine the origin of each inelastic-gamma ray in three dimensions through Inelastic-Gamma Ray Imaging and Spectroscopy (IGRIS). The capture-gamma ray spectrum is measured simultaneously with the IGRIS measurements. The decay-gamma ray spectrum is measured with the STNG turned off. Laboratory proof-of-concept measurements were used to design prototype systems for Bulk Soil Assay, Barrel Inspection, and Decontamination and Decommissioning and to predict their minimum detectable levels for heavy toxic metals (As, Hg, Cr, Zn, Pb, Ni, and Cd), uranium and transuranics, gamma-ray emitters, and elements such as chlorine, which is found in PCBs and other pollutants. These systems are expected to be complementary and synergistic with other technologies used to characterize low-level radioactive waste.

  15. 1989 Annual report on low-level radioactive waste management progress

    SciTech Connect

    Not Available

    1990-10-01

    This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

  16. Low-Level Radioactive Waste Management at the Nevada Test Site - Current Status

    SciTech Connect

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada Operations Office; Wendy A. Clayton, DOE Nevada Operations Office

    1999-02-01

    The performance objective of the Department of Energy's Low-Level Radioactive Waste disposal facility at the Nevada Test Site transcends those of any other radioactive waste disposal site in the United States. This paper describes the technical attributes of the facility, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  17. Proficiency test for non-destructive assay of 220 liter radioactive waste drums by gamma assay systems

    SciTech Connect

    Van Velzen, L.P.M.; Bruggeman, M.; Botte, J.

    2007-07-01

    The European Network of Testing Facilities for the Quality Checking of Radioactive Waste Packages (ENTRAP) initiated a feasibility study on how to organize in the most cost effective way an international proficiency tests for non-destructive, gamma-ray based, assay of 220 liter radioactive waste drums in the European Union at a regular time interval of 2 or 3 years. This feasibility study addresses all aspects of proficiency testing on radioactive waste packages including the design of a commonly accepted reference 220 liter drum. This design, based on the international response on a send out questionnaire, includes matrixes, radioactive sources; a solution to overcome the tedious and expensive international transport costs of real or even simulated waste packages, general cost estimation for the organization of, and the participation in the proficiency test. The proposed concept for the proficiency testing and the estimated costs are presented. The participation costs of the first proficiency test are mainly determined by the manufacturing of the non-radioactive 220 liter drum ({+-} 55%). Applied reference sources, transport of the drum and reference sources and participation costs in the proficiency test contribute each about {+-} 15%. (authors)

  18. Gas Generation in Radioactive Wastes - MAGGAS Predictive Life Cycle Model

    SciTech Connect

    Streatfield, R.E.; Hebditch, D.J.; Swift, B.T.; Hoch, A.R.; Constable, M.

    2006-07-01

    Gases may form from radioactive waste in quantities posing different potential hazards throughout the waste package life cycle. The latter includes surface storage, transport, placing in an operating repository, storage in the repository prior to backfill, closure and the post-closure stage. Potentially hazardous situations involving gas include fire, flood, dropped packages, blocked package vents and disruption to a sealed repository. The MAGGAS (Magnox Gas generation) model was developed to assess gas formation for safety assessments during all stages of the waste package life cycle. This is a requirement of the U.K. regulatory authorities and Nirex and progress in this context is discussed. The processes represented in the model include: Corrosion, microbial degradation, radiolysis, solid-state diffusion, chemico-physical degradation and pressurisation. The calculation was split into three time periods. First the 'aerobic phase' is used to model the periods of surface storage, transport and repository operations including storage in the repository prior to backfill. The second and third periods were designated 'anaerobic phase 1' and 'anaerobic phase 2' and used to model the waste packages in the post-closure phase of the repository. The various significant gas production processes are modeled in each phase. MAGGAS (currently Version 8) is mounted on an Excel spreadsheet for ease of use and speed, has 22 worksheets and is operated routinely for assessing waste packages (e.g. for ventilation of stores and pressurisation of containers). Ten operational and decommissioning generic nuclear power station waste streams were defined as initial inputs, which included ion exchange materials, sludges and concentrates, fuel element debris, graphite debris, activated components, contaminated items, desiccants and catalysts. (authors)

  19. Radioactive waste tank Initial Pretreatment Module (IPM) technology development and selection

    SciTech Connect

    Beeman, G.H.; Hansrote, G.

    1994-03-01

    The processing of nuclear materials at the Hanford Site has resulted in the accumulation of radioactive wastes stored in 177 single- and double-shell tanks (SSTs and DSTs). Fifty-four of the 177 tanks are currently on a tank watch list because organic chemicals and ferrocyanide compounds in the tanks present a potential fire or explosion hazard. In addition, one additional SST is under consideration for placement on the watch list because of high organic concentration. Seventeen of the watch list tanks require pretreatment, and two DST complexant concentrate waste tanks not on the watch list may also need pretreatment. The proposed Initial Pretreatment Module (IPM) is expected to resolve the safety concerns by destroying the organics and ferrocyanide compounds in the tank wastes. The primary objective of the IPM is to destroy or modify constituents that cause safety concerns in the watch list tanks. A secondary objective is to enhance the cost effectiveness of processing the wastes by performing additional processing. Overall, IPM will achieve organic/ferrocyanide destruction (the primary goal) and will assist in the separation of cesium, strontium, and technetium from the tank wastes.

  20. Volatile Organic Compounds (VOCs) and Elevated Concentrations of Carbon Dioxide (CO2) in Unsaturated-Zone Vapors Near a Chemical and Low-Level Radioactivity Waste-Disposal Facility, Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Baker, R. J.; Andraski, B. J.; Walvoord, M. A.; Stonestrom, D. A.; Prudic, D. E.; Luo, W.

    2003-12-01

    As part of its Toxic Substances Hydrology Program, the U.S. Geological Survey is studying contaminant-transport processes in an arid environment at the Amargosa Desert Research Site (http://nevada.usgs.gov/adrs/). The site is near waste-disposal facilities 20 kilometers east of Death Valley National Park. Low-level radioactive waste was buried in unlined trenches of varying depth during 1962-92. Hazardous chemical waste was buried in unlined trenches at an adjacent facility during 1970-88. Mean annual precipitation at the site from 1981 to 2000 was 108 millimeters. The unsaturated zone is aerobic down to the water table, which is about 110 m (meters) deep. Sampling infrastructure south and west of the facility includes a grid of vapor probes 1.5 m deep, a 23.8-m-deep background borehole (JFDB), and two approximately 100-m-deep boreholes (UZB-2 and UZB-3), which are 160 m and 100 m from the nearest trench, respectively, and are instrumented for multi-level sampling. Analytes detected in unsaturated-zone-vapor samples include elevated concentrations of tritium and carbon-14; three chlorofluorocarbon (CFC) compounds, eight chlorinated solvent compounds, and toluene, all at concentrations exceeding 1,000 parts per billion (ppb) in UZB-3, and at lower concentrations in UZB-2 and in the shallow-vapor-probe grid; and CO2 in concentrations up to 2% in UZB-3, whereas maximum CO2 concentrations in JFDB are less than 0.2%. With the notable exception of toluene, VOCs that are known to be highly biodegradable are generally absent or occur at low concentrations (<100 ppb). The trends in the CO2 concentration profiles approximately parallel those of CFCs and radionuclides. The following preliminary conclusions have been drawn from the radionuclide, VOC, and CO2 data: 1. Biodegradation of organic substances is a reasonable explanation for the presence of CO2 in UZB-3 at concentrations greater those in JFDB (background), which are attributed to near-surface natural biological

  1. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  2. Characterization of radioactive wastes with respect to harmful materials

    SciTech Connect

    Kugel, Karin; Steyer, Stefan; Brennecke, Peter; Gruendler, Detlef; Boetsch, Wilma; Haider, Claudia

    2013-07-01

    In addendum 4 to the license of the German KONRAD repository, which considers mainly radiological aspects, a water law permit was issued in order to prevent the pollution of the near-surface groundwater. The water law permit stipulates limitations for 10 radionuclides and 2 groups of radionuclides as well as mass limitations for 94 substances and materials relevant for water protection issues. Two collateral clauses, i.e. additional requirements imposed by the licensing authority, include demands on the monitoring, registering and balancing of non-radioactive harmful substances and materials /1/. In order to fulfill the requirements of the water law permit the German Federal Office for Radiation Protection (BfS) being the operator of the KONRAD repository has developed a concept, which ensures the compliance with all requirements of the water law permit and which provides standardized easy manageable guidance for the waste producers to describe their wastes. On 15 March 2011 the competent water authority, the 'Niedersaechsischer Landesbetrieb fuer Wasserwirtschaft, Kuesten- und Naturschutz' (NLWKN) issued the approval for this concept. Being the most essential part of this concept the procedural method and the developed description of nonradioactive waste package constituents by use of standardized lists of materials and containers is addressed and presented in this paper. The waste producer has to describe his waste package in a standardized way on the base of the lists of materials and containers. For each material in the list a comprehensive description is given comprising the composition, scope of application, quality control measures, thresholds and other data. Each entry in the list has to be approved by NLWKN. The scope of the lists is defined by the waste producers' needs. Using some particular materials as examples, the approval procedure for including materials in the list is described. The procedure of describing the material composition has to be

  3. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  4. Peat: a natural repository for low-level radioactive waste

    SciTech Connect

    Thomas, E.D.

    1985-12-01

    A study has been initiated to evaluate the possibility of using peat as a natural repository for the disposal of low-level radioactive waste. One aspect of this study was to determine the retentive properties of the peat through measurements of the distribution coefficients (K/sub d/) for Am-241, Ru-106, Cs-137, Co-57, and Sr-85 in two layers of mountain top peat bogs from Lefgren's, NY, and Spruce Flats, PA. These K/sub d/ values were then compared to literature values of various sediment/water systems at similar environmental conditions. Am-241, Ru-106, Co-57, and Sr-85 attained distribution coefficients in the organic rich layers of the bogs two orders of magnitude greater than those obtained previously at pH 4.0. Although, the Cs-137 sorbed strongly to the inorganic rich layer of the Spruce Flats, PA, bog, the K/sub d/ values obtained for this isotope were, again, comparable or higher than those reported previously at pH 4.0, indicating the greater retentive properties of the peat. A chromatographic ''theoretical plate'' model was used to describe the field migration of Cs-137. The advection and diffusion coefficients were higher in the Lefgren's Bog, NY, than those obtained for the Spruce Flats Bog, PA. These field data were substantiated by the lower Cs-137 K/sub d/ values determined in the laboratory for the Lefgren's Bog, NY, compared to the Spruce Flats Bog. Although this model gave a good indication of the field migration, it neglected the process of sorption as defined by the sorption isotherm. Based on the time series data on distribution ratio measurements, a Cameron-Klute type of sorption isotherm was indicated, with rapid equilibrium initially superimposed onto a slower first order linear reversible equilibrium. This sorption isotherm can then be used in the final form of a model to describe the migration of radionuclides in a peat bog. 19 refs., 15 figs., 10 tabs.

  5. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    SciTech Connect

    1996-04-01

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.

  6. Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass

    SciTech Connect

    Bennett, W.M.

    1997-08-06

    The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

  7. 78 FR 45579 - Request for a License to Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... maximum Laundering and Canada June 4, 2013, June 5, 2013, radioactive total of 0.074 decontamination IW032. waste consisting TBq (2 Ci) per of protective 11006100 of corrosion year (Total: clothing and...

  8. 76 FR 56490 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... Country from application No., docket No. Duratek Services, Inc., August Class A radioactive Radionuclide For recycle and Canada. 17, 2011, August 18, 2011, waste in the form reallocation: beneficial...

  9. 77 FR 73054 - Application for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice.... 2012, October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in...

  10. 76 FR 56489 - Request for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... radioactive Radionuclide Non-conforming Canada. 17, 2011, August 18, 2011, waste in the form...

  11. 75 FR 74107 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of... End use Country from application No., docket No. EnergySolutions, August 27, Radioactive waste...

  12. 75 FR 74104 - Request for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... End use Recipient country application no. docket No. EnergySolutions, August 27, Radioactive waste...

  13. 77 FR 20078 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of... application No. docket No. Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal...

  14. 75 FR 68840 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Application No. Docket No. Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S...] [FR Doc No: 2010-28258] NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take...

  15. 75 FR 27842 - Request for a License to Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... [Federal Register Volume 75, Number 95 (Tuesday, May 18, 2010)] [Notices] [Pages 27842-27843] [FR Doc No: 2010-11822] NUCLEAR REGULATORY COMMISSION Request for a License to Export Radioactive Waste... radioactive pounds (53 cubic disposal by the EnergySolutions), April 19, waste in the feet) of dry...

  16. 18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program

    SciTech Connect

    1997-05-20

    This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

  17. 2005 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect

    Bechtel Nevada

    2006-02-01

    This report is a compilation of the calendar year 2005 groundwater sampling results from the Area 5 Radioactive Waste Management Site. In additon to providing groundwater monitoring results, this report also includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Ny County, Nevada.

  18. Radioactive waste management complex low-level waste radiological composite analysis

    SciTech Connect

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

  19. Estimating and coping with public response to radioactive waste repository siting

    SciTech Connect

    Payne, B.A.

    1984-02-07

    The siting and construction of a radioactive waste disposal operation is likely to be controversial in the communities being considered, and at the state and national levels as well. Public response can be conceptualized at two levels: individual, and group or organizational. At the individual level, public response is the behavior of people motivated by their attitudes, knowledge, and perceptions of radioactive waste and its hazards and risks. On the group or organizational level, public response is the organized activity of individuals. Organizations provide the ability to pool resources and talents, set up a division of labor, hire experts, develop a skilled leadership, take legal action, and so on. A broad range of organizations is possible: ad hoc, existing community groups with an added purpose, nationally-recognized organizations, or government offices and agencies. Two cases of response to radioactive waste disposal sites illustrate these sources and kinds of response and lead to indicators to estimate the nature and level of response. Finally, drawing from the theoretical discussion of the sources and levels of public response, on the estimation techniques, and on the examples, specific coping strategies are developed. These strategies take different forms, based on the nature and level of response (either supporting or opposing) to the proposed siting, and the past experience of the community members with similar projects, with other federal requirements, and with citizens' action groups, as well as sources and accuracy of information individuals and groups have. However, all strategies are based on a policy of honesty and straight-forwardness, with a sincere effort on the part of site evaluators and decision-makers to be attentive and responsive to the public's concerns. 10 references.

  20. Control of high level radioactive waste-glass melters. Part 5, Modelling of complex redox effects

    SciTech Connect

    Bickford, D.F.; Choi, A.S.

    1991-12-31

    Slurry Fed Melters (SFM) are being developed in the United States, Europe and Japan for the conversion of high-level radioactive waste to borosilicate glass for permanent disposal. The high transition metal, noble metal, nitrate, organic, and sulfate contents of these wastes lead to unique melter redox control requirements. Pilot waste-glass melter operations have indicated the possibility of nickel sulfide or noble-metal fission-product accumulation on melter floors, which can lead to distortion of electric heating patterns, and decrease melter life. Sulfide formation is prevented by control of the redox chemistry of the melter feed. The redox state of waste-glass melters is determined by balance between the reducing potential of organic compounds in the feed, and the oxidizing potential of gases above the melt, and nitrates and polyvalent elements in the waste. Semiquantitative models predicting limitations of organic content have been developed based on crucible testing. Computerized thermodynamic computations are being developed to predict the sequence and products of redox reactions and is assessing process variations. Continuous melter test results have been compared to improved computer staged-thermodynamic-models of redox behavior. Feed chemistry control to prevent sulfide and moderate noble metal accumulations are discussed. 17 refs., 3 figs.

  1. Impact assessment of draft DOE Order 5820.2B. Radioactive Waste Technical Support Program

    SciTech Connect

    1995-04-01

    The Department of Energy (DOE) has prepared a revision to DOE Order 5820.2A, entitled ``Radioactive Waste Management.`` DOE issued DOE Order 5820.2A in September 1988 and, as the title implies, it covered only radioactive waste forms. The proposed draft order, entitled ``Waste Management,`` addresses the management of both radioactive and nonradioactive waste forms. It also includes spent nuclear fuel, which DOE does not consider a waste. Waste forms covered include hazardous waste, high-level waste, transuranic (TRU) waste, low-level radioactive waste, uranium and thorium mill tailings, mixed waste, and sanitary waste. The Radioactive Waste Technical Support Program (TSP) of Leached Idaho Technologies Company (LITCO) is facilitating the revision of this order. The EM Regulatory Compliance Division (EM-331) has requested that TSP estimate the impacts and costs of compliance with the revised order. TSP requested Dames & Moore to aid in this assessment by comparing requirements in Draft Order 5820.2B to ones in DOE Order 5820.2A and other DOE orders and Federal regulations. The assessment started with a draft version of 5820.2B dated January 14, 1994. DOE has released three updated versions of the draft order since then (dated May 20, 1994; August 26, 1994; and January 23, 1995). Each time DOE revised the order, Dames and Moore updated the assessment work to reflect the text changes. This report reflects the January 23, 1995 version of the draft order.

  2. Vendor assessments of radioactive/mixed waste processing/disposal facilities

    SciTech Connect

    Bourassa, J.; Piscitello, T.

    1996-10-01

    This paper was developed based on Yankee Atomic Electric Company experiences gained through the performance of vendor assessments of radioactive and mixed waste processing and disposal facilities. This paper will provide insights to companies or organizations who have radioactive and/or mixed waste which requires disposal. The paper will discuss the technical, legal and programmatic issues which should be considered when evaluating waste processing and/or disposal options. The discussion focuses on the methods utilized for the preparation, performance and reporting of assessments of waste disposal vendors. The paper includes a discussion of the scope and purpose of the assessment process, and the methodologies and approach taken to evaluate the technical and programmatic areas. This paper provides guidance and direction to those individuals involved in evaluating the capabilities of the waste processing and or disposal vendors. The paper is also a resource which identifies regulatory and industry guidance available for consideration in the planning for a waste disposal/processing vendor assessment. The company needs to determine what is the most practical disposal method. This disposal method may be a combination of waste processing and direct disposal, which is consistent with the methodologies utilized by the Yankee Atomic Electric Company at the Yankee Nuclear Power Station and by other Yankee plants. Due to the anticipated/active need for utilizing a number of vendors for performing these activities, the determination has been made that assessments of the vendors supplying the services are required to ensure that activities are being effectively performed in order to minimize potential liabilities. The assessments need to consider not only the technical aspects of the operations, but also require an evaluation of the quality system(s) being utilized to ensure the consistent and effective implementation of applicable process controls.

  3. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Preteatment and Immobilization Processes

    SciTech Connect

    Wasan, Darsh T.; Nikolov, Alex

    2005-06-01

    The objectives of this research effort are to develop a fundamental understanding of the physico-chemical mechanisms that produce foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research will be tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  4. Nuclear microprobe applications to radioactive waste management basic research

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Badillo, V.; Barré, N.; Bois, L.; Cachoir, C.; Gallien, J. P.; Guilbert, S.; Mercier, F.; Tiffreau, C.

    1999-10-01

    Radioactive waste management is one of the major technical and scientific challenge to be solved by industrialized countries near the beginning of the 21st century. Relevant questions arise about the extrapolation of the long term-behavior of materials from waste package, engineered barriers and near field repository. Whatever the strategical option might be, wet atmosphere or water intrusion through the different barriers constitute the two main remobilization factors for radionuclides in the geosphere and the biosphere. The study of solid alteration processes and elemental sorption phenomena on mineral surfaces is one of the most efficient basic research approaches to assess the long term performance of waste materials. Ion beam analysis and more recently nuclear microprobe techniques have been applied to investigate exchange mechanisms near representative solid/liquid interfaces such as glass/deionized water, uranium dioxide/granitic or clay water or mineral surface/aqueous solution doped with chemical elements analogue to actinide or fission products. This paper intends to describe the different works that have been carried out in Saclay using the nuclear microprobe facility. The coupling of μRBS, μPIXE and μNRA permits to determine the evolution of the surface composition induced by chemical reactions involved. Complementary observation of solid morphology and solution analysis allows to obtain a complete elemental balance on exchange processes.

  5. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole %.iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  6. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, Hui; Adams, Jay W.; Kalb, Paul D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900.degree. C. include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400.degree. C. to about 450.degree. C. and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided.

  7. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1998-11-24

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1--6 mole % iron (III) oxide, from about 1--6 mole % aluminum oxide, from about 15--20 mole % sodium oxide or potassium oxide, and from about 30--60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3--6 mole % sodium oxide, from about 20--50 mole % tin oxide, from about 30--70 mole % phosphate, from about 3--6 mole % aluminum oxide, from about 3--8 mole % silicon oxide, from about 0.5--2 mole % iron (III) oxide and from about 3--6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  8. Phosphate glasses for radioactive, hazardous and mixed waste immobilization

    DOEpatents

    Cao, H.; Adams, J.W.; Kalb, P.D.

    1999-03-09

    Lead-free phosphate glass compositions are provided which can be used to immobilize low level and/or high level radioactive wastes in monolithic waste forms. The glass composition may also be used without waste contained therein. Lead-free phosphate glass compositions prepared at about 900 C include mixtures from about 1 mole % to about 6 mole % iron (III) oxide, from about 1 mole % to about 6 mole % aluminum oxide, from about 15 mole % to about 20 mole % sodium oxide or potassium oxide, and from about 30 mole % to about 60 mole % phosphate. The invention also provides phosphate, lead-free glass ceramic glass compositions which are prepared from about 400 C to about 450 C and which includes from about 3 mole % to about 6 mole % sodium oxide, from about 20 mole % to about 50 mole % tin oxide, from about 30 mole % to about 70 mole % phosphate, from about 3 mole % to about 6 mole % aluminum oxide, from about 3 mole % to about 8 mole % silicon oxide, from about 0.5 mole % to about 2 mole % iron (III) oxide and from about 3 mole % to about 6 mole % potassium oxide. Method of making lead-free phosphate glasses are also provided. 8 figs.

  9. Low sintering temperature glass waste forms for sequestering radioactive iodine

    DOEpatents

    Nenoff, Tina M.; Krumhansl, James L.; Garino, Terry J.; Ockwig, Nathan W.

    2012-09-11

    Materials and methods of making low-sintering-temperature glass waste forms that sequester radioactive iodine in a strong and durable structure. First, the iodine is captured by an adsorbant, which forms an iodine-loaded material, e.g., AgI, AgI-zeolite, AgI-mordenite, Ag-silica aerogel, ZnI.sub.2, CuI, or Bi.sub.5O.sub.7I. Next, particles of the iodine-loaded material are mixed with powdered frits of low-sintering-temperature glasses (comprising various oxides of Si, B, Bi, Pb, and Zn), and then sintered at a relatively low temperature, ranging from 425.degree. C. to 550.degree. C. The sintering converts the mixed powders into a solid block of a glassy waste form, having low iodine leaching rates. The vitrified glassy waste form can contain as much as 60 wt % AgI. A preferred glass, having a sintering temperature of 500.degree. C. (below the silver iodide sublimation temperature of 500.degree. C.) was identified that contains oxides of boron, bismuth, and zinc, while containing essentially no lead or silicon.

  10. Processing of historic high radioactive waste coming from nuclear applications

    SciTech Connect

    Van Velzen, L.P.M.; Vos, R.M. de; Roobol, L.P.; IJpelaan, R.; Van Tongeren, R.

    2007-07-01

    At ECN-NRG irradiations of materials have been performed with the aid of the High Flux Reactor at the site for investigations of their properties under different conditions as well for nuclear isotope productions since 1967 e.g. molybdenum. The high radioactive waste (HRW) coming from these nuclear applications are stored since the start in an interim storage facility located at the site. Due to the site license the HRW has to be transported to COVRA. Therefore a project has been set-up to transport all the HRW to COVRA. However, COVRA accepts a limited number of HLW containers among the CASTOR{sup R} MTR-2 container and thus all temporary stored drums have to be over packed. As the existing infra structure at the site is not suited a new facility has to be build. This also creates the opportunity to minimize, by separation of the HRW in low- and intermediate level waste, the amount of waste that has to be classified as HLW. The applied methodology, design and specifications of the HRW-ILW non-destructive assay characterization and separation system will be described. (authors)

  11. Spanish methodological approach for biosphere assessment of radioactive waste disposal.

    PubMed

    Agüero, A; Pinedo, P; Cancio, D; Simón, I; Moraleda, M; Pérez-Sánchez, D; Trueba, C

    2007-10-01

    The development of radioactive waste disposal facilities requires implementation of measures that will afford protection of human health and the environment over a specific temporal frame that depends on the characteristics of the wastes. The repository design is based on a multi-barrier system: (i) the near-field or engineered barrier, (ii) far-field or geological barrier and (iii) the biosphere system. Here, the focus is on the analysis of this last system, the biosphere. A description is provided of conceptual developments, methodological aspects and software tools used to develop the Biosphere Assessment Methodology in the context of high-level waste (HLW) disposal facilities in Spain. This methodology is based on the BIOMASS "Reference Biospheres Methodology" and provides a logical and systematic approach with supplementary documentation that helps to support the decisions necessary for model development. It follows a five-stage approach, such that a coherent biosphere system description and the corresponding conceptual, mathematical and numerical models can be built. A discussion on the improvements implemented through application of the methodology to case studies in international and national projects is included. Some facets of this methodological approach still require further consideration, principally an enhanced integration of climatology, geography and ecology into models considering evolution of the environment, some aspects of the interface between the geosphere and biosphere, and an accurate quantification of environmental change processes and rates.

  12. Microbiology of formation waters from the deep repository of liquid radioactive wastes Severnyi.

    PubMed

    Nazina, Tamara N; Kosareva, Inessa M; Petrunyaka, Vladimir V; Savushkina, Margarita K; Kudriavtsev, Evgeniy G; Lebedev, Valeriy A; Ahunov, Viktor D; Revenko, Yuriy A; Khafizov, Robert R; Osipov, George A; Belyaev, Sergey S; Ivanov, Mikhail V

    2004-07-01

    The presence, diversity, and geochemical activity of microorganisms in the Severnyi repository of liquid radioactive wastes were studied. Cultivable anaerobic denitrifiers, fermenters, sulfate-reducers, and methanogens were found in water samples from a depth of 162-405 m below sea level. Subsurface microorganisms produced methane from [2-(14)C]acetate and [(14)C]CO(2), formed hydrogen sulfide from Na(2) (35)SO(4), and reduced nitrate to dinitrogen in medium with acetate. The cell numbers of all studied groups of microorganisms and rates of anaerobic processes were higher in the zone of dispersion of radioactive wastes. Microbial communities present in the repository were able to utilise a wide range of organic and inorganic compounds and components of waste (acetate, nitrate, and sulfate) both aerobically and anaerobically. Bacterial production of gases may result in a local increase of the pressure in the repository and consequent discharge of wastes onto the surface. Microorganisms can indirectly decrease the mobility of radionuclides due to consumption of oxygen and production of sulfide, which favours deposition of metals. These results show the necessity of long-term microbiological and radiochemical monitoring of the repository.

  13. Rhode Island State Briefing Book on low-level radioactive-waste management

    SciTech Connect

    Not Available

    1981-07-01

    The Rhode Island State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Rhode Island. The profile is the result of a survey of radioactive material licensees in Rhode Island. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Rhode Island.

  14. [Current status on storage, processing and risk communication of medical radioactive waste in Japan].

    PubMed

    Watanabe, Hiroshi; Yamaguchi, Ichiro; Kida, Tetsuo; Hiraki, Hitoshi; Fujibuchi, Toshioh; Maehara, Yoshiaki; Tsukamoto, Atsuko; Koizumi, Mitsue; Kimura, Yumi; Horitsugi, Genki

    2013-03-01

    Decay-in-storage for radioactive waste including that of nuclear medicine has not been implemented in Japan. Therefore, all medical radioactive waste is collected and stored at the Japan Radioisotope Association Takizawa laboratory, even if the radioactivity has already decayed out. To clarify the current situation between Takizawa village and Takizawa laboratory, we investigated the radiation management status and risk communication activities at the laboratory via a questionnaire and site visiting survey in June 2010. Takizawa laboratory continues to maintain an interactive relationship with local residents. As a result, Takizawa village permitted the acceptance of new medical radioactive waste containing Sr-89 and Y-90. However, the village did not accept any non-medical radioactive waste such as waste from research laboratories. To implement decay-in-storage in Japan, it is important to obtain agreement with all stakeholders. We must continue to exert sincere efforts to acquire the trust of all stakeholders.

  15. Public and political issues in radioactive waste management in the Federal Republic of Germany

    SciTech Connect

    Neis, A.

    1993-12-31

    The Federal Government`s radioactive waste management concept and regulations governing formal public participation in licensing procedures for radioactive waste management facilities are presented. The paper focuses on public and political issues arising from widely diverging views in different social groups on nuclear energy and on radioactive waste management. The resulting conflict between Federal and Laender (Federal constituent states) authorities and the actual course of public participation in a licensing procedure are illustrated with the example of planned final disposal of radioactive waste in the Konrad mine. Major national efforts to overcome the unsatisfying present situation are presented and the role of international consensus is briefly touched. Concluding remarks will particularly justify admissibility and emphasize the need to discuss and eventually decide on radioactive waste management issues regardless of diverging views on nuclear energy.

  16. Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect

    Lisa Harvego; Brion Bennett

    2011-11-01

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  17. Organic Tanks Safety Program: Waste aging studies

    SciTech Connect

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

  18. Development of long-term performance models for radioactive waste forms

    SciTech Connect

    Bacon, Diana H.; Pierce, Eric M.

    2011-03-22

    The long-term performance of solid radioactive waste is measured by the release rate of radionuclides into the environment, which depends on corrosion or weathering rates of the solid waste form. The reactions involved depend on the characteristics of the solid matrix containing the radioactive waste, the radionuclides of interest, and their interaction with surrounding geologic materials. This chapter describes thermo-hydro-mechanical and reactive transport models related to the long-term performance of solid radioactive waste forms, including metal, ceramic, glass, steam reformer and cement. Future trends involving Monte-Carlo simulations and coupled/multi-scale process modeling are also discussed.

  19. Radioactive waste management in the Chernobyl exclusion zone: 25 years since the Chernobyl nuclear power plant accident.

    PubMed

    Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy

    2011-10-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.

  20. Geotechnical aspects of investigations at Stripa on radioactive waste isolation

    SciTech Connect

    Witherspoon, P.A.

    1981-08-01

    Access to a granitic rock mass in an iron ore mine in Sweden has provided a unique opportunity for a series of investigations on problems involved in geologic storage of radioactive waste. Important results have been obtained that would not have emerged if these experiments had not been carried out underground at depths comparable with those envisaged for an actual repository. It was observed that as the rock mass was heated, the temperature variations over time and space could be reasonably well predicted using available theory and appropriate values of material properties. However, because the rock is fractured, predicting the thermochenical behavior is much more involved. The role of the discontinuities is a key factor and is not yet well understood. The fracture network is also the dominant factor in controlling rock mass permeability. A new method of measuring average permeability on a very large scale is reported.

  1. Simulated geophysical monitoring of radioactive waste repository barriers

    NASA Astrophysics Data System (ADS)

    Biryukov, Anton

    Estimation of attenuation of the elastic waves in clays and high clay-content rocks is important for the quality of geophysical methods relying on processing the recorded waveforms. Time-lapse imaging is planned to be employed for monitoring of the condition of high-radioactive waste repositories. Engineers can analyze and optimize configuration of the monitoring system using numerical modelling tools. The reliability of modeling requires proper calibration. The purpose of this thesis is threefold: (i) propose a calibration methodology for the wave propagation tools based on the experimental data, (ii) estimate the attenuation in bentonite as a function of temperature and water content, and (iii) investigate the feasibility of active sonic monitoring of the engineered barriers. The results suggest that pronounced inelastic behavior of bentonite has to be taken into account in geophysical modeling and analysis. The repository--scale models confirm that active sonic monitoring is capable of depicting physical changes in the bentonite barrier.

  2. Boron removal in radioactive liquid waste by forward osmosis membrane

    SciTech Connect

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee; Jei Kwon Moon

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron. No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)

  3. Membrane purification in radioactive waste management: a short review.

    PubMed

    Ambashta, Ritu D; Sillanpää, Mika E T

    2012-02-01

    Radiation hazards of radionuclides arising from nuclear plant facilities are well known. Separation technologies are used to concentrate the radionuclides and prevent the spread of this hazard to the environment. The present review describes the recent advances made in radioactive waste treatment using membrane separation technology. The first part discusses the membrane methods for collective separation of radionuclides and the second part discusses the membrane methods for selective separation of individual radionuclides. For the collection separation of radionulides, methods include reverse osmosis, precipitation followed by ultrafiltration or microfiltration and membrane distillation. Individual elements have been separated using liquid supported membranes, polymer inclusion membranes, solid polymer based electrolysis, nanofiltration, electrochemical salt-splitting process and other advanced separation methods.

  4. Russian Containers for Transportation of Solid Radioactive Waste

    SciTech Connect

    Petrushenko, V. G.; Baal, E. P.; Tsvetkov, D. Y.; Korb, V. R.; Nikitin, V. S.; Mikheev, A. A.; Griffith, A.; Schwab, P.; Nazarian, A.

    2002-02-28

    The Russian Shipyard ''Zvyozdochka'' has designed a new container for transportation and storage of solid radioactive wastes. The PST1A-6 container is cylindrical shaped and it can hold seven standard 200-liter (55-gallon) drums. The steel wall thickness is 6 mm, which is much greater than standard U.S. containers. These containers are fully certified to the Russian GOST requirements, which are basically identical to U.S. and IAEA standards for Type A containers. They can be transported by truck, rail, barge, ship, or aircraft and they can be stacked in 6 layers in storage facilities. The first user of the PST1A-6 containers is the Northern Fleet of the Russian Navy, under a program sponsored jointly by the U.S. DoD and DOE. This paper will describe the container design and show how the first 400 containers were fabricated and certified.

  5. DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS

    SciTech Connect

    Poirier, M; David Herman, D; Samuel Fink, S

    2008-02-25

    The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years

  6. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  7. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    SciTech Connect

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-02-27

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

  8. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  9. Material Not Categorized As Waste (MNCAW) data report. Radioactive Waste Technical Support Program

    SciTech Connect

    Casey, C.; Heath, B.A.

    1992-11-01

    The Department of Energy (DOE), Headquarters, requested all DOE sites storing valuable materials to complete a questionnaire about each material that, if discarded, could be liable to regulation. The Radioactive Waste Technical Support Program entered completed questionnaires into a database and analyzed them for quantities and type of materials stored. This report discusses the data that TSP gathered. The report also discusses problems revealed by the questionnaires and future uses of the data. Appendices contain selected data about material reported.

  10. Melt processing of radioactive waste: A technical overview

    SciTech Connect

    Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

    1997-04-01

    Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

  11. Risk assessment for human health and terrestrial ecosystem under chronic radioactive pollution near regional radioactive waste storage

    NASA Astrophysics Data System (ADS)

    Lavrentyeva, G. V.; Katkova, M. N.; Shoshina, R. R.; Synzynys, B. I.

    2017-01-01

    An impact of the radioactive waste storage facility at the regional population was assessed under supervision of IAEA. It was made in accordance with the methodology for assessment of doses and risks to human storage using different scenarios of radionuclides releases into the environment. The following scenarios were considered: leakage of fluid, resuspension of dust, fire, flooding. Thy evaluation of radiation doses received and the risks to the human showed that the risk has been acceptable for all scenarios. An approach for an ecological risk assessment for terrestrial ecosystem is presented as five modules: selection of the ecosystem-receptor of radiation effects; determination of reference species of living organisms and their survival indices; the critical load as an absorbed dose rate is calculated from the dependence between the absorbed Sr-90 radiation dose rate and the coefficient of radioactive strontium accumulation in mollusc shells; the critical dose; risk is assessed from a part of the ecosystem territory with increased mollusc loading; uncertainties appeared at each stage of risk assessment are characterized. The risk of exposure to the repository on the ecosystem should be characterized as unacceptable.

  12. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    SciTech Connect

    Okeson, J K; Galloway, R M; Wilhite, E L; Woolsey, G B; B, Ferguson R

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste.

  13. TECHNICAL BASIS DOCUMENT FOR CRITERIA AND PROCESSES FOR THE CERTIFICATION OF NON-RADIOACTIVE HAZARDOUS AND NON-HAZARDOUS WASTES

    SciTech Connect

    Dominick, J; Gaylord, R

    2007-02-13

    This Technical Basis Document (TBD) identifies how the values presented in the ''Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes'' were derived. The original moratorium document (UCRL-AR-109662) applied only to hazardous wastes generated in Radioactive Materials Management Areas (RMMAs) that were destined for off-site Treatment, Storage, and Disposal Facilities (TSDFs) that did not possess a radioactive materials license. Since its inception, the original moratorium document has become the de facto free-release procedure for potentially volumetrically contaminated materials of all varieties. This was promulgated in a February 4, 1992 memo from Jyle Lytle, Deputy Assistant Secretary for Waste Management, entitled ''Update: Moratorium on Shipment of Potentially Radioactive Hazardous and Toxic Wastes''. In this memo, Ms. Lytle states, ''While the moratorium does not apply to non-hazardous/non-TSCA solid wastes and non-waste materials, the same release criteria apply''. Over the past few years, a considerable quantity of data and operating experience has been developed, which has shown the limitations of UCRL-AR-109662. The original Moratorium is out of date, and many of the organizations and procedures that it references are no longer in existence. In addition, the original document lacked sufficient detail to be used as an LLNL-wide procedure for free release, as it only addressed hazardous wastes. The original moratorium document also used highly optimistic ''action limits'', which were based on theoretically achievable minimum detectable activity (MDA) levels for various matrices. Years of operating experience has shown that these action limits are simply not achievable for certain analyses in certain matrices, either due to limitations in sample size, or underestimates of the contribution of naturally-occurring radioactive materials, resulting in the mis-characterization of samples of these matrices as radioactive

  14. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of...

  15. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of...

  16. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of...

  17. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of...

  18. 10 CFR 51.62 - Environmental report-land disposal of radioactive waste licensed under 10 CFR part 61.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of...

  19. A proposed classification system for high-level and other radioactive wastes

    SciTech Connect

    Kocher, D. C.; Croff, A. G.

    1987-06-01

    This report presents a proposal for quantitative and generally applicable risk-based definitions of high-level and other radioactive wastes. On the basis of historical descriptions and definitions of high-level waste (HLW), in which HLW has been defined in terms of its source as waste from reprocessing of spent nuclear fuel, we propose a more general definition based on the concept that HLW has two distinct attributes: HLW is (1) highly radioactive and (2) requires permanent isolation. This concept leads to a two-dimensional waste classification system in which one axis, related to ''requires permanent isolation,'' is associated with long-term risks from waste disposal and the other axis, related to ''highly radioactive,'' is associated with shorter-term risks due to high levels of decay heat and external radiation. We define wastes that require permanent isolation as wastes with concentrations of radionuclides exceeding the Class-C limits that are generally acceptable for near-surface land disposal, as specified in the US Nuclear Regulatory Commission's rulemaking 10 CFR Part 61 and its supporting documentation. HLW then is waste requiring permanent isolation that also is highly radioactive, and we define ''highly radioactive'' as a decay heat (power density) in the waste greater than 50 W/m/sup 3/ or an external radiation dose rate at a distance of 1 m from the waste greater than 100 rem/h (1 Sv/h), whichever is the more restrictive. This proposal also results in a definition of Transuranic (TRU) Waste and Equivalent as waste that requires permanent isolation but is not highly radioactive and a definition of low-level waste (LLW) as waste that does not require permanent isolation without regard to whether or not it is highly radioactive.

  20. Readiness assessment plan for the Radioactive Mixed Waste Land Disposal Facility (Trench 31)

    SciTech Connect

    Irons, L.G.

    1994-11-22

    This document provides the Readiness Assessment Plan (RAP) for the Project W-025 (Radioactive Mixed Waste Land Disposal Facility) Readiness Assessment (RA). The RAP documents prerequisites to be met by the operating organization prior to the RA. The RAP is to be implemented by the RA Team identified in the RAP. The RA Team is to verify the facility`s compliance with criteria identified in the RAP. The criteria are based upon the {open_quotes}Core Requirements{close_quotes} listed in DOE Order 5480.31, {open_quotes}Startup and Restart of Nuclear Facilities{close_quotes}.

  1. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  2. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States' first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  3. Separation of aromatic precipitates from simulated high level radioactive waste by hydrolysis, evaporation and liquid-liquid extraction

    SciTech Connect

    Young, S.R.; Shah, H.B.; Carter, J.T.

    1991-12-31

    The Defense Waste Processing Facility (DWPF) at the SRS will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation and liquid-liquid extraction will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Laboratory with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Reduction of nitrite by hydroxylamine nitrate and hydrolysis of the tetraphenylborate by formic acid is discussed. Gaseous production, which is primarily benzene, nitrous oxide and carbon dioxide, has been quantified. Production of high-boiling organic compounds and the accumulation of these organic compounds within the process are addressed.

  4. Steam stripping of polycyclic aromatics from simulated high-level radioactive waste

    SciTech Connect

    Lambert, D.P.; Shah, H.B.; Young, S.R.; Edwards, R.E.; Carter, J.T.

    1992-12-31

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will be the United States` first facility to process High Level radioactive Waste (HLW) into a borosilicate glass matrix. The removal of aromatic precipitates by hydrolysis, evaporation, liquid-liquid extraction and decantation will be a key step in the processing of the HLW. This step, titled the Precipitate Hydrolysis Process, has been demonstrated by the Savannah River Technology Center with the Precipitate Hydrolysis Experimental Facility (PHEF). The mission of the PHEF is to demonstrate processing of simulated high level radioactive waste which contains tetraphenylborate precipitates and nitrite. Aqueous washing or nitrite destruction is used to reduce nitrite. Formic acid with a copper catalyst is used to hydrolyze tetraphenylborate (TPB). The primary offgases are benzene, carbon dioxide, nitrous oxide, and nitric oxide. Hydrolysis of TPB in the presence of nitrite results in the production of polycyclic aromatics and aromatic amines (referred as high boiling organics) such as biphenyl, diphenylamine, terphenyls etc. The decanter separates the organic (benzene) and aqueous phase, but the high boiling organic separation is difficult. This paper focuses on the evaluation of the operating strategies, including steam stripping, to maximize the removal of the high boiling organics from the aqueous stream. Two areas were investigated, (1) a stream stripping comparison of the late wash flowsheet to the HAN flowsheet and (2) the extraction performance of the original decanter to the new decanter. The focus of both studies was to minimize the high boiling organic content of the Precipitate Hydrolysis Aqueous (PHA) product in order to minimize downstream impacts caused by organic deposition.

  5. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    SciTech Connect

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  6. Maine State Briefing Book on low-level radioactive waste management

    SciTech Connect

    Not Available

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.

  7. Radioactive waste management in France: safety demonstration fundamentals.

    PubMed

    Ouzounian, G; Voinis, S; Boissier, F

    2012-01-01

    The main challenge in development of the safety case for deep geological disposal is associated with the long periods of time over which high- and intermediate-level long-lived wastes remain hazardous. A wide range of events and processes may occur over hundreds of thousands of years. These events and processes are characterised by specific timescales. For example, the timescale for heat generation is much shorter than any geological timescale. Therefore, to reach a high level of reliability in the safety case, it is essential to have a thorough understanding of the sequence of events and processes likely to occur over the lifetime of the repository. It then becomes possible to assess the capability of the repository to fulfil its safety functions. However, due to the long periods of time and the complexity of the events and processes likely to occur, uncertainties related to all processes, data, and models need to be understood and addressed. Assessment is required over the lifetime of the radionuclides contained in the radioactive waste.

  8. EUROPEANS AND RADIOACTIVE WASTE - OPINIONS, BELIEFS AND CONCERNS

    SciTech Connect

    Webster, S.; Taylor, D.M.

    2003-02-27

    In the autumn of 1998, the European Commission conducted a public opinion survey on radioactive waste. Roughly 16,000 people across the European Union (EU) were questioned in face to face interviews. A similar survey was carried out three years later in October and November of 2001, though this time questions of a broader nature concerning nuclear issues in general were also introduced. A comparison of the results of the two surveys shows that in the intervening period there have been very few significant changes in opinion. In particular, the events of 11 September 2001 appear to have had no measurable impact on people's views. The results of the surveys have been analyzed and the key findings extracted and, where possible, interpreted. Though some of these findings might perhaps have been expected, others are somewhat surprising or even worrying, especially for the nuclear sector. However, people still seem prepared to accept that nuclear power should remain an option for electricity production in the EU, but the policy makers and the nuclear industry must demonstrate that the waste issue can be managed both safely and with respect for future generations.

  9. Selected radionuclides important to low-level radioactive waste management

    SciTech Connect

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

  10. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system.

  11. Enlargement of the Baldone near-surface radioactive waste repository

    SciTech Connect

    Dreimanis, A.

    2007-07-01

    A unified analysis of the enlargement of the Baldone near-surface radioactive waste (RW) repository RADONS considers the interplay of the existing engineering, safety and infrastructure premises, with the foreseen newly socio-technical features. This enlargement consists in construction of two additional RW disposal vaults and in building a long-term storage facility for spent sealed sources at the RADONS territory. Our approach is based on consecutive analysis of following basic elements: - the origin of enlargement - the RADONS safety analysis and a set of optimal socio-technical solutions of Salaspils research reactor decommissioning waste management; - the enlargement - a keystone of the national RW management concept, including the long-term approach; - the enlargement concept - the result of international co-operation and obligations; - arrangement optimization of new disposal and storage space; - environmental impact assessment for the repository enlargement - the update of socio-technical studies. The study of the public opinion revealed: negative attitude to repository enlargement is caused mainly due to missing information on radiation level and on the RADONS previous operations. These results indicate: basic measures to improve the public attitude to repository enlargement: the safety upgrade, public education and compensation mechanisms. A detailed stakeholders engagement and public education plan is elaborated. (author)

  12. SRS: Site ranking system for hazardous chemical and radioactive waste

    SciTech Connect

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs.

  13. Gas Generation Rates as an Indicator for the Long Term Stability of Radioactive Waste Products

    SciTech Connect

    Steyer, S.; Brennecke, P.; Bandt, G.; Kroger, H.

    2007-07-01

    Pursuant to the 'Act on the Peaceful Utilization of Atomic Energy and the Protection against its Hazards' (Atomic Energy Act) the Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz, BfS) is legally responsible for the construction and operation of federal facilities for the disposal of radioactive waste. Within the scope of this responsibility, particular due to par. 74(1) Ordinance on Radiation Protection, BfS defines all safety-related requirements on waste packages envisaged for disposal, establishes guidelines for the conditioning of radioactive waste and approves the fulfillment of the waste acceptance requirements within the radioactive waste quality control system. BfS also provides criteria to enable the assessment of methods for the treatment and packaging of radioactive waste to produce waste packages suitable for disposal according to par. 74(2) Ordinance on Radiation Protection. Due to the present non-availability of a repository in Germany, quality control measures for all types of radioactive waste products are carried out prior to interim storage with respect to the future disposal. As a result BfS approves the demonstrated properties of the radioactive waste packages and confirms the fulfillment of the respective requirements. After several years of storage the properties of waste packages might have changed. By proving, that such changes have no significant impact on the quality of the waste product, the effort of requalification could be minimized. Therefore, data on the long-term behavior of radioactive waste products need to be acquired and indicators to prove the long-term stability have to be quantified. Preferably, such indicators can be determined easily with non-destructive methods, even for legacy waste packages. A promising parameter is the gas generation rate. The relationship between gas generation rate and long term stability is presented as first result of an ongoing study on behalf of BfS. Permissible gas

  14. Radioactive waste disposal implications of extending Part IIA of the Environmental Protection Act to cover radioactively contaminated land.

    PubMed

    Nancarrow, D J; White, M M

    2004-03-01

    A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological

  15. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  16. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  17. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  18. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  19. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  20. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.