Sample records for radioactive soil contamination

  1. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  2. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    NASA Astrophysics Data System (ADS)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  3. Vitrification of radioactive contaminated soil by means of microwave energy

    NASA Astrophysics Data System (ADS)

    Yuan, Xun; Qing, Qi; Zhang, Shuai; Lu, Xirui

    2017-03-01

    Simulated radioactive contaminated soil was successfully vitrified by microwave sintering technology and the solidified body were systematically studied by Raman, XRD and SEM-EDX. The Raman results show that the solidified body transformed to amorphous structure better at higher temperature (1200 °C). The XRD results show that the metamictization has been significantly enhanced by the prolonged holding time at 1200 °C by microwave sintering, while by conventional sintering technology other crystal diffraction peaks, besides of silica at 2θ = 27.830°, still exist after being treated at 1200 °C for much longer time. The SEM-EDX discloses the micro-morphology of the sample and the uniform distribution of Nd element. All the results show that microwave technology performs vitrification better than the conventional sintering method in solidifying radioactive contaminated soil.

  4. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  5. Estimation of radioactive contamination of soils from the "Balapan" and the "Experimental field" technical areas of the Semipalatinsk nuclear test site.

    PubMed

    Evseeva, T; Belykh, E; Geras'kin, S; Majstrenko, T

    2012-07-01

    In spite of the long history of the research, radioactive contamination of the Semipalatinsk nuclear test site (SNTS) in the Republic of Kazakhstan has not been adequately characterized. Our cartographic investigation has demonstrated highly variable radioactive contamination of the SNTS. The Cs-137, Sr-90, Eu-152, Eu-154, Co-60, and Am-241 activity concentrations in soil samples from the "Balapan" site were 42.6-17646, 96-18250, 1.05-11222, 0.6-4865, 0.23-4893, and 1.2-1037 Bq kg(-1), correspondingly. Cs-137 and Sr-90 activity concentrations in soil samples from the "Experimental field" site were varied from 87 up to 400 and from 94 up to 1000 Bq kg(-1), respectively. Activity concentrations of Co-60, Eu-152, and Eu-154 were lower than the minimum detectable activity of the method used. Concentrations of naturally occurring radionuclides (K-40, Ra-226, U-238, and Th-232) in the majority of soil samples from the "Balapan" and the "Experimental field" sites did not exceed typical for surrounding of the SNTS areas levels. Estimation of risks associated with radioactive contamination based on the IAEA clearance levels for a number of key radionuclides in solid materials shows that soils sampled from the "Balapan" and the "Experimental field" sites might be considered as radioactive wastes. Decrease in specific activity of soil from the sites studied up to safety levels due to Co-60, Cs-137, Sr-90, Eu-152, Eu-154 radioactive decay and Am-241 accumulation-decay will occur not earlier than 100 years. In contrast, soils from the "Experimental field" and the "Balapan" sites (except 0.5-2.5 km distance from the "Chagan" explosion point) cannot be regarded as the radioactive wastes according safety norms valid in Russia and Kazakhstan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The assumption of heterogeneous or homogeneous radioactive contamination in soil/sediment: does it matter in terms of the external exposure of fauna?

    PubMed

    Beaugelin-Seiller, K

    2014-12-01

    The classical approach to environmental radioprotection is based on the assumption of homogeneously contaminated media. However, in soils and sediments there may be a significant variation of radioactivity with depth. The effect of this heterogeneity was investigated by examining the external exposure of various sediment and soil organisms, and determining the resulting dose rates, assuming a realistic combination of locations and radionuclides. The results were dependent on the exposure situation, i.e., the organism, its location, and the quality and quantity of radionuclides. The dose rates ranged over three orders of magnitude. The assumption of homogeneous contamination was not consistently conservative (if associated with a level of radioactivity averaged over the full thickness of soil or sediment that was sampled). Dose assessment for screening purposes requires consideration of the highest activity concentration measured in a soil/sediment that is considered to be homogeneously contaminated. A more refined assessment (e.g., higher tier of a graded approach) should take into consideration a more realistic contamination profile, and apply different dosimetric approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Decoding Environmental Processes Using Radioactive Isotopes for the Post-Radioactive Contamination Recovery Assessment

    NASA Astrophysics Data System (ADS)

    Yasumiishi, Misa; Nishimura, Taku; Osawa, Kazutoshi; Renschler, Chris

    2017-04-01

    The continual monitoring of environmental radioactive levels in Fukushima, Japan following the nuclear plant accident in March 2011 provides our society with valuable information in two ways. First, the collected data can be used as an indicator to assess the progress of decontamination efforts. Secondly, the collected data also can be used to understand the behavior of radioactive isotopes in the environment which leads to further understanding of the landform processes. These two aspects are inseparable for us to understand the effects of radioactive contamination in a dynamic environmental system. During the summer of 2016, 27 soil core samples were collected on a farmer's land (rice paddies and forest) in Fukushima, about 20 km northwest of the nuclear plant. Each core was divided into 2.0 - 3.0 cm slices for the Cs-134, Cs-137, and I-131 level measurement. The collected data is being analyzed from multiple perspectives: temporal, spatial, and geophysical. In the forest area, even on the same hillslope, multiple soil types and horizon depths were observed which indicates the challenges in assessing the subsurface radioactive isotope movements. It appears that although highly humic soils show higher or about the same level of radioactivity in the surface layers, as the depth increased, the radioactivity decreased more in those samples compared with more sandy soils. With regard to the direction a slope faces and the sampling altitudes, the correlation between those attributes and radioactivity levels is inconclusive at this moment. The altitude might have affected the fallout level on a single hillslope-basis. However, to determine the correlation, further sampling and the detailed analysis of vegetation and topography might be necessary. Where the surface soil was scraped and new soil was brought in, former rice paddy surface layers did show three-magnitude levels lower of radioactivity in the top layer when compared with forest soils. At the foot of forest

  8. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and resultsmore » of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.« less

  9. The total amounts of radioactively contaminated materials in forests in Fukushima, Japan

    PubMed Central

    Hashimoto, Shoji; Ugawa, Shin; Nanko, Kazuki; Shichi, Koji

    2012-01-01

    There has been leakage of radioactive materials from the Fukushima Daiichi Nuclear Power Plant. A heavily contaminated area (≥ 134, 137Cs 1000 kBq m−2) has been identified in the area northwest of the plant. The majority of the land in the contaminated area is forest. Here we report the amounts of biomass, litter (small organic matter on the surface of the soil), coarse woody litter, and soil in the contaminated forest area. The estimated overall volume and weight were 33 Mm3 (branches, leaves, litter, and coarse woody litter are not included) and 21 Tg (dry matter), respectively. Our results suggest that removing litter is an efficient method of decontamination. However, litter is being continuously decomposed, and contaminated leaves will continue to fall on the soil surface for several years; hence, the litter should be removed promptly but continuously before more radioactive elements are transferred into the soil. PMID:22639724

  10. Early-stage bioassay for monitoring radioactive contamination in living livestock.

    PubMed

    Yamaguchi, Toshiro; Sawano, Kaita; Kishimoto, Miori; Furuhama, Kazuhisa; Yamada, Kazutaka

    2012-12-01

    Soil samples from the ground surface and feces and blood from a mixed-breed male pig were collected on April 10, 2011 at a farm within 20 km of the Fukushima Daiichi nuclear power plant. The radioactivity of each sample was measured using a Ge semiconductor detector. Despite the fact that the pig had been fed non-contaminated imported feed, (131)I, (134)Cs and (137)Cs were detected in the feces, and (134)Cs and (137)Cs were detected in the blood clots. Because it is considerably difficult to measure radioactive contamination in the edible muscle of living livestock, bioassays are an option for the screening of radioactive contamination in living livestock to ensure food safety.

  11. Effects of low-level radioactive soil contamination and sterilization on the degradation of radiolabeled wheat straw.

    PubMed

    Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

    2012-07-01

    After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining

    NASA Astrophysics Data System (ADS)

    Wang, N.

    2017-12-01

    In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).

  13. Cesium desorption behavior of weathered biotite in Fukushima considering the actual radioactive contamination level of soils.

    PubMed

    Mukai, Hiroki; Tamura, Kenji; Kikuchi, Ryosuke; Takahashi, Yoshio; Yaita, Tsuyoshi; Kogure, Toshihiro

    2018-10-01

    For the better understanding of radioactive contamination in Fukushima Prefecture at present and in future, Cs desorption experiments have been conducted mainly using weathered biotite (WB) collected from Fukushima Prefecture and considering the actual contamination level (∼10 -10  wt%) of radiocesium in Fukushima Prefecture. In the experiments, 137 Cs sorbed to WB by immersing in 137 Cs solution for one day was mostly desorbed by solutions of 1 M NaNO 3 , 1 M LiNO 3 , 10 -1  M HCl, and 10 -1  M HNO 3 , although it was barely desorbed by 1 M KNO 3 , 1 M CsNO 3 , 1 M NH 4 NO 3 , and natural seawater. X-ray diffraction analysis of WB after immersing in these solutions suggested that the collapse of the hydrated interlayers in WB suppressed the desorption of Cs. On the other hand, 137 Cs was barely desorbed from WB even by the treatments with solutions of NaNO 3 and LiNO 3 if the duration for the sorption was longer than approximately two weeks, as well as radioactive WB collected from actual contaminated soils in Fukushima Prefecture. This result implies that Cs sorbed in WB became more strongly fixed with time. Probably removal of radiocesium sorbed in weathered granitic soil at Fukushima Prefecture is difficult by any electrolyte solutions, as more than seven years have passed since the accident. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Soils: man-caused radioactivity and radiation forecast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gablin, Vassily

    2007-07-01

    human activity had led to contamination of soil only by artificial radionuclides. But we can view a totality of soil radioactivity factors in the following way. (author)« less

  15. Restoration of water environment contaminated by radioactive cesium released from Fukushima Daiichi NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, K.; Takahashi, H.; Jinbo, Y.

    2013-07-01

    In the Fukushima Daiichi NPP Accident, large amounts of volatile radioactive nuclides, such as {sup 131}I, {sup 134}Cs and {sup 137}Cs, were released to the atmosphere and huge areas surrounding the nuclear site were contaminated by the radioactive fallout. In this study, a combined process with a hydrothermal process and a coagulation settling process was proposed for the separation of radioactive Cs from contaminated soil and sewage sludge. The coagulation settling operation uses Prussian Blue (Ferric ferrocyanide) and an inorganic coagulant. The recovery of Cs from sewage sludge sampled at Fukushima city (100.000 Bq/kg) and soil at a nearby villagemore » (55.000 Bq/kg), was tested. About 96% of Cs in the sewage sludge was removed successfully by combining simple hydrothermal decomposition and coagulation settling. However, Cs in the soil was not removed sufficiently by the combined process (Cs removal is only 56%). The hydrothermal decomposition with blasting was carried out. The Cs removal from the soil was increased to 85%. When these operations were repeated twice, the Cs recovery was over 90%. The combined process with hydrothermal blasting and coagulation settling is applicable to the removal of Cs from highly contaminated soil.« less

  16. RADIOACTIVE CONTAMINATION OF FOOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setter, L.R.

    The environment and, consequently, food contains measurable amounts of radionuclides arising primarily from the distribution of nuclear bomb debris over the entire earth's surface. This radioactivity is in addition to natural radioactivity which exists in thc environment. A wealth of information has been gathered on the artificial radioactivity in air, water, vegetation, and soil; on physical and chemical mechanisms of radioaetive movement in the biosphere; and on the biologic behavior of radionuclide uptake by animals and human beings and their distribution in excretions and secretions. Collection of additional information under more carefully designed and executed studies is under way. Theremore » remains the task of marshalling and reviewing the data obtained during active fall-out up to the summer of 1959. With later information collected during a period of substantially no fall-out, the interpretation of these data hopefully will indicate the relative magnitude of physical, chemical, and biologic factors influencing levels in plants and animals, provide a means of predicting future levels, and, most important, permit some evaluation of the effects of nuclear radiation from ingestion of contaminated food as a part of the total effects from fall-out and from natural radioactivity. (auth)« less

  17. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    PubMed

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less

  19. Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro).

    PubMed

    Bikit, I; Slivka, J; Conkić, Lj; Krmar, M; Vesković, M; Zikić-Todorović, N; Varga, E; Curcić, S; Mrdja, D

    2005-01-01

    The widespread public belief that during the bombardment of Vojvodina (Yugoslavia) this region was contaminated by depleted uranium has recently raised public concern with respect to the potential contamination of agricultural products due to soil radioactivity. Based on the gamma-spectrometric analysis of 50 soil samples taken from the region of Vojvodina we concluded that there is no increase of radioactivity that could endanger the food production. Taking into account the transfer factors of 137Cs to plants, the measured activity concentrations of this isotope should not endanger the health safety of the produced food. No traces of depleted uranium have been found. The natural radioactivity levels are compared with the results form other countries.

  20. Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.

    PubMed

    Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape

    2014-05-01

    The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.

  1. Radioactive Contamination of Alluvial Soils in the Taiga Landscapes of Yakutia with 137Cs, 226Ra, and 238U

    NASA Astrophysics Data System (ADS)

    Chevychelov, A. P.; Sobakin, P. I.

    2017-12-01

    The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El'kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.

  2. 49 CFR 175.705 - Radioactive contamination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...

  3. Performance study and influence of radiation emission energy and soil contamination level on γ-radiation shielding of stabilised/solidified radionuclide-polluted soils.

    PubMed

    Falciglia, Pietro P; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G A

    2015-05-01

    This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different (232)Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. DISPERSION OF RADIOACTIVE ISOTOPES IN THE SOIL BY EARTHWORMS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peredel'skii, A.A.; Shain, S.S.; Karavyanskii, N.S.

    1960-11-01

    The effects of earthworms on the distribution and migration of radioisotopes in contaminated earth were investigated. Data on the mean Ca/sup 45/ and Sr/sup 90/ activity of a single worm and its coprolith in contaminated soil are tabulated. It is shown that the specific radioactivity in the earthworm quickly reaches a maximum and remains unchanged during further inhabitance in the contuminated soil. The specific activity of the earthworm can reach that of the soil; however, after leaving the contuminated area, the activity is rapidly reduced in the worm. The specific activity of the earthworm coprolith is close to that ofmore » the body; sometimes it exceeds the activity of both the body and the soil due to uptake of organic material of higher radioactivity. The experiment shows that the influence of earthworms on dissemination of shont-lifs isotopes is negligible but that with long-life isotopes it may be more noticeable. (R.V.J.)« less

  5. Soil contamination standards for protection of personnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittmann, P.D.

    1998-04-16

    The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. Externalmore » dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.« less

  6. Extraction behavior of metallic contaminants and soil constituents from contaminated soils.

    PubMed

    Tokunaga, S; Park, S W; Ulmanu, M

    2005-06-01

    With an aim of developing an effective remediation technology for soils contaminated by heavy metals and metalloids, the extraction behavior of metallic contaminants as well as those of soil constituents was studied on a laboratory scale. Three contaminated soils collected from a former metal recycling plant were examined. These three soils were found to be contaminated by As, Cu, Pb, Sb, Se and Zn as compared to the non-contaminated soil. The pH-dependent extraction behavior of various elements from the soils was measured in a wide pH range and categorized into three groups. Hydrochloric acid (HCl), H2SO4, H3PO4, HNO3, sodium citrate, sodium tartrate, disodium dihydrogen ethylenediaminetetraacetate and diethylenetriaminepentaacetic acid were evaluated as extractants for removing contaminants from the soils. Extraction behavior of the soil constituents was also studied. The efficiency of the extraction was evaluated by the Japanese content and leaching tests. The stabilization of Pb remaining in the soil after the extraction process was conducted by the addition of iron(III) and calcium chloride.

  7. Evaluating soil contamination

    USGS Publications Warehouse

    Beyer, W.N.

    1990-01-01

    This compilation was designed to help U.S. Fish and Wildlife Service contaminant specialists evaluate the degree of contamination of a soil, based on chemical analyses. Included are regulatory criteria, opinions, brief descriptions of scientific articles, and miscellaneous information that might be useful in making risk assessments. The intent was to make hard-to-obtain material readily available to contaminant specialists, but not to critique the material or develop new criteria. The compilation is to be used with its index, which includes about 200 contaminants. There are several entries for a few of the most thoroughly studied contaminants, but for most of them the information available is meager. Entries include soil contaminant criteria from other countries, contaminant guidelines for applying sewage sludge to soil, guidelines for evaluating sediments, background soil concentrations for various elements, citations to scientific articles that may help estimate the potential movement of soil contaminants into wildlife food chains, and a few odds and ends. Articles on earthworms were emphasized because they are a natural bridge between soil and many species of wildlife.

  8. Treatment of NORM contaminated soil from the oilfields.

    PubMed

    Abdellah, W M; Al-Masri, M S

    2014-03-01

    Uncontrolled disposal of oilfield produced water in the surrounding environment could lead to soil contamination by naturally occurring radioactive materials (NORM). Large volumes of soil become highly contaminated with radium isotopes ((226)Ra and (228)Ra). In the present work, laboratory experiments have been conducted to reduce the activity concentration of (226)Ra in soil. Two techniques were used, namely mechanical separation and chemical treatment. Screening of contaminated soil using vibratory sieve shaker was performed to evaluate the feasibility of particle size separation. The fractions obtained were ranged from less than 38 μm to higher than 300 μm. The results show that (226)Ra activity concentrations vary widely from fraction to fraction. On the other hand, leaching of (226)Ra from soil by aqueous solutions (distilled water, mineral acids, alkaline medias and selective solvents) has been performed. In most cases, relatively low concentrations of radium were transferred to solutions, which indicates that only small portions of radium are present on the surface of soil particles (around 4.6%), while most radium located within soil particles; only concentrated nitric acid was most effective where 50% of (226)Ra was removed to aqueous phase. However, mechanical method was found to be easy and effective, taking into account safety procedures to be followed during the implementation of the blending and homogenization. Chemical extraction methods were found to be less effective. The results obtained in this study can be utilized to approach the final option for disposal of NORM contaminated soil in the oilfields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Radioactive contamination of scintillators

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Tretyak, V. I.

    2018-03-01

    Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.

  10. Simplified method for detecting tritium contamination in plants and soil

    USGS Publications Warehouse

    Andraski, Brian J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, David A.; Johnson, M.J.; Mayers, C.J.

    2003-01-01

    Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation–SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation–SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.

  11. Measurement of Radioactive Contamination on Work Clothing of Workers Engaged in Decontamination Operations

    NASA Astrophysics Data System (ADS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Hoshi, Katsuya

    To rationally judge the necessity of the contamination screening measurements required in the decontamination work regulations, a field study of the surface contamination density on the clothing of the workers engaged in decontamination operations was performed. The clothing and footwear of 20 workers was analyzed by high-purity germanium (HPGe) gamma-ray spectroscopy. The maximum radiocesium activities (134Cs + 137Cs) observed were 3600, 1300, and 2100 Bq for the work clothing, gloves, and boots, respectively, and the derived surface contamination densities were below the regulatory limit of 40 Bq/cm2. The results of this field study suggest that the upper bounds of the surface contamination density on the work clothing, gloves, and boots are predictable from the maximum soil loading density on the surface of clothing and footwear and the radioactivity concentration in soil at the site.

  12. Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Dikareva, Nina; Spiridonov, Sergey; Hinton, Thomas; Chernonog, Elena; Garnier-Laplace, Jacqueline

    2011-08-01

    A 6 year study of Scots pine populations inhabiting sites in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident is presented. In six study sites, (137)Cs activity concentrations and heavy metal content in soils, as well as (137)Cs, (90)Sr and heavy metal concentrations in cones were measured. Doses absorbed in reproduction organs of pine trees were calculated using a dosimetric model. The maximum annual dose absorbed at the most contaminated site was about 130 mGy. Occurrence of aberrant cells scored in the root meristem of germinated seeds collected from pine trees growing on radioactively contaminated territories for over 20 years significantly exceeded the reference levels during all 6 years of the study. The data suggest that cytogenetic effects occur in Scots pine populations due to the radioactive contamination. However, no consistent differences in reproductive ability were detected between the impacted and reference populations as measured by the frequency of abortive seeds. Even though the Scots pine populations have occupied radioactively contaminated territories for two decades, there were no clear indications of adaptation to the radiation, when measured by the number of aberrant cells in root meristems of seeds exposed to an additional acute dose of radiation.

  13. Advanced remediation of uranium-contaminated soil.

    PubMed

    Kim, S S; Han, G S; Kim, G N; Koo, D S; Kim, I G; Choi, J W

    2016-11-01

    The existing decontamination method using electrokinetic equipment after acidic washing for uranium-contaminated soil requires a long decontamination time and a significant amount of electric power. However, after soil washing, with a sulfuric acid solution and an oxidant at 65 °C, the removal of the muddy solution using a 100 mesh sieve can decrease the radioactivity of the remaining coarse soil to the clearance level. Therefore, only a small amount of fine soil collected from the muddy solution requires the electrokinetic process for its decontamination. Furthermore, it is found that the selective removal of uranium from the sulfuric washing solution is not obtained using an anion exchanger but rather using a cation exchanger, unexpectedly. More than 90% of the uranium in the soil washing solutions is adsorbed on the S-950 resin, and 87% of the uranium adsorbed on S-950 is desorbed by washing with a 0.5 M Na 2 CO 3 solution at 60 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis on the influence of forest soil characteristics on radioactive Cs infiltration and evaluation of residual radioactive Cs on surfaces.

    PubMed

    Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Fukutani, Satoshi; Ikegami, Maiko; Shimomura, Ryohei

    2018-03-29

    We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.

  15. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    PubMed

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  16. Perspectives of Radioactive Contamination in Nuclear War

    PubMed Central

    Waters, W. R.

    1967-01-01

    The degrees of risk associated with the medical, industrial and military employment of nuclear energy are compared. The nature of radioactive contamination of areas and of persons resulting from the explosion of nuclear weapons, particularly the relationship between the radiation exposure and the amount of physical debris, is examined. Some theoretical examples are compared quantitatively. It is concluded that the amount of radio-activity that may be carried on the contaminated person involves a minor health hazard from gamma radiation, compared to the irradiation arising from contaminated areas. PMID:6015741

  17. Remediation of transuranic-contaminated coral soil at Johnston Atoll using the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramlitt, E.; Johnson, N.

    1994-12-31

    Thermo Analytical, Inc. (TMA) has developed a system to remove clean soil from contaminated soil. The system consists of a soil conveyor, an array of radiation detectors toward the conveyor feed end, a gate assembly at the conveyor discharge end, and two additional conveyors which move discharged soil to one or another paths. The gate assembly is as wide as the ``sorter conveyor,`` and it has eight individual gates or segments. The segments automatically open or close depending on the amount of radioactivity present. In one position they pass soil to a clean soil conveyor, and in the other positionmore » they let soil fall to a hot soil conveyor. The soil sorting process recovers clean soil for beneficial use and it substantially reduces the quantity of soil which must be decontaminated or prepared for waste disposal. The Segmented Gate System (SGS) was developed for the cleanup of soil contaminated with some transuranium elements at Johnston Atoll. It has proven to be an effective means for recovering clean soil and verifying that soil is clean, minimizing the quantity of truly contaminated soil, and providing measures of contamination for waste transport and disposal. TMA is constructing a small, transportable soil cleanup as it is confident the SGS technology can be adapted to soils and contaminants other than those at Johnston Atoll. It will use this transportable plant to demonstrate the technology and to develop site specific parameters for use in designing plants to meet cleanup needs.« less

  18. Phytoremediation of Metal-Contaminated Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.

    2004-03-31

    Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experimentsmore » were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.« less

  19. Guidelines for handling radioactively contaminated decedents.

    PubMed

    Wood, Charles M; DePaolo, Frank; Whitaker, Doggett

    2008-05-01

    The Centers for Disease Control and Prevention recently issued guidelines for medical examiners, coroners, and morticians in dealing with decedents after detonation of an improvised nuclear device (IND) or radiological dispersal device (RDD) (). Partners in this effort included the New York City Office of Chief Medical Examiner and the National Funeral Directors' Association. This paper describes the handling techniques required for loose surface contamination, radioactive shrapnel, and internal contamination caused by inhaling or ingesting radioactive materials from an IND or RDD, and provides suggested guidelines for medical examiners, coroners, and morticians to deal with these situations.

  20. Radioactively Contaminated Sites | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-01-12

    If radioactive materials are used or disposed of improperly, they can contaminate buildings and the environment. Every site requiring cleanup is different depending on the type of facility, the radioactive elements involved and the concentration of the radioactive elements.

  1. Issues of natural radioactivity in phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnug, E.; Haneklaus, S.; Schnier, C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizermore » caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.« less

  2. Layer of organic pine forest soil on top of chlorophenol-contaminated mineral soil enhances contaminant degradation.

    PubMed

    Sinkkonen, Aki; Kauppi, Sari; Simpanen, Suvi; Rantalainen, Anna-Lea; Strömmer, Rauni; Romantschuk, Martin

    2013-03-01

    Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g(-1), or moderate, ca. 20 μg g(-1)) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.

  3. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    PubMed Central

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  4. EMERGING TECHNOLOGY SUMMARY: VITRIFICATION OF SOILS CONTAMINATED BY HAZARDOUS AND/OR RADIOACTIVE WASTES

    EPA Science Inventory

    A performance summary of an advanced multifuel-capable combustion and melting system (CMS) for the vitrification of hazardous wastes is presented. Vortex Corporation has evaluated its patented CMS for use in the remediation of soils contaminated with heavy metals and radionuclid...

  5. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    NASA Astrophysics Data System (ADS)

    Mucke, D.

    2012-04-01

    spectrometry (XRF) with a handheld instrument. Approx. 40 elements hereby are determined in a focussed X-ray spot of 3 mm of diameters. The device can be put directly on a section of the soil or measure loose substrata in a PVC bag through or in a cuvette. The measurement time is 30 seconds. In connection with the input of information, the relocating and the sample preparation 20 measurings can be carried out per hour. This leads at personnel expenditures of € 50/hour at a price of € 2.50/analysis of simultaneous 40 components. At requirement the transfer of the files from the instrument in Excel tables still would rise expenses. XRF is a fast low-cost method for the first assessment of the contamination of soils and the delimitation of areas of different contaminations. When exact laboratory analyses are still requested, the interesting areas from which bulk samples have to be taken for the laboratory examinations, with XRF can be fixed. The contamination with arsenic and toxic heavy metals is only subordinated by modern flue gas treatment in metallurgical plants and renunciation of thermal methods with hut smoke today. The whereabouts of arsenic and lead in the soil shows, though, that the soil has protected the groundwater against the contamination. GEOMONTAN has examined the Saxonian areas with radioactive fallout of the Chernobyl accident in the order of the BGR Hannover 1993. In the results of the analysis by BGR Cs-134 was already disintegrated and Cs-137 only 13 cm deep in the uppermost soil layers infiltrated during the 8 years after the accident. This means that soil protects groundwater against contaminations out of the air too. In the last years some German federal state governments decided the end of mine water winning for the public water supply and deregulated the water protection zones. The water supply was converted in water of water supply dams. The hazard of contamination of this open reservoirs by accidents or terrorism is increasing. Underground water

  6. Relationship between the {sup 137}Cs whole-body counting results and soil and food contamination in farms near Chernobyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takatsuji, Toshihiro; Sato, Hitoshi; Takada, Jun

    The authors measured the radioactivity in the soil and child food samples from farms near Mogilev (56--270 GBq km{sup {minus}2} {sup 137}Cs), Gomel (36--810 GBq km{sup {minus}2} {sup 137}Cs), and Klincy (59--270 GBq km{sup {minus}2} {sup 137}Cs), who had whole-body {sup 137}Cs counting results measured as part of a health examination in the Chernobyl Sasakawa Health and Medical Cooperation Project. Soil contamination on the family farm seems to be the main source of human contamination because most of the people in the area live on small farms and they and their domestic animals eat crops from the farms. A clearmore » correlation was found between the children's whole-body {sup 137}Cs counting results and the radioactivity in their food (correlation coefficient: 0.76; confidence level of correlation: 3.2 x 10{sup {minus}9}). There were also significant correlations between the whole-body {sup 137}Cs counting results and both the radioactivity of the soil samples (correlation coefficient: 0.22; confidence level of correlation: 0.0107) and the average contamination level of their current residence (correlation coefficient: 0.20; confidence level of correlation: 0.0174).« less

  7. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Remediation of lead-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1992-01-01

    Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less

  9. Remediation of lead-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1992-09-01

    Excavation and transport of soil contaminated with heavy metals has generally been the standard remediation technique for treatment of heavy-metal-contaminated soils. This approach is not a permanent solution; moreover, off-site shipment and disposal of contaminated soil involves high expense, liability, and appropriate regulatory approval. Recently, a number of other techniques have been investigated for treating such contaminated sites, including flotation, solidification/stabilization, vitrification, and chemical extraction. This paper reports the results of a laboratory investigation determining the efficiency of using chelating agents to extract lead from contaminated soils. Lead concentrations in the soils ranged from 500 to 10,000 mg/kg. Ethylenediaminetetraacetic acidmore » (EDTA) and nitrilotriacetic acid (NTA) were examined for their potential extractive capabilities. Concentrations of the chelating agents ranged from 0.01 to 0.10 M. The pH of the suspensions in which the extractions were performed ranged from 4 to 12. Results showed that the removal of lead using NTA and water was ph-dependent, whereas the removal of lead using EDTA was ph-insensitive. Maximum removals of lead were 68.7%,19.1%, and 7.3% using EDTA, NTA, and water, respectively (as compared with initial lead concentrations).« less

  10. Radioactivity in Virgin Soils and Soils from Some Areas with Closed Uranium Mining Facilities in Bulgaria

    NASA Astrophysics Data System (ADS)

    Yordanova, I.; Staneva, D.; Misheva, L.; Bineva, Ts.; Banov, M.

    2012-04-01

    The soil radioecology is an important part of the environmental research in the country. Since the beginning of the 1970's regular monitoring of the content of different radionuclides in Bulgarian soils has been done. Objective of the studies were virgin soils from high mountain areas, hills and plains (the region of Kozloduy NPP and the Danube river valley). Natural and men-made radionuclides were observed. In the 25-year period after the the contamination with radionuclides due to the 1986 Chernobyl NPP accident a rich data base has been collected, recording the radiation status of the soils in Bulgaria. Special attention has been paid to the contamination with the long-lived technogenic radionuclides caesium-137 and strontium-90. This paper presents a summary of the obtained results. Caesium-137 and strontium-90 were the main men-made radionuclides detected in the examined Bulgarian soils few years after the Chernobyl NPP accident. Their content in the soils from high mountain areas (Rodopa and Rila mountains) is several times higher than that in the soils from North Bulgaria and Sofia fields. High non-homogenity in the pollution within small areas (even as small as several square meters) has been observed. Natural radioactivity was also studied. Averaged values for natural radionuclides like uranium-238, thorium-232, and radium-226 in virgin soils from different areas in the country are presented. A comparison of the dynamics of their behavior throughout the years is done. Bulgaria is a country with intensive uranium mining activities in the past years. That is why radiological monitoring of closed uranium mining facilities in different regions of the country are obligatory and of great interest. This work presents results from such investigations made in regions where remediation has been done. The results have been evaluated according to the Bulgarian radionuclide environment contamination legislation. The necessity of permanent environmental monitoring is

  11. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR.

    PubMed

    Yamamoto, M; Tsukatani, T; Katayama, Y

    1996-08-01

    This paper deals with our efforts to survey residual radioactivity in the soil sampled at the Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil was sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called "Bolapan," which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240Pu with weapons-grade plutonium were detected together with fission and activation products such as 137Cs, 60Co, 152Eu, and 154Eu.

  12. New regulations for radiation protection for work involving radioactive fallout emitted by the TEPCO Fukushima Daiichi APP accident--disposal of contaminated soil and wastes.

    PubMed

    Yasui, Shojiro

    2014-01-01

    The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities.

  13. The phyto-remediation of radioactively contaminated land - a feasible approach or just bananas?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesbitt, Victoria A

    2013-07-01

    Soil is an essential component of all terrestrial ecosystems and is under increasing threat from human activity. Techniques available for removing radioactive contamination from soil and aquatic substrates are limited and often costly to implement; particularly over large areas. Frequently, bulk soil removal, with its attendant consequences, is a significant component of the majority of contamination incidents. Alternative techniques capable of removing contamination or exposure pathways without damaging or removing the soil are therefore of significant interest. An increasing number of old nuclear facilities are entering 'care and maintenance', with significant ground contamination issues. Phyto-remediation - the use of plants'more » natural metabolic processes to remediate contaminated sites is one possible solution. Its key mechanisms include phyto-extraction and phyto-stabilisation. These are analogues of existing remedial techniques. Further, phyto-remediation can improve soil quality and stability and restore functionality. Information on the application of phyto-remediation in the nuclear industry is widely distributed over an extended period of time and sources. It is therefore difficult to quickly and effectively identify which plants would be most suitable for phyto-remediation on a site by site basis. In response, a phyto-remediation tool has been developed to address this issue. Existing research and case studies were reviewed to understand the mechanisms of phyto-remediation, its effectiveness and the benefits and limitations of implementation. The potential for cost recovery from a phyto-remediation system is also briefly considered. An overview of this information is provided here. From this data, a set of matrices was developed to guide potential users through the plant selection process. The matrices take the user through a preliminary screening process to determine whether the contamination present at their site is amenable to phyto

  14. Procedures for sampling radium-contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischhauer, H.L.

    Two procedures for sampling the surface layer (0 to 15 centimeters) of radium-contaminated soil are recommended for use in remedial action projects. Both procedures adhere to the philosophy that soil samples should have constant geometry and constant volume in order to ensure uniformity. In the first procedure, a ''cookie cutter'' fashioned from pipe or steel plate, is driven to the desired depth by means of a slide hammer, and the sample extracted as a core or plug. The second procedure requires use of a template to outline the sampling area, from which the sample is obtained using a trowel ormore » spoon. Sampling to the desired depth must then be performed incrementally. Selection of one procedure over the other is governed primarily by soil conditions, the cookie cutter being effective in nongravelly soils, and the template procedure appropriate for use in both gravelly and nongravelly soils. In any event, a minimum sample volume of 1000 cubic centimeters is recommended. The step-by-step procedures are accompanied by a description of the minimum requirements for sample documentation. Transport of the soil samples from the field is then addressed in a discussion of the federal regulations for shipping radioactive materials. Interpretation of those regulations, particularly in light of their application to remedial action soil-sampling programs, is provided in the form of guidance and suggested procedures. Due to the complex nature of the regulations, however, there is no guarantee that our interpretations of them are complete or entirely accurate. Preparation of soil samples for radium-226 analysis by means of gamma-ray spectroscopy is described.« less

  15. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    USGS Publications Warehouse

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  16. Mechanochemical remediation of PCB contaminated soil.

    PubMed

    Wang, Haizhu; Hwang, Jisu; Huang, Jun; Xu, Ying; Yu, Gang; Li, Wenchao; Zhang, Kunlun; Liu, Kai; Cao, Zhiguo; Ma, Xiaohui; Wei, Zhipeng; Wang, Quhui

    2017-02-01

    Soil contaminated by polychlorinated biphenyls (PCBs) is a ubiquitous problem in the world, which can cause significant risks to human health and the environment. Mechanochemical destruction (MCD) has been recognized as a promising technology for the destruction of persistent organic pollutants (POPs) and other organic molecules in both solid waste and contaminated soil. However, few studies have been published about the application of MCD technology for the remediation of PCB contaminated soil. In the present study, the feasibility of destroying PCBs in contaminated soil by co-grinding with and without additives in a planetary ball mill was investigated. After 4 h milling time, more than 96% of PCBs in contaminated soil samples were destroyed. The residual concentrations of PCBs decreased from 1000 mg/kg to below the provisional Basel Convention limit of less than 50 mg/kg. PCDD/F present in the original soil at levels of 4200 ng TEQ/kg was also destroyed with even a slightly higher destruction efficiency. Only minor dechlorinations of the PCBs were observed and the destruction of the hydrocarbon skeleton is proposed as the main degradation pathway of PCBs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Sources and Practices Contributing to Soil Contamination

    Treesearch

    A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan

    1999-01-01

    The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...

  18. Development of RadRob15, A Robot for Detecting Radioactive Contamination in Nuclear Medicine Departments.

    PubMed

    Shafe, A; Mortazavi, S M J; Joharnia, A; Safaeyan, Gh H

    2016-09-01

    Accidental or intentional release of radioactive materials into the living or working environment may cause radioactive contamination. In nuclear medicine departments, radioactive contamination is usually due to radionuclides which emit high energy gamma photons and particles. These radionuclides have a broad range of energies and penetration capabilities. Rapid detection of radioactive contamination is very important for efficient removing of the contamination without spreading the radionuclides. A quick scan of the contaminated area helps health physicists locate the contaminated area and assess the level of activity. Studies performed in IR Iran shows that in some nuclear medicine departments, areas with relatively high levels of activity can be found. The highest contamination level was detected in corridors which are usually used by patients. To monitor radioactive contamination in nuclear medicine departments, RadRob15, a contamination detecting robot was developed in the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). The motor vehicle scanner and the gas radiation detector are the main components of this robot. The detection limit of this robot has enabled it to detect low levels of radioactive contamination. Our preliminary tests show that RadRob15 can be easily used in nuclear medicine departments as a device for quick surveys which identifies the presence or absence of radioactive contamination.

  19. Treatment of chromium contaminated soil using bioremediation

    NASA Astrophysics Data System (ADS)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  20. Multiscale structure of Cs-137 soil contamination on the Bryansk Region (Russia) due to the accident at the Chernobyl NPP

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander

    2013-04-01

    The Cs-137 contamination of the Bryansk Region occurred in the period from April 27 to May 10 into several stages. The complicated character of the soil radionuclide contamination on the Bryansk Region is caused by different nature of the radioactive fallout: dry and wet. Thus, in a number of cases Cs-137 soil pollution is directly connected with the rain intensity, which is well known, have multifractal nature. In some parts of contaminated territory the overlay of different types of fallout was observed. The radioactive contamination of the landscape is a result from nonlinear interplay of geophysical factors which intervene over a large range of scale. As a result of the fallout Cs-137 pattern can be described as a multifractal. Consequently, fields of contamination observed have an extreme spatial variability, frequently cited "hot spots" or "leopard's skin. As an estimate of background radiation levels, we relied on a dataset of air-gamma-survey of the Bryansk Region, carried out by SSC AEROGEOFIZIKA in the summer of 1993. This dataset includes geo-positioned data of Cs-137 deposition in a grid of 100x100 m with values range from 3 to 11*104 kBq/m2. Airborne gamma survey gave the smoothed values of the Cs-137 density of contamination in comparison with the data, obtained directly as a result of soil sampling. However, even in this case in the east part of the Bryansk test site we can observed the"hot spots" (by size several hundred meters) as natural phenomenon. The article presents the results of the geostatistical and multifractal analysis of the Cs-137 contamination. Scaling analysis was conducted to investigate the linkages between the spatial variability of soil Cs-137 contamination and some landscape characteristics.

  1. The tolerance efficiency of Panicum maximum and Helianthus annuus in TNT-contaminated soil and nZVI-contaminated soil.

    PubMed

    Jiamjitrpanich, Waraporn; Parkpian, Preeda; Polprasert, Chongrak; Laurent, François; Kosanlavit, Rachain

    2012-01-01

    This study was designed to compare the initial method for phytoremediation involving germination and transplantation. The study was also to determine the tolerance efficiency of Panicum maximum (Purple guinea grass) and Helianthus annuus (Sunflower) in TNT-contaminated soil and nZVI-contaminated soil. It was found that the transplantation of Panicum maximum and Helianthus annuus was more suitable than germination as the initiate method of nano-phytoremediation potting test. The study also showed that Panicum maximum was more tolerance than Helianthus annuus in TNT and nZVI-contaminated soil. Therefore, Panicum maximum in the transplantation method should be selected as a hyperaccumulated plant for nano-phytoremediation potting tests. Maximum tolerance dosage of Panicum maximum to TNT-concentration soil was 320 mg/kg and nZVI-contaminated soil was 1000 mg/kg in the transplantation method.

  2. Behavior of radioactive materials and safety stock of contaminated sludge.

    PubMed

    Tsushima, Ikuo

    2017-01-28

    The radioactive fallout from the Fukushima Dai-ichi nuclear power plant disaster in 2011 has flowed into and accumulated in many wastewater treatment plants (WWTPs) via sewer systems; this has had a negative impact on WWTPs in eastern Japan. The behavior of radioactive materials was analyzed at four WWTPs in the Tohoku and Kanto regions to elucidate the mechanism by which radioactive materials are concentrated during the sludge treatment process from July 2011 to March 2013. Furthermore, numerical simulations were conducted to study the safe handling of contaminated sewage sludge stocked temporally in WWTPs. Finally, a dissolution test was conducted by using contaminated incinerated ash and melted slag derived from sewage sludge to better understand the disposal of contaminated sewage sludge in landfills. Measurements indicate that a large amount of radioactive material accumulates in aeration tanks and is becoming trapped in the concentrated sludge during the sludge condensation process. The numerical simulation indicates that a worker's exposure around contaminated sludge is less than 1 µSv/h when maintaining an isolation distance of more than 10 m, or when shielding with more than 20-cm-thick concrete. The radioactivity level of the eluate was undetectable in 9 out of 12 samples; in the remaining three samples, the dissolution rates were 0.5-2.7%.

  3. Mineralogical and geomicrobial examination of soil contamination by radioactive Cs due to 2011 Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Akai, Junji; Nomura, Nao; Matsushita, Shin; Kudo, Hisaaki; Fukuhara, Haruo; Matsuoka, Shiro; Matsumoto, Jinko

    Soil contamination by radioactive Cs from Fukushima Daiichi Nuclear Power Plant accident was investigated. Absorption and desorption experiments of Cs were conducted for several phyllosillicates (kaolinite, sericite, montmorillonite, vermiculite, chrysotile and biotite), zeolite and solid organic matter (dead and green leaves). The results confirmed the characteristic sorption and desorption of Cs by these materials. The 2:1 type phyllosilicate, especially, vermiculite and montmorillonite absorbed Cs well. Heated vermiculite for agricultural use and weathered montmorillonite also adsorbed Cs. Leaves also absorbed Cs considerably but easily desorbed it. In summary, the relative capacity and strength of different materials for sorption of Cs followed the order: zeolite (clinoptilolite) > 2:1 type clay mineral > 1:1 type clay mineral > dead and green leaves. Culture experiments using bacteria of both naturally living on dead leaves in Iitate village, Fukushima Pref. and bacterial strains of Bacillus subtillis, Rhodococus erythropolis, Streptomyces aomiensis and Actinomycetospora chlora were carried out. Non-radioactive 1% Cs solution (CsCl) was added to the culture media. Two types of strong or considerable bacterial uptakes of Cs were found in bacterial cells. One is that Cs was contained mainly as globules inside bacteria and the other is that Cs was absorbed in the whole bacterial cells. The globules consisted mainly of Cs and P. Based on all these results, future diffusion and re-circulation behavior of Cs in the surface environment was discussed.

  4. Contamination of terrestrial ecosystem components with 90Sr, 137Cs, and 226Ra caused by the deterioration of the multibarrier protection of radioactive waste storages

    NASA Astrophysics Data System (ADS)

    Latynova, N. E.

    2010-03-01

    The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.

  5. Developing an integration tool for soil contamination assessment

    NASA Astrophysics Data System (ADS)

    Anaya-Romero, Maria; Zingg, Felix; Pérez-Álvarez, José Miguel; Madejón, Paula; Kotb Abd-Elmabod, Sameh

    2015-04-01

    In the last decades, huge soil areas have been negatively influenced or altered in multiples forms. Soils and, consequently, underground water, have been contaminated by accumulation of contaminants from agricultural activities (fertilizers and pesticides) industrial activities (harmful material dumping, sludge, flying ashes) and urban activities (hydrocarbon, metals from vehicle traffic, urban waste dumping). In the framework of the RECARE project, local partners across Europe are focusing on a wide range of soil threats, as soil contamination, and aiming to develop effective prevention, remediation and restoration measures by designing and applying targeted land management strategies (van Lynden et al., 2013). In this context, the Guadiamar Green Corridor (Southern Spain) was used as a case study, aiming to obtain soil data and new information in order to assess soil contamination. The main threat in the Guadiamar valley is soil contamination after a mine spill occurred on April 1998. About four hm3 of acid waters and two hm3 of mud, rich in heavy metals, were released into the Agrio and Guadiamar rivers affecting more than 4,600 ha of agricultural and pasture land. Main trace elements contaminating soil and water were As, Cd, Cu, Pb, Tl and Zn. The objective of the present research is to develop informatics tools that integrate soil database, models and interactive platforms for soil contamination assessment. Preliminary results were obtained related to the compilation of harmonized databases including geographical, hydro-meteorological, soil and socio-economic variables based on spatial analysis and stakeholder's consultation. Further research will be modellization and upscaling at the European level, in order to obtain a scientifically-technical predictive tool for the assessment of soil contamination.

  6. Effects of low molecular weight organic acids on (137)Cs release from contaminated soils.

    PubMed

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-06-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of (137)Cs from contaminated soils. The amount of (137)Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg(-1), respectively. The kinetic results indicate that (137)Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r(2) values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of (137)Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg(-1) soil, respectively. H(+) can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H(+), organic ligands can attack the OH and OH(2) groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of (137)Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in (137)Cs release. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  8. Use of Carboxymethyl-beta-cyclodextrin (CMCD) as Flushing Agent for Remediation of Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Skold, M. E.; Thyne, G. D.; McCray, J. E.; Drexler, J. W.

    2005-12-01

    One of the major challenges in remediating soil and ground water is the presence of mixed organic and inorganic contaminants. Due to their very different behavior, research has to a large extent focused on remediation of either organic or inorganic contaminants rather than mixed waste. Cyclodextrins (CDs) are a group of non-toxic sugar based molecules that do not sorb to soil particles and do not experience pore size exclusion. Thus, they have good hydraulic properties. CDs enhance the solubility of organic compounds by forming inclusion complexes between organic contaminants and the non-polar cavity at the center of the CD. By substituting functional groups to the cyclodextrin molecule it can form complexes with heavy metals. Previous studies have shown that carboxymethyl-beta-cyclodextrin (CMCD) can simultaneously complex organic and inorganic contaminants. The aim of this study is to compare how strongly CMCD complexes several common heavy metals, radioactive elements and a common divalent cation. Results from batch experiments show that CMCD has the ability to complex a wide array of heavy metals and radioactive elements. The solubility of metal oxalates and metal oxides clearly increased in the presence of CMCD. Logarithmic conditional formation constants ranged from 3.5 to 6 for heavy metals and from 3 to 6 for radioactive elements. Calcium, which may compete for binding sites, has a logarithmic conditional formation constant of 3.1. Batch experiments performed at 10 and 25 degrees C showed little temperature effect on conditional formation constants. Results from batch experiments were compared to results from column experiments where Pb was sorbed onto hydrous ferric oxide coated sand and subsequently removed by a CMCD solution. The results indicate that CMCD is a potential flushing agent for remediation of mixed waste sites.

  9. Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M.C.; Hinchman, R.R.; Gatliff, E.G.

    1996-07-01

    Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds and radioactive compounds in soil or water. Our research includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. A greenhouse experiment on zinc uptakemore » in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known ``hyperaccumulator`` species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less

  10. Radioactive contamination incidents involving protective clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichelt, R.A.; Clay, M.E.; Eichorst, A.J.

    1998-01-01

    The study focuses on incidents at Department of Energy facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work, (2) working conditions, (3) type of anti-contamination material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of reports identified strenuous work activities such as maintenance, construction, or decontamination and decommissioning projects. The reports also indicated adverse working conditions that included hot and humid or cramped work environments. The type of anti-contamination clothing most often identified was cotton or water-resistantmore » disposable clothing. Most of the reports also indicated contaminants migrating through perspiration-soaked areas, typically in the knees and forearms. On the basis of their survey, the authors recommend the use of improved engineering controls and resilient, breathable, waterproof protective clothing for work in hot, humid, or damp areas where the possibility of prolonged contact with contamination cannot be easily avoided or controlled. 1 ref., 6 figs., 1 tab.« less

  11. Contaminant gradients in trees: Directional tree coring reveals boundaries of soil and soil-gas contamination with potential applications in vapor intrusion assessment

    USGS Publications Warehouse

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  12. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    PubMed

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  13. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  14. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume

    PubMed Central

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-01-01

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue. PMID:24165695

  15. Radioactive contamination incidents involving protective clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichelt, R.; Clay, M.; Eichorst, J.

    1996-10-01

    The study focuses on incidents at Department of Energy (DOE) facilities involving the migration of radioactive contaminants through protective clothing. The authors analyzed 68 occurrence reports for the following factors: (1) type of work; (2) working conditions; (3) type of anti-contamination (anti-C) material; (4) area of body or clothing contaminated; and (5) nature of spread of contamination. A majority of reports identified strenuous work activities such as maintenance, construction, or decontamination and decommissioning (D&D) projects. The reports also indicated adverse working conditions that included hot and humid or cramped work environments. The type of anti-C clothing most often identified wasmore » cotton or water-resistant, disposable clothing. Most of the reports also indicated contaminants migrating through perspiration-soaked areas, typically in the knees and forearms. On the basis of their survey, the authors recommend the use of improved engineering controls and resilient, breathable, waterproof protective clothing for work in hot, humid, or damp areas where the possibility of prolonged contact with contamination cannot be easily avoided or controlled.« less

  16. Humus-assisted cleaning of heavy metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  17. 10 CFR 39.69 - Radioactive contamination control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.69 Radioactive contamination control. (a) If the licensee detects... licensee shall continuously monitor, with an appropriate radiation detection instrument or a logging tool...

  18. 10 CFR 39.69 - Radioactive contamination control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.69 Radioactive contamination control. (a) If the licensee detects... licensee shall continuously monitor, with an appropriate radiation detection instrument or a logging tool...

  19. 10 CFR 39.69 - Radioactive contamination control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.69 Radioactive contamination control. (a) If the licensee detects... licensee shall continuously monitor, with an appropriate radiation detection instrument or a logging tool...

  20. 10 CFR 39.69 - Radioactive contamination control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.69 Radioactive contamination control. (a) If the licensee detects... licensee shall continuously monitor, with an appropriate radiation detection instrument or a logging tool...

  1. 10 CFR 39.69 - Radioactive contamination control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Radiation Safety Requirements § 39.69 Radioactive contamination control. (a) If the licensee detects... licensee shall continuously monitor, with an appropriate radiation detection instrument or a logging tool...

  2. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that themore » Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.« less

  3. Bioremediation potential of diesel-contaminated Libyan soil.

    PubMed

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Internal dose assessment of 238U contaminated soils based on in-vitro gastrointestinal protocol

    NASA Astrophysics Data System (ADS)

    Perama, Yasmin Mohd Idris; Rashid, Nur Shahidah Abdul; Majid, Amran Ab.; Siong, Khoo Kok

    2017-01-01

    Human exposure to natural radioactive uranium has been a great interest as more industrial rapidly growing contributes to radiation risks. The aim of this case study was to determine the internal dose in humans incorporated with ingestion of 238U contaminated soils. A gastrointestinal analogue test was employed to simulate the human digestive tract. In-vitro approach via German DIN 19738 model was developed in order to estimate the internal exposure of 238U due to ingestion of different types of soils. Synthetic gastrointestinal fluids assay via in-vitro method were produced to determine the concentration of 238U in various soils using ICP-MS. Based on the results, concentration of 238U in BRIS, laterite, peat and alluvium soils were in ranged between (0.0061 ± 0.0057 - 0.0488 ± 0.0148) ppm and (0.0005 ± 0.0004 - 0.0046 ± 0.0007) ppm in gastric and gastrointestinal phase respectively. Types of soil compositions and pH medium were some of the factors that influence mobilization and solubility of 238U contaminanted soil into the digestive juices that resembles human gastrointestinal tract. For the purpose of internal dose assessment, the committed efective dose from 238U intake in soils ranged between 1.237 × 10-11 - 9.8993 × 10-11 Sv y-1 for gastric phase and 1.0184 × 10-12 - 9.3294 × 10-12 Sv y-1 for gastric-intestinal phase. The internal dose measurements from this study were much lower from the recommended values. Hence, ingestion of 238U contaminated soils would not be expected to pose major health risk to humans.

  5. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    EPA Science Inventory

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  6. Cadastral valuation of land contaminated with radionuclides

    NASA Astrophysics Data System (ADS)

    Ratnikov, A. N.; Sapozhnikov, P. M.; Sanzharova, N. I.; Sviridenko, D. G.; Zhigareva, T. L.; Popova, G. I.; Panov, A. V.; Kozlova, I. Yu.

    2016-01-01

    The methodology and procedure for cadastral valuation of land in the areas contaminated with radionuclides are presented. The efficiency of rehabilitation measures applied to decrease crop contamination to the levels satisfying sanitary-hygienic norms is discussed. The differentiation of cadastral value of radioactively contaminated agricultural lands for the particular farms and land plots is suggested. An example of cadastral valuation of agricultural land contaminated during the Chernobyl Nuclear Power Plant accident is given. It is shown that the use of sandy and loamy sandy soddy-podzolic soils with the 137Cs contamination of 37-185 and >185 kBq/m2 for crop growing is unfeasible. The growing of grain crops and potatoes on clay loamy soddy-podzolic soils with the 137Cs contamination of 555-740 kBq/m2 is unprofitable. The maximum cadastral value of radioactively contaminated lands is typical of leached chernozems.

  7. In situ removal of contamination from soil

    DOEpatents

    Lindgren, Eric R.; Brady, Patrick V.

    1997-01-01

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination, and further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed.

  8. In situ removal of contamination from soil

    DOEpatents

    Lindgren, E.R.; Brady, P.V.

    1997-10-14

    A process of remediation of cationic heavy metal contamination from soil utilizes gas phase manipulation to inhibit biodegradation of a chelating agent that is used in an electrokinesis process to remove the contamination. The process also uses further gas phase manipulation to stimulate biodegradation of the chelating agent after the contamination has been removed. The process ensures that the chelating agent is not attacked by bioorganisms in the soil prior to removal of the contamination, and that the chelating agent does not remain as a new contaminant after the process is completed. 5 figs.

  9. Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident: the radioactive contamination of soil and plants in 2011.

    PubMed

    Ramzaev, V; Barkovsky, A; Goncharova, Yu; Gromov, A; Kaduka, M; Romanovich, I

    2013-04-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant has resulted in radioactive contamination of environmental media and food in the Far East of Russia, particularly in the Sakhalin Region. To obtain the knowledge about the (134)Cs and (137)Cs spatial distribution in the Sakhalin Region, soil samples were collected at 31 representative grassland sites on Sakhalin, Kunashir and Shikotan islands (43.80°-46.40° N and 142.73°-146.84° E) in the middle of May and around the end of September to early October 2011. In the autumn, vegetation samples (mixed grass/forb crop and bamboo, Sasa sp.) were collected together with soil samples. Maximum measured activity concentrations (on dry weight) of (134)Cs and (137)Cs in soil were 30 Bq kg(-1) and 210 Bq kg(-1), respectively. Within soil profile, (134)Cs activity concentrations declined rapidly with depth. Although for both sampling occasions (in the spring and autumn) the radionuclide was completely retained in the upper 3-4 cm of soil, a deeper penetration of the contaminant into the ground was observed in the autumn. In contrast with (134)Cs, activity concentrations of (137)Cs demonstrated a broad range of the vertical distribution in soil; at most sites, the radionuclide was found down to a depth of 20 cm. This resulted from interfering the aged pre-accidental (137)Cs and the new Fukushima-borne (137)Cs. To calculate contribution of these sources to the inventory of (137)Cs, the (134)Cs:(137)Cs activity ratio of 1:1 in Fukushima fallout (the reference date 15 March 2011) was used. The maximum deposition density of Fukushima-derived (137)Cs was found on Shikotan and Kunashir Islands with average density of 0.124 ± 0.018 kBq m(-2) and 0.086 ± 0.026 kBq m(-2), respectively. Sakhalin Island was less contaminated by Fukushima-derived (137)Cs of 0.021 ± 0.018 kBq m(-2). For the south of Sakhalin Island, the reference inventory of pre-Fukushima (137)Cs was calculated as 1.93 ± 0.25 kBq m(-2

  10. Bioremediation of petroleum-contaminated soil: A Review

    NASA Astrophysics Data System (ADS)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  11. The activation energy of stabilised/solidified contaminated soils.

    PubMed

    Chitambira, B; Al-Tabbaa, A; Perera, A S R; Yu, X D

    2007-03-15

    Developing an understanding of the time-related performance of cement-treated materials is essential in understanding their durability and long-term effectiveness. A number of models have been developed to predict this time-related performance. One such model is the maturity concept which involves use of the 'global' activation energy which derives from the Arrhenius equation. The accurate assessment of the activation energy is essential in the realistic modelling of the accelerated ageing of cement-treated soils. Experimentally, this model is applied to a series of tests performed at different elevated temperatures. Experimental work, related to the results of a time-related performance on a contaminated site in the UK treated with in situ stabilisation/solidification was carried out. Three different cement-based grouts were used on two model site soils which were both contaminated with a number of heavy metals and a hydrocarbon. Uncontaminated soils were also tested. Elevated temperatures up to 60 degrees C and curing periods up to 90 days were used. The resulting global activation energies for the uncontaminated and contaminated soils were compared. Lower values were obtained for the contaminated soils reflecting the effect of the contaminants. The resulting equivalent ages for the uncontaminated and contaminated mixes tested were 5.1-7.4 and 0.8-4.1 years, respectively. This work shows how a specific set of contaminants affect the E(a) values for particular cementitious systems and how the maturity concept can be applied to cement-treated contaminated soils.

  12. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    PubMed

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Robust technique using an imaging plate to detect environmental radioactivity.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takada, Kenta; Sato, Eisuke; Sakurai, Hideyuki; Sakae, Takeji

    2013-04-01

    The Fukushima Daiichi Nuclear Power Plant was severely damaged by the Great East Japan Earthquake on 11 March 2011. Consequently, a large amount of radioactive material was accidentally released. Recently, the focus has been on quantification of environmental radioactive material. However, conventional techniques require complicated and expensive measurement equipment. In this research, the authors developed a simple method to detect environmental radioactive material with an imaging plate (IP). Two specific measurement subjects were targeted: measurements for the depth distribution of radioactive material in soil and surface contamination of a building roof. For the measurement of depth distribution of radioactive material in soil, the authors ascertained that the concentration of environmental radioactivity was highest at 5 cm below the surface, and it decreased with depth. For the measurement of surface contamination of the building roof, the authors created a contamination map of the building roof. The detector developed could contact the ground directly, and unlike other survey meters, it was not influenced by peripheral radioactivity. In this study, the authors verified the feasibility of measurement of environmental radioactivity with an IP. Although the measured values of the IP were relative, further work is planned to perform evaluations of absolute quantities of radioactive material.

  14. Screening of plants for phytoremediation of oil-contaminated soil.

    PubMed

    Ikeura, Hiromi; Kawasaki, Yu; Kaimi, Etsuko; Nishiwaki, Junko; Noborio, Kosuke; Tamaki, Masahiko

    2016-01-01

    Several species of ornamental flowering plants were evaluated regarding their phytoremediation ability for the cleanup of oil-contaminated soil in Japanese environmental conditions. Thirty-three species of plants were grown in oil-contaminated soil, and Mimosa, Zinnia, Gazania, and cypress vine were selected for further assessment on the basis of their favorable initial growth. No significant difference was observed in the above-ground and under-ground dry matter weight of Gazania 180 days after sowing between contaminated and non-contaminated plots. However, the other 3 species of plants died by the 180th day, indicating that Gazania has an especially strong tolerance for oil-contaminated soil. The total petroleum hydrocarbon concentration of the soils in which the 4 species of plants were grown decreased by 45-49% by the 180th day. Compared to an irrigated plot, the dehydrogenase activity of the contaminated soil also increased significantly, indicating a phytoremediation effect by the 4 tested plants. Mimosa, Zinnia, and cypress vine all died by the 180th day after seeding, but the roots themselves became a source of nutrients for the soil microorganisms, which led to a phytoremediation effect by increase in the oil degradation activity. It has been indicated that Gazania is most appropriate for phytoremediation of oil-contaminated soil.

  15. Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M.C.; Hinchman, R.R.

    1996-05-01

    Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds ({open_quotes}organics{close_quotes}), and radioactive compounds in soil or water. Current research at Argonne National Laboratory includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. Amore » greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data from Applied Natural Sciences, Inc. (our CRADA partner), indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known {open_quotes}hyperaccumulator{close_quotes} species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less

  16. Contaminated soils (II): in vitro dermal absorption of nickel (Ni-63) and mercury (Hg-203) in human skin.

    PubMed

    Moody, Richard P; Joncas, Julie; Richardson, Mark; Petrovic, Sanya; Chu, Ih

    2009-01-01

    Dermal absorption of heavy metal soil contaminants was tested in vitro with chloride salts of radioactive nickel (Ni-63) and mercury (Hg-203). Aqueous soil suspensions, spiked with either Ni-63 or Hg-203, were applied to fresh viable human breast skin tissue in Bronaugh diffusion cells perfused with Hanks HEPES buffered (pH 7.4) receptor containing 4% bovine serum albumin (BSA). Receptor fractions were collected every 6 h for 24 h when skin was soap washed. Tests were conducted concurrently in triplicate with and without soil for each skin specimen. Mean percent dermal absorption including the skin depot for Ni-63 was 1 and 22.8% with and without soil, respectively, while for Hg-203, values of 46.6 and 78.3% were obtained. Excluding the skin depot and considering only absorption in receptor, there was 0.5 and 1.8% absorption of Ni-63 with and without soil, respectively, and 1.5 and 1.4% for Hg-203. The potential bioavailability of the skin depot is discussed in relation to dermal exposure to these metals in contaminated soil.

  17. Bioremediation of soil contaminated crude oil by Agaricomycetes.

    PubMed

    Mohammadi-Sichani, M Maryam; Assadi, M Mazaheri; Farazmand, A; Kianirad, M; Ahadi, A M; Ghahderijani, H Hadian

    2017-01-01

    One of the most important environmental problems is the decontamination of petroleum hydrocarbons polluted soil, particularly in the oil-rich country. Bioremediation is the most effective way to remove these pollutants in the soil. Spent mushroom compost has great ability to decompose lignin-like pollution. The purpose of this study was the bioremediation of soil contaminated with crude oil by an Agaricomycetes . Soil sample amended with spent mushroom compost into 3%, 5% and 10% (w/w) with or without fertilizer. Ecotoxicity germination test was conducted with Lipidium sativa . The amplified fragment (18 s rDNA) sequence of this mushroom confirmed that the strain belonged to Pleurotus ostreatus species with complete homology (100% identity). All tests experiment sets were effective at supporting the degradation of petroleum hydrocarbons contaminated soil after three months. Petroleum contaminated soil amended with Spent mushroom compost 10% and fertilizer removed 64.7% of total petroleum hydrocarbons compared control. The germination index (%) in ecotoxicity tests ranged from 60.4 to 93.8%. This showed that the petroleum hydrocarbons contaminated soil amended with 10% Spent mushroom compost had higher bioremediation ability and reduced soil toxicity in less than three months.

  18. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  19. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  20. Soil Contamination and Remediation Strategies. Current research and future challenge

    NASA Astrophysics Data System (ADS)

    Petruzzelli, G.

    2012-04-01

    Soil contamination: the heritage of industrial development Contamination is only a part of a whole set of soil degradation processes, but it is one of paramount importance since soil pollution greatly influences the quality of water, food and human health. Soil contamination has been identified as an important issue for action in the European strategy for soil protection, it has been estimated that 3.5 million of sites are potentially contaminated in Europe. Contaminated soils have been essentially discovered in industrial sites landfills and energy production plants, but accumulation of heavy metals and organic compounds can be found also in agricultural land . Remediation strategies. from incineration to bioremediation The assessment of soil contamination is followed by remedial action. The remediation of contaminated soils started using consolidates technologies (incineration inertization etc.) previously employed in waste treatment,. This has contributed to consider a contaminated soil as an hazardous waste. This rough approximation was unfortunately transferred in many legislations and on this basis soil knowledge have been used only marginally in the clean up procedures. For many years soil quality has been identified by a value of concentration of a contaminant and excavation and landfill disposal of soil has been largely used. In the last years the knowledge of remediation technology has rapidly grown, at present many treatment processes appear to be really feasible at field scale, and soil remediation is now based on risk assessment procedures. Innovative technologies, largely dependent on soil properties, such as in situ chemical oxidation, electroremediation, bioventing, soil vapor extraction etc. have been successfully applied. Hazardous organic compounds are commonly treated by biological technologies, biorememdiation and phytoremediation, being the last partially applied also for metals. Technologies selection is no longer exclusively based on

  1. Levels of radioactivity in Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Thani, A.A.; Abdul-Majid, S.; Mohammed, K.

    The levels of natural and man-made radioactivity in soil and seabed were measured in Qatar to assess radiation exposure levels and to evaluate any radioactive contamination that may have reached the country from fallout or due to the Chernobyl accident radioactivity release. Qatar peninsula is located on the Arabian Gulf, 4500 km from Chernobyl, and has an area of {approximately}11,600 km{sup 2} and a population of {approximately}600,000.

  2. Emergency department management of patients internally contaminated with radioactive material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  3. Emergency department management of patients internally contaminated with radioactive material

    DOE PAGES

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; ...

    2014-11-15

    After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.

  4. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis.

    PubMed

    Gilmour, Stuart; Miyagawa, Shoji; Kasuga, Fumiko; Shibuya, Kenji

    2016-01-01

    The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG), and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government's response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents. We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW), the Ministry of Agriculture, Forestry and Fishery (MAFF) and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137) of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products were released for areas at risk of

  5. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  6. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction.

    PubMed

    Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2012-08-15

    This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Soil contamination with cadmium, consequences and remediation using organic amendments.

    PubMed

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James

    1997-01-01

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.

  9. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Phytoremediation of soils contaminated by cadmium

    NASA Astrophysics Data System (ADS)

    Watai, H.; Miyazaki, T.; Fujikawa, T.; Mizoguchi, M.

    2004-12-01

    Phytoremediation is a technique to clean up soils contaminated with heavy metals. Advantages of this method are that (1) This technique is suitable to cleanup soils slightly contaminated with heavy metals in relatively wide area. (2) The expense for clean up is lower than civil engineering techniques. (3) This method can remove heavy metals fundamentally from contaminated. (4) The heavy metals are able to recycle by ashing of plants. Many researches have been done on the phytoremediation up to now, but almost all these researches were devoted to clarify the phytoremediation from the view point of plants themselves. However, few efforts have been devoted to analyze the migrations of heavy metals in soils during the phytoremediation process. The objective of this study is to clarify the features of Cd migration when plant roots are absorbing Cd from the ambient soils. Especially, we focused on finding the Cd migration pattern by changing the soil condition such as plant growing periods, planting densities, and the initial Cd concentration in soils. We planted sunflowers in columns filled with Cd contaminated soils because sunflower is a well-known hyperaccumulator of Cd from soils. By cutting the shoots of plants at the soil surface, and by keeping the plant roots in the soils without disturbance, the Cd concentrations, moisture contents, pH distributions, EC distributions, and dry weight of residual roots in the soils were carefully analyzed. The experimental results showed that (1)The growth of the planted sunflowers were suffered by applying of Cd. (2)The decrease of suction was affected by water uptake by roots at the depth from 0 to 5 cm. Water contents with plants in soils decrease more than without plants. (3)Cd adsorption by roots was predominant within 5cm from soil surface. In addition, it was also shown that there was an optimal Cd concentration where Cd is most effectively adsorbed by the plant. In this experiment we found that 40 to 60 mg kg-1 was the

  11. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, George; Zhang, Xi-Cheng

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructivemore » methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less

  12. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, George; Zhang, Xi-Cheng

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development ofmore » novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less

  13. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  14. THE BEHAVIOR OF STRONTIUM-90 IN SOILS AND PLANTS AND AGRICULTURAL PRECAUTIONS FOR LESSENING THE STRONTIUM-90 CONTAMINATION OF FOOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheffer, F.; Ludwieg, F.

    The development of dirty atom bombs (hydrogen bombs with a uranium mantle) and the resultant high radioactive fall-out have made the strontium-90 contamination of foodstuffs a serious problem for humanity. The literature of recent years is used to survey the behavior of strontium-90 in plants and soil, and to discuss agricultural measures which could be taken to lessen the contamination of foodstuffs in case of atomic warfare. (auth)

  15. Biological technologies for the remediation of co-contaminated soil.

    PubMed

    Ye, Shujing; Zeng, Guangming; Wu, Haipeng; Zhang, Chang; Dai, Juan; Liang, Jie; Yu, Jiangfang; Ren, Xiaoya; Yi, Huan; Cheng, Min; Zhang, Chen

    2017-12-01

    Compound contamination in soil, caused by unreasonable waste disposal, has attracted increasing attention on a global scale, particularly since multiple heavy metals and/or organic pollutants are entering natural ecosystem through human activities, causing an enormous threat. The remediation of co-contaminated soil is more complicated and difficult than that of single contamination, due to the disparate remediation pathways utilized for different types of pollutants. Several modern remediation technologies have been developed for the treatment of co-contaminated soil. Biological remediation technologies, as the eco-friendly methods, have received widespread concern due to soil improvement besides remediation. This review summarizes the application of biological technologies, which contains microbial technologies (function microbial remediation and composting or compost addition), biochar, phytoremediation technologies, genetic engineering technologies and biochemical technologies, for the remediation of co-contaminated soil with heavy metals and organic pollutants. Mechanisms of these technologies and their remediation efficiencies are also reviewed. Based on this study, this review also identifies the future research required in this field.

  16. System for the removal of contaminant soil-gas vapors

    DOEpatents

    Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.

    1997-12-16

    A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.

  17. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    PubMed

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  18. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  19. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility.

    PubMed

    Zhou, Ming; Wang, Hui; Zhu, Shufa; Liu, Yana; Xu, Jingming

    2015-11-01

    Compared to soil pollution by heavy metals and organic pollutants, soil pollution by fluorides is usually ignored in China. Actually, fluorine-contaminated soil has an unfavorable influence on human, animals, plants, and surrounding environment. This study reports on electrokinetic remediation of fluorine-contaminated soil and the effects of this remediation technology on soil fertility. Experimental results showed that electrokinetic remediation using NaOH as the anolyte was a considerable choice to eliminate fluorine in contaminated soils. Under the experimental conditions, the removal efficiency of fluorine by the electrokinetic remediation method was 70.35%. However, the electrokinetic remediation had a significant impact on the distribution and concentrations of soil native compounds. After the electrokinetic experiment, in the treated soil, the average value of available nitrogen was raised from 69.53 to 74.23 mg/kg, the average value of available phosphorus and potassium were reduced from 20.05 to 10.39 mg/kg and from 61.31 to 51.58 mg/kg, respectively. Meanwhile, the contents of soil available nitrogen and phosphorus in the anode regions were higher than those in the cathode regions, but the distribution of soil available potassium was just the opposite. In soil organic matter, there was no significant change. These experiment results suggested that some steps should be taken to offset the impacts, after electrokinetic treatment.

  20. Removal of residual contaminants in petroleum-contaminated soil by Fenton-like oxidation.

    PubMed

    Lu, Mang; Zhang, Zhongzhi; Qiao, Wei; Guan, Yueming; Xiao, Meng; Peng, Chong

    2010-07-15

    The degradation of bioremediation residues by hydrogen peroxide in petroleum-contaminated soil was investigated at circumneutral pH using a Fenton-like reagent (ferric ion chelated with EDTA). Batch tests were done on 20 g soil suspended in 60 mL aqueous solution containing hydrogen peroxide and Fe(3+)-EDTA complex under constant stirring. A slurry reactor was used to treat the soil based on the optimal reactant conditions. Contaminants were characterized by Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry. The results showed that the optimal treatment condition was: the molar ratio of hydrogen peroxide to iron=200:1, and pH 7.0. Under the optimum condition, total dichloromethane-extractable organics were reduced from 14,800 to 2300 mg kg(-1) soil when the accumulative H(2)O(2) dosage was 2.45 mol kg(-1) soil during the reactor treatment. Abundance of viable cells was lower in incubated Fenton-like treated soil than in untreated soil. Oxidation of contaminants produced remarkable compositional and structural modifications. A fused ring compound, identified as C(34)H(38)N(1), was found to exhibit the greatest resistance to oxidation. 2010 Elsevier B.V. All rights reserved.

  1. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  2. Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy

    NASA Astrophysics Data System (ADS)

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; Rosa, Rosanna De; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-12-01

    The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.

  3. Airborne soil particulates as vehicles for Salmonella contamination of tomatoes.

    PubMed

    Kumar, Govindaraj Dev; Williams, Robert C; Al Qublan, Hamzeh M; Sriranganathan, Nammalwar; Boyer, Renee R; Eifert, Joseph D

    2017-02-21

    The presence of dust is ubiquitous in the produce growing environment and its deposition on edible crops could occur. The potential of wind-distributed soil particulate to serve as a vehicle for S. Newport transfer to tomato blossoms and consequently, to fruits, was explored. Blossoms were challenged with previously autoclaved soil containing S. Newport (9.39log CFU/g) by brushing and airborne transfer. One hundred percent of blossoms brushed with S. Newport-contaminated soil tested positive for presence of the pathogen one week after contact (P<0.0001). Compressed air was used to simulate wind currents and direct soil particulates towards blossoms. Airborne soil particulates resulted in contamination of 29% of the blossoms with S. Newport one week after contact. Biophotonic imaging of blossoms post-contact with bioluminescent S. Newport-contaminated airborne soil particulates revealed transfer of the pathogen on petal, stamen and pedicel structures. Both fruits and calyxes that developed from blossoms contaminated with airborne soil particulates were positive for presence of S. Newport in both fruit (66.6%) and calyx (77.7%). Presence of S. Newport in surface-sterilized fruit and calyx tissue tested indicated internalization of the pathogen. These results show that airborne soil particulates could serve as a vehicle for Salmonella. Hence, Salmonella contaminated dust and soil particulate dispersion could contribute to pathogen contamination of fruit, indicating an omnipresent yet relatively unexplored contamination route. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Magnetic susceptibility properties of pesticide contaminated volcanic soil

    NASA Astrophysics Data System (ADS)

    Agustine, Eleonora; Fitriani, Dini; Safiuddin, La Ode; Tamuntuan, Gerald; Bijaksana, Satria

    2013-09-01

    Pesticides, unfortunately, are still widely used in many countries as way to eradicate agricultural pests. As they are being used continuously over a long period of time, they accumulate as residues in soils posing serious threats to the environment. In this study, we study the changes in magnetite-rich volcanic soils that were deliberately contaminated by pesticide. Such changes, in any, would be useful in the detection of pesticide residue in contaminated soils. Two different types of magnetically strong volcanic soil from the area near Lembang, West Java, Indonesia were used in this study where they were contaminated with varying concentrations of pesticide. The samples were then measured for magnetic susceptibility at two different frequencies. The measurements were then repeated after a period of three months. We found a reduction of magnetic susceptibility as well as a reduction in SP (superparamagnetic) grains proportion in contaminated soil. These might be caused by pesticide-induced magnetic dissolution as supported by SEM analyses. However the impact of pesticide concentration as well as exposure time on magnetic dissolution is still inconclusive.

  5. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  6. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  7. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils.

    PubMed

    Wang, Yiwen; Ma, Fujun; Zhang, Qian; Peng, Changsheng; Wu, Bin; Li, Fasheng; Gu, Qingbao

    2017-04-01

    Soil washing is a promising way to remediate arsenic-contaminated soils. Most research has mostly focused on seeking efficient extractants for removing arsenic, but not concerned with any changes in soil properties when using this technique. In this study, the removal of arsenic from a heavily contaminated soil employing different washing solutions including H 3 PO 4 , NaOH and dithionite in EDTA was conducted. Subsequently, the changes in soil physicochemical properties and phytotoxicity of each washing technique were evaluated. After washing with 2 M H 3 PO 4 , 2 M NaOH or 0.1 M dithionite in 0.1 M EDTA, the soil samples' arsenic content met the clean-up levels stipulated in China's environmental regulations. H 3 PO 4 washing decreased soil pH, Ca, Mg, Al, Fe, and Mn concentrations but increased TN and TP contents. NaOH washing increased soil pH but decreased soil TOC, TN and TP contents. Dithionite in EDTA washing reduced soil TOC, Ca, Mg, Al, Fe, Mn and TP contents. A drastic color change was observed when the soil sample was washed with H 3 PO 4 or 0.1 M dithionite in 0.1 M EDTA. After adjusting the soil pH to neutral, wheat planted in the soil sample washed by NaOH evidenced the best growth of all three treated soil samples. These results will help with selecting the best washing solution when remediating arsenic-contaminated soils in future engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Assessing the fate of radioactive nickel in cultivated soil cores.

    PubMed

    Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis

    2009-10-01

    Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown

  9. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate.

    PubMed

    Ma, Yameng; Li, Fangfang; Jiang, Yuling; Yang, Weihua; Lv, Lv; Xue, Haotian; Wang, Yangyang

    2016-09-01

    Acidified hydrazine hydrate was used to remediate Cr(VI)-contaminated soil. The content of water-soluble Cr(VI) in contaminated soil was 4977.53 mg/kg. The optimal initial pH of hydrazine hydrate solution, soil to solution ratio and molar ratio of Cr(VI) to hydrazine hydrate for remediation of Cr(VI)-contaminated soil were 5.0, 3:1 and 1:3, respectively. Over 99.50 % of water-soluble Cr(VI) in the contaminated soil was reduced at the optimal condition within 30 min. The remediated soil can keep stable within 4 months. Meanwhile the total phosphorus increased from 0.47 to 4.29 g/kg, indicating that using of acidified hydrazine hydrate is an effective method to remediate Cr(VI)-contaminated soil.

  10. [The assessment of radionuclide contamination and toxicity of soils sampled from "experimental field" site of Semipalatinsk nuclear test site].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Belykh, E S; Geras'kin, S A; Kriazheva, E Iu

    2009-01-01

    Large-scale maps (1:25000) of soil contamination with radionuclides, lateral distribution of 137Cs, 90Sr, Fe and Mn water-soluble compounds and soil toxicity in "Experimental field" site of Semipalatinsk nuclear test site were charted. At present soils from studied site (4 km2) according to basic sanitary standards of radiation safety adopted in Russian Federation (OSPORB) do not attributed to radioactive wastes with respect to data on artificial radionuclide concentration, but they do in compliance with IAEA safety guide. The soils studied can not be released from regulatory control due to radioactive decay of 137Cs and 90Sr and accumulation-decay of 241Am up to 2106 year according to IAEA concept of exclusion, exemption and clearance. Data on bioassay "increase of Chlorella vulgaris Beijer biomass production in aqueous extract from soils" show that the largest part of soils from the studied site (74%) belongs to stimulating or insignificantly influencing on the algae reproduction due to water-soluble compounds effect. Toxic soils occupy 26% of the territory. The main factors effecting the algae reproduction in the aqueous extracts from soil are Fe concentration and 90Sr specific activity: 90Sr inhibits but Fe stimulates algae biomass production.

  11. Soil mixing of stratified contaminated sands.

    PubMed

    Al-Tabba, A; Ayotamuno, M J; Martin, R J

    2000-02-01

    Validation of soil mixing for the treatment of contaminated ground is needed in a wide range of site conditions to widen the application of the technology and to understand the mechanisms involved. Since very limited work has been carried out in heterogeneous ground conditions, this paper investigates the effectiveness of soil mixing in stratified sands using laboratory-scale augers. This enabled a low cost investigation of factors such as grout type and form, auger design, installation procedure, mixing mode, curing period, thickness of soil layers and natural moisture content on the unconfined compressive strength, leachability and leachate pH of the soil-grout mixes. The results showed that the auger design plays a very important part in the mixing process in heterogeneous sands. The variability of the properties measured in the stratified soils and the measurable variations caused by the various factors considered, highlighted the importance of duplicating appropriate in situ conditions, the usefulness of laboratory-scale modelling of in situ conditions and the importance of modelling soil and contaminant heterogeneities at the treatability study stage.

  12. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil.

    PubMed

    García Frutos, F Javier; Escolano, Olga; García, Susana; Babín, Mar; Fernández, M Dolores

    2010-11-15

    The objectives of soil remediation processes are usually based on threshold levels of soil contaminants. However, during remediation processes, changes in bioavailability and metabolite production can occur, making it necessary to incorporate an ecotoxicity assessment to estimate the risk to ecological receptors. The evolution of contaminants and soil ecotoxicity of artificially phenanthrene-contaminated soil (1000 mg/kg soil) during soil treatment through bioventing was studied in this work. Bioventing was performed in glass columns containing 5.5 kg of phenanthrene-contaminated soil and uncontaminated natural soil over a period of 7 months. Optimum conditions of mineralisation (humidity=60% WHC; C/N/P=100:20:1) were determined in a previous work. The evolution of oxygen consumption, carbon dioxide production, phenanthrene concentration and soil toxicity were studied on sacrificed columns at periods of 0, 3 and 7 months. Toxicity to soil and aquatic organisms was determined using a multispecies system in the soil columns (MS-3). In the optimal bioventing treatability test, we obtained a reduction rate in phenanthrene concentration higher that 93% after 7 months of treatment. The residual toxicity obtained at the end of the treatment was not attributed to the low phenanthrene concentration, but to the ammonia used to restore the optimal C/N ratio. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Urban community gardeners' knowledge and perceptions of soil contaminant risks.

    PubMed

    Kim, Brent F; Poulsen, Melissa N; Margulies, Jared D; Dix, Katie L; Palmer, Anne M; Nachman, Keeve E

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether.

  14. Urban Community Gardeners' Knowledge and Perceptions of Soil Contaminant Risks

    PubMed Central

    Kim, Brent F.; Poulsen, Melissa N.; Margulies, Jared D.; Dix, Katie L.; Palmer, Anne M.; Nachman, Keeve E.

    2014-01-01

    Although urban community gardening can offer health, social, environmental, and economic benefits, these benefits must be weighed against the potential health risks stemming from exposure to contaminants such as heavy metals and organic chemicals that may be present in urban soils. Individuals who garden at or eat food grown in contaminated urban garden sites may be at risk of exposure to such contaminants. Gardeners may be unaware of these risks and how to manage them. We used a mixed quantitative/qualitative research approach to characterize urban community gardeners' knowledge and perceptions of risks related to soil contaminant exposure. We conducted surveys with 70 gardeners from 15 community gardens in Baltimore, Maryland, and semi-structured interviews with 18 key informants knowledgeable about community gardening and soil contamination in Baltimore. We identified a range of factors, challenges, and needs related to Baltimore community gardeners' perceptions of risk related to soil contamination, including low levels of concern and inconsistent levels of knowledge about heavy metal and organic chemical contaminants, barriers to investigating a garden site's history and conducting soil tests, limited knowledge of best practices for reducing exposure, and a need for clear and concise information on how best to prevent and manage soil contamination. Key informants discussed various strategies for developing and disseminating educational materials to gardeners. For some challenges, such as barriers to conducting site history and soil tests, some informants recommended city-wide interventions that bypass the need for gardener knowledge altogether. PMID:24516570

  15. Current Measures on Radioactive Contamination in Japan: A Policy Situation Analysis

    PubMed Central

    Gilmour, Stuart; Miyagawa, Shoji; Kasuga, Fumiko; Shibuya, Kenji

    2016-01-01

    Background The Great East Japan Earthquake on 11th March 2011 and the subsequent Fukushima Dai-ichi nuclear power plant disaster caused radioactive contamination in the surrounding environment. In the immediate aftermath of the accident the Government of Japan placed strict measures on radio-contamination of food, and enhanced radio-contamination monitoring activities. Japan is a pilot country in the WHO Foodborne Disease Burden Epidemiology Reference Group (FERG), and through this initiative has an opportunity to report on policy affecting chemicals and toxins in the food distribution network. Nuclear accidents are extremely rare, and a policy situation analysis of the Japanese government’s response to the Fukushima Dai-ichi nuclear accident is a responsibility of Japanese scientists. This study aims to assess Japan government policies to reduce radio-contamination risk and to identify strategies to strengthen food policies to ensure the best possible response to possible future radiation accidents. Methods and Findings We conducted a hand search of all publicly available policy documents issued by the Cabinet Office, the Food Safety Commission, the Ministry of Health, Labor and Welfare (MHLW), the Ministry of Agriculture, Forestry and Fishery (MAFF) and prefectural governments concerning food safety standards and changes to radiation and contamination standards since March 11th, 2011. We extracted information on food shipment and sales restrictions, allowable radio-contamination limits, monitoring activities and monitoring results. The standard for allowable radioactive cesium (Cs-134 and Cs-137) of 100 Bq/Kg in general food, 50 Bq/Kg in infant formula and all milk products, and 10 Bq/Kg in drinking water was enforced from April 2012 under the Food Sanitation Law, although a provisional standard on radio-contamination had been applied since the nuclear accident. Restrictions on the commercial sale and distribution of specific meat, vegetable and fish products

  16. X-231B technology demonstration for in situ treatment of contaminated soil: Contaminant characterization and three dimensional spatial modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, O.R.; Siegrist, R.L.; Mitchell, T.J.

    1993-11-01

    Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminatedmore » with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit.« less

  17. Effect of soil texture on phytoremediation of arsenic-contaminated soils

    NASA Astrophysics Data System (ADS)

    Pallud, C. E.; Matzen, S. L.; Olson, A.

    2015-12-01

    Soil arsenic (As) contamination is a global problem, resulting in part from anthropogenic activities, including the use of arsenical pesticides and treated wood, mining, and irrigated agriculture. Phytoextraction using the hyperaccumulating fern Pteris vittata is a promising new technology to remediate soils with shallow arsenic contamination with minimal site disturbance. However, many challenges still lie ahead for a global application of phytoremediation. For example, remediation times using P. vittata are on the order of decades. In addition, most research on As phytoextraction with P. vittata has examined As removal from sandy soils, where As is more available, with little research focusing on As removal from clayey soils, where As is less available. The objective of this study is to determine the effects of soil texture and soil fertilization on As extraction by P. vittata, to optimize remediation efficiency and decrease remediation time under complex field conditions. A field study was established 2.5 years ago in an abandoned railroad grade contaminated with As (average 85.5 mg kg-1) with texture varying from sandy loam to silty clay loam. Organic N, inorganic N, organic P, inorganic P, and compost were applied to separate sub-plots; control ferns were grown in untreated soil. In a parallel greenhouse experiment, ferns were grown in sandy loam soil extracted from the field (180 mg As kg-1), with similar treatments as those used at the field site, plus a high phosphate treatment and treatments with arbuscular mycorrhizal fungi. In the field study, fern mortality was 24% higher in clayey soil than in sandy soil due to waterlogging, while As was primarily associated with sandy soil. Results from the sandy loam soil indicate that soil treatments did not significantly increase As phytoextraction, which was lower in phosphate-treated ferns than in control ferns, both in the field and greenhouse study. Under greenhouse conditions, ferns treated with organic N were

  18. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    1997-06-30

    7-2 7-1 Excavation of Contaminated Soils . . . . . . . . 7-3 7-1 Excavation of Contaminated Sediments...becomes only as radioactive as natural soil . By comparison, many other potential y hazardous, but nonradioactive, chemical wastes like lead, silver...solutions and cleanup materials, engine oils and grease, epoxies and resins, laser dyes, paint residues, photo- graphic materials, soils , asphalts

  19. Electrokinetic In Situ Treatment of Metal-Contaminated Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Clausen, Christian A., III; Geiger, Cherie; Reinhart, Debra

    2004-01-01

    An electrokinetic technique has been developed as a means of in situ remediation of soils, sludges, and sediments that are contaminated with heavy metals. Examples of common metal contaminants that can be removed by this technique include cadmium, chromium, zinc, lead, mercury, and radionuclides. Some organic contaminants can also be removed by this technique. In the electrokinetic technique, a low-intensity direct current is applied between electrodes that have been implanted in the ground on each side of a contaminated soil mass. The electric current causes electro-osmosis and migration of ions, thereby moving aqueous-phase subsurface contaminants from one electrode to the other. The half reaction at the anode yields H+, thereby generating an acid front that travels from the anode toward the cathode. As this acid front passes through a given location, the local increase in acidity increases the solubility of cations that were previously adsorbed on soil particles. Ions are transported towards one electrode or the other which one depending on their respective electric charges. Upon arrival at the electrodes, the ionic contaminants can be allowed to become deposited on the electrodes or can be extracted to a recovery system. Surfactants and other reagents can be introduced at the electrodes to enhance rates of removal of contaminants. Placements of electrodes and concentrations and rates of pumping of reagents can be adjusted to maximize efficiency. The basic concept of electrokinetic treatment of soil is not new. What is new here are some of the details of application and the utilization of this technique as an alternative to other techniques (e.g., flushing or bioremediation) that are not suitable for treating soils of low hydraulic conductivity. Another novel aspect is the use of this technique as a less expensive alternative to excavation: The cost advantage over excavation is especially large in settings in which contaminated soil lies near and/or under

  20. Natural attenuation is enhanced in previously contaminated and coniferous forest soils.

    PubMed

    Kauppi, Sari; Romantschuk, Martin; Strömmer, Rauni; Sinkkonen, Aki

    2012-01-01

    Prevalence of organic pollutants or their natural analogs in soil is often assumed to lead to adaptation in the bacterial community, which results in enhanced bioremediation if the soil is later contaminated. In this study, the effects of soil type and contamination history on diesel oil degradation and bacterial adaptation were studied. Mesocosms of mineral and organic forest soil (humus) were artificially treated with diesel oil, and oil hydrocarbon concentrations (GC-FID), bacterial community composition (denaturing gradient gel electrophoresis, DGGE), and oil hydrocarbon degraders (DGGE + sequencing of 16S rRNA genes) were monitored for 20 weeks at 16°C. Degradation was advanced in previously contaminated soils as compared with pristine soils and in coniferous organic forest soil as compared with mineral soil. Contamination affected bacterial community composition especially in the pristine mineral soil, where diesel addition increased the number of strong bands in the DGGE gel. Sequencing of cloned 16S rRNA gene fragments and DGGE bands showed that potential oil-degrading bacteria were found in mineral and organic soils and in both pristine and previously contaminated mesocosms. Fast oil degradation was not associated with the presence of any particular bacterial strain in soil. We demonstrate at the mesocosm scale that previously contaminated and coniferous organic soils are superior environments for fast oil degradation as compared with pristine and mineral soil environments. These results may be utilized in preventing soil pollution and planning soil remediation.

  1. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-09-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the adundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  2. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-06-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the abundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  3. Imaging plant leaves to determine changes in radioactive contamination status in Fukushima, Japan.

    PubMed

    Nakajima, Hiroo; Fujiwara, Mamoru; Tanihata, Isao; Saito, Tadashi; Matsuda, Norihiro; Todo, Takeshi

    2014-05-01

    The chemical composition of plant leaves often reflects environmental contamination. The authors analyzed images of plant leaves to investigate the regional radioactivity ecology resulting from the 2011 accident at the Fukushima No. 1 nuclear power plant, Japan. The present study is not an evaluation of the macro radiation dose per weight, which has been performed previously, but rather an image analysis of the radioactive dose per leaf, allowing the capture of various gradual changes in radioactive contamination as a function of elapsed time. In addition, the leaf analysis method has potential applications in the decontamination of food plants or other materials.

  4. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination.

    PubMed

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-02-08

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods.

  5. A Novel Method for Remote Depth Estimation of Buried Radioactive Contamination

    PubMed Central

    2018-01-01

    Existing remote radioactive contamination depth estimation methods for buried radioactive wastes are either limited to less than 2 cm or are based on empirical models that require foreknowledge of the maximum penetrable depth of the contamination. These severely limits their usefulness in some real life subsurface contamination scenarios. Therefore, this work presents a novel remote depth estimation method that is based on an approximate three-dimensional linear attenuation model that exploits the benefits of using multiple measurements obtained from the surface of the material in which the contamination is buried using a radiation detector. Simulation results showed that the proposed method is able to detect the depth of caesium-137 and cobalt-60 contamination buried up to 40 cm in both sand and concrete. Furthermore, results from experiments show that the method is able to detect the depth of caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth recorded in the experiment is due to limitations in the detector and the low activity of the caesium-137 source used. Nevertheless, both results demonstrate the superior capability of the proposed method compared to existing methods. PMID:29419759

  6. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination.

    PubMed

    Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie

    2017-08-01

    After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements.

    PubMed

    Niimura, Nobuo; Kikuchi, Kenji; Tuyen, Ninh Duc; Komatsuzaki, Masakazu; Motohashi, Yoshinobu

    2015-01-01

    We conducted an elution experiment with contaminated soils using various aqueous reagent solutions and autoradiography measurements of contaminated bamboo shoots and shiitake mushrooms to determine the physical and chemical characteristics of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident. Based on our study results and data in the literature, we conclude that the active Cs emitted by the accident fell to the ground as granular non-ionic materials. Therefore, they were not adsorbed or trapped by minerals in the soil, but instead physically adhere to the rough surfaces of the soil mineral particles. Granular Cs* can be transferred among media, such as soils and plants. The physical properties and dynamic behavior of the granular Cs* is expected to be helpful in considering methods for decontamination of soil, litter, and other media. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Does Diffusion Sequester Heavy Metals in Old Contamination Soils?

    NASA Astrophysics Data System (ADS)

    Ma, J.; Jennings, A. A.

    2002-12-01

    Old soil contamination refers to soil contamination that has aged over a long period of time. For example, at some brownfields, the soil heavy metal contamination can be one hundred or more years old. When contamination is young, the heavy metals are bound relatively weakly to the soil. However, the speciation and/or mechanisms of association evolve with aging into much more stable forms. It also appears that the metals migrate deeper into the bulk soil matrix where they are less available to participate in surface-related phenomena. Previous research showed elevated heavy metal extraction result after the soil was pulverized, with all other experiment conditions remaining unchanged. This indicates the presence of sequestered heavy metal contamination within the large soil particles (aggregate). The mechanisms of sequestering are uncertain, but diffusion appears to be a major factor. There are two possible pathways of diffusion that can account for heavy metal sequestering: solid-state diffusion through the bulk aggregate or liquid-phase diffusion through micro-pores within the aggregate structure. The second diffusion mechanism can be coupled with sorption (or other surface-related phenomena) on the pore walls. The remediation of sequestered heavy metals is also impacted by diffusion. Grinding a soil significantly reduces its average particle size. This exposes more of its internal bulk volume to extraction and results in much shorter diffusion pathway for the sequestered heavy metals to be released. Evidence has illustrated that this both improves remediation efficiency and provides a method by which the degree of sequestering can be quantified. This paper will present the results of ongoing research that is developing methods to identify the mechanisms of, quantify the magnitude of and determine the relative importance of (i.e. risk analysis) heavy metals sequestered in old contamination soils.

  9. Some aspects of remediation of contaminated soils

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  10. [Decorporation agents for internal radioactive contamination].

    PubMed

    Ohmachi, Yasushi

    2015-01-01

    When radionuclides are accidentally ingested or inhaled, blood circulation or tissue/organ deposition of the radionuclides causes systemic or local radiation effects. In such cases, decorporation therapy is used to reduce the health risks due to their intake. Decorporation therapy includes reduction and/or inhibition of absorption from the gastrointestinal tract, isotopic dilution, and the use of diuretics, adsorbents, and chelating agents. For example, penicillamine is recommended as a chelating agent for copper contamination, and diethylene triamine pentaacetic acid is approved for the treatment of internal contamination with plutonium. During chelation therapy, the removal effect of the drugs should be monitored using a whole-body counter and/or bioassay. Some authorities, such as the National Council on Radiation Protection and Measurements and International Atomic Energy Agency, have reported recommended decorporation agents for each radionuclide. However, few drugs are approved by the US Food and Drug Administration, and many are off-label-use agents. Because many decontamination agents are drugs that have been available for a long time and have limited efficacy, the development of new, higher-efficacy drugs has been carried out mainly in the USA and France. In this article, in addition to an outline of decorporation agents for internal radioactive contamination, an outline of our research on decorporation agents for actinide (uranium and plutonium) contamination and for radio-cesium contamination is also presented.

  11. Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka

    2018-01-01

    The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.

  12. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan

    PubMed Central

    Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-01-01

    Objectives Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. Methods To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10–40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2–3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. Results A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m2 increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m2 compared to those <25 kBq/m2, RR=1.75, p value <0.01; model 3: levels above 63 kBq/m2 compared to those <11 kBq/m2, RR=1.45, p value <0.05). Conclusions Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual

  13. Quicklime-induced changes of soil properties: Implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration.

    PubMed

    Ma, Yan; Dong, Binbin; He, Xiaosong; Shi, Yi; Xu, Mingyue; He, Xuwen; Du, Xiaoming; Li, Fasheng

    2017-04-01

    Mechanical soil aeration is used for soil remediation at sites contaminated by volatile organic compounds. However, the effectiveness of the method is limited by low soil temperature, high soil moisture, and high soil viscosity. Combined with mechanical soil aeration, quicklime has a practical application value related to reinforcement remediation and to its action in the remediation of soil contaminated with volatile organic compounds. In this study, the target pollutant was trichloroethylene, which is a volatile chlorinated hydrocarbon pollutant commonly found in contaminated soils. A restoration experiment was carried out, using a set of mechanical soil-aeration simulation tests, by adding quicklime (mass ratios of 3, 10, and 20%) to the contaminated soil. The results clearly indicate that quicklime changed the physical properties of the soil, which affected the environmental behaviour of trichloroethylene in the soil. The addition of CaO increased soil temperature and reduced soil moisture to improve the mass transfer of trichloroethylene. In addition, it improved the macroporous cumulative pore volume and average pore size, which increased soil permeability. As soil pH increased, the clay mineral content in the soils decreased, the cation exchange capacity and the redox potential decreased, and the removal of trichloroethylene from the soil was enhanced to a certain extent. After the addition of quicklime, the functional group COO of soil organic matter could interact with calcium ions, which increased soil polarity and promoted the removal of trichloroethylene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microbial Degradation of Phenanthrene in Pristine and Contaminated Sandy Soils.

    PubMed

    Schwarz, Alexandra; Adetutu, Eric M; Juhasz, Albert L; Aburto-Medina, Arturo; Ball, Andrew S; Shahsavari, Esmaeil

    2018-05-01

    Phenanthrene mineralisation studies in both pristine and contaminated sandy soils were undertaken through detailed assessment of the activity and diversity of the microbial community. Stable isotope probing (SIP) was used to assess and identify active 13 C-labelled phenanthrene degraders. Baseline profiling indicated that there was little difference in fungal diversity but a significant difference in bacterial diversity dependent on contamination history. Identification of dominant fungal and bacterial species highlighted the presence of organisms capable of degrading various petroleum-based compounds together with other anthropogenic compounds, regardless of contamination history. Community response following a simulated contamination event ( 14 C-phenanthrene) showed that the microbial community in deep pristine and shallow contaminated soils adapted most to the presence of phenanthrene. The similarity in microbial community structure of well-adapted soils demonstrated that a highly adaptable fungal community in these soils enabled a rapid response to the introduction of a contaminant. Ten fungal and 15 bacterial species were identified as active degraders of phenanthrene. The fungal degraders were dominated by the phylum Basidiomycota including the genus Crypotococcus, Cladosporium and Tremellales. Bacterial degraders included the genera Alcanivorax, Marinobacter and Enterococcus. There was little synergy between dominant baseline microbes, predicted degraders and those that were determined to be actually degrading the contaminant. Overall, assessment of baseline microbial community in contaminated soils provides useful information; however, additional laboratory assessment of the microbial community's ability to degrade pollutants allows for better prediction of the bioremediation potential of a soil.

  15. Microscale Investigations of Soil Heterogeneity: Impacts on Zinc Retention and Uptake in Zinc-Contaminated Soils

    DOE PAGES

    Rosenfeld, Carla E.; Chaney, Rufus L.; Tappero, Ryan V.; ...

    2017-03-17

    Here, metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of Noccaea caerulescens (Ganges and Prayon). Soils were either moderately contaminated (500–800 mg Zn kg –1 via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg –1 via geogenic enrichment). Soils were separated using sodium polytungstate intomore » three fractions: light fraction (LF) (<1.6 g cm –3), medium fraction (MF) (1.6–2.8 g cm –3), and heavy fraction (HF) (>2.8 g cm –3). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.« less

  16. Measurement of helium isotopes in soil gas as an indicator of tritium groundwater contamination.

    PubMed

    Olsen, Khris B; Dresel, P Evan; Evans, John C; McMahon, William J; Poreda, Robert

    2006-05-01

    The focus of this study was to define the shape and extent of tritium groundwater contamination emanating from a legacy burial ground and to identify vadose zone sources of tritium using helium isotopes (3He and 4He) in soil gas. Helium isotopes were measured in soil-gas samples collected from 70 sampling points around the perimeter and downgradient of a burial ground that contains buried radioactive solid waste. The soil-gas samples were analyzed for helium isotopes using rare gas mass spectrometry. 3He/4He ratios, reported as normalized to the air ratio (RA), were used to locate the tritium groundwater plume emanating from the burial ground. The 3He (excess) suggested that the general location of the tritium source is within the burial ground. This study clearly demonstrated the efficacy of the 3He method for application to similar sites elsewhere within the DOE weapons complex.

  17. Electromigration of Contaminated Soil by Electro-Bioremediation Technique

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Shaylinda, M. Z. N.; Azim, M. A. M.

    2016-07-01

    Soil contamination with heavy metals poses major environmental and human health problems. This problem needs an efficient method and affordable technological solution such as electro-bioremediation technique. The electro-bioremediation technique used in this study is the combination of bacteria and electrokinetic process. The aim of this study is to investigate the effectiveness of Pseudomonas putida bacteria as a biodegradation agent to remediate contaminated soil. 5 kg of kaolin soil was spiked with 5 g of zinc oxide. During this process, the anode reservoir was filled with Pseudomonas putida while the cathode was filled with distilled water for 5 days at 50 V of electrical gradient. The X-Ray Fluorescent (XRF) test indicated that there was a significant reduction of zinc concentration for the soil near the anode with 89% percentage removal. The bacteria count is high near the anode which is 1.3x107 cfu/gww whereas the bacteria count at the middle and near the cathode was 5.0x106 cfu/gww and 8.0x106 cfu/gww respectively. The migration of ions to the opposite charge of electrodes during the electrokinetic process resulted from the reduction of zinc. The results obtained proved that the electro-bioremediation reduced the level of contaminants in the soil sample. Thus, the electro-bioremediation technique has the potential to be used in the treatment of contaminated soil.

  18. The Radioactive Contamination of Food Following Nuclear Attack

    PubMed Central

    Massey, E. E.

    1967-01-01

    The relative radiation hazards from early and delayed fallout following a nuclear attack have been reviewed. It is indicated that the hazard to life from whole-body gamma irradiation from early fallout far outweighs the hazard from radioactive contamination of food. Nevertheless, because of the possible effects of iodine-131, the consumption by infants of fresh milk from animals which have ingested contaminated fodder should be avoided if possible during the first few weeks after attack. During the same period, water from covered supplies should be used in preference to that from open reservoirs. It is more important, however, to alleviate hunger and thirst in both man and animal than to prevent the temporary ingestion of food which may be contaminated by fallout. PMID:6071130

  19. Remediation techniques for heavy metal-contaminated soils: Principles and applicability.

    PubMed

    Liu, Lianwen; Li, Wei; Song, Weiping; Guo, Mingxin

    2018-08-15

    Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton -1 soil (or $1500m -3 soil or $100m -2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability. Copyright © 2018 Elsevier B.V. All rights

  20. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  1. Complex conductivity of oil-contaminated clayey soils

    NASA Astrophysics Data System (ADS)

    Deng, Yaping; Shi, Xiaoqing; Revil, André; Wu, Jichun; Ghorbani, A.

    2018-06-01

    Spectral induced polarization (SIP) is considered as a promising tool in environmental investigations. However, few works have done regarding the electrical signature of oil contamination of clayey soils upon induced polarization. Laboratory column experiments plus one sandbox experiment are conducted in this study to investigate the performances of the SIP method in oil-contaminated soils. First, a total of 12 soils are investigated to reveal the influences of water and soil properties on the saturation dependence of the complex conductivity below 100 Hz. Results show that the magnitude of the complex conductivity consistently decreases with decreasing water saturation for all soils samples. The saturation n and quadrature conductivity p exponents tend to increase slightly with increasing water salinity when using a linear conductivity model. The saturation exponent increases marginally with the cation exchange capacity (CEC) and the specific surface area (Ssp) while the quadrature conductivity exponent exhibits a relatively stronger dependence on both CEC and Ssp. For the low CEC soil samples (normally ≤10 meq/100 g), the quadrature conductivity exponent p correlates well with the saturation exponent n using the relationship p = n-1. SIP method is further applied in a sandbox experiment to estimate the saturation distribution and total volume of the oil. Results demonstrate that the SIP method has a great potential for mapping the organic contaminant plume and quantifying the oil volume.

  2. Plant-based plume-scale mapping of tritium contamination in desert soils

    USGS Publications Warehouse

    Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.

    2005-01-01

    Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.

  3. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  4. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation.

    PubMed

    Lopes Leal, Patrícia; Varón-López, Maryeimy; Gonçalves de Oliveira Prado, Isabelle; Valentim Dos Santos, Jessé; Fonsêca Sousa Soares, Cláudio Roberto; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared with soils from contaminated non-rehabilitated area and non-contaminated adjacent soils. Arbuscular mycorrhizal fungi communities attributes were assessed by direct field sampling, trap culture technique, and by glomalin contents estimate. Arbuscular mycorrhizal fungi was markedly favored by rehabilitation, and a total of 15 arbuscular mycorrhizal fungi morphotypes were detected in the studied area. Species from the Glomus and Acaulospora genera were the most common mycorrhizal fungi. Number of spores was increased by as much as 300-fold, and species richness almost doubled in areas rehabilitated by planting Eucalyptus in rows and sowing B. decumbens in inter-rows. Contents of heavy metals in the soil were negatively correlated with both species richness and glomalin contents. Introduction of B. decumbens together with Eucalyptus causes enrichment of arbuscular mycorrhizal fungi species and a more balanced community of arbuscular mycorrhizal fungi spores in contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  5. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, Eric R.; Mattson, Earl D.

    1995-01-01

    There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

  6. Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils

    DOEpatents

    Lindgren, E.R.; Mattson, E.D.

    1995-07-25

    An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

  7. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    PubMed

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and <1 months). The enzymatic activity (lipase and dehydrogenase) as well as microbiological and mineralisation profiles were measured in contaminated soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  8. Identifying root exudates in field contaminated soil systems

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Martinez, C. E.

    2012-12-01

    Carbon (C) compounds exuded from plant roots comprise a significant and reactive fraction of belowground C pools. These exudates substantially alter the soil directly surrounding plant roots and play a vital role in the global C cycle, soil ecology, and ecosystem mobility of both nutrients and contaminants. In soils, the solubility and bioavailability of metals such as iron, zinc, and cadmium are intricately linked to the quantity and chemical characteristics of the C compounds allocated to the soil by plants. Cadmium (Cd), a toxic heavy metal, forms stronger bonds with reduced S- and N-containing compounds than with carboxylic acids, which may influence exudate composition in hyperaccumulator and tolerant plants grown in Cd contaminated soils. We hypothesize that hyperaccumulator plants will exude a larger quantity of aromatic N and chelating di- and tri-carboxylic acid molecules, while plants that exclude heavy metals from uptake will exude a larger proportion of reduced S containing molecules. This study examines how a variety of techniques can measure the low concentrations of complex organic mixtures exuded by hyperaccumulator and non-hyperaccumulator plants grown in Cd-contaminated soils. Two congeneric plants, Thlaspi caerulescens (Ganges ecotype), and T. caerulescens (Prayon ecotype) were grown in 0.5 kg pots filled with Cd-contaminated field soils from Chicago, IL. Field soils were contaminated as a result of the application of contaminated biosolids in the 1960's and 1970's. Pots were fitted for rhizon soil moisture samplers, micro-lysimeters developed for in situ collection of small volumes in unsaturated soils, prior to planting. Plants were grown for 8 weeks before exudate collection. After the 8 weeks of growth, a pulse-chase isotope tracer method using the C stable isotope, 13C, was employed to differentiate plant-derived compounds from background soil and microbial-derived compounds. Plants were placed in a CO2 impermeable chamber, and the soil

  9. Estimated association between dwelling soil contamination and internal radiation contamination levels after the 2011 Fukushima Daiichi nuclear accident in Japan.

    PubMed

    Tsubokura, Masaharu; Nomura, Shuhei; Sakaihara, Kikugoro; Kato, Shigeaki; Leppold, Claire; Furutani, Tomoyuki; Morita, Tomohiro; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-06-29

    Measurement of soil contamination levels has been considered a feasible method for dose estimation of internal radiation exposure following the Chernobyl disaster by means of aggregate transfer factors; however, it is still unclear whether the estimation of internal contamination based on soil contamination levels is universally valid or incident specific. To address this issue, we evaluated relationships between in vivo and soil cesium-137 (Cs-137) contamination using data on internal contamination levels among Minamisoma (10-40 km north from the Fukushima Daiichi nuclear power plant), Fukushima residents 2-3 years following the disaster, and constructed three models for statistical analysis based on continuous and categorical (equal intervals and quantiles) soil contamination levels. A total of 7987 people with a mean age of 55.4 years underwent screening of in vivo Cs-137 whole-body counting. A statistically significant association was noted between internal and continuous Cs-137 soil contamination levels (model 1, p value <0.001), although the association was slight (relative risk (RR): 1.03 per 10 kBq/m(2) increase in soil contamination). Analysis of categorical soil contamination levels showed statistical (but not clinical) significance only in relatively higher soil contamination levels (model 2: Cs-137 levels above 100 kBq/m(2) compared to those <25 kBq/m(2), RR=1.75, p value <0.01; model 3: levels above 63 kBq/m(2) compared to those <11 kBq/m(2), RR=1.45, p value <0.05). Low levels of internal and soil contamination were not associated, and only loose/small associations were observed in areas with slightly higher levels of soil contamination in Fukushima, representing a clear difference from the strong associations found in post-disaster Chernobyl. These results indicate that soil contamination levels generally do not contribute to the internal contamination of residents in Fukushima; thus, individual measurements are essential for the

  10. Remediation of Cd-contaminated soil around metal sulfide mines

    NASA Astrophysics Data System (ADS)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan

    2017-04-01

    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  11. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  12. [Strengthening Effects of Sodium Salts on Washing Kerosene Contaminated Soil with Surfactants].

    PubMed

    Huang, Zhao-lu; Chen, Quan-yuan; Zhou, Juan; Xie, Mo-han

    2015-05-01

    The impact of sodium salt on kerosene contaminated soil washing with surfactants was investigated. The results indicated that sodium silicate greatly enhanced the washing efficiency of SDS. Sodium tartrate can largely enhance the washing efficiency of SDBS and Brij35. Sodium salts can enhance the washing efficiency on kerosene contaminated with TX-100. No significant differences were observed between different sodium salts. Sodium salt of humic acid and sodium silicate had similar enhancement on kerosene contaminated soil washing with saponin. Sodium humate can be a better choice since its application can also improve soil quality. The enhancement of sodium silicate on kerosene contaminated soil washing with Tw-80 increased with the increase of Tw-80 dosage. However, the impact of sodium chloride and sodium tartrate was opposite to sodium silicate. Sodium salts can reduce surface tension and critical micelle concentration of ionic surfactants to enhance the washing. Sodium salts can also reduce re-adsorption of oil to soil with nonionic surfactants to enhance the washing. Kerosene contamination can increase the contact angle of soil, which indicated the increase of hydrophilicity of soil. Washing with surfactants can reduce the hydrophilicitiy of soil according to contact angle measurement, which indicated that kerosene contaminated soil remediation with surfactant can also benefit nutrient and water transportation in the contaminated soil.

  13. Soil contamination by petroleum products. Southern Algerian case

    NASA Astrophysics Data System (ADS)

    Belabbas, Amina; Boutoutaou, Djamel; Segaï, Sofiane; Segni, Ladjel

    2016-07-01

    Contamination of soil by petroleum products is a current problem in several countries in the world. In Algeria, this negative phenomenon is highly remarked in Saharan region. Numerous studies at the University of Ouargla that we will review in this paper, have tried to find an effective solution to eliminate the hydrocarbons from the soil by the technique of "biodegradation" which is a natural process based on microorganisms such as Bacillus megaterium and Pseudomonas aeruginosa. Presence of aboriginal strain Bacillus megaterium in the soil samples with different ages of contamination has shown a strong degradation of pollutants. This strain chosen for its short time of generation which is performing as seen the best yields of elimination of hydrocarbons assessed at 98 % biostimule by biosurfactant, also 98% on a sample wich bioaugmente by urea, and 86 % of the sample which biostimule by nutrient solution. The rate of biodegradation of the contaminated soil by crude oil using the strain Pseudomonas aeruginosa is higher in the presence of biosurfactant 53 % that in his absence 35 %. Another elimination technique wich is washing the contaminated soil's sample by centrifugation in the presence of biosurfactant where The rate of hydrocarbons mobilized after washing soil by centrifugation is of 50 % and 76 % but without centrifugation it was of 46% to 79%. Those processes have great capacity in the remobilization of hydrocarbons and acceleration of their biodegradation; thus, they deserve to be further developed in order to prevent environmental degradation in the region of Ouargla.

  14. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  15. NATURAL RADIOACTIVITY OF ZONAL SOILS OF THE EUROPEAN PART OF THE SOVIET UNION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yastrebov, M.T.

    1959-01-01

    Natural radioactivity of zonal soils and of their soil forming rocks up to 220-240 cm in depth as well as of the suprasoil air at a 20 cm altitude from the soil surface has been studled from 29.VM to 13.X 1957 in the natural zones of the European part of the USSR located along the meridian from the Arkhangelsk taiga down to the southern coast of Crimea. The measurements were carried out by mica counters (BFL-T-80 and Si-2b), by an aluminum (AS-2) and glass copper cathode (MS-4) which registers alpha , BETA -soft, BETA -hard and gamma - radiation, respectivelymore » with the aid of a field radiometric device PK-10b and a spherical and hemispherical 9-cm lead shield. It was found that natural radioactivity of zonal soils increased in the following order: highly podzol on carbonate moraine (Arkhangelsk region), sod-highly podzol soil on loess-like loam (Vologodsk region), sodmedium podzol soil on loess-like loam (Moscow region), light-gray forest soil on loess loam (Tula region), powerful leached chernozem on loess-like loam (Kursk region), dark chestnut on carbonate loess-like loam (Kherson region) brown forest on slate schists (Crimea region). A 5-mm superficial layer of the accumulative A: horizon invariably showed maximal natural radioactivity in all kinds of soil surpassing the natural radioactivity value of the lower A/sub 1/ horizon and of all soil horizons and rocks by 2.2-3.5 times. In the podzol A/sub 2/ horizons a decrease of natural radioactivity was mostiy noted as compared with the natural radioactivity value of the accumulative Ai horizon. In the alluvial horizon (B/sub 1/ and B/sub 2/) natural radioactivity increases by 12 to 33% when compared with natural radioactivity of the A: horizon. Most of the soilforming rocks tested showed a lesser natural radioactivity (by 33 to 50%) than natural radioactivity of the accumulative (A/ sub 1/) and alluvial (B/sub 1/ and B/sub 2/) soil horizons which have developed on these rocks. (auth)« less

  16. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  17. Natural and man-made radioactivity: Chernobyl soils.

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Flowers, Alan

    2014-05-01

    In 1986 a reactor at the Chernobyl Nuclear Plant suffered a large explosion. The result had wide-ranging impacts. 31 severely exposed emergency workers died from acute radiation syndrome and 19 more later died from different causes. The perhaps controversial prediction by some authors is that around 4,000 will eventually die as a result of the increased cancer risk. A 19-mile restriction zone exists around the former reactor, but during the past 25 years radiation levels have fallen and it is now possible to take part in conducted tours of the deserted city of Pripyat, and the Chernobyl reactor site. Soil levels, however, remain highly radioactive, particularly in the restricted area. Kingston University holds:- • Soil profile sets from 3 locations in Belarus, with repeats at same location 1996 and 2000. • Lake sediment core samples. • Soil profiles at forestry sites. • Surface samples in a region suspected to have actinide content at 200km from Chernobyl. In addition to the above the impact of naturally occurring radon on human health around Chernobyl should not be ignored. About 23 per cent of homes in Ukraine are estimated to have radon levels above 100 Bq m-3, whilst concentrations of 10,000 Bq m-3 or more are known to exist in public water supplies. Some researchers have also suggested that mean annual doses of irradiation of the population caused by radon and it's progeny in air in buildings exceeds the doses received now by inhabitants of settlements located in the territories polluted by Chernobyl-derived nuclides in the Mogilev and Gomel regions in Belarus. This project incorporates a temporal comparison of transport results in undisturbed soils variously over a number of years, demonstrating relative measurements using both the original and new samples. This project will also focus on lake sediments from Southern Belarus and is a 'work in progress'. However, what we can say at this stage is that it is notable that the long lived isotopes of Cs-137

  18. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.

    PubMed

    Shuryak, Igor

    2018-06-05

    Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 10 7 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 10 4 -10 5  μGy/h for phytoplankton, and 10 3 -10 4  μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information

  19. Assessing nickel bioavailability in smelter-contaminated soils.

    PubMed

    Everhart, Jeffrey L; McNear, David; Peltier, Edward; van der Lelie, Daniel; Chaney, Rufus L; Sparks, Donald L

    2006-08-31

    Metal contaminants in soil environments derived from industrial pollution have clearly established the need for research on bioavailability and potential health risks. Much research has been conducted on metal sorption in soils. However, there is still a need to better understand the availability of metal contaminants to plants and microbes. Such information will enhance both human health and decisions about remediation efforts. In this study, Welland Loam (Typic epiaquoll) and Quarry Muck (Terric haplohemist) Ni contaminated soils from Port Colborne (Canada) which had been treated and untreated with limestone, were employed in greenhouse and bioavailability studies. These soils varied in pH from 5.1 to 7.5, in organic matter content from 6% to 72%, and in total Ni from 63 to 22,000 mg/kg. Oat (Avena sativa), a nonhyperaccumulator, and Alyssum murale, a hyperaccumulating plant species, were grown on these soils in greenhouse studies for 45 and 120 days, respectively, to estimate Ni accumulation. A Ni specific bacterial biosensor was also used to determine Ni bioavailability, and the results were compared to those from the greenhouse studies and more conventional, indirect chemical extraction techniques (employing MgCl2 and a Sr(NO3)2). Results from the greenhouse, chemical extraction, and biosensor studies suggested that as the pH of the soil was increased with liming, Ni bioavailability decreased. However, the phytoextraction capability of A. murale increased as soil pH increased, which was not the case for A. sativa. Furthermore, the Ni specific bacterial biosensor was successful in predicting Ni bioavailability in the soils and suggested that higher Ni bioavailabilities occur in the soils at pH values of 5.1 and 6. The combination of plant growth, chemical extraction, and bacterial biosensor approaches are recommended for assessing bioavailability of toxic metals.

  20. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  1. Soil Contamination from PCB-Containing Buildings

    PubMed Central

    Herrick, Robert F.; Lefkowitz, Daniel J.; Weymouth, George A.

    2007-01-01

    Background Polychlorinated biphenyls (PCBs) in construction materials, such as caulking used around windows and expansion joints, may constitute a source of PCB contamination in the building interiors and in surrounding soil. Several studies of soil contamination have been conducted around buildings where the caulking has been removed by grinding or scraping. The PCBs in soil may have been generated in the process of removing the caulking, but natural weathering and deterioration of the caulking may have also been a source. Objectives The objectives of this study were to measure PCB levels in soil surrounding buildings where PCB-containing caulk was still in place, and to evaluate the mobility of the PCBs from caulking using the Toxicity Characteristic Leaching Procedure (U.S. Environmental Protection Agency Method 1311). Discussion We found soil PCB contamination ranging from 3.3 to 34 mg/kg around buildings with undisturbed caulking that contained 10,000–36,200 mg/kg PCBs. The results of the Toxicity Characteristic Leaching Procedure (leachate concentrations of 76–288 mg PCB/L) suggest that PCBs in caulking can be mobilized, apparently as complexes with dissolved organic matter that also leach off the caulking material. Conclusions and Recommendations Although these new findings are based on a small sample size, they demonstrate the need for a national survey of PCBs in building materials and in soil surrounding these buildings. Because the buildings constructed during the time the PCB caulking was in use (1960s and 1970s) include schools, hospitals, and apartment buildings, the potential for exposure of children is a particular concern. It is necessary to reconsider the practice of disposing of old PCB caulking removed during building renovations in conventional landfills, given the apparent mobility of PCBs from the caulking material. Disposal of some caulking material in nonhazardous landfills might lead to high PCB levels in landfill leachate. PMID

  2. Assessing the bioavailability and risk from metal contaminated soils and dusts#

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human and ecological risk assessment and often is the "risk-driver" for metal contaminated soil. Site-specific soil physical and chemical characteristics, as well as biological factors, determine the bioavailabilit...

  3. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba.

    PubMed

    Ma, Jun; Shen, Jinglong; Liu, Qingxing; Fang, Fang; Cai, Hongsheng; Guo, Changhong

    2014-05-01

    Pollution caused by petroleum is one of the most serious problems worldwide. To better understand the toxic effects of petroleum-contaminated soil on the microflora and phytocommunity, we conducted a comprehensive field study on toxic effects of petroleum contaminated soil collected from the city of Daqing, an oil producing region of China. Urease, protease, invertase, and dehydrogenase activity were significantly reduced in microflora exposed to contaminated soils compared to the controls, whereas polyphenol oxidase activity was significantly increased (P < 0.05). Soil pH, electrical conductivity, and organic matter content were correlated with total petroleum hydrocarbons (TPHs) and a correlation (P < 0.01) existed between the C/N ratio and TPHs. Protease, invertase and catalase were correlated with TPHs. The Vicia faba micronucleus (MN) test, chromosome aberrant (CA) analyses, and the mitotic index (MI) were used to detect genotoxicity of water extracts of the soil. Petroleum-contaminated samples indicated serious genotoxicity to plants, including decreased index level of MI, increased frequency of MN and CA. The combination of enzyme activities and genotoxicity test via Vicia faba can be used as an important indicator for assessing the impact of TPH on soil ecosystem.

  5. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    XU, X. George; Zhang, X.C.

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less

  6. NNSS Soils Monitoring: Plutonium Valley (CAU366) FY2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George

    2013-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events. Field measurements at the T-4 Atmospheric Test Site (CAU 370) suggest that radionuclide-contaminated soils may have migrated along a shallow ephemeral drainage that traverses the site (NNSA/NSO, 2009). (It is not entirely clear how contaminated soils got into their present location at the T-4more » Site, but flow to the channel has been redirected and the contamination does not appear to be migrating at present.) Aerial surveys in selected portions of the Nevada National Security Site (NNSS) also suggest that radionuclide-contaminated soils may be migrating along ephemeral channels in Areas 3, 8, 11, 18, and 25 (Colton, 1999). In Area 11, several low-level airborne surveys of the Plutonium Valley Dispersion Sites (CAU 366) show plumes of Americium 241 (Am-241) extending along ephemeral channels (Figure 1, marker numbers 5 and 6) below Corrective Action Site (CAS) 11-23-03 (marker number 3) and CAS 11 23-04 (marker number 4) (Colton, 1999). Plutonium Valley in Area 11 of the NNSS was selected for the study because of the aerial survey evidence suggesting downstream transport of radionuclide-contaminated soil. The aerial survey (Figure 1) shows a well defined finger of elevated radioactivity (marker number 5) extending to the southwest from the southernmost detonation site (marker number 4). This finger of contamination overlies a drainage channel mapped on the topographic base map used for presentation of the survey data suggesting surface runoff as a likely cause of the contaminated area. Additionally, instrumenting sites strongly suspected of

  7. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.

    PubMed

    Ouyan, Ying; Cho, Jong Soo; Mansell, Robert S

    2002-01-01

    Contamination of groundwater resources by non-aqueous phase liquids (NAPLs) has become an issue of increasing environmental concern. This study investigated the formation and flow of microemulsions during surfactant flushing of NAPL-contaminated soil using the finite difference model UTCHEM, which was verified with our laboratory experimental data. Simulation results showed that surfactant flushing of NAPLs (i.e., trichloroethylene and tetrachloroethylene) from the contaminated soils was an emulsion-driven process. Formation of NAPL-in-water microemulsions facilitated the removal of NAPLs from contaminated soils. Changes in soil saturation pressure were used to monitor the mobilization and entrapment of NAPLs during surface flushing process. In general, more NAPLs were clogged in soil pores when the soil saturation pressure increased. Effects of aquifer salinity on the formation and flow of NAPL-in-water microemulsions were significant. This study suggests that the formation and flow of NAPL-in-water microemulsions through aquifer systems are complex physical-chemical phenomena that are critical to effective surfactant flushing of contaminated soils.

  8. Spatial distribution of soil contamination by 137Cs and 239,240Pu in the village of Dolon near the Semipalatinsk nuclear test site: new information on traces of the radioactive plume from the 29 August 1949 nuclear test.

    PubMed

    Yamamoto, M; Tomita, J; Sakaguchi, A; Imanaka, T; Fukutani, S; Endo, S; Tanaka, K; Hoshi, M; Gusev, B I; Apsalikov, A N

    2008-04-01

    The village of Dolon located about 60 km northeast from the border of the Semipalatinsk Nuclear Test Site in Kazakhstan is one of the most affected inhabited settlements as a result of nuclear tests by the former USSR. Radioactive contamination in Dolon was mainly caused by the first USSR nuclear test on 29 August 1949. As part of the efforts to reconstruct the radiation dose in Dolon, Cs and Pu in soil samples collected from 26 locations in the vicinity of and within the village were measured to determine the width and position of the center-axis of the radioactive plume that passed over the village from the 29 August 1949 nuclear test. Measured soil inventories of Cs and Pu were plotted as a function of the distance from the supposed center-axis of the plume. A clear shape similar to a Gaussian function was observed in their spatial distributions with each maximum around a center-axis. It was suggested that the plume width that contaminated Dolon was at most 10 km and the real center-axis of the radioactive plume passed 0.7-0.9 km north of the supposed centerline. A peak-like shape with the maximum near the center-axis was also observed in the spatial distribution of the Pu/Cs activity ratio, which may reflect the fractionation effect between Pu and Cs during the deposition process. These results support the recently reported results. The data obtained here will provide useful information on the efforts to estimate radiation dose in Dolon as reliably as possible. Health Phys. 94(4):328-337; 2008.

  9. Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas.

    PubMed

    Agamuthu, P; Abioye, O P; Aziz, A Abdul

    2010-07-15

    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil. 2010 Elsevier B.V. All rights reserved.

  10. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous...

  11. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous...

  12. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous...

  13. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous...

  14. 40 CFR 268.49 - Alternative LDR treatment standards for contaminated soil.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for contaminated soil. 268.49 Section 268.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... treatment standards for contaminated soil. (a) Applicability. You must comply with LDRs prior to placing soil that exhibits a characteristic of hazardous waste, or exhibited a characteristic of hazardous...

  15. Distribution and Source Identification of Pb Contamination in industrial soil

    NASA Astrophysics Data System (ADS)

    Ko, M. S.

    2017-12-01

    INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0­-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb

  16. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A; Miller, Julianne J; McCurdy, Greg

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closuremore » design and post-closure monitoring program.« less

  17. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.

    PubMed

    Barrutia, O; Garbisu, C; Epelde, L; Sampedro, M C; Goicolea, M A; Becerril, J M

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg(-1) DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m(-2) s(-1)) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F(v)/F(m)), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the

  18. Phytotreatment of soil contaminated with used lubricating oil using Hibiscus cannabinus.

    PubMed

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-04-01

    Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.

  19. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays.

    PubMed

    Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed

    2013-04-01

    The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.

  20. Contaminant and other elements in soil (CCQM-K127)

    NASA Astrophysics Data System (ADS)

    Rocio Arvizu Torres, M.; Manzano, J. Velina Lara; Valle Moya, Edith; Horvat, Milena; Jaćimović, Radojko; Zuliani, Tea; Vreča, Polona; Acosta, Osvaldo; Bennet, John; Snell, James; Almeida, Marcelo D.; de Sena, Rodrigo C.; Dutra, Emily S.; Yang, Lu; Li, Haifeng

    2017-01-01

    Non-contaminated soils contain trace and major elements at levels representing geochemical background of the region. The main sources of elements as contaminants/pollutants in soils are mining and smelting activities, fossil fuel combustion, agricultural practices, industrial activities and waste disposal. Contaminated/polluted sites are of great concern and represent serious environmental, health and economic problems. Characterization and identification of contaminated land is the first step in risk assessment and remediation activities. It is well known that soil is a complex matrix with huge variation locally and worldwide. According to the IAWG's five year plan, it is recommended to have a key comparison under the measurement service category of soils and sediments for the year 2015. Currently 13 NMI has claimed calibration and measurement capabilities (CMCs) in category 13 (sediments, soils, ores, and particulates): 29 CMCs in soil and 96 CMCs in sediments. In this regard this is a follow-up comparison in the category 13; wherein three key comparisons have been carried out during the years 2000 (CCQM-K13), 2003 (CCQM-K28) and 2004 (CCQM-K44). Since it is important to update the capabilities of NMIs in this category. CENAM and JSI proposed a key comparison in this category and a pilot study in parallel. The proposed study was agreed by IAWG members, where two soils samples were used in both CCQM-K127 representing a non-contaminated soil with low contents of elements (arsenic, cadmium, iron, lead and manganese), and a contaminated soil with much higher content of selected elements (arsenic, cadmium, iron and lead). This broadens the scope and a degree of complexity of earlier measurements in this field. National metrology institutes (NMIs)/designate institutes (DIs) should, therefore, demonstrate their measurement capabilities of trace and major elements in a wide concentration ranges, representing background/reference sites as well as highly contaminated soils

  1. Bioremediation of petroleum-contaminated soil using aged refuse from landfills.

    PubMed

    Liu, Qingmei; Li, Qibin; Wang, Ning; Liu, Dan; Zan, Li; Chang, Le; Gou, Xuemei; Wang, Peijin

    2018-05-10

    This study explored the effects and mechanisms of petroleum-contaminated soil bioremediation using aged refuse (AR) from landfills. Three treatments of petroleum-contaminated soil (47.28 mg·g -1 ) amended with AR, sterilized aged refuse (SAR) and petroleum-contaminated soil only (as a control) were tested. During 98 days of incubation, changes in soil physicochemical properties, residual total petroleum hydrocarbon (TPH), biodegradation kinetics, enzyme activities and the microbial community were investigated. The results demonstrated that AR was an effective soil conditioner and biostimulation agent that could comprehensively improve the quality of petroleum-contaminated soil and promote microbial growth, with an 74.64% TPH removal rate, 22.36 day half-life for SAR treatment, compared with the control (half-life: 138.63 days; TPH removal rate: 22.40%). In addition, the petroleum-degrading bacteria isolation results demonstrated that AR was also a petroleum-degrading microbial agent containing abundant microorganisms. AR addition significantly improved both the biotic and abiotic conditions of petroleum-contaminated soil without other additives. The cooperation of conditioner addition, biostimulation and bioaugmentation in AR treatment led to better bioremediation effects (half-life: 13.86 days; TPH removal rate: 89.83%). In conclusion, AR amendment is a cost-effective, easy-to-use method facilitating in situ large-scale application while simultaneously recycling huge amounts of AR from landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.

    PubMed

    Peng, Weihua; Li, Xiaomin; Song, Jingxiang; Jiang, Wei; Liu, Yingying; Fan, Wenhong

    2018-04-01

    Bioremediation using microorganisms is a promising technique to remediate soil contaminated with heavy metals. In this study, Rhodobacter sphaeroides was used to bioremediate soils contaminated with cadmium (Cd) and zinc (Zn). The study found that the treatment reduced the overall bioavailable fractions (e.g., exchangeable and carbonate bound phases) of Cd and Zn. More stable fractions (e.g., Fe-Mn oxide, organic bound, and residual phases (only for Zn)) increased after bioremediation. A wheat seedling experiment revealed that the phytoavailability of Cd was reduced after bioremediation using R. sphaeroides. After bioremediation, the exchangeable phases of Cd and Zn in soil were reduced by as much as 30.7% and 100.0%, respectively; the Cd levels in wheat leaf and root were reduced by as much as 62.3% and 47.2%, respectively. However, when the soils were contaminated with very high levels of Cd and Zn (Cd 54.97-65.33 mg kg -1 ; Zn 813.4-964.8 mg kg -1 ), bioremediation effects were not clear. The study also found that R. sphaeroides bioremediation in soil can enhance the Zn/Cd ratio in the harvested wheat leaf and root overall. This indicates potentially favorable application in agronomic practice and biofortification. Although remediation efficiency in highly contaminated soil was not significant, R. sphaeroides may be potentially and practically applied to the bioremediation of soils co-contaminated by Cd and Zn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. [Migration of industrial radionuclides in soils and benthal deposits at the coastal margins of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management (SevRAO) and its influence on the possible contamination of the sea offshore waters].

    PubMed

    Filonova, A A; Seregin, V A

    2014-01-01

    For obtaining the integral information about the current radiation situation in the sea offshore waters of the temporary waste storage facility (TWSF) of the Northwest Center for Radioactive Waste Management "SevRAO" in the Andreeva Bay and in the settle Gremikha with a purpose of a comprehensive assessment of its condition there was performed radiation-ecological monitoring of the adjacent sea offshore waters of the TWSF. It was shown that in the territory of industrial sites of the TWSF as a result of industrial activity there are localized areas of pollution by man-made radionuclides. As a result of leaching of radionuclides by tidal stream, snowmelt and rainwater radioactive contamination extends beyond the territory of the sanitary protection zone and to the coastal sea offshore waters. To confirm the coastal pollution of the sea offshore waters the levels of mobility of 90Sr and 137Cs in environmental chains and bond strength of them with the soil and benthal deposits were clarified by determining with the method of detection of the forms of the presence of radionuclides in these media. There was established a high mobility of 137Cs and 90Sr in soils and benthal deposits (desorption coefficient (Kd) of 137Cs and 90Sr (in soils - 0.56 and 0.98), in the sediments - 0.82). The migration of radionuclides in environmental chains can lead to the contamination of the environment, including the sea offshore waters.

  4. Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan.

    NASA Astrophysics Data System (ADS)

    Somma, R.; De Vivo, B.; Cicchella, D.

    2001-05-01

    The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data

  5. Soil contamination with emissions of non-ferrous metallurgical plants

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.; Prokopovich, E. V.; Savichev, A. T.

    2011-02-01

    The upper soil horizons are strongly contaminated in the area influenced by the Mid-Urals copper smelter. In the technogenic desert and impact zones, the contents of a number of elements (Cu, Zn, As, Pb, P, and S) by many times exceed their clarke values and the maximum permissible concentrations (or provisional permissible concentrations). The degree of technogeneity (Tg) for these elements is very high in these zones. In the far buffer zone, Tg is about zero for many elements and increases up to Tg = 27-42% for four heavy elements (Cu, Zn, Pb, and As) and up to 81-98% for P and S. The buffer capacity of the humus horizon depends on the soil's location within the technogeochemical anomaly and also on the particular pollutant. In the impact zone, it is equal to 70-77% for lead and arsenic, although other technogenic elements (Zn, Cr, S, and P) are poorly retained and readily migrate into the deeper horizons (the buffer capacity is equal to 14-25%). Nearly all the heavy metals enter the soil in the form of sulfides. The soils in the area affected by the Noril'sk mining and smelting metallurgical enterprise are subdivided into two groups according to the degree of their contamination, i.e., the soils within Noril'sk proper and the soils in its suburbs to a distance of 4-15 km. The strongest soil contamination is recorded in the city: the clarke values are exceeded by 287, 78, 16, 4.1, and 3.5 times for Cu, Ni, Cr, Fe, and S, respectively. The major pollutants enter the soil from the ferruginous slag. The soil's contamination degree is lower in the suburbs, where heavy metal sulfides reach the soils with the aerial emission from the enterprise.

  6. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.

    PubMed

    Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafał; Zielonka, Urszula; Małkowski, Eugeniusz; Gray, Laymon

    2008-02-01

    Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.

  7. Development of Canavalia ensiformis in soil contaminated with diesel oil.

    PubMed

    Balliana, A G; Moura, B B; Inckot, R C; Bona, C

    2017-01-01

    Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator.

  8. Quantifying Diffuse Contamination: Method and Application to Pb in Soil.

    PubMed

    Fabian, Karl; Reimann, Clemens; de Caritat, Patrice

    2017-06-20

    A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be <0.5 mg/kg for Australia, 1-3 mg/kg for Europe, and 1-2 mg/kg, or at least <5 mg/kg, for the U.S.A. The analysis presented here also allows recognition of local contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.

  9. Analysis of predictors related to soil contamination in recreational areas of Romania.

    PubMed

    Gagiu, C; Pica, E M; Querol, X; Botezan, C S

    2015-12-01

    Soil contamination in recreational areas can considerably affect children's health, as they are the segment of the population most sensitive to anthropogenic contamination. Soil contamination in recreational areas is influenced by a number of factors such as type and age of the recreational area, nearby traffic intensity, proximity to industrial areas, presence of vegetation, level of usage, treated wood structures, and the extent of maintenance operations carried out in the area. These can most often be observed during a simple site visit. The purpose of the present research is to analyze to which extent the presence of these factors can trigger an alarm signal, highlighting soil contamination in urban recreational areas. In this regard, soil contamination was scaled using the integrated pollution index applied on nine distinctive contaminants (As, Cu, Cd, Zn, Pb, Hg, Co, Ni, Mg) identified using inductively coupled plasma mass spectrometry (ICP-MS). Multiple linear regression analysis was performed in order to assess predictors of soil contamination. The research was carried out in a number of 88 recreational areas, parks, and playgrounds from 19 Romanian cities, revealing the fact that proximity to industrial areas and intensive traffic had statistically significant effects on soil contamination. Furthermore, it was observed that in 78 out of the 88 analyzed locations, the concentrations of contaminants exceeded the guidelines established through national legislation, thus confirming the presumption that high concentrations of contaminants exist in the parks and playgrounds of Romania.

  10. Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health.

    PubMed

    Chae, Yooeun; Cui, Rongxue; Woong Kim, Shin; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-01-01

    It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods. Our results provided the levels of activity of soil exoenzymes that indicate soil health. Most enzymes showed lower activity levels in remediated soils than in contaminated soils, with the exception of protease and urease, which showed higher activity after remediation in some soils, perhaps due to the limited nutrients available in remediated soils. Soil exoenzymes showed significantly higher activity in soils from one of the sites than from the other, due to improper conditions at the second site, including high pH, poor nutrient levels, and a high proportion of sand in the latter soil. Principal component analysis revealed that ß-glucosidase was the best indicator of soil ecosystem health, among the enzymes evaluated. We recommend using ß-glucosidase enzyme activity as a prior indicator in estimating soil ecosystem health. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. [Assessment of soil degradation in regions of nuclear power explosions at Semipalatinsk Nuclear Test Site].

    PubMed

    Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S

    2011-01-01

    Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants.

  12. Human exposure to soil contaminants in subarctic Ontario, Canada.

    PubMed

    Reyes, Ellen Stephanie; Liberda, Eric Nicholas; Tsuji, Leonard James S

    2015-01-01

    Chemical contaminants in the Canadian subarctic present a health risk with exposures primarily occurring via the food consumption. Characterization of soil contaminants is needed in northern Canada due to increased gardening and agricultural food security initiatives and the presence of known point sources of pollution. A field study was conducted in the western James Bay Region of Ontario, Canada, to examine the concentrations of polychlorinated biphenyls, dichlorodiphenyltrichloroethane and its metabolites (ΣDDT), other organochlorines, and metals/metalloids in potentially contaminated agriculture sites. Exposure pathways were assessed by comparing the estimated daily intake to acceptable daily intake values. Ninety soil samples were collected at random (grid sampling) from 3 plots (A, B, and C) in Fort Albany (on the mainland), subarctic Ontario, Canada. The contaminated-soil samples were analysed by gas chromatography with an electron capture detector or inductively coupled plasma mass spectrometer. The range of ΣDDT in 90 soil samples was below the limit of detection to 4.19 mg/kg. From the 3 soil plots analysed, Plot A had the highest ΣDDT mean concentration of 1.12 mg/kg, followed by Plot B and Plot C which had 0.09 and 0.01 mg/kg, respectively. Concentrations of other organic contaminants and metals in the soil samples were below the limit of detection or found in low concentrations in all plots and did not present a human health risk. Exposure analyses showed that the human risk was below regulatory thresholds. However, the ΣDDT concentration in Plot A exceeded soil guidelines set out by the Canadian Council of Ministers of the Environment of 0.7 mg/kg, and thus the land should not be used for agricultural or recreational purposes. Both Plots B and C were below threshold limits, and this land can be used for agricultural purposes.

  13. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    NASA Astrophysics Data System (ADS)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  14. Development of Ecological Toxicity and Biomagnification Data for Explosives Contaminants in Soil

    DTIC Science & Technology

    2003-07-01

    explosive contaminated soil leachates to Daphnia magna using an adapted toxicity characteristic leaching procedure. U.S. Army Chemical and Biological...1993) Toxicity determination of explosive contaminated soil leachates to Daphnia magna using an adapted toxicity characteristic leaching procedure...Sadusky, M. (1993). Toxicity determination of explosive contaminated soil leachates to Daphnia magna using C-46 an adapted toxicity

  15. Direct accumulation pathway of radioactive cesium to fruit-bodies of edible mushroom from contaminated wood logs

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Aiba, Yukitoshi; Sakamoto, Fuminori; Kozai, Naofumi; Niizato, Tadafumi; Sasaki, Yoshito

    2016-07-01

    This paper presents the accumulation process of radioactive Cs in edible mushrooms. We here first report the direct accumulation pathway of radioactive Cs from contaminated wood logs to the fruit-bodies of shiitake mushrooms through the basal portion of the stipe. In this pathway, radioactive Cs is not transported through the hyphae. This pathway results in a high accumulation of radioactive Cs in the fruit-body, more by the excess accumulation of radioactive Cs from the wood logs than that through the hyphae. We grew the fruit-bodies of Shiitake mushroom from radioactive-Cs-contaminated wood logs. The spatial distributions of radioactive Cs and Prussian blue as a tracer of interstitial water in the cross section of the wood log measured after the harvest of the fruit-body from the inoculated sawdust spawn area indicated that some fraction of the radioactive Cs and Prussian blue were transported directly to the basal portion of the stipe during the growth of the fruit-bodies.

  16. Microemulsion-enhanced remediation of soils contaminated with organochlorine pesticides.

    PubMed

    Zhang, Yanlin; Wong, Jonathan W C; Zhao, Zhenyong; Selvam, Ammaiyappan

    2011-12-01

    Soil contaminated by organic pollutants, especially chlorinated aromatic compounds such as DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane), is an environmental concern because of the strong sorption of organochlorine pesticide onto the soil matrix and persistence in the environment. The remediation of organochlorine pesticide contaminated soils through microemulsion is an innovative technology to expedite this process. The remediation efficiency was evaluated by batch experiments through studying the desorption of DDT and hexachlorocyclohexane (y-HCH) and sorption of microemulsion composed of Triton X-100, 1-pentanol and linseed oil in the soil-surfactant-water suspension system. The reduction of desorption efficiency caused by the sorption loss of microemulsion components onto the soil could be corrected by the appropriate adjustment of C/S (Cosurfactant/Surfactant) and O/S (Oil/Surfactant) ratio. The C/S and O/S ratios of 1:2 and 3:20 were suitable to desorb DDT and gamma-HCH from the studied soils because of the lower sorption of Triton X-100 onto the soil. Inorganic salts added in microemulsion increased the pesticides desorption efficiency of pesticides and calcium chloride has a stronger ability to enhance the desorption of DDT than sodium chloride. From the remediation perspective, the balance of surfactant or cosurfactant sorbed to soil and desorption efficiency should be taken into consideration to enhance the remediation of soils contaminated by organochlorine pesticides.

  17. A preliminary assessment on the use of biochar as a soil additive for reducing soil-to-plant uptake of cesium isotopes in radioactively contaminated environments

    DOE PAGES

    Hamilton, Terry F.; Martinelli, Roger E.; Kehl, Steven R.; ...

    2015-10-19

    A series of K d tracer batch experiments were conducted in this paper to assess the absorptive-desorption properties of Biochar as a potential agent to selectively sequester labile soil Cs or otherwise help reduce the uptake of Cs isotopes into plants. A parallel experiment was conducted for strontium. Fine-grained fractionated Woodlands tree Biochar was found to have a relatively high affinity for Cs ions (K d > 100) relative to coral soil (K d < 10) collected from the Marshall Islands. The Biochar material also contains an abundance of K (and Mg). Finally, these findings support a hypothesis that themore » addition of Biochar as a soil amendment may provide a simple yet effective method for reducing soil-to-plant transfer of Cs isotopes in contaminated environments.« less

  18. Radiochemical determination of 237NP in soil samples contaminated with weapon grade plutonium

    NASA Astrophysics Data System (ADS)

    Antón, M. P.; Espinosa, A.; Aragón, A.

    2006-01-01

    The Palomares terrestrial ecosystem (Spain) constitutes a natural laboratory to study transuranics. This scenario is partially contaminated with weapon-grade plutonium since the burnout and fragmentation of two thermonuclear bombs accidentally dropped in 1966. While performing radiometric measurements in the field, the possible presence of 237Np was observed through its 29 keV gamma emission. To accomplish a detailed characterization of the source term in the contaminated area using the isotopic ratios Pu-Am-Np, the radiochemical isolation and quantification by alpha spectrometry of 237Np was initiated. The selected radiochemical procedure involves separation of Np from Am, U and Pu with ionic resins, given that in soil samples from Palomares 239+240Pu levels are several orders of magnitude higher than 237Np. Then neptunium is isolated using TEVA organic resins. After electrodeposition, quantification is performed by alpha spectrometry. Different tests were done with blank solutions spiked with 236Pu and 237Np, solutions resulting from the total dissolution of radioactive particles and soil samples. Results indicate that the optimal sequential radionuclide separation order is Pu-Np, with decontamination percentages obtained with the ionic resins ranging from 98% to 100%. Also, the addition of NaNO2 has proved to be necessary, acting as a stabilizer of Pu-Np valences.

  19. The development of radioactive sample surrogates for training and exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martha Finck; Bevin Brush; Dick Jansen

    2012-03-01

    The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less

  20. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.

    PubMed

    Ma, Yan; Du, Xiaoming; Shi, Yi; Xu, Zhu; Fang, Jidun; Li, Zheng; Li, Fasheng

    2015-02-01

    Mechanical soil aeration has long been regarded as an effective ex-situ remediation technique and as suitable for remediation of large-scale sites contaminated by volatile organic compounds (VOCs) at low cost. However, it has been reported that the removal efficiency of VOCs from soil is relatively low in the late stages of remediation, in association with tailing. Tailing may extend the remediation time required; moreover, it typically results in the presence of contaminants residues at levels far exceeding regulations. In this context, the present study aimed to discuss the tailing that occurs during the process of remediation of soils contaminated artificially with volatile chlorinated hydrocarbons (VCHs) and to assess possible quicklime-enhanced removal mechanisms. The results revealed the following conclusions. First, temperature and aeration rate can be important controls on both the timing of appearance of tailing and the levels of residual contaminants. Furthermore, the addition of quicklime to soil during tailing can reduce the residual concentrations rapidly to below the remedial target values required for site remediation. Finally, mechanical soil aeration can be enhanced using quicklime, which can improve the volatilization of VCHs via increasing soil temperature, reducing soil moisture, and enhancing soil permeability. Our findings give a basic understanding to the elimination of the tailing in the application of mechanical soil aeration, particularly for VOCs-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Environmental projects. Volume 14: Removal of contaminated soil and debris

    NASA Technical Reports Server (NTRS)

    Kushner, Len

    1992-01-01

    Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.

  2. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.

    PubMed

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Cheng, Min; Wang, Rongzhong; Wan, Jia

    2018-05-01

    Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.

  3. Abundance and diversity of Archaea in heavy-metal-contaminated soils.

    PubMed

    Sandaa, R A; Enger, O; Torsvik, V

    1999-08-01

    The impact of heavy-metal contamination on archaean communities was studied in soils amended with sewage sludge contaminated with heavy metals to varying extents. Fluorescent in situ hybridization showed a decrease in the percentage of Archaea from 1.3% +/- 0.3% of 4', 6-diamidino-2-phenylindole-stained cells in untreated soil to below the detection limit in soils amended with heavy metals. A comparison of the archaean communities of the different plots by denaturing gradient gel electrophoresis revealed differences in the structure of the archaean communities in soils with increasing heavy-metal contamination. Analysis of cloned 16S ribosomal DNA showed close similarities to a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species.

  4. Mobilization of hydrophobic contaminants from soils by enzymatic depolymerization of soil organic matter.

    PubMed

    Wicke, Daniel; Reemtsma, Thorsten

    2010-02-01

    The effect of hydrolytic exoenzymes on the release of hydrophobic organic contaminants (HOC) from two different surface soils was studied in laboratory batch experiments. Incubation of the soils with cellulase with an activity fivefold above the inherent soil activity enhanced the release of hydrophobic contaminants (polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and hydroxylated PCB) by 40-200%. Xylanase and invertase did not show measurable effects at comparable relative activity levels. This suggests that cellulose substructures are important for the retention of HOC in soil organic matter (SOM). Hydrolytic exoenzymes, and the microorganisms that release them, contribute to the mobilization of HOC from soil, by shifting the sorption equilibrium in the course of SOM transformation into dissolved organic matter or by facilitating HOC diffusion as a consequence of reduced rigidity of SOM. We conclude that not only biodegradation but also sorption and desorption of HOC in soil can be influenced by (micro-) biology and the factors that determine its activity.

  5. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Miller, Julianne J.; McCurdy, Greg D.

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure designmore » and post-closure monitoring program.« less

  6. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave

  7. BIOREMEDIATION OF CONTAMINATED SURFACE SOILS

    EPA Science Inventory

    Biological remediation of soils contaminated with organic chemicals is an alternative treatment technology that can often meet the goal of achieving a permanent clean-up remedy at hazardous waste sites, as encouraged by the U.S. Environmental Protection Agency (U.S. EPA) for impl...

  8. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    PubMed

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bioremediation of industrially contaminated soil using compost and plant technology.

    PubMed

    Taiwo, A M; Gbadebo, A M; Oyedepo, J A; Ojekunle, Z O; Alo, O M; Oyeniran, A A; Onalaja, O J; Ogunjimi, D; Taiwo, O T

    2016-03-05

    Compost technology can be utilized for bioremediation of contaminated soil using the active microorganisms present in the matrix of contaminants. This study examined bioremediation of industrially polluted soil using the compost and plant technology. Soil samples were collected at the vicinity of three industrial locations in Ogun State and a goldmine site in Iperindo, Osun State in March, 2014. The compost used was made from cow dung, water hyacinth and sawdust for a period of twelve weeks. The matured compost was mixed with contaminated soil samples in a five-ratio pot experimental design. The compost and contaminated soil samples were analyzed using the standard procedures for pH, electrical conductivity (EC), organic carbon (OC), total nitrogen (TN), phosphorus, exchangeable cations (Na, K, Ca and Mg) and heavy metals (Fe, Mn, Cu, Zn and Cr). Kenaf (Hibiscus cannabinus) seeds were also planted for co-remediation of metals. The growth parameters of Kenaf plants were observed weekly for a period of one month. Results showed that during the one-month remediation experiment, treatments with 'compost-only' removed 49 ± 8% Mn, 32 ± 7% Fe, 29 ± 11% Zn, 27 ± 6% Cu and 11 ± 5% Cr from the contaminated soil. On the other hand, treatments with 'compost+plant' remediated 71 ± 8% Mn, 63 ± 3% Fe, 59 ± 11% Zn, 40 ± 6% Cu and 5 ± 4% Cr. Enrichment factor (EF) of metals in the compost was low while that of Cu (EF=7.3) and Zn (EF=8.6) were high in the contaminated soils. Bioaccumulation factor (BF) revealed low metal uptake by Kenaf plant. The growth parameters of Kenaf plant showed steady increments from week 1 to week 4 of planting. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Campbell, Scott A.; McCurdy, Greg

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Site Contamination Area (CA) as a result of storm runoff. This activity supports U.S. Department of Energy (DOE) Environmental Management Nevada Program (EM-NV) efforts to establish post-closure monitoring plans for the Smoky Site Soils Corrective Action Unit (CAU) 550. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause the movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transportedmore » radionuclide-contaminated soils. These data will facilitate the design of the appropriate post-closure monitoring program. In 2011, DRI installed a meteorological monitoring station on the west side of the Smoky Site CA and a hydrologic (runoff) monitoring station within the CA, near the east side. Air temperature, wind speed, wind direction, relative humidity, precipitation, solar radiation, barometric pressure, soil temperature, and soil water content are collected at the meteorological station. The maximum, minimum, and average or total values (as appropriate) for each of these parameters are recorded for each 10-minute interval. The maximum, minimum, and average water depth in the flume installed at the hydrology station are also recorded for every 10-minute interval. This report presents data collected from these stations during fiscal year (FY) 2017.« less

  11. Bioremediation of oil-contaminated soils by composting

    NASA Astrophysics Data System (ADS)

    Golodyaev, G. P.; Kostenkov, N. M.; Oznobikhin, V. I.

    2009-08-01

    Composting oil-contaminated soils under field conditions with the simultaneous optimization of their physicochemical and agrochemical parameters revealed the high efficiency of the soil purification, including that from benz[a]pyrene. The application of fertilizers and lime favored the intense development of indigenous microcenoses and the effective destruction of the oil. During the 95-day experimental period, the average daily rate of the oil decomposition was 157 mg/kg of soil. After the completion of the process, the soil became ecologically pure.

  12. Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils

    PubMed Central

    Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar

    2017-01-01

    Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest. PMID:29062312

  13. In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils.

    PubMed

    Kim, Shin Woong; Chae, Yooeun; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Gyeonghyeon; Jeong, Seung-Woo; An, Youn-Joo

    2017-02-15

    Soils contaminated with heavy metals have been reused for agricultural, building, and industrial uses following remediation. This study assesses plant growth and bioaccumulation of heavy metals following remediation of industrially contaminated soil. The soil was collected from a field site near a nonferrous smelter and was subjected to laboratory- and field-scale studies. Soil from the contaminated site was remediated by washing with acid or mixed with soil taken from a distant uncontaminated site. The activities of various soil exoenzymes, the rate of plant growth, and the bioaccumulations of six heavy metals were measured to assess the efficacy of these bioremediation techniques. Growth of rice (Oryza sativa) was unaffected in acid-washed soil or the amended soil compared to untreated soil from the contaminated site. The levels of heavy metals in the rice kernels remained within safe limits in treated and untreated soils. Rice, sorghum (Sorghum bicolor), and wheat (Triticum aestivum) cultivated in the same soils in the laboratory showed similar growth rates. Soil exoenzyme activities and crop productivity were not affected by soil treatment in field experiments. In conclusion, treatment of industrially contaminated soil by acid washing or amendment did not adversely affect plant productivity or lead to increased bioaccumulation of heavy metals in rice.

  14. Contribution from the Yenisei River to the total radioactive contamination of the Kara Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Yu.V.; Revenko, Yu.A.; Legin, V.K.

    1995-07-01

    An attempt is made to estimate the contribution from the Yenisei River and, therefore, the Krasnoyarsk Mining and Chemical Plant (MCP), which discharged wastewaters to the Yenisei, to the total contamination of the Kara Sea using results from a study of the radioactive contamination of the Yenisei River, Yenisei Bay, Yenisei Gulf, and the Kara Sea itself. Radionuclides generated from using river water in cooling circuits of production reactors make the largest contribution to the total activity. The radioactive contamination of the river decreased by more than 20 times after two of the three operating reactors were shut down. Onlymore » several wetlands are actually affected by MCP hundreds of kilometers from the discharge point.« less

  15. Aided Phytostabilization of Copper Contaminated Soils with L. Perenne and Mineral Sorbents as Soil Amendments

    NASA Astrophysics Data System (ADS)

    Radziemska, Maja

    2017-09-01

    The present study was designed to assess phytostabilization strategies for the treatment of soil co-contaminated by increasing levels of copper with the application mineral amendments (chalcedonite, zeolite, dolomite). From the results it will be possible to further elucidate the benefits or potential risks derived from the application of different types of mineral amendments in the remediation of a copper contaminated soil. A glasshouse pot experiment was designed to evaluate the potential use of different amendments as immobilizing agents in the aided phytostabilization of Cu-contaminated soil using ryegrass (Lolium perenne L.). The content of trace elements in plants and total in soil, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of L. perenne were significantly different in the case of applying mineral amendments to the soil, as well as increasing concentrations of copper. The greatest average above-ground biomass was observed for soil amended with chalcedonite. In this experiment, all analyzed metals accumulated predominantly in the roots of the tested plant. In general, applying mineral amendments to soil contributed to decreased levels of copper concentrations.

  16. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  17. Oral bioavailability of cyclotrimethylenetrinitramine (RDX) from contaminated site soils in rats.

    PubMed

    Crouse, Lee C B; Michie, Mark W; Major, Michael A; Leach, Glenn J; Reddy, Gunda

    2008-01-01

    Cyclotrimethylenetrinitramine (RDX), a commonly used military explosive, was detected as a contaminant of soil and water at Army facilities and ranges. This study was conducted to determine the relative oral bioavailability of RDX in contaminated soil and to develop a method to derive bioavailability adjustments for risk assessments using rodents. Adult male Sprague-Dawley rats preimplanted with femoral artery catheters were dosed orally with gelatin capsules containing either pure RDX or an equivalent amount of RDX in contaminated soils from Louisiana Army Ammunition Plant (LAAP) (2300 microg/g of soil) or Fort Meade (FM) (670 microg/g of soil). After dosing rats, blood samples were collected from catheters at 2-h intervals (2, 4, 6, 8, 10, and 12) and at 24 and 48 h. RDX levels in the blood were determined by gas chromatography. The results show that the peak absorption of RDX in blood was 6 h for neat RDX (1.24 mg/kg) and for RDX from contaminated soil (1.24 mg/kg) of LAAP. Rats dosed with RDX-contaminated FM soil (0.2 mg/kg) showed peak levels of RDX in blood at 6 h, whereas their counterparts that received an identical dose (0.2 mg/kg) of neat RDX showed peak absorption at 4 h. The blood levels of absorbed RDX from LAAP soil were about 25% less than for neat RDX, whereas the bioavailability of RDX from FM soils was about 15% less than that seen in rats treated with neat RDX (0.2 mg/kg). The oral bioavailability in rats fed RDX in LAAP soil and the FM soil was reduced with the neat compound but decrease in bioavailability varied with the soil type.

  18. Micro-scale investigations on soil heterogeneity: Impacts on Zn retention and uptake in Zn contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and the strength and stability of their solid phase associations. We combined physical density separation with synchrotron-based mi...

  19. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, Robert W.; Frank, James R.; Feng, Xiandong

    1998-01-01

    An in situ method for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal.

  20. Evaluating specificity of sequential extraction for chemical forms of lead in artificially-contaminated and field-contaminated soils.

    PubMed

    Tai, Yiping; McBride, Murray B; Li, Zhian

    2013-03-30

    In the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite. However, the BCR sequential extraction for field-collected soils with known and different sources of Pb contamination was not sufficiently discriminatory in the dissolution of soil Pb phases to allow soil Pb forms to be "fingerprinted" by this method. It is concluded that standard sequential extraction procedures are probably not very useful in predicting lability and bioavailability of Pb in contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Soil slurry reactors for the assessment of contaminant biodegradation

    NASA Astrophysics Data System (ADS)

    Toscano, G.; Colarieti, M. L.; Greco, G.

    2012-04-01

    Slurry reactors are frequently used in the assessment of feasibility of biodegradation in natural soil systems. The rate of contaminant removal is usually quantified by zero- or first-order kinetics decay constants. The significance of such constants for the evaluation of removal rate in the field could be questioned because the slurry reactor is a water-saturated, well-stirred system without resemblance with an unsaturated fixed bed of soil. Nevertheless, a kinetic study with soil slurry reactors can still be useful by means of only slightly more sophisticated kinetic models than zero-/first-order decay. The use of kinetic models taking into account the role of degrading biomass, even in the absence of reliable experimental methods for its quantification, provides further insight into the effect of nutrient additions. A real acceleration of biodegradation processes is obtained only when the degrading biomass is in the growth condition. The apparent change in contaminant removal course can be useful to diagnose biomass growth without direct biomass measurement. Even though molecular biology techniques are effective to assess the presence of potentially degrading microorganism in a "viable-but-nonculturable" state, the attainment of conditions for growth is still important to the development of enhanced remediation techniques. The methodology is illustrated with reference to data gathered for two test sites, Oslo airport Gardermoen in Norway (continuous contamination by aircraft deicing fluids) and the Trecate site in Italy (aged contamination by crude oil spill). This research is part of SoilCAM project (Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring 2008-2012, EU-FP7).

  2. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D'Agostino, M.; Belmusto, G.

    2017-01-01

    In this article natural radioactivity measurements and dosimetric evaluations in soil samples contaminated by Naturally Occurring Radioactive Materials (NORM) are made, in order to assess any possible radiological hazard for the population and for workers professionally exposed to ionizing radiations. Investigated samples came from the district of Crotone, Calabria region, South of Italy. The natural radioactivity investigation was performed by high-resolution gamma-ray spectrometry. From the measured gamma spectra, activity concentrations were determined for 226Ra , 234-mPa , 224Ra , 228Ac and 40K and compared with their clearance levels for NORM. The total effective dose was calculated for each sample as due to the committed effective dose for inhalation and to the effective dose from external irradiation. The sum of the total effective doses estimated for all investigated samples was compared to the action levels provided by the Italian legislation (D.Lgs.230/95 and subsequent modifications) for the population members (0.3mSv/y) and for professionally exposed workers (1mSv/y). It was found to be less than the limit of no radiological significance (10μSv/y).

  3. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    NASA Astrophysics Data System (ADS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  4. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    PubMed

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  5. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    NASA Astrophysics Data System (ADS)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  6. Ecological risk assessment in legislation on contaminated soil in The Netherlands.

    PubMed

    Boekhold, Alexandra E

    2008-12-01

    Recently the Dutch soil policy was revised including new rules for the relocation of contaminated soil and dredged soil material. With these rules, new methods for ecotoxicological risk assessment were implemented. One of the new methods is the assessment of the local toxic pressure of mixtures, also known as the ms-PAF- method, based on the Species Sensitivity Distribution concept. The ms-PAF method is applied for risk assessment of spreading of dredged soil material on adjacent land. Its application will possibly be extended to the derivation of local soil quality standards relevant in the context of soil relocation. The application of the local toxic pressure will probably increase the reuse of contaminated soil and dredged soil material and hence will reduce the amounts considered to be unfit for use. With this method, local ecological risk limits are derived using pore water concentrations and effects on water organisms. Pore water concentrations are subsequently transferred to total soil concentrations using empirical relationships. The methodology does not impose upper limits for total soil concentrations. In soils with a high sorption capacity, total soil concentrations that are considered to be acceptable may be several times higher than the current Dutch intervention values. The possible introduction of the ms-PAF method will open the door to local soil relocation with soils containing large amounts of (semi-permanently soil bound) contaminants. Since the ms-PAF method is not yet properly validated, the lack of evidence of ecological effects using models like the ms-PAF method cannot be regarded as an indication for the absence of effects in reality. The Dutch soil quality decree would gain environmental ambition when the ms-PAF method was combined with a realistic upper limit on total soil concentrations. This would prevent contamination of land by means of soil relocation.

  7. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite.

    PubMed

    Yang, Zhangmei; Fang, Zhanqiang; Zheng, Liuchun; Cheng, Wen; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-10-01

    In this study, a high efficiency and low cost biochar-supported nano-hydroxyapatite (nHAP@BC) material was used in the remediation of lead (Pb)-contaminated soil. The remediation effect of nHAP@BC on Pb-contaminated soil was evaluated through batch experiments. The stability, bioaccessibility of Pb in the soil and the change in soil characteristics are discussed. Furthermore, the effects of the amendments on the growth of cabbage mustard seedlings and the accumulation of Pb were studied. The results showed that the immobilization rates of Pb in the soil were 71.9% and 56.8%, respectively, after a 28 day remediation using 8% nHAP and nHAP@BC materials, and the unit immobilization amount of nHAP@BC was 5.6 times that of nHAP, indicating that nHAP@BC can greatly reduce the cost of remediation of Pb in soil. After the nHAP@BC remediation, the residual fraction Pb increased by 61.4%, which greatly reduced the bioaccessibility of Pb in the soil. Moreover, nHAP@BC could effectively reduce the accumulation of Pb in plants by 31.4%. Overall, nHAP@BC can effectively remediate Pb-contaminated soil and accelerate the recovery of soil fertility. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Assessing soil and groundwater contamination in a metropolitan redevelopment project.

    PubMed

    Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun

    2013-08-01

    The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).

  9. Characterization and Low-Cost Remediation of Soils Contaminated by Timbers in Community Gardens.

    PubMed

    Heiger-Bernays, W; Fraser, A; Burns, V; Diskin, K; Pierotti, D; Merchant-Borna, K; McClean, M; Brabander, D; Hynes, H P

    2009-01-01

    Urban community gardens worldwide provide significant health benefits to those gardening and consuming fresh produce from them. Urban gardens are most often placed in locations and on land in which soil contaminants reflect past practices and often contain elevated levels of metals and organic contaminants. Garden plot dividers made from either railroad ties or chromated copper arsenate (CCA) pressure treated lumber contribute to the soil contamination and provide a continuous source of contaminants. Elevated levels of polycyclic aromatic hydrocarbons (PAHs) derived from railroad ties and arsenic from CCA pressure treated lumber are present in the gardens studied. Using a representative garden, we 1) determined the nature and extent of urban community garden soil contaminated with PAHs and arsenic by garden timbers; 2) designed a remediation plan, based on our sampling results, with our community partner guided by public health criteria, local regulation, affordability, and replicability; 3) determined the safety and advisability of adding city compost to Boston community gardens as a soil amendment; and 4) made recommendations for community gardeners regarding healthful gardening practices. This is the first study of its kind that looks at contaminants other than lead in urban garden soil and that evaluates the effect on select soil contaminants of adding city compost to community garden soil.

  10. Cadmium accumulation and growth responses of a poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil.

    PubMed

    Wu, Fuzhong; Yang, Wanqin; Zhang, Jian; Zhou, Liqiang

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoidsxPopulus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98+/-19.22 and 576.75+/-40.55 microg cadmium per plant with 110.77+/-12.68 and 202.54+/-19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Assessing the bioavailability and risk from metal-contaminated soils and dusts

    EPA Science Inventory

    Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contaminat...

  12. Effect of Soil Aging on the Phytoremediation Potential of Zea mays in Chromium and Benzo[a]Pyrene Contaminated Soils.

    PubMed

    Chigbo, Chibuike

    2015-06-01

    This study compared the phytoremediation potential of Zea mays in soil either aged or freshly amended with chromium (Cr) and benzo[a]pyrene (B[a]P). Z. mays showed increased shoot biomass in aged soils than in freshly spiked soils. The shoot biomass in contaminated soils increased by over 50% in aged soil when compared to freshly amended soils, and over 29% more Cr was accumulated in the shoot of Z. mays in aged soil than in freshly amended soil. Planting Z. mays in aged soil helped in the dissipation of more than 31% B[a]P than in freshly spiked soil, but in the absence of plants, there seemed to be no difference between the dissipation rates of B[a]P in freshly and aged co-contaminated soil. Z. mays seemed to enhance the simultaneous removal of Cr and B[a]P in aged soil than in freshly spiked soil and hence can be a good plant choice for phytoremediation of co-contaminated soils.

  13. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications.

    PubMed

    Phieler, René; Voit, Annekatrin; Kothe, Erika

    2014-01-01

    Heavy metal contamination of soil as a result of, for example, mining operations, evokes worldwide concern. The use of selected metal-accumulating plants to clean up heavy metal contaminated sites represents a sustainable and inexpensive method for remediation approaches and, at the same time, avoids destruction of soil function. Within this scenario, phytoremediation is the use of plants (directly or indirectly) to reduce the risks of contaminants in soil to the environment and human health. Microbially assisted bioremediation strategies, such as phytoextraction or phytostabilization, may increase the beneficial aspects and can be viewed as potentially useful methods for application in remediation of low and heterogeneously contaminated soil. The plant-microbe interactions in phytoremediation strategies include mutually beneficial symbiotic associations such as mycorrhiza, plant growth promoting bacteria (PGPB), or endophytic bacteria that are discussed with respect to their impact on phytoremediation approaches.

  14. Bioaugmentation of Soil Contaminated with Azoxystrobin.

    PubMed

    Baćmaga, Małgorzata; Wyszkowska, Jadwiga; Kucharski, Jan

    2017-01-01

    The presence of fungicides in the natural environment, either resulting from deliberate actions or not, has become a serious threat to many ecosystems, including soil. This can be prevented by taking appropriate measures to clear the environment of organic contamination, including fungicides. Therefore, a study was conducted aimed at determining the effect of bioaugmentation of soil exposed to azoxystrobin on its degradation and activity of selected enzymes (dehydrogenases, catalase, urease, acidic phosphatase, alkaline phosphatase). A model experiment was conducted for 90 days on two types of soil: loamy sand (pH KCl -5.6) and sandy loam (pH KCl -7.0), which were contaminated by azoxystrobin at 22.50 mg kg -1 DM of soil and inoculated with a specific consortium of microorganisms. Four strains of bacteria were used in the experiment ( Bacillus sp. LM655314.1, B. cereus KC848897.1, B. weihenstephanensis KF831381.1, B. megaterium KJ843149.1) and two strains of mould fungi ( Aphanoascus terreus AB861677.1, A. fulvescens JN943451.1). Inoculation of soil with the consortium of microorganisms accelerated the degradation of azoxystrobin. The isolated microorganisms were more active in loamy sand because within 90 days azoxystrobin was degraded by 24% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium ) to 78% ( Aphanoascus terreus , A. fulvescens ). In sandy loam, azoxystrobin was degraded by 9% ( Aphanoascus terreus , A. fulvescens ) to 29% ( Bacillus sp., B. cereus , B. weihenstephanensis , B. megaterium and Aphanoascus terreus , A. fulvescens ). The activity of soil enzymes was also changed as a result of inoculation of soil with microorganisms. The activity of all of the enzymes under study was found to have increased when soil augmentation was performed.

  15. Renewed soil erosion and remobilisation of radioactive sediment in Fukushima coastal rivers after the 2013 typhoons.

    PubMed

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Lepage, Hugo; Cerdan, Olivier; Lefèvre, Irène; Ayrault, Sophie

    2014-04-03

    Summer typhoons and spring snowmelt led to the riverine spread of continental Fukushima fallout to the coastal plains of Northeastern Japan and the Pacific Ocean. Four fieldwork campaigns based on measurement of radioactive dose rates in fine riverine sediment that has recently deposited on channel bed-sand were conducted between November 2011 and May 2013 to document the spread of fallout by rivers. After a progressive decrease in the fresh riverine sediment doses rates between 2011 and early spring in 2013, a fifth campaign conducted in November 2013 showed that they started to increase again after the occurrence of violent typhoons. We show that this increase in dose rates was mostly due to remobilization of contaminated material that was temporarily stored in river channels or, more importantly, in dam reservoirs of the region during the typhoons. In addition, supply of particles from freshly eroded soils in autumn 2013 was the most important in areas where decontamination works are under progress. Our results underline the need to monitor the impact of decontamination works and dam releases in the region, as they may provide a continuous source of radioactive contamination to the coastal plains and the Pacific Ocean during the coming years.

  16. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area.

    PubMed

    Jun-hui, Zhang; Hang, Min

    2009-06-15

    Paddy soil samples taken from different sites in an old primitive electronic-waste (e-waste) processing region were examined for eco-toxicity and metal contamination. Using the environmental quality standard for soils (China, Grade II) as reference, soil samples of two sites were weakly contaminated with trace metal, but site G was heavily contaminated with Cd (6.37 mg kg(-1)), and weakly contaminated with Cu (256.36 mg kg(-1)) and Zn (209.85 mg kg(-1)). Zn appeared to be strongly bound in the residual fraction (72.24-77.86%), no matter the soil was metal contaminated or not. However, more than 9% Cd and 16% Cu was present in the non-residual fraction in the metal contaminated soils than in the uncontaminated soil, especially for site G and site F. Compared with that of the control soil, the micronucleus rates of site G and site F soil treatments increased by 2.7-fold and 1.7-fold, respectively. Low germination rates were observed in site C (50%) and site G (50%) soil extraction treated rice seeds. The shortest root length (0.2377 cm) was observed in site G soil treated groups, which is only 37.57% of that of the control soil treated groups. All of the micronucleus ratio of Vicia faba root cells, rice germination rate and root length after treatment of soil extraction indicate the eco-toxicity in site F and G soils although the three indexes are different in sensitivity to soil metal contamination.

  17. Remediation of Nitrobenzene Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Effluent Oxidation with Persulfate

    PubMed Central

    Yan, Jingchun; Gao, Weiguo; Qian, Linbo; Han, Lu; Chen, Yun; Chen, Mengfang

    2015-01-01

    The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•−, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil. PMID:26266532

  18. TNT transport and fate in contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comfort, S.D.; Shea, P.J.; Hundal, L.S.

    1995-11-01

    Past disposal practices at munitions production plants have contaminated terrestrial and aquatk ecosystems with 2,4,6-trinitrotoluene (TNT). We determined TNT transport, degradation, and long-term sorption characteristics in soil. Transport experiments were conducted with repacked, unsaturated soil columns containing uncontaminated soil or layers of contaminated and uncontaminated soil. Uncontaminated soil columns received multiple pore volumes (22-50) of a TNT-{sup 3}H{sub 2}O pulse, containing 70 or 6.3 mg TNT L{sup -1} at a constant pore water velocity. TNT breakthrough curves (BTCs) never reached initial solute pulse concentrations. Apex concentrations (C/C{sub o}) were between 0.6 and 0.8 for an initial pulse of 70 mgmore » TNT L{sup -1} and 0.2 to 0.3 for the 6.3 mg TNT L{sup -1} pulse. Earlier TNT breakthrough was observed at the higher pulse concentration. This mobility difference was predicted from the nonlinear adsorption isotherm determined for TNT sorption. In all experiments, a significant fraction of added TNT was recovered as amino degradates of TNT. Mass balance estimates indicated 81% of the added TNT was recovered (as TNT and amino degradates) from columns receiving the 70 mg TNT L{sup -1} pulse compared to 35% from columns receiving the 6.3 mg TNT L{sup -1} pulse. Most of the unaccountable TNT was hypothesized to be unextractable. This was supported by a 168-d sorption experiment, which found that within 14d, 80% of {sup 14}C activity (added as {sup 14}C-TNT) was adsorbed and roughly 40% unextractable. Our observations illustrate that TNT sorption and degradation are concentration-dependent and the assumptions of linear adsorption and adsorption-desorption singularity commonly used in transport modeling, may not be valid for predicting TNT transport in munitions-contaminated soils. 29 refs., 6 figs., 7 tabs.« less

  19. Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil.

    PubMed

    Pociecha, Maja; Kastelec, Damijana; Lestan, Domen

    2011-08-30

    Recycling of chelant decreases the cost of EDTA-based soil washing. Current methods, however, are not effective when the spent soil washing solution contains more than one contaminating metal. In this study, we applied electrochemical treatment of the washing solution obtained after EDTA extraction of Pb, Zn and Cd contaminated soil. A sacrificial Al anode and stainless steel cathode in a conventional electrolytic cell at pH 10 efficiently removed Pb from the solution. The method efficiency, specific electricity and Al consumption were significantly higher for solutions with a higher initial metal concentration. Partial replacement of NaCl with KNO(3) as an electrolyte (aggressive Cl(-) are required to prevent passivisation of the Al anode) prevented EDTA degradation during the electrolysis. The addition of FeCl(3) to the acidified washing solution prior to electrolysis improved Zn removal. Using the novel method 98, 73 and 66% of Pb, Zn and Cd, respectively, were removed, while 88% of EDTA was preserved in the treated washing solution. The recycled EDTA retained 86, 84 and 85% of Pb, Zn and Cd extraction potential from contaminated soil, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Remediation of arsenic-contaminated soils and groundwaters

    DOEpatents

    Peters, R.W.; Frank, J.R.; Feng, X.

    1998-06-23

    An in situ method is described for extraction of arsenic contaminants from a soil medium and remediation of the medium including contacting the medium with an extractant solution, directing the solution within and through the medium, and collecting the solution and contaminants. The method can also be used for arsenate and/or arsenite removal. 8 figs.

  1. Bioremediation of copper-contaminated soils by bacteria.

    PubMed

    Cornu, Jean-Yves; Huguenot, David; Jézéquel, Karine; Lollier, Marc; Lebeau, Thierry

    2017-02-01

    Although copper (Cu) is an essential micronutrient for all living organisms, it can be toxic at low concentrations. Its beneficial effects are therefore only observed for a narrow range of concentrations. Anthropogenic activities such as fungicide spraying and mining have resulted in the Cu contamination of environmental compartments (soil, water and sediment) at levels sometimes exceeding the toxicity threshold. This review focuses on the bioremediation of copper-contaminated soils. The mechanisms by which microorganisms, and in particular bacteria, can mobilize or immobilize Cu in soils are described and the corresponding bioremediation strategies-of varying levels of maturity-are addressed: (i) bioleaching as a process for the ex situ recovery of Cu from Cu-bearing solids, (ii) bioimmobilization to limit the in situ leaching of Cu into groundwater and (iii) bioaugmentation-assisted phytoextraction as an innovative process for in situ enhancement of Cu removal from soil. For each application, the specific conditions required to achieve the desired effect and the practical methods for control of the microbial processes were specified.

  2. Mercury uptake by Silene vulgaris grown on contaminated spiked soils.

    PubMed

    Pérez-Sanz, Araceli; Millán, Rocío; Sierra, M José; Alarcón, Remedios; García, Pilar; Gil-Díaz, Mar; Vazquez, Saúl; Lobo, M Carmen

    2012-03-01

    Mercury is a highly toxic pollutant with expensive clean up, because of its accumulative and persistent character in the biota. The objective of this work was to evaluate the effectiveness of Silene vulgaris, facultative metallophyte which have populations on both non-contaminated and metalliferous soils, to uptake Hg from artificially polluted soils. A pot experiment was carried out in a rain shelter for a full growth period. Two soils (C pH = 8.55 O.M. 0.63% and A pH = 7.07 O.M. 0.16%) were used, previously contaminated with Hg as HgCl(2) (0.6 and 5.5 mg Hg kg(-1) soil). Plants grew healthy and showed good appearance throughout the study without significantly decreasing biomass production. Mercury uptake by plants increased with the mercury concentration found in both soils. Differences were statistically significant between high dosage and untreated soil. The fact that S. vulgaris retains more mercury in root than in shoot and also, the well known effectiveness of these plants in the recovering of contaminated soils makes S. vulgaris a good candidate to phytostabilization technologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Humic substances as a washing agent for Cd-contaminated soils.

    PubMed

    Meng, Fande; Yuan, Guodong; Wei, Jing; Bi, Dongxue; Ok, Yong Sik; Wang, Hailong

    2017-08-01

    Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff between efficiency and cost, an optimum working condition was established as follows: humic substance concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in China. Being cost-effective and safe, humic substances have a great potential to replace common washing agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic substances can improve soil physical, chemical, and biological properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bioaccessibility of Fukushima-Accident-Derived Cs in Soils and the Contribution of Soil Ingestion to Radiation Doses in Children.

    PubMed

    Takahara, Shogo; Ikegami, Maiko; Yoneda, Minoru; Kondo, Hitoshi; Ishizaki, Azusa; Iijima, Masashi; Shimada, Yoko; Matsui, Yasuto

    2017-07-01

    Ingestion of contaminated soil is one potential internal exposure pathway in areas contaminated by the Fukushima Daiichi Nuclear Power Plant accident. Doses from this pathway can be overestimated if the availability of radioactive nuclides in soils for the gastrointestinal tract is not considered. The concept of bioaccessibility has been adopted to evaluate this availability based on in vitro tests. This study evaluated the bioaccessibility of radioactive cesium from soils via the physiologically-based extraction test (PBET) and the extractability of those via an extraction test with 1 mol/L of hydrochloric acid (HCl). The bioaccessibility obtained in the PBET was 5.3% ± 1%, and the extractability in the tests with HCl was 16% ± 3%. The bioaccessibility was strongly correlated with the extractability. This result indicates the possibility that the extractability in HCl can be used as a good predictor of the bioaccessibility with PBET. In addition, we assessed the doses to children from the ingestion of soil via hand-to-mouth activity based on our PBET results using a probabilistic approach considering the spatial distribution of radioactive cesium in Date City in Fukushima Prefecture and the interindividual differences in the surveyed amounts of soil ingestion in Japan. The results of this assessment indicate that even if children were to routinely ingest a large amount of soil with relatively high contamination, the radiation doses from this pathway are negligible compared with doses from external exposure owing to deposited radionuclides in Fukushima Prefecture. © 2016 Society for Risk Analysis.

  5. The effect of soil type on the bioremediation of petroleum contaminated soils.

    PubMed

    Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin

    2016-09-15

    In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Soil pollution in the railway junction Niš (Serbia) and possibility of bioremediation of hydrocarbon-contaminated soil

    NASA Astrophysics Data System (ADS)

    Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije

    2015-04-01

    Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and

  7. Speciation and leaching of trace metal contaminants from e-waste contaminated soils.

    PubMed

    Cui, Jin-Li; Luo, Chun-Ling; Tang, Chloe Wing-Yee; Chan, Ting-Shan; Li, Xiang-Dong

    2017-05-05

    Primitive electrical and electronic waste (e-waste) recycling activities have caused serious environmental problems. However, little is known about the speciation and leaching behaviors of metal contaminants at e-waste contaminated sites. This study investigated trace metal speciation/mobilization from e-waste polluted soil through column leaching experiments involving irrigation with rainwater for almost 2.5 years. Over the experimental period, Cu and Zn levels in the porewater were 0.14±0.08mg/L, and 0.16±0.08mg/L, respectively, increasing to 0.33±0.16mg/L, and 0.69±0.28mg/L with plant growth. The amounts of Cu, Zn, and Pb released in surface soil (0-2cm) contributed 43.8%, 22.5%, and 13.8%, respectively, to the original levels. The released Cu and Zn were primarily caused by the mobilization of the carbonate species of metals, including Cu(OH) 2 , CuCO 3 , and Zn 5 (CO 3 ) 2 (OH) 6 , and amorphous Fe/Mn oxides associated fractions characterized by sequential extraction coupling with X-ray absorption spectroscopy. During the experiments, trace metals were not detected in the effluent, and the re-sequestration of trace metals was mainly attributed to the adsorption on the abundant Fe/Mn oxides in the sub-layer soil. This study quantitatively elucidated the molecular speciation of Cu and Zn in e-waste contaminated soil during the column leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Emergency Department Management of Patients Internally Contaminated with Radioactive Material

    PubMed Central

    Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; Christensen, Doran

    2017-01-01

    SUMMARY Internal contamination with radioactive material can expose patients to radiation leading to short- and long-term clinical consequences. After the patient’s emergency conditions are addressed and the skin is decontaminated, the treating physicians assess the amount of radioactive material that has been internalized. This evaluation allows the estimation of the radiation dose that is delivered the specific radionuclide inside the body and supports the need for additional therapies and monitoring. These complex assessments warrant the reliance on a multidisciplinary approach that incorporates local, regional, and national experts in radiation medicine and emergencies. PMID:25455668

  9. Pilot scale aided-phytoremediation of a co-contaminated soil.

    PubMed

    Marchand, Charlotte; Mench, Michel; Jani, Yahya; Kaczala, Fabio; Notini, Peter; Hijri, Mohamed; Hogland, William

    2018-03-15

    A pilot scale experiment was conducted to investigate the aided-phytoextraction of metals and the aided-phytodegradation of petroleum hydrocarbons (PHC) in a co-contaminated soil. First, this soil was amended with compost (10% w/w) and assembled into piles (Unp-10%C). Then, a phyto-cap of Medicago sativa L. either in monoculture (MS-10%C) or co-cropped with Helianthus annuus L. as companion planting (MSHA-10%C) was sown on the topsoil. Physico-chemical parameters and contaminants in the soil and its leachates were measured at the beginning and the end of the first growth season (after five months). In parallel, residual soil ecotoxicity was assessed using the plant species Lepidium sativum L. and the earthworm Eisenia fetida Savigny, 1826, while the leachate ecotoxicity was assessed using Lemna minor L. After 5months, PH C10-C40, PAH-L, PAH-M PAH-H, Pb and Cu concentrations in the MS-10%C soil were significantly reduced as compared to the Unp-10%C soil. Metal uptake by alfalfa was low but their translocation to shoots was high for Mn, Cr, Co and Zn (transfer factor (TF) >1), except for Cu and Pb. Alfalfa in monoculture reduced electrical conductivity, total organic C and Cu concentration in the leachate while pH and dissolved oxygen increased. Alfalfa co-planting with sunflower did not affect the extraction of inorganic contaminants from the soil, the PAH (M and H) degradation and was less efficient for PH C10-C40 and PAH-L as compared to alfalfa monoculture. The co-planting reduced shoot and root Pb concentrations. The residual soil ecotoxicity after 5months showed a positive effect of co-planting on L. sativum shoot dry weight (DW) yield. However, high contaminant concentrations in soil and leachate still inhibited the L. sativum root DW yield, earthworm development, and L. minor growth rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chelant extraction of heavy metals from contaminated soils.

    PubMed

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  11. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.

    PubMed

    Gonzaga, Maria Isidória Silva; Ma, Lena Q; Pacheco, Edson Patto; dos Santos, Wallace Melo

    2012-12-01

    Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.

  12. PHYTOREMEDIATION OF SOILS CONTAMINATED WITH WOOD PRESERVATIVES: GREENHOUSE AND FIELD EVALUATIONS

    EPA Science Inventory

    Phytoremediation was evaluated as a potential treatment for the creosote-contaminated surface soil at the McCormick and Baxter (M&B) Superfund Site in Portland, OR. Soil a the M&B site is contaminated with pentachlorophenol (PCP) and polyaromatic hydrocarbons (PAHs). Eight indivi...

  13. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    PubMed

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  14. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium.

    PubMed

    Zeng, Peng; Guo, Zhaohui; Cao, Xia; Xiao, Xiyuan; Liu, Yanan; Shi, Lei

    2018-03-21

    In a greenhouse experiment, five ornamental plants, Osmanthus fragrans (OF), Ligustrum vicaryi L. (LV), Cinnamomum camphora (CC), Loropetalum chinense var. rubrum (LC), and Euonymus japonicas cv. Aureo-mar (EJ), were studied for the ability to phytostabilization for Cd-contaminated soil. The results showed that these five ornamental plants can grow normally when the soil Cd content is less than 24.6 mg·kg -1 . Cd was mainly deposited in the roots of OF, LV, LC and EJ which have grown in Cd-contaminated soils, and the maximum Cd contents reached 15.76, 19.09, 20.59 and 32.91 mg·kg -1 , respectively. For CC, Cd was mainly distributed in the shoots and the maximum Cd content in stems and leaves were 12.5 and 10.71 mg·kg -1 , however, the total amount of Cd in stems and leaves was similar with the other ornamental plants. The enzymatic activities in Cd-contaminated soil were benefited from the five tested ornamental plants remediation. Soil urease and sucrase activities were improved, while dehydrogenase activity was depressed. Meanwhile, the soil microbial community was slightly influenced when soil Cd content is less than 24.6 mg·kg -1 under five ornamental plants remediation. The results further suggested that ornamental plants could be promising candidates for phytostabilization of Cd-contaminated soil.

  15. Copper removal from contaminated soils by soil washing process using camellian-derived saponin

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Fernanda Campos, Maria; Videla, Álvaro; Letelier, María Victoria; Fuentes, Bárbara

    2015-04-01

    Antofagasta Region in North of Chile has been the main copper producer district in the world. As a consequence of a lack of mining closure regulation, a large number of abandon small-to-medium size metal-contaminated sites have been identified in the last survey performed by the Chilean Government. Therefore, more research development on sustainable reclamation technologies must be made in this extreme arid-dry zone. The objective of this study is to test the effectiveness of soil remediation by washing contaminated soil using camellian-derived saponin for the mobilization of copper. Soil samples were taken from an abandoned copper mine site located at 30 km North Antofagasta city. They were dried and sieved at 75 µm for physico-chemical characterization. A commercial saponin extracted from camellias seed was used as biosurfactant. The soil used contains 67.4 % sand, 26.3 % silt and 6.3 % clay. The soil is highly saline (electric conductivity, 61 mScm-1), with low organic matter content (0.41%), with pH 7.30, and a high copper concentration (2200 mg Kg-1 soil). According to the sequential extraction procedure of the whole soil, copper species are mainly as exchangeable fraction (608.2 mg Kg-1 soil) and reducible fraction (787.3 mg Kg-1 soil), whereas the oxidizable and residual fractions are around 205.7 and 598.8 mg Kg-1 soil, respectively. Soil particles under 75 µm contain higher copper concentrations (1242 mg Kg-1 soil) than the particle fraction over 75 µm (912 mg Kg-1 soil). All washing assays were conducted in triplicate using a standard batch technique with and without pH adjustment. The testing protocols includes evaluation of four solid to liquid ratio (0.5:50; 1.0:50; 2.0:50, and 5.0:50) and three saponin concentrations (0, 1, and 4 mg L-1). After shaking (24 h, 20±1 °C) and subsequently filtration (0.45 µm), the supernatants were analyzed for copper and pH. The removal efficiencies of copper by saponin solutions were calculated in according to the

  16. Immobilization of uranium in contaminated soil by natural apatite addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uraniummore » determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)« less

  17. Decontamination of Soil Contaminated with Bacillus anthracis ...

    EPA Pesticide Factsheets

    Technical Brief This technical summary will provide decontamination personnel rapid access to information on which decontamination approaches are most effective for soils contaminated with B anthracis.

  18. A gradient of radioactive contamination in Dolon village near the SNTS and comparison of computed dose values with instrumental estimates for the 29 August, 1949 nuclear test.

    PubMed

    Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I

    2006-02-01

    Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068.

  19. Memorandum of the Establishment of Cleanup Levels for CERCLA Sites with Radioactive Contamination

    EPA Pesticide Factsheets

    This memorandum presents clarifying guidance for establishing protective cleanup levels for radioactive contamination at Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) sites.

  20. Radioactive contamination in the environs of the Hanford Works for the period April, May, June 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paas, H.J.; Singlevich, W.

    1950-04-03

    This report summarizes the measurements made for radioactive contamination in the environs of the Hanford Works for the quarter April through June 1949. This belated document is issued for the records to fill in the gap for the quarterly reports not issued in 1949 because of personnel shortage at that time. Although the data summarized in this report were already reported in the H. I. Evirons Reports for the months involved, it is still of value to study the data combining the three months of data which give better opportunity to evaluate the trends and patterns of the levels ofmore » radioactive contamination emanating from the various sources at the Hanford Works. This document discusses: meteorological data and radioactive contamination in vegetation, the atmosphere, rain, Hanford wastes, the Columbia River, and in drinking water and test wells.« less

  1. Prediction of Radioactive Material Proliferation in Abukuma Basin using USLE

    NASA Astrophysics Data System (ADS)

    Yi, C. J.

    2014-12-01

    Due to the nuclear-power plant accident after the 2011 Great East Japan Earthquake and Tsunami, the residents who had resided within 20 km from the Daiichi Fukushima Nuclear Power Plant had forced to leave their hometown. The impacts by the radioactive contamination extended to numerous social elements, such as food, economy, civil engineering, community rebuilding, etc. Japanese government agencies have measured the level of radioactive contamination in urban, agricultural area, forest, riverine and ocean. The research found that the concentration level of cesium-137 (137Cs) is higher in the forest than an open area such as paddy field or rural town. Litter layers and surface layers, especially, are found to be significantly contaminated. The study calculated the estimation of contaminated soil erosion using the USLE which the idea is based on scenario that addresses a question, what if 137Cs would carry out from the forest after intensive rainfall. Predicting radioactively contaminated areas after intense rainfall is a critical matter for the future watershed risk management.

  2. ENGINEERING BULLETIN: SEPARATION/CONCENTRATION TECHNOLOGY ALTERNATIVES FOR THE REMEDIATION OF PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination includes a wide variety of compounds and may result from manufacturing improper storage, handling, disposal; or agricultural processes. It can occur in soil and can lead to secondary contamination of groundwater. Remediation of pesticide-contaminated soils...

  3. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.

    PubMed

    LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L

    2017-06-06

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.

  4. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE PAGES

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...

    2017-05-04

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  5. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  6. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    PubMed

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  7. Remediation of lead and cadmium-contaminated soils.

    PubMed

    Salama, Ahmed K; Osman, Khaled A; Gouda, Neama Abdel-Razeek

    2016-01-01

    The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.

  8. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    ScienceCinema

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2018-01-16

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  9. In Situ Formation of Calcium Apatite in Soil for Sequestering Contaminants in Soil and Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert; Szecsody, Jim; Thompson, Mike

    2015-10-20

    A new method for in situ formation of a calcium apatite permeable reactive barrier that is a groundbreaking technology for containing radioactive/heavy metal contaminants threatening groundwater supplies.

  10. Bioremediation of creosote-contaminated soil in South Africa by landfarming.

    PubMed

    Atagana, H I

    2004-01-01

    To determine the combined effects of biostimulation and bioaugmentation in the landfarming of a mispah form (lithosol; food and Agriculture Organisation (FAO)) soil contaminated with >310000 mg kg-1 creosote with a view to developing a bioremediation technology for soils heavily contaminated with creosote. The excavated soil was mixed with 2500 kg ha-1 dolomitic lime and 2000 kg ha-1 mono-ammonium phosphate (MAP) before spreading over a treatment bed of shale reinforced with clay. Sewage sludge (500 kg) was ploughed into 450 m3 of contaminated soil in the second and sixth months of treatment. A further 1000 kg ha-1 MAP was added to the soil at the end of the fifth month. Moisture was maintained at 70% field capacity. Total creosote was determined by the US Environmental Protection Agency (EPA) method 418.1 and concentrations of selected creosote components were determined by gas chromatography/flame ionisation detection (GC/FID). Total creosote was reduced by more than 90% by the 10th month of landfarming. The rate of reduction in creosote concentration was highest after the addition of sewage sludge. The three-ring PAHs were more slowly removed than naphthalene and the phenolic compounds. The four- and five-ring PAHs, although persist until the end of treatment, were reduced by 76-87% at the end of the experiment. A combination of biostimulation and bioaugmentation during landfarming could enhance the bioremediation of soils heavily contaminated with creosote. The study provides information on the management of a combination of biostimulation and bioaugmentation during landfarming, and contributes to the knowledge and database necessary for the development of a technology for bioremediating creosote-contaminated land.

  11. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite.

    PubMed

    Katoh, Masahiko; Risky, Elsya; Sato, Takeshi

    2017-10-23

    This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface.

  12. Immobilization of Lead Migrating from Contaminated Soil in Rhizosphere Soil of Barley (Hordeum vulgare L.) and Hairy Vetch (Vicia villosa) Using Hydroxyapatite

    PubMed Central

    Risky, Elsya; Sato, Takeshi

    2017-01-01

    This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface. PMID:29065529

  13. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.

    PubMed

    Trindade, P V O; Sobral, L G; Rizzo, A C L; Leite, S G F; Soriano, A U

    2005-01-01

    The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).

  14. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    NASA Astrophysics Data System (ADS)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  15. Potential microbial contamination during sampling of permafrost soil assessed by tracers.

    PubMed

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S

    2017-02-23

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  16. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    PubMed Central

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  17. Assessing the external benefits of contaminated soil remediation in Korea: a choice experiment study.

    PubMed

    Lim, Seul-Ye; Kim, Hyo-Jin; Yoo, Seung-Hoon

    2018-06-01

    Korean government has made and will continue to make a considerable investment in contaminated soil remediation to rectify the problems that arise from soil pollution. Quantitative information on the benefits of contaminated soil remediation is widely demanded by the public as well as the government. This article aims to assess the external benefits of contaminated soil remediation. A survey of 1000 randomly selected households was undertaken in Korea. The results show that the marginal willingness to pay values for a 1% decrease in human health hazard, a 1% improvement in biodiversity restoration, and 1000 new job creation by contaminated soil remediation are estimated to be KRW 204 (USD 0.17), 593 (0.50), and 238 (0.20) per household per year. The findings can provide policy-makers with useful information for both evaluating and planning the contaminated soil remediation.

  18. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    PubMed

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dushenkov, S.; Mikheev, A.; Prokhnevsky, A.

    1999-02-01

    Remediation of soil contaminated with {sup 137}Cs remains one of the most challenging tasks after the Chernobyl 1986 accident. The objectives of this research were to (1) identify extractants that may be used to solubilize {sup 137}Cs in soil solution, (2) study the effect of soil amendments on {sup 137}Cs accumulation by plants, and (3) evaluate the applicability of phytoextraction for environmental restoration of soil contaminated with {sup 137}Cs. The availability of {sup 137}Cs to the plants in Chernobyl soil was limited, because this radionuclide was tightly bound to exchange sites of soil particles or incorporated into the crystalline structuremore » of primary and secondary minerals. Out of 20 soil amendments tested to increase {sup 137}Cs desorption/solubility in the soil, ammonium salts were found to be the most practical soil amendment that can potentially increase {sup 137}Cs bioavailability. Among the screened plants, Amaranth cultivars had the highest {sup 137}Cs accumulation. Three sequential crops of Indian mustard grown in one vegetation season at the experimental plot resulted in a small decrease of {sup 137}Cs specific activity within the top 15 cm of soil. Further improvements are necessary to make phytoremediation technology a feasible option for restoration of {sup 137}Cs-contaminated territories.« less

  20. REVIEW OF SEPARATION TECHNOLOGIES FOR TREATING PESTICIDE-CONTAMINATED SOIL

    EPA Science Inventory

    Pesticide contamination results from manufacturing, improper storage, handling, or disposal of pesticides, and from agricultural processes. Since most pesticides are mixtures of different compounds, selecting a remedy for pesticide-contaminated soils can be a complicated process....

  1. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.

    PubMed

    Voegelin, Andreas; Jacquat, Olivier; Pfister, Sabina; Barmettler, Kurt; Scheinost, Andreas C; Kretzschmar, Ruben

    2011-01-01

    The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn

  2. Chemical methods and phytoremediation of soil contaminated with heavy metals.

    PubMed

    Chen, H M; Zheng, C R; Tu, C; Shen, Z G

    2000-07-01

    The effects of chemical amendments (calcium carbonate (CC), steel sludge (SS) and furnace slag (FS)) on the growth and uptake of cadmium (Cd) by wetland rice, Chinese cabbage and wheat grown in a red soil contaminated with Cd were investigated using a pot experiment. The phytoremediation of heavy metal contaminated soil with vetiver grass was also studied in a field plot experiment. Results showed that treatments with CC, SS and FS decreased Cd uptake by wetland rice, Chinese cabbage and wheat by 23-95% compared with the unamended control. Among the three amendments, FS was the most efficient at suppressing Cd uptake by the plants, probably due to its higher content of available silicon (Si). The concentrations of zinc (Zn), lead (Pb) and Cd in the shoots of vetiver grass were 42-67%, 500-1200% and 120-260% higher in contaminated plots than in control, respectively. Cadmium accumulation by vetiver shoots was 218 g Cd/ha at a soil Cd concentration of 0.33 mg Cd/kg. It is suggested that heavy metal-contaminated soil could be remediated with a combination of chemical treatments and plants.

  3. Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil.

    PubMed

    Schneider, Jerusa; Bundschuh, Jochen; Rangel, Wesley de Melo; Guilherme, Luiz Roberto Guimarães

    2017-05-01

    Arbuscular mycorrhizal (AM) fungi inoculation is considered a potential biotechnological tool for an eco-friendly remediation of hazardous contaminants. However, the mechanisms explaining how AM fungi attenuate the phytotoxicity of metal(oid)s, in particular arsenic (As), are still not fully understood. The influence of As on plant growth and the antioxidant system was studied in Leucaena leucocephala plants inoculated with different isolates of AM fungi and exposed to increasing concentrations of As (0, 35, and 75 mg dm -3 ) in a Typic Quartzipsamment soil. The study was conducted under greenhouse conditions using isolates of AM fungi selected from uncontaminated soils (Acaulospora morrowiae, Rhizophagus clarus, Gigaspora albida; and a mixed inoculum derived from combining these isolates, named AMF Mix) as well as a mix of three isolates from an As-contaminated soil (A. morrowiae, R. clarus, and Paraglomus occultum). After 21 weeks, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were determined in the shoots in addition to measuring plant height and mineral contents. In general, AM fungi have shown multiple beneficial effects on L. leucocephala growth. Although the activity of most of the stress-related enzymes increased in plants associated with AM fungi, the percentage increase caused by adding As to the soil was even greater for non-mycorrhizal plants when compared to AM-fungi inoculated ones, which highlights the phytoprotective effect provided by the AM symbiosis. The highest P/As ratio observed in AM-fungi plants, compared to non-mycorrhizal ones, can be considered a good indicator that the AM fungi alter the pattern of As(V) uptake from As-contaminated soil. Our results underline the role of AM fungi in increasing the tolerance of L. leucocephala to As stress and emphasize the potential of the symbiosis L. leucocephala-R. clarus for As-phytostabilization at moderately As-contaminated

  4. Evaluation of soil amendments as a remediation alternative for cadmium contaminated soils under cacao plantations

    USDA-ARS?s Scientific Manuscript database

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils...

  5. Selection of plants for phytoremediation of soils contaminated with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entry J.A.; Vance, N.C.; Watrud, L.S.

    1996-12-31

    Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.

  6. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    EPA Science Inventory

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  7. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    PubMed

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  8. Biological remediation of oil contaminated soil with earthworms Eisenia andrei

    NASA Astrophysics Data System (ADS)

    Chachina, S. B.; Voronkova, N. A.; Baklanova, O. N.

    2017-08-01

    The study was performed on the bioremediation efficiency of the soil contaminated with oil (20 to 100 g/kg), petroleum (20 to 60 g/kg) and diesel fuel (20 to 40 g/kg) with the help of earthworms E. andrei in the presence of bacteria Pseudomonas, nitrogen fixing bacteria Azotobacter and Clostridium, yeasts Saccharomyces, fungi Aspergillus and Penicillium, as well as Actinomycetales, all being components of biopreparation Baykal-EM. It was demonstrated that in oil-contaminated soil, the content of hydrocarbons decreased by 95-97% after 22 weeks in the presence of worms and bacteria. In petroleum-contaminated soil the content of hydrocarbons decreased by 99% after 22 weeks. The presence of the diesel fuel in the amount of 40 g per 1 kg soil had an acute toxic effect and caused the death of 50 % earthworm species in 14 days. Bacteria introduction enhanced the toxic effect of the diesel fuel and resulted in the death of 60 % earthworms after 7 days.

  9. Characteristic of pollution with groundwater inflow (90)Sr natural waters and terrestrial ecosystems near a radioactive waste storage.

    PubMed

    Lavrentyeva, G V

    2014-09-01

    The studies were conducted in the territory contaminated by (90)Sr with groundwater inflow as a result of leakage from the near-surface trench-type radioactive waste storage. The vertical soil (90)Sr distribution up to the depth of 2-3 m is analyzed. The area of radioactive contamination to be calculated with a value which exceeds the minimum significant activity 1 kBq/kg for the tested soil layers: the contaminated area for the 0-5 cm soil layer amounted to 1800 ± 85 m(2), for the 5-10 cm soil layer amounted to 300 ± 12 m(2), for the 10-15 cm soil layer amounted to 180 ± 10 m(2). It is found that (90)Sr accumulation proceeds in a natural sorption geochemical barrier of the marshy terrace near flood plain. The exposure doses for terrestrial mollusks Bradybaena fruticum are presented. The excess (90)Sr interference level was registered both in the ground and surface water during winter and summer low-water periods and autumn heavy rains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    PubMed Central

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  11. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.

    PubMed

    Feng, Nai-Xian; Yu, Jiao; Zhao, Hai-Ming; Cheng, Yu-Ting; Mo, Ce-Hui; Cai, Quan-Ying; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung

    2017-04-01

    Soil pollution with organic contaminants is one of the most intractable environmental problems today, posing serious threats to humans and the environment. Innovative strategies for remediating organic-contaminated soils are critically needed. Phytoremediation, based on the synergistic actions of plants and their associated microorganisms, has been recognized as a powerful in situ approach to soil remediation. Suitable combinations of plants and their associated endophytes can improve plant growth and enhance the biodegradation of organic contaminants in the rhizosphere and/or endosphere, dramatically expediting the removal of organic pollutants from soils. However, for phytoremediation to become a more widely accepted and predictable alternative, a thorough understanding of plant-endophyte interactions is needed. Many studies have recently been conducted on the mechanisms of endophyte-assisted phytoremediation of organic contaminants in soils. In this review, we highlight the superiority of organic pollutant-degrading endophytes for practical applications in phytoremediation, summarize alternative strategies for improving phytoremediation, discuss the fundamental mechanisms of endophyte-assisted phytoremediation, and present updated information regarding the advances, challenges, and new directions in the field of endophyte-assisted phytoremediation technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.

    PubMed

    Mohamed, A M I; El-menshawy, Nabil; Saif, Amany M

    2007-05-01

    Pollutants in the form of non-aqueous phase liquids (NAPLs), such as petroleum products, pose a serious threat to the soil and groundwater. A mathematical model was derived to study the unsteady pollutant concentrations through water saturated contaminated soil under air sparging conditions for different NAPLs and soil properties. The comparison between the numerical model results and the published experimental results showed acceptable agreement. Furthermore, an experimental study was conducted to remove NAPLs from the contaminated soil using the sparging air technique, considering the sparging air velocity, air temperature, soil grain size and different contaminant properties. This study showed that sparging air at ambient temperature through the contaminated soil can remove NAPLs, however, employing hot air sparging can provide higher contaminant removal efficiency, by about 9%. An empirical correlation for the volatilization mass transfer coefficient was developed from the experimental results. The dimensionless numbers used were Sherwood number (Sh), Peclet number (Pe), Schmidt number (Sc) and several physical-chemical properties of VOCs and porous media. Finally, the estimated volatilization mass transfer coefficient was used for calculation of the influence of heated sparging air on the spreading of the NAPL plume through the contaminated soil.

  13. Use of surfactants for the remediation of contaminated soils: a review.

    PubMed

    Mao, Xuhui; Jiang, Rui; Xiao, Wei; Yu, Jiaguo

    2015-03-21

    Due to the great harm caused by soil contamination, there is an increasing interest to apply surfactants to the remediation of a variety of contaminated soils worldwide. This review article summarizes the findings of recent literatures regarding remediation of contaminated soils/sites using surfactants as an enhancing agent. For the surfactant-based remedial technologies, the adsorption behaviors of surfactants onto soil, the solubilizing capability of surfactants, and the toxicity and biocompatibility of surfactants are important considerations. Surfactants can enhance desorption of pollutants from soil, and promote bioremediation of organics by increasing bioavailability of pollutants. The removal of heavy metals and radionuclides from soils involves the mechanisms of dissolution, surfactant-associated complexation, and ionic exchange. In addition to the conventional ionic and nonionic surfactants, gemini surfactants and biosurfactants are also applied to soil remediation due to their benign features like lower critical micelle concentration (CMC) values and better biocompatibility. Mixed surfactant systems and combined use of surfactants with other additives are often adopted to improve the overall performance of soil washing solution for decontamination. Worldwide the field studies and full-scale remediation using surfactant-based technologies are yet limited, however, the already known cases reveal the good prospect of applying surfactant-based technologies to soil remediation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.

    PubMed

    Jankong, P; Visoottiviseth, P

    2008-07-01

    Arbuscular mycorrhizal fungi (AMF) may play an important role in phytoremediation of As-contaminated soil. In this study the effects of AMF (Glomus mosseae, Glomus intraradices and Glomus etunicatum) on biomass production and arsenic accumulation in Pityrogramma calomelanos, Tagetes erecta and Melastoma malabathricum were investigated. Soil (243 +/- 13 microg As g(-1)) collected from Ron Phibun District, an As-contaminated area in Thailand, was used in a greenhouse experiment. The results showed different effects of AMF on phytoremediation of As-contaminated soil by different plant species. For P. calomelanos and T. erecta, AMF reduced only arsenic accumulation in plants but had no significant effect on plant growth. In contrast, AMF improved growth and arsenic accumulation in M. malabathricum. These findings show the importance of understanding different interactions between AMF and their host plants for enhancing phytoremediation of As-contaminated soils.

  15. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd.

    PubMed

    Lu, Huanping; Li, Zhian; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2015-01-01

    The main goal of phytoremediation is to improve ecosystem functioning. Soil biochemical properties are considered as effective indicators of soil quality and are sensitive to various environmental stresses, including heavy metal contamination. The biochemical response in a soil contaminated with cadmium was tested after several treatments aimed to reduce heavy metal availability including liming, biochar addition and phytoextraction using Amaranthus tricolor L. Two biochars were added to the soil: eucalyptus pyrolysed at 600 °C (EB) and poultry litter at 400 °C (PLB). Two liming treatments were chosen with the aim of bringing soil pH to the same values as in the treatments EB and PLB. The properties studied included soil microbial biomass C, soil respiration and the activities of invertase, β-glucosidase, β-glucosaminidase, urease and phosphomonoesterase. Both phytoremediation and biochar addition improved soil biochemical properties, although results were enzyme specific. For biochar addition these changes were partly, but not exclusively, mediated by alterations in soil pH. A careful choice of biochar must be undertaken to optimize the remediation process from the point of view of metal phytoextraction and soil biological activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. REMEDIATION OF SOILS CONTAMINATED WITH WOOD-TREATMENT CHEMICALS (PCP AND CREOSOTE)

    EPA Science Inventory

    PCP and creosote PAHs are found in most of the contaminated soils at wood-treatment sites. The treatment methods currently being used for such soils include soil washing, incineration, and biotreatment. Soil washing involves removal of the hazardous chemicals from soils ...

  17. REMEDIATION OF RADIUM FROM CONTAMINATED SOIL

    EPA Science Inventory

    The objective of this study was to demonstrate the application of a physico-chemical separation process for the removal of radium from a sample of contaminated soil at the Ottawa, Illinois, site near Chicago. The size/activity distribution analyzed among the particles coarser tha...

  18. Effective dose rate coefficients for exposure to contaminated soil

    DOE PAGES

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...

    2017-05-10

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  19. Effective dose rate coefficients for exposure to contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  20. Radioactivities vs. depth in Apollo 16 and 17 soil

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.; D'Amico, J.; Defelice, J.

    1973-01-01

    The radioactivities of Ar-37, Ar-39, and H-3 measured at a number of depths for Apollo 16 and 17 soil are reported. The Ar-37 activities vs depth in the Apollo 16 drill string increased with depth and reached a broad maximum in the neighborhood of 50 g per sq cm before decreasing. The Ar-39 activities in Apollo 17 soil were higher than in Apollo 16 soil, probably owing to the higher Fe and Ti contents. The H-3 activities in Apollo 16 and 17 soil were quite similar and indicate that the 4 August 1972 flare produced very little H-3 compared to the amount produced by solar flares during the previous 50 years.

  1. A United States perspective on long-term management of areas contaminated with radioactive materials.

    PubMed

    Jones, C Rick

    2004-01-01

    The US has far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. This experience base includes the Department of Energy's continued follow-up with Hiroshima and Nagasaki from the 1940s at the Radiological Effects Research Foundation in Hiroshima, Japan, the long-term management of the Marshall Islands Programme, the clean-up of the US nuclear weapons complex and the ongoing management of accident sites such as in Palomares, Spain. This paper discusses the lessons learnt and best practices gained from this far-reaching and extensive experience in the long-term management of areas contaminated with radioactive materials. Copyright 2004 Oxford University Press

  2. Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas

    NASA Astrophysics Data System (ADS)

    Ruiz-Rodríguez, Magdalena; Møller, Anders Pape; Mousseau, Timothy A.; Soler, Juan J.

    2016-10-01

    Microorganisms have shaped the evolution of a variety of defense mechanisms against pathogenic infections. Radioactivity modifies bacterial communities and, therefore, bird hosts breeding in contaminated areas are expected to adapt to the new bacterial environment. We tested this hypothesis in populations of barn swallows ( Hirundo rustica) from a gradient of background radiation levels at Chernobyl and uncontaminated controls from Denmark. Investment in defenses against keratinolytic bacteria was measured from feather structure (i.e., susceptibility to degradation) and uropygial secretions. We studied degradability of tail feathers from areas varying in contamination in laboratory experiments using incubation of feathers with a feather-degrading bacterium, Bacillus licheniformis, followed by measurement of the amount of keratin digested. The size of uropygial glands and secretion amounts were quantified, followed by antimicrobial tests against B. licheniformis and quantification of wear of feathers. Feathers of males, but not of females, from highly contaminated areas degraded at a lower rate than those from medium and low contamination areas. However, feathers of both sexes from the Danish populations showed little evidence of degradation. Individual barn swallows from the more contaminated areas of Ukraine produced the largest uropygial secretions with higher antimicrobial activity, although wear of feathers did not differ among males from different populations. In Denmark, swallows produced smaller quantities of uropygial secretion with lower antimicrobial activity, which was similar to swallow populations from uncontaminated areas in Ukraine. Therefore, barn swallows breeding in contaminated areas invested more in all defenses against keratinolytic bacteria than in uncontaminated areas of Ukraine and Denmark, although they had similar levels of feather wear. Strong natural selection exerted by radioactivity may have selected for individuals with higher defense

  3. Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas.

    PubMed

    Ruiz-Rodríguez, Magdalena; Møller, Anders Pape; Mousseau, Timothy A; Soler, Juan J

    2016-10-01

    Microorganisms have shaped the evolution of a variety of defense mechanisms against pathogenic infections. Radioactivity modifies bacterial communities and, therefore, bird hosts breeding in contaminated areas are expected to adapt to the new bacterial environment. We tested this hypothesis in populations of barn swallows (Hirundo rustica) from a gradient of background radiation levels at Chernobyl and uncontaminated controls from Denmark. Investment in defenses against keratinolytic bacteria was measured from feather structure (i.e., susceptibility to degradation) and uropygial secretions. We studied degradability of tail feathers from areas varying in contamination in laboratory experiments using incubation of feathers with a feather-degrading bacterium, Bacillus licheniformis, followed by measurement of the amount of keratin digested. The size of uropygial glands and secretion amounts were quantified, followed by antimicrobial tests against B. licheniformis and quantification of wear of feathers. Feathers of males, but not of females, from highly contaminated areas degraded at a lower rate than those from medium and low contamination areas. However, feathers of both sexes from the Danish populations showed little evidence of degradation. Individual barn swallows from the more contaminated areas of Ukraine produced the largest uropygial secretions with higher antimicrobial activity, although wear of feathers did not differ among males from different populations. In Denmark, swallows produced smaller quantities of uropygial secretion with lower antimicrobial activity, which was similar to swallow populations from uncontaminated areas in Ukraine. Therefore, barn swallows breeding in contaminated areas invested more in all defenses against keratinolytic bacteria than in uncontaminated areas of Ukraine and Denmark, although they had similar levels of feather wear. Strong natural selection exerted by radioactivity may have selected for individuals with higher defense

  4. Microbial expression profiles in the rhizosphere of willows depend on soil contamination

    PubMed Central

    Yergeau, Etienne; Sanschagrin, Sylvie; Maynard, Christine; St-Arnaud, Marc; Greer, Charles W

    2014-01-01

    The goal of phytoremediation is to use plants to immobilize, extract or degrade organic and inorganic pollutants. In the case of organic contaminants, plants essentially act indirectly through the stimulation of rhizosphere microorganisms. A detailed understanding of the effect plants have on the activities of rhizosphere microorganisms could help optimize phytoremediation systems and enhance their use. In this study, willows were planted in contaminated and non-contaminated soils in a greenhouse, and the active microbial communities and the expression of functional genes in the rhizosphere and bulk soil were compared. Ion Torrent sequencing of 16S rRNA and Illumina sequencing of mRNA were performed. Genes related to carbon and amino-acid uptake and utilization were upregulated in the willow rhizosphere, providing indirect evidence of the compositional content of the root exudates. Related to this increased nutrient input, several microbial taxa showed a significant increase in activity in the rhizosphere. The extent of the rhizosphere stimulation varied markedly with soil contamination levels. The combined selective pressure of contaminants and rhizosphere resulted in higher expression of genes related to competition (antibiotic resistance and biofilm formation) in the contaminated rhizosphere. Genes related to hydrocarbon degradation were generally more expressed in contaminated soils, but the exact complement of genes induced was different for bulk and rhizosphere soils. Together, these results provide an unprecedented view of microbial gene expression in the plant rhizosphere during phytoremediation. PMID:24067257

  5. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  6. Influence of biochar and compost on phytoremediation of oil-contaminated soil.

    PubMed

    Saum, Lindsey; Jiménez, Macario Bacilio; Crowley, David

    2018-01-02

    The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.

  7. Bioremediation of diesel oil-contaminated soil by composting with biowaste.

    PubMed

    Van Gestel, Kristin; Mergaert, Joris; Swings, Jean; Coosemans, Jozef; Ryckeboer, Jaak

    2003-01-01

    Soil spiked with diesel oil was mixed with biowaste (vegetable, fruit and garden waste) at a 1:10 ratio (fresh weight) and composted in a monitored composting bin system for 12 weeks. Pure biowaste was composted in parallel. In order to discern the temperature effect from the additional biowaste effect on diesel degradation, one recipient with contaminated soil was hold at room temperature, while another was kept at the actual composting temperature. Measurements of composting parameters together with enumerations and identifications of microorganisms demonstrate that the addition of the contaminated soil had a minor impact on the composting process. The first-order rate constant of diesel degradation in the biowaste mixture was four times higher than in the soil at room temperature, and 1.2 times higher than in the soil at composting temperature.

  8. Tracing thallium contamination in soils using isotopes

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Trubač, Jakub; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Penížek, Vít; Zádorová, Tereza; Pavlů, Lenka; Holubík, Ondřej; Drábek, Ondřej; Němeček, Karel; Houška, Jakub; Ash, Christopher

    2017-04-01

    We report the thallium (Tl) isotope record in moderately contaminated soils, which have been historically affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ɛ205Tl -1) naturally occurs. The results show a positive linear relationship (R2 = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ɛ205Tl 0), followed by fly ash (ɛ205Tl between -2.5 and -2.8) and volatile Tl fractions (ɛ205Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistribution, we demonstrate that Tl contamination can be traced in soils, and propose that the isotope data represent a possible tool to aid our understanding of post-depositional Tl dynamics in surface environments for the future. This research was supported by the Czech Science Foundation (grant no. 14-01866S and 17-03211S).

  9. Assessment of Soil-Gas and Soil Contamination at the Former Military Police Range, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for organic and inorganic contaminants at the former military police range at Fort Gordon, Georgia, from May to September 2010. The assessment evaluated organic contaminants in soil-gas samplers and inorganic contaminants in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers deployed and collected from May 20 to 24, 2010, identified masses above method detection level for total petroleum hydrocarbons, gasoline-related and diesel-related compounds, and chloroform. Most of these detections were in the southwestern quarter of the study area and adjacent to the road on the eastern boundary of the site. Nine of the 11 chloroform detections were in the southern half of the study area. One soil-gas sampler deployed adjacent to the road on the southern boundary of the site detected a mass of tetrachloroethene greater than, but close to, the method detection level of 0.02 microgram. For soil-gas samplers deployed and collected from September 15 to 22, 2010, none of the selected organic compounds classified as chemical agents and explosives were detected above method detection levels. Inorganic concentrations in the five soil samples collected at the site did not exceed the U.S. Environmental Protection Agency regional screening levels for industrial soil and were at or below background levels for similar rocks and strata in South Carolina.

  10. Bioremediation of poly-aromatic hydrocarbon (PAH)-contaminated soil by composting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loick, N.; Hobbs, P.J.; Hale, M.D.C.

    2009-07-01

    This paper presents a comprehensive and critical review of research on different co-composting approaches to bioremediate hydrocarbon contaminated soil, organisms that have been found to degrade PAHs, and PAH breakdown products. Advantages and limitations of using certain groups of organisms and recommended areas of further research effort are identified. Studies investigating the use of composting techniques to treat contaminated soil are broad ranging and differ in many respects, which makes comparison of the different approaches very difficult. Many studies have investigated the use of specific bio-additives in the form of bacteria or fungi with the aim of accelerating contaminant removal;more » however, few have employed microbial consortia containing organisms from both kingdoms despite knowledge suggesting synergistic relationships exist between them in contaminant removal. Recommendations suggest that further studies should attempt to systemize the investigations of composting approaches to bio-remediate PAH-contaminated soil, to focus on harnessing the biodegradative capacity of both bacteria and fungi to create a cooperative environment for PAH degradation, and to further investigate the array of PAHs that can be lost during the composting process by either leaching or volatilization.« less

  11. Toxicity tests of soil contaminated by recycling of scrap plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, M.H.; Chui, V.W.

    The present investigation studied the toxicity of soil contaminated by untreated discharge from a factory that recycles used plastics. The nearby agricultural areas and freshwater fish ponds were polluted with high concentrations of Cu, Ni, and Mn. Water extracts from the contaminated soil retarded root growth of Brassica chinensis (Chinese white cabbage) and Cynodon dactylon (Bermuda grass) where their seeds were obtained commercially. The contaminated populations of C. dactylon, Panicum repen (panic grass), and Imperata cylindrica (wooly grass) were able to withstand higher concentrations of Cu, Ni, and Mn, especially C. dactylon, when compared with their uncontaminated counterparts.

  12. Perceived Benefits of Participation and Risks of Soil Contamination in St. Louis Urban Community Gardens.

    PubMed

    Wong, Roger; Gable, Leah; Rivera-Núñez, Zorimar

    2018-06-01

    Community gardens are credited for promoting health within neighborhoods, by increasing healthy food intake and exercise frequency. These benefits, however, are potentially undermined as urban soils are often contaminated from industrial legacies. The purpose of this study was to examine the perceived benefits of participation and risks of soil contamination within urban community gardens, and factors associated with soil contamination concerns. Ninety-three gardeners were interviewed across 20 community gardens in St. Louis, Missouri between June and August 2015. Surveys included questions on demographics, gardening practices, and perceptions of community gardening. Multilevel logistic models assessed how gardener demographics, gardening practices, and garden characteristics were associated with soil contamination concerns. Common perceived benefits of community gardening were community building (68.8%), healthy and fresh food (35.5%), and gardening education (18.3%). Most gardeners (62.4%) were not concerned about soil contamination, but nearly half (48.4%) stated concerns about heavy metals. Black race was significantly associated with soil contamination concerns (OR 5.47, 95% CI 1.00-30.15, p = .04). Community gardens offer numerous social and health benefits. Although most gardeners were not concerned about soil contamination, black gardeners were more likely to have concerns. Garden leaders should provide resources to gardeners to learn about soil contamination and methods to manage their risk, particularly in minority neighborhoods.

  13. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    PubMed

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  14. Relative bioavailability of arsenic contaminated soils in a mouse model

    EPA Science Inventory

    Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...

  15. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.

    PubMed

    Joo, Hung-Soo; Ndegwa, Pius M; Shoda, Makoto; Phae, Chae-Gun

    2008-12-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes.

  16. Decontamination of Petroleum-Contaminated Soils Using The Electrochemical Technique: Remediation Degree and Energy Consumption.

    PubMed

    Streche, Constantin; Cocârţă, Diana Mariana; Istrate, Irina-Aura; Badea, Adrian Alexandru

    2018-02-19

    Currently, there are different remediation technologies for contaminated soils, but the selection of the best technology must be not only the treatment efficiency but also the energy consumption (costs) during its application. This paper is focused on assessing energy consumption related to the electrochemical treatment of polluted soil with petroleum hydrocarbons. In the framework of a research project, two types of experiments were conducted using soil that was artificially contaminated with diesel fuel at the same level of contamination. The experimental conditions considered for each experiment were: different amounts of contaminated soils (6 kg and 18 kg, respectively), the same current intensity level (0.25A and 0.5A), three different contamination degrees (1%, 2.5% and 5%) and the same time for application of the electrochemical treatment. The remediation degree concerning the removal of petroleum hydrocarbons from soil increased over time by approximately 20% over 7 days. With regard to energy consumption, the results revealed that with an increase in the quantity of treated soil of approximately three times, the specific energy consumption decreased from 2.94 kWh/kg treated soil to 1.64 kWh/kg treated soil.

  17. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  18. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    PubMed

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Soil bioindicators as a usefull tools for land management and spatial planning processes: a case-study of prioritization of contaminated soil remediation

    NASA Astrophysics Data System (ADS)

    Grand, Cécile; Pauget, Benjamin; Villenave, Cécile; Le Guédard, Marina; Piron, Denis; Nau, Jean-François; Pérès, Guénola

    2017-04-01

    When setting up new land management, contaminated site remediation or soil use change are sometimes necessary to ensure soil quality and the restoration of the ecosystem services. The biological characterization of the soil can be used as complementary information to chemical data in order to better define the conditions for operating. Then, in the context of urban areas, elements on the soil biological quality can be taken into consideration to guide the land development. To assess this "biological state of soil health", some biological tools, called bioindicators, could provide comprehensive information to understand and predict the functioning of the soil ecosystem. In this context, a city of 200 thousand inhabitants has decided to integrate soil bioindicators in their soil diagnostic for their soil urban management. This city had to elaborate a spatial soil management in urban areas which presented soil contamination linked to a complex industrial history associated with bad uses of gardens not always safe for the environment. The project will lead to establish a Natural Urban Park (PNU) in order to develop recreational and leisure activities in a quality environment. In order to complete the knowledge of soil contamination and to assess the transfer of contaminants to the terrestrial ecosystem, a biological characterization of soils located in different areas was carried out using six bioindicators: bioindicators of accumulation which allowed to evaluate the transfers of soil contaminants towards the first 2 steps of a trophic chain (plants and soil fauna, e.g. snails), bioindicators of effects (Omega 3 index was used to assess the effects of soil contamination and to measure their impact on plants), bioindicators of soil functioning (measurement of microbial biomass, nematodes and earthworm community) ; the interest of these last bioindicators is that they also act on the functioning of ecosystems as on the dynamics of organic matter (mineralization) but also

  20. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.

    PubMed

    Jampasri, Kongkeat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Ounjai, Puey; Kumsopa, Acharaporn

    2016-10-02

    Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils.

  1. Evaluation of Soil Contamination Indices in a Mining Area of Jiangxi, China

    PubMed Central

    Wu, Jin; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Jiao, Xudong

    2014-01-01

    There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals. PMID:25397401

  2. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    PubMed

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  3. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    PubMed

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  4. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    PubMed

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  5. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil.

    PubMed

    Gattai, Graziella S; Pereira, Sônia V; Costa, Cynthia M C; Lima, Cláudia E P; Maia, Leonor C

    2011-07-01

    The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina) in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco). Dilutions were prepared by adding lead contaminated soil (270 mg Kg(-1)) to uncontaminated soil (37 mg Pb Kg soil(-1)) in the proportions of 7.5%, 15%, and 30% (v:v). The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil.

  6. Microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants in lead contaminated soil

    PubMed Central

    Gattai, Graziella S.; Pereira, Sônia V.; Costa, Cynthia M. C.; Lima, Cláudia E. P.; Maia, Leonor C.

    2011-01-01

    The goals of this study were to evaluate the microbial activity, arbuscular mycorrhizal fungi and inoculation of woody plants (Caesalpinia ferrea, Mimosa tenuiflora and Erythrina velutina) in lead contaminated soil from the semi-arid region of northeastern of Brazil (Belo Jardim, Pernambuco). Dilutions were prepared by adding lead contaminated soil (270 mg Kg-1) to uncontaminated soil (37 mg Pb Kg soil-1) in the proportions of 7.5%, 15%, and 30% (v:v). The increase of lead contamination in the soil negatively influenced the amount of carbon in the microbial biomass of the samples from both the dry and rainy seasons and the metabolic quotient only differed between the collection seasons in the 30% contaminated soil. The average value of the acid phosphatase activity in the dry season was 2.3 times higher than observed during the rainy season. There was no significant difference in the number of glomerospores observed between soils and periods studied. The most probable number of infective propagules was reduced for both seasons due to the excess lead in soil. The mycorrhizal colonization rate was reduced for the three plant species assayed. The inoculation with arbuscular mycorrhizal fungi benefited the growth of Erythrina velutina in lead contaminated soil. PMID:24031701

  7. Efficiency of modified chemical remediation techniques for soil contaminated by organochlorine pesticides

    NASA Astrophysics Data System (ADS)

    Correa-Torres, S. N.; Kopytko, M.; Avila, S.

    2016-07-01

    This study reports the optimization of innovation chemical techniques in order to improve the remediation of soils contaminated with organochloride pesticides. The techniques used for remediation were dehalogenation and chemical oxidation in soil contaminated by pesticides. These techniques were applied sequentially and combined to evaluate the design optimize the concentration and contact time variables. The soil of this study was collect in cotton crop zone in Agustin Codazzi municipality, Colombia, and its physical properties was measure. The modified dehalogenation technique of EPA was applied on the contaminated soil by adding Sodium Bicarbonate solution at different concentrations and rates during 4, 7 and 14 days, subsequently oxidation technique was implemented by applying a solution of KMnO4 at different concentration and reaction times. Organochlorine were detected by Gas Chromatography analysis coupled Mass Spectrometry and its removals were between 85.4- 90.0% of compounds such as 4, 4’-DDT, 4,4’-DDD, 4,4-DDE, trans-Clordane y Endrin. These results demonstrate that the technique of dehalogenation with oxidation chemistry can be used for remediation soils contaminated by organochloride pesticides.

  8. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].

    PubMed

    Deng, Hong-xia; Yang, Ya-li; Li, Zhen; Xu, Yan; Li, Rong-hua; Meng, Zhao-fu; Yang, Ya-ti

    2015-04-01

    In order to investigate the leaching remediation effect of the eco-friendly biosurfactant saponin for Cu and Pb in contaminated Lou soil, batch tests method was used to study the leaching effect of saponin solution on single Cu, Pb contaminated Lou soil and mixed Cu and Pb contaminated Lou soil under different conditions such as reaction time, mass concentration of saponin, pH, concentration of background electrolyte and leaching times. The results showed that the maximum leaching removal effect of Cu and Pb in contaminated Lou soil was achieved by complexation of the heavy metals with saponin micelle, when the mass concentration of saponin solution was 50 g x L(-1), pH was 5.0, the reaction time was 240 min, and there was no background electrolyte. In single and mixed contaminated Lou soil, the leaching percentages of Cu were 29.02% and 25.09% after a single leaching with 50 g x L(-1) saponin under optimal condition, while the single leaching percentages of Pb were 31.56% and 28.03%, respectively. The result indicated the removal efficiency of Pb was more significant than that of Cu. After 4 times of leaching, the cumulative leaching percentages of Cu reached 58.92% and 53.11%, while the cumulative leaching percentages of Pb reached 77.69% and 65.32% for single and mixed contaminated Lou soil, respectively. The fractionation results of heavy metals in soil before and after a single leaching showed that the contents of adsorbed and exchangeable Cu and Pb increased in the contaminated soil, while the carbonate-bound, organic bound and sulfide residual Cu and Pb in the contaminated Lou soil could be effectively removed by saponin.

  9. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  10. Processing plutonium-contaminated soil on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  11. SOLVENT EXTRACTION AND SOIL WASHING TREATMENT OF CONTAMINATED SOILS FROM WOOD PRESERVING SITES: BENCH SCALE STUDIES

    EPA Science Inventory

    Bench-scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites that included in the NPL. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlo...

  12. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    PubMed

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  13. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less

  14. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    PubMed

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Activated carbon immobilizes residual polychlorinated biphenyls in weathered contaminated soil.

    PubMed

    Langlois, Valérie S; Rutter, Allison; Zeeb, Barbara A

    2011-01-01

    Activated carbon (AC) has recently been shown to be effective in sequestering persistent organic pollutants (POPs) from aquatic sediments. Most studies have demonstrated significant reductions of POP concentrations in water and in aquatic organisms; however, limited data exist on the possibility of using AC to immobilize remaining POPs at terrestrial contaminated sites. Under greenhouse conditions, pumpkin ssp cv. Howden) were grown, and red wiggler worms () were exposed to an industrial contaminated soil containing a mixture of polychlorinated biphenyls (PCBs), i.e., Aroclors 1254 and 1260) treated with one of four concentrations of AC (0.2, 0.8, 3.1, and 12.5%) for 2 mo. The addition of AC to contaminated soils virtually eliminated the bioavailability of PCBs to the plant and invertebrate species. There were reductions in PCB concentrations of more than 67% in ssp and 95% in . These data suggest that AC could be included as part of comprehensive site closure strategy at PCB-contaminated sites. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    PubMed

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  17. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  18. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  19. Assessment of soil-gas and soil contamination at the Old Metal Workshop Hog Farm Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the Old Metal Workshop Hog Farm Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the Old Metal Workshop Hog Farm Area. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 121.32 micrograms in a soil-gas sampler from the western corner of the Old Metal Workshop Hog Farm Area along Sawmill Road. The highest undecane mass detected was 73.28 micrograms at the same location as the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected toluene mass greater than the method detection level of 0.02 microgram; the highest detection of toluene mass was 0.07 microgram. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed. Inorganic concentrations in five soil samples collected did not exceed regional screening levels established by the U.S. Environmental Protection Agency. Barium concentrations, however, were up to eight times higher than the background concentrations reported in similar Coastal Plain sediments of South Carolina.

  20. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    PubMed

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  1. Recent Developments for In Situ Treatment of Metal Contaminated Soils

    EPA Pesticide Factsheets

    This report assists the remedy selection process by providing information on four in situ technologies for treating soil contaminated with metals. The four approaches are electrokinetic remediation, phytoremediation, soil flushing, and...

  2. EFFECT OF SOIL MODIFYING FACTORS ON THE BIOAVAILABILITY AND TOXICITY OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    Heavy metal and organic chemical contamination of soils is a worldwide problem posing a risk to humans and more directly, soil organisms. Metal toxicity is often not directly related to the total concentration of metals present due to a number of modifying factors that depend,...

  3. Measurement of radioactive contamination in the CCD’s of the DAMIC experiment

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.; Bole, D.; Butner, M.; Cancelo, G.; Castañeda Vásquez, A.; Chavarria, A. E.; de Mello Neto, J. R. T.; Dixon, S.; D'Olivo, J. C.; Estrada, J.; Fernandez Moroni, G.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Lawson, I.; Liao, J.; López, M.; Molina, J.; Moreno-Granados, G.; Pena, J.; Privitera, P.; Sarkis, Y.; Scarpine, V.; Schwarz, T.; Sofo Haro, M.; Tiffenberg, J.; Torres Machado, D.; Trillaud, F.; Yol, X.; Zhou, J.

    2016-05-01

    DAMIC (Dark Matter in CCDs) is an experiment searching for dark matter particles employing fully-depleted charge-coupled devices. Using the bulk silicon which composes the detector as target, we expect to observe coherent WIMP-nucleus elastic scattering. Although located in the SNOLAB laboratory, 2 km below the surface, the CCDs are not completely free of radioactive contamination, in particular coming from radon daughters or from the detector itself. We present novel techniques for the measurement of the radioactive contamination in the bulk silicon and on the surface of DAMIC CCDs. Limits on the Uranium and Thorium contamination as well as on the cosmogenic isotope 32 Si, intrinsically present on the detector, were performed. We have obtained upper limits on the 238 TJ (232 Th) decay rate of 5 (15) kg_1 d_1 at 95% CL. Pairs of spatially correlated electron tracks expected from 32 Si-32 P and 210 Pb-210 Bi beta decays were also measured. We have found a decay rate of 80+l10 -65 kg_1 d_1 for 32 Si and an upper limit of - 35 kg-1 d-1 for 210 Pb, both at 95% CL.

  4. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    NASA Astrophysics Data System (ADS)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  5. Tannic acid for remediation of historically arsenic-contaminated soils.

    PubMed

    Gusiatin, Zygmunt Mariusz; Klik, Barbara; Kulikowska, Dorota

    2017-12-22

    Soil washing effectively and permanently decreases soil pollution. Thus, it can be considered for the removal of the most toxic elements, for example arsenic (As). In this study, historically As-contaminated soils (2041-4294 mg/kg) were remediated with tannic acid (TA) as the washing agent. The scope of this study included optimization of the operational conditions of As removal, determination of As distribution in soil before and after double soil washing, and measurement of TA loss during washing. The optimum conditions for As removal were 4% TA, pH 4 and 24 h washing time. The average As removal after single and double washings was 38% and 63%, respectively. TA decreased As content in amorphous and poorly crystalline oxides by >90%. Although TA increased the amount of As in the easily mobilizable As fraction, the stability of As in washed soils increased, with reduced partition indexes of 0.52-0.66 after washing. The maximum capacity of the soils to adsorb TA (q max ) was 50.2-70.4 g C/kg. TA sorption was higher at alkaline than at acidic conditions. Only TA removes As from soils effectively if the proportion of As in amorphous and poorly crystalline oxides is high. Thus, it can be considered for remediation of historically contaminated soils.

  6. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils

    PubMed Central

    Marañón, Teodoro; Navarro-Fernández, Carmen M.; Domínguez, María T.; Alegre, José M.; Robinson, Brett; Murillo, José M.

    2017-01-01

    Soil pollution by trace elements (TEs) from mining and industrial activity is widespread and presents a risk to humans and ecosystems. The use of trees to immobilize TEs (phytostabilization) is a low-cost and effective method of soil remediation. We aimed to determine the chemical composition of leaves and flower buds of Eucalyptus camaldulensis in seven sites along the Guadiamar River valley (SW Spain), an area contaminated by a mine-spill in 1998. E. camaldulensis trees in the spill-affected area and adjacent non affected areas were growing on a variety of soils with pH from 5.6 to 8.1 with low concentration of plant nutrients. The spill affected soils contained up to 1069 mg kg-1 of As and 4086 mg kg-1 of Pb. E. camaldulensis tolerated elevated TE concentrations in soil and, compared to other species growing in the same environment, had low TE concentrations in the aerial portions. Besides tolerance to soil contamination, E. camaldulensis had low bioaccumulation coefficients for soil contaminants. TE concentrations in the aboveground portions were below levels reported to be toxic to plants or ecosystems. Flower buds had even lower TE concentrations than leaves. Despite the relatively low concentration of TEs in leaves they were significantly correlated with the soil extractable (0.01 M CaCl2) Cd, Mn and Zn (but not Cu and Pb). The general features of this tree species: tolerance to impoverished and contaminated soils, fast growth and deep root system, and low transfer of TEs from soil to aboveground organs makes it suitable for phytostabilization of soils contaminated by TEs. In addition, eucalyptus leaves could be used for biomonitoring the soil extractability of Cd, Mn and Zn but not Cu or Pb. PMID:28666017

  7. Potential of Eucalyptus camaldulensis for phytostabilization and biomonitoring of trace-element contaminated soils.

    PubMed

    Madejón, Paula; Marañón, Teodoro; Navarro-Fernández, Carmen M; Domínguez, María T; Alegre, José M; Robinson, Brett; Murillo, José M

    2017-01-01

    Soil pollution by trace elements (TEs) from mining and industrial activity is widespread and presents a risk to humans and ecosystems. The use of trees to immobilize TEs (phytostabilization) is a low-cost and effective method of soil remediation. We aimed to determine the chemical composition of leaves and flower buds of Eucalyptus camaldulensis in seven sites along the Guadiamar River valley (SW Spain), an area contaminated by a mine-spill in 1998. E. camaldulensis trees in the spill-affected area and adjacent non affected areas were growing on a variety of soils with pH from 5.6 to 8.1 with low concentration of plant nutrients. The spill affected soils contained up to 1069 mg kg-1 of As and 4086 mg kg-1 of Pb. E. camaldulensis tolerated elevated TE concentrations in soil and, compared to other species growing in the same environment, had low TE concentrations in the aerial portions. Besides tolerance to soil contamination, E. camaldulensis had low bioaccumulation coefficients for soil contaminants. TE concentrations in the aboveground portions were below levels reported to be toxic to plants or ecosystems. Flower buds had even lower TE concentrations than leaves. Despite the relatively low concentration of TEs in leaves they were significantly correlated with the soil extractable (0.01 M CaCl2) Cd, Mn and Zn (but not Cu and Pb). The general features of this tree species: tolerance to impoverished and contaminated soils, fast growth and deep root system, and low transfer of TEs from soil to aboveground organs makes it suitable for phytostabilization of soils contaminated by TEs. In addition, eucalyptus leaves could be used for biomonitoring the soil extractability of Cd, Mn and Zn but not Cu or Pb.

  8. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    PubMed

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  9. Assessment of soil-gas and soil contamination at the Patterson Anti-Tank Range, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the Patterson Anti-Tank Range at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas samplers from the area estimated to be the Patterson Anti-Tank Range and in the hyporheic zone and floodplain of Brier Creek. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers in the hyporheic zone and floodplain of Brier Creek contained total petroleum hydrocarbons, benzene, octane, and pentadecane concentrations above method detection levels. All soil-gas samplers within the boundary of the Patterson Anti-Tank Range contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler located near the middle of the site and near the remnants of a manmade earthen mound and trench. The highest toluene mass detected was 1.04 micrograms and was located in the center of the Patterson Anti-Tank Range and coincides with a manmade earthen mound. Some soil-gas samplers installed detected undecane masses greater than the method detection level of 0.04 microgram, with the highest detection of soil-gas undecane mass of 58.64 micrograms collected along the southern boundary of the site. Some soil-gas samplers were installed in areas of high-contaminant mass to assess for explosives and chemical agents. Explosives or chemical agents were not detected above their respective method detection levels for all soil-gas samplers installed.

  10. Impacts of road salts on leaching behavior of lead contaminated soil.

    PubMed

    Wu, Jingjing; Kim, Hwidong

    2017-02-15

    Research was conducted to explore the effects of road salts on lead leaching from lead contaminated soil samples that were collected in an old residence area in Erie, PA. The synthetic precipitate leaching procedure (SPLP) test was employed to evaluate lead leaching from one of the lead contaminated soils in the presence of various levels of road salts (5%, 10%, 20%, 30% and 40%). The results of the leaching test showed that lead leaching dramatically increased as the road salt content increased as a result of the formation of lead-chloride complexes, but different lead leaching patterns were observed in the presence of NaCl- and CaCl 2 -based road salts at a high content of road salts (>20%). Additional leaching tests that include 30% road salts and different soil samples showed a variety of leaching patterns by soil samples. The sequential extraction of each soil sample showed that a high fraction of organic matter bound lead was associated with lead contamination. The higher the fraction of organic matter bound lead contained in soil, the greater the effects of calcium on reducing lead leaching, observations showed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessment and Comparison of Electrokinetic and Electrokinetic-bioremediation Techniques for Mercury Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Farhana, S. M. S.

    2016-11-01

    Landfills are major sources of contamination due to the presence of harmful bacteria and heavy metals. Electrokinetic-Bioremediation (Ek-Bio) is one of the techniques that can be conducted to remediate contaminated soil. Therefore, the most prominent bacteria from landfill soil will be isolated to determine their optimal conditions for culture and growth. The degradation rate and the effectiveness of selected local bacteria were used to reduce soil contamination. Hence, this enhances microbiological activities to degrade contaminants in soil and reduce the content of heavy metals. The aim of this study is to investigate the ability of isolated bacteria (Lysinibacillus fusiformis) to remove mercury in landfill soil. 5 kg of landfill soil was mixed with deionized water to make it into slurry condition for the purpose of electrokinetic and bioremediation. This remediation technique was conducted for 7 days by using 50 V/m of electrical gradient and Lysinibacillus fusiformis bacteria was applied at the anode reservoir. The slurry landfill soil was located at the middle of the reservoir while distilled water was placed at the cathode of reservoir. After undergoing treatment for 7 days, the mercury analyzer showed that there was a significant reduction of approximately up to 78 % of mercury concentration for the landfill soil. From the results, it is proven that electrokinetic bioremediation technique is able to remove mercury within in a short period of time. Thus, a combination of Lysinibacillus fusiformis and electrokinetic technique has the potential to remove mercury from contaminated soil in Malaysia.

  12. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  13. Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.

    PubMed

    Rahman, M S; Clark, M W; Yee, L H; Comarmond, M J; Payne, T E; Kappen, P; Mokhber-Shahin, L

    2017-02-01

    Historic arsenic contamination of soils occurs throughout the world from mining, industrial and agricultural activities. In Australia, the control of cattle ticks using arsenicals from the late 19th to mid 20th century has led to some 1600 contaminated sites in northern New South Wales. The effect of aging in As-mobility in two dip-site soil types, ferralitic and sandy soils, are investigated utilizing isotopic exchange techniques, and synchrotron X-ray adsorption spectroscopy (XAS). Findings show that historic soil arsenic is highly bound to the soils with >90% irreversibly bound. However, freshly added As (either added to historically loaded soils or pristine soils) has a significantly higher degree of As-accessibility. XAS data indicates that historic soil arsenic is dominated as Ca- (svenekite, & weilite), Al-(mansfieldite), and Fe- (scorodite) like mineral precipitates, whereas freshly added As is dominated by mineral adsorption surfaces, particularly the iron oxy-hydroxides (goethite and hematite), but also gibbsite and kaolin surfaces. SEM data further confirmed the presence of scorodite and mansfieldite formation in the historic contaminated soils. These data suggest that aging of historic soil-As has allowed neoformational mineral recrystallisation from surface sorption processes, which greatly reduces As-mobility and accessibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fusing chlorophyll fluorescence and plant canopy reflectance to detect TNT contamination in soils

    NASA Astrophysics Data System (ADS)

    Naumann, Julie C.; Rubis, Kathryn; Young, Donald R.

    2010-04-01

    TNT is released into the soil from many different sources, especially from military and mining activities, including buried land mines. Vegetation may absorb explosive residuals, causing stress and by understanding how plants respond to energetic compounds, we may be able to develop non-invasive techniques to detect soil contamination. The objectives of our study were to examine the physiological response of plants grown in TNT contaminated soils and to use remote sensing methods to detect uptake in plant leaves and canopies in both laboratory and field studies. Differences in physiology and light-adapted fluorescence were apparent in laboratory plants grown in N enriched soils and when compared with plants grown in TNT contaminated soils. Several reflectance indices were able to detect TNT contamination prior to visible signs of stress, including the fluorescence-derived indices, R740/R850 and R735/R850, which may be attributed to transformation and conjugation of TNT metabolites with other compounds. Field studies at the Duck, NC Field Research Facility revealed differences in physiological stress measures, and leaf and canopy reflectance when plants growing over suspected buried UXOs were compared with reference plants. Multiple reflectance indices indicated stress at the suspected contaminated sites, including R740/R850 and R735/R850. Under natural conditions of constant leaching of TNT into the soil, TNT uptake would be continuous in plants, potentially creating a distinct signature from remotely sensed vegetation. We may be able to use remote sensing of plant canopies to detect TNT soil contamination prior to visible signs.

  15. Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons.

    PubMed

    Vidonish, Julia E; Zygourakis, Kyriacos; Masiello, Caroline A; Gao, Xiaodong; Mathieu, Jacques; Alvarez, Pedro J J

    2016-03-01

    Pyrolysis of contaminated soils at 420 °C converted recalcitrant heavy hydrocarbons into "char" (a carbonaceous material similar to petroleum coke) and enhanced soil fertility. Pyrolytic treatment reduced total petroleum hydrocarbons (TPH) to below regulatory standards (typically <1% by weight) within 3 h using only 40-60% of the energy required for incineration at 600-1200 °C. Formation of polycyclic aromatic hydrocarbons (PAHs) was not observed, with post-pyrolysis levels well below applicable standards. Plant growth studies showed a higher biomass production of Arabidopsis thaliana and Lactuca sativa (Simpson black-seeded lettuce) (80-900% heavier) in pyrolyzed soils than in contaminated or incinerated soils. Elemental analysis showed that pyrolyzed soils contained more carbon than incinerated soils (1.4-3.2% versus 0.3-0.4%). The stark color differences between pyrolyzed and incinerated soils suggest that the carbonaceous material produced via pyrolysis was dispersed in the form of a layer coating the soil particles. Overall, these results suggest that soil pyrolysis could be a viable thermal treatment to quickly remediate soils impacted by weathered oil while improving soil fertility, potentially enhancing revegetation.

  16. Testing amendments for remediation of military range contaminated soil.

    PubMed

    Siebielec, Grzegorz; Chaney, Rufus L

    2012-10-15

    Military range soils are often strongly contaminated with metals. Information on the effectiveness of remediation of these soils is scarce. We tested the effectiveness of compost and mineral treatments for remediation and revegetation of military range soil collected in Aberdeen, MD. The soil was barren due to zinc (Zn) phytotoxicity while lead (Pb) posed a substantial risk to soil biota, wildlife and humans through various pathways. Seven treatments were tested: untreated control, agricultural NPK fertilization, high phosphate fertilization plus agricultural rates of NK, CaCO(3), "Orgro" biosolid compost, "Orgro" + CaCO(3), "Orgro" + CaCO(3) + Mn sulfate. All compost treatments alleviated Zn phytotoxicity to tall fescue; however compost combined with liming reduced plant Zn content up to 158-162 mg kg(-1). Compost added with lime reduced Pb in-vitro bioaccessibility from 32.5 to 20.4% of total Pb and was the most effective among the tested treatments. The study revealed the effectiveness of biosolids compost and lime mixture in the rapid stabilization of metals and revegetation of military range contaminated soils. The persistence of the remediation needs to be, however, confirmed in the long-term field study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    PubMed

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  18. Soil biotransformation of thiodiglycol, the hydrolysis product of mustard gas: understanding the factors governing remediation of mustard gas contaminated soil.

    PubMed

    Li, Hong; Muir, Robert; McFarlane, Neil R; Soilleux, Richard J; Yu, Xiaohong; Thompson, Ian P; Jackman, Simon A

    2013-02-01

    Thiodiglycol (TDG) is both the precursor for chemical synthesis of mustard gas and the product of mustard gas hydrolysis. TDG can also react with intermediates of mustard gas degradation to form more toxic and/or persistent aggregates, or reverse the pathway of mustard gas degradation. The persistence of TDG have been observed in soils and in the groundwater at sites contaminated by mustard gas 60 years ago. The biotransformation of TDG has been demonstrated in three soils not previously exposed to the chemical. TDG biotransformation occurred via the oxidative pathway with an optimum rate at pH 8.25. In contrast with bacteria isolated from historically contaminated soil, which could degrade TDG individually, a consortium of three bacterial strains isolated from the soil never contaminated by mustard gas was able to grow on TDG in minimal medium and in hydrolysate derived from an historical mustard gas bomb. Exposure to TDG had little impacts on the soil microbial physiology or on community structure. Therefore, the persistency of TDG in soils historically contaminated by mustard gas might be attributed to the toxicity of mustard gas to microorganisms and the impact to soil chemistry during the hydrolysis. TDG biodegradation may form part of a remediation strategy for mustard gas contaminated sites, and may be enhanced by pH adjustment and aeration.

  19. Enzymatic functional stability of Zn-contaminated field-collected soils: an ecotoxicological perspective.

    PubMed

    Lessard, Isabelle; Sauvé, Sébastien; Deschênes, Louise

    2014-06-15

    Functional stability (FS) is an ecosystem attribute that is increasingly promoted in soil health assessment. However, FS is currently assessed comparatively, and it is therefore impossible to generate toxicity parameters. Additionally, the FS scores in the literature do not consider site and contamination history within the score. To address these issues, three new FS scores adapted to an ecotoxicological context and based on the Relative Soil Stability Index (RSSI) method were developed. The aim of the study was then to determine the FS score(s) that best describe the toxicity of metal-contaminated field-collected soils. Twenty pairs of Zn-contaminated soils (contaminated and reference soils) were collected on the field, and their enzymatic FS (arylsulfatase, protease, phosphatase and urease) and metal fractions (total and bioavailable) were analyzed. New RSSI-based and existing FS scores were calculated for each enzyme and correlated to the Zn fractions. One of the new RSSI-based scores was well correlated with the bioavailable labile Zn concentration for the arylsulfatase, phosphatase and urease (coefficients of regression higher than 0.50). Furthermore, this FS score was not affected by the soil organic matter and depended little on other soil properties. Other FS scores were correlated to labile Zn for only one enzyme, which varied according to the score. The new RSSI-based score thus better attributed Zn toxicity to field-collected soils than other FS scores. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    PubMed

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  1. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. EVALUATION OF SOLIDIFICATION/STABILIZATION AS A BEST DEMONSTRATED AVAILABLE TECHNOLOGY FOR CONTAMINATED SOILS

    EPA Science Inventory

    This project involved the evaluation of solidification/stabilization technology as a BDAT for contaminated soil. Three binding agents were used on four different synthetically contaminated soils. Performance evaluation data included unconfined compressive strength (UCS) and the T...

  3. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  4. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  5. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    USDA-ARS?s Scientific Manuscript database

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  6. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.

    PubMed

    Wei, Ran; Ni, Jinzhi; Li, Xiaoyan; Chen, Weifeng; Yang, Yusheng

    2017-03-01

    Pot experiments were used to compare the dissipation and phytoremediation effect of alfalfa (Medicago sativa L.) for polycyclic aromatic hydrocarbons (PAHs) in a freshly spiked soil and two field-contaminated soils with different soil organic carbon (SOC) contents (Anthrosols, 1.41% SOC; Phaeozems, 8.51% SOC). In spiked soils, the dissipation rates of phenanthrene and pyrene were greater than 99.5 and 94.3%, respectively, in planted treatments and 95.0 and 84.5%, respectively, in unplanted treatments. In field-contaminated Anthrosols, there were limited but significant reductions of 10.2 and 15.4% of total PAHs in unplanted and planted treatments, respectively. In field-contaminated Phaeozems, there were no significant reductions of total PAHs in either unplanted or planted treatments. A phytoremediation effect was observed for the spiked soils and the Anthrosols, but not for the Phaeozems. The results indicated that laboratory tests with spiked soils cannot reflect the real state of field-contaminated soils. Phytoremediation efficiency of PAHs in field-contaminated soils was mainly determined by the content of SOC. Phytoremediation alone has no effect on the removal of PAHs in field-contaminated soils with high SOC content.

  7. Psychrotolerant bacteria for remediation of oil-contaminated soils in the Arctic

    NASA Astrophysics Data System (ADS)

    Svarovskaya, L. I.; Altunina, L. K.

    2017-12-01

    Samples of oil-contaminated peat soil are collected in the region of the Barents Sea in Arctic Kolguyev Island. A model experiment on biodegradation of polluting hydrocarbons by natural microflora exhibiting psychrophilic properties is carried out at +10°C. The geochemical activity of pure hydrocarbon-oxidizing Acinetobacter, Pseudomonas, Bacillus and Rhodococcus cultures isolated from the soil is studied at a lower temperature. The concentration of soil contamination is determined within the range 18-57 g/kg. The biodegradation of oil by natural microflora is 60% under the conditions of a model experiment.

  8. Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia

    NASA Astrophysics Data System (ADS)

    Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.

    2013-12-01

    As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine

  9. Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.

    PubMed

    Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun

    2016-09-14

    Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.

  10. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  11. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    PubMed

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  12. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  13. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    PubMed

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  14. Surfactant flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil.

    PubMed

    Pei, Guangpeng; Zhu, Yuen; Cai, Xiatong; Shi, Weiyu; Li, Hua

    2017-10-01

    Surfactant-enhanced remediation is used to treat dichlorobenzene (DCB) contaminated soil. In this study, soil column experiments were conducted to investigate the removal efficiencies of o-dichlorobenzene (o-DCB) and p-dichlorobenzene (p-DCB) from contaminated soil using micellar solutions of biosurfactants (saponin, alkyl polyglycoside) compare to a chemically synthetic surfactant (Tween 80). Leachate was collected and analyzed for o-DCB and p-DCB content. In addition, soil was analyzed to explore the effect of surfactants on soil enzyme activities. Results showed that the removal efficiency of o-DCB and p-DCB was highest for saponin followed by alkyl polyglycoside and Tween 80. The maximum o-DCB and p-DCB removal efficiencies of 76.34% and 80.43%, respectively, were achieved with 4 g L -1 saponin solution. However, an opposite result was observed in the cumulative mass of o-DCB and p-DCB in leachate. The cumulative extent of o-DCB and p-DCB removal by the biosurfactants saponin and alkyl polyglycoside was lower than that of the chemically synthetic surfactant Tween 80 in leachate. Soil was also analyzed to explore the effect of surfactants on soil enzyme activities. The results indicated that surfactants were potentially effective in facilitating soil enzyme activities. Thus, it was confirmed that the biosurfactants saponin and alkyl polyglycoside could be used for remediation of o-DCB and p-DCB contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    EPA Science Inventory

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  16. Width and center-axis location of the radioactive plume that passed over Dolon and nearby villages on the occasion of the first USSR A-bomb test in 1949.

    PubMed

    Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu

    2005-12-01

    In relation to the efforts to reconstruct the radiation dose in Dolon village, which was affected by the first USSR atomic bomb test in 1949 at the Semipalatinsk nuclear test site, the width and the center-axis location of the radioactive plume were investigated based on the soil contamination data around Dolon and the nearby villages. Assuming that the radioactive plume passed over along a straight line from the ground zero point to this area, the spatial distributions of soil contamination were plotted as a function of the perpendicular distance from the supposed center-axis of the plume. In total 83 and 52 soil contamination data were available for 137Cs and 239,240Pu, respectively. The plotted distribution formed a peak-like shape both for 137Cs and 239,240Pu. A Gaussian function drawn so as to envelop the points plotted for 239,240Pu indicated that the central part of the radioactive plume passed over the residential area of Dolon with a sigma value of 1.5 km. Additional soil contamination data around Dolon and other villages are necessary for more detailed discussion.

  17. Impacts of soil petroleum contamination on nutrient release during litter decomposition of Hippophae rhamnoides.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Yu, Qi; Liu, Xiaobo; Liang, Xiao

    2016-03-01

    Petroleum exploitation causes contamination of shrub lands close to oil wells. Soil petroleum contamination affects nutrient release during the litter decomposition of shrubs, which influences nutrient recycling and the maintenance of soil fertility. Hence, this contamination may reduce the long-term growth and stability of shrub communities and consequently, the effects of phytoremediation. Fresh foliar litter of Hippophae rhamnoides, a potential phytoremediating species, was collected for this study. The litter was placed in litterbags and then buried in different petroleum-polluted soil media (the petroleum concentrations were 15, 30, and 45 g kg(-1) dry soil, which were considered as slightly, moderately and seriously polluted soil, respectively) for a decomposition test. The impacts of petroleum contamination on the release of nutrients (including N, P, K, Cu, Zn, Fe, Mn, Ca and Mg) were assessed. The results showed that (1) after one year of decomposition, the release of all nutrients was accelerated in the slightly polluted soil. In the moderately polluted soil, P release was accelerated, while Cu, Zn and Mn release was inhibited. In the seriously polluted soil, Cu and Zn release was accelerated, while the release of the other nutrients was inhibited. (2) The effect of petroleum on nutrient release from litter differed in different periods during decomposition; this was mainly due to changes in soil microorganisms and enzymes under the stress of petroleum contamination. (3) To maintain the nutrient cycling and the soil fertility of shrub lands, H. rhamnoides is only suitable for phytoremediation of soils containing less than 30 g kg(-1) of petroleum.

  18. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  19. Soil matrix tracer contamination and canopy recycling did not impair ¹³CO₂ plant-soil pulse labelling experiments.

    PubMed

    Barthel, Matthias; Sturm, Patrick; Knohl, Alexander

    2011-09-01

    When conducting (13)CO(2) plant-soil pulse labelling experiments, tracer material might cause unwanted side effects which potentially affect δ(13)C measurements of soil respiration (δ(13)C(SR)) and the subsequent data interpretation. First, when the soil matrix is not isolated from the atmosphere, contamination of the soil matrix with tracer material occurs leading to a physical back-diffusion from soil pores. Second, when using canopy chambers continuously, (13)CO(2) is permanently re-introduced into the atmosphere due to leaf respiration which then aids re-assimilation of tracer material by the canopy. Accordingly, two climate chamber experiments on European beech saplings (Fagus sylvatica L.) were conducted to evaluate the influence of soil matrix (13)CO(2) contamination and canopy recycling on soil (13)CO(2) efflux during (13)CO(2) plant-soil pulse labelling experiments. For this purpose, a combined soil/canopy chamber system was developed which separates soil and canopy compartments in order to (a) prevent diffusion of (13)C tracer into the soil chamber during a (13)CO(2) canopy pulse labelling and (b) study stable isotope processes in soil and canopy individually and independently. In combination with laser spectrometry measuring CO(2) isotopologue mixing ratios at a rate of 1 Hz, we were able to measure δ(13)C in canopy and soil at very high temporal resolution. For the soil matrix contamination experiment, (13)CO(2) was applied to bare soil, canopy only or, simultaneously, to soil and canopy of the beech trees. The obtained δ(13)C(SR) fluxes from the different treatments were then compared with respect to label re-appearance, first peak time and magnitude. By determining the δ(13)C(SR) decay of physical (13)CO(2) back-diffusion from bare soils (contamination), it was possible to separate biological and physical components in δ(13)C(SR) of a combined flux of both. A second pulse labelling experiment, with chambers permanently enclosing the canopy

  20. US Food and Drug Administration draft recommendations on radioactive contamination of food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.L.

    Recommendations on accidental radioactive contamination of human food were issued in 1982 by the Food and Drug Administration (FDA). The recommendations provided guidance to State and local government officials in the exercise of their respective authorities, and were applicable to emergency response planning and to the conduct of radiation protection activities associated with the production, processing, distribution, and use of human food accidentally contaminated with radioactive material. Review of the 1982 FDA recommendations, stimulated by the events following the 1986 accident at Chernobyl, indicated that it would be appropriate to update the recommendations to incorporate newer scientific information and radiationmore » protection philosophy, to include experience gained since 1982, and to take into account international advances. This paper presents a brief outline of the FDA`s approach to its draft revision. the most recent draft was circulated for interagency review in November 1994. Modification made in response to the comments received are included in this paper. 20 refs., 6 tabs.« less

  1. Method of determining whether radioactive contaminants are inside or outside a structure

    DOEpatents

    Lattin, Kenneth R.

    1977-01-01

    A measure is obtained of the relative quantities of radioactive material inside and outside a structure such as a pipe by obtaining two spectra of gamma radiation on a dummy structure of the same shape and composition. A first spectrum is obtained with a quantity of the radioactive element to be measured located inside the structure and a second spectrum is obtained with a quantity of the same contaminant located outside the structure. The two spectra are normalized to the same equivalent value in a portion of the spectrum that does not reflect the presence of gamma rays resulting from Compton scattering in the structure. Comparison of that portion of the spectra obtained where Compton scattering is a factor gives a measure of the relative amounts of contaminants inside and outside the structure on a spectrum obtained from a test structure. The invention may also be practiced by obtaining a plurality of spectra at varying known concentrations inside and outside the dummy structure.

  2. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    PubMed

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  3. Three-dimensional data interpolation for environmental purpose: lead in contaminated soils in southern Brazil.

    PubMed

    Piedade, Tales Campos; Melo, Vander Freitas; Souza, Luiz Cláudio Paula; Dieckow, Jeferson

    2014-09-01

    Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L(-1) Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg(-1)) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.

  4. [Parameters optimization and cleaning efficiency evaluation of attrition scrubbing remediation of Pb-contaminated soil].

    PubMed

    Yang, Wen; Huang, Jin-lou; Peng, Hui-qing; Li, Si-tuo

    2013-09-01

    Attrition scrubbing was used to remediate lead contaminated-site soil, and the main purpose was to remove fine particles and lead contaminants from the surface of sand. The optimal parameters of attrition scrubbing were determined by orthogonal experiment, and three soil samples with different lead concentration were subjected to attrition scrubbing experiments. The results showed that the optimal scrubbing parameters were: a solid ratio of 70% dry matter, a temperature of 25 degrees C, an attrition time of 30 min, and an attrition speed of 1200 r x min(-1). Before attrition scrubbing, the screening and analysis of soil showed that in all three soil samples, lead was mainly enriched on sand and fine particles, and the distribution of lead was highly correlated to the organic matter. After attrition scrubbing, the washing efficiency of the original state lead contaminated sand soil in triplicates was 67.61%, 31.71% and 41.01%, respectively, which indicates that attrition scrubbing can remove part of the fine soil and lead contaminants from the surface of sand, to accomplish the purpose of pollutants enrichment. Scanning electron microscopy (SEM) analysis showed that the sand surface became smooth after attrition scrubbing. The results above show that attrition scrubbing has a good washing effect for the remediation of lead contaminated sand soil.

  5. Ex situ bioremediation of oil-contaminated soil.

    PubMed

    Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung

    2010-04-15

    An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  6. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant

    PubMed Central

    Marui, Atsunao; Gallardo, Adrian H.

    2015-01-01

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima. PMID:26197330

  7. Managing Groundwater Radioactive Contamination at the Daiichi Nuclear Plant.

    PubMed

    Marui, Atsunao; Gallardo, Adrian H

    2015-07-21

    The Great East Japan Earthquake and tsunami of March 2011 severely damaged three reactors at the Fukushima Daiichi nuclear power station, leading to a major release of radiation into the environment. Groundwater flow through these crippled reactors continues to be one of the main causes of contamination and associated transport of radionuclides into the Pacific Ocean. In this context, a number of strategies are being implemented to manage radioactive pollution of the water resources at the nuclear plant site. Along with water treatment and purification, it is critical to restrict the groundwater flow to and from the reactors. Thus, the devised strategies combine walls containment, bores abstraction, infiltration control, and the use of tanks for the temporary storage of contaminated waters. While some of these techniques have been previously applied in other environments, they have never been tested at such a large scale. Therefore, their effectiveness remains to be seen. The present manuscript presents an overview of the methods being currently implemented to manage groundwater contamination and to mitigate the impact of hydrological pathways in the dispersion of radionuclides at Fukushima.

  8. Combination of microbial oxidation and biogenic schwertmannite immobilization: A potential remediation for highly arsenic-contaminated soil.

    PubMed

    Yang, Zhihui; Wu, Zijian; Liao, Yingping; Liao, Qi; Yang, Weichun; Chai, Liyuan

    2017-08-01

    Here, a novel strategy that combines microbial oxidation by As(III)-oxidizing bacterium and biogenic schwertmannite (Bio-SCH) immobilization was first proposed and applied for treating the highly arsenic-contaminated soil. Brevibacterium sp. YZ-1 isolated from a highly As-contaminated soil was used to oxidize As(III) in contaminated soils. Under optimum culture condition for microbial oxidation, 92.3% of water-soluble As(III) and 84.4% of NaHCO 3 -extractable As(III) in soils were removed. Bio-SCH synthesized through the oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans immobilize As(V) in the contaminated soil effectively. Consequently, the combination of microbial oxidation and Bio-SCH immobilization performed better in treating the highly As-contaminated soil with immobilization efficiencies of 99.3% and 82.6% for water-soluble and NaHCO 3 -extractable total As, respectively. Thus, the combination can be considered as a green remediation strategy for developing a novel and valuable solution for As-contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content.

    PubMed

    Voegelin, Andreas; Tokpa, Gerome; Jacquat, Olivier; Barmettler, Kurt; Kretzschmar, Ruben

    2008-01-01

    We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.

  10. Assessing the Educational Needs of Urban Gardeners and Farmers on the Subject of Soil Contamination

    ERIC Educational Resources Information Center

    Harms, Ashley Marie Raes; Presley, DeAnn Ricks; Hettiarachchi, Ganga M.; Thien, Stephen J.

    2013-01-01

    Participation in urban agriculture is growing throughout the United States; however, potential soil contaminants in urban environments present challenges. Individuals in direct contact with urban soil should be aware of urban soil quality and soil contamination issues to minimize environmental and human health risks. The study reported here…

  11. Impact of Long-Term Diesel Contamination on Soil Microbial Community Structure

    PubMed Central

    Maphosa, Farai; Morillo, Jose A.; Abu Al-Soud, Waleed; Langenhoff, Alette A. M.; Grotenhuis, Tim; Rijnaarts, Huub H. M.; Smidt, Hauke

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation. PMID:23144139

  12. The effect on performance and biochemical parameters when soil was added to aflatoxin-contaminated poultry rations.

    PubMed

    Madden, U A; Stahr, H M; Stino, F K

    1999-08-01

    The effects of silty clay loam soil on the performance and biochemical parameters of chicks were investigated when the soil was added to aflatoxin B1 (AFB1)-contaminated diets. One hundred 14-d-old White Leghorn chicks were fed a control ration (clean corn), a low aflatoxin-contaminated ration (120 ng AFB1/g), a high aflatoxin-contaminated ration (700 ng AFB1/g), or high aflatoxin-contaminated rations (700 ng AFB1/g) +10% or 25% soil. Body weight, feed consumption and blood samples were monitored weekly. Decreased feed consumption, body weight gain and efficiency of feed utilization, increased SGOT and LDH activities, and cholesterol and triglyceride concentrations, and decreased uric acid concentrations and ALP activity were observed in the chicks fed the high aflatoxin-contaminated ration without soil. Hepatomegaly was prominent in chicks fed the high aflatoxin-contaminated ration without soil, and some livers had extensive hepatocyte vacuolation, hepatocellular swelling, fatty change and hydropic degeneration, and stained positive for fat accumulation. Addition of soil reduced the detrimental effects of AFB1 for some parameters, although the reduction was less when 10% soil was fed compared with the 25% soil feeding.

  13. Review on utilization of biochar for metal-contaminated soil and sediment remediation.

    PubMed

    Wang, Mingming; Zhu, Yi; Cheng, Lirong; Andserson, Bruce; Zhao, Xiaohui; Wang, Dayang; Ding, Aizhong

    2018-01-01

    Biochar is a carbon-neutral or even carbon-negative material produced through thermal decomposition of plant- and animal-based biomass under oxygen-limited conditions. Recently, there has been an increasing interest in the application of biochar as an adsorbent, soil ameliorant and climate mitigation approach in many types of applications. Metal-contaminated soil remediation using biochar has been intensively investigated in small-scale and pilot-scale trials with obtained beneficial results and multifaceted effects. But so far, the study and application of biochar in contaminated sediment management has been very limited, and this is also a worldwide problem. Nonetheless, there is reason to believe that the same multiple benefits can also be realized with these sediments due to similar mechanisms for stabilizing contaminants. This paper provides a review on current biochar properties and its use as a sorbent/amendment for metal-contaminated soil/sediment remediation and its effect on plant growth, fauna habits as well as microorganism communities. In addition, the use of biochar as a potential strategy for contaminated sediment management is also discussed, especially as regards in-situ planning. Finally, we highlight the possibility of biochar application as an effective amendment and propose further research directions to ensure the safe and sustainable use of biochar as an amendment for remediation of contaminated soil and sediment. Copyright © 2017. Published by Elsevier B.V.

  14. Deciphering biodegradable chelant-enhanced phytoremediation through microbes and nitrogen transformation in contaminated soils.

    PubMed

    Fang, Linchuan; Wang, Mengke; Cai, Lin; Cang, Long

    2017-06-01

    Biodegradable chelant-enhanced phytoremediation offers an alternative treatment technique for metal contaminated soils, but most studies to date have addressed on phytoextraction efficiency rather than comprehensive understanding of the interactions among plant, soil microbes, and biodegradable chelants. In the present study, we investigated the impacts of biodegradable chelants, including nitrilotriacetate, S,S-ethylenediaminedisuccinic acid (EDDS), and citric acid on soil microbes, nitrogen transformation, and metal removal from contaminated soils. The EDDS addition to soil showed the strongest ability to promote the nitrogen cycling in soil, ryegrass tissue, and microbial metabolism in comparison with other chelants. Both bacterial community-level physiological profiles and soil mass specific heat rates demonstrated that soil microbial activity was inhibited after the EDDS application (between day 2 and 10), but this effect completely vanished on day 30, indicating the revitalization of microbial activity and community structure in the soil system. The results of quantitative real-time PCR revealed that the EDDS application stimulated denitrification in soil by increasing nitrite reductase genes, especially nirS. These new findings demonstrated that the nitrogen release capacity of biodegradable chelants plays an important role in accelerating nitrogen transformation, enhancing soil microbial structure and activity, and improving phytoextraction efficiency in contaminated soil.

  15. Phytoremediation of Metal-Contaminated Soil for Improving Food Safety

    NASA Astrophysics Data System (ADS)

    Shilev, Stefan; Benlloch, Manuel; Dios-Palomares, R.; Sancho, Enrique D.

    The contamination of the environment is a serious problem which provokes great interest in our society and in the whole scientific community. The input of metals into soils has increased during the last few decades as a consequence of different human activities (storage of industrial and municipal wastes, burning of fuels, mining and wastewater treatments, functioning of non-ferrous-metal-producing smelters, etc.). Nowadays, this type of contamination is one of the most serious concerning the chronic toxic effect which it renders on human health and the environment. As a consequence of all these activities, a huge number of toxic metals and metalloids, such as Cu, Zn, Pb, Cd, Hg and As, among many others, have been accumulated in soils, reaching toxic values. Unfortunately, much contaminated land is still in use for crop production, despite the danger that the metal content poses.

  16. Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants.

    PubMed

    Cicatelli, Angela; Guarino, Francesco; Castiglione, Stefano

    2017-04-01

    Chromium (Cr) and copper (Cu) are pollutants with a strong environmental impact. "Green biotechnology" as phytoremediation represents a sustainability opportunity for soil reclamation. In this study, we evaluated the possibility to reclaim agricultural soils located in the Solofrana valley, contaminated by Cr or Cu. Chromium contamination derives by repeated flooding events of Solofrana rivers containing Cr because of leather tanning plants, while Cu soil pollution was due to the use of Cu-rich pesticides in agriculture. Both metals showed a very low bioavailability. In order to perform an assisted phytoremediation of polluted fields, we carried out a preliminary ex situ experimentation testing for the first time sunflowers (cv. Pretor) and chelants (ethylenediaminetetraacetic acid (EDTA) and/or ethylene diamine disuccinate (EDDS)), useful when metal bioavailability is low. No symptoms of toxicity were observed in sunflowers grown on both soils, while biomass was improved when EDDS was added. Cr and Cu bioavailability was only slightly enhanced by chelants at the end of the treatments. Both Cr and Cu were mainly accumulated in the roots; moreover, Cu was also translocated to the aboveground organs in the presence of EDTA. The ex situ experimentation demonstrated that assisted phytoremediation is a very slow process not useful in the case of persistent pollution.

  17. A new nuclide transport model in soil in the GENII-LIN health physics code

    NASA Astrophysics Data System (ADS)

    Teodori, F.

    2017-11-01

    The nuclide soil transfer model, originally included in the GENII-LIN software system, was intended for residual contamination from long term activities and from waste form degradation. Short life nuclides were supposed absent or at equilibrium with long life parents. Here we present an enhanced soil transport model, where short life nuclide contributions are correctly accounted. This improvement extends the code capabilities to handle incidental release of contaminant to soil, by evaluating exposure since the very beginning of the contamination event, before the radioactive decay chain equilibrium is reached.

  18. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    PubMed

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessment of soil contamination--a functional perspective.

    PubMed

    van Straalen, Nico M

    2002-01-01

    In many industrialized countries the use of land is impeded by soil pollution from a variety of sources. Decisions on clean-up, management or set-aside of contaminated land are based on various considerations, including human health risks, but ecological arguments do not have a strong position in such assessments. This paper analyses why this should be so, and what ecotoxicology and theoretical ecology can improve on the situation. It seems that soil assessment suffers from a fundamental weakness, which relates to the absence of a commonly accepted framework that may act as a reference. Soil contamination can be assessed both from a functional perspective and a structural perspective. The relationship between structure and function in ecosystems is a fundamental question of ecology which receives a lot of attention in recent literature, however, a general concept that may guide ecotoxicological assessments has not yet arisen. On the experimental side, a good deal of progress has been made in the development and standardized use of terrestrial model ecosystems (TME). In such systems, usually consisting of intact soil columns incubated in the laboratory under conditions allowing plant growth and drainage of water, a compromise is sought between field relevance and experimental manageability. A great variety of measurements can be made on such systems, including microbiological processes and activities, but also activities of the decomposer soil fauna. I propose that these TMEs can be useful instruments in ecological soil quality assessments. In addition a "bioinformatics approach" to the analysis of data obtained in TME experiments is proposed. Soil function should be considered as a multidimensional concept and the various measurements can be considered as indicators, whose combined values define the "normal operating range" of the system. Deviations from the normal operating range indicate that the system is in a condition of stress. It is hoped that more work

  20. Assessment of soil-gas and soil contamination at the South Prong Creek Disposal Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas and soil were assessed for contaminants at the South Prong Creek Disposal Area at Fort Gordon, Georgia, from October 2009 to September 2010. The assessment included identifying and delineating organic contaminants present in soil-gas and inorganic contaminants present in soil samples collected from the area estimated to be the South Prong Creek Disposal Area, including two seeps and the hyporheic zone. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. All soil-gas samplers in the two seeps and the hyporheic zone contained total petroleum hydrocarbons above the method detection level. The highest total petroleum hydrocarbon concentration detected from the two seeps was 54.23 micrograms per liter, and the highest concentration in the hyporheic zone was 344.41 micrograms per liter. The soil-gas samplers within the boundary of the South Prong Creek Disposal Area and along the unnamed road contained total petroleum hydrocarbon mass above the method detection level. The highest total petroleum hydrocarbon mass detected was 147.09 micrograms in a soil-gas sampler near the middle of the unnamed road that traverses the South Prong Creek Disposal Area. The highest undecane mass detected was 4.48 micrograms near the location of the highest total petroleum hydrocarbon mass. Some soil-gas samplers detected undecane mass greater than the method detection level of 0.04 micrograms, with the highest detection of toluene mass of 109.72 micrograms in the same location as the highest total petroleum hydrocarbon mass. Soil-gas samplers installed in areas of high contaminant mass had no detections of explosives and chemical agents above their respective method detection levels. Inorganic concentrations in five soil samples did not exceed regional screening levels established by the U.S. Environmental Protection Agency

  1. Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination

    PubMed Central

    Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun

    2016-01-01

    Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221

  2. Phytoremediation of contaminated soils and groundwater: lessons from the field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide anmore » overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).« less

  3. In-Situ Electrokinetic Remediation for Metal Contaminated Soils

    DTIC Science & Technology

    2001-03-01

    Press. Riddle, M. J. 1988. Patterns in the distribution of macrofauna! communities in coral reef sediments on the central Great Barrier Reef . Mar...acidified. This acidification results in solubilization of contaminants due to desorption and dissolution of species from soil. Once contaminants are...the north and east, the Pacific Ocean on the south and west, and a Ventura County Game Reserve on the west and northwest (Figure 6). The Navy has

  4. Sorption ability of the soil and its impact on environmental contamination

    PubMed Central

    Gargošová, Helena Zlámalová; Vávrová, Milada

    2014-01-01

    From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897

  5. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.

    PubMed

    Cheng, Lijuan; Wang, Yanan; Cai, Zhang; Liu, Jie; Yu, Binbin; Zhou, Qixing

    2017-03-04

    As a green remediation technology, phytoremediation is becoming one of the most promising methods for treating petroleum hydrocarbons (PHCs)-contaminated soil. Pot culture experiments were conducted in this study to investigate phytoremediation potential of two representative Iridaceae species (Iris dichotoma Pall. and Iris lactea Pall.) in remediation of petroleum hydrocarbon-contaminated saline-alkali soil from the Dagang Oilfield in Tianjin, China. The results showed that I. lactea was more endurable to extremely high concentration of PHCs (about 40,000 mg/kg), with a relatively high degradation rate of 20.68%.The degradation rate of total petroleum hydrocarbons (TPHs) in soils contaminated with 10,000 and 20,000 mg/kg of PHCs was 30.79% and 19.36% by I. dichotoma, and 25.02% and 19.35% by I. lactea, respectively, which improved by 10-60% than the unplanted controls. The presence of I. dichotoma and I. lactea promoted degradation of PHCs fractions, among which saturates were more biodegradable than aromatics. Adaptive specialization was observed within the bacterial community. In conclusion, phytoremediation by I. dichotoma should be limited to soils contaminated with ≤20,000 mg/kg of PHCs, while I. lactea could be effectively applied to phytoremediation of contaminated soils by PHCs with at least 40,000 mg/kg.

  6. Assessment of cyanide contamination in soils with a handheld mid-infrared spectrometer.

    PubMed

    Soriano-Disla, José M; Janik, Leslie J; McLaughlin, Michael J

    2018-02-01

    We examined the feasibility of using handheld mid-infrared (MIR) Fourier-Transform infrared (FT-IR) instrumentation for detecting and analysing cyanide (CN) contamination in field contaminated soils. Cyanide spiking experiments were first carried out, in the laboratory, to test the sensitivity of infrared Fourier transform (DRIFT) spectrometry to ferro- and ferricyanide compounds across a range of reference soils and minerals. Both benchtop and handheld diffuse reflectance infrared spectrometers were tested. Excellent results were obtained for the reference soils and minerals, with the MIR outperforming the near-infrared (NIR) range. Spectral peaks characteristic of the -C≡N group were observed near 2062 and 2118cm -1 in the MIR region for the ferro- and ferricyanide compounds spiked into soils/minerals, respectively. In the NIR region such peaks were observed near 4134 and 4220cm -1 . Cyanide-contaminated samples were then collected in the field and analyzed with the two spectrometers to further test the applicability of the DRIFT technique for soils containing aged CN residues. The prediction of total CN in dry and ground contaminated soils using the handheld MIR instrument resulted in a coefficient of determination (R 2 ) of 0.88-0.98 and root mean square error of the cross-validation (RMSE) of 21-49mgkg -1 for a CN range of 0-611mgkg -1 . A major peak was observed in the MIR at about 2092cm -1 which was attributed to "Prussian Blue" (Fe 4 [Fe(CN) 6 ] 3 ·xH 2 O). These results demonstrate the potential of handheld DRIFT instrumentation as a promising alternative to the standard laboratory method to predict CN concentrations in contaminated field soils. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing newmore » and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.« less

  8. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    EPA Science Inventory

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  9. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenstern, M.Y.; Hueske, K.

    1995-05-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparingmore » the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940`s by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown.« less

  10. Laboratory and pilot-scale bioremediation of pentaerythritol tetranitrate (PETN) contaminated soil.

    PubMed

    Zhuang, Li; Gui, Lai; Gillham, Robert W; Landis, Richard C

    2014-01-15

    PETN (pentaerythritol tetranitrate), a munitions constituent, is commonly encountered in munitions-contaminated soils, and pose a serious threat to aquatic organisms. This study investigated anaerobic remediation of PETN-contaminated soil at a site near Denver Colorado. Both granular iron and organic carbon amendments were used in both laboratory and pilot-scale tests. The laboratory results showed that, with various organic carbon amendments, PETN at initial concentrations of between 4500 and 5000mg/kg was effectively removed within 84 days. In the field trial, after a test period of 446 days, PETN mass removal of up to 53,071mg/kg of PETN (80%) was achieved with an organic carbon amendment (DARAMEND) of 4% by weight. In previous laboratory studies, granular iron has shown to be highly effective in degrading PETN. However, for both the laboratory and pilot-scale tests, granular iron was proven to be ineffective. This was a consequence of passivation of the iron surfaces caused by the very high concentrations of nitrate in the contaminated soil. This study indicated that low concentration of organic carbon was a key factor limiting bioremediation of PETN in the contaminated soil. Furthermore, the addition of organic carbon amendments such as the DARAMEND materials or brewers grain, proved to be highly effective in stimulating the biodegradation of PETN and could provide the basis for full-scale remediation of PETN-contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in

  12. Evaluating cadmium bioavailability in contaminated rice paddy soils and assessing potential for contaminant immobilisation with biochar.

    PubMed

    Kosolsaksakul, Peerapat; Oliver, Ian W; Graham, Margaret C

    2018-06-01

    Cadmium (Cd) contaminated soils from the Mae Sot district in northwest Thailand, a region in which rice Cd concentrations often exceed health limits (0.4 mg/kg) set by the World Health Organisation, were examined for isotopically exchangeable Cd (Cd E values using a 111 Cd spike) to determine how this rates as a predictor of rice grain Cd in comparison with soil total Cd and solution extractable Cd (using the commonly applied BCR scheme and, in an attempt to distinguish carbonate bound forms, the Tessier soil sequential extraction scheme reagents). Step 1 of the BCR scheme (0.11 M CH 3 COOH) and step 1 of the Tessier scheme (1M MgCl 2 ) showed the highest R 2 values in regressions with rice Cd (91% and 90%, respectively), but all predictors were strongly linked to rice Cd (p < 0.001) and could be used for prediction purposes. One soil, of the six tested, was an exception to this, where all predictors over-estimated grain Cd by a factor of 2.5-5.7, suggesting that rice grain Cd had been restricted here by the differing flooding regime and subsequent changes to redox conditions. E values and Tessier step 1 extractions were closely related, indicating that these measurements access similar pools of soil Cd. Separately, the isotopic exchangeability (representing bioavailability) of Cd was also assessed in two soils amended with rice husk and miscanthus biochars (0, 1, 5, 10, 15 and 20% w/w) in order to assess the utility of the biochars as a soil amendment for immobilising Cd in situ. One soil showed significant reductions in Cd E value at 5% rice husk biochar addition and at 15% miscanthus biochar addition however, based on the E value-rice grain Cd regression relationship previously established, the E values in the amended soils still predicted for a rice Cd concentration above the health limit. In the second soil, neither of the biochars successfully reduced the Cd E value. This indicates that further work is needed to customise biochar properties to suit

  13. FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE

    EPA Science Inventory

    To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...

  14. Organic contamination and remediation in the agricultural soils of China: A critical review.

    PubMed

    Sun, Jianteng; Pan, Lili; Tsang, Daniel C W; Zhan, Yu; Zhu, Lizhong; Li, Xiangdong

    2018-02-15

    Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil. Copyright © 2017 Elsevier B

  15. Amounts and activity concentrations of radioactive wastes from the cleanup of large areas contaminated in nuclear accidents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.

    The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less

  16. Quantifying the dilution of the radiocesium contamination in Fukushima coastal river sediment (2011-2015)

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Laceby, J. Patrick; Onda, Yuichi; Wakiyama, Yoshifumi; Jaegler, Hugo; Lefèvre, Irène

    2016-10-01

    Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median - M - contribution of 73%, mean absolute deviation - MAD - of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.

  17. Crystal structure control of aluminized clay minerals on the mobility of caesium in contaminated soil environments

    NASA Astrophysics Data System (ADS)

    Dzene, Liva; Ferrage, Eric; Viennet, Jean-Christophe; Tertre, Emmanuel; Hubert, Fabien

    2017-02-01

    Radioactive caesium pollution resulting from Fukushima Dai-ichi and Chernobyl nuclear plant accidents involves strong interactions between Cs+ and clays, especially vermiculite-type minerals. In acidic soil environments, such as in Fukushima area, vermiculite is subjected to weathering processes, resulting in aluminization. The crystal structure of aluminized clays and its implications for Cs+ mobility in soils remain poorly understood due to the mixture of these minerals with other clays and organic matter. We performed acidic weathering of a vermiculite to mimic the aluminization process in soils. Combination of structure analysis and Cs+ extractability measurements show that the increase of aluminization is accompanied by an increase in Cs+ mobility. Crystal structure model for aluminized vermiculite is based on the interstratification of unaltered vermiculite layers and aluminized layers within the same particle. Cs+ in vermiculite layers is poorly mobile, while the extractability of Cs+ is greatly enhanced in aluminized layers. The overall reactivity of the weathered clay (cation exchange capacity, Cs+ mobility) is then governed by the relative abundance of the two types of layers. The proposed layer model for aluminized vermiculite with two coexisting populations of caesium is of prime importance for predicting the fate of caesium in contaminated soil environments.

  18. The inhalation of radioactive materials as related to hand contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.C.; Rohr, R.C.

    1953-09-15

    Tests performed to determine the hazard associated with the inhalation of radioactive materials as the result of smoking with contaminated hands indicate that for dry uranium compounds adhering to the palmar surfaces of the hands, approximately 1.0% of the material may be transferred to a cigarette, and that of this approximately 0.2% may appear in the smoke which is inhaled. Most of the contamination originally placed in a cigarette was found in the ash, and only 11% of the material was not recovered following burning; approximately half of this loss may be attributed to normal losses inherent in the analyticalmore » process, the recovery efficiency for which was found by supplementary experiments to be 95%.« less

  19. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    PubMed

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  20. An overview of electrokinetic soil flushing and its effect on bioremediation of hydrocarbon contaminated soil.

    PubMed

    Ramadan, Bimastyaji Surya; Sari, Gina Lova; Rosmalina, Raden Tina; Effendi, Agus Jatnika; Hadrah

    2018-07-15

    Combination of electrokinetic soil flushing and bioremediation (EKSF-Bio) technology has attracted many researchers attention in the last few decades. Electrokinetic is used to increase biodegradation rate of microorganisms in soil pores. Therefore, it is necessary to use solubilizing agents such as surfactants that can improve biodegradation process. This paper describes the basic understanding and recent development associated with electrokinetic soil flushing, bioremediation, and its combination as innovative hybrid solution for treating hydrocarbon contaminated soil. Surfactant has been widely used in many studies and practical applications in remediation of hydrocarbon contaminant, but specific review about those combination technology cannot be found. Surfactants and other flushing/solubilizing agents have significant effects to increase hydrocarbon remediation efficiency. Thus, this paper is expected to provide clear information about fundamental interaction between electrokinetic, flushing agents and bioremediation, principal factors, and an inspiration for ongoing and future research benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Soil and plant contamination with Mycobacterium avium subsp. paratuberculosis after exposure to naturally contaminated mouflon feces.

    PubMed

    Pribylova, Radka; Slana, Iva; Kaevska, Marija; Lamka, Jiri; Babak, Vladimir; Jandak, Jiri; Pavlik, Ivo

    2011-05-01

    The aim of this study was to demonstrate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in soil and colonization of different plant parts after deliberate exposure to mouflon feces naturally contaminated with different amounts of MAP. Samples of aerial parts of plants, their roots, and the soil below the roots were collected after 15 weeks and examined using IS900 real-time quantitative PCR (qPCR) and cultivation. Although the presence of viable MAP cells was not demonstrated, almost all samples were found to be positive using qPCR. MAP IS900 was not only found in the upper green parts, but also in the roots and soil samples (from 1.00 × 10(0) to 6.43 × 10(3)). The level of soil and plant contamination was influenced mainly by moisture, clay content, and the depth from which the samples were collected, rather than by the initial concentration of MAP in the feces at the beginning of the experiment.

  2. Experimental system to displace radioisotopes from upper to deeper soil layers: chemical research

    PubMed Central

    Cazzola, Pietro; Cena, Agostino; Ghignone, Stefano; Abete, Maria C; Andruetto, Sergio

    2004-01-01

    Background Radioisotopes are introduced into the environment following nuclear power plant accidents or nuclear weapons tests. The immobility of these radioactive elements in uppermost soil layers represents a problem for human health, since they can easily be incorporated in the food chain. Preventing their assimilation by plants may be a first step towards the total recovery of contaminated areas. Methods The possibility of displacing radionuclides from the most superficial soil layers and their subsequent stabilisation at lower levels were investigated in laboratory trials. An experimental system reproducing the environmental conditions of contaminated areas was designed in plastic columns. A radiopolluted soil sample was treated with solutions containing ions normally used in fertilisation (NO3-, NH4+, PO4--- and K+). Results Contaminated soils treated with an acid solution of ions NO3-, PO4--- and K+, undergo a reduction of radioactivity up to 35%, after a series of washes which simulate one year's rainfall. The capacity of the deepest soil layers to immobilize the radionuclides percolated from the superficial layers was also confirmed. Conclusion The migration of radionuclides towards deeper soil layers, following chemical treatments, and their subsequent stabilization reduces bioavailability in the uppermost soil horizon, preventing at the same time their transfer into the water-bearing stratum. PMID:15132749

  3. Initial-phase optimization for bioremediation of munition compound-contaminated soils.

    PubMed Central

    Funk, S B; Roberts, D J; Crawford, D L; Crawford, R L

    1993-01-01

    We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine by a procedure that produced anaerobic conditions in the soils and promoted the biodegradation of nitroaromatic contaminants. This procedure consisted of flooding the soils with 50 mM phosphate buffer, adding starch as a supplemental carbon substrate, and incubating under static conditions. Aerobic heterotrophs, present naturally in the soil or added as an inoculum, quickly removed the oxygen from the static cultures, creating anaerobic conditions. Removal of parent TNT molecules from the soil cultures by the strictly anaerobic microflora occurred within 4 days. The reduced intermediates formed from TNT and hexahydro-1,3,5-trinitro-1,3,5-triazine were removed from the cultures within 24 days, completing the first stage of remediation. The procedure was effective over a range of incubation temperatures, 20 to 37 degrees C, and was improved when 25 mM ammonium was added to cultures buffered with 50 mM potassium phosphate. Ammonium phosphate buffer (50 mM), however, completely inhibited TNT reduction. The optimal pH for the first stage of remediation was between 6.5 and 7.0. When soils were incubated under aerobic conditions or under anaerobic conditions at alkaline pHs, the TNT biodegradation intermediates polymerized. Polymerization was not observed at neutral to slightly acidic pHs under anaerobic conditions. Completion of the first stage of remediation of munition compound-contaminated soils resulted in aqueous supernatants that contained no munition residues or aminoaromatic compounds. PMID:8357251

  4. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  5. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    PubMed

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin

    2017-02-01

    Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.

    PubMed

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  8. Bio-augmentation and nutrient amendment decrease concentration of mercury in contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Andrews, Stuart; Venter, Henrietta; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-15

    Four mercury (Hg) contaminated soils with different pH (7.6, 8.5, 4.2 and 7.02) and total organic carbon contents (2.1, 2.2, 4 and 0.9%) were subjected to bioremediation utilizing a Hg volatilizing bacterial strain Sphingobium SA2 and nutrient amendment. In a field with ~280mg/kgHg, 60% of Hg was removed by bio-augmentation in 7days, and the removal was improved when nutrients were added. Whereas in artificially spiked soils, with ~100mg/kgHg, removal due to bio-augmentation was 33 to 48% in 14days. In the field contaminated soil, nutrient amendment alone without bio-augmentation removed 50% of Hg in 28days. Nutrient amendment also had an impact on Hg remediation in the spiked soils, but the best results were obtained when the strain and nutrients both were applied. The development of longer root lengths from lettuce and cucumber seeds grown in the remediated soils confirmed that the soil quality improved after bioremediation. This study clearly demonstrates the potential of Hg-reducing bacteria in remediation of Hg-contaminated soils. However, it is desirable to trap the volatilized Hg for enhanced bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A Technical Guide to Ground-Water Model Selection at Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report addresses the selection of ground-water flow and contaminant transport models and is intended to be used by hydrogeologists and geoscientists responsible for selecting transport models for use at sites containing radioactive materials.

  10. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactormore » integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.« less

  11. Plant uptake of explosives from contaminated soil at the Joliet Army Ammunition Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.; Tomczyk, N.A.

    1995-04-01

    Explosives and their degradation products may enter the animal and human food chains through plants grown on soils contaminated with explosives. Soil and plant samples were collected from the Group 61 area at the Joliet Army Ammunition Plant and analyzed to determine the extent to which 2,4,6-trinitrotoluene (TNT) and its degradation products are taken up by existing vegetation and crops growing on contaminated soils. Neither TNT nor its degradation products was detected in any of the aboveground plant organs of existing vegetation. Oat (Avena sativa L.) and perennial ryegrass (Lolium perenne L.) were planted on TNT-contaminated soils amended with threemore » levels of chopped grass hay. Extractable TNT concentrations in hay-amended soils were monitored for almost 1 year. Crop establishment and growth improved with increased levels of hay amendment, but TNT uptake was not affected or detected in any aboveground crop organs. Evidence was found to indicate that soil manipulation and hay addition may reduce extractable TNT concentration in soils, but the wide variations in TNT concentrations in these soils prevented development of conclusive evidence regarding reduction of extractable TNT concentrations. Results from this study suggest that vegetation grown on TNT-contaminated soils is not a major health concern because TNT and its degradation products were not detected in aboveground plant organs. However, low concentrations of TNT, 4-amino-2,6-dinitrotoluene, and 2-amino-4,6-dinitrotoluene were detected in or on some existing vegetation and crop roots. 21 refs., 10 figs., 26 tabs.« less

  12. RADIOACTIVITY IN FOODS. II. EVIDENCE OF FALLOUT CONTAMINATION DURING 1958 AND 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laug, E.P.; Wallace, W.C.; Walton, M.S.

    1961-08-01

    During 1958 and 1959, approximately 5,000 samples of 50 different human and animal foods were examined for total radioactivity resulting from fall-out. Highest total concentration was found in the animal fodders and tea. Among the animal fodders, the alfalfas were about 4 times as radioactive as the corn ensilages. In the case of tea, the imports from Japan, Formosa, and India carried the greatest amount of radioactivity. Significantly lower concentrations were noted in African and Brazilian teas. Lower, in comparison by factors ranging from 1/10 to 1/100 of the above but still measurable, was the radioactivity in fresh vegetables. Mostmore » of the contamination was found in spinach, celery, lettuce, and greens in that decreasing order. As compared to the fresh vegetables, fruits were on the average only 1/7 as radioactive. Measurable quantities of radioactivity were found only in plums, prunes, and strawberries, in that decreasing order. As noted in an earlier surveillance study, significant radioactivity continued to be detected in dairy products; also in oysters and clams. Insignificant traces of radioactivity were found in salmon and tuna, and none whatsoever in meat and poultry. Nearly all total beta concentrations declined from 1958 through 1959, reflecting the cessation of weapons testing late in 1958. Analyses showed that on the average about 10% of the, total beta level in a food could be accounted for by the presence of strontium-90. 10 tables. Figure. 5 references. (auth)« less

  13. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  14. EFFECT OF SOIL PB INACTIVATION TREATMENTS ON BIOAVAILABILITY OF JOPLIN, MO, SMELTER CONTAMINATED SOIL PB TO RATS

    EPA Science Inventory

    The effects of treating contaminated soils with various soil amendments on the bioavailability of lead were assessed in the weanling rat model. The effect of treatment was assessed by comparing the adsorption of Pb of animals fed soil samples treated with (0.5%, 1% P and 2.5% Fe ...

  15. Leaching of PFC from soils contaminated with PFC of different origin

    NASA Astrophysics Data System (ADS)

    Kalbe, Ute; Piechotta, Christian; Rothe, Robert

    2017-04-01

    Leaching tests are fundamental tools for the assessment of groundwater impact by contaminated soils concerning the soil-groundwater pathway. Such procedures are supposed to serve as the basis for a reliable leachate prognosis. They can be applied to determine the short and long term leaching behaviour as well as the source term of contaminated soils. For this purpose two types of leaching procedures have been validated in Germany for the examination of the leaching behaviour of frequently occurring organic substances (DIN 19528 - column test and DIN 19529 - batch test). A liquid-to-solid ratio (L/S) of 2 L/kg and 10 L/kg) is the basis for the risk assessment which is implemented in different German regulations. The equivalence of test results for both tests for the same material under investigation has been investigated for a variety of pollutants in order to assess their reliability in compliance testing. However, for emerging pollutants there is hardly data available on this issue. Leaching tests on soils contaminated with emerging pollutants such as PFC (Perfluorinated Surfactants) are currently coming more into consideration due to the increasing detection of contaminated sites. Therefore, two soils were investigated in this study from different contamination source (paper sludge containing compost and fire distinguishing foam) using both leaching tests and both liquid-to-solid ratios. The leachability of the various perfluorinated compounds in relation to their content in solid matter was considered. Furthermore the eluate pre-treatment prior analysis (in particular liquid/solid separation step needed for batch tests) has been taken into account. The comparability of the results from batch and column is dependent on the solubility of the various compounds, on the L/S and on the turbidity in the eluates.

  16. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.

  17. Complex conductivity of oil-contaminated clayey soils

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Revil, A.; Shi, X.

    2017-12-01

    Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0

  18. The psychological impact of a dual-disaster caused by earthquakes and radioactive contamination in Ichinoseki after the Great East Japan Earthquake.

    PubMed

    Niitsu, Tomihisa; Takaoka, Kota; Uemura, Saho; Kono, Akiko; Saito, Akihiko; Kawakami, Norito; Nakazato, Michiko; Shimizu, Eiji

    2014-05-20

    The psychological impact of dual-disasters (earthquakes and a nuclear accident), on affected communities is unknown. This study investigated the impact of a dual-disaster (earthquakes and radioactive contamination) on the prevalence of psychological distress in a landlocked city within the Tohoku area, Japan. A cross-sectional mail-in survey with a random sample of inhabitants from Ichinoseki city was conducted eleven months after the disasters, and data from 902 respondents were analyzed by logistic regression models, with multiple imputation methodology. The K6 was used to determine psychological distress. The estimated prevalence of psychological distress was 48.0 percent. House damage due to earthquakes and anxiety about radioactive contamination were significantly associated with psychological distress (p < 0.05), while an interactive effect between house damage and anxiety about radioactive contamination was not significant. Being female, middle-to-low educational status and unemployed were additional risk factors for psychological distress. This dual-disaster was associated with a moderate prevalence of psychological distress in the area. The impact of the earthquake and radioactive contamination appeared additive.

  19. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.

    PubMed

    Yin, Zheng; Cao, Jingjing; Li, Zhen; Qiu, Dong

    2015-07-01

    Dithiocarbamate chitosan (DTC-CTS) was used as a new amendment for remediation of cadmium (Cd)-contaminated soils to reduce the Cd bioavailability. Arabidopsis thaliana was chosen as a model plant to evaluate its efficiency. It was found that DTC-CTS could effectively improve the growth of A. thaliana. The amount of Cd up-taken by A. thaliana could be decreased by as much as 50% compared with that grown in untreated Cd-contaminated soil samples. The chlorophyll content and the aerial biomass of Arabidopsis also increased substantially and eventually returned to a level comparable to plants grown in non-contaminated soils, with the addition of DTC-CTS. These findings suggested that DTC-CTS amendment could be effective in immobilizing Cd and mitigating its accumulation in plants grown in Cd-contaminated soils, with potential application as an in situ remediation of Cd-polluted soils.

  1. Relating soil solution Zn concentration to diffusive gradients in thin films measurements in contaminated soils.

    PubMed

    Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao

    2003-09-01

    The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.

  2. Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter-Contaminated Soil

    EPA Science Inventory

    The use of P to immobilize Pb in contaminated soils has been well documented. However, the influence of P on Zn speciation in soils has not been extensively examined, and these two metals often occur as co-contaminants. We hypothesized that additions of P to a Pb/Zn-contaminate...

  3. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas

    PubMed Central

    Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D.

    2017-01-01

    The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl2, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard (Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil. PMID:29295511

  4. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas.

    PubMed

    Radziemska, Maja; Koda, Eugeniusz; Bilgin, Ayla; Vaverková, Mgdalena D

    2017-12-23

    The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard ( Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.

  5. Remediation of contaminated soils by enhanced nanoscale zero valent iron.

    PubMed

    Jiang, Danni; Zeng, Guangming; Huang, Danlian; Chen, Ming; Zhang, Chen; Huang, Chao; Wan, Jia

    2018-05-01

    The use of nanoscale zero valent iron (nZVI) for in situ remediation of soil contamination caused by heavy metals and organic pollutants has drawn great concern, primarily owing to its potential for excellent activity, low cost and low toxicity. This reviews considers recent advances in our understanding of the role of nZVI and enhanced nZVI strategy in the remediation of heavy metals and persistent organic contaminants polluted soil. The performance, the migration and transformation of nZVI affected by the soil physical and chemical conditions are summarized. However, the addition of nZVI inevitably disturbs the soil ecosystem, thus the impacts of nZVI on soil organisms are discussed. In order to further investigate the remediation effect of nZVI, physical, chemical and biological method combination with nZVI was developed to enhance the performance of nZVI. From a high efficient and environmentally friendly perspective, biological method enhanced nZVI technology will be future research needs. Possible improvement of nZVI-based materials and potential areas for further applications in soil remediation are also proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Potential and real ecological threat of heavy metals in contaminated soils

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Makarichev, Ivan; Karpova, Elena

    2013-04-01

    organisms. Within the last 20-40 years a bulk of information has been accumulating to study the impact of technogenic sources on the HM content in soils and the ratio between their compounds. They serve as evidence that in the contaminated soils the total content of HM is several orders (2-3) higher than that in soils of natural landscapes. Based upon a comprehensive analysis of data obtained in field and laboratory it is possible to speak about following differences in soils of natural and technogenic landscapes. (1) The total content of HM in contaminated soils reveals weak connection with their content in soil-forming rocks being depended on technological and landscape-geochemical conditions. (2) A share of mobile forms of HM from their total content increases in comparison to that in natural soils, what is associated with soil contamination and even toxicity, because they can be easily taken up by plants and other living organisms. (3) The surplus of HM in soils leads to degradation of the most important properties so vital for soil fertility (acid base saturation, ion exchange capacity, the humus status, absorbing capacity and others). The enhanced knowledge of soil chemical properties which are subject to contamination by HM, regularities in sorption of heavy metals bond to soil components, the composition of compounds formed by soil with heavy metals allows forecasting the real ecological threat of landscape contamination with HM. The indices of the foregoing soil chemical properties serve as a basis for application of current technologies for soil remediation from HM. Acknowledgments. This work was supported by the Russian Found of Basic Researches (projects no. 06-05-48894, 09-05-00575, 11-05-90351)

  8. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    PubMed

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  9. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.

    PubMed

    Majumder, Aparajita; Bhattacharyya, Kallol; Kole, S C; Ghosh, Sagarmoy

    2013-08-01

    Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).

  10. Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol.

    PubMed

    Rao, Maria A; Di Rauso Simeone, Giuseppe; Scelza, Rosalia; Conte, Pellegrino

    2017-11-01

    Phenanthrene (Phe) and pentachlorophenol (PCP) are classified as persistent organic pollutants and represent serious concern for the environment as they are toxic and ubiquitous. Biochar based remediation is an emerging technology used in water and soil contamination. In this study we used poplar (BP) and conifer (BC) biochars to remediate water and soil contaminated by Phe and PCP. BP and BC were able to remove completely either Phe or PCP from contaminated water within one to three days. When biochar was confined in a porous membrane, BC and BP maintained their sorption efficiency for several remediation cycles. However, in these conditions BC allowed faster Phe removal. In soil remediation experiments, addition of two biochar rates, i.e. 2.5 and 5 mg g -1 , strongly reduced Phe extractability (up to 2.7% of the initially added Phe with the larger BC dose). This was similar to the behavior observed when compost was applied in order to verify the role of soil organic matter in the fate of both contaminants. PCP extractability was reduced only up to 75% (in average) in all samples including those with compost amendment. Only larger amount of biochar (20 and 50 mg g -1 ) allowed reduction of the extractable PCP and nullified phytotoxicity of the contaminant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Contamination of soils and groundwater with new organic micropollutants: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Yakovlev, A. S.

    2016-05-01

    The input of organic micro- and nanopollutants to the environment has grown in recent years. This vast class of substances is referred to as emerging micropollutants, and includes organic chemicals of industrial, agricultural, and municipal provenance. There are three main sources of emerging pollutants coming to the environment, i.e., (1) upon soil fertilization with sewage and sewage sludge; (2) soil irrigation with reclaimed wastewater and (3) due to filtration from municipal landfills of solid wastes. These pollutants contaminate soil, affect its inhabitants; they are also consumed by plants and penetrate to the groundwater. The pharmaceuticals most strongly affect the biota (microorganisms, earthworms, etc.). The response of microorganisms in the contaminated soil is controlled not only by the composition and the number of emerging pollutants but also by the geochemical environment.

  12. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    PubMed

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  13. [Microwave thermal remediation of soil contaminated with crude oil enhanced by granular activated carbon].

    PubMed

    Li, Da-Wei; Zhang, Yao-Bin; Quan, Xie; Zhao, Ya-Zhi

    2009-02-15

    The advantage of rapid, selective and simultaneous heating of microwave heating technology was taken to remediate the crude oil-contaminated soil rapidly and to recover the oil contaminant efficiently. The contaminated soil was processed in the microwave field with addition of granular activated carbon (GAC), which was used as strong microwave absorber to enhance microwave heating of the soil mixture to remove the oil contaminant and recover it by a condensation system. The influences of some process parameters on the removal of the oil contaminant and the oil recovery in the remediation process were investigated. The results revealed that, under the condition of 10.0% GAC, 800 W microwave power, 0.08 MPa absolute pressure and 150 mL x min(-1) carrier gas (N2) flow-rate, more than 99% oil removal could be obtained within 15 min using this microwave thermal remediation enhanced by GAC; at the same time, about 91% of the oil contaminant could be recovered without significant changes in chemical composition. In addition, the experiment results showed that GAC can be reused in enhancing microwave heating of soil without changing its enhancement efficiency obviously.

  14. Risk assessment for chemical pickling of metals contaminated by radioactive materials.

    PubMed

    Donzella, A; Formisano, P; Giroletti, E; Zenoni, A

    2007-01-01

    In recent years, many cases of contamination of metal scraps by unwanted radioactive materials have occurred. Moreover, international organisations are evaluating the possibility to re-use or to recycle metals coming from nuclear power plants. The metal recycling industry has started to worry about radiation exposure of workers that could be in contact with contaminated metals during each manufacturing phase. Risks are strongly dependent on the radiation source features. The aim of this study is to perform risk assessment for workers involved in chemical pickling of steel coils. Monte Carlo simulations have been performed, using the MCNP package and considering coils contaminated with (60)Co, (137)Cs, (241)Am and (226)Ra. Under the most conservative conditions (coil contaminated with 1.0 kBq g(-1) of (60)Co), the dose assessment results lower than the European dose limit for the population (1 mSv y(-1)), considering a maximum number of 10 contaminated coils handled per year. The only exception concerns the case of (241)Am, for which internal contamination could be non- negligible and should be verified in the specific cases. In every case, radiation exposure risk for people standing at 50 m from the coil is widely <1 mSv y(-1).

  15. Metal availability, soil nutrient, and enzyme activity in response to application of organic amendments in Cd-contaminated soil.

    PubMed

    Yang, Zhanbiao; Liu, Lixia; Lv, Yanfeng; Cheng, Zhang; Xu, Xiaoxun; Xian, Junren; Zhu, Xuemei; Yang, Yuanxiang

    2018-01-01

    The study investigated the effects of organic amendments: green tea amendment (GTA) and oil cake amendment (OCA) on Cd bioavailability, soil nutrients, and soil enzyme activity in Cd-contaminated soil. The amendments were added to the soil at the doses of 1, 3, and 5% and were incubated for 45 days. Then, pakchoi cabbage was planted to test the remediation effect of the above two organic amendments. The diethylenetriaminepentaacetic acid (DTPA)-extractable Cd in GTA and OCA treatments was reduced by 14.69-27.51 and 13.75-68.77%, respectively, compared to no amendment-applied treatment. The application of GTA and OCA notably decreased the proportion of exchangeable fraction of Cd, but increased the percentage of oxide and organic-bound fraction of Cd, thereby suppressing the uptake by pakchoi cabbage. Cd concentration of aboveground parts decreased by 8.21-18.05 and 7.77-35.89% in GTA and OCA treatments, respectively. Relative to the no amendment-applied treatment, both GTA and OCA had enhanced soil nutrients and enzyme activities largely. Redundancy analysis showed that organic matter, total P, available N, and DTPA-extractable Cd significantly affected the enzyme activities. Furthermore, the application of OCA at the dose of 5% was more effective in reducing bioavailable Cd, enhancing soil available nutrients and urease and catalase activities in contaminated soil. These results indicated that oil cake should be used to immobilize metal and improve fertility and quality of Cd-contaminated soil.

  16. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    PubMed

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  17. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    NASA Astrophysics Data System (ADS)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    Siberia and the Arctic zone of the Russian Federation occupy a large area of the country and they differ from other regions in special climatic conditions, in particular, a long period of freezing temperatures and relatively poor infrastructure. The main problem of neutralizing soils contaminated with oil products in conditions of negative ambient temperature is that the contaminated soil is in a frozen state, and it prevents the normal course of neutralization process, so additional energy is required for preparing the soil. There is proposed a technology adapted to the conditions of Siberia and the Arctic for the operational elimination of emergency situations consequences accompanied with oil spills. The technology for neutralizing soils contaminated with petroleum products is based on the encapsulation of a pollutant (reagent capsulation technology) using an alkaline calcium-based reagent. Powdered building quicklime is used as a reagent, and it is a product of roasting carbonate rocks or a mixture of this product with mineral additives (calcium oxide). The encapsulated material obtained as a result of neutralizing soils contaminated with petroleum products is resistant to natural and man-made factors such as moisture, temperature fluctuations, acid rain and high pressure. Energy use from the chemical detoxification exothermic process of soils contaminated with petroleum products in combination with the forced supply of carbon dioxide to the neutralization zone during the formation of a shell from calcium carbonate on the surface of the pollutant makes it possible to neutralize soils contaminated with oil products in the extreme climatic conditions of the Arctic using reagent Encapsulation. The principle of equipment operation that allows neutralizing soils contaminated with petroleum products in the natural and climatic conditions of the Arctic using reagent capsulation technology has been described. The results of experimental studies have been presented that

  18. Phytoremediation of soils contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less

  19. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds.

    PubMed

    Balaji, V; Arulazhagan, P; Ebenezer, P

    2014-05-01

    The present study focuses on fungal strains capable of secreting extracellular enzymes by utilizing hydrocarbons present in the contaminated soil. Fungal strains were enriched from petroleum hydrocarbons contaminated soil samples collected from Chennai city, India. The potential fungi were isolated and screened for their enzyme secretion such as lipase, laccase, peroxidase and protease and also evaluated fungal enzyme mediated PAHs degradation. Total, 21 potential PAHs degrading fungi were isolated from PAHs contaminated soil, which belongs to 9 genera such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, Mucor Penicillium, Rhizopus, Trichoderma, and two oilseed-associated fungal genera such as Colletotrichum and Lasiodiplodia were used to test their efficacy in degradation of PAHs in polluted soil. Maximum lipase production was obtained with P. chrysogenum, M. racemosus and L. theobromae VBE1 under optimized cultural condition, which utilized PAHs in contaminated soil as sole carbon source. Fungal strains, P. chrysogenum, M. racemosus and L. theobromae VBE1, as consortia, used in the present study were capable of degrading branched alkane isoprenoids such as pristine (C17) and pyrene (C18) present in PAHs contaminated soil with high lipase production. The fungal consortia acts as potential candidate for bioremediation of PAHs contaminated environments.

  20. [The status of soil contamination in areas of northern and northwestern Bohemia affected by pollution].

    PubMed

    Podlesáková, E; Nĕmecek, J; Vácha, R

    1999-10-20

    A regional study of soil contamination in North and Northwest immission-impacted Bohemian regions present the results of the assessment of soil loads of agricultural soils by hazardous trace elements and organic xenobiotic substances. The evaluation is based on the exceeding of background values of contaminants (upper limit of their variability). Two forms of soil loads by trace elements are differentiated, the anthropogenic and geogenic one. They occur simultaneously on the territory under study. Geogenic "loads" prevail (basalts, metallogenic zones). Anthropogenic contamination by both hazardous elements and organic xenobiotic substances occurs only in some parts of these severely immission-impacted regions.

  1. De-icing salt contamination reduces urban tree performance in structural soil cells.

    PubMed

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  3. Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils

    EPA Science Inventory

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...

  4. Earthworm Comet Assay for Assessing the Risk of Weathered Petroleum Hydrocarbon Contaminated Soils: Need to Look Further than Target Contaminants.

    PubMed

    Ramadass, Kavitha; Palanisami, Thavamani; Smith, Euan; Mayilswami, Srinithi; Megharaj, Mallavarapu; Naidu, Ravi

    2016-11-01

    Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg -1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm -1 . Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.

  5. Finnish stakeholder engagement in the restoration of a radioactively contaminated food supply chain.

    PubMed

    Rantavaara, A; Wallin, H; Hasunen, K; Härmälä, K; Kulmala, H; Latvio, E; Liskola, K; Mustonen, I; Nieminen, I; Tainio, R

    2005-01-01

    An expert group was established in 2001 representing various organisations and authorities responsible for primary production, food processing, the distribution and consumption of foodstuffs, food safety and availability, catering and extension services, nature conservation, research into environmental impacts, and the media. The aim was to strengthen networking and improve the stakeholder response to accidental radioactive contamination of rural areas through participation in the FARMING network project. A hypothetical contamination of a large milk-producing area provided a suitable framework for evaluation of actions ensuring clean feeding of dairy cows during grazing. The following year the group received a compilation of rural countermeasures and waste disposal methods, described by the STRATEGY project. The robust, uncomplicated approach of the evaluation meetings was fruitful and efficient, and the multidisciplinary group was capable of taking shared views on various measures after updating their knowledge together. High priority was given to measurements of radioactivity and the provision of information and advice to a wider audience.

  6. Prediction of the effects of soil-based countermeasures on soil solution chemistry of soils contaminated with radiocesium using the hydrogeochemical code PHREEQC.

    PubMed

    Hormann, Volker; Kirchner, Gerald

    2002-04-22

    For agriculturally used areas, which are contaminated by the debris from a nuclear accident, the use of chemical amendmends (e.g. potassium chloride and lime) is among the most common soil-based countermeasures. These countermeasures are intended to reduce the plant uptake of radionuclides (mainly 137Cs and 90Sr) by competitive inhibition by chemically similar ions. So far, the impacts of countermeasures on soil solution composition - and thus, their effectiveness - have almost exclusively been established experimentally, since they depend on mineral composition and chemical characteristics of the soil affected. In this study, which focuses on caesium contamination, the well-established code PHREEQC was used as a geochemical model to calculate the changes in the ionic compositions of soil solutions, which result from the application of potassium or ammonium in batch equilibrium experiments. The simple ion exchange model used by PHREEQC was improved by taking into account selective sorption of Cs+, NH4+ and K+ by clay minerals. Calculations were performed with three different initial soil solution compositions, corresponding to particular soil types (loam, sand, peat). For loamy and sandy soils, our calculational results agree well with experimental data reported by Nisbet (Effectiveness of soil-based countermeasures six months and one year after contamination of five diverse soil types with caesium-134 and strontium-90. Contract Report NRPB-M546, National Radiation Protection Board, Chilton, 1995.). For peat, discrepancies were found indicating that for organic soils a reliable set of exchange constants of the relevant cations still has to be determined experimentally. For cesium, however, these discrepancies almost disappeared if selective sites were assumed to be inaccessible. Additionally, results of sensitivity analyses are presented by which the influence of the main soil parameters on Cs+ concentrations in solution after soil treatment has been systematically

  7. Restoration of contaminated soils in abandoned mine areas (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Wahsha, Mohammad

    2016-04-01

    In Italy ore research and exploitation have been nearly exhausted since the end of the last century, and have left on the land a huge amount of mine waste, therefore provoking evident environmental damage including surface and groundwater, soils, vegetation and the food chain, and a potential threat to human health. The main processes occurring at these sites are: rock disgregation, fragments migration, dust dispersion, oxidation (Eh>250mV), acidification (pH<7), hydrolisis and metal leaching, precipitation of oxides and sulphates. The restoration of these sites, therefore, is a primary objective, in order to reduce/eliminate the risk associated to the contamination sources of past activities, and the consequent environmental and human health hazard. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Tuscany, exploited for at least a millennium, and closed in the last century. Biogeochemical analyses carried out on representative soil profiles (Spolic Technosols) and vegetation in the proximal and distal areas of ore exploitation show heavy metal concentrations (Cd, Cu, Fe, Pb, Zn) overcoming legislation limits on average. Ni, Cr and Mn concentrations, instead, are generally below the reference levels. The results obtained suggest that the abandoned mine sites represent actual natural laboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, plants growing on these substrates are genetically adapted to metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution of natural parks in these areas could

  8. [Application of ICP-MS in evaluating element contamination in soils].

    PubMed

    Wu, Ying-juan; Chen, Yong-heng; Yang, Chun-xia; Chang, Xiang-yang

    2008-12-01

    The Yunfu pyrite was the second biggest pyrite bed in the world. Plants using industrial ore of the Yunfu pyrite are distributed in many sections across the country. In the present paper, elements V, Cr, Co, Cu, Zn, Mo, Cd, Sb, Rb and Cs in soil profiles in slag disposing area of a sulfuric acid plant using industrial ore of theYunfu pyrite were studied. A method for simultaneously determination of metals and some reference elements in soils by ICP-MS was developed. The correlations between the metals and their reference elements were fast found. Enrichment factors were applied for evaluating the degree of soil contamination, and the problem about choosing contamination elements background values was pointed out. The results indicated that element V showed apparent and serious pollution, The Co showed middle degree pollution, and there has been a trend of apparent pollution. The Cr, Mo and Cd showed pollution between light degree and middle degree. The Zn and Sb showed light degree pollution, and there was a latent trend of middle degree pollution. The Cu showed light degree pollution. The high enrichment points of the V and the Cr were observed in the upper part (4.0-10.5 cm) and deep part of soil profiles (44.0-75.5 cm). Those of Co and Mo were found in the surface of soil profiles (0-5.0 cm), middle-upper part (9.5-10.5 cm) and middle part (29.5-46.0 cm), while those of Cd and Cu occurred just in the middle of soil profiles (29.5-46.0 cm). The formation of highly enrichment points of contamination elements in the soil profiles was the result of leaching and accumulating effect of the metals released from slag and the residual metals of highly weathered red soils. Most of pollution of V in the soil was contributed by the V in soil bed. Part of the V pollution in the soil was supplied by leaching and accumulating effect of the V which came from catalyst with lost activity in sulfuric acid production volatilizing into slag.

  9. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.

    PubMed

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua

    2017-05-01

    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  10. RELEASE OF CHEMICALS FROM CONTAMINATED SOILS. (R822721C529)

    EPA Science Inventory

    At sites that contain contaminated soils, there can be questions about the magnitude of risk posed by the chemicals in the soils and about the cleanup levels that should be achieved. Knowledge about the rate of release of chemicals is important to answers to such questions. Th...

  11. A laboratory treatability study on RDX-contaminated soil from the Iowa Army Ammunition Plant, Burlington, Iowa.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boopathy, R.; Manning, J. F.; Environmental Research

    2000-03-01

    Soil in certain areas of the Iowa Army Ammunition Plant in Burlington, Iowa, was contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). A laboratory treatability study was conducted to examine the ability of native soil bacteria present in the contaminated site to degrade RDX. The results indicated that RDX can be removed effectively from the soil by native soil bacteria through a co-metabolic process. Molasses, identified as an effective cosubstrate, is inexpensive, and this factor makes the treatment system cost effective. The successful operation of aerobic-anoxic soil-slurry reactors in batch mode with RDX-contaminated soil showed that the technology can be scaled up for fieldmore » demonstration. The RDX concentration in the contaminated soil was decreased by 98% after 4 months of reactor operation. The advantage of the slurry reactor is the simplicity of its operation. The method needs only mixing and the addition of molasses as cosubstrate.« less

  12. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  13. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy).

    PubMed

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-05-01

    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells.

    PubMed

    Ok, Yong Sik; Lim, Jung Eun; Moon, Deok Hyun

    2011-02-01

    Large amounts of oyster shells are produced as a by-product of shellfish farming in coastal regions without beneficial use options. Accordingly, this study was conducted to evaluate the potential for the use of waste oyster shells (WOS) containing a high amount of CaCO₃ to improve soil quality and to stabilize heavy metals in soil. To accomplish this, an incubation experiment was conducted to evaluate the ability of the addition of 1-5 wt% WOS to stabilize the Pb (total 1,246 mg/kg) and Cd (total 17 mg/kg) in a contaminated soil. The effectiveness of the WOS treatments was evaluated using various single extraction techniques. Soil amended with WOS was cured for 30 days complied with the Korean Standard Test method (0.1 M·HCl extraction). The Pb and Cd concentrations were less than the Korean warning and countermeasure standards following treatment with 5 wt% WOS. Moreover, the concentrations of Cd were greatly reduced in response to WOS treatment following extraction using 0.01 M·CaCl₂, which is strongly associated with phytoavailability. Furthermore, the soil pH and exchangeable Ca increased significantly in response to WOS treatment. Taken together, the results of this study indicated that WOS amendments improved soil quality and stabilized Pb and Cd in contaminated soil. However, extraction with 0.43 M·CH₃ COOH revealed that remobilization of heavy metals can occur when the soil reaches an acidic condition.

  15. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    PubMed

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  16. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice.

    PubMed

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2009-02-15

    Chemical warfare agents containing aromatic arsenicals (AAs) such as Clark I (diphenylchloroarsine) are well-known, as is the risk of leakage from such munitions into the environment. We investigated the uptake of AAs in agricultural soils by rice. Methylphenylarsinic acid (MPAA) was detected in brown rice grown in contaminated soil. Dimethylphenylarsine oxide (DMPAO) and methyldiphenylarsine oxide (MDPAO) were detected in the straw but not in the grains grown in the contaminated soil. Inthe contaminated soil, phenylarsonic acid (PAA) and MPAA concentrations decreased and DMPAO concentration increased under the flooded conditions; however, their concentrations remained unchanged underthe upland conditions. DMPAO was detected in the straw of the rice grown in PAA- or MPAA-amended soil but was not detected in that grown in a PAA- or MPAA-added solution culture. MDPAO was detected in the straw of the rice grown in diphenylarsinic acid (DPAA)-amended soil but was not detected in that grown in a DPAA-added solution culture. Thus, MPAA and DPAA were methylated not in the rice plant but in the soil under the flooded conditions. Dephenylated products were detected in the straw grown in AA-added solution cultures, but demethylated products were not detected. DMPAO and MDPAO absorbed by the shoots were retained, and MPAA and DPAA absorbed by the shoots were translocated to the grains more easily than other AAs.

  17. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  18. Comparison of the effectiveness of soil heating prior or during in situ chemical oxidation (ISCO) of aged PAH-contaminated soils.

    PubMed

    Ranc, Bérénice; Faure, Pierre; Croze, Véronique; Lorgeoux, Catherine; Simonnot, Marie-Odile

    2017-04-01

    Thermal treatments prior or during chemical oxidation of aged polycyclic aromatic hydrocarbon (PAH)-contaminated soils have already shown their ability to increase oxidation effectiveness. However, they were never compared on the same soil. Furthermore, oxygenated polycyclic aromatic hydrocarbons (O-PACs), by-products of PAH oxidation which may be more toxic and mobile than the parent PAHs, were very little monitored. In this study, two aged PAH-contaminated soils were heated prior (60 or 90 °C under Ar for 1 week) or during oxidation (60 °C for 1 week) with permanganate and persulfate, and 11 O-PACs were monitored in addition to the 16 US Environmental Protection Agency (US EPA) PAHs. Oxidant doses were based on the stoichiometric oxidant demand of the extractable organic fraction of soils by using organic solvents, which is more representative of the actual contamination than only the 16 US EPA PAHs. Higher temperatures actually resulted in more pollutant degradation. Two treatments were about three times more effective than the others: soil heating to 60 °C during persulfate oxidation and soil preheating to 90 °C followed by permanganate oxidation. The results of this study showed that persulfate effectiveness was largely due to its thermal activation, whereas permanganate was more sensitive to PAH availability than persulfate. The technical feasibility of these two treatments will soon be field-tested in the unsaturated zone of one of the studied aged PAH-contaminated soils.

  19. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    PubMed

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  20. Mobility and bio-availability of heavy metals in anthropogenically contaminated alluvial (deluvial) meadow soils (EUTRIC FLUVISOLS)

    NASA Astrophysics Data System (ADS)

    Dinev, Nikolai; Hristova, Mariana; Tzolova, Venera

    2015-04-01

    The total content of heavy metals is not sufficient to assess the pollution and the risk for environment as it does not provide information for the type and solubility of heavy metals' compounds in soils. The purpose was to study and determine the mobility of heavy metals in anthropogenically contaminated alluvial (delluvial) meadow soils spread around the non-ferrous plant near the town of Asenovgrad in view of risk assessment for environment pollution. Soil samples from monitoring network (1x1 km) was used. The sequential extraction procedure described by Zein and Brummer (1989) was applied. Results showed that the easily mobilizable cadmium compounds predominate in both contaminated and not contaminated soils. The stable form of copper (associated with silicate minerals, carbonates or amorphous and crystalline oxide compounds) predominates only in non polluted soils and reviles the risk of the environment contamination. Lead spreads and accumulates as highly soluble (mobile) compounds and between 72.3 and 99.6 percent of the total lead is bioavailable in soils. The procedure is very suitable for studying the mobility of technogenic lead and copper in alluvial soils with neutral medium reaction and in particular at the high levels of cadmium contamination. In soils with alkaline reaction - polluted and unpolluted the error of analysis increases for all studied elements.