Sample records for radioactive reference materials

  1. Naturally occurring radioactive materials (NORM): a matter of wide societal implication.

    PubMed

    Pescatore, C; Menon, S

    2000-12-01

    Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.

  2. COMMENTS ON THE DEFINITION OF THE CURIE, WITH SPECIAL REFERENCE TO NATURAL RADIOACTIVE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, R.G.; Houtermans, H.

    1962-06-01

    An analysis of maximum permissible levels of radionuclides showed that the definition of the curie, when applied to natural radioactive materials, is ambiguous. The history of the definition of the curie is reviewed. In the past, no clear distinction was raade between the curie as a unit of the quantity of a radioactive substance, and the curie as a unit of radioactivity. This has caused different interpretation of the curic as applied to natural radioactive materials, e.g., natural uranium and natural thorium. A redefinition of the curie as a pure unit of radioactivity is suggested, and maximum permissible levels ormore » concentrations of natural radioactive materials, such as uranium or thorium, should be stated in mass per unit mass or volume of air, water, food, etc. It is recommended that, in legislation listing the amounts of naturally occurring radioactive substances, these amounts be stated in milligrams or Kilograms. (auth)« less

  3. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  4. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... entire radioactive surface of the source shall be wiped with filter paper, moistened with water, with the... wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or by...

  5. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  6. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  7. POTENTIAL RADIOACTIVE POLLUTANTS RESULTING FROM EXPANDED ENERGY PROGRAMS

    EPA Science Inventory

    An effective environmental monitoring program must have a quality assurance component to assure the production of valid data. Quality assurance has many components: calibration standards, standard reference materials, standard reference methods, interlaboratory comparison studies...

  8. Radioactive waste management: review on clearance levels and acceptance criteria legislation, requirements and standards.

    PubMed

    Maringer, F J; Suráň, J; Kovář, P; Chauvenet, B; Peyres, V; García-Toraño, E; Cozzella, M L; De Felice, P; Vodenik, B; Hult, M; Rosengård, U; Merimaa, M; Szücs, L; Jeffery, C; Dean, J C J; Tymiński, Z; Arnold, D; Hinca, R; Mirescu, G

    2013-11-01

    In 2011 the joint research project Metrology for Radioactive Waste Management (MetroRWM)(1) of the European Metrology Research Programme (EMRP) started with a total duration of three years. Within this project, new metrological resources for the assessment of radioactive waste, including their calibration with new reference materials traceable to national standards will be developed. This paper gives a review on national, European and international strategies as basis for science-based metrological requirements in clearance and acceptance of radioactive waste. © 2013 Elsevier Ltd. All rights reserved.

  9. RADIOACTIVE CONTAMINATION OF FOODS. PROBLEMS IN THE FOOD CONSUMPTION OF THE ITALIAN POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, A.; Mariani, A.

    The aspects of health physics that are basically applications of physics are reviewed. Units of radiation measurement, RBE, permissible doses, personnel monitoring, applications of radiation spectrometry, and measurement of body activity are considered, as well as the release, dispersion, and deposition of radioactive material in reactor accidents. 140 references. (D.C.W.)

  10. Development of a reliable estimation procedure of radioactivity inventory in a BWR plant due to neutron irradiation for decommissioning

    NASA Astrophysics Data System (ADS)

    Tanaka, Ken-ichi; Ueno, Jun

    2017-09-01

    Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.

  11. Nuclear Power: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    One of the most important discoveries of the twentieth century was the fission of radioactive materials. This booklet considers nuclear energy from three aspects: time; space; and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts of nuclear…

  12. Improved low-level radioactive waste management practices for hospitals and research institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-07-01

    This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the moremore » detailed analysis.« less

  13. Title list of documents made publicly available, June 1-30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication describing information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, {open_quotes}docketed{close_quotes} does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records.

  14. Procedures for Environmental Impact Analysis and Planning.

    DTIC Science & Technology

    1982-10-01

    broad Office of the Chairman, New England agencies may use this list as a reference categories: polution control. energy. land River Basins Commission...Pollutants including radioactive A. Weted Reodifcatnm materials. 42 U.S.C. 7412(c). a Waterwasgulatm sad Stra Department of the Interior Mmfl t on and...Regulatory CommissionD Geological Survey (emissions from o Forest Service (effects of air outer-continental shelf lease ( Radioactive substances.) pollution

  15. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  16. 77 FR 24746 - Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Materials to the Environment for Licensees Other Than Power Reactors AGENCY: Nuclear Regulatory Commission... Environment for Licensees other than Power Reactors.'' This RG provides guidance on methods acceptable to the... environment. ADDRESSES: Please refer to Docket ID NRC-2010-0158 when contacting the NRC about the availability...

  17. Title list of documents made publicly available: June 1--30, 1995. Volume 17, Number 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.B.

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed, material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index and amore » Report Number Index.« less

  19. Title list of documents made publicly available: April 1--30, 1996. Volume 18, Number 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This publication describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  20. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  2. SU-G-PinS Room/Hall E-00: HAZMAT Training for the Medical Physicist - Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  3. SU-CD-PinS Room/Hall E-00: HAZMAT Training for the Medical Physicist - Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two-year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two-year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  6. A new large-volume metal reference standard for radioactive waste management.

    PubMed

    Tzika, F; Hult, M; Stroh, H; Marissens, G; Arnold, D; Burda, O; Kovář, P; Suran, J; Listkowska, A; Tyminski, Z

    2016-03-01

    A new large-volume metal reference standard has been developed. The intended use is for calibration of free-release radioactivity measurement systems and is made up of cast iron tubes placed inside a box of the size of a Euro-pallet (80 × 120 cm). The tubes contain certified activity concentrations of (60)Co (0.290 ± 0.006 Bq g(-1)) and (110m)Ag (3.05 ± 0.09 Bq g(-1)) (reference date: 30 September 2013). They were produced using centrifugal casting from a smelt into which (60)Co was first added and then one piece of neutron irradiated silver wire was progressively diluted. The iron castings were machined to the desirable dimensions. The final material consists of 12 iron tubes of 20 cm outer diameter, 17.6 cm inner diameter, 40 cm length/height and 245.9 kg total mass. This paper describes the reference standard and the process of determining the reference activity values. © The Author 2015. Published by Oxford University Press.

  7. Title list of documents made publicly available, July 1--31, 1996: Volume 18, No. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This monthly publication describes information received and published by US NRC. This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. Following indexes are included: personal author, corporate source, report number, and cross reference of enclosures to principal documents.

  8. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  9. Update of the α - n Yields for Reactor Fuel Materials for the Interest of Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Simakov, S. P.; van den Berg, Q. Y.

    2017-01-01

    The neutron yields caused by spontaneous α-decay of actinides and subsequent (α,xn) reactions were re-evaluated for the reactor fuel materials UO2, UF6, PuO2 and PuF4. For this purpose, the most recent reference data for decay parameters, α-particle stopping powers and (α,xn) cross sections were collected, analysed and used in calculations. The input data and elaborated code were validated against available thick target neutron yields in pure and compound materials measured at accelerators or with radioactive sources. This paper provides the specific neutron yields and their uncertainties resultant from α-decay of actinides 241Am, 249Bk, 252Cf, 242,244Cm, 237Np, 238-242Pu, 232Th and 232-236,238U in oxide and fluoride compounds. The obtained results are an update of previous reference tables issued by the Los Alamos National Laboratory in 1991 which were used for the safeguarding of radioactive materials by passive non-destructive techniques. The comparison of the updated values with previous ones shows an agreement within one estimated uncertainty (≈ 10%) for oxides, and deviations of up to 50% for fluorides.

  10. Safety and security of radioactive sources in industrial radiography in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A. S.; Nazrul, M. Abdullah

    2013-07-01

    Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing themore » risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)« less

  11. Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Clell J. Jr.

    The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the descriptionmore » of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.« less

  12. A semi-empirical approach to analyze the activities of cylindrical radioactive samples using gamma energies from 185 to 1764 keV.

    PubMed

    Huy, Ngo Quang; Binh, Do Quang

    2014-12-01

    This work suggests a method for determining the activities of cylindrical radioactive samples. The self-attenuation factor was applied for providing the self-absorption correction of gamma rays in the sample material. The experimental measurement of a (238)U reference sample and the calculation using the MCNP5 code allow obtaining the semi-empirical formulae of detecting efficiencies for the gamma energies ranged from 185 to 1764keV. These formulae were used to determine the activities of the (238)U, (226)Ra, (232)Th, (137)Cs and (40)K nuclides in the IAEA RGU-1, IAEA-434, IAEA RGTh-1, IAEA-152 and IAEA RGK-1 radioactive standards. The coincidence summing corrections for gamma rays in the (238)U and (232)Th series were applied. The activities obtained in this work were in good agreement with the reference values. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Title list of documents made publicly available. Volume 17, No. 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  14. Title list of documents made publicly available, September 1--30, 1994. Volume 16, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  15. Title list of documents made publicly available, November 1--30, 1994. Volume 16, No. 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  16. Mechanism and kinetics of uranium adsorption onto soil around coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yasim, Nurzulaifa Shaheera Erne Mohd; Ariffin, Nik Azlin Nik; Mohammed, Noradila; Ayob, Syafina

    2017-11-01

    Coal is the largest source of energy in Malaysia providing approximately 80 % of all entire power needs. The combustion of coal concentrates a high content of heavy metals and radioactive elements in the ashes and sludge. Hazardous emissions from coal combustion were deposited into the soil and most likely transported into the groundwater system. The presence of radioactive materials in the ground water system can cause a wide range of environmental impacts and adverse health effects like cancer, impairment of neurological function and cardiovascular disease. However, the soil has a natural capability in adsorption of radioactive materials. Thus, this study was evaluated the adsorption capacity of Uranium onto the soil samples collected nearby the coal-fired power plants. In the batch experiment, parameters that were set constant include pH, the amount of soil and contact time. Various initial concentrations of radionuclides elements in the range of 2 mg/L - 10 mg/L were used. The equilibrium adsorption data was analyzed by the Freundlich isotherm and Langmuir isotherms. Then, the influences of solution pH, contact time and temperature on the adsorption process were investigated. The kinetics of radioactive materials was discussed by pseudo-first-order and pseudo-second-order rate equation. Thus, the data from this study could provide information about the potentiality of soil in sorption of radioactive materials that can be leached into groundwater. Besides that, this study could also be used as baseline data for future reference in the development of adsorption modeling in the calculation of distribution coefficient.

  17. Title list of documents made publicly available. Volume 17, No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (3) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  18. Title list of documents made publicly available, December 1--31, 1993, Volume 15, No. 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  19. Title list of documents made publicly available: May 1--31, 1997. Volume 19, Number 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  20. Title list of documents made publicly available, September 1-30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  1. Title list of documents made publicly available. Volume 17, No. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  2. Title list of documents made publicly available, March 1--31, 1998. Volume 20, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a personal author index, a corporate source index, and amore » report number index.« less

  3. Title list of documents made publicly available, January 1, 1997--January 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  4. Low-cost NORM concentrations measuring technique for building materials of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Safarov, Akmal; Safarov, Askar; Azimov, Askarali; Darby, Iain G.

    2016-04-01

    Concentrations of natural radionuclides of building materials are important in order to estimate exposure of humans to radiation, who can spend up to 80% of their time indoors. One of the indicators of building materials' safety is the radium equivalent activity, which is regulated by national and international normative documents [1,2,3]. Materials with Ra(eq) =< 370 Bq/kg are considered to be safe [4,5]. We have studied the possibility of performing express analysis of building materials samples without ageing. Long measurement times including ageing of samples are major constraints for performing large number of analyses [6]. Typically ageing of samples and analysis is 40 days. Gamma-spectrometric analysis of brick, crushed stone, red sand, granite, white marble and concrete cubes was performed both before and after ageing of samples (10, 20, 30 and 40 days). Measurement times of samples were 1, 3, 6 and 12 hours. Samples were measured in 1 liter Marinelli beaker geometry, using NaI(Tl) spectrometers with crystal sizes 2.5 x 2.5 in and 3.1 x 3.1 in. Efficiency calibration of spectrometers was done using certified volumetric (1 liter Marinelli beaker) Ra-226, Th-232 and K-40 sources filled with silica sand and density 1,7 kg/l. Herein we present results indicating that one hour measuring may be sufficient for samples in 1 liter Marinelli beakers offering prospect of significant time and cost improvements. References: 1. NEA-OECD (1979): Exposure to radiation from natural radioactivity in building materials. Report by Group of Experts of the OECD Nuclear Energy Agency (NEA) Paris 2. STUK (Radiation and Nuclear Safety Authority) (2003): The radioactivity of building materials and ash. Regulatory Guides on Radiation Safety (ST Guides) ST 12.2 (Finland) (8 October 2003) 3. GOST 30108-94 (1995): Building materials and elements. Determination of specific activity of natural radioactive nuclei. Interstate Standard. 4. Krisiuk E.M. et al., (1971). A study on Radioactivity in Building Materials (Leningrad: Research Institute for radiation Hygiene) 5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, waste and by-products. Health Physics, 48, 87-95. 6. Uosif M.A.M. (2014). Estimation of Radiological Hazards of Some Egyptian Building Materials Due to Natural Radioactivity. International Journal of u- and e- Service, Science and Technology. Vol.7, No.2 (2014), pp.63-76

  5. Title list of documents made publicly available: December 1--31, 1996. Volume 18, Number 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  6. Title List of documents made publicly available, September 1--30, 1993. Volume 15, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principals Documents.

  7. Uranium daughter growth must not be neglected when adjusting plutonium materials for assay and isotopic contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, S.F.; Spall, W.D.; Abernathey, R.M.

    1976-11-01

    Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.

  8. Title list of documents made publicly available: November 1--30, 1997. Volume 19, Number 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  9. Hazardous Material Packaging and Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less

  10. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    PubMed

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Hazardous materials: chemistry and safe handling aspects of flammable, toxic and radioactive materials. A course of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.W.

    1983-01-01

    The subject of this dissertation is a one semester, three credit course designed for students who have taken at least twelve credits college chemistry, and for high school teachers as a continuing education course. The need for such a course arises from the increased concern for safety in recent years and the introduction of many regulations of which the working chemist should be aware, notably those issued by the Occupational Safety and Health Administration. A few colleges have recently started to offer courses in laboratory safety to undergraduate and graduate chemistry students. Thus, there is a need for the developmentmore » of courses in which chemical safety is taught. This course is divided into three units: 1) flammable materials; 2) toxic materials; and 3) radioactive materials. Each unit is self contained and could be taught separately as a one credit course. The material necessary for lecture presentation is given in the text of this dissertation: there are about seven topics in each unit. The chemical properties of selected substances are emphasized. Examples of governmental regulations are given, and there are sample examination questions for each unit and homework assignments that require the use of reference sources. Laboratory exercises are included to enable students to gain experience in the safe handling of hazardous chemicals and of some equipment and instruments used to analyze and study flammable, toxic and radioactive materials.« less

  12. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7 (radioactive...

  13. Romanian Experience for Enhancing Safety and Security in Transport of Radioactive Material - 12223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieru, Gheorghe

    2012-07-01

    The transport of Dangerous Goods-Class no.7 Radioactive Material (RAM), is an important part of the Romanian Radioactive Material Management. The overall aim of this activity is for enhancing operational safety and security measures during the transport of the radioactive materials, in order to ensure the protection of the people and the environment. The paper will present an overall of the safety and security measures recommended and implemented during transportation of RAM in Romania. Some aspects on the potential threat environment will be also approached with special referring to the low level radioactive material (waste) and NORM transportation either by roadmore » or by rail. A special attention is given to the assessment and evaluation of the possible radiological consequences due to RAM transportation. The paper is a part of the IAEA's Vienna Scientific Research Contract on the State Management of Nuclear Security Regime (Framework) concluded with the Institute for Nuclear Research, Romania, where the author is the CSI (Chief Scientific Investigator). The transport of RAM in Romania is a very sensible and complex problem taking into consideration the importance and the need of the security and safety for such activities. The Romanian Nuclear Regulatory Body set up strictly regulation and procedures according to the Recommendation of the IAEA Vienna and other international organizations. There were implemented the adequate regulation and procedures in order to keep the environmental impacts and the radiological consequences at the lower possible level and to assure the effectiveness of state nuclear security regime due to possible malicious acts in carrying out these activities including transport and the disposal site at the acceptable international levels. The levels of the estimated doses and risk expectation values for transport and disposal are within the acceptable limits provided by national and international regulations and recommendations but can increase, significantly during potential malicious acts. (authors)« less

  14. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive materials. (a) Radioactive materials that may be stowed or transported in bulk are limited to those...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.B.

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index. The docketed information contained in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docket Information, last published in January 1979.« less

  16. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  17. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  18. 46 CFR 147.100 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 147.100 Section 147.100 Shipping... Stowage and Other Special Requirements for Particular Materials § 147.100 Radioactive materials. (a) Radioactive materials must not be brought on board, used in any manner, or stored on the vessel, unless the...

  19. Radioactive Waste Management and Environmental Contamination Issues at the Chernobyl Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Schmieman, Eric A.; Voitsekhovitch, Oleg V.

    2007-11-01

    The destruction of the Unit 4 reactor at the Chernobyl Nuclear Power Plant resulted in the generation of radioactive contamination and radioactive waste at the site and in the surrounding area (referred to as the Exclusion Zone). In the course of remediation activities, large volumes of radioactive waste were generated and placed in temporary near surface waste-storage and disposal facilities. Trench and landfill type facilities were created from 1986 to 1987 in the Chernobyl Exclusion Zone at distances 0.5 to 15 km from the NPP site. This large number of facilities was established without proper design documentation, engineered barriers, ormore » hydrogeological investigations and they do not meet contemporary waste-safety requirements. Immediately following the accident, a Shelter was constructed over the destroyed reactor; in addition to uncertainties in stability at the time of its construction, structural elements of the Shelter have degraded as a result of corrosion. The main potential hazard of the Shelter is a possible collapse of its top structures and release of radioactive dust into the environment. A New Safe Confinement (NSC) with a 100-years service life is planned to be built as a cover over the existing Shelter as a longer-term solution. The construction of the NSC will enable the dismantlement of the current Shelter, removal of highly radioactive, fuel-containing materials from Unit 4, and eventual decommissioning of the damaged reactor. More radioactive waste will be generated during NSC construction, possible Shelter dismantling, removal of fuel containing materials, and decommissioning of Unit 4. The future development of the Exclusion Zone depends on the future strategy for converting Unit 4 into an ecologically safe system, i.e., the development of the NSC, the dismantlement of the current Shelter, removal of fuel containing material, and eventual decommissioning of the accident site. To date, a broadly accepted strategy for radioactive waste management at the reactor site and in the Exclusion Zone, and especially for high-level and long-lived waste, has not been developed.« less

  20. Metrological tests of a 200 L calibration source for HPGE detector systems for assay of radioactive waste drums.

    PubMed

    Boshkova, T; Mitev, K

    2016-03-01

    In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Reference natural radionuclide concentrations in Australian soils and derived terrestrial air kerma rate.

    PubMed

    Kleinschmidt, R

    2017-06-01

    Sediment from drainage catchment outlets has been shown to be a useful means of sampling large land masses for soil composition. Naturally occurring radioactive material concentrations (uranium, thorium and potassium-40) in soil have been collated and converted to activity concentrations using data collected from the National Geochemistry Survey of Australia. Average terrestrial air kerma rate data are derived using the elemental concentration data, and is tabulated for Australia and states for use as baseline reference information. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  2. Fundamentals of nuclear pharmacy, 3rd Ed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, G.B.

    1992-01-01

    This book is a standard text/reference of nuclear pharmacy. New sections in the Third Edition include: instruments used for radiation detection and measurement; disposal of radioactive materials; clinical uses of all new and existing radiopharmaceuticals; 99m Tc and 123I-labeled radiopharmaceuticals, as well as radiolabeled leukocytes, platelets, and antibodies; and up-to-date descriptions of the latest FDA regulations.

  3. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  4. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  5. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  6. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  7. 10 CFR 76.83 - Transfer of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of radioactive material. 76.83 Section 76.83 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.83 Transfer of radioactive material. (a) The Corporation may not transfer radioactive material except as...

  8. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index. NRC documents that are publicly available may be examined without charge atmore » the NRC Public Document Room (PDR).« less

  10. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category 2...

  11. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part... MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and Export Threshold Limits Radioactive material Category 1 Terabequerels(TBq) Curies(Ci) 1 Category 2...

  12. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material AGENCY: Nuclear..., ``Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material.'' This draft... regulations for the packaging and transportation of radioactive material in Part 71 of Title 10 of the Code of...

  13. 75 FR 36445 - Draft Regulatory Guide, DG-4018, “Constraint on Releases of Airborne Radioactive Materials To the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... Releases of Airborne Radioactive Materials To the Environment for Licensees Other Than Power Reactors... Regulatory Guide (DG)-4018, ``Constraint on Releases of Airborne Radioactive Materials to the Environment for..., ``Constraint on Releases of Airborne Radioactive Materials to the Environment for Licensees Other than Power...

  14. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE PAGES

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  15. Calibration with MCNP of NaI detector for the determination of natural radioactivity levels in the field.

    PubMed

    Cinelli, Giorgia; Tositti, Laura; Mostacci, Domiziano; Baré, Jonathan

    2016-05-01

    In view of assessing natural radioactivity with on-site quantitative gamma spectrometry, efficiency calibration of NaI(Tl) detectors is investigated. A calibration based on Monte Carlo simulation of detector response is proposed, to render reliable quantitative analysis practicable in field campaigns. The method is developed with reference to contact geometry, in which measurements are taken placing the NaI(Tl) probe directly against the solid source to be analyzed. The Monte Carlo code used for the simulations was MCNP. Experimental verification of the calibration goodness is obtained by comparison with appropriate standards, as reported. On-site measurements yield a quick quantitative assessment of natural radioactivity levels present ((40)K, (238)U and (232)Th). On-site gamma spectrometry can prove particularly useful insofar as it provides information on materials from which samples cannot be taken. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Safe Handling of Radioactive Materials. Recommendations of the National Committee on Radiation Protection. Handbook 92.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    This handbook is designed to help users of radioactive materials to handle the radioactive material without exposing themselves or others to radiation doses in excess of maximum permissible limits. The discussion of radiation levels is in terms of readings from dosimeters and survey instruments. Safety in the handling of radioactive materials in…

  17. Robust technique using an imaging plate to detect environmental radioactivity.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Sakurai, Hideyuki; Sakae, Takeji

    2013-04-01

    The Fukushima Daiichi Nuclear Power Plant was severely damaged by the Great East Japan Earthquake on 11 March 2011. Consequently, a large amount of radioactive material was accidentally released. Recently, the focus has been on quantification of environmental radioactive material. However, conventional techniques require complicated and expensive measurement equipment. In this research, the authors developed a simple method to detect environmental radioactive material with an imaging plate (IP). Two specific measurement subjects were targeted: measurements for the depth distribution of radioactive material in soil and surface contamination of a building roof. For the measurement of depth distribution of radioactive material in soil, the authors ascertained that the concentration of environmental radioactivity was highest at 5 cm below the surface, and it decreased with depth. For the measurement of surface contamination of the building roof, the authors created a contamination map of the building roof. The detector developed could contact the ground directly, and unlike other survey meters, it was not influenced by peripheral radioactivity. In this study, the authors verified the feasibility of measurement of environmental radioactivity with an IP. Although the measured values of the IP were relative, further work is planned to perform evaluations of absolute quantities of radioactive material.

  18. Consumer Products Containing Radioactive Materials

    MedlinePlus

    Fact Sheet Adopted: February 2010 Health Physics Society Specialists in Radiation Safety Consumer Products Containing Radioactive Materials Everything we encounter in our daily lives contains some radioactive material, ...

  19. Radioactive release during nuclear accidents in Chernobyl and Fukushima

    NASA Astrophysics Data System (ADS)

    Nur Ain Sulaiman, Siti; Mohamed, Faizal; Rahim, Ahmad Nabil Ab

    2018-01-01

    Nuclear accidents that occurred in Chernobyl and Fukushima have initiated many research interests to understand the cause and mechanism of radioactive release within reactor compound and to the environment. Common types of radionuclide release are the fission products from the irradiated fuel rod itself. In case of nuclear accident, the focus of monitoring will be mostly on the release of noble gases, I-131 and Cs-137. As these are the only accidents have been rated within International Nuclear Events Scale (INES) Level 7, the radioactive release to the environment was one of the critical insights to be monitored. It was estimated that the release of radioactive material to the atmosphere due to Fukushima accident was approximately 10% of the Chernobyl accident. By referring to the previous reports using computational code systems to model the release rate, the release activity of I-131 and Cs-137 in Chernobyl was significantly higher compare to Fukushima. The simulation code also showed that Chernobyl had higher release rate of both radionuclides on the day of accident. Other factors affecting the radioactive release for Fukushima and Chernobyl accidents such as the current reactor technology and safety measures are also compared for discussion.

  20. Geochemical signature of NORM waste in Brazilian oil and gas industry.

    PubMed

    De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C

    2018-09-01

    The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...

  2. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...

  3. 41 CFR 50-204.28 - Storage of radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Storage of radioactive... CONTRACTS Radiation Standards § 50-204.28 Storage of radioactive materials. Radioactive materials stored in a nonradiation area shall be secured against unauthorized removal from the place of storage. ...

  4. 77 FR 36017 - Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Receiving Packages of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Guide (RG) 7.3, ``Procedures for Picking Up and Receiving Packages of Radioactive Material.'' The guide..., ``Administrative Guide for Verifying Compliance with Packaging Requirements for Shipment and Receipt of Radioactive...

  5. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luis, R.; Baptista, M.; Barros, S.

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send themore » data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. (authors)« less

  6. 76 FR 41241 - Proposed Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Material.'' The CoC defines the packaging, radioactive material content, and transportation restrictions... Radioactive Materials Packages; (3) Type of Request: New; (4) Purpose: This information collection is in... approved a radioactive material package as meeting the applicable safety standards [[Page 41242

  7. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    PubMed

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  8. Quality Managment Program (QMP) report: A review of quality management programs developed in response to Title 10, Section 35.32 of the Code of Federal Regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, M.C.

    1994-10-01

    In July of 1991, the Nuclear Regulatory Commission published a Final Rule in the Federal Register amending regulations governing medical therapeutic administrations of byproduct material and certain uses of radioactive sodium iodide. These amendments required implementation of a Quality Management Program (QMP) to provide high confidence that the byproduct material -- or radiation from byproduct material -- will be administered as directed by an authorized user physician. Herein, this rule is referred to as the QM rule. The Final Rule was published after two proposed rules had been published in the Federal Register.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less

  10. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less

  11. Radioactive Material Used In Research | RadTown USA | US ...

    EPA Pesticide Factsheets

    2018-05-01

    Some laboratories use radioactive material to assist their research. Radioactive materials are used in research settings to help researchers create and test new medicines, technologies and procedures for plants, animals and people.

  12. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE PAGES

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; ...

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore » 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  13. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radioactive materials defined in 49 CFR 173.403 as Low Specific Activity Material, LSA-1, or Surface... 7 material (radioactive) listed in Table 148.10 of this part must be surveyed after the completion of off-loading by a qualified person using appropriate radiation detection instruments. Such holds...

  14. Storage depot for radioactive material

    DOEpatents

    Szulinski, Milton J.

    1983-01-01

    Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

  15. Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Hassan, W M S W; Lee, M H; Izham, A; Said, M N; Wagiran, H; Heryanshah, A

    2017-07-01

    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh -1 (156-392nGyh -1 ) and 4 times higher than the world average value. High radioactivity levels of 238 U (95±12Bqkg -1 ), 232 Th (191±23Bqkg -1 ,) and 40 K (727±130Bqkg -1 ) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy -1 per man. The recommended ICRP reference level (1-20mSvy -1 ) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Model 9977 Radioactive Material Packaging Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, themore » package must maintain its radioactive material as subcritical« less

  17. Stored Radioactive Material Landfill Site no. 7 (LF-7), Massachusetts Military Reservation, Cape Cod, MA

    DTIC Science & Technology

    2013-03-07

    Consultative Letter 3. DATES COVERED (From – To) July 2012 – January 2013 4. TITLE AND SUBTITLE Stored Radioactive Material Landfill Site #7 (LF-7...performed 9-13 Jul 2012 at the stored radioactive material landfill site (LF-7) on Camp Edwards, Massachusetts Military Reservation, Cape Cod, MA...Walkover surveillance and environmental sampling were used to characterize any radioactive material presence at the LF-7 site. No observable or

  18. Packaging and transportation of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  19. 76 FR 5215 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Compliance with Packaging Requirements for Shipment and Receipt of Radioactive Material,'' is temporarily... Code of Federal Regulations, Part 71, ``Packaging and Transportation of Radioactive Material'' (10 CFR... Compliance with Packaging Requirements for Shipments of Radioactive Materials,'' as an acceptable process for...

  20. 78 FR 79561 - Information Collection Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... collection provisions in the HMR involving the transportation of radioactive materials in commerce... requirements help to establish that proper packages are used for the type of radioactive material being..., and emergency responders. Affected Public: Shippers and carriers of radioactive materials in commerce...

  1. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    NASA Astrophysics Data System (ADS)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul

    2015-09-01

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.

  2. Naturally occurring radioactive materials (NORM) in ashes from a fuel-oil power plant in Cienfuegos, Cuba, and the associated radiation hazards.

    PubMed

    Alonso-Hernández, C M; Bernal-Castillo, J; Morera-Gómez, Y; Guillen-Arruebarrena, A; Cartas-Aguila, H A; Acosta-Milián, R

    2014-03-01

    The radioactivity of NORM was measured in ashes collected from a fuel-oil power plant in Cienfuegos, Cuba, using an HPGe gamma-ray spectrometer. The (226)Ra, (210)Pb, (40)K, (232)Th and (238)U activity concentrations reached 240, 77, 59, 70 and 15 Bq kg(-1), respectively. The potential radiological hazard of these residuals was assessed. The radium equivalent activities of the samples varied from 54 to 345 Bq kg(-1). The gamma index was calculated to be lower than that of the reference values, and the gamma absorbed dose rate was higher than the average reported for the earth's crust; however, the assessed annual effective dose was slightly lower than the annual effective dose limit for public, i.e. 1 mSv. Therefore, these bottom ashes were not dramatically enriched with radionuclides and may be used as an additive for building materials without restrictions from a radiological protection point of view.

  3. CERISE, a French radioprotection code, to assess the radiological impact and acceptance criteria of installations for material handling, and recycling or disposal of very low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santucci, P.; Guetat, P.

    1993-12-31

    This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activitymore » unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.« less

  4. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-18

    This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

  6. 46 CFR 148.300 - Radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Radioactive materials. 148.300 Section 148.300 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Special Requirements for Certain Materials § 148.300 Radioactive... surface, when averaged over an area of 300 cm2, does not exceed the following levels: (1) 4.0 Bq/cm2 (10−4...

  7. 46 CFR 148.04-1 - Radioactive material, Low Specific Activity (LSA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive material, Low Specific Activity (LSA). 148... § 148.04-1 Radioactive material, Low Specific Activity (LSA). (a) Authorized materials are limited to: (1) Uranium or thorium ores and physical or chemical concentrates of such ores; (2) Uranium metal...

  8. Radioactivity in consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghissi, A.A.; Paras, P.; Carter, M.W.

    1978-08-01

    Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

  9. Nuclear design of a very-low-activation fusion reactor

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Hopkins, G. R.

    1983-06-01

    The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.

  10. 76 FR 11288 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Guide, DG-7008, ``Leakage Tests on Packages for Shipment of Radioactive Materials.'' FOR FURTHER... regulatory guide (DG), entitled, ``Leakage Tests on Packages for Shipment of Radioactive Materials'' is... Radioactive and Nonnuclear Hazardous Materials, N14, Subcommittee of the American National Standards Institute...

  11. Medical Effects of a Transuranic "Dirty Bomb".

    PubMed

    Durakovic, Asaf

    2017-03-01

    The modern military battlefields are characterized by the use of nonconventional weapons such as encountered in the conflicts of the Gulf War I and Gulf War II. Recent warfare in Iraq, Afghanistan, and the Balkans has introduced radioactive weapons to the modern war zone scenarios. This presents the military medicine with a new area of radioactive warfare with the potential large scale contamination of military and civilian targets with the variety of radioactive isotopes further enhanced by the clandestine use of radioactive materials in the terrorist radioactive warfare. Radioactive dispersal devices (RDDs), including the "dirty bomb," involve the use of organotropic radioisotopes such as iodine 131, cesium 137, strontium 90, and transuranic elements. Some of the current studies of RDDs involve large-scale medical effects, social and economic disruption of the society, logistics of casualty management, cleanup, and transportation preparedness, still insufficiently addressed by the environmental and mass casualty medicine. The consequences of a dirty bomb, particularly in the terrorist use in urban areas, are a subject of international studies of multiple agencies involved in the management of disaster medicine. The long-term somatic and genetic impact of some from among over 400 radioisotopes released in the nuclear fission include somatic and transgenerational genetic effects with the potential challenges of the genomic stability of the biosphere. The global contamination is additionally heightened by the presence of transuranic elements in the modern warzone, including depleted uranium recently found to contain plutonium 239, possibly the most dangerous substance known to man with one pound of plutonium capable of causing 8 billion cancers. The planning for the consequences of radioactive dirty bomb are being currently studied in reference to the alkaline earths, osteotropic, and stem cell hazards of internally deposited radioactive isotopes, in particular uranium and transuranic elements. The spread of radioactive materials in the area of the impact would expose both military and civilian personnel to the blast and dust with both inhalational, somatic, and gastrointestinal exposure, in the aftermath of the deployment of RDDs. The quantities of radioactive materials have proliferated from the original quantity of plutonium first isolated in 1941 from 0.5 mg to the current tens of thousands of kilograms in the strategic nuclear arsenal with the obvious potential consequences to the biosphere and mankind. In an event of RDD employment, the immediate goal of disaster and mass casualty medicine would be a synchronized effort to contain the scope of the event, followed by cleanup and treatment procedures. A pragmatic approach to this problem is not always possible because of unpredictability of the terrorist-use scenarios. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  12. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  13. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  14. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  15. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  16. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  17. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  18. 10 CFR 30.3 - Activities requiring license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that possesses and uses accelerator-produced radioactive material or discrete sources of radium-226 for...-produced radioactive material or discrete sources of radium-226 for which a specific license is required in... section, all other licensees, who possess and use accelerator-produced radioactive material or discrete...

  19. 77 FR 18871 - Administrative Guide for Verifying Compliance With Packaging Requirements for Shipment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Packaging Requirements for Shipment and Receipt of Radioactive Material AGENCY: Nuclear Regulatory... with Packaging Requirements for Shipment and Receipt of Radioactive Material.'' This regulatory guide... for transporting licensed material under 10 CFR part 71, ``Packaging and Transportation of Radioactive...

  20. Study on effect of geometrical configuration of radioactive source material to the radiation intensity of betavoltaic nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id

    2015-09-30

    Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less

  1. Experiences in the field of radioactive materials seizures in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Karel; Podlaha, Josef; Sir, David

    2007-07-01

    In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, themore » number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)« less

  2. Radioactive waste material melter apparatus

    DOEpatents

    Newman, D.F.; Ross, W.A.

    1990-04-24

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

  3. Radioactive waste material melter apparatus

    DOEpatents

    Newman, Darrell F.; Ross, Wayne A.

    1990-01-01

    An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

  4. Radiological Risk Assessment for King County Wastewater Treatment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways andmore » water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.« less

  5. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on bioassay...

  6. 10 CFR 32.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... recognized Indian Tribes with respect to accelerator-produced radioactive material or discrete sources of... transfer items containing accelerator-produced radioactive material or discrete sources of radium-226 for... radioactive material or discrete sources of radium-226 on August 8, 2009, or earlier as noticed by the NRC...

  7. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Authorized use of radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation...

  8. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Authorized use of radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation...

  9. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Authorized use of radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation...

  10. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Authorized use of radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation...

  11. 10 CFR 76.81 - Authorized use of radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Authorized use of radioactive material. 76.81 Section 76.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safety § 76.81 Authorized use of radioactive material. Unless otherwise authorized by law, the Corporation...

  12. 49 CFR 177.842 - Class 7 (radioactive) material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the labels on the individual packages and overpacks in the group. This provision does not apply to... Class 7 (radioactive) material bearing “RADIOACTIVE YELLOW-II” or “RADIOACTIVE YELLOW-III” labels may... transport index number determined by adding together the transport index number on the labels on the...

  13. Title list of documents made publicly available, January 1-31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index. The docketed information in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docket Information, last published in January 1979. NRC documents that are publicly available may be examined without charge at the NRC Public Document Room (PDR). Duplicate copies in paper, microfiche, or (selectively) diskette, may be obtained for a fee.« less

  14. 41 CFR 50-204.22 - Exposure to airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Exposure to airborne... FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.22 Exposure to airborne radioactive material. (a) No..., within a restricted area, to be exposed to airborne radioactive material in an average concentration in...

  15. 78 FR 51213 - In the Matter of Certain Licensees Requesting Unescorted Access to Radioactive Material; Order...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... license authorizes it to perform services on devices containing certain radioactive material for customers... Possess Sources Containing Radioactive Material Quantities of Concern,'' stated that ``service providers..., Fingerprinting Order, paragraph IC 1.c of the prior Order was superseded by the requirement that ``Service...

  16. 49 CFR 176.710 - Care following leakage or sifting of radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Care following leakage or sifting of radioactive materials. 176.710 Section 176.710 Transportation Other Regulations Relating to Transportation PIPELINE AND... sifting of radioactive materials. (a) In case of fire, collision, or breakage involving any shipment of...

  17. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air...

  18. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air...

  19. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air...

  20. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209 Section 835.209 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air...

  1. The Interface of Safety and Security in Transport: A Regional Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Tim; Duhamel, David A; Nandakumar, A. N.

    Security of nuclear and other radioactive material in transport continues to be a challenge for States that are working on strengthening their nuclear security regime. One reason for this is that State regulatory agencies and other organizations lack the resources and trained personnel to dedicate to this field. For over 50 years safety has been a major focus in the use, storage and transport of radioactive material. Only recently, since the late 1990s, has dedicated focus been given to the field of security. One way to assist States to advance nuclear security is to reach out to safety workers (regulators,more » inspectors, and safety compliance personnel) and showcase the need to better integrate safety and security practices. A recent IAEA regional workshop in Bangkok, Thailand (June 2015) yielded profound results when subject matter experts lectured on both the safety and the security of radioactive material in transport. These experts presented and discussed experiences and best practices for: 1) developing and implementing safety requirements and security recommendations for radioactive material in transport; 2) national and international cooperation; and 3) preventing shipment delays/denials of radioactive material. The workshop participants, who were predominantly from safety organizations, shared that they received the following from this event: 1. A clear understanding of the objectives of the IAEA safety requirements and security recommendations for radioactive material in transport. 2. A general understanding of and appreciation for the similarities and differences between safety requirements and security recommendations for radioactive material in transport. 3. A greater appreciation of the interface between transport safety and security and potential impacts of this interface on the efforts to strengthen the compliance assurance regime for the safe transport of radioactive material. 4. A general understanding of assessing the transport security scenarios and developing transport security plans. Many participants also reported their appreciation of the workshop exercises that specifically focused on practical aspects of safety and security of transport of radioactive material. These workshop outcomes highlight the important role professionals can offer when they receive additional safety training and education for radioactive material in transport. Moreover, these professionals can help to increase capacity in countries with developing nuclear security regimes. This paper explores workshop outcomes and transportation regulations and guidelines for radioactive material.« less

  2. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  3. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  4. 10 CFR Appendix P to Part 110 - Category 1 and 2 Radioactive Material

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Category 1 and 2 Radioactive Material P Appendix P to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. P Appendix P to Part 110—Category 1 and 2 Radioactive Material Table 1—Import and...

  5. Radioactivity and food (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszyna-Marzys, A.E.

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear powermore » station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.15 references.« less

  6. 77 FR 52073 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to..., 2012, July 31, 2012, XW012/ radioactive total of 5,500 materials and/or 02, 11005699. waste including tons or about radioactive various 1,000 tons waste that is materials (e.g., metal, 4,000 attributed to...

  7. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident.

    PubMed

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management.

  8. Radiological protection from radioactive waste management in existing exposure situations resulting from a nuclear accident

    PubMed Central

    Sugiyama, Daisuke; Hattori, Takatoshi

    2013-01-01

    In environmental remediation after nuclear accidents, radioactive wastes have to be appropriately managed in existing exposure situations with contamination resulting from the emission of radionuclides by such accidents. In this paper, a framework of radiation protection from radioactive waste management in existing exposure situations for application to the practical and reasonable waste management in contaminated areas, referring to related ICRP recommendations was proposed. In the proposed concept, intermediate reference levels for waste management are adopted gradually according to the progress of the reduction in the existing ambient dose in the environment on the basis of the principles of justification and optimisation by taking into account the practicability of the management of radioactive waste and environmental remediation. It is essential to include the participation of relevant stakeholders living in existing exposure situations in the selection of reference levels for the existing ambient dose and waste management. PMID:22719047

  9. Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period January 1-March 31, 1951

    USGS Publications Warehouse

    Rabbitt, John C.

    1951-01-01

    This report summarized the research work of the Trace Elements Section, Geochemistry and Petrology Branch for the period January 1 - March 31, 1951. Work before that is summarized in an earlier report, "Summary of the research work of the Trace Elements Section, Geochemistry and Petrology Branch, for the period April 1, 1948 - December 31, 1950," by John C. Rabbitt (U.S. Geol. Survey Trace Elements Investigations Rept. 148, January 1951). This report will be referred to as TEIR 148. In TEIR 148 the purpose of each project was described and it is not thought necessary to repeat that material. The research work of the section consists of laboratory and related field studies in the following fields: 1. Mineralogic and petrologic investigations of radioactive rocks, minerals, and ores. 2. Investigations of chemical methods of analysis for uranium, thorium, and other elements and compounds in radioactive materials, and related chemical problems. 3. Investigations of spectographic method of analysis for a wide variety of elements in radioactive materials. 4. Investigation of radiometric methods of analysis is applied to radioactive materials. It should be emphasized that the work undertaken so far is almost entirely in the nature of investigations supporting the field appraisal of known uraniferous deposits. A program of more fundamental research, particularly in the mineralogy and geochemistry of uranium, is now being drawn up and will be submitted for approval soon. This report does not deal with the routine analytical work of the Section nor the public-sample program. The analytical work will be summarized in a report to be issued after the end of fiscal year 1951, and a report on the public-sample program is in process. Special thanks are due members of the Section who are engaged in the research work and who have supplied material for this report, the Early Ingerson, Chief of the Geochemistry and Petrology Branch for his critical review, to Jane Titcomb of the editorial staff of the Section for editing the report, and to Virginia Layne of the same staff, for typing the manuscript and the multilith mats.

  10. 77 FR 41774 - Notice of Final Environmental Assessment and Finding of No Significant Impact for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ..., New York. A modernized facility is needed to streamline radioactive material handling and storage... waste shipments would be a small part of the shipments of radioactive materials made annually in the... preferred action to address the need for streamlining radioactive material handling and storage operations...

  11. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or substantial radiation levels offsite. 140.84 Section 140.84 Energy NUCLEAR REGULATORY COMMISSION... § 140.84 Criterion I—Substantial discharge of radioactive material or substantial radiation levels... radioactive material offsite, or that there have been substantial levels of radiation offsite, when, as a...

  12. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or substantial radiation levels offsite. 140.84 Section 140.84 Energy NUCLEAR REGULATORY COMMISSION... § 140.84 Criterion I—Substantial discharge of radioactive material or substantial radiation levels... radioactive material offsite, or that there have been substantial levels of radiation offsite, when, as a...

  13. 10 CFR 840.4 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite. 840.4 Section 840.4 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.4 Criterion I—Substantial discharge of radioactive material or...

  14. 10 CFR 840.4 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite. 840.4 Section 840.4 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.4 Criterion I—Substantial discharge of radioactive material or...

  15. 78 FR 6149 - Final Interim Staff Guidance Assessing the Radiological Consequences of Accidental Releases of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...

  16. 10 CFR 840.4 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite. 840.4 Section 840.4 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.4 Criterion I—Substantial discharge of radioactive material or...

  17. 10 CFR 840.4 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite. 840.4 Section 840.4 Energy DEPARTMENT OF ENERGY EXTRAORDINARY NUCLEAR OCCURRENCES § 840.4 Criterion I—Substantial discharge of radioactive material or...

  18. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset of the materials involved in illicit trafficking in nuclear and radioactive materials, that of radioactive sealed sources. The focus on radioactive sealed sources is based on our belief that insufficient attention has been paid to trafficking incidents involving such sources which constitute the majority of trafficking cases. According to the IAEA's Illicit Trafficking Data Base, as of December 31 2005 there were 827 confirmed cases reporting by the participating states, including 250 incidents (or 30%) involved nuclear and other radioactive materials and 566 (or 68%) involved other radioactive materials, mostly radioactive sources, and radioactively contaminated materials. Experts in the Lugar Survey on Proliferation Threat and Response (June 2005) agreed that an attack with a Radiological Dispersion Device (RDD) was the most probable form of nuclear terrorism the world could expect over the next decade. At the same time radiological materials are used in wide a variety of applications, located in virtually every country and in general, radiological materials are far easier to access than nuclear materials. It has become increasingly obvious that the lack of a cradle-to-grave approach for sealed radioactive sources that have reached the end of their useful life is the main reason that sources are abandoned. It appears that the questions will ultimately become whether industry will impose additional regulations upon itself and become self-regulating with respect to repatriating radioactive material at the end of service life, or whether national authorities at some point will take actions and regulate the industry. Argentina, which is one of the most advanced countries regarding control of radiological sources adopted additional measures to safeguard its radiological materials to a level comparable to that proscribed for nuclear materials. This approach, while highly successful, has led to some minor unforeseen consequences, namely insufficient funds to implement all regulations in full and a lack of inspectors and appropriate equipment to assure compliance This is not an unusual outcome. Regulations imposed by a national regulatory authority may be technically excellent, but their implementation may provide a funding challenge. A more practical approach may be to have the industry to impose regulations upon itself, which could be accomplished within the economics of the industries involved. (authors)« less

  19. Naturally Occurring Radioactive Materials (NORM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards theymore » present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).« less

  20. Benchmark studies of induced radioactivity produced in LHC materials, Part I: Specific activities.

    PubMed

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    Samples of materials which will be used in the LHC machine for shielding and construction components were irradiated in the stray radiation field of the CERN-EU high-energy reference field facility. After irradiation, the specific activities induced in the various samples were analysed with a high-precision gamma spectrometer at various cooling times, allowing identification of isotopes with a wide range of half-lives. Furthermore, the irradiation experiment was simulated in detail with the FLUKA Monte Carlo code. A comparison of measured and calculated specific activities shows good agreement, supporting the use of FLUKA for estimating the level of induced activity in the LHC.

  1. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to.... 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities of Concern Threshold Limits Radionuclides Category 1 Terabecquerels(TBq) Curies(Ci) 1 Category 2...

  3. 10 CFR Appendix I to Part 73 - Category 1 and 2 Radioactive Materials

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Category 1 and 2 Radioactive Materials I Appendix I to.... 73, App. I Appendix I to Part 73—Category 1 and 2 Radioactive Materials Table I-1—Quantities of Concern Threshold Limits Radionuclides Category 1 Terabecquerels(TBq) Curies(Ci) 1 Category 2...

  4. Transport index limits for shipments of radioactive material in passenger-carrying aircraft.

    DOT National Transportation Integrated Search

    1982-06-01

    To limit radiation exposure in passenger-carrying aircraft the Department of Transportation requires operators of such aircraft to exercise special control over packages of radioactive material bearing a "radioactive yellow" label. The degree of cont...

  5. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  6. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  7. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  8. Technical Basis Document for Internal Dosimetry at Sandia National Laboratories Revision 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles A.

    2014-09-01

    The RPID Project will be implemented at all SNL facilities for activities involving the processing and/or storing of radioactive materials. This project includes activities at the Tech Area (TA) I, TA II, TA III, TA IV, TA V, Coyote Test Field, and environmental restoration sites at SNL, located in Albuquerque, New Mexico, and the Kauai Test Facility(SNL/KTF). Reference to SNL throughout this document includes facilities and activities at the Albuquerque location and at SNL/KTF.

  9. Potential radiological impact of tornadoes on the safety of Nuclear Fuel Services' West Valley Fuel Reprocessing Plant. 2. Reentrainment and discharge of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, W Jr

    1981-07-01

    This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less

  10. The development of radioactive sample surrogates for training and exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Bevin Brush; Dick Jansen

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less

  11. Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-03-01

    This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastesmore » still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).« less

  12. The NIST radioactivity measurement assurance program for the radiopharmaceutical industry.

    PubMed

    Cessna, Jeffrey T; Golas, Daniel B

    2012-09-01

    The National Institute of Standards and Technology (NIST) maintains a program for the establishment and dissemination of activity measurement standards in nuclear medicine. These standards are disseminated through Standard Reference Materials (SRMs), Calibration Services, radionuclide calibrator settings, and the NIST Radioactivity Measurement Assurance Program (NRMAP, formerly the NEI/NIST MAP). The MAP for the radiopharmaceutical industry is described here. Consolidated results show that, for over 3600 comparisons, 96% of the participants' results differed from that of NIST by less than 10%, with 98% being less than 20%. Individual radionuclide results are presented from 214 to 439 comparisons, per radionuclide, for (67)Ga, (90)Y, (99m)Tc, (99)Mo, (111)In, (125)I, (131)I, and (201)Tl. The percentage of participants results within 10% of NIST ranges from 88% to 98%. Published by Elsevier Ltd.

  13. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  14. Addressing the psychosocial and communication challenges posed by radiological/nuclear terrorism: key developments since NCRP Report No. 138.

    PubMed

    Becker, Steven M

    2005-11-01

    One of the most innovative aspects of NCRP Report No. 138 (Management of Terrorist Incidents Involving Radioactive Material) was the high priority it accorded to psychosocial and communication issues. While previous discussions of radiological and nuclear terrorism had occasionally referred to these topics, NCRP Report No. 138 was the first report of its kind to recognize the profound challenges posed by these issues and to place them at the heart of preparedness and response efforts. In the years since the report's release, a host of important developments have taken place in relation to psychosocial and communication issues. This paper reviews key changes and advances in five broad areas: (1) training exercises, (2) policy and guidance development, (3) findings on hospital and clinician needs, (4) survey research on public perceptions of radiological terrorism, and (5) risk communication for radiological and nuclear terrorism situations. The article concludes with a discussion of continuing psychosocial and communication challenges, including critical areas needing further attention as the nation moves to meet the threat of terrorism involving radioactive materials.

  15. The Mean Life Squared Relationship for Abundances of Extinct Radioactivities

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Cameron, A. G. W.

    2004-01-01

    We discovered that the abundances of now extinct radioactivities (relative to stable reference isotopes) in meteorites vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons but to calcium-aluminum inclusions (CAIs). Certain meteorites contain excesses in isotopic abundances from the decay of radioactive isotopes with half-lives much less than the age of the solar system. These short-lived radioactivities are now extinct, but they were alive when meteorites assembled in the early solar system. The origin of these radioactivities and the processes which control their abundances in the solar nebula are still not well understood. Some clues may come from our finding that the meteoritic abundances of now extinct radioactivities (relative to stable reference isotopes) vary as a function of their mean lifetimes squared. This relationship applies to chondrites, achondrites, and irons, but not to CAIs. This points to at least two different processes establishing the abundances of short-lived isotopes found in the meteoritic record.

  16. 75 FR 53593 - Hazardous Materials: Minor Editorial Corrections and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... section specifies general requirements for packaging hazardous materials for transportation by aircraft... contamination on motor vehicles used to transport Class 7 radioactive materials under exclusive use conditions...

  17. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  18. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  19. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  20. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  1. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  2. Toward the framework and implementation for clearance of materials from regulated facilities.

    PubMed

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.

  3. An intelligent inspection and survey robot. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-15

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.

  4. 76 FR 82163 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... combination packagings prohibit Class 1 (explosive) and Class 7 (radioactive) material to be offered for... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... material, packing group assignments, special provisions, packaging authorizations, packaging sections, air...

  5. Statistical Physics of Rupture in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like cracking of glass, aging of concrete, the failure of fiber networks in the formation of paper and the breaking of a metal bar subject to an external load. Failure of composite systems is of utmost importance in naval, aeronautics and space industry [1]. By the term composite, we refer to materials with heterogeneous microscopic structures and also to assemblages of macroscopic elements forming a super-structure. Chemical and nuclear plants suffer from cracking due to corrosion either of chemical or radioactive origin, aided by thermal and/or mechanical stress.

  6. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  7. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND…

  8. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...

  9. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...

  10. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...

  11. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...

  12. 10 CFR 20.1203 - Determination of external dose from airborne radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...

  13. Benchmark studies of induced radioactivity produced in LHC materials, Part II: Remanent dose rates.

    PubMed

    Brugger, M; Khater, H; Mayer, S; Prinz, A; Roesler, S; Ulrici, L; Vincke, H

    2005-01-01

    A new method to estimate remanent dose rates, to be used with the Monte Carlo code FLUKA, was benchmarked against measurements from an experiment that was performed at the CERN-EU high-energy reference field facility. An extensive collection of samples of different materials were placed downstream of, and laterally to, a copper target, intercepting a positively charged mixed hadron beam with a momentum of 120 GeV c(-1). Emphasis was put on the reduction of uncertainties by taking measures such as careful monitoring of the irradiation parameters, using different instruments to measure dose rates, adopting detailed elemental analyses of the irradiated materials and making detailed simulations of the irradiation experiment. The measured and calculated dose rates are in good agreement.

  14. Analysis of SMELS and reference materials for validation of the k0-based internal monostandard NAA method using in-situ detection efficiency

    NASA Astrophysics Data System (ADS)

    Acharya, R.; Swain, K. K.; Reddy, A. V. R.

    2010-10-01

    Three synthetic multielement standards (SMELS I, II and III) and two reference materials (RMs), SL-3 and Soil-7 of IAEA were analyzed for validation of the k0-based internal monostandard neutron activation analysis (IM-NAA) method utilizing in-situ relative detection efficiency. The internal monostandards used in SMELS and RMs were Au and Sc, respectively. The samples were irradiated in Apsara and Dhruva reactors, BARC and radioactive assay was carried out using a 40% relative efficiency HPGe detector coupled to an 8 k MCA. Concentrations of 23 elements were determined in both SMELS and RMs. In the case of RMs, concentrations of a few elements, whose certified values are not available, could also be determined. The % deviations for the elements determined in SMELS with respect to the assigned values and RMs with respect to certified values were within ±8%. The Z-score values at 95% confidence level for most of the elements in both the materials were within ±1.

  15. Remote detection of radioactive material using high-power pulsed electromagnetic radiation.

    PubMed

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-05-09

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  16. Remote detection of radioactive material using high-power pulsed electromagnetic radiation

    PubMed Central

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-01-01

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438

  17. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, G.

    This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facilitymore » (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.« less

  19. Title list of documents made publicly available, November 1-30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Indexmore » and a Report Number Index. The docketed information contained in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docker Information, last published in January 1979. NRC documents that are publicly available may be examined without charge at the NRC Public Document Room (PDR). Duplicate copies may be obtained for a fee. Standing orders for certain categories of documents are also available. Clients may search for and order desired titles through the PDR computerized Bibliographic Retrieval System, which is accessible both at the PDR and remotely. The PDR is staffed by professional technical librarians, who provide reference assistance to users.« less

  20. Radionuclide calorimeter system

    DOEpatents

    Donohoue, Thomas P.; Oertel, Christopher P.; Tyree, William H.; Valdez, Joe L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated.

  1. Radionuclide calorimeter system

    DOEpatents

    Donohoue, T.P.; Oertel, C.P.; Tyree, W.H.; Valdez, J.L.

    1991-11-26

    A circuit for measuring temperature differentials in a calorimeter is disclosed. The temperature differential between the reference element and sample element containing a radioactive material is measured via a Wheatstone bridge arrangement of thermistors. The bridge is driven with an alternating current on a pulsed basis to maintain the thermal floor of the calorimeter at a low reference value. A lock-in amplifier connected to the bridge phase locks a signal from the bridge to the input pulsed AC signal to provide a DC voltage. The DC voltage is sampled over time and provided to a digital computer. The digital computer, using curve fitting algorithms, will derive a function for the sample data. From the function, an equilibrium value for the temperature may be calculated. 7 figures.

  2. 49 CFR 173.424 - Excepted packages for radioactive instruments and articles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.424....1 mSv/hour (10 mrem/hour); (e) The active material is completely enclosed by non-active components...

  3. 49 CFR 173.424 - Excepted packages for radioactive instruments and articles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.424....1 mSv/hour (10 mrem/hour); (e) The active material is completely enclosed by non-active components...

  4. 78 FR 64049 - Information Collection Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... radioactive material being transported; external radiation levels do not exceed prescribed limits; and... radioactive materials in commerce. Annual Reporting and Recordkeeping Burden: Number of Respondents: 3,817... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...

  5. [Reduction of radioactive cesium content in pond smelt by cooking].

    PubMed

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    In Japan, seafood may be eaten raw or after having been cooked in diverse ways. Therefore, it is important to understand the effect of cooking on the extent of contamination with radioactive materials in order to avoid internal exposure to radioactive materials via seafood. In this study, we investigated the changes in radioactive cesium content in pond smelt cooked in four different ways: grilled, stewed (kanroni), fried and soaked (nanbanzuke). The radioactive cesium content in grilled, kanroni and fried pond smelt was almost unchanged compared with the uncooked state. In contrast, radioactive cesium content in nanbanzuke pond smelt was decreased by about 30%. Our result suggests that soaking cooked pond smelt in seasoning is an effective method of reducing the burden radioactive cesium.

  6. AED INFORMATION SERVICE. SERIES C: BIBLIOGRAPHIES. SECTION 02: RADIATION EFFECTS ON FOOD (INCL. RADIOACTIVE CONTAMINATION)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueck, H. comp.

    Eleven hundred and fifty-eight references are presented to the world literature on radiation effects on food. References to related biological and chemical studies and studies on radiation dosimetry are included. Emphasis is placed on radiation processing of foods and food products to increase storage life and the effects of fallout fission products on radioactivity in food chains. (C.H.)

  7. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  8. 77 FR 40385 - Withdrawal of Regulatory Guide 7.3; Procedures for Picking Up and Receiving Packages of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Picking Up and Receiving Packages of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION... Receiving Packages of Radioactive Material.'' The RG is being withdrawn because it is outdated and the..., ``Administrative Guide for Verifying Compliance with Packaging Requirements for Shipment and Receipt of Radioactive...

  9. AERORADIOACTIVITY SURVEY AND AREAL GEOLOGY OF THE GEORGIA NUCLEAR LABORATORY AREA, NORTHERN GEORGIA (ARMS-I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKallor, J.A.

    1962-01-01

    An airborne gamma-radioactivity survey of about 7000 square miles around the Georgia Nuclear Laboratory (GNL) in Dawson County, Ga., was made by the U. S. Geological Survey in cooperation with the Division of Biology and Medicine, U. S. Atomic Energy Commission. The project was flown perpendicular to the regional strike at a nominal elevation of 500 ft above the ground with a flight-line spacing of 1 mile. Radioactivity contacts shown on a 1:250,000 map delineate areas of similar radioactivity, which, in general, trend northeast, parallel to the geologic strike. Many, but not all, formations correlate closely with radioactivity units. Changesmore » of radioactivity within some formations may indicate facies changes. In the GNL area the Cartersville fault, which dlosely coincides with a prominent radioactivity contact, separates the Valley and Ridge physiographic province from the Piedmont to the east. Within the Valley and Ridge province bedrock consists of sedimentary rocks of Paleozoic age; the radioactivity is from 300 to 900 counts per second (cps). Areas of limestone and dolomite are characterized by radioactivity lows, usually less than 500 cps. Most areas of shale have a radioactivity of 600 to 900 cps. Bedrock in the Piedmont consists mainly of igneous and metamorphic rocks of Precambrian and Palezoic ages, and the radioactivity ranges from about 250 to 2000 cps. The least radioactive rocks (250 to 500 cps) are hornblende gneiss, dioritic injection gneiss, and some of the granitic gneiss. The most radioactive rock is the augen gneiss in Bartow and Cherokee Counties (1000 to 2000 cps). Some of the granitic gneiss, biotite gneiss and schist, and the Talladega Slate have a radioactivity of slightly more than 1000 cps. Composite samples of surficial material were collected from sites directly under the flight path of the aircraft. After analysis for equivalent uranium based upon the number of counts recorded by geiger tubes, the samples were stored for future reference. The equivalent uranium was plotted against cps obtained from the aerial surveying. From 600 cps, which corresponds to slightiy more than 0.001 percent equivalent uranium, to 1600 cps, each 200-cps increase corresponds to an increase of almost 0.001 percent equivalent uranium. (auth)« less

  10. Radiologic safety assessment for low level waste storage on TRU pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, J.P.

    1986-03-17

    The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless,more » it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.« less

  11. 78 FR 60745 - Hazardous Materials: Minor Editorial Corrections and Clarifications (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... 173.62 This section provides packaging instructions for Class 1 explosive materials. Paragraph (b) of... requirements for approval of special form Class 7 (radioactive) materials. Paragraph (d) of this section notes... activity of special form Class 7 (radioactive) material permitted in a Type A package equals the maximum...

  12. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  13. Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey

    NASA Astrophysics Data System (ADS)

    Mavi, B.; Akkurt, I.

    2010-09-01

    The activity concentrations of uranium, thorium and potassium can vary from material to material and it should be measured as the radiation is hazardous for human health. Thus first studies have been planned to obtain radioactivity of building material used in the Isparta region of Turkey. The radioactivity of some building materials used in this region has been measured using a γ-ray spectrometry, which contains a NaI(Tl) detector connected to MCA. The specific activity for 226Ra, 232Th and 40K, from the selected building materials, were in the range 17.91-58.88, 6.77-19.49 and 65.72-248.76 Bq/kg, respectively. Absorbed dose rate in air ( D), annual effective dose (AED), radium equivalent activities (Ra eq), and external hazard index ( Hex) associated with the natural radionuclide are calculated to assess the radiation hazard of the natural radioactivity in the building materials. It was found that none of the results exceeds the recommended limit value.

  14. Production and Evaluation of 236gNp and Reference Materials for Naturally Occurring Radioactive Materials

    NASA Astrophysics Data System (ADS)

    Larijani, Cyrus Kouroush

    This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via gamma, alpha and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.

  15. Low radioactivity material for use in mounting radiation detectors

    NASA Technical Reports Server (NTRS)

    Fong, Marshall; Metzger, Albert E.; Fox, Richard L.

    1988-01-01

    Two materials, sapphire and synthetic quartz, have been found for use in Ge detector mounting assemblies. These materials combine desirable mechanical, thermal, and electrical properties with the radioactive cleanliness required to detect minimal amounts of K, Th, and U.

  16. Container for radioactive materials

    DOEpatents

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  17. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  18. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  19. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  20. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  1. 10 CFR 39.1 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...

  2. Fundamentals of health physics for the radiation-protection officer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  3. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  4. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  5. Commentary: Radioactive Wastes and Damage to Marine Communities

    ERIC Educational Resources Information Center

    Wallace, Bruce

    1974-01-01

    Discusses the effects of radioactive wastes on marine communities, with particular reference to the fitness of populations and the need for field and laboratory studies to provide evidence of ecological change. (JR)

  6. NONDESTRUCTIVE QUALITY CONTROL: SOME SPECIAL METHODS OF IRRADIATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Klis, T.

    1961-06-10

    S>Various methods, using open radioactive sources are discussed. In one method, oil is used containing Pd/sup 109/ which is adsorbed by Mg compounds with which the object to be tested is covered after it has been enveloped in a photographic film. Another method consists of coking the material in the radioactive oil and then scanning it with a suitable detector. A third method, applied especially to porous materials, uses pressure to promote the penetration of the radioactive oil into the cracks and fissures. The filtered particle technique is also used for detection of cracks or cavities in porous materials, suchmore » as ceramics, cement, graphite pressed powdered metals, and sintered carbides. In this method, radioactive liquids are used along with fluid fluorescent substances. Finally, a method is mentioned in which radioactive powder is made to adhere to the surface of the investigated objects by means of an electrostatic charge. This method is used for quality control of china, glass, email, and electric insulation material. (OID)« less

  7. Safe transport of radioactive materials in Egypt

    NASA Astrophysics Data System (ADS)

    El-Shinawy, Rifaat M. K.

    1994-07-01

    In Egypt the national regulations for safe transport of radioactive materials (RAM) are based on the International Atomic Energy Agency (IAEA) regulations. In addition, regulations for the safe transport of these materials through the Suez Canal (SC) were laid down by the Egyptian Atomic Energy Authority (EAEA) and the Suez Canal Authority (SCA). They are continuously updated to meet the increased knowledge and the gained experience. The technical and protective measures taken during transport of RAM through SC are mentioned. Assessment of the impact of transporting radioactive materials through the Suez Canal using the INTERTRAN computer code was carried out in cooperation with IAEA. The transported activities and empty containers, the number of vessels carrying RAM through the canal from 1963 to 1991 and their nationalities are also discussed. The protective measures are mentioned.A review of the present situation of the radioactive wastes storage facilities at the Atomic Energy site at Inshas is given along with the regulation for safe transportation and disposal of radioactive wastes

  8. 10 CFR 835.603 - Radiological areas and radioactive material areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Danger, Very High Radiation Area” shall be posted at each very high radiation area. (d) Airborne radioactivity area. The words “Caution, Airborne Radioactivity Area” or “Danger, Airborne Radioactivity Area” shall be posted at each airborne radioactivity area. (e) Contamination area. The words “Caution...

  9. REVIEW OF MULTI-AGENCY RADIATION SURVEY & SITE INVESTIGATION MANUAL (MARSSIM) SUPPLEMENT: MULTI-AGENCY RADIATION SURVEY AND ASSESSMENT OF MATERIALS AND EQUIPMENT (MARSAME)

    EPA Science Inventory

    Radioactive materials have been produced, processed, used, and transported amongst thousands of sites throughout the United States. Owners and operators of these sites would like to determine if materials or equipment on these sites are contaminated with radioactive materials, i...

  10. Radioactively Contaminated Sites | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-01-12

    If radioactive materials are used or disposed of improperly, they can contaminate buildings and the environment. Every site requiring cleanup is different depending on the type of facility, the radioactive elements involved and the concentration of the radioactive elements.

  11. Traces of natural radionuclides in animal food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine themore » concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.« less

  12. 10 CFR 30.4 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that amount of radioactive material which disintegrates at the rate of 37 billion atoms per second... material which disintegrates at the rate of 37 thousand atoms per second; Millicurie means that amount of radioactive material which disintegrates at the rate of 37 million atoms per second; Particle accelerator...

  13. 77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0045] Leakage Tests on Packages for Shipment of..., ``Leakage Tests on Packages for Radioactive Material.'' ADDRESSES: You can access publicly available... Materials--Leakage Tests on Packages for Shipment'' approved February 1998. The NRC staff developed and...

  14. SRS stainless steel beneficial reuse program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other typesmore » of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.« less

  15. Source inventory for Department of Energy solid low-level radioactive waste disposal facilities: What it means and how to get one of your own

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.A.

    1991-12-31

    In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less

  16. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    NASA Astrophysics Data System (ADS)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  17. 10 CFR 140.84 - Criterion I-Substantial discharge of radioactive material or substantial radiation levels offsite.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Radioactive material that may be taken into the body from its occurrence in air or water; and (3) Radioactive... Commission finds that: (1) Surface contamination of at least a total of any 100 square meters of offsite... facility and such contamination is characterized by levels of radiation in excess of one of the values...

  18. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  19. Role of Brine Chemistry and Sorption in Potential Long-Term Storage of Radioactive Waste in Geologic Salt Formations: Experimental Evaluation of Sorption Parameters

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Emerson, H. P.; Michael, D. P.; Reed, D. T.

    2016-12-01

    Bedded geologic salt formations have been shown to have many favorable properties for the disposal of radioactive waste (i.e., reducing conditions, fracture healing). Performance assessment (PA) modeling for a 10,000 year period for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM have predicted an extremely low risk of radioactive material reaching the surrounding environment after the 100 year period required for creep to seal the waste panels and access shafts. Human intrusion caused by drilling operations for oil and gas exploration is the main pathway of concern for environmental release of radioactive material due to pressurized brine pockets located within the salt formation below the repository. Our work focuses on the long-term capability of salt repositories and the associated geologic media to safely isolate stored radioactive waste from the surrounding environment, even in the event of a human intrusion scenario such as a direct brine release (DBR) due to a drilling operation intersecting a brine pocket. In particular, we are revisiting the degree of conservatism in the estimated sorption partition coefficients (Kds) used in the PA model based on complementary batch and column experimental methods (Dittrich and Reimus, 2016). The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected in the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will present (1) a conceptual overview of Kd use in the PA model, (2) background and evolution of the Kd ranges used, and (3) results from batch and column experiments and model predictions for Kds with WIPP-relevant geologic media. We will also briefly discuss the challenges of upscaling from lab experiments to field scale predictions, the presence of ligands (e.g., acetate, citrate, EDTA), the role of colloids and microbes, and the effect of engineered barrier materials (e.g., MgO) on sorption and transport conditions. References: Dittrich, T.M., Reimus, P.W. 2016. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. J Environ Manage 165, 124-132.

  20. Is it necessary to raise awareness about technologically enhanced naturally occurring radioactive materials?

    PubMed

    Michalik, Bogusław

    2009-10-01

    Since radiation risks are usually considered to be related to nuclear energy, the majority of research on radiation protection has focused on artificial radionuclides in radioactive wastes, spent nuclear fuel or global fallout caused by A-bomb tests and nuclear power plant failures. Far less attention has been paid to the radiation risk caused by exposure to ionizing radiation originating from natural radioactivity enhanced due to human activity, despite the fact that technologically enhanced naturally occurring radioactive materials are common in many branches of the non-nuclear industry. They differ significantly from "classical" nuclear materials and usually look like other industrial waste. The derived radiation risk is usually associated with risk caused by other pollutants and can not be controlled by applying rules designed for pure radioactive waste. Existing data have pointed out a strong need to take into account the non-nuclear industry where materials containing enhanced natural radioactivity occur as a special case of radiation risk and enclose them in the frame of the formal control. But up to now there are no reasonable and clear regulations in this matter. As a result, the non-nuclear industries of concern are not aware of problems connected with natural radioactivity or they would expect negative consequences in the case of implementing radiation protection measures. The modification of widely comprehended environmental legislation with requirements taken from radiation protection seems to be the first step to solve this problem and raise awareness about enhanced natural radioactivity for all stakeholders of concern.

  1. Radiation shielding materials and containers incorporating same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  2. Radiation Shielding Materials and Containers Incorporating Same

    DOEpatents

    Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.

    2005-11-01

    An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.

  3. 10 CFR 35.10 - Implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive material or discrete sources of radium-226 for which a specific medical use license is required by... accelerator-produced radioactive material or discrete sources of radium-226 for which a specific medical use...

  4. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  5. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  6. 77 FR 76602 - Office of Hazardous Materials Safety; Actions on Special Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...), transportation in 173.465(c), commerce of certain 173.465(d). Radioactive material in alternative packaging by... material in alternative packaging. (modes 1, 3) 15626-N......... EC Source 49 CFR 49 CFR To authorize the...); radioactive 175.702(b). material on cargo only aircraft when the combined transport index exceeds 50.0 and/or...

  7. Radioactive materials shipping cask anticontamination enclosure

    DOEpatents

    Belmonte, Mark S.; Davis, James H.; Williams, David A.

    1982-01-01

    An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

  8. Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry.

    PubMed

    Ravisankar, R; Vanasundari, K; Chandrasekaran, A; Rajalakshmi, A; Suganya, M; Vijayagopal, P; Meenakshisundaram, V

    2012-04-01

    The natural level of radioactivity in building materials is one of the major causes of external exposure to γ-rays. The primordial radionuclides in building materials are one of the sources of radiation hazard in dwellings made of these materials. By the determination of the radioactivity level in building materials, the indoor radiological hazard to human health can be assessed. This is an important precautionary measure whenever the dose rate is found to be above the recommended limits. The aim of this work was to measure the specific activity concentration of (226)Ra, (232)Th and (40)K in commonly used building materials from Namakkal, Tamil Nadu, India, using gamma-ray spectrometer. The radiation hazard due to the total natural radioactivity in the studied building materials was estimated by different approaches. The concentrations of the natural radionuclides and the radium equivalent activity in studied samples were compared with the corresponding results of different countries. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, George; Zhang, Xi-Cheng

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructivemore » methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less

  10. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, George; Zhang, Xi-Cheng

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development ofmore » novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less

  11. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  12. 77 FR 30332 - Mr. James Chaisson; Order Prohibiting Involvement in NRC-Licensed Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ...) deliberately failed to implement NRC security requirements for the use, storage, and protection of licensed... requirements pertaining to the use, storage, and protection of licensed material. He periodically stored the... Radioactive Material License, which required TGR to limit the storage of radioactive material approved on the...

  13. Method and means of monitoring the effluent from nuclear facilities

    DOEpatents

    Lattin, Kenneth R.; Erickson, Gerald L.

    1976-01-01

    Radioactive iodine is detected in the effluent cooling gas from a nuclear reactor or nuclear facility by passing the effluent gas through a continuously moving adsorbent filter material which is then purged of noble gases and conveyed continuously to a detector of radioactivity. The purging operation has little or no effect upon the concentration of radioactive iodine which is adsorbed on the filter material.

  14. USING A RISK-BASED METHODOLOGY FOR THE TRANSFER OF RADIOACTIVE MATERIAL WITHIN THE SAVANNAH RIVER SITE BOUNDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loftin, B; Watkins, R; Loibl, M

    2010-06-03

    Shipment of radioactive materials (RAM) is discussed in the Code of Federal Regulations in parts of both 49 CFR and 10 CFR. The regulations provide the requirements and rules necessary for the safe shipment of RAM across public highways, railways, waterways, and through the air. These shipments are sometimes referred to as in-commerce shipments. Shipments of RAM entirely within the boundaries of Department of Energy sites, such as the Savannah River Site (SRS), can be made using methodology allowing provisions to maintain equivalent safety while deviating from the regulations for in-commerce shipments. These onsite shipments are known as transfers atmore » the SRS. These transfers must follow the requirements approved in a site-specific Transportation Safety Document (TSD). The TSD defines how the site will transfer materials so that they have equivalence to the regulations. These equivalences are documented in an Onsite Safety Assessment (OSA). The OSA can show how a particular packaging used onsite is equivalent to that which would be used for an in-commerce shipment. This is known as a deterministic approach. However, when a deterministic approach is not viable, the TSD allows for a risk-based OSA to be written. These risk-based assessments show that if a packaging does not provide the necessary safety to ensure that materials are not released (during normal or accident conditions) then the worst-case release of materials does not result in a dose consequence worse than that defined for the SRS. This paper will discuss recent challenges and successes using this methodology at the SRS.« less

  15. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    PubMed

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A microcomputer-based emergency response system*.

    PubMed

    Belardo, S; Howell, A; Ryan, R; Wallace, W A

    1983-09-01

    A microcomputer-based system was developed to provide local officials responsible for disaster management with assistance during the crucial period immediately following a disaster, a period when incorrect decisions could have an adverse impact on the surrounding community. While the paper focuses on a potential disaster resulting from an accident at a commercial nuclear power generating facility, the system can be applied to other disastrous situations. Decisions involving evacuation, shelter and the deployment of resources must be made in response to floods, earthquakes, accidents in the transportation of hazardous materials, and hurricanes to name a few examples. As a decision aid, the system was designed to enhance data display by presenting the data in the form of representations (i.e. road maps, evacuation routes, etc.) as well as in list or tabular form. The potential impact of the event (i.e. the release of radioactive material) was displayed in the form of a cloud, representing the dispersion of the radioactive material. In addition, an algorithm was developed to assist the manager in assigning response resources to demands. The capability for modelling the impact of a disaster is discussed briefly, with reference to a system installed in the communities surrounding the Indian Point nuclear power plant in New York State. Results demonstrate both the technical feasibility of incorporating microcomputers indecision support systems for radiological emergency response, and the acceptance of such systems by those public officials responsible for implementing the response plans.

  17. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maza R.; Wilson, J.A.; Hetherington, R.

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.

  18. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  19. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  20. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  1. Radioactivity measurements of ITER materials using the TFTR D-T neutron field

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Abdou, M. A.; Barnes, C. W.; Kugel, H. W.

    1994-06-01

    The availability of high D-T fusion neutron yields at TFTR has provided a useful opportunity to directly measure D-T neutron-induced radioactivity in a realistic tokamak fusion reactor environment for materials of vital interest to ITER. These measurements are valuable for characterizing radioactivity in various ITER candidate materials, for validating complex neutron transport calculations, and for meeting fusion reactor licensing requirements. The radioactivity measurements at TFTR involve potential ITER materials including stainless steel 316, vanadium, titanium, chromium, silicon, iron, cobalt, nickel, molybdenum, aluminum, copper, zinc, zirconium, niobium, and tungsten. Small samples of these materials were irradiated close to the plasma and just outside the vacuum vessel wall of TFTR, locations of different neutron energy spectra. Saturation activities for both threshold and capture reactions were measured. Data from dosimetric reactions have been used to obtain preliminary neutron energy spectra. Spectra from the first wall were compared to calculations from ITER and to measurements from accelerator-based tests.

  2. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  3. Behavior of radioactive materials and safety stock of contaminated sludge.

    PubMed

    Tsushima, Ikuo

    2017-01-28

    The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.

  4. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  5. 78 FR 35746 - Advance Notification to Native American Tribes of Transportation of Certain Shipments of Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... notifications for certain shipments of radioactive material at the time the applicable Agreement State... for certain shipments of radioactive material at the time the applicable Agreement State implements... B packaging; (2) the licensed material is being transported within or across the boundary of the...

  6. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRONOWSKI,DAVID R.

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  7. 10 CFR 35.396 - Training for the parenteral administration of unsealed byproduct material requiring a written...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radioactivity; (iv) Chemistry of byproduct material for medical use; and (v) Radiation biology; and (2) Has work...). The work experience must involve— (i) Ordering, receiving, and unpacking radioactive materials safely... meters; (iii) Calculating, measuring, and safely preparing patient or human research subject dosages; (iv...

  8. 10 CFR 35.396 - Training for the parenteral administration of unsealed byproduct material requiring a written...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radioactivity; (iv) Chemistry of byproduct material for medical use; and (v) Radiation biology; and (2) Has work...). The work experience must involve— (i) Ordering, receiving, and unpacking radioactive materials safely... meters; (iii) Calculating, measuring, and safely preparing patient or human research subject dosages; (iv...

  9. 10 CFR 35.396 - Training for the parenteral administration of unsealed byproduct material requiring a written...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radioactivity; (iv) Chemistry of byproduct material for medical use; and (v) Radiation biology; and (2) Has work...). The work experience must involve— (i) Ordering, receiving, and unpacking radioactive materials safely... meters; (iii) Calculating, measuring, and safely preparing patient or human research subject dosages; (iv...

  10. 10 CFR 35.396 - Training for the parenteral administration of unsealed byproduct material requiring a written...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radioactivity; (iv) Chemistry of byproduct material for medical use; and (v) Radiation biology; and (2) Has work...). The work experience must involve— (i) Ordering, receiving, and unpacking radioactive materials safely... meters; (iii) Calculating, measuring, and safely preparing patient or human research subject dosages; (iv...

  11. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  12. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  13. Transportation legislative data base : state radioactive materials transportation statute compilation, 1989-1993

    DOT National Transportation Integrated Search

    1994-04-30

    The Transportation Legislative Data Base (TLDB) is a computer-based information service containing summaries of federal, state and certain local government statutes and regulations relating to the transportation of radioactive materials in the United...

  14. Solidification of radioactive waste resins using cement mixed with organic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laili, Zalina, E-mail: liena@nm.gov.my; Waste and Environmental Technology Division, Malaysian Nuclear Agency; Yasir, Muhamad Samudi

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  15. Sanitary engineering aspects of nuclear energy developments*

    PubMed Central

    Kenny, A. W.

    1962-01-01

    So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214

  16. 48 CFR 23.602 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...

  17. 48 CFR 23.602 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...

  18. 48 CFR 23.602 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...

  19. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  20. 40 CFR 192.10 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...

  1. 10 CFR 835.1101 - Control of material and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1101 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Radioactive Contamination Control... section, material and equipment in contamination areas, high contamination areas, and airborne radioactivity areas shall not be released to a controlled area if: (1) Removable surface contamination levels on...

  2. 48 CFR 23.602 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Notice of Radioactive Material 23.602 Contract clause. The contracting officer... regulations issued pursuant to the Atomic Energy Act of 1954; or (b) radioactive material not requiring...

  3. RADIOACTIVE MATERIALS IN BIOSOLIDS: DOSE MODELING

    EPA Science Inventory

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tra...

  4. 10 CFR 30.50 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... prevents immediate protective actions necessary to avoid exposures to radiation or radioactive materials... license condition to prevent releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The...

  5. 10 CFR 30.50 - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... prevents immediate protective actions necessary to avoid exposures to radiation or radioactive materials... license condition to prevent releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The...

  6. 10 CFR 30.50 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... prevents immediate protective actions necessary to avoid exposures to radiation or radioactive materials... license condition to prevent releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The...

  7. Emergency department management of patients internally contaminated with radioactive material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  8. Emergency department management of patients internally contaminated with radioactive material

    DOE PAGES

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; ...

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  9. Emergency Department Management of Patients Internally Contaminated with Radioactive Material

    PubMed Central

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2017-01-01

    SUMMARY Internal contamination with radioactive material can expose patients to radiation leading to short- and long-term clinical consequences. After the patient’s emergency conditions are addressed and the skin is decontaminated, the treating physicians assess the amount of radioactive material that has been internalized. This evaluation allows the estimation of the radiation dose that is delivered the specific radionuclide inside the body and supports the need for additional therapies and monitoring. These complex assessments warrant the reliance on a multidisciplinary approach that incorporates local, regional, and national experts in radiation medicine and emergencies. PMID:25455668

  10. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...

  11. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...

  12. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radiation from an ISFSI or MRS. 72.104 Section 72.104 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... materials in effluents and direct radiation from an ISFSI or MRS. (a) During normal operations and... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...

  13. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R-1), which is scheduled for... comments on the draft document to the IAEA. We are requesting input from the public to assist in developing....gov . SUPPLEMENTARY INFORMATION: I. Background The IAEA works with its Member States and multiple...

  14. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less

  15. Concurrent determination of 237Np and Pu isotopes using ICP-MS: analysis of NIST environmental matrix standard reference materials 4357, 1646a, and 2702.

    PubMed

    Matteson, Brent S; Hanson, Susan K; Miller, Jeffrey L; Oldham, Warren J

    2015-04-01

    An optimized method was developed to analyze environmental soil and sediment samples for (237)Np, (239)Pu, and (240)Pu by ICP-MS using a (242)Pu isotope dilution standard. The high yield, short time frame required for analysis, and the commercial availability of the (242)Pu tracer are significant advantages of the method. Control experiments designed to assess method uncertainty, including variation in inter-element fractionation that occurs during the purification protocol, suggest that the overall precision for measurements of (237)Np is typically on the order of ± 5%. Measurements of the (237)Np concentration in a Peruvian Soil blank (NIST SRM 4355) spiked with a known concentration of (237)Np tracer confirmed the accuracy of the method, agreeing well with the expected value. The method has been used to determine neptunium and plutonium concentrations in several environmental matrix standard reference materials available from NIST: SRM 4357 (Radioactivity Standard), SRM 1646a (Estuarine Sediment) and SRM 2702 (Inorganics in Marine Sediment). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Advance assessment for movement of Haz Cat 3 radioactive materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vosburg, Susan K.

    2010-04-01

    The current packaging of most HC-3 radioactive materials at SNL/NM do not meet DOT requirements for offsite shipment. SNL/NM is transporting HC-3 quantities of radioactive materials from their storage locations in the Manzano Nuclear Facilities bunkers to facilities in TA-5 to be repackaged for offsite shipment. All transportation of HC-3 rad material by SNL/NM is onsite (performed within the confines of KAFB). Transport is performed only by the Regulated Waste/Nuclear Material Disposition Department. Part of the HC3T process is to provide the CAT with the following information at least three days prior to the move: (1) RFt-Request for transfer; (2)more » HC3T movement report; (3) Radiological survey; and (4) Transportation Route Map.« less

  17. 77 FR 20077 - Request for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR..., 2012, radioactive waste tons of or disposal by a February 16, 2012, XW019, in the form of ash radioactive waste licensed facility 11005986. and non-conforming as contaminated in Mexico. material. ash and...

  18. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...

  19. 10 CFR 40.60 - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to avoid exposures to radiation or radioactive materials that could exceed regulatory limits or... releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The equipment is required to be...

  20. 10 CFR 40.60 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to avoid exposures to radiation or radioactive materials that could exceed regulatory limits or... releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The equipment is required to be...

  1. 10 CFR 40.60 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to avoid exposures to radiation or radioactive materials that could exceed regulatory limits or... releases exceeding regulatory limits, to prevent exposures to radiation and radioactive materials exceeding regulatory limits, or to mitigate the consequences of an accident; (ii) The equipment is required to be...

  2. Radiation Detection at Borders for Homeland Security

    NASA Astrophysics Data System (ADS)

    Kouzes, Richard

    2004-05-01

    Countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders at land, rail, air, and sea ports of entry. These efforts include deployments in the US and a number of European and Asian countries by governments and international agencies. Items of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. Some cargo contains naturally occurring radioactive material (NORM) that triggers "nuisance" alarms in RPMs at these border crossings. Individuals treated with medical radiopharmaceuticals also produce nuisance alarms and can produce cross-talk between adjacent lanes of a multi-lane deployment. The operational impact of nuisance alarms can be significant at border crossings. Methods have been developed for reducing this impact without negatively affecting the requirements for interdiction of radioactive materials of interest. Plastic scintillator material is commonly used in RPMs for the detection of gamma rays from radioactive material, primarily due to the efficiency per unit cost compared to other detection materials. The resolution and lack of full-energy peaks in the plastic scintillator material prohibits detailed spectroscopy. However, the limited spectroscopic information from plastic scintillator can be exploited to provide some discrimination. Energy-based algorithms used in RPMs can effectively exploit the crude energy information available from a plastic scintillator to distinguish some NORM. Whenever NORM cargo limits the level of the alarm threshold, energy-based algorithms produce significantly better detection probabilities for small SNM sources than gross-count algorithms. This presentation discusses experience with RPMs for interdiction of radioactive materials at borders.

  3. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257

  4. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be attributed to different core preparation techniques. Careful re-stressing of core barrels and sealing techniques also ensure that experiments are conducted on near in situ condition. The construction of tunnels within shale clearly aids our understanding of the interaction of engineered operations (borehole drilling or tunnelling) on the behaviour of the rock. References: Angeli, M., Soldal, M., Skurtveit, E. and Aker, E., (2009) Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351-3358 Cuss, R.J., Harrington, J.F., Giot, R., and Auvray, C. (2012) Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian Claystone. Poster Presentation 5th International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Montpellier, France October 22nd - 25th 2012.

  5. Comparative safety of the transport of high-level radioactive materials on dedicated, key, and regular trains: technical study

    DOT National Transportation Integrated Search

    2006-03-01

    This study compares the risks in transporting spent nuclear fuel and high-level radioactive waste under three rail shipment alternatives: 1) regular train service, operating without restrictions with the exception of current hazardous materials regul...

  6. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, Jay E.

    1984-01-01

    A container for storage of radioactive material comprising a container body nd a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  7. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    A container for storage of radioactive material comprises a container body and a closure member. The closure member is coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open).

  8. Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, S.; Yamanaka, Y.; Kato, K.

    1999-07-01

    The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction bymore » the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.« less

  9. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1992-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low-background Ge-semiconductor detector gamma-ray spectrometry, illustrated here by results obtained at the Lawrence Berkeley Laboratory's (LBL) Low Background Facilities. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit, and radionuclides present initially as 'contaminants' in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment-related monitor foils and tomato seeds, and such spacecraft materials as aluminum, stainless steel, and titanium. In the second category are aluminum, beryllium, titanium, vanadium, and some special glasses.

  10. HMPT: Basic Radioactive Material Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  11. Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance

    NASA Astrophysics Data System (ADS)

    Gaona, I.; Serrano, J.; Moros, J.; Laserna, J. J.

    2014-06-01

    Although radioactive materials are nowadays valuable tools in nearly all fields of modern science and technology, the dangers stemming from the uncontrolled use of ionizing radiation are more than evident. Since preparedness is a key issue to face the risks of a radiation dispersal event, development of rapid and efficient monitoring technologies to control the contamination caused by radioactive materials is of crucial interest. Laser-induced breakdown spectroscopy (LIBS) exhibits appealing features for this application. This research focuses on the assessment of LIBS potential for the in-situ fingerprinting and identification of radioactive material surrogates from a safe distance. LIBS selectivity and sensitivity to detect a variety of radioactive surrogates, namely 59Co, 88Sr, 130Ba, 133Cs, 193Ir and 238U, on the surface of common urban materials at a distance of 30 m have been evaluated. The performance of the technique for nuclear forensics has been also studied on different model scenarios. Findings have revealed the difficulties to detect and to identify the analytes depending on the surface being interrogated. However, as demonstrated, LIBS shows potential enough for prompt and accurate gathering of essential evidence at a number of sites after the release, either accidental or intentional, of radioactive material. The capability of standoff analysis confers to LIBS unique advantages in terms of fast and safe inspection of forensic scenarios. The identity of the radioactive surrogates is easily assigned from a distance and the sensitivity to their detection is in the range of a few hundreds of ng per square centimeter.

  12. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  13. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    XU, X. George; Zhang, X.C.

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less

  14. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    PubMed

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

  16. 41 CFR 50-204.25 - Exceptions from posting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to prevent the exposure of any individual to radiation or radioactive material in excess of the... necessary to prevent the exposure of any individual to radiation or radioactive materials in excess of the... CONTRACTS Radiation Standards § 50-204.25 Exceptions from posting requirements. Notwithstanding the...

  17. 41 CFR 50-204.25 - Exceptions from posting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to prevent the exposure of any individual to radiation or radioactive material in excess of the... necessary to prevent the exposure of any individual to radiation or radioactive materials in excess of the... CONTRACTS Radiation Standards § 50-204.25 Exceptions from posting requirements. Notwithstanding the...

  18. Storage of nuclear materials by encapsulation in fullerenes

    DOEpatents

    Coppa, Nicholas V.

    1994-01-01

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  19. A Pill to Treat People Exposed to Radioactive Materials

    ScienceCinema

    Abergel, Rebecca

    2018-01-16

    Berkeley Lab's Rebecca Abergel discusses "A pill to treat people exposed to radioactive materials" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers:

  20. Nevada National Security Site Radiological Control Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radiological Control Managers’ Council

    2012-03-26

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted bymore » programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.« less

  1. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less

  2. Considerations regarding the unintended radiation exposure of the embryo, fetus or nursing child

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In Commentary No. 7, Misadministration of Radioactive Material in Medicine - Scientific Background (NCRP, 1991), the National Council on Radiation Protection and Measurements (NCRP) reviewed the misadministration of radioactive material in medicine. In that commentary, the number and variety of nuclear medicine procedures performed in the United States, administered activities and the resulting radiation doses were reviewed. Information on the reported frequency and nature of misadministrations was also summarized, as were the possible deterministic and stochastic effects that might occur as a result of the use in medicine of pharmaceuticals containing radioactive material. In addition, the basis for developing reportingmore » requirements for the unintended administration of radioactive material to patients was also provided. The purpose of this Commentary is: (1) to draw special attention to problems in the protection of the embryo, fetus and nursing child that might result from the use, both externally and internally, of radioactive material in the medical diagnosis and treatment of the mother, and (2) to assist the Nuclear Regulatory Commission (NRC) in developing requirements appropriate to dealing with the unintended exposure of the embryo, fetus or nursing child as a result of such procedures. The sensitivity of humans during these stages of life justify separate consideration beyond that already given for adults in NCRP Commentary No. 7 (NCRP, 1991).« less

  3. Probable Cause for Maritime Interdictions Involving Illicit Radioactive Materials

    DTIC Science & Technology

    2008-12-01

    radioactive isotopes are being used for peaceful purposes in medicine , industry, agriculture and science. Nevertheless, they can easily be turned...applications, such as medicine and industry.87 These materials, although not capable of sustaining a chain reaction (a prerequisite for producing a...included Bosnia and Herzegovina, Montenegro , Croatia, and the U.S., the latter providing expertise on the detection of materials in question. On the

  4. [Radioactivity and food].

    PubMed

    Olszyna-Marzys, A E

    1990-03-01

    Two topics relating to radioactivity and food are discussed: food irradiation for preservation purposes, and food contamination from radioactive substances. Food irradiation involves the use of electromagnetic energy (x and gamma rays) emitted by radioactive substances or produced by machine in order to destroy the insects and microorganisms present and prevent germination. The sanitary and economic advantages of treating food in this way are discussed. Numerous studies have confirmed that under strictly controlled conditions no undesirable changes take place in food that has been irradiated nor is radioactivity induced. Reference is made to the accident at the Chernobyl nuclear power station, which aroused public concern about irradiated food. The events surrounding the accident are reviewed, and its consequences with regard to contamination of different foods with radioactive substances, particularly iodine-131 and cesium-137, are described. Also discussed are the steps that have been taken by different international organizations to set limits on acceptable radioactivity in food.

  5. Recycling and Reuse of Radioactive Materials

    ERIC Educational Resources Information Center

    O'Dou, Thomas Joseph

    2012-01-01

    The Radiochemistry Program at the University of Nevada, Las Vegas (UNLV) has a Radiation Protection Program that was designed to provide students with the ability to safely work with radioactive materials in quantities that are not available in other academic environments. Requirements for continuous training and supervision make this unique…

  6. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...

  7. 10 CFR 72.104 - Criteria for radioactive materials in effluents and direct radiation from an ISFSI or MRS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv (75 mrem) to the thyroid and 0... radioactive materials, radon and its decay products excepted, to the general environment, (2) Direct radiation...

  8. 42 CFR 82.5 - Definition of terms used in this part.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radioactive material in the human body, whether by direct measurement or by analysis, and evaluation of radioactive material excreted or eliminated by the body. (c) Claimant means the individual who has filed with... 82.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY...

  9. 49 CFR 174.715 - Cleanliness of transport vehicles after use.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleanliness of transport vehicles after use. 174... RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.715 Cleanliness of transport vehicles after use. (a) Each transport vehicle used for transporting Class 7 (radioactive) materials as...

  10. 49 CFR 174.715 - Cleanliness of transport vehicles after use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Cleanliness of transport vehicles after use. 174... RAIL Detailed Requirements for Class 7 (Radioactive) Materials § 174.715 Cleanliness of transport vehicles after use. (a) Each transport vehicle used for transporting Class 7 (radioactive) materials as...

  11. Self-closing shielded container for use with radioactive materials

    DOEpatents

    Smith, J.E.

    1984-10-16

    A container is described for storage of radioactive material comprising a container body and a closure member. The closure member being coupled to the container body to enable the closure body to move automatically from a first position (e.g., closed) to a second position (open). 1 fig.

  12. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decamps, F.

    1993-12-31

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less

  13. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  14. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  15. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    PubMed Central

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-01-01

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820

  16. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    PubMed

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  17. Double differential light charged particle emission cross sections for some structural fusion materials

    NASA Astrophysics Data System (ADS)

    Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup

    2017-09-01

    In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.

  18. Natural radionuclides in ceramic building materials available in Cuddalore district, Tamil Nadu, India.

    PubMed

    Rajamannan, B; Viruthagiri, G; Suresh Jawahar, K

    2013-10-01

    The activity concentrations of radium, thorium and potassium can vary from material to material and they should be measured as the radiation is hazardous for human health. Thus, studies have been planned to obtain the radioactivity of ceramic building materials used in Cuddalore District, Tamilnadu, India. The radioactivity of some ceramic materials used in this region has been measured using a gamma-ray spectrometry, which contains an NaI(Tl) detector connected to multichannel analyzer. The specific activities of (226)Ra, (232)Th and (40)K, from the selected ceramic building materials, were in the range of 9.89-30.75, 24.68-70.4, 117.19-415.83 Bq kg(-1), respectively. The radium equivalent activity, absorbed gamma dose rate (D) and annual effective dose rate associated with the natural radionuclides are calculated to assess the radiation hazards of the natural radioactivity in the ceramic building materials. It was found that none of the results exceeds the recommended limit value.

  19. Measurement of ²²⁶Ra in soil from oil field: advantages of γ-ray spectrometry and application to the IAEA-448 CRM.

    PubMed

    Ceccatelli, A; Katona, R; Kis-Benedek, G; Pitois, A

    2014-05-01

    The analytical performance of gamma-ray spectrometry for the measurement of (226)Ra in TENORM (Technically Enhanced Naturally Occurring Radioactive Material) soil was investigated by the IAEA. Fast results were obtained for characterization and certification of a new TENORM Certified Reference Material (CRM), identified as IAEA-448 (soil from oil field). The combined standard uncertainty of the gamma-ray spectrometry results is of the order of 2-3% for massic activity measurement values ranging from 16500 Bq kg(-1) to 21500 Bq kg(-1). Methodologies used for the production and certification of the IAEA-448 CRM are presented. Analytical results were confirmed by alpha spectrometry. The "t" test showed agreement between alpha and gamma results at 95% confidence level. © 2013 Published by Elsevier Ltd.

  20. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  1. 77 FR 28406 - Spent Fuel Transportation Risk Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Regulations (10 CFR) part 71, ``Packaging and Transportation of Radioactive Waste,'' dated January 26, 2004) for the packaging and transport of spent nuclear fuel (and other large quantities of radioactive... NUREG- 0170, ``Final Environmental Statement on the Transportation of Radioactive Material by Air and...

  2. 78 FR 33008 - Consideration of Rulemaking To Address Prompt Remediation of Residual Radioactivity During...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ...-0162] Consideration of Rulemaking To Address Prompt Remediation of Residual Radioactivity During... address prompt remediation of residual radioactivity during the operational phase of licensed material... radiological remediation during operations. In the Staff Requirements Memorandum (SRM), SRM-SECY-07-0177...

  3. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  4. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  5. Radiological Exposure Devices (RED) Technical Basis for Threat Profile.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Jesse John; Potter, Charles A.; Homann, Steven

    Facilities that manufacture, store or transport significant quantities of radiological material must protect against the risk posed by sabotage events. Much of the analysis of this type of event has been focused on the threat from a radiological dispersion device (RDD) or "dirty bomb" scenario, in which a malicious assailant would, by explosives or other means, loft a significant quantity of radioactive material into a plume that would expose and contaminate people and property. Although the consequences in cost and psychological terror would be severe, no intentional RDD terrorism events are on record. Conversely, incidents in which a victim ormore » victims were maliciously exposed to a Radiological Exposure Device (RED), without dispersal of radioactive material, are well documented. This paper represents a technical basis for the threat profile related to the risk of nefarious use of an RED, including assailant and material characterization. Radioactive materials of concern are detailed in Appendix A.« less

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  8. Natural radioactivity measurements in building materials used in Samsun, Turkey.

    PubMed

    Tufan, M Çagatay; Disci, Tugba

    2013-01-01

    In this study, radioactivity levels of 35 different samples of 11 commonly used building materials in Samsun were measured by using a gamma spectrometry system. The analysis carried out with the high purity Germanium gamma spectrometry system. Radioactivity concentrations of (226)Ra, (232)Th and (40)K range from 6 to 54 Bq kg(-1), 5 to 88 Bq kg(-1) and 6 to 1070 Bq kg(-1), respectively. From these results, radium equivalent activities, gamma indexes, absorbed dose rates and annual effective doses were calculated for all samples. Obtained results were compared with the available data, and it was concluded that all the investigated materials did not have radiological risk.

  9. A United States perspective on long-term management of areas contaminated with radioactive materials.

    PubMed

    Jones, C Rick

    2004-01-01

    The US has far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. This experience base includes the Department of Energy's continued follow-up with Hiroshima and Nagasaki from the 1940s at the Radiological Effects Research Foundation in Hiroshima, Japan, the long-term management of the Marshall Islands Programme, the clean-up of the US nuclear weapons complex and the ongoing management of accident sites such as in Palomares, Spain. This paper discusses the lessons learnt and best practices gained from this far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. Copyright 2004 Oxford University Press

  10. Rapid Radiochemical Methods for Asphalt Paving Material ...

    EPA Pesticide Factsheets

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  11. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  12. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  13. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  14. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

  15. 10 CFR 37.77 - Advance notification of shipment of category 1 quantities of radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Policy, Office of Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington... 10 Energy 1 2014-01-01 2014-01-01 false Advance notification of shipment of category 1 quantities of radioactive material. 37.77 Section 37.77 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL PROTECTION...

  16. Environmental radiation and the lung

    PubMed Central

    Hamrick, Philip E.; Walsh, Phillip J.

    1974-01-01

    Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334

  17. 40 CFR 122.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., radioactive materials (except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011... ground or surface water resources. Note: Radioactive materials covered by the Atomic Energy Act are those... 48 FR 14153, Apr. 1, 1983. (Clean Water Act (33 U.S.C. 1251 et seq.), Safe Drinking Water Act (42 U.S...

  18. 40 CFR 122.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., radioactive materials (except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011... ground or surface water resources. Note: Radioactive materials covered by the Atomic Energy Act are those... 48 FR 14153, Apr. 1, 1983. (Clean Water Act (33 U.S.C. 1251 et seq.), Safe Drinking Water Act (42 U.S...

  19. 40 CFR 122.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., radioactive materials (except those regulated under the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011... ground or surface water resources. Note: Radioactive materials covered by the Atomic Energy Act are those... 48 FR 14153, Apr. 1, 1983. (Clean Water Act (33 U.S.C. 1251 et seq.), Safe Drinking Water Act (42 U.S...

  20. 76 FR 57006 - Proposed Generic Communications; Draft NRC Regulatory Issue Summary 2011-XX; NRC Regulation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... amended its regulations to include jurisdiction over discrete sources of radium-226, accelerator-produced radioactive materials, and discrete sources of naturally occurring radioactive material, as required by the... those discrete sources of radium-226 under military control that are subject to NRC regulation, as...

  1. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Kimberly A.

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination.

  2. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  3. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  4. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  5. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  6. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  7. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  8. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  9. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  10. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  11. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  12. 25 CFR 170.904 - Who responds to an accident involving a radioactive or hazardous materials shipment?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hygienists, public affairs specialists, and other personnel who provide related services. ... 25 Indians 1 2010-04-01 2010-04-01 false Who responds to an accident involving a radioactive or hazardous materials shipment? 170.904 Section 170.904 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE...

  13. 76 FR 44619 - In the Matter of Bozeman Deaconess Foundation, dba Bozeman Deaconess Hospital, Bozeman, MT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... radioactive materials from unauthorized access or removal from the facility's nuclear medicine laboratory (hot... secure radioactive material during periods when authorized personnel were absent from the hot lab. Based... E-Filing system time-stamps the document and sends the submitter an e-mail notice confirming receipt...

  14. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tortorelli, J.P.

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medicalmore » uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.« less

  15. A sampling device with a capped body and detachable handle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and outmore » of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.« less

  16. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  17. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id

    2014-01-01

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxidemore » (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).« less

  19. Behavior of autologous indium-114m-labeled lymphocytes in patients with lymphoid cell malignancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.; Cowan, R.A.; Sharma, H.L.

    1988-04-01

    It has been shown that radioactive material can be localized to lymphocyte traffic areas using radiolabeled autologous lymphocytes and that /sup 114m/In deposited in such a way in rats produces a lymphopoenia by establishing a selective internal irradiation of circulating lymphocytes. The study reported here was undertaken to investigate the feasibility of using this technique in patients with lymphoid cell malignancy. Up to 22.7 MBq was administered to seven patients with active non-Hodgkin's lymphoma involving the spleen and the behavior of the radioactive material was followed over subsequent months. Estimates of the activity in peripheral blood, bone marrow, excreta samples,more » and of the variation in the whole-body distribution were obtained. The administered radioactive material cleared rapidly from the blood, 85% being removed within the first 30 min. There was an almost immediate uptake of most of this by the spleen and liver with less than 5% of administered activity accumulating in the bone marrow. After 48 hr, the whole-body distribution changed only slowly and there was a regular decrease of the activity in the spleen. Excretion of radioactive material occurred via both the urine and feces and amounted to less than 1% of administered activity per day. This pharmacokinetic data was used to calculate radiation absorbed doses to various organs for a standard man. It is concluded that this represents a feasible technique for the targeting of radioactive material for the treatment of lymphoid malignancy.« less

  20. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline

    2011-08-01

    A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.

  1. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  2. 76 FR 56489 - Request for a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR... quantity End use country Duratek Services, Inc., August Class A radioactive Radionuclide Non-conforming Canada. 17, 2011, August 18, 2011, waste in the form reallocation: materials XW010/02, 11005620. of...

  3. 76 FR 56490 - Request for a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... No., docket No. Duratek Services, Inc., August Class A radioactive Radionuclide For recycle and Canada. 17, 2011, August 18, 2011, waste in the form reallocation: beneficial reuse IW017/02, 11005621. of radioactively Amend to: to the greatest contaminated (1) Reduce the possible extent, materials...

  4. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    NASA Astrophysics Data System (ADS)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  5. Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Oscar A

    In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have beenmore » shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact-tile test unit contained a nonradioactive surrogate; however, the thermal test unit contained a radioactive source. This paper describes the regulatory special form tests and presents detailed impact and leak test results that demonstrate that the sealed source encapsulation designs satisfy the regulatory tests.« less

  6. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  7. Thermal conductivity and emissivity measurements of uranium carbides

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Zanonato, P.; Tusseau-Nenez, S.

    2015-10-01

    Thermal conductivity and emissivity measurements on different types of uranium carbide are presented, in the context of the ActiLab Work Package in ENSAR, a project within the 7th Framework Program of the European Commission. Two specific techniques were used to carry out the measurements, both taking place in a laboratory dedicated to the research and development of materials for the SPES (Selective Production of Exotic Species) target. In the case of thermal conductivity, estimation of the dependence of this property on temperature was obtained using the inverse parameter estimation method, taking as a reference temperature and emissivity measurements. Emissivity at different temperatures was obtained for several types of uranium carbide using a dual frequency infrared pyrometer. Differences between the analyzed materials are discussed according to their compositional and microstructural properties. The obtainment of this type of information can help to carefully design materials to be capable of working under extreme conditions in next-generation ISOL (Isotope Separation On-Line) facilities for the generation of radioactive ion beams.

  8. A Pilot Examination of the Methods Used to Counteract Insider Threat Security Risks Associated with the Use of Radioactive Materials in the Research and Clinical Setting.

    PubMed

    Tsenov, B G; Emery, R J; Whitehead, L W; Gonzalez, J Reingle; Gemeinhardt, G L

    2018-03-01

    While many organizations maintain multiple layers of security control methodologies to prevent outsiders from gaining unauthorized access, persons such as employees or contractors who have been granted legitimate access can represent an "insider threat" risk. Interestingly, some of the most notable radiological events involving the purposeful contamination or exposure of individuals appear to have been perpetrated by insiders. In the academic and medical settings, radiation safety professionals focus their security efforts on (1) ensuring controls are in place to prevent unauthorized access or removal of sources, and (2) increasing security controls for the unescorted accessing of large sources of radioactivity (known as "quantities of concern"). But these controls may not completely address the threat insiders represent when radioactive materials below these quantities are present. The goal of this research project was to characterize the methodologies currently employed to counteract the insider security threat for the misuse or purposeful divergence of radioactive materials used in the academic and medical settings. A web-based survey was used to assess how practicing radiation safety professionals in academic and medical settings anticipate, evaluate, and control insider threat security risks within their institutions. While all respondents indicated that radioactive sources are being used in amounts below quantities of concern, only 6 % consider insider threat security issues as part of the protocol review for the use of general radioactive materials. The results of this survey identify several opportunities for improvement for institutions to address security gaps.

  9. Harmonization - Two Years' of Transportation Regulation Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colborn, K.

    2007-07-01

    The U.S. Department of Transportation issued modifications to the Hazardous Materials Regulations in October, 2004 as part of an ongoing effort to 'harmonize' U.S. regulations with those of the International Atomic Energy Agency. The harmonization effort had several predictable effects on low level radioactive materials shipment that were anticipated even prior to their implementation. However, after two years' experience with the new regulations, transporters have identified several effects on transportation which were not entirely apparent when the regulations were first implemented. This paper presents several case studies in the transportation of low level radioactive materials since the harmonization rules tookmore » effect. In each case, an analysis of the challenge posed by the regulatory revision is provided. In some cases, more than one strategy for compliance was considered, and the advantages and disadvantages of each are discussed. In several cases, regulatory interpretations were sought and obtained, and these are presented to clarify the legitimacy of the compliance approach. The presentation of interpretations will be accompanied by reports of clarifying discussions with the U.S. DOT about the interpretation and scope of the regulatory change. Specific transportation issues raised by the revised hazardous materials regulations are reviewed, including: The new definition of radioactive material in accordance with isotope-specific concentration and total activity limits. The new hazardous materials regulations (HMR) created a new definition for radioactive material. A case study is presented for soils contaminated with low levels of Th-230. These soils had been being shipped for years as exempt material under the old 2,000 pCi/g concentration limit. Under the new HMR, these same soils were radioactive material. Further, in rail-car quantities their activity exceeded an A2 value, so shipment of the material in gondolas appeared to require an IP-2 package. Interpretations, discussions, and an exemption were obtained to secure the continued shipment of this material. A provision to allow 'natural' radioactive materials to be exempt from the requirements of the HMR at up to 10x the listed isotopic concentrations. The revised HMR exempts certain natural materials and ores from regulation as radioactive material at concentrations up to 10x that allowed if the materials are not natural. The term 'natural' is not well defined, and initial attempts to qualify for this exemption were thwarted by concerns over what degree of material processing, if any, materials could experience and still be considered 'natural'. The presentation includes an example from a project involving post-processed tungsten ore, and includes interpretations from the US DOT as well as clarifying language from current and drafted IAEA regulation and guidance. New packaging descriptions allowing the use of cargo containers as IP-2 and IP-3 packages in some applications. The revised HMR provides an alternate certification procedure under which standard cargo containers can be used as IP-2 and IP-3 containers. There has been some confusion about how this high level of certification can apply to standard cargo containers when other sections of the regulations make this certification available only to considerably more stout containers after rigorous testing. The discussion includes interpretive guidance from the US DOT, and from the UK Department of Transport clarifying the same provision in IAEA regulations. A new definition of contamination with apparently broad impact on the shipment of empty containers and conveyances. The revised HMR presented a definition of contamination not referenced by any other part of the HMR. The preamble to the revised HMR provides confusing guidance on the application of the definition to shipment of empty containers, and subsequent interpretive guidance letters appear to conflict with the preamble as well as with each other. The definition also has the effect of regulating materials for transport as radioactive even when US NRC and US Department of Energy (DOE) guidance documents suggest that the materials are free-releasable. This presentation provides the latest available information on this emerging issue. The presentation strives to provide the benefit of recent real-world experience in new aspects of the HMR. The examples provides should have broad application to shippers of a variety of low level radioactive materials in the US and internationally. (authors)« less

  10. Assessment of natural radioactivity and (137)Cs in some coastal areas of the Saudi Arabian gulf.

    PubMed

    Al-Ghamdi, H; Al-Muqrin, A; El-Sharkawy, A

    2016-03-15

    The levels of natural radioactivity have been investigated in some Saudi Arabian Gulf coastal areas. Sampling sites were chosen according to the presence of nearby non-nuclear industrial activities such as, the two main water desalination plants in Al Khobar and Al Jubail, and Maaden phosphate complex in Ras Al Khair, to ensure that effluents discharges into the Arabian Gulf didn't enhance radioactivity in seawater and shore sediments. Seawater samples were analyzed for radium isotopes (Ra-226 & Ra-228) and measured by gamma spectrometry using high purity germanium detector, after radiochemical separation of the isotopes by co-precipitation with MnO2. Shore sediment samples were analyzed for (226)Ra, (228)Ra ((232)Th), (4)°K and (137)Cs using gamma sepectrometry. A small variation was observed in the activity concentrations of the investigated radioisotopes, and the activity levels were comparable to those reported in literature. Quality assurance and methods validation were established through the efficiency calibration of the detectors, the estimation of uncertainties, the use of blanks, the analysis of standard reference materials and the intercomparison and proficiency tests. Radiological hazards were assessed, and the annual effective dose had an average value of 0.02 mSv. On the basis of the current results, we may conclude that any radiological hazards to the public visiting these shores are not expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 10 CFR 40.27 - General license for custody and long-term care of residual radioactive material disposal sites.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of residual... residual radioactive material disposal sites. (a) A general license is issued for the custody of and long... water characterization and any necessary ground water protection activities or strategies. This...

  12. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  13. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  14. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  15. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  16. 10 CFR 50.34a - Design objectives for equipment to control releases of radioactive material in effluents-nuclear...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Design objectives for equipment to control releases of..., Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain Applicants § 50.34a Design objectives for equipment to control releases of radioactive material in effluents—nuclear power reactors. (a...

  17. RECERTIFICATION OF THE MODEL 9977 RADIOACTIVE MATERIAL PACKAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G.; Bellamy, S.; Loftin, B.

    2013-06-05

    The Model 9977 Packaging was initially issued a Certificate of Compliance (CoC) by the Department of Energy’s Office of Environmental Management (DOE-EM) for the transportation of radioactive material (RAM) in the Fall of 2007. This first CoC was for a single radioactive material and two packing configurations. In the five years since that time, seven Addendums have been written to the Safety Analysis Report for Packaging (SARP) and five Letter Amendments have been written that have authorized either new RAM contents or packing configurations, or both. This paper will discuss the process of updating the 9977 SARP to include allmore » the contents and configurations, including the addition of a new content, and its submittal for recertification.« less

  18. Synchrotron radiation beamline to study radioactive materials at the Photon Factory

    NASA Astrophysics Data System (ADS)

    Konishi, Hiroyuki; Yokoya, Akinari; Shiwaku, Hideaki; Motohashi, Haruhiko; Makita, Tomoko; Kashihara, Yasuharu; Hashimoto, Shinya; Harami, Taikan; Sasaki, Teikichi A.; Maeta, Hiroshi; Ohno, Hideo; Maezawa, Hideki; Asaoka, Seiji; Kanaya, Noriichi; Ito, Kenji; Usami, Noriko; Kobayashi, Katsumi

    1996-02-01

    Design and construction of a new beamline have been described. The beamline is housed in a specially designed area controlled for radioactive materials at the Photon Factory (PF) in the National Laboratory for High Energy Physics (KEK). The beamline system consists of a front-end and two branchlines. One of the branchlines is used for X-ray photoelectron spectroscopy and radiation biology in the energy range of 1.8-6 keV and the other for X-ray diffractometry and XAFS studies as well as radiation biology in the range of 4-20 keV. The former was particularly equipped for the protection against accidental scattering of radioactive materials both inside and outside of the vacuum system.

  19. Metrology conditions for thin layer activation in wear and corrosion studies

    NASA Astrophysics Data System (ADS)

    Lacroix, O.; Sauvage, T.; Blondiaux, G.; Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.

    1996-02-01

    Thin Layer Activation (TLA) is an ion beam technique. This method consists of an accelerated ion bombardment of the surface of interest of a machine part subjected to wear. Radioactive tracers are created by nuclear reactions in a well defined volume of material. Loss of material owing to wear, corrosion or abrasion phenomena is characterized by monitoring the resulting changes in radioactivity. For the industrial application of this method, special attention has been paid during irradiation to the range of activated thickness, yields and activation homogeneity and to on-line radioactivity measurements. There are two basic methods for measuring the material loss by TLA technique. One of them is based on remanant radioactivity measurements using a previously obtained calibration curve. The second is based on measuring the increasing radioactivity in the lubricant due to suspended wear particles. In this paper, we have chosen to present some calibration curves for both proton and deuteron irradiation of Fe, Cr, Cu, Ti and Ni samples. Thickness ranges are indicated and intrinsic error checking and calculational procedures are also presented. The article ends with a review of some typical experiments involving running-in programme optimization and lubricants certifying procedures.

  20. Low-Activity Radioactive Wastes

    EPA Pesticide Factsheets

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  1. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  2. Material for radioactive protection

    DOEpatents

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  3. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination oaf plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  4. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  5. Apparatus for the processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1999-03-16

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  6. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  7. Application of gamma-ray spectrometry in a NORM industry for its radiometrical characterization

    NASA Astrophysics Data System (ADS)

    Mantero, J.; Gázquez, M. J.; Hurtado, S.; Bolívar, J. P.; García-Tenorio, R.

    2015-11-01

    Industrial activities involving Naturally Occurring Radioactive Materials (NORM) are found among the most important industrial sectors worldwide as oil/gas facilities, metal production, phosphate Industry, zircon treatment, etc. being really significant the radioactive characterization of the materials involved in their production processes in order to assess the potential radiological risk for workers or natural environment. High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However NORM samples cover a wide variety of densities and composition, as opposed to the standards used in gamma efficiency calibration, which are either water-based solutions or standard/reference sources of similar composition. For that reason self-absorption correction effects (especially in the low energy range) must be considered individually in every sample. In this work an experimental and a semi-empirical methodology of self-absorption correction were applied to NORM samples, and the obtained results compared critically, in order to establish the best practice in relation to the circumstances of an individual laboratory. This methodology was applied in samples coming from a TiO2 factory (NORM industry) located in the south-west of Spain where activity concentration of several radionuclides from the Uranium and Thorium series through the production process was measured. These results will be shown in this work.

  8. Site maps and facilities listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used formore » production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.« less

  9. Radiological survey of Ingalls Shipbuilding Division, Pascagoula, Mississippi, and environs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T.W.; Windham, S.T.; Callis, R.S.

    1983-09-01

    This report presents results of the survey conducted by EERF personnel to assess environmental radioactivity remaining from operations of nuclear-powered vessels at Ingalls Shipyard, Pascagoula, Mississippi. The purpose was to determine if there is any remaining radioactivity from previous operations which could contribute to significant population exposure. 5 references, 5 figures, 14 tables.

  10. Title list of documents made publicly available, March 1--31, 1995: Volume 17, No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index. The docketed information contained in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docket Information, last published in January 1979. NRC documents that are publicly available may be examined without charge at the NRC Public Document Room (PDR). Duplicate copies may be obtained for a fee. Standing orders for certain categories of documents are also available. Clients may search for and order desired titles through the PDR computerized Bibliographic Retrieval System, which is accessible both at the PDR and remotely. The PDR is staffed by professional technical librarians, who provide reference assistance to users. See NOTES at the end of the preface for information about reaching the PDR. Microfiche of the docketed information listed in the Title List is available for sale on a subscription basis from the National Technical Information Service (NTIS).« less

  11. 10 CFR 72.126 - Criteria for radiological protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... exposed to radiation or airborne radioactive materials. Structures, systems, and components for which... accessible work areas as appropriate to warn operating personnel of radiation and airborne radioactive...

  12. Radiological Survey and Remediation Report DRMO Yard

    DTIC Science & Technology

    1996-11-01

    remediation, and final release survey over a period beginning August 1995 until the date of this report. The initial survey for radioactive material was...one gage, and 10 hotspots under paved I areas of the east yard (north end) indicating the presence of radioactive material . The dial indicator and...samples at 1.8 g/cc. This is a conservative I error in that the detector will "see" gamma rays with a lower efficiency in the higher density material

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This report focuses on the detection and control of radioactive contamination, which are an integral part of an aggressive ALARA program and provide an indication of the effectiveness of engineering controls and proper work practices in preventing the release of radioactive material. Radioactive contamination, if undetected or not properly controlled, can be spread and contaminate areas, equipment, personnel, and the environment.

  14. 41 CFR 50-204.24 - Caution signs, labels, and signals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... established for a period of 30 days or less, such control device is not required. (d) Airborne radioactivity area. (1) As used in the provisions of this subpart, “airborne radioactivity area” means (i) any room, enclosure, or operating area in which airborne radioactive materials, composed wholly or partly of...

  15. 78 FR 26813 - Request To Amend a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to..., 2013, April 23, material (Class to a maximum the licensee name 2013, IW022/03, 11005700. A radioactive total of 5,500 from ``Perma-Fix waste). tons of low- Environmental level waste). Services, Inc.'' to...

  16. Practical Work Using Low-Level Radioactive Materials Available to the Public

    ERIC Educational Resources Information Center

    Whitcher, Ralph

    2011-01-01

    These notes describe six practical activities for supplementing standard practical work in radioactivity. They are based on a series of workshops given at ASE regional and national conferences by the ASE's Safeguards in Science Committee. The activities, which demonstrate aspects of radioactivity, feature consumer items that happen to be…

  17. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlquist, D.R.

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less

  18. Commissioning and field tests of a van-mounted system for the detection of radioactive sources and Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cester, D.; Lunardon, M.; Stevanato, L.

    2015-07-01

    MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)

  19. [Estimation of dietary intake of radioactive materials by total diet methods].

    PubMed

    Uekusa, Yoshinori; Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko; Teshima, Reiko

    2014-01-01

    Radioactive contamination in foods is a matter of great concern after the Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant disaster caused by the Great East Japan Earthquake. In order to estimate human intake and annual committed effective dose of radioactive materials, market basket and duplicate diet samples from various areas in Japan were analyzed for cesium-134 ((134)Cs), -137 ((137)Cs), and natural radionuclide potassium-40 ((40)K) by γ-ray spectroscopy. Dietary intake of radioactive cesium around Fukushima area was somewhat higher than in other areas. However, maximum committed effective doses obtained by the market basket and duplicate diet samples were 0.0094 and 0.027 mSv/year, respectively, which are much lower than the maximum permissible dose (1 mSv/year) in foods in Japan.

  20. Proposed changes for part N of suggested state regulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, R.

    1997-02-01

    This paper discusses proposed changes for Part N regulations regarding naturally occuring radioactive materials. It describes the work of the Commission on NORM of the Conference of Radiation Control Program Directors (CRCPD), toward adjusting the regulations. A set of questions was formulated and a review panel established to address these questions and come back with recommended actions. The panel recommended the distinction that the material being regulated is `Technologically Enhanced Naturally Occurring Radioactive Material` (TENORM). By this they mean `naturally occurring radioactive material not regulated under the Atomic Energy Act (AEA) whose radionuclide concentrations have been increased by or asmore » a result of human practices.` Recommendations also include: using a dose based instead of concentration based standard; refined definition of exemptions from regulations; exclusion of radon from Total Effective Dose Equivalent (TEDE) calculations; provide states flexibility in implementation; inclusion of prospective remedial and operations aspects for TENORM; provision of institutional controls.« less

  1. Radioactive scrap metal decontamination technology assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less

  2. Radiochemical Analyses of the Filter Cake, Granular Activated Carbon, and Treated Ground Water from the DTSC Stringfellow Superfund Site Pretreatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esser, B K; McConachie, W; Fischer, R

    2005-09-16

    The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) Themore » sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further action is warranted. If it were deemed desirable to establish a background for the Stringfellow setting LLNL would recommend that additional samples be taken and analyzed by LLNL using the same methods presented in this report.« less

  3. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    1997-06-30

    7-2 7-1 Excavation of Contaminated Soils . . . . . . . . 7-3 7-1 Excavation of Contaminated Sediments...becomes only as radioactive as natural soil . By comparison, many other potential y hazardous, but nonradioactive, chemical wastes like lead, silver...solutions and cleanup materials, engine oils and grease, epoxies and resins, laser dyes, paint residues, photo- graphic materials, soils , asphalts

  4. Updating source term and atmospheric dispersion simulations for the dose reconstruction in Fukushima Daiichi Nuclear Power Station Accident

    NASA Astrophysics Data System (ADS)

    Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku

    2017-09-01

    In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.

  5. Reconnaissance for radioactive materials in northeastern United States during 1952

    USGS Publications Warehouse

    McKeown, Francis A.; Klemic, Harry

    1953-01-01

    Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.

  6. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... days for decay-in-storage before disposal without regard to its radioactivity if it— (1) Monitors byproduct material at the surface before disposal and determines that its radioactivity cannot be...

  7. Low-level radioactive waste technology: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less

  8. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    PubMed

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  9. Radioactive materials deposition in Iwate prefecture, northeast japan, due to the Fukushima dai-ichi nuclear power plant accident.

    NASA Astrophysics Data System (ADS)

    Itoh, Hideyuki

    2013-04-01

    A catastrophic earthquake occurred in March 11, 2011, and additional tsunami gave the big damage along the pacific coastline of the northeast Japan. Tsunami also caused the accident of Fukushima dai-ichi nuclear power plant (FNPP), released of massive amount of radioactive materials to all over the northeast to central Japan. Ministry of Education, cultural, sports, science and technology (MEXT), Japan, carried out the airborne monitoring survey on several times, however, it is impossible to know the deposition of low level radiation under 0.1μSv/h. On the other hand, radioactive material was detected in Iwate by farm and livestock products, and it was necessary to understand an accurate contamination status in Iwate prefecture. Behavior of radioactive material is very similar to the ashfall by the volcanic eruption. Therefore, it is possible to apply the knowledge of volcanology to evaluation of the natural radiation dose. The author carried out the detailed contamination mapping across the Iwate prefecture. To γ-ray measurement, using scintillation counter A2700 of the clearpulse, measured on 1m grass field above ground, for one minute. The total measurement point became more than 800 point whole in Iwate. Field survey were carried out from April to November, 2011, therefore, it is necessary to consider to the half - life of the radioactive element of the cesium 134 and 137. In this study, the author reconstructed a deposition of April, 2011, just after the accident. In addition, the author also carried out the revision of the natural radiation dose included in the granite and so on. From the result, Concentration of radioactive materials depend on the topography, it tend to high concentrate in the basin or along the valley. The feeble deposition 0.01-0.2μsv/h with the radioactive material was recognized in whole prefecture. High contamination area distributed over the E-W directions widely in the southern part of the prefecture, and it also existence of the hotspots more than 0.5-0.7μSv/h became clear in the high contamination area. This result already released on the web (http://www.poly.iwate-pu.ac.jp, in Japanese) and more than 35,500 inhabitants read it so far. They use this result as a hazard map for the radiation dose.

  10. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.

    PubMed

    Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K

    2015-07-01

    The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.

  11. Romanian experience on packaging testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieru, G.

    2007-07-01

    With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances.more » The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)« less

  12. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    PubMed

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  13. Data collection handbook to support modeling the impacts of radioactive material in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, C.; Cheng, J.J.; Jones, L.G.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  14. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  15. Monte Carlo simulations of radioactive waste encapsulated by bisphenol-A polycarbonate and effect of bismuth-III oxide filler material

    NASA Astrophysics Data System (ADS)

    Özdemir, Tonguç

    2017-06-01

    Radioactive waste generated from the nuclear industry and non-power applications should carefully be treated, conditioned and disposed according to the regulations set by the competent authority(ies). Bisphenol-a polycarbonate (BPA-PC), a very widely used polymer, might be considered as a potential candidate material for low level radioactive waste encapsulation. In this work, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the BPA-PC polymer matrix) was determined using Monte Carlo simulations. Moreover, the change of mechanical properties of BPA-PC was estimated and their variation within the waste drum was determined for the periods of 15, 30 and 300 years after disposal to the final disposal site. The change of the dose rate within the waste drum with different contents of bismuth-III oxide were also simulated. It was concluded that addition of bismuth-III oxide filler decreases the dose delivered to the polymeric matrix due to photoelectric effect.

  16. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    DOEpatents

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  17. Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event.

    PubMed

    Tositti, Laura; Brattich, Erika; Cinelli, Giorgia; Previti, Alberto; Mostacci, Domiziano

    2012-12-01

    The follow-up of Fukushima radioactive plume resulting from the 11th March 2011 devastating tsunami is discussed for two Italian stations in the northern Apennines: Mt. Cimone (Modena) and Montecuccolino (Bologna). Radioactivity data collected at both stations are described, including comparison between local natural background of airborne particulate and artificial radioactivity referable to the arrival of the radioactive plume and its persistence and evolution. Analysis of back-trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. The Fukushima plume was first detected on 3rd April 2011 when high volume sampling revealed the presence of the artificial radionuclides (131)I, (137)Cs and (134)Cs. The highest activity concentrations of these nuclides were detected on 5th April 2011 at the Montecuccolino site. Fukushima radioactivity data at the two stations were usually comparable, suggesting a good vertical mixing of the plume; discrepancies were occasional and attributed to different occurrence of wet removal, typically characterized by a scattered spatial pattern. To understand the relevance to the local population of the extra dose due to the Fukushima plume, atmospheric activities of the related artificial nuclides were compared to those of the main natural radionuclides in ambient particulate, and found to be lower by over one order of magnitude. Radiation doses referable to Fukushima, maximized for a whole year occurrence at the highest activity level observed at our stations in the weeks affected by the Japanese plume, were estimated at 1.1 μSv/year. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less

  20. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  1. Reuse of Material Containing Natural Radionuclides - 12444

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metlyaev, E.G.; Novikova, N.J.

    2012-07-01

    Disposal of and use of wastes containing natural radioactive material (NORM) or technologically enhanced natural radioactive material (TENORM) with excessive natural background as a building material is very important in the supervision body activity. At the present time, the residents of Octyabrsky village are under resettlement. This village is located just near the Priargunsky mining and chemical combine (Ltd. 'PPGHO'), one of the oldest uranium mines in our country. The vacated wooden houses in the village are demolished and partly used as a building material. To address the issue of potential radiation hazard of the wooden beams originating from demolitionmore » of houses in Octyabrsky village, the contents of the natural radionuclides (K-40, Th-232, Ra-226, U- 238) are being determined in samples of the wooden beams of houses. The NORM contents in the wooden house samples are higher, on average, than their content in the reference sample of the fresh wood shavings, but the range of values is rather large. According to the classification of waste containing the natural radionuclides, its evaluation is based on the effective specific activity. At the effective specific activity lower 1.5 kBq/kg and gamma dose rate lower 70 μR/h, the material is not considered as waste and can be used in building by 1 - 3 classes depending upon A{sub eff} value. At 1.5 kBq/kg < A{sub eff} ≤ 4 kBq/kg (4 class), the wooden beams might be used for the purpose of the industrial building, if sum of ratios between the radionuclide specific activity and its specific activity of minimum significance is lower than unit. The material classified as the waste containing the natural radionuclides has A{sub eff} higher 1.5 kBq /kg, and its usage for the purpose of house-building and road construction is forbidden. As for the ash classification and its future usage, such usage is unreasonable, because, according to the provided material, more than 50% of ash samples are considered as radioactive waste containing natural radionuclides. All materials originated from demolition of houses in Octyabrsky village are subjected to the obligatory radiation control. The decision to use the wooden beams shall enter into force after agreement with the State Sanitary and Epidemiological Supervision bodies. Conclusions: 1 - The wooden beam originated from the house demolition in Octyabrsky village might be used as the construction material only in case of compliance with the requirements of the regulatory documents, as well as under approval of the authorities responsible for the state sanitary and epidemiological supervision in this area. 2 - The industrial control is introduced to verify the compliance with the current regulations. 3 - The material originated from the house demolition might be used only if such usage does not cause increasing radiation exposure to the public. (authors)« less

  2. Nuclear Radiation and the Thyroid

    MedlinePlus

    ... can cause thyroid cancer. For example, a “dirty bomb” is not likely to contain radioactive iodine because it has a short half- life. (A “dirty bomb” is a conventional bomb mixed with radioactive material, ...

  3. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  4. Special Analysis for the Disposal of the Materials and Energy Corporation Sealed Sources at the Area 5 Radioactive Waste Management Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory

    This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.

  5. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  6. Review of Monte Carlo simulations for backgrounds from radioactivity

    NASA Astrophysics Data System (ADS)

    Selvi, Marco

    2013-08-01

    For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.

  7. Technologically enhanced naturally occurring radioactive materials.

    PubMed

    Vearrier, David; Curtis, John A; Greenberg, Michael I

    2009-05-01

    Naturally occurring radioactive materials (NORM) are ubiquitous throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known as "technologically enhanced naturally occurring radioactive materials," often called TENORM. The existence of TENORM results in an increased risk for human exposure to radioactivity. Workers in TENORM-producing industries may be occupationally exposed to ionizing radiation. TENORM industries may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure to ionizing radiation. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium pigment production, fossil fuel extraction and combustion, manufacture of building materials, thorium compounds, aviation, and scrap metal processing. A search of the PubMed database ( www.pubmed.com ) and Ovid Medline database ( ovidsp.tx.ovid.com ) was performed using a variety of search terms including NORM, TENORM, and occupational radiation exposure. A total of 133 articles were identified, retrieved, and reviewed. Seventy-three peer-reviewed articles were chosen to be cited in this review. A number of studies have evaluated the extent of ionizing radiation exposure both among workers and the general public due to TENORM. Quantification of radiation exposure is limited because of modeling constraints. In some occupational settings, an increased risk of cancer has been reported and postulated to be secondary to exposure to TENORM, though these reports have not been validated using toxicological principles. NORM and TENORM have the potential to cause important human health effects. It is important that these adverse health effects are evaluated using the basic principles of toxicology, including the magnitude and type of exposure, as well as threshold and dose response.

  8. Routing of radioactive shipments in networks with time-varying costs and curfews

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowler, L.A.; Mahmassani, H.S.

    This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipmentmore » must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.« less

  9. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surroundingmore » the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.« less

  10. Scrap metals industry perspective on radioactive materials.

    PubMed

    Turner, Ray

    2006-11-01

    With more than 80 reported/confirmed accidental melts worldwide since 1983 and still counting, potential contamination by radioactive materials remains as a major concern among recycled scrap and steel companies. Some of these events were catastrophic and have cost the industry millions of dollars in business and, at the same time, resulted in declining consumer confidence. It is also known that more events with confirmed radioactive contamination have occurred that involve mining of old steel slag and skull dumps. Consequently, the steel industry has since undergone massive changes that incurred unprecedented expenses through the installation of radiation monitoring systems in hopes of preventing another accidental melt. Despite such extraordinary efforts, accidental melts continue to occur and plague the industry. One recent reported/confirmed event occurred in the Republic of China in 2004, causing the usual lengthy shutdown for expensive decontamination efforts before the steel mill could resume operations. With this perspective in mind, the metal industry has a long-standing opposition to the release of radioactive materials of any kind to commerce for fear of contamination and the potential consequences.

  11. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less

  12. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    PubMed

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Measurement of curium in marine samples

    NASA Astrophysics Data System (ADS)

    Schneider, D. L.; Livingston, H. D.

    1984-06-01

    Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.

  14. Radioactive materials released from nuclear power plants. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  15. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  16. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  17. Radioactive materials released from nuclear power plants: Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  18. Radioactive materials released from nuclear power plants: Annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  19. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  20. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basismore » of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)« less

  1. Protection of the public in situations of prolonged radiation exposure. The application of the Commission's system of radiological protection to controllable radiation exposure due to natural sources and long-lived radioactive residues.

    PubMed

    1999-01-01

    This report provides guidance on the application of the ICRP system of radiological protection to prolonged exposure situations affecting members of the public. It addresses the general application of the Commission's system to the control of prolonged exposures resulting from practices and to the undertaking of interventions in prolonged exposure situations. Additionally, it provides recommendations on generic reference levels for such interventions. The report also considers some specific situations and discusses a number of issues that have been of concern, namely: natural radiation sources that may give rise to high doses; the restoration and rehabilitation of sites where human activities involving radioactive substances have been carried out; the return to 'normality' following an accident that has released radioactive substances to the environment; and the global marketing of commodities for public consumption that contain radioactive substances. Annexes provide some examples of prolonged exposure situations and discuss the radiological protection quantities, radiation-induced health effects and aspects of the Commission's system of radiological protection relevant to prolonged exposure. Quantitative recommendations for prolonged exposures are provided in the report. They must be interpreted with extreme caution; Chapters 4 and 5 stress the upper bound nature of the following values: Generic reference levels for intervention, in terms of existing total annual doses, are given as < approximately 100 mSv, above which intervention is almost always justifiable (situations for which the annual dose threshold for deterministic effects in relevant organs is exceeded will almost always require intervention), and < approximately 10 mSv, below which intervention is not likely to be justifiable (and above which it may be necessary). Intervention exemption levels for commodities, especially building materials, are expressed as an additional annual dose of approximately 1 mSv. The dose limit for exposures of the public from practices is expressed as aggregated (prolonged and transitory) additional annual doses from all relevant practices of 1 mSv. Dose constraints for sources within practices are expressed as an additional annual dose lower than 1 mSv (e.g. of approximately 0.3 mSv), which could be approximately 0.1 mSv for the prolonged exposure component. An exemption level for practices is expressed as an additional annual dose of approximately 0.01 mSv.

  2. The current status of NORM/TENORM industries and establishment of regulatory framework in Korea.

    PubMed

    Chang, Byung-Uck; Kim, Yongjae; Oh, Jang-Jin

    2011-07-01

    During the last several years, a nationwide survey on naturally occurring radioactive material (NORM)/technologically enhanced naturally occurring radioactive materials (TENORM) industries has been conducted. Because of the rapid economic growth in Korea, the huge amount of raw materials, including NORM have been consumed in various industrial areas, and some representative TENORM industries exist in Korea. Recently, the Korean government decided to establish a regulatory framework for natural radiation, including NORM/TENORM and is making efforts to introduce relevant publically consent regulations on the basis of international safety standards.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; Danneels, J.; Kenagy, W.D.

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less

  4. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  5. Anomalies in Proposed Regulations for the Release of Redundant Material from Nuclear and Non-nuclear Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, S.

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurringmore » radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of T ENORM, specially the activity levels and quantities arising in so many nonnuclear industries. The first reaction of international organizations seems to have been to propose ''double'' standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are, however, many significant strategic issues that need to be discussed and resolved. An interesting development, for both the nuclear and non-nuclear industries, is the increased scientific scrutiny that the populations of naturally high background dose level areas of the world are being subject to. Preliminary biological studies have indicated that the inhabitants of such areas, exposed to many times the permitted occupational doses for nuclear workers, have not shown any differences in cancer mortality, life expectancy, chromosome aberrations or immune function, in comparison with those living in normal background areas. The paper discusses these and other strategic issues regarding the management of nuclear and non-nuclear radioactive material, underlining the need for consistency in regulatory treatment.« less

  6. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.

  7. Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine

    DOEpatents

    Krumhansl, James L; Nenoff, Tina M

    2013-02-26

    Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

  8. Experimental study on beryllium-7 production via sequential reactions in lithium-containing compounds irradiated by 14 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Maekawa, F.; Verzilov, Y. M.; Smith, D. L.; Ikeda, Y.

    2000-12-01

    Except for 3H and 14C, no radioactive nuclide is produced by neutron-induced reactions with lithium in lithium-containing materials such as Li 2O and Li 2CO 3. However, when the lithium-containing materials are irradiated by 14 MeV neutrons, radioactive 7Be is produced by sequential charged particle reactions (SCPR). In this study, we measured effective 7Be production cross-sections in several lithium-containing samples at 14 MeV: the cross-sections are in the order of μb. Estimation of the effective cross-sections is attempted, and the estimated values agreed well with the experimental data. It was shown that the 7Be activity in a unit volume of lithium-containing materials in D-T fusion reactors can exceed total activity of the same unit volume of the SiC structural material in a certain cooling time. Consequently, a careful consideration of the 7Be production by SCPR is required to assess radioactive inventories in lithium-containing D-T fusion blanket materials.

  9. Natural radioactivity measurements of building materials in Baotou, China.

    PubMed

    Zhao, Caifeng; Lu, Xinwei; Li, Nan; Yang, Guang

    2012-12-01

    Natural radioactivity due to (226)Ra, (232)Th and (40)K in the common building materials collected from Baotou city of Inner Mongolia, China was measured using gamma-ray spectrometry. The radiation hazard of the studied building materials was estimated by the radium equivalent activity (Ra(eq)), internal hazard index (H(in)) and annual effective dose (AED). The concentrations of the natural radionuclides and Ra(eq) in the studied samples were compared with the corresponding results of other countries. The Ra(eq) values of the building materials are below the internationally accepted values (370 Bq kg(-1)). The values of H(in) in all studied building materials are less than unity. The AEDs of all measured building materials are at an acceptable level.

  10. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1991-01-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  11. Radioactivities of Long Duration Exposure Facility (LDEF) materials: Baggage and bonanzas

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; Hurley, Donna L.

    1991-06-01

    Radioactivities in materials onboard the returned Long Duration Exposure Facility (LDEF) satellite were studied by a variety of techniques. Among the most powerful is low background Ge semiconductor detector gamma ray spectrometry. The observed radioactivities are of two origins: those radionuclides produced by nuclear reactions with the radiation field in orbit and radionuclides present initially as contaminants in materials used for construction of the spacecraft and experimental assemblies. In the first category are experiment related monitor foils and tomato seeds, and such spacecraft materials as Al, stainless steel, and Ti. In the second category are Al, Be, Ti, Va, and some special glasses. Consider that measured peak-area count rates from both categories range from a high value of about 1 count per minute down to less than 0.001 count per minute. Successful measurement of count rates toward the low end of this range can be achieved only through low background techniques, such as used to obtain the results presented here.

  12. Nondestructive Analysis of MET-5 Paint Can at TA35 Building 2 A-Wing Vault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desimone, David J.; Vo, Duc Ta

    In Building 2 A-wing vault MET-5 has some drums and other packages they wanted NEN-1 help identifying nondestructively. Measurements using a mechanically cooled portable high-purity germanium HPGe Ortec detective were taken of a paint can container labeled DU-2A to determine if any radioactive material was inside. The HPGe detector measures the gamma rays emitted by radioactive material and displays it as a spectrum. The spectrum is used to identify this radioactive material by using appropriate analysis software and identifying the gamma ray peaks. A paint can container, DU-2A, was analyzed with PeakEasy 4.84 and FRAM 5.2. The FRAM report ismore » shown. The enrichment is 0.091% U235 and 99.907% U238. This material is depleted uranium. The measurement was performed in the near field, and to extract a mass a far field measurement will need to be taken.« less

  13. 77 FR 52072 - Request To Amend a License to Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ..., 2012 IW022/ radioactive total of 5,500 beneficial reuse 02 11005700. waste including tons or about and... thermal and non- paper, cloth, activity thermal concrete, material, and treatment. rubber, plastic, 500...

  14. 10 CFR Appendix C to Part 835 - Derived Air Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Exposure During Immersion in a Cloud of Airborne Radioactive Material C Appendix C to Part 835 Energy... Concentration (DAC) for Workers From External Exposure During Immersion in a Cloud of Airborne Radioactive... identifying the need for posting of airborne radioactivity areas in accordance with § 835.603(d). b. The air...

  15. Compilation of data on the uranium and equivalent uranium content of samples analyzed by U.S. Geological Survey during a program of sampling mine, mill, and smelter products

    USGS Publications Warehouse

    Hall, Marlene Louise; Butler, Arthur Pierce

    1952-01-01

    In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.

  16. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  17. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  18. Nuclear Resonance Fluorescence for Materials Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less

  19. Retention capacity of bio-films formed on the surface of nuclear and basaltic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crovisier, Jean Louis

    2007-07-01

    Available in abstract form only. Full text of publication follows: The role of the bacteria in the various compartments of a repository site was still not extensively studied. It is likely that most known bacteria cannot develop on the surface of radioactive materials but one must consider that 10% only of the bacteria species are known. As an example, a research group has recently discovered an isolated community of bacteria nearly two miles underground that derives all of its energy from the decay of radioactive rocks (LIN et al., 2006). It is generally accepted that alterations of rocks and anthropogenicmore » products are not exclusively driven by the interaction with water or mineral aqueous solutions. Organic compounds as well as microorganisms are important in mineral degradation processes, and secondary mineralization. However, the exact role of bio-films in these processes remains unclear. The study of (AOUAD, 2006) will be presented as an example. Two materials were tested: the reference French nuclear glass SON68 17 LIDC2A2Z1 and a tholeiitic basaltic glass (natural analogue). Experiments were carried out for 19 weeks at 25 deg. C. A specific growth medium were developed which allows both the growth of Pseudomonas bacterium and a precise measurement, using ICP-MS, of trace elements solubilized from both glasses (AOUAD et al., 2005) The thickness of bio-films, analyzed by confocal laser microscopy was 40 {mu}m for both materials. These bio-films are able to efficiently trap most of the glass constituents. They also form a protective barrier at the solid/solution interface. (authors)« less

  20. Reconnaissance for radioactive deposits in the vicinity of Teller and Cape Nome, Seward Peninsula, Alaska, 1946-47

    USGS Publications Warehouse

    White, Max Gregg; West, W.S.; Matzko, J.J.

    1953-01-01

    Placer-mining areas and bedrock exposures near Teller on the Seward Peninsula, Alaska, were investigated in June and July, 1946, for possible sources of radioactive materials. The areas that were investigated are: Dese Creek, southeast of Teller; Bluestone River basin, south and southeast of Teller; Sunset Creek and other small streams flowing south into Grantley Harbor, northeast of Teller; and, also northeast of Teller, Swanson Creek and its tributaries, which flow north into the Agiapuk River basin. No significant amount of radioactive material was found, either in the stream gravels or in the bedrock of any of the areas. A heavy-mineral fraction obtained from a granite boulder probably derived from a bench gravel on Gold Run contains 0. 017 percent equivalent uranium, but the radioactivity is due to allanite and zircon. The types of bedrock tested include schist, slate, and greenstone. Readings on fresh surfaces of rock were the same as, or only slightly above the background count. The maximum radioactivity in stream concentrates is 0. 004 percent equivalent uranium in a sluice concentrate from Sunset Creek.

  1. Survey of Costs Arising From Potential Radionuclide Scattering Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luna, R.E.; Pe, Ph.D.; Yoshimura, H.R.

    The potential effects from scattering radioactive materials in public places include health, social, and economic consequences. These are substantial consequences relative to potential terror activities that include use of radioactive material dispersal devices (RDDs). Such an event with radionuclides released and deposited on surfaces outside and inside people's residences and places of work, commerce, and recreation will require decisions on how to recover from the event. One aspect of those decisions will be the cost to clean up the residual radioactive contamination to make the area functional again versus abandonment and/or razing and rebuilding. Development of cleanup processes have beenmore » the subject of experiment from the beginning of the nuclear age, but formalized cost breakdowns are relatively rare and mostly applicable to long term releases in non-public sites. Pre-event cleanup cost estimation of cost for cleanup of radioactive materials released to the public environment is an issue that has seen sporadic activity over the last 20 to 30 years. This paper will briefly review several of the more important efforts to estimate the costs of remediation or razing and reconstruction of radioactively contaminated areas. The cost estimates for such recoveries will be compared in terms of 2005 dollars for the sake of consistency. Dependence of cost estimates on population density and needed degree of decontamination will be shown to be quite strong in the overall presentation of the data. (authors)« less

  2. Star formation and extinct radioactivities

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1984-01-01

    An assessment is made of the evidence for the existence of now-extinct radioactivities in primitive solar system material, giving attention to implications for the early stages of sun and solar system formation. The characteristics of possible disturbances in dense molecular clouds which can initiate the formation of cloud cores is discussed, with emphasis on these disturbances able to generate fresh radioactivities. A one-solar mass red giant star on the asymptotic giant branch appears to have been the best candidate to account for the short-lived extinct radioactivities in the early solar system.

  3. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  4. BCLDP site environmental report for calendar year 1997 on radiological and nonradiological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, J.

    1998-09-30

    Battelle Memorial Institute currently maintains its retired nuclear research facilities in a surveillance and maintenance (S and M) mode and continues decontamination and decommissioning (D and D) activities. The activities are referred to as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations reference in this report are performed in support of S and M and D and D activities. The majority of this report is devoted to discussion of the West Jefferson facility, because the source term at this facility is larger than the source term at Battelle`s King Avenue site. The contamination found at the King Avenue site consistsmore » of small amounts of residual radioactive material in solid form, which has become embedded or captured in nearby surfaces such as walls, floors, ceilings, drains, laboratory equipment, and soils. By the end of calendar year (CY) 1997, most remediation activities were completed at the King Avenue site. The contamination found at the West Jefferson site is the result of research and development activities with irradiated materials. During CY 1997, multiple tests at the West Jefferson Nuclear Sciences Area found no isotopes present above the minimum detectable activity (MDA) for air releases or for liquid discharges to Big Darby Creek. Data obtained from downstream sampling locations were statistically indistinguishable from background levels.« less

  5. Classification methodology for tritiated waste requiring interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cana, D.; Dall'ava, D.; Decanis, C.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less

  6. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, K.R.

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  7. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  8. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  9. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  10. Radioactive materials released from nuclear power plants. Annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  11. Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  12. Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  13. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  14. Reuse of nuclear byproducts, NaF and HF in metal glass industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.W.; Lee, H.W.; Yoo, S.H.

    1997-02-01

    A study has been performed to evaluate the radiological safety and feasibility associated with reuse of NaF(Sodium Fluoride) and HF(Hydrofluoric Acid) which are generated as byproducts from the nuclear fuel fabrication process. The investigation of oversea`s experience reveals that the byproduct materials are most often used in the metal and glass industries. For the radiological safety evaluation, the uranium radioactivities in the byproduct materials were examined and shown to be less than radioactivities in natural materials. The radiation doses to plant personnel and the general public were assessed to be very small and could be ignored. The Korea nuclear regulatorymore » body permits the reuse of NaF in the metal industry on the basis of associated radioactivity being {open_quote}below regulatory concern{close_quote}. HF is now under review for reuse acceptability in the steel and glass industries.« less

  15. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  16. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    NASA Astrophysics Data System (ADS)

    Aubert, Cédric; Osmond, Mélanie

    2008-08-01

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it [1]. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as "Interlaboratory Comparisons" for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance. Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements and to rectify old mistakes. The PT exercises organized by STEME are becoming essential for French and some European laboratories working in radioactive measurements. The STEME organization, in respect of accreditation references, is presented.

  17. Proficiency Tests for Environmental Radioactivity Measurement Organized by an Accredited Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubert, Cedric; Osmond, Melanie

    2008-08-14

    For 40 years, STEME (Environmental Sample Processing and Metrology Department) organized international proficiency testing (PT) exercises formerly for WHO (World Health Organization) and EC (European Community) and currently for ASN (French Nuclear Safety Authority). Five PT exercises are organized each year for the measurement of radionuclides (alpha, beta and gamma) in different matrixes (water, soil, biological and air samples) at environmental levels. ASN can deliver a French ministerial agreement to participate on environmental radioactivity measurements French network for laboratories asking it. Since 2006, November, STEME is the first French entity obtaining a COFRAC (French Committee of Accreditation) accreditation as 'Interlaboratorymore » Comparisons' for the organization of proficiency tests for environmental radioactivity measurement according to standard International Standard Organization (ISO) 17025 and guide ISO 43-1. STEME has in charge to find, as far as possible, real sample or to create, by radionuclide adding, an adapted sample. STEME realizes the sampling, the samples preparation and the dispatching. STEME is also accredited according to Standard 17025 for radioactivity measurements in environmental samples and determines homogeneity, stability and reference values. After the reception of participating laboratories results, STEME executes statistical treatments in order to verify the normal distribution, to eliminate outliers and to evaluate laboratories performance.Laboratories participate with several objectives, to obtain French agreement, to prove the quality of their analytical performance in regards to standard 17025 or to validate new methods or latest developments. For 2 years, in addition to usual PT exercises, new PT about alpha or beta measurement in air filters, radioactive iodine in carbon cartridges or measurement of environmental dosimeters are organized. These PT exercises help laboratories to improve radioactive measurements and to rectify old mistakes. The PT exercises organized by STEME are becoming essential for French and some European laboratories working in radioactive measurements.The STEME organization, in respect of accreditation references, is presented.« less

  18. 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturgeon, Richard W.

    This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources.more » This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.« less

  19. Determination of beta activity in water

    USGS Publications Warehouse

    Barker, F.B.; Robinson, B.P.

    1963-01-01

    Many elements have one or more naturally radioactive isotopes, and several hundred other radionuclides have been produced artificially. Radioactive substances may be present in natural water as a result of geochemical processes or the release of radioactive waste and other nuclear debris to the environment. The Geological Survey has developed methods for measuring certain of these .radioactive substances in water. Radioactive substances often are present in water samples in microgram quantities or less. Therefore, precautions must be taken to prevent loss of material and to assure that the sample truly represents its source at the time of collection. Addition of acids, complexing agents, or stable isotopes often aids in preventing loss of radioactivity on container walls, on sediment, or on other solid materials in contact with the sample. The disintegration of radioactive atoms is a random process subject to established methods of statistical analysis. Because many water samples contain small amounts of radioactivity, low-level counting techniques must be used. The usual assumption that counting data follow a Gaussian distribution is invalid under these conditions, and statistical analyses must be based on the Poisson distribution. The gross beta activity in water samples is determined from the residue left after evaporation of the sample to dryness. Evaporation is accomplished first in a teflon dish, then the residue is transferred with distilled water to a counting planchet and again is reduced to dryness. The radioactivity on the planchet is measured with an anticoincidence-shielded, low-background, beta counter and is compared with measurements of a strontium-90-yttrium-90 standard prepared and measured in the same manner. Control charts are used to assure consistent operation of the counting instrument.

  20. 10 CFR 30.21 - Radioactive drug: Capsules containing carbon-14 urea for “in vivo” diagnostic use for humans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radioactive drug: Capsules containing carbon-14 urea for âin vivoâ diagnostic use for humans. 30.21 Section 30.21 Energy NUCLEAR REGULATORY COMMISSION RULES OF GENERAL APPLICABILITY TO DOMESTIC LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.21 Radioactive drug: Capsules containing carbon-14 urea for “in...

Top