NASA Astrophysics Data System (ADS)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul
2015-09-01
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material are simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.
Categorization of In-use Radioactive Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Mohamed, Y.T.; El Haleim, K.A.
2006-07-01
Radioactive sealed sources have widespread applications in industry, medicine, research and education. While most sources are of relatively low activity, there are many of medium or very high activity. The mismanagement of high activity sources is responsible for most of the radiological accidents that result in loss of life or disabling injuries. Because of the variety of applications and activities of radioactive sources, a categorization system is necessary so that the controls that are applied to the sources are adequate with its radiological risk. The aim of this work is to use the international Atomic Energy Agency (IAEA) categorization systemmore » to provide a simple, logical system for grading radioactive sealed sources in Egypt. The categorizations of radioactive sealed sources are based on their potential to cause harm to human health. This study revealed that total of 1916 sources have been used in Egypt in the different applications with a total activity of 89400 Ci according to available data in October 2005. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badrianto, Muldani Dwi; Riupassa, Robi D.; Basar, Khairul, E-mail: khbasar@fi.itb.ac.id
2015-09-30
Nuclear batteries have strategic applications and very high economic potential. One Important problem in application of nuclear betavoltaic battery is its low efficiency. Current efficiency of betavoltaic nuclear battery reaches only arround 2%. One aspect that can influence the efficiency of betavoltaic nuclear battery is the geometrical configuration of radioactive source. In this study we discuss the effect of geometrical configuration of radioactive source material to the radiation intensity in betavoltaic nuclear battery system. received by the detector. By obtaining the optimum configurations, the optimum usage of radioactive materials can be determined. Various geometrical configurations of radioactive source material aremore » simulated. It is obtained that usage of radioactive source will be optimum for circular configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X; Lei, Y; Zheng, D
2016-06-15
Purpose: High Dose Rate (HDR) brachytherapy poses a special challenge to radiation safety and quality assurance (QA) due to its high radioactivity, and it is thus critical to verify the HDR source location and its radioactive strength. This study demonstrates a new method for measuring HDR source location and radioactivity utilizing thermal imaging. A potential application would relate to HDR QA and safety improvement. Methods: Heating effects by an HDR source were studied using Finite Element Analysis (FEA). Thermal cameras were used to visualize an HDR source inside a plastic applicator made of polyvinylidene difluoride (PVDF). Using different source dwellmore » times, correlations between the HDR source strength and heating effects were studied, thus establishing potential daily QA criteria using thermal imaging Results: For an Ir1?2 source with a radioactivity of 10 Ci, the decay-induced heating power inside the source is ∼13.3 mW. After the HDR source was extended into the PVDF applicator and reached thermal equilibrium, thermal imaging visualized the temperature gradient of 10 K/cm along the PVDF applicator surface, which agreed with FEA modeling. For Ir{sup 192} source activities ranging from 4.20–10.20 Ci, thermal imaging could verify source activity with an accuracy of 6.3% with a dwell time of 10 sec, and an accuracy of 2.5 % with 100 sec. Conclusion: Thermal imaging is a feasible tool to visualize HDR source dwell positions and verify source integrity. Patient safety and treatment quality will be improved by integrating thermal measurements into HDR QA procedures.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... entire radioactive surface of the source shall be wiped with filter paper, moistened with water, with the... wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or by...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...
NASA Astrophysics Data System (ADS)
Vaz, Pedro
2015-11-01
The use of radiation sources, namely radioactive sealed or unsealed sources and particle accelerators and beams is ubiquitous in the industrial and medical applications of ionizing radiation. Besides radiological protection of the workers, members of the public and patients in routine situations, the use of radiation sources involves several aspects associated to the mitigation of radiological or nuclear accidents and associated emergency situations. On the other hand, during the last decade security issues became burning issues due to the potential malevolent uses of radioactive sources for the perpetration of terrorist acts using RDD (Radiological Dispersal Devices), RED (Radiation Exposure Devices) or IND (Improvised Nuclear Devices). A stringent set of international legally and non-legally binding instruments, regulations, conventions and treaties regulate nowadays the use of radioactive sources. In this paper, a review of the radiological protection issues associated to the use of radiation sources in the industrial and medical applications of ionizing radiation is performed. The associated radiation safety issues and the prevention and mitigation of incidents and accidents are discussed. A comprehensive discussion of the security issues associated to the global use of radiation sources for the aforementioned applications and the inherent radiation detection requirements will be presented. Scientific, technical, legal, ethical, socio-economic issues are put forward and discussed.
78 FR 53020 - Branch Technical Position on the Import of Non-U.S. Origin Radioactive Sources
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... produced radioisotopes or Radium- 226 which can be disposed of in non-Part 61 or equivalent facilities'' as... Import of Non-U.S. Origin Radioactive Sources AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Final... Non-U.S. Origin Sources to provide additional guidance on the application of this exclusion in the...
Implementation of the Regulatory Authority Information System in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carson, S.D.; Schetnan, R.; Hasan, A.
2006-07-01
As part of the implementation of a bar-code-based system to track radioactive sealed sources (RSS) in Egypt, the Regulatory Authority Information System Personal Digital Assistant (RAIS PDA) Application was developed to extend the functionality of the International Atomic Energy Agency's (IAEA's) RAIS database by allowing users to download RSS data from the database to a portable PDA equipped with a bar-code scanner. [1, 4] The system allows users in the field to verify radioactive sealed source data, gather radioactive sealed source audit information, and upload that data to the RAIS database. This paper describes the development of the RAIS PDAmore » Application, its features, and how it will be implemented in Egypt. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id
2014-01-01
It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochems, P.; Kirk, A. T.; Bunert, E.
Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less
Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source
NASA Astrophysics Data System (ADS)
Hu, Rui; Kan, Wentao; Xiong, Xiaoling; Wei, Hongyuan
2017-08-01
The preparation of a deuterated polymer was performed in order to simulate the production of the corresponding tritiated polymer as a solid tritium radioactive source. Substitution and addition reaction were used to introduce deuterium into the polymer. Proton nuclear magnetic resonance and FT-IR spectroscopy were used to investigate the extent and location of deuterium in the polymer, indicating an effectively deuterated polymer was produced. The thermal analysis showed that the final polymer product could tolerate the environmental temperature below 125 °C in its application. This research provides a prosperous method to prepare solid tritium radioactive source.
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.
2013-07-01
The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-09-01
Papers presented at the All-Union Conference on Industrial Applications of Radioactive Isotopes and Nuclear Emissions in the National Economy of USSR, April 12 to 16, 1960, in Riga are surveyed. Short summaries are given on applications of radioactive isotopes and nuclear emissions in prospecting, developing mineral resources, metallurgy, ore enrichment processes, machine construction technology, agriculture, food processing, and medicine. Sources of alpha , beta , and gamma radiation for control and automation of processes are also discussed. The full reports from the conference will be published in 1960. (R.V.J.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragolici, F.; Turcanu, C. N.; Rotarescu, G.
2003-02-25
The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Mattie, Patrick D.
2004-10-01
A radioactive sealed source is any radioactive material that is encased in a capsule designed to prevent leakage or escape of the radioactive material. Radioactive sealed sources are used for a wide variety of applications at hospitals, in manufacturing and research. Typical uses are in portable gauges to measure soil compaction and moisture or to determine physical properties of rocks units in boreholes (well logging). Hospitals and clinics use radioactive sealed sources for teletherapy and brachytherapy. Oil exploration and medicine are the largest users. Accidental mismanagement of radioactive sealed sources each year results in a large number of people receivingmore » very high or even fatal does of ionizing radiation. Deliberate mismanagement is a growing international concern. Sealed sources must be managed and disposed effectively in order to protect human health and the environment. Effective national safety and management infrastructures are prerequisites for efficient and safe transportation, treatment, storage, and disposal. The Integrated Management Program for Radioactive Sealed Sources in Egypt (IMPRSS) is a cooperative development agreement between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), the University of New Mexico (UNM), and Agriculture Cooperative Development International (ACDI/VOCA). The EAEA, teaming with SNL, is conducting a Preliminary Safety Assessment (PSA) of an intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S. Greater Confinement Disposal (GCD). Goldsim has been selected for the preliminary disposal system assessment for the Egyptian GCD Study. The results of the PSA will then be used to decide if Egypt desires to implement such a disposal system.« less
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Ground Penetrating Radar as a Contextual Sensor for Multi-Sensor Radiological Characterisation
Ukaegbu, Ikechukwu K.; Gamage, Kelum A. A.
2017-01-01
Radioactive sources exist in environments or contexts that influence how they are detected and localised. For instance, the context of a moving source is different from a stationary source because of the effects of motion. The need to incorporate this contextual information in the radiation detection and localisation process has necessitated the integration of radiological and contextual sensors. The benefits of the successful integration of both types of sensors is well known and widely reported in fields such as medical imaging. However, the integration of both types of sensors has also led to innovative solutions to challenges in characterising radioactive sources in non-medical applications. This paper presents a review of such recent applications. It also identifies that these applications mostly use visual sensors as contextual sensors for characterising radiation sources. However, visual sensors cannot retrieve contextual information about radioactive wastes located in opaque environments encountered at nuclear sites, e.g., underground contamination. Consequently, this paper also examines ground-penetrating radar (GPR) as a contextual sensor for characterising this category of wastes and proposes several ways of integrating data from GPR and radiological sensors. Finally, it demonstrates combined GPR and radiation imaging for three-dimensional localisation of contamination in underground pipes using radiation transport and GPR simulations. PMID:28387706
Sources of Radioactive Isotopes for Dirty Bombs
NASA Astrophysics Data System (ADS)
Lubenau, Joel
2004-05-01
From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.
Management of Ir-192 Disused Sealed Sources with Long-Lived Radioactive Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dellamano, Jose Claudio; Ferreira, Robson de Jesus; Potiens, Ademar Jose Jr.
2015-07-01
Iridium-192 sealed sources are the most widely used sealed source in industrial applications in Brazil. They are not recyclable and in the end of the useful life, they are discarded as radioactive waste. The recommended management strategy of this waste is decay in storage and disposal as exempt waste because the half-life is only 73.8 days. Presently, thousands of Ir- 192 sources are under storage waiting release. Surprisingly, sources that were under storage for more than ten years and for which no measurable contact dose rate was expected still present significant remaining radioactivity. The examination of the gamma spectra ofmore » these sources showed the presence of Co-60 and the gamma emission lines from the Ir-192m2 isomer, the metastable isotope with half-life of 241 years, which is also formed by the irradiation of natural iridium. The aim of the study reported in this paper is to characterize the Ir-192 disused sources under interim storage at the Radioactive Waste Management Department, considering the presence of minor contaminants in the irradiated iridium and the fraction of the total initial activity of the sources that is attributable to that metastable isotope. The radioactive inventories at the end of the irradiation and after the decay period were predicted using the Scale 6.0 code and the results were compared with activity measurements of the disused sources by gamma spectrometry. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
Development of Approach for Long-Term Management of Disused Sealed Radioactive Sources - 13630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinker, M.; Reber, E.; Mansoux, H.
Radioactive sources are used widely throughout the world in a variety of medical, industrial, research and military applications. When such radioactive sources are no longer used and are not intended to be used for the practice for which an authorization was granted, they are designated as 'disused sources'. Whether appropriate controls are in place during the useful life of a source or not, the end of this useful life is often a turning point after which it is more difficult to ensure the safety and security of the source over time. For various reasons, many disused sources cannot be returnedmore » to the manufacturer or the supplier for reuse or recycling. When these attempts fail, disused sources should be declared as radioactive waste and should be managed as such, in compliance with relevant international legal instruments and safety standards. However, disposal remains an unresolved issue in many counties, due to in part to limited public acceptance, insufficient funding, and a lack of practical examples of strategies for determining suitable disposal options. As a result, disused sources are often stored indefinitely at the facilities where they were once used. In order to prevent disused sources from becoming orphan sources, each country must develop and implement a comprehensive waste management strategy that includes disposal of disused sources. The International Atomic Energy Agency (IAEA) fosters international cooperation between countries and encourages the development of a harmonized 'cradle to grave' approach to managing sources consistent with international legal instruments, IAEA safety standards, and international good practices. This 'cradle to grave' approach requires the development of a national policy and implementing strategy, an adequate legal and regulatory framework, and adequate resources and infrastructure that cover the entire life cycle, from production and use of radioactive sources to disposal. (authors)« less
An alternate approach to the production of radioisotopes for nuclear medicine applications
NASA Astrophysics Data System (ADS)
D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul
2013-03-01
There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.
A Report Guide to Radiographic Testing Literature. Volume 6
1975-04-01
Sources and Applications IITRI, Chicago, 111., 21-22 October 1964, ORNL -11C5, UC-23-Isotopes-Industrial Technology, November 1965 This...Applications IITRI, Chicago, IU., 21-22 October 1964. ORNL -11C5, UC-23lsotopes-lndustria3 Technology November 1965 The design of radioactive sources...Mich. Proceedings of Symposium on Low-Energy X and Gamma Sources and Applications IITRI, Chicago, HI., 21-22 October 1964. ORNL -11C5, US-23-Isotopes
10 CFR 60.22 - Filing and distribution of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... GEOLOGIC REPOSITORIES Licenses License Applications § 60.22 Filing and distribution of application. (a) An application for a construction authorization for a high-level radioactive waste repository at a geologic repository operations area, and an application for a license to receive and possess source, special nuclear...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
10 CFR 61.10 - Content of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.10 Content of application. An application to receive from others, possess and dispose of wastes containing or contaminated with source, byproduct or special nuclear material by land disposal must consist...
77 FR 76602 - Office of Hazardous Materials Safety; Actions on Special Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
...), transportation in 173.465(c), commerce of certain 173.465(d). Radioactive material in alternative packaging by... material in alternative packaging. (modes 1, 3) 15626-N......... EC Source 49 CFR 49 CFR To authorize the...); radioactive 175.702(b). material on cargo only aircraft when the combined transport index exceeds 50.0 and/or...
Experiences in the field of radioactive materials seizures in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Karel; Podlaha, Josef; Sir, David
2007-07-01
In recent years, the amount of radioactive materials seizures (captured radioactive materials) has been rising. It was above all due to newly installed detection facilities that were able to check metallic scrap during its collection in scrap yards or on the entrance to iron-mills, checking municipal waste upon entrance to municipal disposal sites, even incineration plants, or through checking vehicles going through the borders of the Czech Republic. Most cases bore a relationship to secondary raw materials or they were connected to the application of machines and installations made from contaminated metallic materials. However, in accordance to our experience, themore » number of cases of seizures of materials and devices containing radioactive sources used in the public domain was lower, but not negligible, in the municipal storage yards or incineration plants. Atomic Act No. 18/1997 Coll. will apply to everybody who provides activities leading to exposure, mandatory assurance as high radiation safety as risk of the endangering of life, personal health and environment is as low as reasonably achievable in according to social and economic aspects. Hence, attention on the examination of all cases of the radioactive material seizure based on detection facilities alarm or reasonably grounds suspicion arising from the other information is important. Therefore, a service carried out by group of workers who ensure assessment of captured radioactive materials and eventual retrieval of radioactive sources from the municipal waste has come into existence in the Nuclear Research Institute Rez plc. This service has covered also transport, storage, processing and disposal of found radioactive sources. This service has arisen especially for municipal disposal sites, but later on even other companies took advantage of this service like incineration plants, the State Office for Nuclear Safety, etc. Our experience in the field of ensuring assessment of captured radioactive materials and eventual retrieval of radioactive sources will be presented in the paper. (authors)« less
10 CFR 835.1202 - Accountable sealed radioactive sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive source...
10 CFR 835.1202 - Accountable sealed radioactive sources.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive source...
10 CFR 835.1202 - Accountable sealed radioactive sources.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive source...
10 CFR 835.1202 - Accountable sealed radioactive sources.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive source...
10 CFR 835.1202 - Accountable sealed radioactive sources.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Accountable sealed radioactive sources. 835.1202 Section 835.1202 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1202 Accountable sealed radioactive sources. (a) Each accountable sealed radioactive source...
10 CFR 835.1201 - Sealed radioactive source control.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled, and...
10 CFR 835.1201 - Sealed radioactive source control.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled, and...
10 CFR 835.1201 - Sealed radioactive source control.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled, and...
10 CFR 835.1201 - Sealed radioactive source control.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled, and...
10 CFR 835.1201 - Sealed radioactive source control.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Sealed radioactive source control. 835.1201 Section 835.1201 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Sealed Radioactive Source Control § 835.1201 Sealed radioactive source control. Sealed radioactive sources shall be used, handled, and...
Current Situation for Management of Disused Sealed Radioactive Sources in Japan - 13025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusama, Keiji; Miyamoto, Yoichi
2013-07-01
As for the Sealed Radioactive Source currently used in Japan, many of them are imported from overseas. The U.S., Canada, Germany, the Netherlands, Belgium and Czech Republic are the main exporting States. Many of disused sealed radioactive sources are being returned to exporting States. The sealed radioactive sources which cannot be returned to exporting States are appropriately kept in the domestic storage facility. So, there are not main problem on the long term management of disused sealed radioactive sources in Japan. However, there are some difficulties on repatriate. One is reservation of a means of transport. The sea mail whichmore » conveys radioactive sources owing to reduction of movement of international cargo is decreasing in number. And there is a denial of shipment. Other one is that the manufacturer has already resigned from the work and cannot return disused sealed radioactive sources, or a manufacturer cannot specify and disused sources cannot be returned. The disused sealed radioactive source which cannot be repatriated is a little in term of radioactivity. As for the establishment of national measure of final disposal facility for disused sealed radioactive sources, in Japan, it is not yet installed with difficulty. Since there are many countries for which installation of a final disposal facility for disused sealed radioactive sources is difficult, the source manufacture country should respond positively to return the source which was manufactured and sold in the past. (authors)« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... license application. The standard design would be referenced in subsequent license applications. Research..., medical, or research activity; or (ii) Any material that— (A) Has been made radioactive by use of a... August 8, 2005, for use for a commercial, medical, or research activity; and (3) Any discrete source of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... license application. The standard design would be referenced in subsequent license applications. Research..., medical, or research activity; or (ii) Any material that— (A) Has been made radioactive by use of a... August 8, 2005, for use for a commercial, medical, or research activity; and (3) Any discrete source of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... license application. The standard design would be referenced in subsequent license applications. Research..., medical, or research activity; or (ii) Any material that— (A) Has been made radioactive by use of a... August 8, 2005, for use for a commercial, medical, or research activity; and (3) Any discrete source of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... license application. The standard design would be referenced in subsequent license applications. Research..., medical, or research activity; or (ii) Any material that— (A) Has been made radioactive by use of a... August 8, 2005, for use for a commercial, medical, or research activity; and (3) Any discrete source of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... license application. The standard design would be referenced in subsequent license applications. Research..., medical, or research activity; or (ii) Any material that— (A) Has been made radioactive by use of a... August 8, 2005, for use for a commercial, medical, or research activity; and (3) Any discrete source of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten
2013-07-01
Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial andmore » technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A.S.
Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less
Assessment on security system of radioactive sources used in hospitals of Thailand
NASA Astrophysics Data System (ADS)
Jitbanjong, Petchara; Wongsawaeng, Doonyapong
2016-01-01
Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources used in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.
Cantaluppi, Chiara; Ceccotto, Federica; Cianchi, Aldo
2012-02-01
In the rare event that an orphan radioactive source is melted in an Electric Arc Furnace steel recycling plant, the radionuclides present are partitioned in the different products, by-products and waste. As a consequence of an unforeseen melting of a radiocesium source, cesium radioisotopes can be found in the dust, together with many natural radionuclides from the decay of radon and thoron, which are present in the atmosphere, picked up from the off-gas evacuation system and associated with the dust of the air filtration system ("baghouse"). In this work we verified that the activity concentration of ²¹²Pb in this dust is essentially constant in a specific factory so that it is possible to use it to date back to the time of the accidental melting of the orphan radioactive source. The main features of this method are described below, together with the application to a particular case in which this method was used for dating the moment in which the dust was contaminated with ¹³⁷Cs. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.
2015-07-01
This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.
Assessment on security system of radioactive sources used in hospitals of Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jitbanjong, Petchara, E-mail: petcharajit@gmail.com; Wongsawaeng, Doonyapong
Unsecured radioactive sources have caused deaths and serious injuries in many parts of the world. In Thailand, there are 17 hospitals that use teletherapy with cobalt-60 radioactive sources. They need to be secured in order to prevent unauthorized removal, sabotage and terrorists from using such materials in a radiological weapon. The security system of radioactive sources in Thailand is regulated by the Office of Atoms for Peace in compliance with Global Threat Reduction Initiative (GTRI), U.S. DOE, which has started to be implemented since 2010. This study aims to perform an assessment on the security system of radioactive sources usedmore » in hospitals in Thailand and the results can be used as a recommended baseline data for development or improvement of hospitals on the security system of a radioactive source at a national regulatory level and policy level. Results from questionnaires reveal that in 11 out of 17 hospitals (64.70%), there were a few differences in conditions of hospitals using radioactive sources with installation of the security system and those without installation of the security system. Also, personals working with radioactive sources did not clearly understand the nuclear security law. Thus, government organizations should be encouraged to arrange trainings on nuclear security to increase the level of understanding. In the future, it is recommended that the responsible government organization issues a minimum requirement of nuclear security for every medical facility using radioactive sources.« less
2012-03-01
environments where a source is either weak or shielded. A vehicle of this type could survey large areas after a nuclear attack or a nuclear reactor accident...to prevent its detection by γ-rays. The best application for unmanned vehicles is the detection of radioactive material after a nuclear reactor ...accident or a nuclear weapon detonation [70]. Whether by a nuclear detonation or a nuclear reactor accident, highly radioactive substances could be dis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsky, G.I.; Severe, W.R.; Leonard, L.
2007-07-01
Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset of the materials involved in illicit trafficking in nuclear and radioactive materials, that of radioactive sealed sources. The focus on radioactive sealed sources is based on our belief that insufficient attention has been paid to trafficking incidents involving such sources which constitute the majority of trafficking cases. According to the IAEA's Illicit Trafficking Data Base, as of December 31 2005 there were 827 confirmed cases reporting by the participating states, including 250 incidents (or 30%) involved nuclear and other radioactive materials and 566 (or 68%) involved other radioactive materials, mostly radioactive sources, and radioactively contaminated materials. Experts in the Lugar Survey on Proliferation Threat and Response (June 2005) agreed that an attack with a Radiological Dispersion Device (RDD) was the most probable form of nuclear terrorism the world could expect over the next decade. At the same time radiological materials are used in wide a variety of applications, located in virtually every country and in general, radiological materials are far easier to access than nuclear materials. It has become increasingly obvious that the lack of a cradle-to-grave approach for sealed radioactive sources that have reached the end of their useful life is the main reason that sources are abandoned. It appears that the questions will ultimately become whether industry will impose additional regulations upon itself and become self-regulating with respect to repatriating radioactive material at the end of service life, or whether national authorities at some point will take actions and regulate the industry. Argentina, which is one of the most advanced countries regarding control of radiological sources adopted additional measures to safeguard its radiological materials to a level comparable to that proscribed for nuclear materials. This approach, while highly successful, has led to some minor unforeseen consequences, namely insufficient funds to implement all regulations in full and a lack of inspectors and appropriate equipment to assure compliance This is not an unusual outcome. Regulations imposed by a national regulatory authority may be technically excellent, but their implementation may provide a funding challenge. A more practical approach may be to have the industry to impose regulations upon itself, which could be accomplished within the economics of the industries involved. (authors)« less
NASA Astrophysics Data System (ADS)
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.
2015-10-01
We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...
2015-06-29
In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less
Arduino based radioactive tracking system
NASA Astrophysics Data System (ADS)
Rahman, Nur Aira Abd; Rashid, Mohd Fazlie Bin Abdul; Rahman, Anwar Bin Abdul; Ramlan, Atikah
2017-01-01
There is a clear need to strengthen security measures to prevent any malevolent use or accidental misuse of radioactive sources. Some of these radioactive sources are regularly transported outside of office or laboratory premises for work and consultation purposes. This paper present the initial development of radioactive source tracking system, which combined Arduino microcontroller, Global Positioning System (GPS) and Global System for Mobile communication (GSM) technologies. The tracking system will help the owner to monitor the movement of the radioactive sources. Currently, the system is capable of tracking the movement of radioactive source through the GPS satellite signals. The GPS co-ordinate could either be transmitted to headquarters at fixed interval via Short Messaging Service (SMS) to enable real time monitoring, or stored in a memory card for offline monitoring and data logging.
Demonstration and development of control mechanism for radioactive sources in Saudi Arabia
NASA Astrophysics Data System (ADS)
Al-Kheliewi, A. S.
2012-06-01
Saudi Arabia have no nuclear industry. Nevertheless, many radioactive sources, for different purposes, have been used in the country. There is upswing in the number of companies that recruit nuclear technology in their daily work. The National Center for Radiation Protection (NCRP) takes the full commitment and responsibility for monitoring and regulating the movement of radioactive sources in the country. NCRP issues the licenses for import, export, and use of radioactive sources. It, also, protects the country from any trespassing radiation through a sizable net of early warning and radiation monitoring stations along the borders of Saudi Arabia. This paper talks about the procedures of licensing, importing, exporting of radioactive sources. It, also, sheds light on types of implementing radioactive sources in different practices encompass medicine, industry, research. The NCRP has established an electronic web site to ease the communication with all users in the country. This site is yet in the experimental stage.
Evaluation of Terrorist Interest in Radioactive Wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFee, J.N.; Langsted, J.M.; Young, M.E.
2006-07-01
Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in amore » terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the analysis is that environmental management generated radioactive wastes have substantially less impact than radioactive sources if dispersed by terrorist-induced explosion or fire. From a health standpoint, the impact is very small. However, there is no basis to conclude that wastes are totally unattractive for use in a disruptive or economic damage event. Waste managers should be cognizant of this potential and take measures to ensure security of stored waste and waste shipments. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
Radionuclides in surface and groundwater
Campbell, Kate M.
2009-01-01
Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.B.; Srivastava, P.; Mishra, S.K.
2013-07-01
Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dollan, Ralph; Haeusler, Uwe; Czarwinski, Renate
2013-07-01
Effective regulatory control is essential to ensure the safe and secure use of radioactive material and the appropriate management of radioactive waste. To ensure a sustainable control of high radioactive sources, the European Commission published the Council Directive 2003/122/EURATOM on the control of high-activity sealed radioactive sources and orphan sources, which had to be transferred into national legislation by all member states of the European Union. Major requirement of the Directive is a system to ensure traceability of high-activity sealed sources from 'cradle to grave' as well as the provision to take back disused sources by the supplier or manufacturer.more » With the Act on high-activity sealed radioactive sources Germany implemented the requirements of the Directive 2003/122/EURATOM and established a national registry of high-activity sealed sources in 2006. Currently, about 27.000 high-activity sealed sources are recorded in this national registry. (authors)« less
NASA Astrophysics Data System (ADS)
Yoshida, Satoshi
Applications of inductively coupled plasma mass spectrometry (ICP-MS) to the determination of long-lived radionuclides in environmental samples were summarized. In order to predict the long-term behavior of the radionuclides, related stable elements were also determined. Compared with radioactivity measurements, the ICP-MS method has advantages in terms of its simple analytical procedures, prompt measurement time, and capability of determining the isotope ratio such as240Pu/239Pu, which can not be separated by radiation. Concentration of U and Th in Japanese surface soils were determined in order to determine the background level of the natural radionuclides. The 235U/238U ratio was successfully used to detect the release of enriched U from reconversion facilities to the environment and to understand the source term. The 240Pu/239Pu ratios in environmental samples varied widely depending on the Pu sources. Applications of ICP-MS to the measurement of I and Tc isotopes were also described. The ratio between radiocesium and stable Cs is useful for judging the equilibrium of deposited radiocesium in a forest ecosystem.
Demonstration and development of control mechanism for radioactive sources in Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Kheliewi, A. S.
2012-06-06
Saudi Arabia have no nuclear industry. Nevertheless, many radioactive sources, for different purposes, have been used in the country. There is upswing in the number of companies that recruit nuclear technology in their daily work. The National Center for Radiation Protection (NCRP) takes the full commitment and responsibility for monitoring and regulating the movement of radioactive sources in the country. NCRP issues the licenses for import, export, and use of radioactive sources. It, also, protects the country from any trespassing radiation through a sizable net of early warning and radiation monitoring stations along the borders of Saudi Arabia. This papermore » talks about the procedures of licensing, importing, exporting of radioactive sources. It, also, sheds light on types of implementing radioactive sources in different practices encompass medicine, industry, research. The NCRP has established an electronic web site to ease the communication with all users in the country. This site is yet in the experimental stage.« less
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
Physics of vascular brachytherapy.
Jani, S K
1999-08-01
Basic physics plays an important role in understanding the clinical utility of radioisotopes in brachytherapy. Vascular brachytherapy is a very unique application of localized radiation in that dose levels very close to the source are employed to treat tissues within the arterial wall. This article covers basic physics of radioactivity and differentiates between beta and gamma radiations. Physical parameters such as activity, half-life, exposure and absorbed dose have been explained. Finally, the dose distribution around a point source and a linear source is described. The principles of basic physics are likely to play an important role in shaping the emerging technology and its application in vascular brachytherapy.
Three multimedia models used at hazardous and radioactive waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.
1996-02-01
Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selectionmore » and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers.« less
10 CFR 32.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recognized Indian Tribes with respect to accelerator-produced radioactive material or discrete sources of... transfer items containing accelerator-produced radioactive material or discrete sources of radium-226 for... radioactive material or discrete sources of radium-226 on August 8, 2009, or earlier as noticed by the NRC...
Hoffman, Daniel E
2003-02-01
The Gulf Nuclear Superfund Site located in Odessa, Texas, was an abandoned radioactive source production facility slated for cleanup as a Removal Action under the U.S. Environmental Protection Agency Region VI Superfund program. Prior to cessation of operations and abandonment of the facility in 1992, it was used for the production of radioactive sources used in the oil and gas industry and nuclear medicine applications. Pangea Group was contracted by the U.S. Army Corps of Engineers (USACE) Kansas City District to perform remediation of the site and other contaminated debris, cleaning of interior building surfaces, building demolition, and excavation/removal of contaminated soils and septic system. The project scope also included loading, containerization and transportation of low-level radioactive wastes for offsite disposal. Primary radionuclides present at the facility were 137Cs, 60Co, and 241Am. The project also included packaging and removal of radioactive sources and mixed waste consisting of radiologically contaminated lead shot and lead source containers. Included in the paper is a discussion of primary worker protection and environmental protection measures employed on the project. Worker protection issues included the control of industrial and construction safety hazards as well as control of external and internal radiation dose. Control of air emissions and contaminated wastewater were also very important, especially due to the location of the site. The site was located in an area containing both residential and commercial properties. Several residences and businesses were located immediately adjacent to the site. The project involved the participation of the USACE Kansas City District, EPA Region 6, and the Texas Bureau of Radiological Health. Field work on the project started in April 2001 and was completed approximately five months later.
Hoffman, Daniel E.
2003-02-01
The Gulf Nuclear Superfund Site located in Odessa, Texas, was an abandoned radioactive source production facility slated for cleanup as a Removal Action under the U.S. Environmental Protection Agency Region VI Superfund program. Prior to cessation of operations and abandonment of the facility in 1992, it was used for the production of radioactive sources used in the oil and gas industry and nuclear medicine applications. Pangea Group was contracted by the U.S. Army Corps of Engineers (USACE) Kansas City District to perform remediation of the site and other contaminated debris, cleaning of interior building surfaces, building demolition, and excavation/removal of contaminated soils and septic system. The project scope also included loading, containerization and transportation of low-level radioactive wastes for offsite disposal. Primary radionuclides present at the facility were Cs, Co, and Am. The project also included packaging and removal of radioactive sources and mixed waste consisting of radiologically contaminated lead shot and lead source containers. Included in the paper is a discussion of primary worker protection and environmental protection measures employed on the project. Worker protection issues included the control of industrial and construction safety hazards as well as control of external and internal radiation dose. Control of air emissions and contaminated wastewater were also very important, especially due to the location of the site. The site was located in an area containing both residential and commercial properties. Several residences and businesses were located immediately adjacent to the site. The project involved the participation of the USACE Kansas City District, EPA Region 6, and the Texas Bureau of Radiological Health. Field work on the project started in April 2001 and was completed approximately five months later.
Study of gamma detection capabilities of the REWARD mobile spectroscopic system
NASA Astrophysics Data System (ADS)
Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.
2017-07-01
REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... manufactured in accordance with the unique specifications of, and for use by, a single applicant. Research..., on, or after August 8, 2005, for use for a commercial, medical, or research activity; or (ii) Any..., medical, or research activity; and (3) Any discrete source of naturally occurring radioactive material...
Code of Federal Regulations, 2014 CFR
2014-01-01
... manufactured in accordance with the unique specifications of, and for use by, a single applicant. Research..., on, or after August 8, 2005, for use for a commercial, medical, or research activity; or (ii) Any..., medical, or research activity; and (3) Any discrete source of naturally occurring radioactive material...
Code of Federal Regulations, 2013 CFR
2013-01-01
... manufactured in accordance with the unique specifications of, and for use by, a single applicant. Research..., on, or after August 8, 2005, for use for a commercial, medical, or research activity; or (ii) Any..., medical, or research activity; and (3) Any discrete source of naturally occurring radioactive material...
Dynamic radioactive particle source
Moore, Murray E; Gauss, Adam Benjamin; Justus, Alan Lawrence
2012-06-26
A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.
Conditioning Procedure for Spent Cs-137 Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
2006-07-01
It is the duty of the Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority to mange the radioactive waste generated from any user for radioactive materials in Egypt. The most hazardous or dangerous radioactive waste we collect is spent radioactive sealed sources that have to be managed safely to protect human, workers and environment from any undue burden for radiation. Through the Integrated Management Program Of Radioactive Sealed Sources In Egypt, IMPRSS all spent Cs-137 sources with low activity will be retrievable conditioned in 200 L drum with special lead shield to keep the surface dose rate lowermore » than 200 merm/h according to US regulations and IAEA guidelines. Using this procedure the EAEA will condition about 243 sources in 9 drums. (authors)« less
Radioactivity as a significant energy source in prebiotic synthesis.
Garzón, L; Garzón, M L
2001-01-01
Radioactivity in the continental crust (due mainly to the isotopes 238U, 235U, 232Th and 40K), as a energy source for chemical evolution in the early Archean (between 3.5 and approximately 4 Ga bp), is reviewed. The most important radioactive source in the continental crust is due to the production and accumulation of radioactive gases within the crust voids (porosity). The study of such mechanism has allowed us to reach a deeper understanding about the nature of the radioactive source and to describe its behavior, particularly with regard to prebiotic chemical evolution. An effective total energy of 3 x 10(18) Ja-1 has been obtained for a depth of 1 km, 4 Ga ago. If a depth of 30 km is taken, the obtained value is almost equal to the UV solar energy radiation (lambda < 150 nm). Within the voids the radioactive source of the continental crust played a relevant role in prebiotic synthesis. In uranium deposits of the same age, the role of radioactivity must have been even more relevant in favoring chemical evolution.
NASA Astrophysics Data System (ADS)
Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.
2004-06-01
A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.
Management of Disused Radioactive Sealed Sources in Egypt - 13512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.
The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralizedmore » radioactive waste management facility in Egypt by law 7/2010. (authors)« less
10 CFR 30.32 - Application for specific licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of the source or device are adequate to protect health and minimize danger to life and property. Such... lower than the release fraction shown § 30.72 due to the chemical or physical form of the material; (iv..., educational institution, or Federal facility to produce Positron Emission Tomography (PET) radioactive drugs...
10 CFR 30.32 - Application for specific licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of the source or device are adequate to protect health and minimize danger to life and property. Such... lower than the release fraction shown § 30.72 due to the chemical or physical form of the material; (iv..., educational institution, or Federal facility to produce Positron Emission Tomography (PET) radioactive drugs...
10 CFR 30.32 - Application for specific licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of the source or device are adequate to protect health and minimize danger to life and property. Such... the release fraction shown § 30.72 due to the chemical or physical form of the material; (iv) The..., educational institution, or Federal facility to produce Positron Emission Tomography (PET) radioactive drugs...
Development and deployment of the Collimated Directional Radiation Detection System
NASA Astrophysics Data System (ADS)
Guckes, Amber L.; Barzilov, Alexander
2017-09-01
The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.
Material for radioactive protection
Taylor, R.S.; Boyer, N.W.
A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.
NASA Technical Reports Server (NTRS)
Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.
1995-01-01
Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.
Study of two different radioactive sources for prostate brachytherapy treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de
In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of anmore » adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)« less
10 CFR 30.3 - Activities requiring license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that possesses and uses accelerator-produced radioactive material or discrete sources of radium-226 for...-produced radioactive material or discrete sources of radium-226 for which a specific license is required in... section, all other licensees, who possess and use accelerator-produced radioactive material or discrete...
Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein
2018-05-26
The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Improved detection of radioactive material using a series of measurements
NASA Astrophysics Data System (ADS)
Mann, Jenelle
The goal of this project is to develop improved algorithms for detection of radioactive sources that have low signal compared to background. The detection of low signal sources is of interest in national security applications where the source may have weak ionizing radiation emissions, is heavily shielded, or the counting time is short (such as portal monitoring). Traditionally to distinguish signal from background the decision threshold (y*) is calculated by taking a long background count and limiting the false negative error (alpha error) to 5%. Some problems with this method include: background is constantly changing due to natural environmental fluctuations and large amounts of data are being taken as the detector continuously scans that are not utilized. Rather than looking at a single measurement, this work investigates looking at a series of N measurements and develops an appropriate decision threshold for exceeding the decision threshold n times in a series of N. This methodology is investigated for a rectangular, triangular, sinusoidal, Poisson, and Gaussian distribution.
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Infrastructure development for radioactive materials at the NSLS-II
Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...
2017-11-04
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Design of a plastic minicolpostat applicator with shields.
Weeks, K J; Montana, G S; Bentel, G C
1991-09-01
A plastic intracavitary applicator system for the treatment of cancer of the uterine cervix is described. This applicator has a minicolpostat and a mechanism for affixing the tandem to the colpostats. Traditional afterloading refers only to the radioactive source. Both the source and the ovoid shield are afterloaded together in this applicator in contrast to traditional afterloading systems which afterload the source alone. A potential advantage of our applicator system is that it allows high quality CT localization because the sources and shields can be removed and the applicator is made of plastic. The advantages and disadvantages of this variation to the Fletcher system as well as other aspects of applicator design are discussed. An experimentally verified dose calculation method for shielded sources is applied to the design problems associated with this applicator. The dose distribution calculated for a source-shield configuration of the plastic applicator is compared to that obtained with a commercial Fletcher-Suit-Delclos (FSD) applicator. Significant shielding improvements can be achieved for the smallest diameter ovoid, that is, in the minicolpostat. The plastic minicolpostat dose distributions are similar to those produced by the conventional larger diameter colpostats. In particular, the colpostat shielding for rectum and bladder, which is reduced in the metal applicator's minicolpostat configuration, is maintained for the plastic minicolpostat. Further, it is shown that, if desired, relative to the FSD minicolpostat, the mucosa dose can be reduced by a suitable change of the minicolpostat source position.
Safety and security of radioactive sources in industrial radiography in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A. S.; Nazrul, M. Abdullah
2013-07-01
Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing themore » risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groppi, Flavia; Manenti, Simone; Gini, Luigi
In Italy the 'nuclear issue' was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to ourmore » exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.« less
A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors
NASA Astrophysics Data System (ADS)
Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.
2018-04-01
The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.
A compact high-resolution X-ray ion mobility spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinecke, T.; Kirk, A. T.; Heptner, A.
For the ionization of gaseous samples, most ion mobility spectrometers employ radioactive ionization sources, e.g., containing {sup 63}Ni or {sup 3}H. Besides legal restrictions, radioactive materials have the disadvantage of a constant radiation with predetermined intensity. In this work, we replaced the {sup 3}H source of our previously described high-resolution ion mobility spectrometer with 75 mm drift tube length with a commercially available X-ray source. It is shown that the current configuration maintains the resolving power of R = 100 which was reported for the original setup containing a {sup 3}H source. The main advantage of an X-ray source ismore » that the intensity of the radiation can be adjusted by varying its operating parameters, i.e., filament current and acceleration voltage. At the expense of reduced resolving power, the sensitivity of the setup can be increased by increasing the activity of the source. Therefore, the performance of the setup can be adjusted to the specific requirements of any application. To investigate the relation between operating parameters of the X-Ray source and the performance of the ion mobility spectrometer, parametric studies of filament current and acceleration voltage are performed and the influence on resolving power, peak height, and noise is analyzed.« less
An alternate approach to the production of radioisotopes for nuclear medicine applications.
D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul
2013-03-01
There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.
ERIC Educational Resources Information Center
Herrmann, Richard A.
1974-01-01
By concentrating radioactivity contained on luminous dials, a teacher can make a high reading source for classroom experiments on radiation. The preparation of the source and its uses are described. (DT)
1999-01-01
This report provides guidance on the application of the ICRP system of radiological protection to prolonged exposure situations affecting members of the public. It addresses the general application of the Commission's system to the control of prolonged exposures resulting from practices and to the undertaking of interventions in prolonged exposure situations. Additionally, it provides recommendations on generic reference levels for such interventions. The report also considers some specific situations and discusses a number of issues that have been of concern, namely: natural radiation sources that may give rise to high doses; the restoration and rehabilitation of sites where human activities involving radioactive substances have been carried out; the return to 'normality' following an accident that has released radioactive substances to the environment; and the global marketing of commodities for public consumption that contain radioactive substances. Annexes provide some examples of prolonged exposure situations and discuss the radiological protection quantities, radiation-induced health effects and aspects of the Commission's system of radiological protection relevant to prolonged exposure. Quantitative recommendations for prolonged exposures are provided in the report. They must be interpreted with extreme caution; Chapters 4 and 5 stress the upper bound nature of the following values: Generic reference levels for intervention, in terms of existing total annual doses, are given as < approximately 100 mSv, above which intervention is almost always justifiable (situations for which the annual dose threshold for deterministic effects in relevant organs is exceeded will almost always require intervention), and < approximately 10 mSv, below which intervention is not likely to be justifiable (and above which it may be necessary). Intervention exemption levels for commodities, especially building materials, are expressed as an additional annual dose of approximately 1 mSv. The dose limit for exposures of the public from practices is expressed as aggregated (prolonged and transitory) additional annual doses from all relevant practices of 1 mSv. Dose constraints for sources within practices are expressed as an additional annual dose lower than 1 mSv (e.g. of approximately 0.3 mSv), which could be approximately 0.1 mSv for the prolonged exposure component. An exemption level for practices is expressed as an additional annual dose of approximately 0.01 mSv.
The Lambert-Beer law in time domain form and its application.
Mosorov, Volodymyr
2017-10-01
The majority of current radioisotope gauges utilize measurements of intensity for a chosen sampling time interval using a detector. Such an approach has several disadvantages: temporal resolution of the gauge is fixed and the accuracy of the measurements is not the same for different count rate. The solution can be the use of a stronger radioactive source, but it will be conflicted with ALARA (As Low As Reasonably Achievable) principle. Therefore, the article presents an alternative approach which is based on modified Lambert-Beer law. The basis of the approach is the registration of time intervals instead of the registration of counts. It allows to increase the temporal resolution of a gauge without the necessity of using a stronger radioactive source and the accuracy of the measurements will not depend on count rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A
2018-05-29
The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2015-02-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments tomore » and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.« less
Influence of surface potential on the adhesive force of radioactive gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida
2013-08-23
Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less
NASA Astrophysics Data System (ADS)
Manzolaro, Mattia; Meneghetti, Giovanni; Andrighetto, Alberto
2010-11-01
In a facility for the production of radioactive ion beams (RIBs), the target system and the ion source are the most critical objects. In the context of the Selective Production of Exotic Species (SPES) project, a proton beam directly impinges a Uranium Carbide production target, generating approximately 10 13 fissions per second. The radioactive isotopes produced by the 238U fissions are then directed to the ion source to acquire a charge state. After that, the radioactive ions obtained are transported electrostatically to the subsequent areas of the facility. In this work the surface ion source at present adopted for the SPES project is studied by means of both analytical and numerical thermal-electric models. The theoretical results are compared with temperature and electric potential difference measurements.
Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal
NASA Astrophysics Data System (ADS)
Solovev, D. B.; Merkusheva, A. E.
2017-11-01
The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.
NASA Astrophysics Data System (ADS)
Gerardy, I.; Rodenas, J.; Van Dycke, M.; Gallardo, S.; Tondeur, F.
2008-02-01
Brachytherapy is a radiotherapy treatment where encapsulated radioactive sources are introduced within a patient. Depending on the technique used, such sources can produce high, medium or low local dose rates. The Monte Carlo method is a powerful tool to simulate sources and devices in order to help physicists in treatment planning. In multiple types of gynaecological cancer, intracavitary brachytherapy (HDR Ir-192 source) is used combined with other therapy treatment to give an additional local dose to the tumour. Different types of applicators are used in order to increase the dose imparted to the tumour and to limit the effect on healthy surrounding tissues. The aim of this work is to model both applicator and HDR source in order to evaluate the dose at a reference point as well as the effect of the materials constituting the applicators on the near field dose. The MCNP5 code based on the Monte Carlo method has been used for the simulation. Dose calculations have been performed with *F8 energy deposition tally, taking into account photons and electrons. Results from simulation have been compared with experimental in-phantom dose measurements. Differences between calculations and measurements are lower than 5%.The importance of the source position has been underlined.
Radon Laboratory: A Proposal for Scientific Culture Dissemination Among Young Students in Italy
NASA Astrophysics Data System (ADS)
Groppi, Flavia; Bazzocchi, Anna; Manenti, Simone; Gini, Luigi; Bonardi, Mauro L.
2009-08-01
In Italy the "nuclear issue" was for a long time a taboo. A way to approach this theme to make the public more trusting of nuclear issues is to discuss radioactivity and ionizing radiation starting from young students. An experimental activity that involves secondary school students has been developed. The approach is to have students engaged in activities that will allow them to understand how natural radioactivity is a part of our everyday environment. This would include how radiation enters our lives in different ways, to demonstrate that natural radioactive sources found in soil, water, and air contribute to our exposure to natural ionizing radiation and how this exposure effects human health. Another objective is to develop a new technique for teaching physics which will enhance scientific interest of students in applications of nuclear physics in both environmental and physical sciences.
Imaging method for monitoring delivery of high dose rate brachytherapy
Weisenberger, Andrew G; Majewski, Stanislaw
2012-10-23
A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.
Radioactivity of Consumer Products
NASA Astrophysics Data System (ADS)
Peterson, David; Jokisch, Derek; Fulmer, Philip
2006-11-01
A variety of consumer products and household items contain varying amounts of radioactivity. Examples of these items include: FiestaWare and similar glazed china, salt substitute, bananas, brazil nuts, lantern mantles, smoke detectors and depression glass. Many of these items contain natural sources of radioactivity such as Uranium, Thorium, Radium and Potassium. A few contain man-made sources like Americium. This presentation will detail the sources and relative radioactivity of these items (including demonstrations). Further, measurements of the isotopic ratios of Uranium-235 and Uranium-238 in several pieces of china will be compared to historical uses of natural and depleted Uranium. Finally, the presenters will discuss radiation safety as it pertains to the use of these items.
Overview of Accelerator Applications for Security and Defense
Antolak, Arlyn J.
2015-01-01
Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.
10 CFR 35.10 - Implementation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive material or discrete sources of radium-226 for which a specific medical use license is required by... accelerator-produced radioactive material or discrete sources of radium-226 for which a specific medical use...
Seiler, Ralph L.
2007-01-01
Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.
Applications Where Snap is BPM for Radioactive Waste Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, T.J.
2008-07-01
Historically, the Atomic Weapons Establishment (AWE) at Aldermaston in the United Kingdom (UK), has used a variety of assay techniques to measure the radioactive content of a diverse range of waste packages from decommissioning, operational and legacy sources. The regulator, the Environment Agency in the UK, places conditions and limits on AWE through an authorisation within the Radioactive Substances Act (RSA93). The conditions and limits require Best Practical Means (BPM) measurements to be used to demonstrate compliance with the authorisation. Hence, the assay technique employed needs to achieve a balance between risk of exposure, environmental considerations, technological considerations, health andmore » safety considerations and cost effectiveness, without being grossly disproportionate in terms of money, time or trouble. Recently published work has concluded that the Spectral Non-destructive Assay Platform (SNAP) assay system is BPM for Depleted Uranium (DU) waste assay at AWE (1) and low level plutonium in soft drummed waste, HEPA filters and soils (2-4). The purpose of this paper is to highlight other applications where SNAP represents BPM for radioactive waste assay. This has been done by intercomparison studies of SNAP with other assay techniques, such as Segmented Gamma Scanner (SGS) and Passive Neutron Coincidence Counter (PNCC). It has been concluded that, for a large range of waste packages encountered at AWE, SNAP is BPM. (author)« less
Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene
2018-05-19
Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radioactivity in consumer products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghissi, A.A.; Paras, P.; Carter, M.W.
1978-08-01
Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.
Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.
Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi
2010-02-01
Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated. Copyright 2009 Elsevier Inc. All rights reserved.
A Multicusp Ion Source for Radioactive Ion Beams
NASA Astrophysics Data System (ADS)
Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.
1997-05-01
In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.
NASA Astrophysics Data System (ADS)
Gao, M.; Huang, S. T.; Wang, P.; Zhao, Y. A.; Wang, H. B.
2016-11-01
The geological disposal of high-level radioactive waste (hereinafter referred to "geological disposal") is a long-term, complex, and systematic scientific project, whose data and information resources in the research and development ((hereinafter referred to ”R&D”) process provide the significant support for R&D of geological disposal system, and lay a foundation for the long-term stability and safety assessment of repository site. However, the data related to the research and engineering in the sitting of the geological disposal repositories is more complicated (including multi-source, multi-dimension and changeable), the requirements for the data accuracy and comprehensive application has become much higher than before, which lead to the fact that the data model design of geo-information database for the disposal repository are facing more serious challenges. In the essay, data resources of the pre-selected areas of the repository has been comprehensive controlled and systematic analyzed. According to deeply understanding of the application requirements, the research work has made a solution for the key technical problems including reasonable classification system of multi-source data entity, complex logic relations and effective physical storage structures. The new solution has broken through data classification and conventional spatial data the organization model applied in the traditional industry, realized the data organization and integration with the unit of data entities and spatial relationship, which were independent, holonomic and with application significant features in HLW geological disposal. The reasonable, feasible and flexible data conceptual models, logical models and physical models have been established so as to ensure the effective integration and facilitate application development of multi-source data in pre-selected areas for geological disposal.
Radioactive materials in recycled metals.
Lubenau, J O; Yusko, J G
1995-04-01
In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.
ERIC Educational Resources Information Center
Al-Azmi, Darwish; Mustapha, Amidu O.; Karunakara, N.
2012-01-01
Simple procedures for teaching practical radioactivity are presented in a way that attracts students' attention and does not make them apprehensive about their safety. The radiation source is derived from the natural environment. It is based on the radioactivity of radon, a ubiquitous inert gas, and the adsorptive property of activated charcoal.…
[Implants with 32P-foils for LDR-brachytherapy of benign stenosis in urology and gastroenterology].
Assmann, Walter; Becker, Ricarda; Otto, Henrike; Bader, Markus; Clemente, Lucas; Reinhardt, Sabine; Schäfer, Claus; Schirra, Jörg; Uschold, Stephanie; Welzmüller, Andreas; Sroka, Ronald
2013-02-01
For LDR-brachytherapy, a limited number of implant geometries and materials are available. To avoid wound healing related hyper-proliferation (stenosis, keloids) a novel radioactive foil system was developed based on beta emitting (32)P, which can be easily integrated in existing implants such as urethral catheters or bile duct stents. As substrate material for these foils PEEK (polyetherethercetone) was chosen because of its radiation hardness during neutron activation of (32)P. The activity was determined by liquid scintillation counting and gamma spectroscopy, dose distributions were measured with scintillation detectors and radiochromic films. The correlation between activity and dose was checked by Monte-Carlo-simulations (Geant4). Prototypes of the (32)P-implants have shown in wash-out tests the required tightness for sealed radioactive sources. In animal tests on urethra and bile duct, the uncomplicated and save application of (32)P-foils mounted on standard implants has been demonstrated, which is almost unchanged due to the simple radiation protection with plexiglass. This concept of radioactive implants with integrated (32)P-foils could extend essentially the application possibilities of LDR-brachytherapy. Copyright © 2012. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
radioactive source is material used for its emitted radiation. Sources are sealed or unsealed and are classified as accountable or exempt. Radioactive sources are used for response checks, functional checks, and the calibration of instruments and monitors to traceable standards. To ensure the safety and welfare of all personnel, it is important to maintain control of radioactive sources to minimize the potential for the spread of contamination, unnecessary exposure to personnel, loss or theft, and improper disposal. This course will prepare the student with the skills necessary for RCT qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1,more » Unit 2 Examination (TEST 27566) and will provide in-the-field skills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
Boshkova, T; Mitev, K
2016-03-01
In this work we present test procedures, approval criteria and results from two metrological inspections of a certified large volume (152)Eu source (drum about 200L) intended for calibration of HPGe gamma assay systems used for activity measurement of radioactive waste drums. The aim of the inspections was to prove the stability of the calibration source during its working life. The large volume source was designed and produced in 2007. It consists of 448 identical sealed radioactive sources (modules) apportioned in 32 transparent plastic tubes which were placed in a wooden matrix which filled the drum. During the inspections the modules were subjected to tests for verification of their certified characteristics. The results show a perfect compliance with the NIST basic guidelines for the properties of a radioactive certified reference material (CRM) and demonstrate the stability of the large volume CRM-drum after 7 years of operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radioactive source security: the cultural challenges.
Englefield, Chris
2015-04-01
Radioactive source security is an essential part of radiation protection. Sources can be abandoned, lost or stolen. If they are stolen, they could be used to cause deliberate harm and the risks are varied and significant. There is a need for a global security protection system and enhanced capability to achieve this. The establishment of radioactive source security requires 'cultural exchanges'. These exchanges include collaboration between: radiation protection specialists and security specialists; the nuclear industry and users of radioactive sources; training providers and regulators/users. This collaboration will facilitate knowledge and experience exchange for the various stakeholder groups, beyond those already provided. This will promote best practice in both physical and information security and heighten security awareness generally. Only if all groups involved are prepared to open their minds to listen to and learn from, each other will a suitable global level of control be achieved. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, Louis
2014-09-20
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less
Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Clell J. Jr.
The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the descriptionmore » of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.« less
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... amended its regulations to include jurisdiction over discrete sources of radium-226, accelerator-produced radioactive materials, and discrete sources of naturally occurring radioactive material, as required by the... those discrete sources of radium-226 under military control that are subject to NRC regulation, as...
77 FR 73054 - Application for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately...
Jefferson, S.
1958-01-28
This patent relates to a device normally termed a godevil for use in clearing pipes of sludge, and in particular describes an arrangement for housing a radioactive source within a go-devil whereby the source is removed from a radioactivity shield for detection purposes only when the go-devil is in use. In the described go-devil the radioactive source is housed in a member attached to a piston. Under normal pressure conditions the piston is forced in a direction to position the source within a lead shield. A bellows senses the pressure external to the go-devil and acts through a hydraulic line to force the piston in a direction to remove the source from the shield as long as the pressure is above a pre-set value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, John A.; Burke, Kevin J.; Looman, Marc R.
2012-07-01
This paper describes the development, testing and validation of a waste measurement instrument for characterising active remote handled radioactive waste arising from the operation of Magnox reactors in the United Kingdom. Following operation in UK Magnox gas cooled reactors and a subsequent period of cooling, parts of the magnesium-aluminium alloy cladding were removed from spent fuel and the uranium fuel rods with the remaining cladding were removed to Sellafield for treatment. The resultant Magnox based spent fuel element debris (FED), which constitutes active intermediate level waste (ILW) has been stored in concrete vaults at the reactor sites. As part ofmore » the decommissioning of the FED vaults the FED must be removed, measured and characterised and placed in intermediate storage containers. The present system was developed for use at the Trawsfynydd nuclear power station (NPS), which is in the decommissioning phase, but the approach is potentially applicable to FED characterisation at all of the Magnox reactors. The measurement system consists of a heavily shielded and collimated high purity Germanium (HPGe) detector with electromechanical cooling and a high count-rate preamplifier and digital multichannel pulse height analyser. The HPGe based detector system is controlled by a software code, which stores the measurement result and allows a comprehensive analysis of the measured FED data. Fuel element debris is removed from the vault and placed on a tray to a uniform depth of typically 10 cm for measurement. The tray is positioned approximately 1.2 meters above the detector which views the FED through a tungsten collimator with an inverted pyramid shape. At other Magnox sites the positions may be reversed with the shielded and collimated HPGe detector located above the tray on which the FED is measured. A comprehensive Monte Carlo modelling and analysis of the measurement process has been performed in order to optimise the measurement geometry and eliminate interferences from radioactive sources and FED in the immediate vicinity of the measurement position. The detector system has been calibrated and high activity radioactive sources of Cs-137, Co-60 and Na-22 have been used to validate the measurement process. The data acquisition and analysis software code has been tested and validated in keeping with the software quality assurance requirements of both ISO:9001-2008 - TICK-IT in the UK and NQA-1. The measurement and analysis system has been comprehensively tested with high activity sources, is flexible and may be applicable to a wide range of remote handled radioactive waste measurement applications. It is due to be installed at Trawsfynydd NPS later this year. This paper describes the Waste Tray Assay System (WTAS) that has been developed for the measurement of Magnox FED waste. The WTAS has been tested with a range of radioactive sources and its operation has been simulated with benchmarked MCNP Monte Carlo calculations. The measurement software has been validated as has the operation of the system for a range of strong radioactive sources. A system based on the design is due for installation and operation in 2012. The system has application to the measurement of Magnox Fuel Element Debris (FED) waste at other Magnox reactor sites. The major design objective of the WTAS that has been achieved is the ability of the assay system to determine the content of Cs-137, and in turn to enable the fissile burden to be assessed using a radionuclide fingerprint, in the presence of higher and highly variable quantities of Co-60, typically from nimonic springs. The approach can be used in other Magnox FED waste configurations where the detector is located above the FED waste sorting tray and where the collimation is fixed below the detector and at a distance above the tray. In this case, which has also been investigated, there are different shielding problems and mechanical support issues. The extensive use of MCNP Monte Carlo modelling to simulate the geometry of the sorting cell and the distribution of radioactive sources has helped to ensure that all of the detector shielding requirements are addressed and suitable Cs-137 and Co-60 discrimination can be achieved. The WTAS in its present form or in other configurations has relevance to the measurement of other active ILW and highly active RH waste. Examples include high activity RH LLW and RH TRU (Transuranic) waste as defined in the United States arising from both commercial nuclear and Department of Energy (DOE) operations. The analysis is able to analyse a range of radionuclides beyong those expected in the Magnox FED cases. (authors)« less
Threat Identification Parameters for a Stolen Category 1 Radioactive Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ussery, Larry Eugene; Winkler, Ryan; Myers, Steven Charles
2016-02-18
Radioactive sources are used very widely for research and practical applications across medicine, industry, government, universities, and agriculture. The risks associated with these sources vary widely depending on the specific radionuclide used to make the source, source activity, and its chemical and physical form. Sources are categorized by a variety of classification schemes according to the specific risk they pose to the public. This report specifically addresses sources that are classified in the highest category for health risk (category 1). Exposure to an unshielded or lightly shielded category 1 source is extremely dangerous to life and health and can bemore » fatal in relatively short exposure times measured in seconds to minutes. A Category 1 source packaged according to the guidelines dictated by the NRC and U.S. Department of Transportation will typically be surrounded by a large amount of dense shielding material, but will still exhibit a significant dose rate in close proximity. Detection ranges for Category 1 gamma ray sources can extend beyond 5000 ft, but will depend mostly on the source isotope and activity, and the level of shielding around the source. Category 1 sources are easy to detect, but difficult to localize. Dose rates in proximity to an unshielded Category 1 source are extraordinarily high. At distances of a few hundred feet, the functionality of many commonly used handheld instruments will be extremely limited for both the localization and identification of the source. Radiation emitted from a Category 1 source will scatter off of both solid material (ground and buildings) and the atmosphere, a phenomenon known as skyshine. This scattering affects the ability to easily localize and find the source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bungai, D.A.; Skalskij, A.S.; Dzhepo, S.P.
The `Red Forest` radioactive waste burials created during emergency clean-up activities at Chernobyl Nuclear Power Plant represent a serious source of radioactive contamination of the local ground water system with 9OSr concentration in ground water exceeding the drinking water standard by 3-4 orders of magnitude. In this paper we present results of our hydrogeological and radiological `Red Forest` site characterization studies, which allow us to estimate 9OSr subsurface migration parameters. We use then these parameters to assess long terrain radionuclide transport to groundwater and surface water, and to analyze associated health risks. Our analyses indicate that 9OSr transport via groundmore » water pathway from `Red Forest` burials to the adjacent Pripyat River is relatively insignificant due to slow release of 9OSr from the waste burials (less than 1% of inventory per year) and due to long enough ground water residence time in the subsurface, which allows substantial decay of the radioactive contaminant. Tins result and our previous analyses indicate, that though conditions of radioactive waste storage in burials do not satisfy Ukrainian regulation on radiation protection, health risks caused by radionuclide migration to ground water from `Red Forest` burials do not justify application of expensive countermeasures.« less
2nd Quarter Transportation Report FY 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, L.
2014-07-01
This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less
Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; El-Zakla, T.
2013-07-01
Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasingmore » the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)« less
Spent Sealed Sources Management in Switzerland - 12011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, H.F.
2012-07-01
Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation tomore » the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)« less
77 FR 64435 - Branch Technical Position on the Import of Non-U.S. Origin Radioactive Sources
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... exclusion, initially adopted in a 1995 rule.\\3\\ In accordance with International Atomic Energy Agency (IAEA) Code of Conduct on the Safety and Security of Radioactive Sources and the IAEA supplemental Guidance on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cester, D.; Lunardon, M.; Stevanato, L.
2015-07-01
MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... Guidance for Aggregation of Sources NRC supports the use of the International Atomic Energy Agency's (IAEA) source categorization methodology as defined in IAEA Safety Standards Series No. RS-G-1.9, ``Categorization of Radioactive Sources,'' (2005) (see http://www-pub.iaea.org/MTCD/publications/PDF/Pub1227_web...
Radioactivity of the Cooling Water
DOE R&D Accomplishments Database
Wigner, E. P.
1943-03-01
The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.
Radiation safety standards and their application: international policies and current issues.
González, Abel J
2004-09-01
This paper briefly describes the current policies of the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection and how these policies are converted into international radiation safety standards by the International Atomic Energy Agency, which is the only global organization-within the United Nations family of international agencies-with a statutory mandate not only to establish such standards but also to provide for their application. It also summarizes the current status of the established corpus of such international standards, and of it foreseeable evolution, as well as of legally binding undertakings by countries around the world that are linked to these standards. Moreover, this paper also reviews some major current global issues related to the application of international standards, including the following: strengthening of national infrastructures for radiation safety, including technical cooperation programs for assisting developing countries; occupational radiation safety challenges, including the protection of pregnant workers and their unborn children, dealing with working environments with high natural radiation levels, and occupational attributability of health effects (probability of occupational causation); restricting discharges of radioactive substances into the environment: reviewing current international policies vis-a-vis the growing concern on the radiation protection of the "environment;" radiological protection of patients undergoing radiodiagnostic and radiotherapeutic procedures: the current International Action Plan; safety and security of radiation sources: post-11 September developments; preparedness and response to radiation emergencies: enhancing the international network; safe transport of radioactive materials: new apprehensions; safety of radioactive waste management: concerns and connections with radiation protection; and radioactive residues remaining after the termination of activities: radiation protection response to the forthcoming wave of decommissioning of installations with radioactive materials. The ultimate aim of this paper is to encourage information exchange, cooperation, and collaboration within the radiation protection professional community. In particular, the paper tries to facilitate consolidation of the growing international regime on radiation safety, including the expansion of legally binding undertakings by countries, the strengthening of the current corpus of international radiation safety standards, and the development of international provisions for ensuring the proper worldwide application of these standards, such as a system of international appraisals by peer review.
Predicting induced radioactivity for the accelerator operations at the Taiwan Photon Source.
Sheu, R J; Jiang, S H
2010-12-01
This study investigates the characteristics of induced radioactivity due to the operations of a 3-GeV electron accelerator at the Taiwan Photon Source (TPS). According to the beam loss analysis, the authors set two representative irradiation conditions for the activation analysis. The FLUKA Monte Carlo code has been used to predict the isotope inventories, residual activities, and remanent dose rates as a function of time. The calculation model itself is simple but conservative for the evaluation of induced radioactivity in a light source facility. This study highlights the importance of beam loss scenarios and demonstrates the great advantage of using FLUKA in comparing the predicted radioactivity with corresponding regulatory limits. The calculated results lead to the conclusion that, due to fairly low electron consumption, the radioactivity induced in the accelerator components and surrounding concrete walls of the TPS is rather moderate and manageable, while the possible activation of air and cooling water in the tunnel and their environmental releases are negligible.
Physics and applications of positron beams in an integrated PET/MR.
Watson, Charles C; Eriksson, Lars; Kolb, Armin
2013-02-07
In PET/MR systems having the PET component within the uniform magnetic field interior to the MR, positron beams can be injected into the PET field of view (FOV) from unshielded emission sources external to it, as a consequence of the action of the Lorentz force on the transverse components of the positron's velocity. Such beams may be as small as a few millimeters in diameter, but extend 50 cm or more axially without appreciable divergence. Larger beams form 'phantoms' of annihilations in air that can be easily imaged, and that are essentially free of γ-ray attenuation and scatter effects, providing a unique tool for characterizing PET systems and reconstruction algorithms. Thin targets intersecting these beams can produce intense annihilation sources having the thickness of a sheet of paper, which are very useful for high resolution measurements, and difficult to achieve with conventional sources. Targeted beams can provide other point, line and surface sources for various applications, all without the need to have radioactivity within the FOV. In this paper we discuss the physical characteristics of positron beams in air and present examples of their applications.
Radioactivity: A Natural Phenomenon.
ERIC Educational Resources Information Center
Ronneau, C.
1990-01-01
Discussed is misinformation people have on the subject of radiation. The importance of comparing artificial source levels of radiation to natural levels is emphasized. Measurements of radioactivity, its consequences, and comparisons between the risks induced by radiation in the environment and from artificial sources are included. (KR)
76 FR 53980 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR... Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling, China August 1, 2011, August 5, consisting of 60 sealed forensic testing 2011, IW030. used Cobalt-60 sources. or storage and radioactive...
NASA Astrophysics Data System (ADS)
Wurdiyanto, G.; Candra, H.
2016-03-01
The standardization of radioactive sources (125I, 131I, 99mTc and 18F) to calibrate the nuclear medicine equipment had been carried out in PTKMR-BATAN. This is necessary because the radioactive sources used in the field of nuclear medicine has a very short half-life in other that to obtain a quality measurement results require special treatment. Besides that, the use of nuclear medicine techniques in Indonesia develop rapidly. All the radioactive sources were prepared by gravimetric methods. Standardization of 125I has been carried out by photon- photon coincidence methods, while the others have been carried out by gamma spectrometry methods. The standar sources are used to calibrate a Capintec CRC-7BT radionuclide calibrator. The results shows that calibration factor for Capintec CRC-7BT dose calibrator is 1,03; 1,02; 1,06; and 1,04 for 125I, 131I, 99mTc and 18F respectively, by about 5 to 6% of the expanded uncertainties.
ERIC Educational Resources Information Center
Freilich, Florence G.
1970-01-01
Describes the development of radiation as a tool of medicine. Includes topics on history of radiation, electromagnetic spectrum, X-ray tubes, high energy machines, radioactive sources, artificial radioactivity, radioactive scanning, units, present radiation background, and effect of radiation on living tissue. (DS)
Method for fabricating thin californium-containing radioactive source wires
Gross, Ian G; Pierce, Larry A
2006-08-22
A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.
Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, D W; Edson, R; Varela, M
1999-11-15
The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacificmore » Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as atmospheric transport, could be considered under future-funded research efforts for impacts to Alaska. The ANWAP risk assessment does not address the following wastes, media, and receptors: radioactive sources in Alaska (except to add perspective for Russian source term); radioactive wastes associated with Russian naval military operations and decommissioning; Russian production reactor and spent-fuel reprocessing facilities nonaqueous source terms; atmospheric, terrestrial and nonaqueous pathways; and dose calculations for any circumpolar locality other than Alaska. These other, potentially serious sources of radioactivity to the Arctic environment, while outside the scope of the current ANWAP mandate, should be considered for future funding research efforts.« less
NASA Astrophysics Data System (ADS)
Gedeon, M.; Vandersteen, K.; Rogiers, B.
2012-04-01
Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.
A Sensitive Cloud Chamber without Radioactive Sources
ERIC Educational Resources Information Center
Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka
2012-01-01
We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)
An ion source module for the Beijing Radioactive Ion-beam Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.
2014-02-15
An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.
A Collison nebulizer as an ion source for mass spectrometry analysis
NASA Astrophysics Data System (ADS)
Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.
2014-12-01
It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.
Certified Training for Nuclear and Radioactive Source Security Management.
Johnson, Daniel
2017-04-01
Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Laser decontamination of the radioactive lightning rods
NASA Astrophysics Data System (ADS)
Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.
2014-02-01
Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.
Challenges associated with the behaviour of radioactive particles in the environment.
Salbu, Brit; Kashparov, Valery; Lind, Ole Christian; Garcia-Tenorio, Rafael; Johansen, Mathew P; Child, David P; Roos, Per; Sancho, Carlos
2018-06-01
A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction of released refractory radionuclides such as uranium (U) and plutonium (Pu) were present as entities ranging from sub microns to fragments. Furthermore, radioactive particles and colloids have been released from reprocessing facilities and civil reactors, from radioactive waste dumped at sea, and from NORM sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics such as particle size distribution, structure, and oxidation state influencing ecosystem transfer depend also on the release scenarios. When radioactive particles are deposited in the environment, weathering processes occur and associated radionuclides are subsequently mobilized, changing the apparent K d . Thus, particles retained in soils or sediments are unevenly distributed, and dissolution of radionuclides from particles may be partial. For areas affected by particle contamination, the inventories can therefore be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. To integrate radioactive particles into environmental impact assessments, key challenges include the linking of particle characteristics to specific sources, to ecosystem transfer, and to uptake and retention in biological systems. To elucidate these issues, the EC-funded COMET and RATE projects and the IAEA Coordinated Research Program on particles have revisited selected contaminated sites and archive samples. This COMET position paper summarizes new knowledge on key sources that have contributed to particle releases, including particle characteristics based on advanced techniques, with emphasis on particle weathering processes as well as on heterogeneities in biological samples to evaluate potential uptake and retention of radioactive particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah
NASA Astrophysics Data System (ADS)
Alharbi, N. D.; Mayhoub, A. B.
2011-12-01
For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.
Source-receptor matrix calculation with a Source-receptor matrix calculation with a backward mode
NASA Astrophysics Data System (ADS)
Seibert, P.; Frank, A.
2003-08-01
The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, ...). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
Wanetick, S.
1962-03-01
ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)
The Lixiscope: a Pocket-size X-ray Imaging System
NASA Technical Reports Server (NTRS)
Yin, L. I.; Seltzer, S. M.
1978-01-01
A Low Intensity X ray Imaging device with the acronym LIXISCOPE is described. The Lixiscope has a small format and is powered only by a 2.7V battery. The high inherent gain of the Lixiscope permits the use of radioactive sources in lieu of X-ray machines in some fluoroscopic applications. In this mode of operation the complete X ray imaging system is truly portable and pocket-sized.
Genetic and Epigenetic Biomarkers for Recurrent Prostate Cancer After Radiotherapy
2014-05-01
complications from surgery as well as risks associated with anesthesia. Moreover, this therapy includes a low risk of urinary incontinence . Major...another type of RT, involves placing radioactive sources into the prostate tissue. Disadvantages of this treatment include the risk of acute urinary ...Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011. 473(7347): p. 298-307. 6. Yao, J.L., et al., Tissue factor and VEGF
Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool
NASA Astrophysics Data System (ADS)
Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.
2014-05-01
Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.
Radioactive Nanomaterials for Multimodality Imaging
Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao
2016-01-01
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167
Proof of Principle for Electronic Collimation of a Gamma Ray Detector
2016-01-01
complete the Environmental Baseline Survey mission for soldiers. The monitoring of radioactive waste handling, as well as other sources of radioactive ...electronic collimation of a gamma ray spectroscopic detector will include identifying and characterizing environmentally hazardous radioactivity to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.
Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
NASA Astrophysics Data System (ADS)
Zhang, Lei; Jaffe, Daniel A.; Gao, Xin; McClure, Crystal D.
2018-04-01
In this study, we developed a method for continuous PAN measurements by gas chromatography (GC) with a non-radioactive pulsed discharge detector (PDD). Operational parameters were optimized based on the ratio of peak height over baseline noise (P/N ratio). The GC/PDD system was compared with a traditional radioactive electron-capture detector (ECD). In the lab, the method detection limit (MDL) of the new GC/PDD method (9 pptv) was lower than the radioactive GC/ECD method (15 pptv), demonstrating its excellent potential. The MDL of GC/PDD in the field campaign at the Mt. Bachelor Observatory (MBO) was 23 pptv, higher than in the lab. This was caused in part by the decreased slope of the calibration curve resulting from the low air pressure level at MBO. However, the MDL level of GC/PDD at MBO is still low enough for accurate PAN measurements, although special attention should be paid to its application at high-elevation sites. Observations of PAN were conducted at MBO in the summer of 2016 with the GC/PDD system, and provided more evidence of the performance of the system. PAN was found to be highly correlated with CO. The promising performance of GC/PDD which does not require a radioactive source makes it a useful approach for accurate PAN measurements in the field.
78 FR 7818 - Request To Amend a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... Recipient country application no.; docket No. Eastern Technologies, Inc.; Class A radioactive The total...
Source term evaluation model for high-level radioactive waste repository with decay chain build-up.
Chopra, Manish; Sunny, Faby; Oza, R B
2016-09-18
A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.
The development of radioactive sample surrogates for training and exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha Finck; Bevin Brush; Dick Jansen
2012-03-01
The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less
Internal corrosion monitoring of subsea oil and gas production equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joosten, M.W.; Fischer, K.P.; Strommen, R.
1995-04-01
Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspectionmore » (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolak, Arlyn J.
Particle accelerators play a key role in a broad set of defense and security applications including war-fighter and asset protection, cargo inspection, nonproliferation, materials characterization and stockpile stewardship. Accelerators can replace the high activity radioactive sources that pose a security threat for developing a radiological dispersal device and be used to produce isotopes for medical, industrial, and re-search purposes. Lastly, we present an overview of current and emerging accelerator technologies relevant to addressing the needs of defense and security.
Beyond detection: nuclear physics with a webcam in an educational setting
NASA Astrophysics Data System (ADS)
Pallone, A.; Barnes, P.
2016-09-01
Basic understanding of nuclear science enhances our daily-life experience in many areas, such as the environment, medicine, electric power generation, and even politics. Yet typical school curricula do not provide for experiments that explore the topic. We present a means by which educators can use the ubiquitous webcam and inexpensive sources of radiation to lead their students in a quantitative exploration of radioactivity, radiation, and the applications of nuclear physics.
Automated management of radioactive sources in Saudi Arabia
NASA Astrophysics Data System (ADS)
Al-Kheliewi, Abdullah S.; Jamil, M. F.; Basar, M. R.; Tuwaili, W. R.
2014-09-01
For usage of radioactive substances, any facility has to register and take license from relevant authority of the country in which such facility is operating. In the Kingdom of Saudi Arabia (KSA), the authority for managing radioactive sources and providing licenses to organizations for its usage is the National Center of Radiation Protection (NCRP). This paper describes the system that automates registration and licensing process of the National Center of Radiation Protection. To provide 24×7 accesses to all the customers of NCRP, system is developed as web-based application that provide facility to online register, request license, renew license, check request status, view historical data and reports etc. and other features are provided as Electronic Services that would be accessible to users via internet. The system also was designed to streamline and optimize internal operations of NCRP besides providing ease of access to its customers by implementing a defined workflow through which every registration and license request will be routed. In addition to manual payment option, the system would also be integrated with SADAD (online payment system) that will avoid lengthy and cumbersome procedures associated with manual payment mechanism. Using SADAD payment option license fee could be paid through internet/ATM machine or branch of any designated bank, Payment will be instantly notified to NCRP hence delay in funds transfer and verification of invoice could be avoided, SADAD integration is discussed later in the document.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Charley; Kamboj, Sunita; Wang, Cheng
2015-09-01
This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook.more » The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.« less
Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode
NASA Astrophysics Data System (ADS)
Seibert, P.; Frank, A.
2004-01-01
The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM) running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.). The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint) methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.
Matzko, John J.; Naqvi, Mohammed Ibne
1978-01-01
Investigations in 1965 located veins containing radioactive material in the Halaban Group on the east side of a granite pluton at Jabal Aja near Ha'il. Later study extended the known area of radioactivity to a total length of about 30 km. Mineralogic studies indicated that the samples were low in uranium and that the radioactivity was due principally to thorium in niobium-bearing minerals. Two samples were reexamined to identify the sources of radioactivity, but X-ray and alpha plate studies did not reveal the radioactive minerals, even though uranium mineralization was indicated by the alpha plates. Further sampling is suggested to isolate the sources of radioactivity. This study indicates that niobium occurrences are related to alkaline intrusives in many areas of western Saudi Arabia. These areas should be investigated for their possible niobium and rare earth contents; their uranium content is apparently too low to be of economic interest.
Targets used in the production of radioactive ion beams at the HRIBF
NASA Astrophysics Data System (ADS)
Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.
2004-03-01
Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrov, Andrei; Yamamoto, Eugene
Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection formore » source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the Rapiscan company. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co- 57, Ba-133 and other). New variant of ASIA is based on physical principles, a phenomenological approach and analysis of some important parameter changes during the vehicle passage through the monitor control area. Thanks to this capability main advantage of new system is that this system can be easily installed into any RPM with plastic detectors. Taking into account that more than 4000 RPM has been installed worldwide their upgrading by ASIA-New may significantly increase probability of detection and verification of radioactive sources even masked by NORM. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)« less
Don't Throw Away Your Radioactive Sources!
ERIC Educational Resources Information Center
Tracy, Charles; Cunningham, Elizabeth
2014-01-01
This article reports on a plea directed to schools in England that changed status to an "academy" and thus lost their Local Authority Radiation Protection Adviser (RPA) service. These schools have been encouraged to do all that they can to hang on to their sources (radioactive equipment used in classroom experiments to investigate…
New era of electronic brachytherapy
Ramachandran, Prabhakar
2017-01-01
Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...
Remote detection of radioactive material using high-power pulsed electromagnetic radiation.
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-05-09
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.
Remote detection of radioactive material using high-power pulsed electromagnetic radiation
Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi
2017-01-01
Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material. PMID:28486438
A beam radiation monitor based on CVD diamonds for SuperB
NASA Astrophysics Data System (ADS)
Cardarelli, R.; Di Ciaccio, A.
2013-08-01
Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... license authorizes it to perform services on devices containing certain radioactive material for customers... Possess Sources Containing Radioactive Material Quantities of Concern,'' stated that ``service providers..., Fingerprinting Order, paragraph IC 1.c of the prior Order was superseded by the requirement that ``Service...
Children's Ideas about Radioactivity and Radiation: sources, modes of travel, uses and dangers.
ERIC Educational Resources Information Center
Boyes, Edward; Stanisstreet, Martin
1994-01-01
The understanding concerning radioactivity and radiation of pupils ages 11-16 was studied using a closed-form questionnaire with a large cohort of children and interviews with subsets of this group. A majority of children demonstrated confusion about the environmental impacts of radioactivity and radiation. (LZ)
A Remote Radioactivity Experiment
ERIC Educational Resources Information Center
Jona, Kemi; Vondracek, Mark
2013-01-01
Imagine a high school with very few experimental resources and limited budgets that prevent the purchase of even basic laboratory equipment. For example, many high schools do not have the means of experimentally studying radioactivity because they lack Geiger counters and/or good radioactive sources. This was the case at the first high school one…
Source-term development for a contaminant plume for use by multimedia risk assessment models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; McDonald, John P.; Taira, Randal Y.
1999-12-01
Multimedia modelers from the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) are collaborating to conduct a comprehensive and quantitative benchmarking analysis of four intermedia models: DOE's Multimedia Environmental Pollutant Assessment System (MEPAS), EPA's MMSOILS, EPA's PRESTO, and DOE's RESidual RADioactivity (RESRAD). These models represent typical analytically, semi-analytically, and empirically based tools that are utilized in human risk and endangerment assessments for use at installations containing radioactive and/or hazardous contaminants. Although the benchmarking exercise traditionally emphasizes the application and comparison of these models, the establishment of a Conceptual Site Model (CSM) should be viewed with equalmore » importance. This paper reviews an approach for developing a CSM of an existing, real-world, Sr-90 plume at DOE's Hanford installation in Richland, Washington, for use in a multimedia-based benchmarking exercise bet ween MEPAS, MMSOILS, PRESTO, and RESRAD. In an unconventional move for analytically based modeling, the benchmarking exercise will begin with the plume as the source of contamination. The source and release mechanism are developed and described within the context of performing a preliminary risk assessment utilizing these analytical models. By beginning with the plume as the source term, this paper reviews a typical process and procedure an analyst would follow in developing a CSM for use in a preliminary assessment using this class of analytical tool.« less
Silver, G.L.
1980-09-24
The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.
78 FR 45578 - Application For a License to Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector.
Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A
2018-05-18
This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method.
Management of Disused Radioactive Sealed Sources in the Slovak Republic - 12100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzer, Peter
2012-07-01
After splitting-up the Czechoslovak Federation in 1993, the system of management of institutional radioactive waste, where disused sources represent its significant part, had had to build from beginning, since all corresponding activities had remained in the Czech part of the Federation. The paper presents the development of legislative and institutional framework of the disused radioactive sealed source management, development of the national inventory and development of management practices. According the Governmental decision (1994), the management of disused sealed sources and institutional radioactive waste at whole was based on maximal utilization of facilities inside nuclear facilities, particularly in the NPP A1more » (shut down in the past, currently under decommissioning). This approach has been recently changing by Governmental decision (2009) to construct 'non-nuclear facility' - central storage for remained disused sealed sources collected from the places of use, where they were stored in some cases for tens of years. The approaches to siting and construction of this storage facility will be presented, as well as the current approaches to solution of the disused radioactive sources final disposal. Environmental impact assessment process in regard to the given facility/activity is slowly drawing to a close. The final statement of the Ministry of Environment can be expected in January or February 2012, probably recommending option 1 as preferred [6]. According to the Slovak legislation, the final statement has a status of recommendation for ongoing processes leading to the siting license. Very recently, in December 2012, Government of the Slovak republic decided to postpone putting the facility into operation by the end of June, 2014. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin
2013-07-01
The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less
10 CFR 39.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...
10 CFR 39.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...
10 CFR 39.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...
10 CFR 39.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...
10 CFR 39.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of licensed materials including sealed sources, radioactive tracers, radioactive markers, and uranium... authorizing the use of licensed material in tracer studies involving multiple wells, such as field flooding...
NASA Astrophysics Data System (ADS)
Saitoh, H.; Yoshida, Z.; Yano, Y.; Nishiura, M.; Kawazura, Y.; Horn-Stanja, J.; Pedersen, T. Sunn
2016-10-01
We study the behavior of high-energy positrons emitted from a radioactive source in a magnetospheric dipole field configuration. Because the conservation of the first and second adiabatic invariants is easily destroyed in a strongly inhomogeneous dipole field for high-energy charged particles, the positron orbits are nonintegrable, resulting in chaotic motions. In the geometry of a typical magnetospheric levitated dipole experiment, it is shown that a considerable ratio of positrons from a 22Na source, located at the edge of the confinement region, has chaotic long orbit lengths before annihilation. These particles make multiple toroidal circulations and form a hollow toroidal positron cloud. Experiments with a small 22Na source in the Ring Trap 1 (RT-1) device demonstrated the existence of such long-lived positrons in a dipole field. Such a chaotic behavior of high-energy particles is potentially applicable to the formation of a dense toroidal positron cloud in the strong-field region of the dipole field in future studies.
Effect of calcium silicate slag application on radium-226 concentrations in plant tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortvedt, J.J.
A greenhouse pot experiment was conducted to determine if plants absorb Ra from slag applied to soil. Slag at rates equivalent to 0 and 22 mt/ha was mixed with Mountview silt loam (Typic Paleudults) limed to pH 5.8 and 7.2. Three clippings each of fescue (Festuca arundiancea Schreb.), and Swiss chard (Beta vulgaris L.), and one harvest of wheat (Triticum aestivum L.) for grain and straw were grown on separate series of treated soil, and plant samples were analyzed for radioactivity due to /sup 226/Ra uptake. Samples of sugarcane (Saccharum officinarum L.) forage and extracted juice from field experiments inmore » Florida testing this slage as a Si source also were analyzed for radioactivity. Dry forage yields of fescue and wheat were not affected by slag applications, but those of Swiss chard were somewhat higher on slag-treated soil at pH 5.8. Wheat grain and straw yields were higher on soil at pH 7.2 than at pH 5.8 regardless of slag treatment. Uptake of /sup 226/Ra by fescue forage and wheat grain and straw was not affected by slag application. Concentrations of /sup 226/Ra were similar in forage and extracted juice from untreated sugarcane or that treated with slag at rates up to 5.6 mt/ha. These results suggest that plant uptake of radionuclides is negligible from calcium silicate slag applied at the recommended rates for liming acid soils or as a source of Si for sugarcane.« less
Residual radioactivity of treated green diamonds.
Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel
2017-08-01
Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.
Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.
49 CFR 175.705 - Radioactive contamination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Radioactive contamination. 175.705 Section 175.705... Regulations Applicable According to Classification of Material § 175.705 Radioactive contamination. (a) A... (radioactive) materials that may have been released from their packagings. (b) When contamination is present or...
Miftari, Ramë; Fejza, Ferki; Bicaj, Xhavit; Nura, Adem; Topciu, Valdete; Bajrami, Ismet
2014-01-01
Purpose: In cases of thyroid toxic autonomous nodule, anterior projection of Tc-99m pertechnetate image shows a hot nodule that occupies most, or the entire thyroid lobe with near-total or total suppression of the contra lateral lobe. In this case is very difficult to distinguish toxic nodule from lobe agenesis. Our interest was to estimate and determinate the rate of radioactivity when the source with high activity can make total suppression of the second source with low activity in same conditions with thyroid scintigraphy procedures. Material and methodology: Thyroid scintigraphy was performed with Technetium 99 meta stable pertechnetate. A parallel high resolution low energy collimator was used as an energy setting of 140 KeV photo peak for T-99m. Images are acquired at 200 Kilo Counts in the anterior projection with the collimator positioned as close as the patient’s extended neck (approximately in distance of 18 cm). The scintigraphy of thyroid gland was performed 15 minutes after intravenous administration of 1.5 mCi Tc-99m pertechnetate. Technetium 99 meta stable radioactive sources with different activity were used for two scintigraphies studies, performed in same thyroid scintigraphy acquisition procedures. In the first study, were compared the standard source with high activity A=11.2 mCi with sources with variable activities B=1.33 mCi; 1.03 mCi; 0.7 mCi; 0.36 mCi; and 0.16mCi) in distance of 1.5cm from each other sources, which is approximately same with distance between two thyroid lobes. In the second study were compared the sources with low activity in proportion 70:1(source A = 1.5 mCi and source B=0.021mCi). As clinical studies we preferred two different patents with different thyroid disorders. There were one patient with thyroid toxic nodule in the right lobe, therefore the second patient was with left thyroid nodule agenesis. Results: During our examination, we accurately determined that two radioactive sources in proportion 70:1 will be displayed as only one source with complete suppression of other source with low radioactivity. Also we found that covering of toxic nodules with lead cover (plaque), can allow visualization of activity in suppressed lobe. Conclusion: Our study concluded that total lobe suppression, in cases of patients with thyroid toxic nodule, will happened for sure, if toxic nodule had accumulated seventy times more radioactivity than normal lobe. Also we concluded that covering of the toxic nodule with lead plaque, may permit the presentation of radioactivity in suppressed nodule. PMID:24825932
New mass-spectrometric facility for the analysis of highly radioactive samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warmack, R.J.; Landau, L.; Christie, W.H.
A new facility has been completed for the analysis of highly radioactive, gamma-emitting solid samples. A commercial spark-source mass spectrometer was adapted for remote handling and loading. Electrodes are prepared in a hot cell and transported to the adjacent lead-shielded source for analysis. The source was redesigned for ease of shielding, loading, and maintenance. Both solutions and residues from irradiated nuclear fuel dissolutions have been analyzed for elemental concentrations to < 1 ppM; isotopic data have also been obtained.
Use of Very Weak Radiation Sources to Determine Aircraft Runway Position
NASA Technical Reports Server (NTRS)
Drinkwater, Fred J., III; Kibort, Bernard R.
1965-01-01
Various methods of providing runway information in the cockpit during the take-off and landing roll have been proposed. The most reliable method has been to use runway distance markers when visible. Flight tests were used to evaluate the feasibility of using weak radio-active sources to trigger a runway distance counter in the cockpit. The results of these tests indicate that a weak radioactive source would provide a reliable signal by which this indicator could be operated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Waste minimization for commercial radioactive materials users generating low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Digital version of the European Atlas of natural radiation.
Cinelli, Giorgia; Tollefsen, Tore; Bossew, Peter; Gruber, Valeria; Bogucarskis, Konstantins; De Felice, Luca; De Cort, Marc
2018-02-26
The European Atlas of Natural Radiation is a collection of maps displaying the levels of natural radioactivity caused by different sources. It has been developed and is being maintained by the Joint Research Centre (JRC) of the European Commission, in line with its mission, based on the Euratom Treaty: to collect, validate and report information on radioactivity levels in the environment of the EU Member States. This work describes the first version of the European Atlas of Natural Radiation, available in digital format through a web portal, as well as the methodology and results for the maps already developed. So far the digital Atlas contains: an annual cosmic-ray dose map; a map of indoor radon concentration; maps of uranium, thorium and potassium concentration in soil and in bedrock; a terrestrial gamma dose rate map; and a map of soil permeability. Through these maps, the public will be able to: familiarize itself with natural environmental radioactivity; be informed about the levels of natural radioactivity caused by different sources; have a more balanced view of the annual dose received by the European population, to which natural radioactivity is the largest contributor; and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence, to better assess the latter. Work will continue on the European Geogenic Radon Map and on estimating the annual dose that the public may receive from natural radioactivity, by combining all the information from the different maps. More maps could be added to the Atlas, such us radon in outdoor air and in water and concentration of radionuclides in water, even if these sources usually contribute less to the total exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modification of Poisson Distribution in Radioactive Particle Counting.
ERIC Educational Resources Information Center
Drotter, Michael T.
This paper focuses on radioactive practicle counting statistics in laboratory and field applications, intended to aid the Health Physics technician's understanding of the effect of indeterminant errors on radioactive particle counting. It indicates that although the statistical analysis of radioactive disintegration is best described by a Poisson…
Automated management of radioactive sources in Saudi Arabia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Kheliewi, Abdullah S.; Jamil, M. F.; Basar, M. R.
2014-09-30
For usage of radioactive substances, any facility has to register and take license from relevant authority of the country in which such facility is operating. In the Kingdom of Saudi Arabia (KSA), the authority for managing radioactive sources and providing licenses to organizations for its usage is the National Center of Radiation Protection (NCRP). This paper describes the system that automates registration and licensing process of the National Center of Radiation Protection. To provide 24×7 accesses to all the customers of NCRP, system is developed as web-based application that provide facility to online register, request license, renew license, check requestmore » status, view historical data and reports etc. and other features are provided as Electronic Services that would be accessible to users via internet. The system also was designed to streamline and optimize internal operations of NCRP besides providing ease of access to its customers by implementing a defined workflow through which every registration and license request will be routed. In addition to manual payment option, the system would also be integrated with SADAD (online payment system) that will avoid lengthy and cumbersome procedures associated with manual payment mechanism. Using SADAD payment option license fee could be paid through internet/ATM machine or branch of any designated bank, Payment will be instantly notified to NCRP hence delay in funds transfer and verification of invoice could be avoided, SADAD integration is discussed later in the document.« less
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrov, Andrei; Yamamoto, Eugene
Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection formore » source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)« less
Applications of plasma core reactors to terrestrial energy systems
NASA Technical Reports Server (NTRS)
Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.
1974-01-01
Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2012 CFR
2012-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2013 CFR
2013-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2014 CFR
2014-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
10 CFR 61.20 - Filing and distribution of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... license covering the receipt and disposal of radioactive wastes in a land disposal facility are required....20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.20 Filing and distribution of application. (a) An application for a license...
METHOD AND APPARATUS FOR THE DETECTION OF LEAKS IN PIPE LINES
Jefferson, S.; Cameron, J.F.
1961-11-28
A method is described for detecting leaks in pipe lines carrying fluid. The steps include the following: injecting a radioactive solution into a fluid flowing in the line; flushing the line clear of the radioactive solution; introducing a detector-recorder unit, comprising a radioactivity radiation detector and a recorder which records the detector signal over a time period at a substantially constant speed, into the line in association with a go-devil capable of propelling the detector-recorder unit through the line in the direction of the fluid flow at a substantia1ly constant velocity; placing a series of sources of radioactivity at predetermined distances along the downstream part of the line to make a characteristic signal on the recorder record at intervals corresponding to the location of said sources; recovering the detector-recorder unit at a downstream point along the line; transcribing the recorder record of any radioactivity detected during the travel of the detector- recorder unit in terms of distance along the line. (AEC)
Prospects for the application of radiometric methods in the measurement of two-phase flows
NASA Astrophysics Data System (ADS)
Zych, Marcin
2018-06-01
The article constitutes an overview of the application of radiometric methods in the research of two-phase flows: liquid-solid particles and liquid-gas flows. The methods which were used were described on the basis of the experiments which were conducted in the Water Laboratory of the Wrocław University of Environmental and Life Sciences and in the Sedimentological Laboratory of the Faculty of Geology, Geophysics and Environmental Protection, AGH-UST in Kraków. The advanced mathematical methods for the analysis of signals from scintillation probes that were applied enable the acquisition of a number of parameters associated with the flowing two-phase mixture, such as: average velocities of the particular phases, concentration of the solid phase, and void fraction for a liquid-gas mixture. Despite the fact that the application of radioactive sources requires considerable carefulness and a number of state permits, in many cases these sources become useful in the experiments which are presented.
Small plasma focus as neutron pulsed source for nuclides identification
NASA Astrophysics Data System (ADS)
Milanese, M.; Niedbalski, J.; Moroso, R.; Barbaglia, M.; Mayer, R.; Castillo, F.; Guichón, S.
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
Small plasma focus as neutron pulsed source for nuclides identification.
Milanese, M; Niedbalski, J; Moroso, R; Barbaglia, M; Mayer, R; Castillo, F; Guichón, S
2013-10-01
In this paper, we present preliminary results on the feasibility of employing a low energy (2 kJ, 31 kV) plasma focus device as a portable source of pulsed neutron beams (2.45 MeV) generated by nuclear fusion reactions D-D, for the "in situ" analysis of substances by nuclear activation. This source has the relevant advantage of being pulsed at requirement, transportable, not permanently radioactive, without radioactive waste, cheap, among others. We prove the feasibility of using this source showing several spectra of the characteristic emission line for manganese, gold, lead, and silver.
An environmental dose experiment
NASA Astrophysics Data System (ADS)
Peralta, Luis
2017-11-01
Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.
A singly charged ion source for radioactive {sup 11}C ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, K.; Noda, A.; Nagatsu, K.
2016-02-15
A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less
Crawford, C L; Hill, H H
2013-03-30
(63)Nickel radioactive ionization ((63)Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-alone IMS systems. However, there has been no comparison of the negative ion species produced by all three sources in the literature. This study compares the negative reactant and analyte ions produced by three sources on an ion mobility-mass spectrometer: conventional (63)Ni, CD, and secondary electrospray ionization (SESI). Results showed that (63)Ni and SESI produced the same reactant ion species while CD produced only the nitrate monomer and dimer ions. The analyte ions produced by each ion source were the same except for the CD source which produced a different ion species for the explosive RDX than either the (63)Ni or SESI source. Accurate and reproducible reduced mobility (K0) values, including several values reported here for the first time, were found for each explosive with each ion source. Overall, the SESI source most closely reproduced the reactant ion species and analyte ion species profiles for (63)Ni. This source may serve as a non-radioactive, robust, and flexible alternative for (63)Ni. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukezich, S.J.
1997-05-01
As a result of an incident in which a radioactive brachytherapy treatment source was temporarily unable to be retracted, an analysis was performed on the needle applicator used during the treatment. In this report, the results of laboratory evaluations of the physical, mechanical, and metallurgical condition of the subject applicator and two additional applicators are presented. A kink formed in the subject applicator during the incident. The laboratory investigation focused on identifying characteristics which would increase the susceptibility of an applicator to form a kink when subjected to bending loads. The results obtained during this investigation could not conclusively identifymore » the cause of the kink. The subject applicator exhibited no unique features which would have made it particularly susceptible to forming a kink. The three applicators examined represent two methods of manufacturing. A number of characteristics inherent to the method used to manufacture the subject applicator which could lead to an increased susceptibility to the formation of a kink were observed. The use of an insertion device, such as the biopsy needle used during this incident, could also dramatically increase the likelihood of the formation of a kink if the applicator is subjected to bending loads. 33 figs., 4 tabs.« less
A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.
2018-05-01
Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.
NASA Astrophysics Data System (ADS)
Grupen, Claus
Radiation protection is a very important aspect for the application of particle detectors in many different fields, like high energy physics, medicine, materials science, oil and mineral exploration, and arts, to name a few. The knowledge of radiation units, the experience with shielding, and information on biological effects of radiation are vital for scientists handling radioactive sources or operating accelerators or X-ray equipment. This article describes the modern radiation units and their conversions to older units which are still in use in many countries. Typical radiation sources and detectors used in the field of radiation protection are presented. The legal regulations in nearly all countries follow closely the recommendations of the International Commission on Radiological Protection (ICRP). Tables and diagrams with relevant information on the handling of radiation sources provide useful data for the researcher working in this field.
Dosimetric investigation of LDR brachytherapy ¹⁹²Ir wires by Monte Carlo and TPS calculations.
Bozkurt, Ahmet; Acun, Hediye; Kemikler, Gonul
2013-01-01
The aim of this study was to investigate the dose rate distribution around (192)Ir wires used as radioactive sources in low-dose-rate brachytherapy applications. Monte Carlo modeling of a 0.3-mm diameter source and its surrounding water medium was performed for five different wire lengths (1-5 cm) using the MCNP software package. The computed dose rates per unit of air kerma at distances from 0.1 up to 10 cm away from the source were first verified with literature data sets. Then, the simulation results were compared with the calculations from the XiO CMS commercial treatment planning system. The study results were found to be in concordance with the treatment planning system calculations except for the shorter wires at close distances.
NASA Astrophysics Data System (ADS)
Haefner, C. L.; Bayramian, A.; Betts, S.; Bopp, R.; Buck, S.; Cupal, J.; Drouin, M.; Erlandson, A.; Horáček, J.; Horner, J.; Jarboe, J.; Kasl, K.; Kim, D.; Koh, E.; Koubíková, L.; Maranville, W.; Marshall, C.; Mason, D.; Menapace, J.; Miller, P.; Mazurek, P.; Naylon, A.; Novák, J.; Peceli, D.; Rosso, P.; Schaffers, K.; Sistrunk, E.; Smith, D.; Spinka, T.; Stanley, J.; Steele, R.; Stolz, C.; Suratwala, T.; Telford, S.; Thoma, J.; VanBlarcom, D.; Weiss, J.; Wegner, P.
2017-05-01
Large laser systems that deliver optical pulses with peak powers exceeding one Petawatt (PW) have been constructed at dozens of research facilities worldwide and have fostered research in High-Energy-Density (HED) Science, High-Field and nonlinear physics [1]. Furthermore, the high intensities exceeding 1018W/cm2 allow for efficiently driving secondary sources that inherit some of the properties of the laser pulse, e.g. pulse duration, spatial and/or divergence characteristics. In the intervening decades since that first PW laser, single-shot proof-of-principle experiments have been successful in demonstrating new high-intensity laser-matter interactions and subsequent secondary particle and photon sources. These secondary sources include generation and acceleration of charged-particle (electron, proton, ion) and neutron beams, and x-ray and gamma-ray sources, generation of radioisotopes for positron emission tomography (PET), targeted cancer therapy, medical imaging, and the transmutation of radioactive waste [2, 3]. Each of these promising applications requires lasers with peak power of hundreds of terawatt (TW) to petawatt (PW) and with average power of tens to hundreds of kW to achieve the required secondary source flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Reconnaissance for uranium and thorium in Alaska, 1954
Matzko, John J.; Bates, Robert G.
1957-01-01
During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.
NCRP Program Area Committee 2: Operational Radiation Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Kathryn H.; Goldin, Eric M.
2016-02-29
Program Area Committee 2 of the National Council on Radiation Protection and Measurements provides guidance for radiation safety in occupational settings in a variety of industries and activities. The committee completed three reports in recent years covering recommendations for the development and administration of radiation safety programs for smaller educational institutions, requirements for self-assessment programs that improve radiation safety and identify and correct deficiencies, and a comprehensive process for effective investigation of radiological incidents. Ongoing work includes a report on sealed radioactive source controls and oversight of a report on radioactive nanomaterials focusing on gaps within current radiation safety programs.more » Future efforts may deal with operational radiation safety programs in fields such as the safe use of handheld and portable X-Ray fluorescence analyzers, occupational airborne radioactive contamination, unsealed radioactive sources, or industrial accelerators.« less
Effect of minerals on accumulation of Cs by fungus Saccaromyces cerevisiae.
Ohnuki, Toshihiko; Sakamoto, Fuminori; Yamasaki, Shinya; Kozai, Naofumi; Shiotsu, Hiroyuki; Utsunomiya, Satoshi; Watanabe, Naoko; Kozaki, Tamotsu
2015-06-01
The accumulation of Cs by unicellular fungus of Saccharomyces cerevisiae in the presence of minerals has been studied to elucidate the role of microorganisms in the migration of radioactive Cs in the environment. Two different types of experiments were employed: experiments using stable Cs to examine the effect of a carbon source on the accumulation of Cs, and accumulation experiments of radioactive Cs from agar medium containing (137)Cs and zeolite, vermiculite, phlogopite, smectite, mica, or illite as mineral supplements. In the former type of experiments, the Cs-accumulated cells were analyzed by scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-EDS). In the latter type, the radioactivity in the yeast cells was measured by an autoradiography technique. When a carbon source was present, higher amounts of Cs accumulated in the cells than in the resting condition without a carbon source. Analyses with SEM-EDS showed that no mineral formed on the cell surface. These results indicate that the yeast cells accumulate Cs by adsorption on the cell surface and intracellular accumulation. In the presence of minerals in the agar medium, the radioactivity in the yeast cells was in the order of mica > smectite, illite > vermiculite, phlogopite, zeolite. This order is inversely correlated to the ratio of the concentration of radioactive Cs between the minerals and the medium solution. These results strongly suggest that the yeast accumulates radioactive Cs competitively with minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida
Moxham, R.M.; Johnson, R.W.
1953-01-01
The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more likely to occur.
Sawamura, Ryoko; Kazui, Miho; Kurihara, Atsushi; Izumi, Takashi
2014-11-01
1. Loxoprofen (LX), is a prodrug of the pharmacologically active form, trans-alcohol metabolite (trans-OH form), which shows very potent analgesic effect. In this study, the pharmacokinetics and metabolism of [(14)C]LX-derived radioactivity after dermal application of [(14)C]LX gel (LX-G) to rats were evaluated. 2. The area under concentration-time curve (AUC0-∞) of radioactivity in the plasma after the dermal application was 13.6% of that of the oral administration (p < 0.05). 3. After the dermal application, the radioactivity remained in the skin and skeletal muscle at the treated site for 168 h, whereas the AUC0-168 h of the radioactivity concentration in every tissue examined except the treated site was statistically lower than that after the oral administration (p < 0.05). 4. The trans-OH form was observed at high levels in the treated skin site at 0.5 h. Metabolite profiles in plasma, non-treated skin site and urine after the dermal application were comparable with those after the oral administration. 5. Renal excretion was the main route of elimination after the dermal application. 6. In conclusion, compared to the oral administration, the dermal application of [(14)C]LX-G showed lower systemic and tissue exposure with higher exposure in the therapeutic target site. The radioactivity revealed similar metabolite profiles in both administration routes.
Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castiglioni, Andrew J.; Gelis, Artem V.
This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Levand, A.; Pardo, R.
2012-02-15
The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beamsmore » with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein
2013-06-01
Undeclared nuclear facilities unequivocally remain the most difficult safeguards challenge facing the International Atomic Energy Agency (IAEA). Recent cases of undeclared facilities revealed in Iran and Syria, which are NPT signatory States, show both the difficulty and the seriousness of this threat to nonproliferation. In the case of undeclared nuclear facilities, the most effective deterrent against proliferation is the application of Wide-Area Environmental Sampling (WAES); however, WAES is currently cost-prohibitive. As with any threat, the most effective countering strategy is a multifaceted approach. Some of the approaches applied by the IAEA include: open source analysis, satellite imagery, on-site environmental sampling,more » complementary access under the Additional Protocol (where in force), traditional safeguards inspections, and information provided by member States. These approaches, naturally, are focused on specific States. Are there other opportunities not currently within the IAEA purview to assess States that may provide another opportunity to detect clandestine facilities? In this paper, the author will make the case that the IAEA Department of Safeguards should explore the area of worldwide marine radioactivity studies as one possible opportunity. One such study was released by the IAEA Marine Environment Laboratory in January 2005. This technical document focused on 90Sr, 137Cs, and 239/240Pu. It is clearly a challenging area because of the many sources of anthropogenic radionuclides in the world’s oceans and seas including: nuclear weapons testing, reprocessing, accidents, waste dumping, and industrial and medical radioisotopes, whose distributions change based on oceanographic, geochemical, and biological processes, and their sources. It is additionally challenging where multiple States share oceans, seas, and rivers. But with the application of modern science, historical sampling to establish baselines, and a focus on the most relevant radionuclides, the potential is there to support this challenging IAEA safeguards mission.« less
Miniaturised Space Payloads for Outdoor Environmental Applications
NASA Astrophysics Data System (ADS)
de Souza, P. A.
2012-12-01
The need for portable, robust and acurate sensors has increased in recent years resulting from industrial and environmental needs. This paper describes a number of applications of engineering copies of those Moessbauer spectrometers (MIMOS II) used by Mars Exploration Rovers, and the use of portable XRF spectrometers in the analysis of heavy metals in sediments. MIMOS II has been applied in the characterisation of Fe-bearing phases in airborne particles in industrialised urban centres, The results have allowed an identification of sources or air pollution in near-real-time. The results help to combine production parameters with pollution impact in the urban area. MIMOS II became a powerful tool because its constructive requirements to flight has produced a robust, power efficient, miniaturised, and light. On the limitation side, the technique takes sometime to produce a good result and the instrument requires a radioactive source to operate. MIMOS II Team has reported a new generation of this instrument incorporating a XRF spectrometer using the radioactive source to generate fluorescence emissions from sample. The author, and its research group, adapted a portable XRF spectrometer to an autonomous underwater vehicle (AUV) and conducted heavy metals survey in sediments across the Derwent Estuary in Tasmania, Australia. The AUV lands on suitable locations underwater, makes the chemical analysis and decide based on the result to move to a closer location, should high concentration of chemicals of interest be found, or to another distant location otherwise. Beyond environmental applications, these instruments were applied in archaeology and in industrial process control.oessbauer spectra recorded on airborne particles (Total Suspended Particles) collected at Ilha do Boi, VItoria, ES, Brazil. SIRO's Autonomous Underwater Vehicle carring a miniaturised XRF spectrometer for underwater chemistry. Students involved in this Project: Mr Jeremy Breen and Mr Andrew Davie. Collaborators: Dr. Greg Timms (CSIRO) and Dr. Robert Ollington (UTAS). This AUV us 1.2m long.
Borehole Disposal and the Cradle-To-Grave Management Program for Radioactive Sealed Sources in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Carson, S.D.; El-Adham, K.
2006-07-01
The Integrated Management Program for Radioactive Sealed Sources (IMPRSS) is greatly improving the management of radioactive sealed sources (RSSs) in Egypt. When completed, IMPRSS will protect the people and the environment from another radioactive incident. The Government of Egypt and Sandia National Laboratories are collaboratively implementing IMPRSS. The integrated activities are divided into three broad areas: the safe management of RSSs in-use, the safe management of unwanted RSSs, and crosscutting infrastructure. Taken together, these work elements comprise a cradle-to-grave program. To ensure sustainability, the IMPRSS emphasizes such activities as human capacity development through technology transfer and training, and development ofmore » a disposal facility. As a key step in the development of a disposal facility, IMPRSS is conducting a safety assessment for intermediate-depth borehole disposal in thick arid alluvium in Egypt based on experience with the U.S.'s Greater Confinement Disposal boreholes. This safety assessment of borehole disposal is being supported by the International Atomic Energy Agency (IAEA) through an IAEA Technical Cooperation Project. (authors)« less
A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector
2018-01-01
This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method. PMID:29783644
Science with radioactive beams: the alchemist's dream
NASA Astrophysics Data System (ADS)
Gelletly, W.
2001-05-01
Nuclear science is being transformed by a new capacity to create beams of radioactive nuclei. Until now all of our knowledge of nuclear physics and the applications which flow from it has been derived from studies of radioactive decay and nuclear reactions induced by beams of the 283 stable or long-lived nuclear species we can find on Earth. Here we describe first how beams of radioactive nuclei can be created. The present status of nuclear physics is then reviewed before potential applications to nuclear physics, nuclear astrophysics, materials science, bio-medical, and environmental studies are described.
Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele
2016-05-01
The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosholt, J.N.
1954-01-01
When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Review of concrete biodeterioration in relation to nuclear waste.
Turick, Charles E; Berry, Christopher J
2016-01-01
Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigase, Yves
2007-07-01
Available in abstract form only. Full text of publication follows: The uncertainty on characteristics of radioactive LILW waste packages is difficult to determine and often very large. This results from a lack of knowledge of the constitution of the waste package and of the composition of the radioactive sources inside. To calculate a quantitative estimate of the uncertainty on a characteristic of a waste package one has to combine these various uncertainties. This paper discusses an approach to this problem, based on the use of the log-normal distribution, which is both elegant and easy to use. It can provide asmore » example quantitative estimates of uncertainty intervals that 'make sense'. The purpose is to develop a pragmatic approach that can be integrated into existing characterization methods. In this paper we show how our method can be applied to the scaling factor method. We also explain how it can be used when estimating other more complex characteristics such as the total uncertainty of a collection of waste packages. This method could have applications in radioactive waste management, more in particular in those decision processes where the uncertainty on the amount of activity is considered to be important such as in probability risk assessment or the definition of criteria for acceptance or categorization. (author)« less
Apparatus and method for detecting gamma radiation
Sigg, Raymond A.
1994-01-01
A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.
Cable attachment for a radioactive brachytherapy source capsule
Gross, Ian G; Pierce, Larry A
2006-07-18
In cancer brachytherapy treatment, a small californium-252 neutron source capsule is attached to a guide cable using a modified crimping technique. The guide cable has a solid cylindrical end, and the attachment employs circumferential grooves micromachined in the solid cable end. The attachment was designed and tested, and hardware fabricated for use inside a radioactive hot cell. A welding step typically required in other cable attachments is avoided.
Proposal of the confinement strategy of radioactive and hazardous materials for the European DEMO
NASA Astrophysics Data System (ADS)
Jin, X. Z.; Carloni, D.; Stieglitz, R.; Ciattaglia, S.; Johnston, J.; Taylor, N.
2017-04-01
Confinement of radioactive and hazardous materials is one of the fundamental safety functions in a nuclear fusion facility, which has to limit the mobilisation and dispersion of sources and hazards during normal, abnormal and accidental situations. In a first step energy sources and radioactive source have been assessed for a conceptual DEMO configuration. The confinement study for the European DEMO has been investigated for the main systems at the plant breakdown structure (PBS) level 1 taking a bottom-up approach. Based on the identification of the systems possessing a confinement function, a confinement strategy has been proposed, in which DEMO confinement systems and barriers have been defined. In addition, confinement for the maintenance has been issued as well. The assignment of confinement barriers to the identified sources under abnormal and accidental conditions has been performed, and the DEMO main safety systems have been proposed as well. Finally, confinement related open issues have been pointed out, which need to be resolved in parallel with DEMO development.
Monte Carlo simulation of ò ó coincidence system using plastic scintillators in 4àgeometry
NASA Astrophysics Data System (ADS)
Dias, M. S.; Piuvezam-Filho, H.; Baccarelli, A. M.; Takeda, M. N.; Koskinas, M. F.
2007-09-01
A modified version of a Monte Carlo code called Esquema, developed at the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, has been applied for simulating a 4 πβ(PS)-γ coincidence system designed for primary radionuclide standardisation. This system consists of a plastic scintillator in 4 π geometry, for alpha or electron detection, coupled to a NaI(Tl) counter for gamma-ray detection. The response curves for monoenergetic electrons and photons have been calculated previously by Penelope code and applied as input data to code Esquema. The latter code simulates all the disintegration processes, from the precursor nucleus to the ground state of the daughter radionuclide. As a result, the curve between the observed disintegration rate as a function of the beta efficiency parameter can be simulated. A least-squares fit between the experimental activity values and the Monte Carlo calculation provided the actual radioactive source activity, without need of conventional extrapolation procedures. Application of this methodology to 60Co and 133Ba radioactive sources is presented and showed results in good agreement with a conventional proportional counter 4 πβ(PC)-γ coincidence system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.A.
1991-12-31
In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less
Characterization of strong (241)Am sources.
Vesterlund, Anna; Chernikova, Dina; Cartemo, Petty; Axell, Kåre; Nordlund, Anders; Skarnemark, Gunnar; Ekberg, Christian; Ramebäck, Henrik
2015-05-01
Gamma ray spectra of strong (241)Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in (241)Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method And Apparatus For Production Of Bi-213 From The Activity Ac-225 Source
Egorov, Oleg B.; O'Hara, Matthew J.
2005-12-06
A method and apparatus for isolating and purifying a .sup.213 Bi radioactive isotope from an .sup.225 Ac source using a primary column and a primary sorbent which preferentially retains .sup.225 Ac over .sup.213 Bi when exposed to a compatible solvent in combination with a secondary column having a secondary sorbent which retains .sup.213 Bi when exposed to a mixture of the compatible solvent and .sup.213 Bi. A "compatible solvent" is a solvent which will preferentially remove .sup.213 Bi radioactive isotopes from a primary sorbent without removing .sup.225 Ac radioactive isotopes, and then allow .sup.213 Bi radioactive isotopes removed from the primary sorbent to be retained on a secondary sorbent, without having to dilute or otherwise chemically or physically modify the compatible solvent in between exposure to the primary and secondary sorbents.
Planned development of a radioactive beam capability at the LBNL 88-inch cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haustein, P.E.; Moltz, D.M.; Norman, E.B.
1997-12-31
Planned development of low-Z, proton-rich, radioactive beams ({sup 11}C, {sup 13}N, {sup 14}, {sup 15}O, and {sup 18}F) at the 88 inch Cyclotron of the Lawrence Berkeley National Lab is described. Based on the {open_quotes}coupled cyclotron method{close_quotes}, isotopes produced by (p,n) and (p,a) reactions at a high-current (30 mA), low-energy (10 MeV) medical cyclotron will be transferred {approximately}300 meters by high-speed gas-jet transport to the ECR ion-source at the 88 inch Cyclotron. Important features of this approach are its low cost, use of simple and well tested technology, applicability to nearly all elements, and avoidance of lengthy (chemical or physical)more » isotopic release delays at the production target. Developmental progress is reported for various operational components. Based on conservative estimates, e.g. 1% ECR ion-yield, extracted radioactive ion beams are projected to exceed 10{sup 6} ions/sec. Experiments which will use these beams include studies of the scattering of mirror nuclei, single and mutual excitation in inelastic scattering and single nucleon transfer reactions.« less
Impurities in radioactive preparations (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeppe, P.
1963-01-01
An account is given of some cases of radioactive impurities in radioactive preparations. The possibility that such impurities may be due to long-lived radionuclides must be considered in clinical applications and particularly in dealing with residues and containers (glass-ampulla).
The adequacy of current import and export controls on sealed radioactive sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longley, Susan W.; Cochran, John Russell; Price, Laura L.
2003-10-01
Millions of sealed radioactive sources (SRSs) are being used for a wide variety of beneficial purposes throughout the world. Security experts are now concerned that these beneficial SRSs could be used in a radiological dispersion device to terrorize and disrupt society. The greatest safety and security threat is from those highly radioactive Category 1 and 2 SRSs. Without adequate controls, it may be relatively easy to legally purchase a Category 1 or 2 SRS on the international market under false pretenses. Additionally, during transfer, SRSs are particularly susceptible to theft since the sources are in a shielded and mobile configuration,more » transportation routes are predictable, and shipments may not be adequately guarded. To determine if government controls on SRS are adequate, this study was commissioned to review the current SRS import and export controls of six countries. Canada, the Russian Federation, and South Africa were selected as the exporting countries, and Egypt, the Philippines, and the United States were selected as importing countries. A detailed review of the controls in each country is presented. The authors found that Canada and Russia are major exporters, and are exporting highly radioactive SRSs without first determining if the recipient is authorized by the receiving country to own and use the SRSs. Available evidence was used to estimate that on average there are tens to possibly hundreds of intercountry transfers of highly radioactive SRSs each day. Based on these and other findings, this reports recommends stronger controls on the export and import of highly radioactive SRSs.« less
Tsenov, B G; Emery, R J; Whitehead, L W; Gonzalez, J Reingle; Gemeinhardt, G L
2018-03-01
While many organizations maintain multiple layers of security control methodologies to prevent outsiders from gaining unauthorized access, persons such as employees or contractors who have been granted legitimate access can represent an "insider threat" risk. Interestingly, some of the most notable radiological events involving the purposeful contamination or exposure of individuals appear to have been perpetrated by insiders. In the academic and medical settings, radiation safety professionals focus their security efforts on (1) ensuring controls are in place to prevent unauthorized access or removal of sources, and (2) increasing security controls for the unescorted accessing of large sources of radioactivity (known as "quantities of concern"). But these controls may not completely address the threat insiders represent when radioactive materials below these quantities are present. The goal of this research project was to characterize the methodologies currently employed to counteract the insider security threat for the misuse or purposeful divergence of radioactive materials used in the academic and medical settings. A web-based survey was used to assess how practicing radiation safety professionals in academic and medical settings anticipate, evaluate, and control insider threat security risks within their institutions. While all respondents indicated that radioactive sources are being used in amounts below quantities of concern, only 6 % consider insider threat security issues as part of the protocol review for the use of general radioactive materials. The results of this survey identify several opportunities for improvement for institutions to address security gaps.
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector
NASA Astrophysics Data System (ADS)
Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.
2015-01-01
We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.
Internal contamination of an irradiator discovered during security enhancement.
Harvey, R P
2014-08-01
High-risk radioactive sources regulated under Increased Controls Regulations have been protected by licensed facilities, but the federal government has placed significant emphasis on these sources and has developed initiatives to assist radioactive material licensees. The Department of Energy's Global Threat Reduction Initiative (GTRI) Domestic Threat Reduction Program is a voluntary federally funded program for security enhancements of high-risk radiological material. During the hardening or security enhancement process by the United States Department of Energy (U.S. DOE) contractors, a small amount of radioactive contamination was discovered in a Cesium irradiator. Ultimately, it was decided to pursue disposal with U.S. DOE's Off-Site Recovery Program (OSRP). Radiological devices may have a leaking source or known internal contamination that may cause difficulty during security enhancement. If the licensee understands this, it may provide facilities the opportunity to plan and prepare for unusual circumstances.
Low energy spread ion source with a coaxial magnetic filter
Leung, Ka-Ngo; Lee, Yung-Hee Yvette
2000-01-01
Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).
NASA Astrophysics Data System (ADS)
Venkataramanan, S.; Ajith kumar, B. P.; Kurup, Kiran K.; Varier, K. M.
2018-01-01
A γ -ray spectroscopy system based on a 1^' ' }× 1^' ' } NaI(Tl) detector and 1.5^' ' } photomultiplier tube has been developed at IUAC for teaching laboratory applications involving radioactive sources. Following along the lines of the Phoenix and Expeyes hardware developed in the laboratory earlier, a low-cost, light weight multichannel analyser also has been developed. Here the details about the same are presented. The detector-analyser system has been used as a part of the postgraduate curriculum for measuring ^{40}K content in some potassium salts and common building materials like brick, cement, concrete and sand.
Radioisotope measurements of the liquid-gas flow in the horizontal pipeline using phase method
NASA Astrophysics Data System (ADS)
Hanus, Robert; Zych, Marcin; Jaszczur, Marek; Petryka, Leszek; Świsulski, Dariusz
2018-06-01
The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.
76 FR 41241 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Material.'' The CoC defines the packaging, radioactive material content, and transportation restrictions... Radioactive Materials Packages; (3) Type of Request: New; (4) Purpose: This information collection is in... approved a radioactive material package as meeting the applicable safety standards [[Page 41242
Classification of the Inventory of Spent Sealed Sources at INSHAS Storage Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Adham, K.; Geleel, M.A.; Mahmoud, N.S.
2006-07-01
The Egyptian Atomic Energy Authority (EAEA) is responsible for the recovery, transportation, conditioning, storage and disposal of all unwanted spent sealed radioactive sources (SSSs) in Egypt. Because of radioactive decay, damage, misuse or changing technical conditions, approximately 600 unwanted SSSs are now in storage at the EAEA's Hot-Laboratories Center in INSHAS. For the safe recovery, transportation, conditioning and storage of these unwanted SSSs the EAEA uses an International Atomic Energy Agency's (IAEA's) categorization system. The IAEA system classifies sealed radioactive sources (SRSs) into five categories based on potential risks to current workers and the public. This IAEA system allows Membermore » States like Egypt to apply a graded approach to the management of SRSs and SSSs. With over 600 unwanted SSSs already in storage, the EAEA is planned to dispose unwanted SSSs in near surface vault structures with solidified low- and intermediate-level radioactive wastes. The IAEA's categorization system is not designed to protect future populations from the possible long-term migration of radioactive wastes from a disposal system. This paper presents the basis of a second categorization system, designed to protect the public in Egypt from radioactive wastes that may migrate from a near-surface disposal facility. Assuming a release of radionuclides from the near-surface vaults 150 years after disposal and consumption of contaminated groundwater at the 150 m fence-line, this classification systems ranks SSSs into two groups: Those appropriate for near-surface disposal and those SSSs requiring greater isolation. Intermediate depth borehole disposal is proposed for those SSSs requiring greater isolation. Assistance with intermediate-depth borehole disposal is being provided by the Integrated Management Program for Radioactive Sealed Sources (IMPRSS) and by the IAEA through a Technical Cooperation Project. IMPRSS is a joint Egyptian / U.S. program that is greatly improving the cradle-to-grave management of SRSs and SSSs in Egypt. As a component of IMPRSS, Sandia National Laboratories is transferring knowledge to the Egyptian counterparts from implementation of the Greater Confinement Disposal boreholes in the U.S. (authors)« less
The self-absorption effect of gamma rays in /sup 239/Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Hsiao-Hua
1989-01-01
Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less
Apparatus and method for detecting gamma radiation
Sigg, R.A.
1994-12-13
A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.
Absolute calorimetric calibration of low energy brachytherapy sources
NASA Astrophysics Data System (ADS)
Stump, Kurt E.
In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of the current instrument to direct further work in this field. It has been found that for sources with powers above approximately 2 muW the instrument is able to determine the source power in agreement to within less than 7% of what is expected based upon the current source strength standard. For lower power sources, the agreement is still within the uncertainty of the power measurement, but the calorimeter noise dominates. Thus, to provide absolute calibration of lower power sources additional measures must be taken. The conclusion of this thesis describes these measures and how they will improve the factors that limit the current instrument. The results of the work presented in this thesis establish the methodology of active radiometric calorimetey for the absolute calibration of radioactive sources. The method is an improvement over previous techniques in that there is no reliance upon the thermal properties of the materials used or the heat flow pathways on the source measurements. The initial work presented here will help to shape future refinements of this technique to allow lower power sources to be calibrated with high precision and high accuracy.
Accelerator mass spectrometry of iodine-129 and its applications in natural water systems
NASA Astrophysics Data System (ADS)
Buraglio, Nadia
During recent decades, huge amount of radioactive waste has been dumped into the earth's surface environments. 129I (T1/2 = 15.6 My) is one of the radioactive products that has been produced through a variety of processes, including atomic weapon testing, reprocessing of nuclear fact and nuclear accidents. This thesis describes development of the Accelerator Mass Spectrometry (AMS) ultra-sensitive atom counting technique at Uppsala Tandem Laboratory to measure 129I and discusses investigations of its distribution in the hydrosphere (marine and fresh water) and precipitation. The AMS technique provides a method for measuring long-lived radioactive isotopes in small samples, relative to other conventional techniques, and thus opens a now line of research. The optimization of the AMS system at Uppsala included testing a time of flight detector, evaluation of the most appropriate charge-state, reduction of molecular interference and improvement of the detection limit. Furthermore, development of a chemical procedure for separation of iodine from natural water samples has been accomplished. The second part of the thesis reports investigations of 129I in natural waters and indicates that high concentrations of 129I (3-4 orders of magnitude higher than in the prenuclear era) are found in most of the considered natural waters. Inventory calculations and results of measurements suggest that the major sources of radioactive iodine are the two main European nuclear reprocessing facilities at Sellafield (U.K.) and La Hague (France). This information provides estimates of the transit time and vertical mixing of water masses in the central Arctic Ocean. Results from precipitation, lakes and runoff are used to elucidate mechanisms of transport of 129I from the point sources and its pathways in the hydrological environment. This study also shows the need for continuous monitoring of the 129I level in the hydrosphere and of its future variability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-land disposal of radioactive waste....62 Environmental report—land disposal of radioactive waste licensed under 10 CFR part 61. (a) Each applicant for issuance of a license for land disposal of radioactive waste pursuant to part 61 of this...
Manickum, T; John, W; Terry, S; Hodgson, K
2014-11-01
Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gross Alpha Beta Radioactivity in Air Filters Measured by Ultra Low Level α/β Counter
NASA Astrophysics Data System (ADS)
Cfarku, Florinda; Bylyku, Elida; Deda, Antoneta; Dhoqina, Polikron; Bakiu, Erjona; Perpunja, Flamur
2010-01-01
Study of radioactivity in air as very important for life is done regularly using different methods in every country. As a result of nuclear reactors, atomic centrals, institutions and laboratories, which use the radioactivity substances in open or closed sources, there are a lot radioactive wastes. Mixing of these wastes after treatment with rivers and lakes waters makes very important control of radioactivity. At the other side nuclear and radiological accidents are another source of the contamination of air and water. Due to their radio toxicity, especially those of Sr90, Pu239, etc. a contamination hazard for human begins exist even at low concentration levels. Measurements of radioactivity in air have been performed in many parts of the world mostly for assessment of the doses and risk resulting from consuming air. In this study we present the results of international comparison organized by IAEA Vienna, Austria for the air filters spiked with unknown Alpha and Beta Activity. For the calibration of system we used the same filters spiked: a) with Pu-239 as alpha source; b) Sr-90 as beta source and also the blank filter. The measurements of air filter samples after calibration of the system are done with Ultra Low Level α/β Counter (MPC 9604) Protean Instrument Corporation. The high sensitivity of the system for the determination of the Gross Alpha and Beta activity makes sure detection of low values activity of air filters. Our laboratory results are: Aα = (0.19±0.01) Bq/filter and Aα (IAEA) = (0.17±0.009) Bq/filter; Aβ = (0.33±0.009) Bq/filter and Aβ (IAEA) = (0.29±0.01) Bq/filter. As it seems our results are in good agreement with reference values given by IAEA (International Atomic Energy Agency).
OSRP Source Repatriations-Case Studies: Brazil, Ecuador, Uruguay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Ray Jr.; Abeyta, Cristy; Matzke, Jim
2012-07-01
The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) began recovering excess and unwanted radioactive sealed sources (sources) in 1999. As of February 2012, the project had recovered over 30,000 sources totaling over 820,000 Ci. OSRP grew out of early efforts at Los Alamos National Laboratory (LANL) to recover disused excess Plutonium- 239 (Pu-239) sources that were distributed in the 1960's and 1970's under the Atoms for Peace Program. Source recovery was initially considered a waste management activity. However, after the 9/11 terrorist attacks, the interagency community began to recognize that excess and unwanted radioactive sealed sources posemore » a national security threat, particularly those that lack a disposition path. After OSRP's transfer to the U.S. National Nuclear Security Administration (NNSA) to be part of GTRI, its mission was expanded to include all disused sealed sources that might require national security consideration. Recognizing the transnational threat posed by porous borders and the ubiquitous nature of sources, GTRI/OSRP repatriates U.S. origin sources based on threat reduction prioritization criteria. For example, several recent challenging source repatriation missions have been conducted by GTRI/OSRP in South America. These include the repatriation of a significant amount of Cs-137 and other isotopes from Brazil; re-packaging of conditioned Ra-226 sources in Ecuador for future repatriation; and, multilateral cooperation in the consolidation and export of Canadian, US, and Indian Co-60/Cs-137 sources from Uruguay. In addition, cooperation with regulators and private source owners in other countries presents opportunities for GTRI/OSRP to exchange best practices for managing disused sources. These positive experiences often result in long-term cooperation and information sharing with key foreign counterparts. International source recovery operations are essential to the preservation of U.S. national security interests. They are also mutually beneficial for fostering positive relationships with other governments and private industry, and demonstrate that responsible end-of-life options are given to legacy U.S.-origin sources in other countries. GTRI/OSRP does not take back sources that have a viable path for commercial disposal. Most US origin sources were sold commercially and were not provided by the US government. Below is a synopsis of cooperative efforts with Brazil, Ecuador, and Uruguay. Bilateral and multilateral efforts have been successful in removing hundreds of U.S.origin sealed radioactive sources from Latin American countries to the U.S. As many disused sources remain in the region, and since repatriation is not always an option, GTRI will continue to work with those countries to ensure that these sources are stored securely for the long-term. Successful Latin America operations should serve as a model for other regional cooperation in the repatriation of sealed sources, encouraging other source exporting countries to implement similar programs. Securing and removing sources, both domestically and internationally, is crucial to strengthening the life-cycle management of radioactive sources worldwide. Such efforts not only prevent these materials from being used maliciously, but also address public health and safety concerns, and under-gird the IAEA Code of Conduct on the Safety and Security of Radioactive Sources. (authors)« less
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
Synthesis of labeled compounds using recovered tritium from expired beta light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matei, L.; Postolache, C.; Bubueanu, G.
2008-07-15
In this paper, the technological procedures for extracting tritium from beta light source are highlighted. The recovered tritium was used in the synthesis of organically labeled compounds and in the preparation of tritiated water (HTO) with high specific activity. Technological procedures for treatment of beta light sources consist of: envelope breaking into evacuated enclosure, the radioactive gaseous mixture pumping and its storage on metallic sodium. The mixtures of T{sub 2} and {sup 3}He were used in the synthesis of tritium labeled steroid hormones, nucleosides analogues and for the preparation of HTO with high radioactivity concentrations. (authors)
NASA Astrophysics Data System (ADS)
Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku
2017-09-01
In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
10 CFR 835.401 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.401 General... engineered and administrative controls in containing radioactive material and reducing radiation exposure; and (6) Identify and control potential sources of individual exposure to radiation and/or radioactive...
Perspectives for on-line analysis of bauxite by neutron irradiation
NASA Astrophysics Data System (ADS)
Beurton, Gabriel; Ledru, Bertrand; Letourneur, Philippe
1995-03-01
The interest in bauxite as a major source of alumina results in a strong demand for on-line instrumentation suitable for sorting, blending, and processing operations at the bauxite mine and for monitoring instrumentation in the Bayer process. The results of laboratory experiments based on neutron interactions with bauxite are described. The technique was chosen in order to overcome the problem of spatial heterogeneity in bulk mineral analysis. The evaluated elements contributed to approximately 99.5% of the sample weight. In addition, the measurements provide valuable information on physical parameters such as density, hygrometry, and material flow. Using a pulsed generator, the analysis system offers potential for on-line measurements (borehole logging or conveyor belt). An overall description of the experimental set-up is given. The experimental data include measurements of natural radioactivity, delayed radioactivity induced by activation, and prompt gamma rays following neutron reaction. In situ applications of neutron interactions provide continuous analysis and produce results which are more statistically significant. The key factors contributing to advances in industrial applications are the development of high count rate gamma spectroscopy and computational tools to design measurement systems and interpret their results.
A geostatistical approach to data harmonization - Application to radioactivity exposure data
NASA Astrophysics Data System (ADS)
Baume, O.; Skøien, J. O.; Heuvelink, G. B. M.; Pebesma, E. J.; Melles, S. J.
2011-06-01
Environmental issues such as air, groundwater pollution and climate change are frequently studied at spatial scales that cross boundaries between political and administrative regions. It is common for different administrations to employ different data collection methods. If these differences are not taken into account in spatial interpolation procedures then biases may appear and cause unrealistic results. The resulting maps may show misleading patterns and lead to wrong interpretations. Also, errors will propagate when these maps are used as input to environmental process models. In this paper we present and apply a geostatistical model that generalizes the universal kriging model such that it can handle heterogeneous data sources. The associated best linear unbiased estimation and prediction (BLUE and BLUP) equations are presented and it is shown that these lead to harmonized maps from which estimated biases are removed. The methodology is illustrated with an example of country bias removal in a radioactivity exposure assessment for four European countries. The application also addresses multicollinearity problems in data harmonization, which arise when both artificial bias factors and natural drifts are present and cannot easily be distinguished. Solutions for handling multicollinearity are suggested and directions for further investigations proposed.
The ATLAS multi-user upgrade and potential applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustapha, B.; Nolen, J. A.; Savard, G.
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existingmore » ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~ 1 MeV/u and isotope production at ~ 6 MeV/u or at the full ATLAS energy of ~ 15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be presented. Future plans to enhance the flexibility of this upgrade will also be presented.« less
The ATLAS multi-user upgrade and potential applications
NASA Astrophysics Data System (ADS)
Mustapha, B.; Nolen, J. A.; Savard, G.; Ostroumov, P. N.
2017-12-01
With the recent integration of the CARIBU-EBIS charge breeder into the ATLAS accelerator system to provide for more pure and efficient charge breeding of radioactive beams, a multi-user upgrade of the ATLAS facility is being proposed to serve multiple users simultaneously. ATLAS was the first superconducting ion linac in the world and is the US DOE low-energy Nuclear Physics National User Facility. The proposed upgrade will take advantage of the continuous-wave nature of ATLAS and the pulsed nature of the EBIS charge breeder in order to simultaneously accelerate two beams with very close mass-to-charge ratios; one stable from the existing ECR ion source and one radioactive from the newly commissioned EBIS charge breeder. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other potential applications; for instance, material irradiation studies at ~1 MeV/u, isotope production and radiobiological studies at ~6 MeV/u and at the full ATLAS energy of ~15 MeV/u. The concept and proposed implementation of the ATLAS multi-user upgrade will be discussed. Future plans to enhance the flexibility of this upgrade will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-07-01
This is a comprehensive program to develop technologies for cost-beneficial uses of existing and future surplus radioactive materials. Major portion of the work was conducted in two sub-programs: the waste resources utilization program and the separation technology and source development program. Purpose of the waste resources utilization program is to develop a technology to utilize /sup 137/Cs as a ..gamma.. source to sterilize sewage sludge for safe application as a fertilizer or as an animal feed supplement. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied whilemore » bubbling O/sub 2/ through the sludge.« less
Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor
NASA Astrophysics Data System (ADS)
Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro
In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
10 CFR 61.28 - Contents of application for closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.28 Contents of application for closure. (a) Prior to final closure of the disposal... site data pertinent to the long-term containment of emplaced radioactive wastes obtained during the...
NASA Astrophysics Data System (ADS)
Disch, C.
2014-09-01
Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.
10 CFR 61.3 - License required.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
10 CFR 61.3 - License required.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.3 License required. (a) No person may receive, possess, and dispose of radioactive waste containing source, special nuclear, or byproduct material at a land disposal facility unless authorized by a...
Electron string ion sources for carbon ion cancer therapy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.
2015-08-15
The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can bemore » increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... construction authorization for a high-level radioactive waste repository at a geologic repository operations...-level radioactive waste at a geologic repository operations area under parts 60 or 63 of this chapter...
78 FR 45579 - Request for a License to Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
Very-low-energy-spread ion sources
NASA Astrophysics Data System (ADS)
Lee, Y.
1997-05-01
Ion beams with low axial energy spread are required in many applications such as ion projection lithography, isobaric separation in radioactive ion beam experiments, and ion beam deposition processes. In an ion source, the spread of the axial ion energy is caused by the nonuniformity of the plasma potential distribution along the source axis. Multicusp ion sources are capable of production positive and negative ions with good beam quality and relatively low energy spread. By intorducing a magnetic filter inside the multicusp source chamber, the axial plasma potential distribution is modified and the energy spread of positive hydrogen ions can be reduced to as low as 1 eV. The energy spread measurements of multicusp sources have been conducted by employing three different techniques: an electrostatic energy analyzer at the source exit; a magnetic deflection spectrometer; and a retarding-field energy analyzer for the accelerated beam. These different measurements confirmed tha! t ! the axial energy spread of positive and negative ions generated in the filter-equipped multicusp sources are small. New ion source configurations are now being investigated at LBNL with the purpose of achieving enen lower energy spread (<1eV) and of maximizing source performance such as reliability and lifetime.
Collison nebulizer as a new soft ionization source for mass spectrometry
NASA Astrophysics Data System (ADS)
Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.
2016-08-01
We have proposed that a Collison-type nebulizer be used as an ionization source for mass spectrometry with ionization under atmospheric pressure. This source does not require the use of electric voltage, radioactive sources, heaters, or liquid pumps. It has been shown that the number of ions produced by the 63Ni radioactive source is three to four times larger than the number of ions produced by acoustic ionization sources. We have considered the possibility of using a Collison-type nebulizer in combination with a vortex focusing system as an ion source for extractive ionization of compounds under atmospheric pressure. The ionization of volatile substances in crossflows of a charged aerosol and an analyte (for model compounds of the amine class, viz., diethylaniline, triamylamine, and cocaine) has been investigated. It has been shown that the limit of detecting cocaine vapor by this method is on the level of 4.6 × 10-14 g/cm3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basran, P. S; Beckham, WA; Baxter, P
Permanent implant of sealed radioactive sources is an effective technique for treating cancer. Typically, the radioactive sources are implanted in and near the disease, depositing dose locally over several months. There may be instances where these patients must undergo unrelated surgical procedures when the radioactive material remains active enough to pose risks. This work explores these risks, discusses strategies to mitigate those risks, and describes a case study for a permanent I-125 prostate brachytherapy implant patient who developed colo-rectal cancer and required surgery 6 months after brachytherapy. The first consideration is identifying the risk from unwarranted radiation to the patientmore » and staff before, during, and after the surgical procedure. The second is identifying the risk the surgical procedure may have on the efficacy of the brachytherapy implant. Finally, there are considerations for controlling for radioactive substances from a regulatory perspective. After these risks are defined, strategies to mitigate those risks are considered. These strategies may include applying the concepts of ALARA, the use of protective equipment and developing a best practice strategy with the operating room team. We summarize this experience with some guidelines: If the surgical procedure is near (ex: 5 cm) of the implant; and, the surgical intervention may dislodge radioisotopes enough to compromise treatment or introduces radiation safety risks; and, the radioisotope has not sufficiently decayed to background levels; and, the surgery cannot be postponed, then a detailed analysis of risk is advised.« less
RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE
Hatch, L.P.
1959-12-29
A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.
Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator
NASA Astrophysics Data System (ADS)
Hamm, Robert W.
2000-12-01
Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
The Soviet program for peaceful uses of nuclear explosions. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordyke, M.D.
1996-10-01
An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamentalmore » problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.« less
Methods for determination of radioactive substances in water and fluvial sediments
Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.
1977-01-01
Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.
10 CFR 72.24 - Contents of application: Technical information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C... radioactive waste, and/or reactor-related GTCC waste as appropriate, including how the ISFSI or MRS will be... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste as appropriate for...
78 FR 9747 - Request To Amend A License To Import; Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... NUCLEAR REGULATORY COMMISSION Request To Amend A License To Import; Radioactive Waste Pursuant to... Country from application no.; docket no. Diversified Scientific Class A radioactive Up to 378,000 Volume reduction...... Canada Services, Inc.; January 10, mixed waste kilograms. Amend to: (1) add four 2013...
75 FR 74104 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., August 27, Radioactive waste Not to exceed Return to two Germany. 2010, November 3, 2010, XW018...
75 FR 74107 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010, November 3, 2010...
77 FR 20078 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... docket No. Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc...
75 FR 68840 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada August 30...
In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds
Yao, Li-Hong; Wang, Jun-Jie; Shang, Charles; Jiang, Ping; Lin, Lei; Sun, Hai-Tao; Liu, Lu; Liu, Hao; He, Di; Yang, Rui-Jie
2017-01-01
Background: A novel radioactive 125I seed-loaded biliary stent has been used for patients with malignant biliary obstruction. However, the dosimetric characteristics of the stents remain unclear. Therefore, we aimed to describe the dosimetry of the stents of different lengths — with different number as well as activities of 125I seeds. Methods: The radiation dosimetry of three representative radioactive stent models was evaluated using a treatment planning system (TPS), thermoluminescent dosimeter (TLD) measurements, and Monte Carlo (MC) simulations. In the process of TPS calculation and TLD measurement, two different water-equivalent phantoms were designed to obtain cumulative radial dose distribution. Calibration procedures using TLD in the designed phantom were also conducted. MC simulations were performed using the Monte Carlo N-Particle eXtended version 2.5 general purpose code to calculate the radioactive stent's three-dimensional dose rate distribution in liquid water. Analysis of covariance was used to examine the factors influencing radial dose distribution of the radioactive stent. Results: The maximum reduction in cumulative radial dose was 26% when the seed activity changed from 0.5 mCi to 0.4 mCi for the same length of radioactive stents. The TLD's dose response in the range of 0–10 mGy irradiation by 137Cs γ-ray was linear: y = 182225x − 6651.9 (R2= 0.99152; y is the irradiation dose in mGy, x is the TLDs’ reading in nC). When TLDs were irradiated by different energy radiation sources to a dose of 1 mGy, reading of TLDs was different. Doses at a distance of 0.1 cm from the three stents’ surface simulated by MC were 79, 93, and 97 Gy. Conclusions: TPS calculation, TLD measurement, and MC simulation were performed and were found to be in good agreement. Although the whole experiment was conducted in water-equivalent phantom, data in our evaluation may provide a theoretical basis for dosimetry for the clinical application. PMID:28469106
Thermal Performance Analysis of a Geologic Borehole Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagin, Lauren
2016-08-16
The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of twomore » WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to being independent of mesh size. The results from the computational case and analytically-calculated case for the homogeneous WP in benchmarking were almost identical, which indicates that the computational approach used here was successfully verified by the analytical solution.« less
Characterization of Pr:LuAG scintillating crystals for X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Bertoni, R.; Bonesini, M.; Cervi, T.; Clemenza, M.; De Bari, A.; Falcone, A.; Mazza, R.; Menegolli, A.; Nastasi, M.; Rossella, M.
2016-07-01
The main features of the Pr doped Lu3Al5O12 (Pr:LuAG) scintillating crystals for X-ray spectroscopy applications have been studied using different radioactive sources and photo-detectors. Pr:LuAG is cheaper, compared to a Germanium detector, but with remarkable properties which make it useful for many applications, from fundamental physics measurements to the PET imaging for medical purposes: high density, elevate light yield, fast response, high energy resolution, no hygroscopicity. A sample of Pr:LuAG crystals with 14 mm×14 mm surface area and 13 mm thickness and a NaI crystal of the same surface and 26 mm thickness used as a reference have been characterized with several radioactive sources, emitting photons in the range 100-1000keV. Different light detectors were adopted for the Pr:LuAG studies, sensitive to its UV emission (peak at 310 nm): a 3 in. PMT (Hamamatsu R11065) and new arrays of Hamamatsu SiPM S13361, with siliconic resin as a window. Preliminary results are presented on the performance of the Pr:LuAG crystals, to be mounted in a 2 × 2 array to be tested in the 2015 run of the FAMU experiment at RIKEN-RAL muon facility. The goal is the detection of the X-rays (around 130 keV) emitted during the de-excitation processes of the muonic hydrogen after the excitation with an IR laser with wavelength set at the resonance of the hyperfine splitting, to measure the muonic atom proton radius with unprecedented precision.
Radioisotopes for research on and control of mosquitos
Bruce-Chwatt, Leonard J.
1956-01-01
Practical applications of radioactive isotopes in medicine, science, and industry have multiplied enormously during the past five years. In this paper, the author attempts to gather what is known about the use of radioactive isotopes in the research on malaria control. The development of the uranium pile for large-scale production of radioisotopes and technical progress in the making of reliable electronic equipment have greatly contributed to the application of radioactive tracers in biological research. The present knowledge of radioisotopes in mosquito and in insecticide research is discussed. ImagesFIG. 1 PMID:13404435
Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun
2018-03-01
The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.
Miniature Radioisotope Thermoelectric Power Cubes
NASA Technical Reports Server (NTRS)
Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry
2004-01-01
Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE
NASA Astrophysics Data System (ADS)
Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus
2017-08-01
At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.
Yunos, Mohd Amirul Syafiq Mohd; Hussain, Siti Aslina; Yusoff, Hamdan Mohamed; Abdullah, Jaafar
2014-09-01
Radioactive particle tracking (RPT) has emerged as a promising and versatile technique that can provide rich information about a variety of multiphase flow systems. However, RPT is not an off-the-shelf technique, and thus, users must customize RPT for their applications. This paper presents a simple procedure for preparing radioactive tracer particles created via irradiation with neutrons from the TRIGA Mark II research reactor. The present study focuses on the performance evaluation of encapsulated gold and scandium particles for applications as individual radioactive tracer particles using qualitative and quantitative neutron activation analysis (NAA) and an X-ray microcomputed tomography (X-ray Micro-CT) scanner installed at the Malaysian Nuclear Agency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Use of radioactive sources in measuring characteristics of snowpacks
Henry W. Anderson; Philip M. McDonald; Lloyd W. Gay
1963-01-01
Use of radioactive probes inserted in mountain snowpacks may make possible more accurate appraisal and prediction of snowmelt water. Commercially available gamma and neutron probes were tested for their ability to measure snow density, ice lenses, and the thermal quality of individual layers in the snowpack.
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector
Banks, T. I.; Freedman, S. J.; Wallig, J.; ...
2014-10-14
We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealedmore » housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.« less
NASA Astrophysics Data System (ADS)
Bouchami, J.; Gutiérrez, A.; Holy, T.; Houdayer, A.; Jakůbek, J.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J.-P.; Pospíšil, S.; Prak, S.; Sabella, P.; Teyssier, C.; CERN Medipix Collaboration
2011-05-01
Several experiments were performed to establish the Medipix2 device capabilities for track recognition and its efficiency at measuring fluxes. A Medipix2 device was exposed to 241Am, 106Ru and 137Cs radioactive sources, separately and simultaneously. It was also exposed to heavy particle beams (protons and alpha-particles), recoiled on a gold foil to reduce the incoming flux and allow the study of the detector response struck by incoming particles at different incidence angles. For three proton beams (400 keV, 4 and 10 MeV), the device was exposed to the radioactive sources on top of beam, giving a mixed radiation field. To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities. Rotation of the Medipix2 device allowed the test of the heavy tracks recognition at different incidence angles.
10 CFR 72.22 - Contents of application: General and financial information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN... of spent fuel, high-level radioactive waste, and/or reactor-related GTCC waste from storage. (f) Each applicant for a license under this part to receive, transfer, and possess power reactor spent fuel, power...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... notifications for certain shipments of radioactive material at the time the applicable Agreement State... for certain shipments of radioactive material at the time the applicable Agreement State implements... B packaging; (2) the licensed material is being transported within or across the boundary of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardy, A.; Comet, M.; Coornaert, S.
1984-10-09
A process is claimed for the preparation of a fatty acid tagged with radioactive iodine, where a brominated or iodized fatty acid is reacted, preferably in the omega position, with radioactive iodide in the dry state or with an aqueous solution of radioactive iodide, in the presence of vehicling iodide, to exchange the bromine or iodine of the fatty acid for radioactive iodine. Application to use as radio-pharmaceutical products for studying cardiac metabolism troubles in human beings by scintigraphy is mentioned.
Jordan, K.C.
1958-07-22
The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.
Coursey, Bert M
2014-05-01
Accurate measurements of radiation and radioactivity rarely rise to the level of national policy. The things that matter most to ordinary citizens do not normally include questions of science and technology. Citizens are more often concerned with issues close to home relating to commerce, health, safety, security and the environment. When questions of confidence in measurements arise, they are first directed to the ministry that has responsibilities in that area. When the required uncertainty in field measurements challenges the capability of the regulatory authorities, the National Metrology Institute may be asked to develop transfer standards to enhance the capabilities of the ministry with the mission lead. In this paper, we will consider eight instances over the past nine decades in which questions in radiation and radionuclide metrology in the US did rise to the level that they influenced decisions on national policy. These eight examples share some common threads. Radioactivity and ionizing radiation are useful tools in many disciplines, but can often represent potential or perceived threats to health and public safety. When unforeseen applications of radiation arise, or when environmental radioactivity from natural and man-made sources presents a possible health hazard, the radiation metrologists may be called upon to provide the technical underpinning for policy development. © 2013 Published by Elsevier Ltd.
Mustafa, Yasmen A; Zaiter, Maysoon J
2011-11-30
Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.
Pham, Martin H; Yu, Cheng; Rusch, Mairead; Holloway, Charles; Chang, Eric; Apuzzo, Michael L J
2014-12-01
Terrorism involving nuclear or radiologic weapons can devastate populations, city infrastructures, and entire sociopolitical systems. In our age of nuclear medicine and therapeutic radiation delivery, the unauthorized and illegal acquisition of radioactive materials needed for such an attack is always a possibility and risk. Physicians handling high-energy isotopes for medical radiotherapy must be aware of the basic security requirements as outlined by the Nuclear Regulation Commission, which include background checks and authorized access, physical protection during radionuclide use, and physical protection during its transit. The Leksell Gamma Knife and its Category 1 cobalt-60 radioactive source are discussed because of their significant potential for deployment in a weaponized device. Although this article presents a perspective relating to American rules and regulations, these precautions are applicable anywhere that similar situations exist. Understanding these materials and the security they require is essential to preventing the disastrous outcomes should these isotopes fall into terrorists' hands. Published by Elsevier Inc.
129I in the oceans: origins and applications.
Raisbeck, G M; Yiou, F
1999-09-30
The quantity of the long lived (half-life 15.7 million years) radioactive isotope 129I in the pre-nuclear age ocean was approximately 100 kg. Various nuclear related activities, including weapons testing, nuclear fuel reprocessing, Chernobyl and other authorized or non-authorized dumping of radioactive waste have increased the ocean inventory of 129I by more than one order of magnitude. The most important of these sources are the direct marine discharges from the commercial reprocessing facilities at La Hague (France) and Sellafield (UK) which have discharged approximately 1640 kg in the English Channel, and approximately 720 kg in the Irish Sea, respectively. We discuss how this 129I can be used as both a 'pathway' and 'transit time' tracer in the North Atlantic and Arctic oceans, as well as a parameter for distinguishing between reprocessed and non-reprocessed nuclear waste in the ocean, and as a proxy for the transport and dilution of other soluble pollutants input to the North Sea.
High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.
1999-02-01
Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.
Brandt, I S; Rasskazov, S V; Brandt, S B; Ivanov, A V
2002-03-01
In application of radioactive isotope systems (K-Ar, Rb-Sr etc.) during the last decades, experience was gained not only on their geochronometrical uses, but also on estimations of some important parameters of geological processes, especially temperatures and durations of superimposed thermal events. In this paper, the formation of an exocontact thermal field of a magmatic intrusion is considered as a spreading of a thermal source delta-function. Appropriate solutions of the heat-transfer equation are deduced and correlated with diffusion parameters of the radiogenic argon, coupling radioactive, thermal and kinetic parameters in an exocontant zone of a magmatic body. These solutions were used for quantitative reinterpretations of data taken from Hart's classical paper [The petrology and isotopic mineral age relations of a contact zone in the Front Range, Colorado. J. Geol., 1964, v. 72, pp. 493-525]. Theoretic and measured radiogenic argon and strontium concentrations within exocontact aureoles are found to be in good concordance.
An overview of interstitial brachytherapy and hyperthermia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, B.B.; Harney, J.
Interstitial thermoradiotherapy, an experimental cancer treatment that combines interstitial radiation implants (brachytherapy) and interstitial hyperthermia, is in the early stages of investigation. In accordance with the procedure used in a current national trial protocol, a 60-minute hyperthermia treatment is administered after catheters are placed into the tumor area while the patient is under general anesthesia. This is immediately followed by loading of radioactive Iridium-192 seeds into the catheters for a defined period of time. Once the prescribed radiation dose is delivered, the radioactive sources are removed and a second, 60-minute hyperthermia treatment is administered. Clinical trials with hyperthermia in combinationmore » with radiation have increased in recent years. Nurses caring for these patients need to become more knowledgeable about this investigational therapy. This paper provides an overview of the biologic rationale for this therapy, as well as a description of the delivery method and clinical application. Specific related nursing interventions are defined in a nursing protocol.23 references.« less
Support de source de radioactivité à base de PEDT, amélioration des qualités métrologiques
NASA Astrophysics Data System (ADS)
Geffroy, B.; Rosilio, Ch.; de Sanoit, J.; Bouchard, J.; Hainos, D.
1998-06-01
Self-supported conducting membranes with a thickness in the range of 150 to 600 nm have been obtained with a composite of poly(3-4ethylenedioxythiophene) (PEDT) and PVC. The PEDT is prepared by oxydation of the EDT monomer with ferric tosylate. The best conductivity of the PEDT/PVC composite is around 20 S/cm. High quality metrology radioactive 60Co sources are prepared with these thin conducting membranes. The advantages of this radioactive source preparation are presented throuth comparative results. Des membranes conductrices, auto-supportées, d'une épaisseur comprise entre 150 et 600 nm ont été obtenues à partir d'un composite de poly(3-4 éthylènedioxythiophène) (PEDT) et de PVC. Le PEDT est synthétisé par oxydation chimique du monomère par le tosylate ferrique et la conductivité maximale du composite est de 20 S/cm. Ces membranes sont utilisées pour préparer des sources de 60Co de bonnes qualités métrologiques. Les avantages de cette méthode de préparation de sources radioactives sont présentés au travers de mesures comparatives.
Management of Spent and Disused Sealed Radioactive Sources in the Czech Republic - 12124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podlaha, J.
2012-07-01
The Czech Republic is a country with a well-developed peaceful utilization of nuclear energy and ionizing radiation. Sealed Radioactive Sources (further also SRS) are broadly used in many areas in the Czech Republic, e.g. in research, industry, medicine, education, agriculture, etc. Legislation in the field of ionizing radiation source utilization has been fully harmonized with European Community legislation. SRS utilization demands a proper system which must ensure the safe use of SRS, including the management of disused (spent) and orphaned SRS. In the Czech Republic, a comprehensive system of SRS management has been established that is comparable with systems inmore » other developed countries. The system covers both legal and institutional aspects. The Central Register of Ionizing Radiation Sources is an important part of the system. It is a tracking system that covers all activities related to SRS, from their production or import to the end of their use (recycling or disposal). Many spent SRS are recycled and can be used for other purposes after inspection, repacking or reprocessing. When the disused SRS are not intended for further use, they are managed as radioactive waste (RAW). The system of SRS management also ensures the suitable resolution of situations connected with improper SRS handling (in the case of orphaned sources, accidents, etc.). (author)« less
Porcelain-coated antenna for radio-frequency driven plasma source
Leung, Ka-Ngo; Wells, Russell P.; Craven, Glen E.
1996-01-01
A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.
An intelligent inspection and survey robot. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-15
Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.
2008-03-01
will be accomplished by the day prior to the sample transfer operation. i. The radiation hood lab bench tops where radioactive material will be...source container to a sample container in a single syringe transfer. (All other non- radioactive solutions will have been previously added to this... radioactive spill. 4. Procedure Checklist: a. Setup □ Tape down plastic liner and locate absorbent □ Lay out sample container holder, sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, Sunil
The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.
10 CFR 36.21 - Performance criteria for sealed sources.
Code of Federal Regulations, 2010 CFR
2010-01-01
... resistance if the sources are for use in irradiator pools; and (5) In prototype testing of the sealed source... under 10 CFR 32.210; (2) Must be doubly encapsulated; (3) Must use radioactive material that is as...
Kansas State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas.« less
Maine State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.« less
Moxham, Robert M.
1952-01-01
Airborne radioactivity surveys in the Mojave Desert region Kern, Riverside, and Bernardino counties were made in five areas recommended as favorable for the occurrence of radioactive raw materials: (1) Rock Corral area, San Bernardino County. (2) Searles Station area, Kern county. (3) Soledad area, Kern County. (4) White Tank area, Riverside and San Bernardino counties. (5) Harvard Hills area, San Bernardino County. Anomalous radiation was detected in all but the Harvard Hills area. The radioactivity anomalies detected in the Rock Corral area are of the greatest amplitude yet recorded by the airborne equipment over natural sources. The activity is apparently attributable to the thorium-beating mineral associated with roof pendants of crystalline metamorphic rocks in a granitic intrusive. In the Searles Station, Soledad, and White Tank area, several radioactivity anomalies of medium amplitude were recorded, suggesting possible local concentrations of radioactive minerals.
RADIOACTIVE CONTAMINATION OF FOODS. PROBLEMS IN THE FOOD CONSUMPTION OF THE ITALIAN POPULATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro-Luzzi, A.; Mariani, A.
The aspects of health physics that are basically applications of physics are reviewed. Units of radiation measurement, RBE, permissible doses, personnel monitoring, applications of radiation spectrometry, and measurement of body activity are considered, as well as the release, dispersion, and deposition of radioactive material in reactor accidents. 140 references. (D.C.W.)
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.
2012-11-15
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficienciesmore » of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.« less
Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondrasek, R.; Delahaye, P.; Kutsaev, Sergey
2012-11-01
The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a 252Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies ofmore » both gaseous and solid species including 14.7% for the radioactive species 143Ba27+. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for 23Na7+ and 17.9% for 39K10+ were obtained injecting stable Na+ and K+ beams from a surface ionization source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweppe, John E.; Ely, James H.; McConn, Ronald J.
Pacific Northwest National Laboratory has developed computer models to simulate the screening of vehicles and cargo with radiation portal monitors for the presence of illegitimate radioactive material. In addition, selected measurements have been conducted to validate the models. An important consideration in the modeling of realistic scenarios is the influence of the three-dimensional geometry of the cargo on the measured signature. This is particularly important for scenarios where the source and detector move with respect to each other. Two cases of the influence of the three-dimensional geometry of the cargo on the measured radiation signature are analyzed. In the first,more » measurements show that spectral data collected from moving sources so as to maximize the gross-counting signal-to-noise ratio has minimal spectral distortion, so that the spectral data can be summed over this time interval. In the second, modeling demonstrates that the ability to detect radioactive sources at all locations in a container full of cargo scales approximately linearly with the vertical height of the detector, suggesting that detectors should be approximately the same height as the container they scan.« less
Development of target ion source systems for radioactive beams at GANIL
NASA Astrophysics Data System (ADS)
Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.
2013-12-01
The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.H. Little, P.R. Maul, J.S.S. Penfoldag
2003-02-27
This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less
Charge breeding of radioactive isotopes at the CARIBU facility with an electron beam ion source
NASA Astrophysics Data System (ADS)
Vondrasek, R. C.; Dickerson, C. A.; Hendricks, M.; Ostroumov, P.; Pardo, R.; Savard, G.; Scott, R.; Zinkann, G.
2018-05-01
An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q < 6, breeding times <30 ms, low background contamination, and charge breeding efficiencies >18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.
The rare isotope beams production at the Texas A and M university Cyclotron Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabacaru, G.; May, D. P.; Chubarian, G.
2013-04-19
The Cyclotron Institute at Texas A and M initiated an upgrade project for the production of radioactive-ion beams that incorporates a light-ion guide (LIG) and a heavy-ion guide coupled (HIG) with an Electron Cyclotron Resonance Ion Source (ECRIS) constructed for charge-boosting (CB-ECRIS). This scheme is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources and devices used in the project is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Anthony; Ravi, Ananth
2014-08-15
High dose rate (HDR) remote afterloading brachytherapy involves sending a small, high-activity radioactive source attached to a cable to different positions within a hollow applicator implanted in the patient. It is critical that the source position within the applicator and the dwell time of the source are accurate. Daily quality assurance (QA) tests of the positional and dwell time accuracy are essential to ensure that the accuracy of the remote afterloader is not compromised prior to patient treatment. Our centre has developed an automated, video-based QA system for HDR brachytherapy that is dramatically superior to existing diode or film QAmore » solutions in terms of cost, objectivity, positional accuracy, with additional functionalities such as being able to determine source dwell time and transit time of the source. In our system, a video is taken of the brachytherapy source as it is sent out through a position check ruler, with the source visible through a clear window. Using a proprietary image analysis algorithm, the source position is determined with respect to time as it moves to different positions along the check ruler. The total material cost of the video-based system was under $20, consisting of a commercial webcam and adjustable stand. The accuracy of the position measurement is ±0.2 mm, and the time resolution is 30 msec. Additionally, our system is capable of robustly verifying the source transit time and velocity (a test required by the AAPM and CPQR recommendations), which is currently difficult to perform accurately.« less
The SPES surface ionization source
NASA Astrophysics Data System (ADS)
Manzolaro, M.; D'Agostini, F.; Monetti, A.; Andrighetto, A.
2017-09-01
Ion sources and target systems play a crucial role in isotope separation on line facilities, determining the main characteristics of the radioactive ion beams available for experiments. In the context of the selective production of exotic species (SPES) facility, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced by the 238U fissions are delivered to the 1+ ion source by means of a tubular transfer line. Here they can be ionized and subsequently accelerated toward the experimental areas. In this work, the characterization of the surface ionization source currently adopted for the SPES facility is presented, taking as a reference ionization efficiency and transversal emittance measurements. The effects of long term operation at high temperature are also illustrated and discussed.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
Study on induced radioactivity of China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Wu, Qing-Biao; Wang, Qing-Bin; Wu, Jing-Min; Ma, Zhong-Jian
2011-06-01
China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard assessment and environmental impact assessment. Adopting the FLUKA code, the authors have constructed a cylinder-tunnel geometric model and a line-source sampling physical model, deduced proper formulas to calculate air activation, and analyzed various issues with regard to the activation of different tunnel parts. The results show that the environmental impact resulting from induced activation is negligible, whereas the residual radiation in the tunnels has a great influence on maintenance personnel, so strict measures should be adopted.
Bonded carbon or ceramic fiber composite filter vent for radioactive waste
Brassell, Gilbert W.; Brugger, Ronald P.
1985-02-19
Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.
The safe disposal of radioactive wastes
Kenny, A. W.
1956-01-01
A comprehensive review is given of the principles and problems involved in the safe disposal of radioactive wastes. The first part is devoted to a study of the basic facts of radioactivity and of nuclear fission, the characteristics of radioisotopes, the effects of ionizing radiations, and the maximum permissible levels of radioactivity for workers and for the general public. In the second part, the author describes the different types of radioactive waste—reactor wastes and wastes arising from the use of radioisotopes in hospitals and in industry—and discusses the application of the maximum permissible levels of radioactivity to their disposal and treatment, illustrating his discussion with an account of the methods practised at the principal atomic energy establishments. PMID:13374534
NASA Technical Reports Server (NTRS)
Rose, S. D.; Crouch, C. E.; Jones, E. W. (Inventor)
1979-01-01
A coal-rock interface detector is presented which employs a radioactive source and radiation sensor. The source and sensor are separately and independently suspended and positioned against a mine surface of hydraulic pistons, which are biased from an air cushioned source of pressurized hydraulic fluid.
Obtaining and Investigating Unconventional Sources of Radioactivity
ERIC Educational Resources Information Center
Lapp, David R.
2010-01-01
This paper provides examples of naturally radioactive items that are likely to be found in most communities. Additionally, there is information provided on how to acquire many of these items inexpensively. I have found that the presence of these materials in the classroom is not only useful for teaching about nuclear radiation and debunking the…
Analyses of soil gas compositions and stable and radioactive carbon isotopes in the vadose zone above an alluvial aquifer were conducted at an organic solvent disposal site in southeast Phoenix, AZ. The study investigated the source and movement of carbon dioxide above a plume of...
49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... prescribed in the International Organization for Standardization document ISO 9978-1992(E): “Radiation... not less than 90%. (v) The process in paragraphs (c)(2)(i), (c)(2)(ii), and (c)(2)(iii) of this... International Organization for Standardization document ISO 2919-1980(e), “Sealed Radioactive Sources...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, V.E.
Naturally occurring radioactivity was measured in the atmospheric emissions and process materials of a thermal phosphate (elemental phosphorus) plant. Representative exhaust stack samples were collected from each process in the plant. The phosphate ore contained 12 to 20 parts per million uranium. Processes, emission points, and emission controls are described. Radioactivity concentrations and emission rates from the sources sampled are given.
Environmental radiation and the lung
Hamrick, Philip E.; Walsh, Phillip J.
1974-01-01
Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
Reconnaissance for radioactive deposits in Alaska, 1953
Matzko, John J.; Bates, Robert G.
1955-01-01
During the summer of 1953 the areas investigated for radioactive deposits in Alaska were on Nikolai Creek near Tyonek and on Likes Creek near Seward in south-central Alaska where carnotite-type minerals had been reported; in the headwaters of the Peace River in the eastern part of the Seward Peninsula and at Gold Bench on the South Fork of the Koyukuk River in east-central Alaska, where uranothorianite occurs in places associated with base metal sulfides and hematite; in the vicinity of Port Malmesbury in southeastern Alaska to check a reported occurrence of pitchblende; and, in the Miller House-Circle Hot Springs area of east-central Alaska where geochemical studies were made. No significant lode deposits of radioactive materials were found. However, the placer uranothorianite in the headwaters of the Peace River yet remains as an important lead to bedrock radioactive source materials in Alaska. Tundra cover prevents satisfactory radiometric reconnaissance of the area, and methods of geochemical prospecting such as soil and vegetation sampling may ultimately prove more fruitful in the search for the uranothorianite-sulfide lode source than geophysical methods.
Radioactive waste management treatments: A selection for the Italian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Sardini, M.
2012-07-01
The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less
NASA Astrophysics Data System (ADS)
Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.; D'Agostini, F.
2016-02-01
In isotope separation on line facilities the target system and the related ion source are two of the most critical components. In the context of the selective production of exotic species (SPES) project, a 40 MeV 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced in this way are then directed to the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work both the surface ion source and the plasma ion source adopted for the SPES facility are presented and studied by means of numerical thermal-electric models. Then, numerical results are compared with temperature and electric potential difference measurements, and finally the main advantages of the proposed simulation approach are discussed.
10 CFR 35.11 - License required.
Code of Federal Regulations, 2010 CFR
2010-01-01
... material or discrete sources of radium-226 for which a specific medical use license is required in... persons, who possess and use accelerator-produced radioactive material or discrete sources of radium-226...
Microwave applicator for in-drum processing of radioactive waste slurry
White, Terry L.
1994-01-01
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.
Update and evaluation of decay data for spent nuclear fuel analyses
NASA Astrophysics Data System (ADS)
Simeonov, Teodosi; Wemple, Charles
2017-09-01
Studsvik's approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL) and processed (ESTAR) sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources). Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.
for next-gen lithium batteries. Spotlight New ion source dramatically improves radioactive beams for Argonne's CARIBU facility A new Electron Beam Ion Source Charge Breeder operated with Argonne's CARIBU and
Green, Michael V; Seidel, Jurgen; Williams, Mark R; Wong, Karen J; Ton, Anita; Basuli, Falguni; Choyke, Peter L; Jagoda, Elaine M
2017-10-01
Quantitative small animal radionuclide imaging studies are often carried out with the intention of estimating the total radioactivity content of various tissues such as the radioactivity content of mouse xenograft tumors exposed to putative diagnostic or therapeutic agents. We show that for at least one specific application, positron projection imaging (PPI) and PET yield comparable estimates of absolute total tumor activity and that both of these estimates are highly correlated with direct well-counting of these same tumors. These findings further suggest that in this particular application, PPI is a far more efficient data acquisition and processing methodology than PET. Forty-one athymic mice were implanted with PC3 human prostate cancer cells transfected with prostate-specific membrane antigen (PSMA (+)) and one additional animal (for a total of 42) with a control blank vector (PSMA (-)). All animals were injected with [ 18 F] DCFPyl, a ligand for PSMA, and imaged for total tumor radioactivity with PET and PPI. The tumors were then removed, assayed by well counting for total radioactivity and the values between these methods intercompared. PET, PPI and well-counter estimates of total tumor radioactivity were highly correlated (R 2 >0.98) with regression line slopes near unity (0.95
A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.
Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar
2003-12-01
Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating subsequent radioguided surgery.
Design of robust microlinacs for wide replacement of radioisotope sources
NASA Astrophysics Data System (ADS)
Smirnov, A. V.; Agustsson, R. A.; Boucher, S.; Harrison, M.; Junge, K.; Savin, E.; Smirnov, A. Yu
2017-12-01
To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. The bremsstrahlung X-rays produced by relativistic electron beam on a high-Z converter can mimic X-rays radiated from various radioactive sources. Here we consider development of two designs: one matching a Ir-192 source used in radiography with ∼1-1.3 MeV electrons, and another one Cs137 source using 3.5-4 MeV electrons that can be considered for borehole logging. Both designs use standing wave, high group velocity, cm- wave, accelerating structure. The logging tool conceptual design is based on KlyLac concept combining a klystron and linac operating in self-oscillating mode and sharing the same vacuum envelop, and electron beam.
Seeds in Chernobyl: the database on proteome response on radioactive environment
Klubicová, Katarína; Vesel, Martin; Rashydov, Namik M.; Hajduch, Martin
2012-01-01
Two serious nuclear accidents during the last quarter century (Chernobyl, 1986 and Fukushima, 2011) contaminated large agricultural areas with radioactivity. The database “Seeds in Chernobyl” (http://www.chernobylproteomics.sav.sk) contains the information about the abundances of hundreds of proteins from on-going investigation of mature and developing seed harvested from plants grown in radioactive Chernobyl area. This database provides a useful source of information concerning the response of the seed proteome to permanently increased level of ionizing radiation in a user-friendly format. PMID:23087698
Radioactive dating of the elements
NASA Technical Reports Server (NTRS)
Cowan, John J.; Thielemann, Friedrich-Karl; Truran, James W.
1991-01-01
The extent to which an accurate determination of the age of the Galaxy, and thus a lower bound on the age of the universe, can be obtained from radioactive dating is discussed. Emphasis is given to the use of the long-lived radioactive nuclei Re-187, Th-232, U-238, and U-235. The nature of the production sites of these and other potential Galactic chronometers is examined along with their production ratios. Age determinations from models of nucleocosmochronology are reviewed and compared with age determination from stellar sources and age constraints form cosmological considerations.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturgeon, Richard W.
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources.more » This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.« less
40 CFR 146.5 - Classification of injection wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., an underground source of drinking water. (2) Other industrial and municipal disposal wells which... underground source of drinking water. (3) Radioactive waste disposal wells which inject fluids below the lowermost formation containing an underground source of drinking water within one quarter mile of the well...
40 CFR 146.5 - Classification of injection wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., an underground source of drinking water. (2) Other industrial and municipal disposal wells which... underground source of drinking water. (3) Radioactive waste disposal wells which inject fluids below the lowermost formation containing an underground source of drinking water within one quarter mile of the well...
40 CFR 146.5 - Classification of injection wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., an underground source of drinking water. (2) Other industrial and municipal disposal wells which... underground source of drinking water. (3) Radioactive waste disposal wells which inject fluids below the lowermost formation containing an underground source of drinking water within one quarter mile of the well...
40 CFR 146.5 - Classification of injection wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., an underground source of drinking water. (2) Other industrial and municipal disposal wells which... underground source of drinking water. (3) Radioactive waste disposal wells which inject fluids below the lowermost formation containing an underground source of drinking water within one quarter mile of the well...
40 CFR 146.5 - Classification of injection wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., an underground source of drinking water. (2) Other industrial and municipal disposal wells which... underground source of drinking water. (3) Radioactive waste disposal wells which inject fluids below the lowermost formation containing an underground source of drinking water within one quarter mile of the well...
Code of Federal Regulations, 2012 CFR
2012-01-01
... radioactive sealed sources for the irradiation of objects or materials and in which radiation dose rates... source and the area subject to irradiation are contained within a device and are not accessible to... supervisor present. Panoramic dry-source-storage irradiator means an irradiator in which the irradiations...
Code of Federal Regulations, 2014 CFR
2014-01-01
... radioactive sealed sources for the irradiation of objects or materials and in which radiation dose rates... source and the area subject to irradiation are contained within a device and are not accessible to... supervisor present. Panoramic dry-source-storage irradiator means an irradiator in which the irradiations...
Code of Federal Regulations, 2013 CFR
2013-01-01
... radioactive sealed sources for the irradiation of objects or materials and in which radiation dose rates... source and the area subject to irradiation are contained within a device and are not accessible to... supervisor present. Panoramic dry-source-storage irradiator means an irradiator in which the irradiations...
Uranium Glass: A Glowing Alternative to Conventional Sources of Radioactivity
ERIC Educational Resources Information Center
Boot, Roeland
2017-01-01
There is a relatively simple way of using radioactive material in classroom experiments: uranium glass, which provides teachers with a suitable substance. By using the right computer software and a radiation sensor, it can be demonstrated that uranium glass emits radiation at a greater rate than the background radiation and with the aid of UV…
Population array and agricultural data arrays for the Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, K.W.; Duffy, S.; Kowalewsky, K.
1998-07-01
To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculatingmore » the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.« less
Automatic measurements and computations for radiochemical analyses
Rosholt, J.N.; Dooley, J.R.
1960-01-01
In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, G.
1994-09-01
This is the third volume in a series of three volumes characterizing the population of sealed sources that may become greater-than-Class C low-level radioactive waste (GTCC LLW). In this volume, those sources possessed by general licensees are discussed. General-licensed devices may contain sealed sources with significant amounts of radioactive material. However, the devices are designed to be safe to use without special knowledge of radiological safety practices. Devices containing Am-241 or Cm-244 sources are most likely to become GTCC LLW after concentration averaging. This study estimates that there are about 16,000 GTCC devices held by general licensees; 15,000 of thesemore » contain Am-241 sources and 1,000 contain Cm-244 sources. Additionally, this study estimates that there are 1,600 GTCC devices sold to general licensees each year. However, due to a lack of available information on general licensees in Agreement States, these estimates are uncertain. This uncertainty is quantified in the low and high case estimates given in this report, which span approximately an order of magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popowski, Y.; Rouzaud, M.; Kurtz, J.M.
1995-08-30
Balloon dilatation of coronary artery stenosis has become a standard treatment of atherosclerotic heart disease. Restenosis due to excessive intimal cell proliferation, which subsequently occurs in 20-50% of patients, represents one of the major clinical problems in contemporary cardiology, and no satisfactory method for its prevention has thus far been found. Because modest doses of radiation have proved effective in preventing certain types of abnormal cellular proliferation resulting from surgical trauma, and brachytherapy has already been used successfully after dilatation of peripheral arteries, development of a radioactive source suitable for coronary artery applications would be of great interest. Doses obtainedmore » at the surface of the balloon, for a 2-min exposure for the 0.26 mm wire (balloon inflated with air) and the 0.15 mm wire (air or contrast), were 56.5 Gy, 17.8 Gy, 5.4 Gy, respectively. As expected for a beta emitter, the fall-off in dose as a function of depth was rapid. External irradiation from the beta source was negligible. Our experiments indicate that the dose rates attainable at the surface of the angioplasty balloon using this technique allow the doses necessary for the inhibition of intimal cell proliferation to be reached within a relatively short period of time. The thin yttrium-90 wires are very easy to handle, and their mechanical and radioactive properties are well suited to the requirements of the catheterization procedure. 16 refs., 4 figs., 1 tab.« less
Microwave applicator for in-drum processing of radioactive waste slurry
White, T.L.
1994-06-28
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.
Mixed crystal organic scintillators
Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang
2014-09-16
A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.
Particle beam generator using a radioactive source
Underwood, D.G.
1993-03-30
The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.
Particle beam generator using a radioactive source
Underwood, David G.
1993-01-01
The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.
Porcelain-coated antenna for radio-frequency driven plasma source
Leung, K.N.; Wells, R.P.; Craven, G.E.
1996-12-24
A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ions because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile. 8 figs.
Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.
SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less
Rapid Evaluation of Radioactive Contamination in Rare Earth Mine Mining
NASA Astrophysics Data System (ADS)
Wang, N.
2017-12-01
In order to estimate the current levels of environmental radioactivity in Bayan Obo rare earth mine and to study the rapid evaluation methods of radioactivity contamination in the rare earth mine, the surveys of the in-situ gamma-ray spectrometry and gamma dose rate measurement were carried out around the mining area and living area. The in-situ gamma-ray spectrometer was composed of a scintillation detector of NaI(Tl) (Φ75mm×75mm) and a multichannel analyzer. Our survey results in Bayan Obo Mine display: (1) Thorium-232 is the radioactive contamination source of this region, and uranium-238 and potassium - 40 is at the background level. (2) The average content of thorium-232 in the slag of the tailings dam in Bayan Obo is as high as 276 mg/kg, which is 37 times as the global average value of thorium content. (3) We found that the thorium-232 content in the soil in the living area near the mining is higher than that in the local soil in Guyang County. The average thorium-232 concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7±7.5 and 26.2±9.1 mg/kg, respectively. (4) It was observed that thorium-232 was abnormal distributed in the contaminated area near the tailings dam. Our preliminary research results show that the in-situ gamma-ray spectrometry is an effective approach of fast evaluating rare earths radioactive pollution, not only can the scene to determine the types of radioactive contamination source, but also to measure the radioactivity concentration of thorium and uranium in soil. The environmental radioactive evaluation of rare earth ore and tailings dam in open-pit mining is also needed. The research was supported by National Natural Science Foundation of China (No. 41674111).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson-Moore, J.L.; Collins, D.B.; Hornbaker, A.L.
This two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rock and plotted on U.S. Geological Survey 1/sup 0/ x 2/sup 0/ topographic quadrangle maps with a special 1 : 100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, withmore » cross-indexes by county, host rock, and the special categories of ''Front Range,'' ''Colorado Plateau,'' and ''thorium.'' The term ''occurrence'' as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01% or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodkind, M.E.; Klimczak, C.A.; Munyon, W.J.
1993-01-01
Argonne National Laboratory-East (ANL) is a Department of Energy (DOE)-owned, contractor-operated national laboratory located 22 miles southwest of downtown Chicago on a wooded, 1700-acre site. The principal nuclear facilities at ANL include a large fast neutron source (Intense Pulse Neutron Source) in which high-energy protons strike a uranium target to produce neutrons for research studies; [sup 60]Co irradiation sources; chemical and metallurgical plutonium laboratories, some of which are currently being decommissioned; several large hot cell facilities designed for work with multicurie quantities of actinide elements and irradiated reactor fuel materials; a few small research reactors currently in different phases ofmore » being decommissioned; and a variety of research laboratories handling many different sources in various chemical and physical forms. The hazards analysis for the ANL site shows that tornado strikes are a serious threat. The site has been struck twice in the past 20 yr, receiving only minor building damage and no release of radioactivity to the environment. Although radioactive materials in general are handled in areas that provide good tornado protection, ANL is prepared to address the problems that would occur should there be a loss of control of radioactive materials due to severe building damage.« less
NASA Astrophysics Data System (ADS)
Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio
2018-05-01
The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.
Autonomous sample switcher for Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
López, J. H.; Restrepo, J.; Barrero, C. A.; Tobón, J. E.; Ramírez, L. F.; Jaramillo, J.
2017-11-01
In this work we show the design and implementation of an autonomous sample switcher device to be used as a part of the experimental set up in transmission Mössbauer spectroscopy, which can be extended to other spectroscopic techniques employing radioactive sources. The changer is intended to minimize radiation exposure times to the users or technical staff and to optimize the use of radioactive sources without compromising the resolution of measurements or spectra. This proposal is motivated firstly by the potential hazards arising from the use of radioactive sources and secondly by the expensive costs involved, and in other cases the short life times, where a suitable and optimum use of the sources is crucial. The switcher system includes a PIC microcontroller for simple tasks involving sample displacement and positioning, in addition to a virtual instrument developed by using LabView. The shuffle of the samples proceeds in a sequential way based on the number of counts and the signal to noise ratio as selection criteria whereas the virtual instrument allows performing} a remote monitoring from a PC via Internet about the status of the spectra and to take control decisions. As an example, we show a case study involving a series of akaganeite samples. An efficiency and economical analysis is finally presented and discussed.
Simulation of decay processes and radiation transport times in radioactivity measurements
NASA Astrophysics Data System (ADS)
García-Toraño, E.; Peyres, V.; Bé, M.-M.; Dulieu, C.; Lépy, M.-C.; Salvat, F.
2017-04-01
The Fortran subroutine package PENNUC, which simulates random decay pathways of radioactive nuclides, is described. The decay scheme of the active nuclide is obtained from the NUCLEIDE database, whose web application has been complemented with the option of exporting nuclear decay data (possible nuclear transitions, branching ratios, type and energy of emitted particles) in a format that is readable by the simulation subroutines. In the case of beta emitters, the initial energy of the electron or positron is sampled from the theoretical Fermi spectrum. De-excitation of the atomic electron cloud following electron capture and internal conversion is described using transition probabilities from the LLNL Evaluated Atomic Data Library and empirical or calculated energies of released X rays and Auger electrons. The time evolution of radiation showers is determined by considering the lifetimes of nuclear and atomic levels, as well as radiation propagation times. Although PENNUC is designed to operate independently, here it is used in conjunction with the electron-photon transport code PENELOPE, and both together allow the simulation of experiments with radioactive sources in complex material structures consisting of homogeneous bodies limited by quadric surfaces. The reliability of these simulation tools is demonstrated through comparisons of simulated and measured energy spectra from radionuclides with complex multi-gamma spectra, nuclides with metastable levels in their decay pathways, nuclides with two daughters, and beta plus emitters.
Shiue, Chyng-Yann; Wolf, Alfred P.
1984-03-13
The novel radioactive compound .sup.18 F-4-fluoroantipyrine having high specific activity which can be used in nuclear medicine in diagnostic applications, prepared by the direct fluorination of antipyrine in acetic acid with radioactive fluorine at room temperature and purifying said radioactive compound by means of gel chromatography with ethyl acetate as eluent is disclosed. The non-radioactive 4-fluoroantipyrine can also be prepared by the direct fluorination of antipyrine in acetic acid with molecular fluorine at room temperature and purified by means of gel chromotography with ethyl acetate eluent.
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
Reconnaissance for radioactive deposits in eastern Alaska, 1952
Nelson, Arthur Edward; West, Walter S.; Matzko, John J.
1954-01-01
Reconnaissance for radioactive deposits was conducted in selected areas of eastern Alaska during 1952. Examination of copper, silver, and molybdenum occurrences and of a reported nickel prospect in the Slana-Nabesna and Chisana districts in the eastern Alaska Range revealed a maximum radioactivity of about 0.003 percent equivalent uranium. No appreciable radioactivity anomolies were indicated by aerial and foot traverses in the area. Reconnaissance for possible lode concentrations of uranium minerals in the vicinity of reported fluoride occurrences in the Hope Creek and Miller House-Circle Hot Springs areas of the Circle quadrangle and in the Fortymile district found a maximum of 0.055 percent equivalent uranium in a float fragment of ferruginous breccia in the Hope Creek area; analysis of samples obtained in the vicinity of the other fluoride occurrences showed a maximum of only 0.005 percent equivalent uranium. No uraniferous loads were discovered in the Koyukuk-Chandalar region, nor was the source of the monazite, previously reported in the placer concentrates from the Chandalar mining district, located. The source of the uranotheorianite in the placers at Gold Bench on the South Fork of the Koyukuk River was not found during a brief reconaissance, but a placer concentrate was obtained that contains 0.18 percent equivalent uranium. This concentrate is about ten times more radioactive than concentrates previously available from the area.
Trends for Electron Beam Accelerator Applications in Industry
NASA Astrophysics Data System (ADS)
Machi, Sueo
2011-02-01
Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aima, M; Viscariello, N; Patton, T
Purpose: The aim of this work is to propose a method to optimize radioactive source localization (RSL) for non-palpable breast cancer surgery. RSL is commonly used as a guiding technique during surgery for excision of non-palpable tumors. A collimated hand-held detector is used to localize radioactive sources implanted in tumors. Incisions made by the surgeon are based on maximum observed detector counts, and tumors are subsequently resected based on an arbitrary estimate of the counts expected at the surgical margin boundary. This work focuses on building a framework to predict detector counts expected throughout the procedure to improve surgical margins.more » Methods: A gamma detection system called the Neoprobe GDS was used for this work. The probe consists of a cesium zinc telluride crystal and a collimator. For this work, an I-125 Best Medical model 2301 source was used. The source was placed in three different phantoms, a PMMA, a Breast (25%- glandular tissue/75%- adipose tissue) and a Breast (75-25) phantom with a backscatter thickness of 6 cm. Counts detected by the probe were recorded with varying amounts of phantom thicknesses placed on top of the source. A calibration curve was generated using MATLAB based on the counts recorded for the calibration dataset acquired with the PMMA phantom. Results: The observed detector counts data used as the validation set was accurately predicted to within ±3.2%, ±6.9%, ±8.4% for the PMMA, Breast (75-25), Breast (25–75) phantom respectively. The average difference between predicted and observed counts was −0.4%, 2.4%, 1.4% with a standard deviation of 1.2 %, 1.8%, 3.4% for the PMMA, Breast (75-25), Breast (25–75) phantom respectively. Conclusion: The results of this work provide a basis for characterization of a detector used for RSL. Counts were predicted to within ±9% for three different phantoms without the application of a density correction factor.« less
Surface gamma-ray survey of the Barre West quadrangle, Washington and Orange Counties, Vermont
Walsh, Gregory J.; Satkoski, Aaron M.
2005-01-01
This study was designed to determine the levels of naturally occurring radioactivity in bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping and to determine which rock types were potential sources of radionuclides. Elevated levels of total alpha particle radiation (gross alpha) occur in a public water system in Montpelier, Vermont. Measured gross alpha levels in the Murray Hill water system (Vermont Dept. of Environmental Conservation, unpub. data, 2005) have exceeded the maximum contaminant level of 15 picocuries per liter (pCi/l) set by the Environmental Protection Agency (EPA) (EPA, 2000). The Murray Hill system began treatment for radium in 1999. Although this treatment was successful, annual monitoring for gross alpha, radium, and uranium continues as required (Jon Kim, written communication, 2005). The water system utilizes a drilled bedrock well located in the Silurian-Devonian Waits River Formation. Kim (2002) summarized radioactivity data for Vermont, and aside from a statewide assessment of radon in public water systems (Manning and Ladue, 1986) and a single flight line from the National Uranium Resource Evaluation (NURE) (Texas Instruments, 1976) (fig. 1), no data are available to identify the potential sources of naturally occurring radioactivity in the local bedrock. Airborne gamma-ray surveys are typically used for large areas (Duval, 2001, 2002), and ground-based surveys are more commonly used for local site assessments. For example, ground-based surveys have been used for fault mapping (Iwata and others, 2001), soil mapping (Roberts and others, 2003), environmental assessments (Stromswold and Arthur, 1996), and mineral exploration (Jubeli and others, 1998). Duval (1980) summarized the methods and applications of gamma- ray spectrometry. In this study, we present the results from a ground-based gamma-ray survey of bedrock outcrops in the 7.5-minute Barre West quadrangle, Vermont. Other related and ongoing studies in the area are addressing potential mineral sources of radionuclides (Satkoski and Walsh, 2004; Satkoski and others, 2005), radionuclides in ground water (Kim and others, 2005), and bedrock geology.
Hall, Marlene Louise; Butler, Arthur Pierce
1952-01-01
In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.
NASA Astrophysics Data System (ADS)
Nunes, J. C.; Surette, R. A.; Wood, M. J.
1999-08-01
A detector system was built using a silicon photodiode plus preamplifier and a cesium iodide scintillator plus preamplifier that were commercially available. The potential of the system for measuring concentrations of tritiated water vapour in the presence of other radioactive sources was investigated. For purposes of radiation protection, the sensitivity of the detector system was considered too low for measuring tritiated water vapour concentrations in workplaces such as nuclear power plants. Nevertheless, the spectrometry capability of the system was used successfully to differentiate amongst some radioactive gases in laboratory tests. Although this relatively small system can measure radioactive noble gases as well as tritiated water vapour concentrations, its response to photons remains an issue.
New Jersey State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.« less
Mississippi State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.« less
North Carolina State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.« less
Wyoming State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, George; Zhang, Xi-Cheng
Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructivemore » methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, George; Zhang, Xi-Cheng
Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development ofmore » novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.« less
Puerto Rico State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W Jr
1981-07-01
This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less
Ohio State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.« less
Massachusetts State Briefing Book for low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-12
The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.« less
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
Vermont State Briefing Book on low-level radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-07-01
The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less
Isobar separation at very low energy for AMS
NASA Astrophysics Data System (ADS)
Litherland, A. E.; Tomski, I.; Zhao, X.-L.; Cousins, Lisa M.; Doupé, J. P.; Javahery, G.; Kieser, W. E.
2007-06-01
The separation of atomic and molecular isobars, prior to injection into a tandem accelerator for Accelerator Mass Spectrometry (AMS), is discussed. To accomplish this separation, the anions from a standard sputter ion source are retarded to eV energy. The advantages of using very low energy (eV) for this purpose are twofold. The ionic reactions in gases can be isobar specific and the multiple scattering of the eV ions, unlike that at higher energy, can be controlled in linear radio-frequency multipoles. An example of current interest to AMS practice, the suppression of the S- isobar ions from negative ion sources generating mainly Cl- ions, will be described. It will be argued that this is a universal method for isobar separation prior to AMS, which is applicable to atomic anions and cations as well as their molecular counterparts. This procedure should be applicable to the AMS analysis of most rare radioactive species, as atomic or molecular ions, starting with either anions or cations, with appropriate charge changing. In some cases the ions may be analysable without AMS.
Weiss, W; Larsson, C-M; McKenney, C; Minon, J-P; Mobbs, S; Schneider, T; Umeki, H; Hilden, W; Pescatore, C; Vesterlind, M
2013-06-01
This report updates and consolidates previous recommendations of the International Commission on Radiological Protection (ICRP) related to solid waste disposal (ICRP, 1985, 1997b, 1998). The recommendations given apply specifically to geological disposal of long-lived solid radioactive waste. The report explains how the ICRP system of radiological protection described in Publication 103 (ICRP, 2007) can be applied in the context of the geological disposal of long-lived solid radioactive waste. Although the report is written as a standalone document, previous ICRP recommendations not dealt with in depth in the report are still valid. The 2007 ICRP system of radiological protection evolves from the previous process-based protection approach relying on the distinction between practices and interventions by moving to an approach based on the distinction between three types of exposure situation: planned, emergency and existing. The Recommendations maintains the Commission's three fundamental principles of radiological protection namely: justification, optimisation of protection and the application of dose limits. They also maintain the current individual dose limits for effective dose and equivalent dose from all regulated sources in planned exposure situations. They re-enforce the principle of optimisation of radiological protection, which applies in a similar way to all exposure situations, subject to restrictions on individual doses: constraints for planned exposure situations, and reference levels for emergency and existing exposure situations. The Recommendations also include an approach for developing a framework to demonstrate radiological protection of the environment. This report describes the different stages in the life time of a geological disposal facility, and addresses the application of relevant radiological protection principles for each stage depending on the various exposure situations that can be encountered. In particular, the crucial factor that influences the application of the protection system over the different phases in the life time of a disposal facility is the level of oversight or 'watchful care' that is present. The level of oversight affects the capability to control the source, i.e. the waste and the repository, and to avoid or reduce potential exposures. Three main time frames are considered: time of direct oversight, when the disposal facility is being implemented and is under active supervision; time of indirect oversight, when the disposal facility is sealed and oversight is being exercised by regulators or special administrative bodies or society at large to provide additional assurance on behalf of society; and time of no oversight, when oversight is no longer exercised in case memory of the disposal facility is lost. Copyright © 2013. Published by Elsevier Ltd.
Taylor, Robert S.; Boyer, Norman W.
1980-01-01
A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of Borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% Borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, N.W.; Taylor, R.S.
1980-10-28
A boron containing burn resistant, low level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source. The material is basically composed of borax in the range of 25-50%, coal tar in the range of 25-37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.
Aarkrog, A; Dahlgaard, H; Nielsen, S P
1999-09-30
The waters around Greenland have received radioactive contamination from three major sources: Global fallout, discharges from the nuclear fuel reprocessing plant Sellafield in the UK, and the Chernobyl accident in the Former Soviet Union (FSU). The global fallout peaked in the early 1960s. The radiologically most important radionuclides from this source are 90Sr and 137Cs. The input of global fallout to arctic waters was direct deposition from the atmosphere and indirect delivery through river run off and advection from the Atlantic Ocean via the north-east Atlantic current system. The waterborne discharges from Sellafield which were at their peak between 1974 and 1981 contributed primarily 137Cs, although some 90Sr was also discharged. The Chernobyl accident in 1986 was characterised by its substantial atmospheric release of radiocaesium (134Cs and 137Cs). Other sources may, however, also have contributed to the radioactivity in the Greenland waters. Examples include La Hague, France, and radioactive discharges to the great Siberian rivers (Ob, Yenisey and Lena) from nuclear activities in the Former Soviet Union or the local fallout from the Novaya Zemlya nuclear weapons test site. Dumping of nuclear waste in the Kara and Barents Seas may be another, although minor source. From measurements in Greenland waters carried out since 1962 the transport of radionuclides with the East Greenland Current is calculated and compared with the estimated inputs of 90Sr and 137Cs to the Arctic Ocean. This study focus on 90Sr and 137Cs because the longest time series are available for these two radionuclides.
Timepix Device Efficiency for Pattern Recognition of Tracks Generated by Ionizing Radiation
NASA Astrophysics Data System (ADS)
Leroy, Claude; Asbah, Nedaa; Gagnon, Louis-Guilaume; Larochelle, Jean-Simon; Pospisil, Stanislav; Soueid, Paul
2014-06-01
A hybrid silicon pixelated TIMEPIX detector (256 × 256 pixels with 55 μm pitch) operated in Time Over Threshold (TOT) mode was exposed to radioactive sources (241Am, 106Ru, 137Cs), protons and alpha-particles after Rutherford Backscattering on a thin gold foil of protons and alpha-particles beams delivered by the Tandem Accelerator of Montreal University. Measurements were also performed with different mixed radiation fields of heavy charged particles (protons and alpha-particles), photons and electrons produced by simultaneous exposure of TIMEPIX to the radioactive sources and to protons beams on top of the radioactive sources. All measurements were performed in vacuum. The TOT mode of operation has allowed the direct measurement of the energy deposited in each pixel. The efficiency of track recognition with this device was tested by comparing the experimental activities (determined from number of tracks measurements) of the radioactive sources with their expected activities. The efficiency of track recognition of incident protons and alpha-particles of different energies as a function of the incidence angle was measured. The operation of TIMEPIX in TOT mode has allowed a 3D mapping of the charge sharing effect in the whole volume of the silicon sensor. The effect of the bias voltage on charge sharing was investigated as the level of charge sharing is related to the local profile of the electric field in the sensor. The results of the present measurements demonstrate the TIMEPIX capability of differentiating between different types of particles species from mixed radiation fields and measuring their energy deposition. Single track analysis gives a good precision (significantly better than the 55 μm size of one detector pixel) on the coordinates of the impact point of protons interacting in the TIMEPIX silicon layer.
USING STABLE ISOTOPES FOR FISH DIETARY ANALYSES: COPING WITH TOO MANY SOURCES
Stable isotope analysis can provide a useful tool for determining time-integrated measures of proportional food source contributions to fish diets. Ratios of stable (non-radioactive) isotopes of common elements (e.g., C,N,S) vary among food sources, and tissues of consumers (e.g...
PORTABLE SOURCE OF RADIOACTIVITY
Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.
1959-06-16
A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)
NASA Astrophysics Data System (ADS)
Chatrchyan, S.; Sirunyan, A. M.; Tumasyan, A.; Litomin, A.; Mossolov, V.; Shumeiko, N.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Spilbeeck, A.; Alves, G. A.; Aldá Júnior, W. L.; Hensel, C.; Carvalho, W.; Chinellato, J.; De Oliveira Martins, C.; Matos Figueiredo, D.; Mora Herrera, C.; Nogima, H.; Prado Da Silva, W. L.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Finger, M.; Finger, M., Jr.; Kveton, A.; Tomsa, J.; Adamov, G.; Tsamalaidze, Z.; Behrens, U.; Borras, K.; Campbell, A.; Costanza, F.; Gunnellini, P.; Lobanov, A.; Melzer-Pellmann, I.-A.; Muhl, C.; Roland, B.; Sahin, M.; Saxena, P.; Hegde, V.; Kothekar, K.; Pandey, S.; Sharma, S.; Beri, S. B.; Bhawandeep, B.; Chawla, R.; Kalsi, A.; Kaur, A.; Kaur, M.; Walia, G.; Bhattacharya, S.; Ghosh, S.; Nandan, S.; Purohit, A.; Sharan, M.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, S.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Patil, M.; Sarkar, T.; Juodagalvis, A.; Afanasiev, S.; Bunin, P.; Ershov, Y.; Golutvin, I.; Malakhov, A.; Moisenz, P.; Smirnov, V.; Zarubin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Popova, E.; Rusinov, V.; Andreev, Yu.; Dermenev, A.; Karneyeu, A.; Krasnikov, N.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Toms, M.; Zhokin, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Bitioukov, S.; Elumakhov, D.; Kalinin, A.; Krychkine, V.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Volkov, A.; Sekmen, S.; Rumerio, P.; Adiguzel, A.; Bakirci, N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dölek, F.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Işik, C.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Murat Guler, A.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Atakisi, I. O.; Gülmez, E.; Kaya, M.; Kaya, O.; Koseyan, O. K.; Ozcelik, O.; Ozkorucuklu, S.; Tekten, S.; Yetkin, E. A.; Yetkin, T.; Cankocak, K.; Sen, S.; Boyarintsev, A.; Grynyov, B.; Levchuk, L.; Popov, V.; Sorokin, P.; Flacher, H.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Buccilli, A.; Cooper, S. I.; Henderson, C.; West, C.; Arcaro, D.; Gastler, D.; Hazen, E.; Rohlf, J.; Sulak, L.; Wu, S.; Zou, D.; Hakala, J.; Heintz, U.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Yu, D. R.; Gary, J. W.; Ghiasi Shirazi, S. M.; Lacroix, F.; Long, O. R.; Wei, H.; Bhandari, R.; Heller, R.; Stuart, D.; Yoo, J. H.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Nguyen, T.; Spiropulu, M.; Winn, D.; Abdullin, S.; Apresyan, A.; Apyan, A.; Banerjee, S.; Chlebana, F.; Freeman, J.; Green, D.; Hare, D.; Hirschauer, J.; Joshi, U.; Lincoln, D.; Los, S.; Pedro, K.; Spalding, W. J.; Strobbe, N.; Tkaczyk, S.; Whitbeck, A.; Linn, S.; Markowitz, P.; Martinez, G.; Bertoldi, M.; Hagopian, S.; Hagopian, V.; Kolberg, T.; Baarmand, M. M.; Noonan, D.; Roy, T.; Yumiceva, F.; Bilki, B.; Clarida, W.; Debbins, P.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Schmidt, I.; Snyder, C.; Southwick, D.; Tiras, E.; Yi, K.; Al-bataineh, A.; Bowen, J.; Castle, J.; McBrayer, W.; Murray, M.; Wang, Q.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Baden, A.; Belloni, A.; Calderon, J. D.; Eno, S. C.; Feng, Y. B.; Ferraioli, C.; Grassi, T.; Hadley, N. J.; Jeng, G.-Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Yang, Z. S.; Yao, Y.; Brandt, S.; D'Alfonso, M.; Hu, M.; Klute, M.; Niu, X.; Chatterjee, R. M.; Evans, A.; Frahm, E.; Kubota, Y.; Lesko, Z.; Mans, J.; Ruckstuhl, N.; Heering, A.; Karmgard, D. J.; Musienko, Y.; Ruchti, R.; Wayne, M.; Benaglia, A. D.; Medvedeva, T.; Mei, K.; Tully, C.; Bodek, A.; de Barbaro, P.; Galanti, M.; Garcia-Bellido, A.; Khukhunaishvili, A.; Lo, K. H.; Vishnevskiy, D.; Zielinski, M.; Agapitos, A.; Amouzegar, M.; Chou, J. P.; Hughes, E.; Saka, H.; Sheffield, D.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Undleeb, S.; Volobouev, I.; Wang, Z.; Goadhouse, S.; Hirosky, R.; Wang, Y.
2017-12-01
The Phase I upgrade of the CMS Hadron Endcap Calorimeters consists of new photodetectors (Silicon Photomultipliers in place of Hybrid Photo-Diodes) and front-end electronics. The upgrade will eliminate the noise and the calibration drift of the Hybrid Photo-Diodes and enable the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade also includes increased longitudinal segmentation of the calorimeter readout, which allows pile-up mitigation and recalibration due to depth-dependent radiation damage. As a realistic operational test, the responses of the Hadron Endcap Calorimeter wedges were calibrated with a 60Co radioactive source with upgrade electronics. The test successfully established the procedure for future source calibrations of the Hadron Endcap Calorimeters. Here we describe the instrumentation details and the operational experiences related to the sourcing test.
Status of the ion sources developments for the Spiral2 project at GANILa)
NASA Astrophysics Data System (ADS)
Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.
2012-02-01
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.
NASA Astrophysics Data System (ADS)
Manzolaro, M.; Meneghetti, G.; Andrighetto, A.; Vivian, G.
2016-03-01
The production target and the ion source constitute the core of the selective production of exotic species (SPES) facility. In this complex experimental apparatus for the production of radioactive ion beams, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The transfer line enables the unstable isotopes generated by the 238U fissions in the target to reach the ion source, where they can be ionized and finally accelerated to the subsequent areas of the facility. In this work, the plasma ion source currently adopted for the SPES facility is analyzed in detail by means of electrical, thermal, and structural numerical models. Next, theoretical results are compared with the electric potential difference, temperature, and displacement measurements. Experimental tests with stable ion beams are also presented and discussed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Radioactive drug: Capsules containing carbon-14 urea for âin vivoâ diagnostic use for humans. 30.21 Section 30.21 Energy NUCLEAR REGULATORY COMMISSION RULES OF GENERAL APPLICABILITY TO DOMESTIC LICENSING OF BYPRODUCT MATERIAL Exemptions § 30.21 Radioactive drug: Capsules containing carbon-14 urea for “in...
Atmospheric transport modelling in support of CTBT verification—overview and basic concepts
NASA Astrophysics Data System (ADS)
Wotawa, Gerhard; De Geer, Lars-Erik; Denier, Philippe; Kalinowski, Martin; Toivonen, Harri; D'Amours, Real; Desiato, Franco; Issartel, Jean-Pierre; Langer, Matthias; Seibert, Petra; Frank, Andreas; Sloan, Craig; Yamazawa, Hiromi
Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global monitoring system comprising different verification technologies is currently being set up. The network will include 80 radionuclide (RN) stations distributed all over the globe that measure treaty-relevant radioactive species. While the seismic subsystem cannot distinguish between chemical and nuclear explosions, RN monitoring would provide the "smoking gun" of a possible treaty violation. Atmospheric transport modelling (ATM) will be an integral part of CTBT verification, since it provides a geo-temporal location capability for the RN technology. In this paper, the basic concept for the future ATM software system to be installed at the International Data Centre is laid out. The system is based on the operational computation of multi-dimensional source-receptor sensitivity fields for all RN samples by means of adjoint tracer transport modelling. While the source-receptor matrix methodology has already been applied in the past, the system that we suggest will be unique and unprecedented, since it is global, real-time and aims at uncovering source scenarios that are compatible with measurements. Furthermore, it has to deal with source dilution ratios that are by orders of magnitude larger than in typical transport model applications. This new verification software will need continuous scientific attention, and may well provide a prototype system for future applications in areas of environmental monitoring, emergency response and verification of other international agreements and treaties.
Siting process for disposal site of low level radiactive waste in Thailand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.
The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less
Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis
NASA Astrophysics Data System (ADS)
Wiebe, Leonard I.
Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.
Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi
2013-07-01
Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less
Radioactive contamination of scintillators
NASA Astrophysics Data System (ADS)
Danevich, F. A.; Tretyak, V. I.
2018-03-01
Low counting experiments (search for double β decay and dark matter particles, measurements of neutrino fluxes from different sources, search for hypothetical nuclear and subnuclear processes, low background α, β, γ spectrometry) require extremely low background of a detector. Scintillators are widely used to search for rare events both as conventional scintillation detectors and as cryogenic scintillating bolometers. Radioactive contamination of a scintillation material plays a key role to reach low level of background. Origin and nature of radioactive contamination of scintillators, experimental methods and results are reviewed. A programme to develop radiopure crystal scintillators for low counting experiments is discussed briefly.
Birden, J.H.; Jordan, K.C.
1959-11-17
A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.
Wahlen, M; Kunz, C O; Matuszek, J M; Mahoney, W E; Thompson, R C
1980-02-08
The transit of an air mass containing radioactive gas released from the Three Mile Island reactor was recorded in Albany, New York, by measuring xenon-133. These measurements provide an evaluation of Three Mile Island effluents to distances greater than 100 kilometers. Two independent techniques identified xenon-133 in ambient air at concentrations as high as 3900 picocuries per cubic meter. The local gamma-ray whole-body dose from the passing radioactivity amounted to 0.004 millirem, or 0.004 percent of the annual dose from natural sources.
SIMPLIFIED PRACTICAL TEST METHOD FOR PORTABLE DOSE METERS USING SEVERAL SEALED RADIOACTIVE SOURCES.
Mikamoto, Takahiro; Yamada, Takahiro; Kurosawa, Tadahiro
2016-09-01
Sealed radioactive sources which have small activity were employed for the determination of response and tests for non-linearity and energy dependence of detector responses. Close source-to-detector geometry (at 0.3 m or less) was employed to practical tests for portable dose meters to accumulate statistically sufficient ionizing currents. Difference between response in the present experimentally studied field and in the reference field complied with ISO 4037 due to non-uniformity of radiation fluence at close geometry was corrected by use of Monte Carlo simulation. As a consequence, corrected results were consistent with the results obtained in the ISO 4037 reference field within their uncertainties. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
Source calibrations and SDC calorimeter requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.
Several studies of the problem of calibration of the SDC calorimeter exist. In this note the attempt is made to give a connected account of the requirements on the source calibration from the point of view of the desired, and acceptable, constant term induced in the EM resolution. It is assumed that a local'' calibration resulting from exposing each tower to a beam of electrons is not feasible. It is further assumed that an in situ'' calibration is either not yet performed, or is unavailable due to tracking alignment problems or high luminosity operation rendering tracking inoperative. Therefore, the assumptionsmore » used are rather conservative. In this scenario, each scintillator plate of each tower is exposed to a moving radioactive source. That reading is used to mask'' an optical cookie'' in a grey code chosen so as to make the response uniform. The source is assumed to be the sole calibration of the tower. Therefore, the phrase global'' calibration of towers by movable radioactive sources is adopted.« less
Source calibrations and SDC calorimeter requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.
Several studies of the problem of calibration of the SDC calorimeter exist. In this note the attempt is made to give a connected account of the requirements on the source calibration from the point of view of the desired, and acceptable, constant term induced in the EM resolution. It is assumed that a ``local`` calibration resulting from exposing each tower to a beam of electrons is not feasible. It is further assumed that an ``in situ`` calibration is either not yet performed, or is unavailable due to tracking alignment problems or high luminosity operation rendering tracking inoperative. Therefore, the assumptionsmore » used are rather conservative. In this scenario, each scintillator plate of each tower is exposed to a moving radioactive source. That reading is used to ``mask`` an optical ``cookie`` in a grey code chosen so as to make the response uniform. The source is assumed to be the sole calibration of the tower. Therefore, the phrase ``global`` calibration of towers by movable radioactive sources is adopted.« less
Atoms for peace and the nonproliferation treaty: unintended consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streeper, Charles Blamires
2009-01-01
In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMDmore » related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logged 1562 incidents, of which only 18 include weapons grade nuclear materials. As much as 66% of the radioactive material involved in these incidents was not recovered. Since 2004, there has been a 75% increase in incidents of unrecoverable material, much of which is labeled dangerous with potential for deterministic health affects if misused. This makes clear that a black market of illicit trade in sources exists. The incidents reported to the IAEA's database rely only on voluntary state reporting; therefore, the number of lost or stolen sources is expected to be much higher.« less
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
Nuclear pharmacy: An introduction to the clinical application of radiopharmaceuticals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chilton, H.M.; Witcofski, R.L.
1986-01-01
This introductory text reviews fundamental concepts of nuclear pharmacy in a logical, stepwise manner. It presents those aspects of radioactivity basic to nuclear pharmacy including production of radioactivity and the types of instrumentation used to detect and measure radiation.
NASA Astrophysics Data System (ADS)
Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.
2013-04-01
In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Raymond; Watson, Erica E.; Morris, Frederic A.
2009-10-07
The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. The GTRI program has worked successfully to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources, and is now working to ensure sustainability. Internationally, over 40 countries are cooperating with GTRI to enhance the security of radiological materials. GTRI is now seeking to develop and enhance sustainability by coordinating its resources with those of the partner country, other donor countries, and international organizations such as the International Atomic Energy Agency (IAEA).
A Different Laboratory Tale: Fifty Years of Mössbauer Spectroscopy
NASA Astrophysics Data System (ADS)
Westfall, Catherine
2006-05-01
I explore the fifty-year development of Mössbauer spectroscopy by focusing on three episodes in its development at Argonne National Laboratory: work by nuclear physicists using radioactive sources in the early 1960s, work by solid-state physicists using radioactive resources from the mid- 1960s through the 1970s,and work by solid-state physicists using the Advanced Photon Source from the 1980s to 2005. These episodes show how knowledge about the properties of matter was produced in a national-laboratory context and highlights the web of connections that allow nationallaboratory scientists working at a variety of scales to produce both technological and scientific innovations.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia; Carman, M Leslie; Payne, Steve
2014-10-28
An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.
NASA Astrophysics Data System (ADS)
Kurudirek, M.; Medhat, M. E.
2014-07-01
An alternative approach is used to measure normalized mass attenuation coefficients (μ/ρ) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of Kα and Kβ X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of μ/ρ on thickness and density of the material.
Calibration of a time-resolved hard-x-ray detector using radioactive sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoeckl, C., E-mail: csto@lle.rochester.edu; Theobald, W.; Regan, S. P.
A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.
Development of compact Compton camera for 3D image reconstruction of radioactive contamination
NASA Astrophysics Data System (ADS)
Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.
2017-11-01
The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.
NASA Astrophysics Data System (ADS)
Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Clarke, S. D.; Pozzi, S. A.
2017-01-01
In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.
Risk-informed radioactive waste classification and reclassification.
Croff, Allen G
2006-11-01
Radioactive waste classification systems have been developed to allow wastes having similar hazards to be grouped for purposes of storage, treatment, packaging, transportation, and/or disposal. As recommended in the National Council on Radiation Protection and Measurements' Report No. 139, Risk-Based Classification of Radioactive and Hazardous Chemical Wastes, a preferred classification system would be based primarily on the health risks to the public that arise from waste disposal and secondarily on other attributes such as the near-term practicalities of managing a waste, i.e., the waste classification system would be risk informed. The current U.S. radioactive waste classification system is not risk informed because key definitions--especially that of high-level waste--are based on the source of the waste instead of its inherent characteristics related to risk. A second important reason for concluding the existing U.S. radioactive waste classification system is not risk informed is there are no general principles or provisions for exempting materials from being classified as radioactive waste which would then allow management without regard to its radioactivity. This paper elaborates the current system for classifying and reclassifying radioactive wastes in the United States, analyzes the extent to which the system is risk informed and the ramifications of its not being so, and provides observations on potential future direction of efforts to address shortcomings in the U.S. radioactive waste classification system as of 2004.
NASA Astrophysics Data System (ADS)
Gholipour Peyvandi, R.; Islami Rad, S. Z.
2017-12-01
The determination of the volume fraction percentage of the different phases flowing in vessels using transmission gamma rays is a conventional method in petroleum and oil industries. In some cases, with access only to the one side of the vessels, attention was drawn toward backscattered gamma rays as a desirable choice. In this research, the volume fraction percentage was measured precisely in water-gasoil-air three-phase flows by using the backscatter gamma ray technique andthe multilayer perceptron (MLP) neural network. The volume fraction determination in three-phase flows requires two gamma radioactive sources or a dual-energy source (with different energies) while in this study, we used just a 137Cs source (with the single energy) and a NaI detector to analyze backscattered gamma rays. The experimental set-up provides the required data for training and testing the network. Using the presented method, the volume fraction was predicted with a mean relative error percentage less than 6.47%. Also, the root mean square error was calculated as 1.60. The presented set-up is applicable in some industries with limited access. Also, using this technique, the cost, radiation safety and shielding requirements are minimized toward the other proposed methods.
Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephs, J.M.
1980-12-31
A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison ismore » made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10/sup 9/ over a 30 year period assuming a 200 gigawatt supply of electrical power.« less
Directional interstitial brachytherapy from simulation to application
NASA Astrophysics Data System (ADS)
Lin, Liyong
Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.
Measurement of helium isotopes in soil gas as an indicator of tritium groundwater contamination.
Olsen, Khris B; Dresel, P Evan; Evans, John C; McMahon, William J; Poreda, Robert
2006-05-01
The focus of this study was to define the shape and extent of tritium groundwater contamination emanating from a legacy burial ground and to identify vadose zone sources of tritium using helium isotopes (3He and 4He) in soil gas. Helium isotopes were measured in soil-gas samples collected from 70 sampling points around the perimeter and downgradient of a burial ground that contains buried radioactive solid waste. The soil-gas samples were analyzed for helium isotopes using rare gas mass spectrometry. 3He/4He ratios, reported as normalized to the air ratio (RA), were used to locate the tritium groundwater plume emanating from the burial ground. The 3He (excess) suggested that the general location of the tritium source is within the burial ground. This study clearly demonstrated the efficacy of the 3He method for application to similar sites elsewhere within the DOE weapons complex.
Specification of High Activity Gamma-Ray Sources.
ERIC Educational Resources Information Center
International Commission on Radiation Units and Measurements, Washington, DC.
The report is concerned with making recommendations for the specifications of gamma ray sources, which relate to the quantity of radioactive material and the radiation emitted. Primary consideration is given to sources in teletherapy and to a lesser extent those used in industrial radiography and in irradiation units used in industry and research.…
Direct charge radioisotope activation and power generation
Lal, Amit; Li, Hui; Blanchard, James P.; Henderson, Douglass L.
2002-01-01
An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.
AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR
The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shchory, Tal; Schifter, Dan; Lichtman, Rinat
Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less
Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W
2010-11-15
In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koren, S; Kindler, J; Reich, E
Purpose: We propose the use of a HDR X-ray source collimator to apply a conformal, relatively small, radiation suitable for a single fraction with short delivery time. In addition, this technique can be applied using a radioactive source. Methods: We have built a stainless steel 1.5 mm thick applicator, to accommodate the needle applicator of the Intra-Beam X-ray source. Additional cavity is created in the applicator to allow the hosting/nesting/positioning of a LED diode. This LED is allowing a pre-irradiation beam marking on the tissue. The visible light emitted from the opening of the collimated applicator will delineate/verify the aperturemore » of the kV beam to be applied, as well as serve as distance indicator and will assist in the determination of dose to be delivered. For the evaluation of the collimated spatial dose distribution we have performed water tank measurements using (IBA Dosimetry) with a 0.4 cc ion chamber (IBA Dosimetry). We have scanned a two dimensional array with 1mm pitch in depth and 0.3 mm step size laterally. Additional verifications were conducted using Gaf-Chromic film for PDD measurements and Optical Stimulated Luminescence Dosimetry (OSLD, Landauer inc.) for absolute dosimetry. Results: The collimated applicator enables a conformal irradiated cross-section of about 3 mm square at the applicator surface was used in this study. A 180 seconds of 50 kVp delivery yielded 29 Gy, 20.6 Gy and 14.5 Gy at 5, 10 and 15 mm depths respectively. These results are in good agreement with the needle applicator depth dose curve published data. Conclusion: We have demonstrated the feasibility of focal HDR brachytherapy for conjunctival and ocular tumors, using the Intra-Beam needle applicator with in-house developed collimator. The delivery time was found to be several minutes- suitable for an intra-operative procedure and will allow dose fractionation deliveries.« less
Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T
2011-10-01
Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.
Fujiwara, Hiroshi; Kuramochi, Hidetoshi; Nomura, Kazutaka; Maeseto, Tomoharu; Osako, Masahiro
2017-11-01
Large volumes of decontamination wastes (DW) generated by off-site decontamination activities in Fukushima Prefecture have been incinerated since 2015. The behavior of radioactive cesium during incineration of DW was investigated at a working incineration plant. The incineration discharged bottom ash (BA) and fly ash (FA) with similar levels of radiocesium, and the leachability of the radiocesium from both types of ash was very low (<1%). These results are significantly different from those obtained for the incineration of contaminated municipal solid waste (CMSW) reported in earlier studies. The source of radiocesium in DW-FA is chiefly small particles derived from DW and DW-BA blown into the flue gas, not the deposition of gaseous synthesized radiocesium compounds on the surfaces of ash particles in the flue gas as observed in CMSW incineration. This source difference causes the behavior of radiocesium during waste incineration to differ between DW and CMSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation Source Mapping with Bayesian Inverse Methods
Hykes, Joshua M.; Azmy, Yousry Y.
2017-03-22
In this work, we present a method to map the spectral and spatial distributions of radioactive sources using a limited number of detectors. Locating and identifying radioactive materials is important for border monitoring, in accounting for special nuclear material in processing facilities, and in cleanup operations following a radioactive material spill. Most methods to analyze these types of problems make restrictive assumptions about the distribution of the source. In contrast, the source mapping method presented here allows an arbitrary three-dimensional distribution in space and a gamma peak distribution in energy. To apply the method, the problem is cast as anmore » inverse problem where the system’s geometry and material composition are known and fixed, while the radiation source distribution is sought. A probabilistic Bayesian approach is used to solve the resulting inverse problem since the system of equations is ill-posed. The posterior is maximized with a Newton optimization method. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint, discrete ordinates flux solutions, obtained in this work by the Denovo code, is required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes form the linear mapping from the state space to the response space. The test of the method’s success is simultaneously locating a set of 137Cs and 60Co gamma sources in a room. This test problem is solved using experimental measurements that we collected for this purpose. Because of the weak sources available for use in the experiment, some of the expected photopeaks were not distinguishable from the Compton continuum. However, by supplanting 14 flawed measurements (out of a total of 69) with synthetic responses computed by MCNP, the proof-of-principle source mapping was successful. The locations of the sources were predicted within 25 cm for two of the sources and 90 cm for the third, in a room with an ~4-x 4-m floor plan. Finally, the predicted source intensities were within a factor of ten of their true value.« less
NASA Astrophysics Data System (ADS)
Kaissas, I.; Papadimitropoulos, C.; Potiriadis, C.; Karafasoulis, K.; Loukas, D.; Lambropoulos, C. P.
2017-01-01
Coded aperture imaging transcends planar imaging with conventional collimators in efficiency and Field of View (FOV). We present experimental results for the detection of 141 keV and 122 keV γ-photons emitted by uniformly extended 99mTc and 57Co hot-spots along with simulations of uniformly and normally extended 99mTc hot-spots. These results prove that the method can be used for intra-operative imaging of radio-traced sentinel nodes and thyroid remnants. The study is performed using a setup of two gamma cameras, each consisting of a coded-aperture (or mask) of Modified Uniformly Redundant Array (MURA) of rank 19 positioned on top of a CdTe detector. The detector pixel pitch is 350 μm and its active area is 4.4 × 4.4 cm2, while the mask element size is 1.7 mm. The detectable photon energy ranges from 15 keV up to 200 keV with an energy resolution of 3-4 keV FWHM. Triangulation is exploited to estimate the 3D spatial coordinates of the radioactive spots within the system FOV. Two extended sources, with uniform distributed activity (11 and 24 mm in diameter, respectively), positioned at 16 cm from the system and with 3 cm distance between their centers, can be resolved and localized with accuracy better than 5%. The results indicate that the estimated positions of spatially extended sources lay within their volume size and that neighboring sources, even with a low level of radioactivity, such as 30 MBq, can be clearly distinguished with an acquisition time about 3 seconds.
New 2-D dosimetric technique for radiotherapy based on planar thermoluminescent detectors.
Olko, P; Marczewska, B; Czopyk, L; Czermak, M A; Klosowski, M; Waligórski, M P R
2006-01-01
At the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ) in Kraków, a two-dimensional (2-D) thermoluminescence (TL) dosimetry system was developed within the MAESTRO (Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology) 6 Framework Programme and tested by evaluating 2-D dose distributions around radioactive sources. A thermoluminescent detector (TLD) foil was developed, of thickness 0.3 mm and diameter 60 mm, containing a mixture of highly sensitive LiF:Mg,Cu,P powder and Ethylene TetraFluoroEthylene (ETFE) polymer. Foil detectors were irradiated with (226)Ra brachytherapy sources and a (90)Sr/(90)Y source. 2-D dose distributions were evaluated using a prototype planar (diameter 60 mm) reader, equipped with a 12 bit Charge Coupled Devices (CCD) PCO AG camera, with a resolution of 640 x 480 pixels. The new detectors, showing a spatial resolution better than 0.5 mm and a measurable dose range typical for radiotherapy, can find many applications in clinical dosimetry. Another technology applicable to clinical dosimetry, also developed at IFJ, is the Si microstrip detector of size 95 x 95 mm(2), which may be used to evaluate the dose distribution with a spatial resolution of 120 microm along one direction, in real-time mode. The microstrip and TLD technology will be further improved, especially to develop detectors of larger area, and to make them applicable to some advanced radiotherapy modalities, such as intensity modulated radiotherapy (IMRT) or proton radiotherapy.
NASA Astrophysics Data System (ADS)
Kocher, D. C.; Smith, J. S.
Decay data are presented for approximately 500 radionuclides including those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals. Physical processes involved in radioactive decay which produce the different types of radiation observed, methods used to prepare the decay data sets for each radionuclide in the format of the computerized evaluated nuclear structure data file, the tables of radioactive decay data, and the computer code MEDLIST used to produce the tables are described. Applications of the data to problems of interest in radiation dosimetry and radiological assessments are considered as well as the calculations of the activity of a daughter radionuclide relative to the activity of its parent in a radioactive decay chain.
Use of x-ray fluorescence for in-situ detection of metals
NASA Astrophysics Data System (ADS)
Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.
1995-01-01
X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.
Removal of radioactive contaminants by polymeric microspheres.
Osmanlioglu, Ahmet Erdal
2016-11-01
Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.
Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor
NASA Astrophysics Data System (ADS)
Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun
2016-06-01
A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.